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1 Introdu
tionThe renormalisation of four-fermion operators is an essential ingredient in latti
eQCD 
omputations of weak matrix elements. In this letter we will address thelogarithmi
ally divergent renormalisation of left-left four-quark operators, with anemphasis on the �S = 1 e�e
tive Hamiltonian governing non-leptoni
 kaon de
ays.The treatment of �S = 1 weak de
ays via an e�e
tive weak Hamiltonian withan a
tive 
harm quark has been re
ently reviewed in [1℄. After performing theoperator produ
t expansion and negle
ting top quark e�e
ts, whi
h are suppressedby three orders of magnitude relative to the 
ontributions of up and 
harm quarks,the expression found for the �S = 1 e�e
tive weak Hamiltonian in the formal
ontinuum theory isHw = g2w4M2W (Vus)�Vud X�=�fk�1Q�1 + k�2Q�2g : (1.1)In the above expression gw = 4p2GFM2W , k�1;2 are Wilson 
oeÆ
ients, and thedimension-six operators Q�1;2 have the formQ�1 = [(�s
�P�u)(�u
�P�d)� (�s
�P�d)(�u
�P�u)℄� [u ! 
℄ ; (1.2)Q�2 = (m2u �m2
)fmd(�sP+d) +ms(�sP�d)g ; (1.3)where parentheses around quark bilinears indi
ate 
olour and spin tra
es and P� =12(1 � 
5). Although our pro
edure is 
ompletely general, we will from now on
on
entrate in the SU(4)L�SU(4)R symmetri
 limit, where all quark masses are de-generate [1℄. In this limit the only 
ontribution to de
ay amplitudes 
omes frommatrix elements of the operators Q�1 . Moreover, the operator renormalisationpattern is greatly simpli�ed, as mixing with lower dimension operators is absent.We stress, however, that our results, being obtained in a mass-independent renor-malisation s
heme, will renormalise properly subtra
ted operators also beyond theSU(4)L � SU(4)R symmetri
 limit.Our strategy to renormalise Q�1 is similar to the te
hnique proposed in [2℄ forthe 
omputation of the renormalised 
hiral 
ondensate. It involves mat
hing bare
orrelation fun
tions (or matrix elements) 
omputed with Neuberger fermions totheir renormalisation group invariant (RGI) 
ounterparts. The latter are 
omputedin the 
ontinuum limit with some variant of Wilson fermions, for whi
h mature te
h-niques for fully non-perturbative renormalisation exist. Our 
hoi
e will be twistedmass QCD (tmQCD) with an O(a) improved fermion a
tion.Although we will 
on
entrate spe
i�
ally on the operators of the �S = 1 Hamil-tonian, both the proposed methodology and our results have a wider range of appli-
ation. In parti
ular, the renormalisation fa
tors that we will obtain for Q+1 renor-malise also the four-fermion operator entering the �S = 2 e�e
tive Hamiltonian. Inthe present work, all 
omputations are performed in the quen
hed approximation.1



In the next se
tion we will des
ribe the strategy of the 
omputation. In se
tion 3we dis
uss the 
omputation of RGI operators in the 
ontinuum limit, based on atwisted mass QCD (tmQCD) Wilson fermion regularisation. In se
tion 4 we dis
ussour results with Neuberger fermions, and 
ompute non-perturbative renormalisationfa
tors. Se
tion 5 deals with perturbative estimates of the same renormalisationfa
tors. We present our 
on
lusions in se
tion 6.2 StrategyLet us 
onsider a generi
 multipli
atively renormalisable operator.1 The notationwill follow 
losely that of [1℄. We will be dealing only with mass-independent renor-malisation s
hemes.We start by re
alling the de�nition of renormalisation group invariant (RGI)
omposite operators. The RGI insertion of a lo
al operator Q into a 
ontinuumon-shell 
orrelation fun
tion is given byQ̂(gR; mR; L) = 
s(�=�) lima!0Zs(g0; a�)Q(g0; m0; L)� lima!0 Ẑ(g0)Q(g0; m0; L) ; (2.1)where Zs is a renormalisation 
onstant that renders the operator �nite, � is theQCD s
ale, and g0; m0 (gR; mR) denote the bare (renormalised) gauge 
oupling andquark mass(es). The subs
ript \s" labels the renormalisation s
heme. We have alsoindi
ated expli
itly that 
orrelation fun
tions will be 
omputed in a �nite volume ofspatial size L (eventually taking L!1). The RG-evolution fun
tion is given by
s(�=�) = �2b0g2(�)�
0=(2b0) exp(� Z g (�)0 dg �
(g)�(g) + 
0b0g�) ; (2.2)where we have used the perturbative expansions of the anomalous dimension of theoperator 
 and the �-fun
tion, viz.�(g) g!0� �g3(b0 + b1g2 + : : :) ; 
(g) g!0� g2(
0 + 
1g2 + : : :) : (2.3)It has to be stressed that the (s
ale-independent) RGI renormalisation fa
tor Ẑ(g0) �
s(�=�)Zs(g0; a�) depends on the renormalisation s
heme only via 
uto� e�e
ts,sin
e the RGI operator insertion Q̂ is s
heme-independent. On the other hand, Ẑ isregularisation-dependent. We also stress that the running fa
tor 
s is a 
ontinuumquantity, and hen
e regularisation-independent.We now 
onsider two di�erent latti
e regularisations, namely Wilson (denotedby \w") and Neuberger (or overlap) fermions (denoted by \ov"). Our aim is to1The generalisation to operators whi
h mix under renormalisation is straightforward.2




onstru
t RGI renormalisation fa
tors for Neuberger fermions operators by mat
hingrenormalised quantities in both regularisations. The �rst step 
onsists of using the�rst regularisation in order to 
ompute the RGI operator Q̂ at a referen
e physi
alpoint, parametrised here by (gR;ref ; mR;ref; Lref), viz.Q̂(gR;ref ; mR;ref; Lref) = lima!0 Ẑw(g0)Qw(g0; m0; Lref) : (2.4)It is essential to note that any referen
e to the regularisation employed in the r.h.s.of eq. (2.4) has disappeared after the 
ontinuum limit has been taken. The se
ondstep 
onsists of tuning a point (g00; m00) in the bare parameter spa
e of the se
ondregularisation, whi
h 
orresponds to the same values of the renormalised parameters(gR;ref; mR;ref). Assuming universality of the 
ontinuum limit, one then hasQ̂(gR;ref ; mR;ref; Lref) = Ẑov(g00)Qov(g00; m00; Lref) + O(a2) ; (2.5)where we have expli
itly used the fa
t that 
orrelation fun
tions 
omputed withNeuberger fermions exhibit s
aling violations of at most O(a2). On
e the barequantity Qov(g00; m00; Lref) has been 
omputed, eq. (2.5) yields Ẑov(g00), providedthat Q̂(gR;ref ; mR;ref; Lref) has been determined through eq. (2.4). This pro
edure
an be repeated at several bare 
ouplings and masses (g00; m00), always 
orrespondingto (gR;ref ; mR;ref); in this way the latti
e spa
ing may be varied, while the physi
s(i.e. physi
al volume and renormalised 
oupling and masses) is kept �xed. Note thatEq. (2.5) is to be interpreted as a renormalisation 
ondition that impli
itly de�nes amass-independent renormalisation s
heme. Thus it ensures that the RGI renormal-isation fa
tors 
omputed in this way will 
orre
tly renormalise the operators at anyvalue of the quark masses mR. In parti
ular, Ẑov depends on quark masses only via
uto� e�e
ts (though it is not guaranteed a priori that su
h dependen
e is small).On the other hand, the renormalisation pres
ription (2.5) reprodu
es by 
onstru
-tion the RGI result at the referen
e point for any 
hosen set of bare parameters.Thus the pro
edure is only useful if the targeted physi
al regime, 
hara
terised by(gR; mR; L), is well away from (gR;ref; mR;ref; Lref).The present work provides an appli
ation of this strategy. The ultimate aim,whi
h is a
hieved in ref. [3℄, is the 
omputation of the e�e
tive low-energy 
ouplingsgoverning non-leptoni
 kaon de
ays, following the strategy des
ribed in [1℄. Thisinvolves the 
omputation, 
arried out using Neuberger fermions, of the 
hiral limitvalues of the ratios of 
orrelation fun
tionsR�1 (x0; y0) = h[J0(x)℄duQ�1 (0)[J0(y)℄usih[J0(x)℄du[J0(0)℄udih[J0(0)℄su[J0(y)℄usi ; (2.6)where J� is the left-handed 
urrent[J�(x)℄�� = � �
�P� � ; (2.7)3



and �; � are 
avour indi
es. An essential ingredient of the pro
edure are the renor-malisation fa
tors [Ẑ�1 =Z2A℄, the 
omputation of whi
h is the goal of the presentwork.In order to 
ompute non-perturbatively the renormalisation fa
tors [Ẑ�1 =Z2A℄ forNeuberger fermions, we will employ the ratios of QCD matrix elementsR� � h�+jQ�1 jK+ih�+jJ0j0ih0jJ0jK+i (2.8)
omputed in large volumes and at a value of the referen
e quark mass mR;ref
orresponding to mPS = m� = mK = mphysK = 495 MeV. Note that, in theSU(4)L � SU(4)R symmetri
 limit, the ratio R+ will be equal, up to a trivial fa
-tor, to the Kaon bag parameter BK . The RGI ratios R̂� will be 
omputed, as inEq. (2.4), using a Wilson fermion regularisation. To this purpose, we will 
omputethe bare quantities R� at several values of the bare 
oupling g0, and use the RGIrenormalisation fa
tors 
omputed in the same g0 range in [4℄, using a S
hr�odingerFun
tional (SF) framework. We will then apply Eq. (2.5) to mat
h the RGI ratiosR̂�1 to the ratios of bare matrix elements 
omputed with Neuberger fermions. Sin
ethe mat
hing referen
e regime of large volumes and meson masses of the order ofmphysK is well away from the target one in whi
h [Ẑ�=Z2A℄ are to be used, the 
on-stru
tion is indeed non-trivial. In this way we have exploited the fa
t that Wilsonfermions are well suited for simulations in the strange-quark regime, while they be-
ome problemati
 
lose to the 
hiral limit, where Neuberger fermions are 
learlyadvantageous.For the sake of 
onsisten
y, we will also perform a dire
t determination of theratio Ẑ+;ov1 =Ẑ�;ov1 , 
omputed from a mat
hing involving the ratio of matrix elementsR+R� = h�+jQ+1 jK+ih�+jQ�1 jK+i : (2.9)This spe
i�
 ratio is of parti
ular interest, as it enters dire
tly the study of the�I = 1=2 enhan
ement rule.Some 
omments are in order. The renormalisation fa
tors obtained via thepro
edure just des
ribed do not lead, obviously, to independent renormalised valuesfor the ratios of matrix elements in Eq. (2.8) 
omputed at the referen
e point mphysK ,as a tautology would result. As explained above, the renormalisation fa
tors [Ẑ�1 =Z2A℄will rather be used to renormalise quantities e�e
tively 
omputed in the 
hiral limit.They 
an also be used e.g. to renormalise ratios of 
orrelation fun
tions 
omputedin the �-regime. The fa
t that the mat
hing involves 
orrelation fun
tions 
omputedwith both periodi
 and SF boundary 
onditions does not, on the other hand, giverise to any subtlety, as only hadroni
 matrix elements 
omputed in a large volumeare involved. 4



Unlike the above strategy, adopted in this work, the ideal mat
hing pro
edureshould not involve the tradeo� of a long-distan
e matrix element of physi
al rele-van
e. It is e.g. possible to mat
h a di�erent matrix element of the same operator,or to take a referen
e point for the mat
hing whi
h is well away from all the targetphysi
al regimes of interest. On the other hand, the parti
ular strategy adoptedhere has the advantage that it allows to use the numeri
al results obtained in the
ontext of [5℄.3 Wilson-tmQCD 
omputation of RGI operatorsWe will now dis
uss the 
omputation of the RGI operators Q̂�1 (i.e. the l.h.s. ofEq. (2.5)), using the tmQCD formalism with Wilson quarks [6℄.We start by re
alling that, with Wilson fermions, the renormalisation of Q�1 ismore subtle than in 
hirally symmetri
 regularisations (see [7℄ for a detailed dis
us-sion). Customarily, both operators are split into parity-even and parity-odd partsas Q�1 = Q�VV+AA �Q�VA+AV ; (3.1)in standard notation. In the three-point 
orrelation fun
tions 
onsidered below, par-ity 
onservation in QCD ensures that the only 
ontribution 
omes from the parity-even part Q�VV+AA . With ordinary Wilson fermions, as a 
onsequen
e of the break-ing of 
hiral symmetry, the renormalisation of Q�VV+AA requires the subtra
tion offour �nite 
ounterterms involving all the remaining Lorentz-invariant, parity-evenfour-quark operators with the same 
avour stru
ture.2 On the other hand, it is pos-sible to 
onstru
t twisted mass QCD (tmQCD) Wilson regularisations in whi
h the
ounterterms are absent, and the operator renormalises multipli
atively. The basi
property that has to be satis�ed is that the 
hiral rotation of the quark �elds thatgenerates the twisted mass term maps Q�VV+AA onto Q�VA+AV . In mass-independentrenormalisation s
hemes, the latter is prote
ted from mixing with other four-fermionoperators by CPS symmetry. Examples of su
h regularisations have been dis
ussedin [8℄.Here we will adopt, however, a di�erent approa
h, whi
h will allow us to usethe numeri
al results obtained in [5℄. To that purpose we restri
t ourselves to thequen
hed approximation, and use the formalism for valen
e quark 
avours advo
atedin [9℄. We 
onsider a theory with six valen
e 
avours, that we will label  =(u; d; s; 
; u0; 
0)T . We will employ two tmQCD regularisations, 
hara
terised by the2Mixing with operators of lower dimension is always absent in the SU(4)L� SU(4)R limit, as allmixing 
oeÆ
ients are proportional to the mass di�eren
e (m
 �mu).5




hoi
e of twist angle � in the de�nition of the fermion a
tion:S(�)tmQCD = a4Xx;y � (x)nDw;sw +m(�) + i
5�(�)o (x; y) (y) ; (3.2)where Dw;sw is the Wilson operator with a Sheikholeslami-Wohlert term, m(�) and�(�) are diagonal mass matri
es, and the label � refers to the twist angle enter-ing 
hiral rotations. The bare mass parameters are tuned so that, up to O(a2)
orre
tions, the renormalised mass matri
es have the formm(�=2)R =MR diag(0; 0; 1; 0; 1; 1) ; �(�=2)R =MR diag(1; 1; 0; 1; 0; 0) ; (3.3)m(�=4)R = MRp2 diag(1; 1; 1; 1; 1; 1) ; �(�=4)R = MRp2 diag(1; 1;�1; 1;�1;�1) ; (3.4)where MR is the physi
al renormalised quark mass. The mass tuning pro
edure isidenti
al to the one des
ribed in [5℄. We then introdu
e the operatorseQ�1 =[(�s
�P�u)(�u0
�P�d)� (�s
�P�d)(�u0
�P�u)℄� [u! 
 ; u0 ! 
0℄ : (3.5)Using the standard relation between QCD and tmQCD in the 
ontinuum limit, one�nds, for the two regularisations spe
i�ed above, that the following equalities holdbetween operator insertions in RGI 
orrelation fun
tions[ êQ�VV+AA ℄QCD = i [ êQ�VA+AV ℄tmQCD ; (3.6)ZA[A�℄su;QCD = 1p2 fZA[A�℄su;tmQCD � iZV[V�℄su;tmQCDg ; (3.7)ZA[A�℄du0 ;QCD = 1p2 �ZA[A�℄du0;tmQCD � iZV[V�℄du0;tmQCD	 ; (3.8)where [A�℄�� = � �
�
5 � and [V�℄�� = � �
� �. The 
urrent normalisationsZA; ZV, as well as the O(a) improvement 
oeÆ
ient 
A needed to 
onstru
t an O(a)improved axial 
urrent, are set to the values 
omputed by the Alpha Collabora-tion [10, 11℄.Correlation fun
tions are 
omputed within a S
hr�odinger fun
tional (SF) frame-work, with quark and gluon �elds obeying periodi
 boundary 
onditions in spa
e(with period L) and (homogeneous) Diri
hlet boundary 
onditions in time at thehypersurfa
es x0 = 0 and x0 = T . Ratios of 
orrelation fun
tions, from whi
h theratios of matrix elements R� and R+=R� 
an be extra
ted, are de�ned in 
ompleteanalogy to the ones spe
i�ed for the extra
tion of BK in [5℄. Our run parameters,too, are the same as in [5℄, and are listed in Tables 1 and 5 of that work, save forone important ex
eption, 
on
erning the dataset at � = 6:1. After 
ompletion ofref. [5℄, its authors 
arried out a proper determination of �
r(� = 6:1), based on themethod of [10℄. They found that this estimate of �
r disagrees by several standard6



deviations from the value 
ited in the literature [12℄, whi
h had been used in [5℄for the tuning of the bare mass parameters. This dis
repan
y hen
e ne
essitated anew determination of the bare mass parameters in order to satisfy the 
onstraintsimposed by the pres
ribed values of the twist angles. Consequently, the runs at� = 6:1 had to be repeated after 
ompletion of [5℄. Full details will be providedseparately [14℄. In the present work we merely quote the 
orre
ted value of R+ inthe 
ontinuum limit.The RGI ratios are obtained upon multipli
ation by the RGI renormalisationfa
tors Ẑ�VA+AV . The latter have been 
omputed non-perturbatively in [4℄, usingthe standard SF �nite-size s
aling analysis, for a range of inverse 
ouplings 6:0 .� . 6:5. Out of the various SF renormalisation s
hemes 
onsidered in [4℄ we have
hosen to employ s
heme 1 for the renormalisation of eQ+VA+AV and s
heme 8 foreQ�VA+AV ; the reasons are explained in [4℄ and [13℄. The appropriate error analysishas been extensively dis
ussed (for R̂+) in [5℄. The 
ontinuum limit is then obtainedby performing a 
ombined extrapolation of the results 
oming from both tmQCDregularisations. The extrapolation is linear in the latti
e spa
ing a, sin
e the four-fermion operator is not O(a) improved, and hen
e the leading latti
e artifa
ts in R�are expe
ted to be O(a). Furthermore, as dis
ussed in [5℄, at the lowest values of� the O(a) ambiguity in the determination of the improvement 
oeÆ
ient 
A has asigni�
ant impa
t on 
uto� e�e
ts. Under these premises, our most stable 
ontinuumlimit extrapolation for R̂+ is obtained by dis
arding the � = 6:0; 6:1 data points,while for R̂� and R̂+=R̂� only � = 6:0 is dis
arded. The �nal results, illustrated inFig. 1, are R̂+ = 0:885(86) ; R̂� = 0:849(82) ; (3.9)R̂+R̂� = 0:875(80) : (3.10)We stress that the volume dependen
e of these results is well within the quotedun
ertainties (see [5℄ for details).Eqs. (3.9-3.10) are the main result of the present work. In the next se
tionwe will use them to determine the renormalisation fa
tors needed with Neubergerfermions. It must be stressed at this point that the 
ontinuum limit extrapolation israther long and, in the 
ase of R̂�, strongly driven by the � = 6:45 datum. A better
ontrol of the 
ontinuum limit extrapolations 
ould be a
hieved e.g. by removingO(a) e�e
ts as suggested in ref [9℄. This is beyond the s
ope of the present letter.4 Renormalisation 
onstants for Neuberger fermionsHaving 
onstru
ted the RGI ratios of matrix elements in eq. (2.8), we now insertthem in Eq. (2.5) and solve for the Neuberger fermions renormalisation 
onstants7



� am r0mPS Rov+ Rov� Rov+ =Rov�5:8485 0:060 1:259(10) 0:772(30) 1:514(73) 0.511(28)Table 1: Results with Neuberger fermions, obtained on a 163 � 32 latti
e from 197
on�gurations and using low-mode averaging with 20 low modes of the Neuberger-Dira
 operator. The physi
al spatial extent of the latti
e is L=(2r0) = 1:98.Ẑ�;ov1 (g0).In order to regularise the theory using Neuberger fermions, we start by intro-du
ing the Neuberger-Dira
 operator [15℄D = 1�a n1� A(AyA)�1=2o ; A = 1 + s � aDw ; (4.1)where Dw is the massless Wilson-Dira
 operator, a denotes the latti
e spa
ing, and sis a free parameter in the range jsj < 1. By setting �a = a=(1+s) it is straightforwardto 
he
k that D satis�es the Ginsparg-Wilson relation
5D +D
5 = �aD
5D : (4.2)Composite operators whi
h have proper 
hiral transformation properties in the reg-ularised theory are obtained by performing the substitution ! (1� 12�aD) ;� ! � : (4.3)The operatorsQ�1 in the dis
retised theory share the same transformation propertiesunder 
hiral symmetry as their 
ounterparts in the 
ontinuum (see [1℄ and referen
estherein).Bare values for the ratios of matrix elements R�, are extra
ted from the ratiosof 
orrelation fun
tions of eq. (2.6). The details of the 
omputation, performed ata �xed value of � with periodi
 boundary 
onditions in all Eu
lidean spa
etimedire
tions, are reported in [1, 16, 3℄. The simulation parameters and our results forR� are provided in Table 1. Sin
e our pseudos
alar mass is 
ompatible within errorswith the kaon mass r0mphysK = 1:2544, there is no need to 
onsider other values ofthe quark mass to inter/extrapolate the kaon point.3 Again, �nite volume e�e
tsare expe
ted to lie within the quoted un
ertainties.Finally, by 
ombining the 
ontinuum limit results of Eqs. (3.9-3.10) with thebare Neuberger fermions results of Table 1 we derive non-perturbative estimates of3The value of the referen
e s
ale r0 is set to r0 = 0:5 fm, and we take the ratio r0=a from [17℄.8



bare P.T. MFI P.T. non-perturbativeẐ+1 =Z2A 1.242 1.193 1.15(12)Ẑ�1 =Z2A 0.657 0.705 0.561(61)Ẑ�1 =Ẑ+1 0.525 0.582 0.584(62)Table 2: Perturbative and non-perturbative estimates for Neuberger fermions RGIrenormalisation fa
tors at � = 5:8485.the RGI renormalisation fa
torsẐ�1Z2A ������=5:8485 = R̂�Rov� ; Ẑ�1Ẑ+1 ������=5:8485 = Rov+ =Rov�R̂+=R̂� : (4.4)The results are 
olle
ted in the last 
olumn of Table 2, together with the 
orrespond-ing perturbative estimates, whi
h will be dis
ussed in the next se
tion.5 Perturbative estimates of renormalisation fa
torsIn this se
tion we will determine the RGI renormalisation fa
tors of interest inperturbation theory. This provides a handle on the systemati
s related to theirnon-perturbative determination.The anomalous dimensions 
� of the operators Q�1 are known at two loopsfor several s
hemes. For dis
retisations based on the Neuberger-Dira
 operator,the renormalisation fa
tors Zs(g0; a�) have been 
omputed for s = RI=MOM inperturbation theory at one loop in [18℄. The ratios of renormalisation 
onstants weare interested in, 
omputed with Neuberger fermions and in the RI/MOM s
heme,
an be written asZ�RI(g0; a�)Z2A(g0) = 1 + (1� 3) g2016�2 �2 ln(4�a)� 13(BS �BV)�+O(g40) ;Z�RI(g0; a�)Z+RI(g0; a�) = 1 + g2016�2 f12 ln(4�a)� 2(BS � BV)g+ O(g40) : (5.1)It is also possible to perform the expansion using \mean-�eld improvement" (MFI)[19℄, whi
h aims at improving the 
onvergen
e of the perturbative series. At thelevel of the ratios in Eq. (5.1), it is easy to 
he
k that the implementation of MFIsimply amounts to repla
ing the bare 
oupling g20 by a \
ontinuum-like" 
oupling~g2, whi
h we set to be g2MS.The 
oeÆ
ients BS and BV in Eq. (5.1) are listed in Table 1 of [18℄. In order toobtain the 
orresponding RGI renormalisation fa
tors, it is enough to multiply the9



above by the suitable perturbative running fa
tors 
�RI(�=�). In our simulations weuse � = 6=g20 = 5:8485. For � = 2GeV and � = 238MeV [20℄, the NLO perturbativevalues for the 
oeÆ
ients 
�RI are 
�RI(�=�) = 0:6259 and 
+RI(�=�) = 1:2735. Puttingthis together with Eq. (5.1), we obtain for the RGI renormalisation fa
tors thevalues quoted in the �rst two 
olumns of Table 2. It is worth mentioning that thedi�eren
es between perturbative results evaluated in \bare" and MFI perturbationtheory are relatively small. This is presumably a 
onsequen
e of having 
onsideredratios of operators, in whi
h 
ontributions of the self-energy type 
an
el, and isin stark 
ontrast to the situation en
ountered in simple quark bilinears, where thedeviations between perturbative and non-perturbative estimates amount to about30% at similar values of the bare 
oupling [2, 21, 22℄.This analysis implies, furthermore, that it is unlikely that our non-perturbativeresults are a�e
ted by large 
uto� e�e
ts, e.g. those proportional to powers of thequark mass.6 Con
lusionsIn this work we have laid out a general strategy for the non-perturbative renormal-isation of operators with Neuberger fermions, via a mat
hing to results obtainedwith Wilson-type regularisations. As an appli
ation, we have dealt with the overalllogarithmi
 renormalisation of the operators entering the �S = 1 e�e
tive Hamilto-nian with an a
tive 
harm quark, for whi
h we have 
omputed RGI renormalisationfa
tors in the quen
hed approximation. An immediate appli
ation of our resultsappears in the determination of the e�e
tive 
ouplings governing kaon de
ays in thelow-energy des
ription of the theory [3℄, in the spirit of [1℄.There are a few 
aveats in this approa
h:� From the te
hni
al point of view, we believe that our tmQCD results for theRGI Q̂� 
onstitute a signi�
ant advan
e with respe
t to previous 
omputa-tions, in that they have been a
hieved with two Wilson-type regularisations,non-perturbative renormalisation and RG running, at several bare 
ouplingset
. In spite of this, the fa
t that 
ontinuum limit extrapolations are ratherlong renders the absen
e of O(a) improvement an important drawba
k inour e�ort to obtain stable 
ontinuum limit results. As far as our Neubergerfermions 
omputations are 
on
erned, we point out that, at present, we haveresults only at one bare 
oupling. Furthermore, exploring the dependen
e ofrenormalisation fa
tors on the 
hoi
e of referen
e point would be useful toquantify the impa
t of O((am)2) 
uto� e�e
ts.� From the 
on
eptual point of view, the spe
i�
 mat
hing pro
edure adoptedhere is based on �xing the matrix element h�jQ̂�jKi (at m� = mK = mphysK )10



to the value predi
ted with tmQCD Wilson-type fermions. Having used this\physi
al" predi
tions as renormalisation 
onditions (for Q̂+ it is the valueof the kaon mixing parameter BK) implies that our measurements of Ẑ+1 =Z2A
annot be used for the independent renormalisation of BK or of K ! � matrixelements with Neuberger fermions. On the other hand, our renormalisation
onstants are perfe
tly suitable to renormalise K ! �� matrix elements 
om-puted in in�nite volume and for parti
le masses in the physi
al range, or forratios of 
orrelation fun
tions 
omputed in the �-regime of QCD.The ideal approa
h to the renormalisation problem in hand would involve aworking formulation of the S
hr�odinger fun
tional for Neuberger fermions. An im-portant re
ent step in that dire
tion is the proposal of ref. [23℄.The tmQCD data reported in this work were obtained within an ALPHA Col-laboration proje
t; P.D., F.P., C.P. and A.V. wish to thank J. Heitger and S. Sintfor dis
ussions. Our 
al
ulations were performed on the APEMille installation ofDESY-Zeuthen and on PC 
lusters at DESY-Hamburg, CILEA and the Universityof Valen
ia, as well as on the IBM Regatta at FZ J�uli
h and on the IBM MareNos-trum at the Bar
elona Super
omputing Center. We thank all these institutions andthe University of Milano-Bi
o

a (in parti
ular C. Destri and F. Rapuano) for theirsupport. P.H. a
knowledges partial support by CICYT (grants FPA2004-00996 andFPA2005-01678) and Generalitat Valen
iana (GV05-164). F.P. a
knowledges theAlexander-von-Humboldt Stiftung for �nan
ial support.Referen
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Figure 1: Continuum limit extrapolations of R̂� and R̂+R̂� .13
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