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1 IntrodutionThe renormalisation of four-fermion operators is an essential ingredient in lattieQCD omputations of weak matrix elements. In this letter we will address thelogarithmially divergent renormalisation of left-left four-quark operators, with anemphasis on the �S = 1 e�etive Hamiltonian governing non-leptoni kaon deays.The treatment of �S = 1 weak deays via an e�etive weak Hamiltonian withan ative harm quark has been reently reviewed in [1℄. After performing theoperator produt expansion and negleting top quark e�ets, whih are suppressedby three orders of magnitude relative to the ontributions of up and harm quarks,the expression found for the �S = 1 e�etive weak Hamiltonian in the formalontinuum theory isHw = g2w4M2W (Vus)�Vud X�=�fk�1Q�1 + k�2Q�2g : (1.1)In the above expression gw = 4p2GFM2W , k�1;2 are Wilson oeÆients, and thedimension-six operators Q�1;2 have the formQ�1 = [(�s�P�u)(�u�P�d)� (�s�P�d)(�u�P�u)℄� [u ! ℄ ; (1.2)Q�2 = (m2u �m2)fmd(�sP+d) +ms(�sP�d)g ; (1.3)where parentheses around quark bilinears indiate olour and spin traes and P� =12(1 � 5). Although our proedure is ompletely general, we will from now ononentrate in the SU(4)L�SU(4)R symmetri limit, where all quark masses are de-generate [1℄. In this limit the only ontribution to deay amplitudes omes frommatrix elements of the operators Q�1 . Moreover, the operator renormalisationpattern is greatly simpli�ed, as mixing with lower dimension operators is absent.We stress, however, that our results, being obtained in a mass-independent renor-malisation sheme, will renormalise properly subtrated operators also beyond theSU(4)L � SU(4)R symmetri limit.Our strategy to renormalise Q�1 is similar to the tehnique proposed in [2℄ forthe omputation of the renormalised hiral ondensate. It involves mathing bareorrelation funtions (or matrix elements) omputed with Neuberger fermions totheir renormalisation group invariant (RGI) ounterparts. The latter are omputedin the ontinuum limit with some variant of Wilson fermions, for whih mature teh-niques for fully non-perturbative renormalisation exist. Our hoie will be twistedmass QCD (tmQCD) with an O(a) improved fermion ation.Although we will onentrate spei�ally on the operators of the �S = 1 Hamil-tonian, both the proposed methodology and our results have a wider range of appli-ation. In partiular, the renormalisation fators that we will obtain for Q+1 renor-malise also the four-fermion operator entering the �S = 2 e�etive Hamiltonian. Inthe present work, all omputations are performed in the quenhed approximation.1



In the next setion we will desribe the strategy of the omputation. In setion 3we disuss the omputation of RGI operators in the ontinuum limit, based on atwisted mass QCD (tmQCD) Wilson fermion regularisation. In setion 4 we disussour results with Neuberger fermions, and ompute non-perturbative renormalisationfators. Setion 5 deals with perturbative estimates of the same renormalisationfators. We present our onlusions in setion 6.2 StrategyLet us onsider a generi multipliatively renormalisable operator.1 The notationwill follow losely that of [1℄. We will be dealing only with mass-independent renor-malisation shemes.We start by realling the de�nition of renormalisation group invariant (RGI)omposite operators. The RGI insertion of a loal operator Q into a ontinuumon-shell orrelation funtion is given byQ̂(gR; mR; L) = s(�=�) lima!0Zs(g0; a�)Q(g0; m0; L)� lima!0 Ẑ(g0)Q(g0; m0; L) ; (2.1)where Zs is a renormalisation onstant that renders the operator �nite, � is theQCD sale, and g0; m0 (gR; mR) denote the bare (renormalised) gauge oupling andquark mass(es). The subsript \s" labels the renormalisation sheme. We have alsoindiated expliitly that orrelation funtions will be omputed in a �nite volume ofspatial size L (eventually taking L!1). The RG-evolution funtion is given bys(�=�) = �2b0g2(�)�0=(2b0) exp(� Z g (�)0 dg �(g)�(g) + 0b0g�) ; (2.2)where we have used the perturbative expansions of the anomalous dimension of theoperator  and the �-funtion, viz.�(g) g!0� �g3(b0 + b1g2 + : : :) ; (g) g!0� g2(0 + 1g2 + : : :) : (2.3)It has to be stressed that the (sale-independent) RGI renormalisation fator Ẑ(g0) �s(�=�)Zs(g0; a�) depends on the renormalisation sheme only via uto� e�ets,sine the RGI operator insertion Q̂ is sheme-independent. On the other hand, Ẑ isregularisation-dependent. We also stress that the running fator s is a ontinuumquantity, and hene regularisation-independent.We now onsider two di�erent lattie regularisations, namely Wilson (denotedby \w") and Neuberger (or overlap) fermions (denoted by \ov"). Our aim is to1The generalisation to operators whih mix under renormalisation is straightforward.2



onstrut RGI renormalisation fators for Neuberger fermions operators by mathingrenormalised quantities in both regularisations. The �rst step onsists of using the�rst regularisation in order to ompute the RGI operator Q̂ at a referene physialpoint, parametrised here by (gR;ref ; mR;ref; Lref), viz.Q̂(gR;ref ; mR;ref; Lref) = lima!0 Ẑw(g0)Qw(g0; m0; Lref) : (2.4)It is essential to note that any referene to the regularisation employed in the r.h.s.of eq. (2.4) has disappeared after the ontinuum limit has been taken. The seondstep onsists of tuning a point (g00; m00) in the bare parameter spae of the seondregularisation, whih orresponds to the same values of the renormalised parameters(gR;ref; mR;ref). Assuming universality of the ontinuum limit, one then hasQ̂(gR;ref ; mR;ref; Lref) = Ẑov(g00)Qov(g00; m00; Lref) + O(a2) ; (2.5)where we have expliitly used the fat that orrelation funtions omputed withNeuberger fermions exhibit saling violations of at most O(a2). One the barequantity Qov(g00; m00; Lref) has been omputed, eq. (2.5) yields Ẑov(g00), providedthat Q̂(gR;ref ; mR;ref; Lref) has been determined through eq. (2.4). This proedurean be repeated at several bare ouplings and masses (g00; m00), always orrespondingto (gR;ref ; mR;ref); in this way the lattie spaing may be varied, while the physis(i.e. physial volume and renormalised oupling and masses) is kept �xed. Note thatEq. (2.5) is to be interpreted as a renormalisation ondition that impliitly de�nes amass-independent renormalisation sheme. Thus it ensures that the RGI renormal-isation fators omputed in this way will orretly renormalise the operators at anyvalue of the quark masses mR. In partiular, Ẑov depends on quark masses only viauto� e�ets (though it is not guaranteed a priori that suh dependene is small).On the other hand, the renormalisation presription (2.5) reprodues by onstru-tion the RGI result at the referene point for any hosen set of bare parameters.Thus the proedure is only useful if the targeted physial regime, haraterised by(gR; mR; L), is well away from (gR;ref; mR;ref; Lref).The present work provides an appliation of this strategy. The ultimate aim,whih is ahieved in ref. [3℄, is the omputation of the e�etive low-energy ouplingsgoverning non-leptoni kaon deays, following the strategy desribed in [1℄. Thisinvolves the omputation, arried out using Neuberger fermions, of the hiral limitvalues of the ratios of orrelation funtionsR�1 (x0; y0) = h[J0(x)℄duQ�1 (0)[J0(y)℄usih[J0(x)℄du[J0(0)℄udih[J0(0)℄su[J0(y)℄usi ; (2.6)where J� is the left-handed urrent[J�(x)℄�� = � ��P� � ; (2.7)3



and �; � are avour indies. An essential ingredient of the proedure are the renor-malisation fators [Ẑ�1 =Z2A℄, the omputation of whih is the goal of the presentwork.In order to ompute non-perturbatively the renormalisation fators [Ẑ�1 =Z2A℄ forNeuberger fermions, we will employ the ratios of QCD matrix elementsR� � h�+jQ�1 jK+ih�+jJ0j0ih0jJ0jK+i (2.8)omputed in large volumes and at a value of the referene quark mass mR;reforresponding to mPS = m� = mK = mphysK = 495 MeV. Note that, in theSU(4)L � SU(4)R symmetri limit, the ratio R+ will be equal, up to a trivial fa-tor, to the Kaon bag parameter BK . The RGI ratios R̂� will be omputed, as inEq. (2.4), using a Wilson fermion regularisation. To this purpose, we will omputethe bare quantities R� at several values of the bare oupling g0, and use the RGIrenormalisation fators omputed in the same g0 range in [4℄, using a Shr�odingerFuntional (SF) framework. We will then apply Eq. (2.5) to math the RGI ratiosR̂�1 to the ratios of bare matrix elements omputed with Neuberger fermions. Sinethe mathing referene regime of large volumes and meson masses of the order ofmphysK is well away from the target one in whih [Ẑ�=Z2A℄ are to be used, the on-strution is indeed non-trivial. In this way we have exploited the fat that Wilsonfermions are well suited for simulations in the strange-quark regime, while they be-ome problemati lose to the hiral limit, where Neuberger fermions are learlyadvantageous.For the sake of onsisteny, we will also perform a diret determination of theratio Ẑ+;ov1 =Ẑ�;ov1 , omputed from a mathing involving the ratio of matrix elementsR+R� = h�+jQ+1 jK+ih�+jQ�1 jK+i : (2.9)This spei� ratio is of partiular interest, as it enters diretly the study of the�I = 1=2 enhanement rule.Some omments are in order. The renormalisation fators obtained via theproedure just desribed do not lead, obviously, to independent renormalised valuesfor the ratios of matrix elements in Eq. (2.8) omputed at the referene point mphysK ,as a tautology would result. As explained above, the renormalisation fators [Ẑ�1 =Z2A℄will rather be used to renormalise quantities e�etively omputed in the hiral limit.They an also be used e.g. to renormalise ratios of orrelation funtions omputedin the �-regime. The fat that the mathing involves orrelation funtions omputedwith both periodi and SF boundary onditions does not, on the other hand, giverise to any subtlety, as only hadroni matrix elements omputed in a large volumeare involved. 4



Unlike the above strategy, adopted in this work, the ideal mathing proedureshould not involve the tradeo� of a long-distane matrix element of physial rele-vane. It is e.g. possible to math a di�erent matrix element of the same operator,or to take a referene point for the mathing whih is well away from all the targetphysial regimes of interest. On the other hand, the partiular strategy adoptedhere has the advantage that it allows to use the numerial results obtained in theontext of [5℄.3 Wilson-tmQCD omputation of RGI operatorsWe will now disuss the omputation of the RGI operators Q̂�1 (i.e. the l.h.s. ofEq. (2.5)), using the tmQCD formalism with Wilson quarks [6℄.We start by realling that, with Wilson fermions, the renormalisation of Q�1 ismore subtle than in hirally symmetri regularisations (see [7℄ for a detailed disus-sion). Customarily, both operators are split into parity-even and parity-odd partsas Q�1 = Q�VV+AA �Q�VA+AV ; (3.1)in standard notation. In the three-point orrelation funtions onsidered below, par-ity onservation in QCD ensures that the only ontribution omes from the parity-even part Q�VV+AA . With ordinary Wilson fermions, as a onsequene of the break-ing of hiral symmetry, the renormalisation of Q�VV+AA requires the subtration offour �nite ounterterms involving all the remaining Lorentz-invariant, parity-evenfour-quark operators with the same avour struture.2 On the other hand, it is pos-sible to onstrut twisted mass QCD (tmQCD) Wilson regularisations in whih theounterterms are absent, and the operator renormalises multipliatively. The basiproperty that has to be satis�ed is that the hiral rotation of the quark �elds thatgenerates the twisted mass term maps Q�VV+AA onto Q�VA+AV . In mass-independentrenormalisation shemes, the latter is proteted from mixing with other four-fermionoperators by CPS symmetry. Examples of suh regularisations have been disussedin [8℄.Here we will adopt, however, a di�erent approah, whih will allow us to usethe numerial results obtained in [5℄. To that purpose we restrit ourselves to thequenhed approximation, and use the formalism for valene quark avours advoatedin [9℄. We onsider a theory with six valene avours, that we will label  =(u; d; s; ; u0; 0)T . We will employ two tmQCD regularisations, haraterised by the2Mixing with operators of lower dimension is always absent in the SU(4)L� SU(4)R limit, as allmixing oeÆients are proportional to the mass di�erene (m �mu).5



hoie of twist angle � in the de�nition of the fermion ation:S(�)tmQCD = a4Xx;y � (x)nDw;sw +m(�) + i5�(�)o (x; y) (y) ; (3.2)where Dw;sw is the Wilson operator with a Sheikholeslami-Wohlert term, m(�) and�(�) are diagonal mass matries, and the label � refers to the twist angle enter-ing hiral rotations. The bare mass parameters are tuned so that, up to O(a2)orretions, the renormalised mass matries have the formm(�=2)R =MR diag(0; 0; 1; 0; 1; 1) ; �(�=2)R =MR diag(1; 1; 0; 1; 0; 0) ; (3.3)m(�=4)R = MRp2 diag(1; 1; 1; 1; 1; 1) ; �(�=4)R = MRp2 diag(1; 1;�1; 1;�1;�1) ; (3.4)where MR is the physial renormalised quark mass. The mass tuning proedure isidential to the one desribed in [5℄. We then introdue the operatorseQ�1 =[(�s�P�u)(�u0�P�d)� (�s�P�d)(�u0�P�u)℄� [u!  ; u0 ! 0℄ : (3.5)Using the standard relation between QCD and tmQCD in the ontinuum limit, one�nds, for the two regularisations spei�ed above, that the following equalities holdbetween operator insertions in RGI orrelation funtions[ êQ�VV+AA ℄QCD = i [ êQ�VA+AV ℄tmQCD ; (3.6)ZA[A�℄su;QCD = 1p2 fZA[A�℄su;tmQCD � iZV[V�℄su;tmQCDg ; (3.7)ZA[A�℄du0 ;QCD = 1p2 �ZA[A�℄du0;tmQCD � iZV[V�℄du0;tmQCD	 ; (3.8)where [A�℄�� = � ��5 � and [V�℄�� = � �� �. The urrent normalisationsZA; ZV, as well as the O(a) improvement oeÆient A needed to onstrut an O(a)improved axial urrent, are set to the values omputed by the Alpha Collabora-tion [10, 11℄.Correlation funtions are omputed within a Shr�odinger funtional (SF) frame-work, with quark and gluon �elds obeying periodi boundary onditions in spae(with period L) and (homogeneous) Dirihlet boundary onditions in time at thehypersurfaes x0 = 0 and x0 = T . Ratios of orrelation funtions, from whih theratios of matrix elements R� and R+=R� an be extrated, are de�ned in ompleteanalogy to the ones spei�ed for the extration of BK in [5℄. Our run parameters,too, are the same as in [5℄, and are listed in Tables 1 and 5 of that work, save forone important exeption, onerning the dataset at � = 6:1. After ompletion ofref. [5℄, its authors arried out a proper determination of �r(� = 6:1), based on themethod of [10℄. They found that this estimate of �r disagrees by several standard6



deviations from the value ited in the literature [12℄, whih had been used in [5℄for the tuning of the bare mass parameters. This disrepany hene neessitated anew determination of the bare mass parameters in order to satisfy the onstraintsimposed by the presribed values of the twist angles. Consequently, the runs at� = 6:1 had to be repeated after ompletion of [5℄. Full details will be providedseparately [14℄. In the present work we merely quote the orreted value of R+ inthe ontinuum limit.The RGI ratios are obtained upon multipliation by the RGI renormalisationfators Ẑ�VA+AV . The latter have been omputed non-perturbatively in [4℄, usingthe standard SF �nite-size saling analysis, for a range of inverse ouplings 6:0 .� . 6:5. Out of the various SF renormalisation shemes onsidered in [4℄ we havehosen to employ sheme 1 for the renormalisation of eQ+VA+AV and sheme 8 foreQ�VA+AV ; the reasons are explained in [4℄ and [13℄. The appropriate error analysishas been extensively disussed (for R̂+) in [5℄. The ontinuum limit is then obtainedby performing a ombined extrapolation of the results oming from both tmQCDregularisations. The extrapolation is linear in the lattie spaing a, sine the four-fermion operator is not O(a) improved, and hene the leading lattie artifats in R�are expeted to be O(a). Furthermore, as disussed in [5℄, at the lowest values of� the O(a) ambiguity in the determination of the improvement oeÆient A has asigni�ant impat on uto� e�ets. Under these premises, our most stable ontinuumlimit extrapolation for R̂+ is obtained by disarding the � = 6:0; 6:1 data points,while for R̂� and R̂+=R̂� only � = 6:0 is disarded. The �nal results, illustrated inFig. 1, are R̂+ = 0:885(86) ; R̂� = 0:849(82) ; (3.9)R̂+R̂� = 0:875(80) : (3.10)We stress that the volume dependene of these results is well within the quotedunertainties (see [5℄ for details).Eqs. (3.9-3.10) are the main result of the present work. In the next setionwe will use them to determine the renormalisation fators needed with Neubergerfermions. It must be stressed at this point that the ontinuum limit extrapolation israther long and, in the ase of R̂�, strongly driven by the � = 6:45 datum. A betterontrol of the ontinuum limit extrapolations ould be ahieved e.g. by removingO(a) e�ets as suggested in ref [9℄. This is beyond the sope of the present letter.4 Renormalisation onstants for Neuberger fermionsHaving onstruted the RGI ratios of matrix elements in eq. (2.8), we now insertthem in Eq. (2.5) and solve for the Neuberger fermions renormalisation onstants7



� am r0mPS Rov+ Rov� Rov+ =Rov�5:8485 0:060 1:259(10) 0:772(30) 1:514(73) 0.511(28)Table 1: Results with Neuberger fermions, obtained on a 163 � 32 lattie from 197on�gurations and using low-mode averaging with 20 low modes of the Neuberger-Dira operator. The physial spatial extent of the lattie is L=(2r0) = 1:98.Ẑ�;ov1 (g0).In order to regularise the theory using Neuberger fermions, we start by intro-duing the Neuberger-Dira operator [15℄D = 1�a n1� A(AyA)�1=2o ; A = 1 + s � aDw ; (4.1)where Dw is the massless Wilson-Dira operator, a denotes the lattie spaing, and sis a free parameter in the range jsj < 1. By setting �a = a=(1+s) it is straightforwardto hek that D satis�es the Ginsparg-Wilson relation5D +D5 = �aD5D : (4.2)Composite operators whih have proper hiral transformation properties in the reg-ularised theory are obtained by performing the substitution ! (1� 12�aD) ;� ! � : (4.3)The operatorsQ�1 in the disretised theory share the same transformation propertiesunder hiral symmetry as their ounterparts in the ontinuum (see [1℄ and referenestherein).Bare values for the ratios of matrix elements R�, are extrated from the ratiosof orrelation funtions of eq. (2.6). The details of the omputation, performed ata �xed value of � with periodi boundary onditions in all Eulidean spaetimediretions, are reported in [1, 16, 3℄. The simulation parameters and our results forR� are provided in Table 1. Sine our pseudosalar mass is ompatible within errorswith the kaon mass r0mphysK = 1:2544, there is no need to onsider other values ofthe quark mass to inter/extrapolate the kaon point.3 Again, �nite volume e�etsare expeted to lie within the quoted unertainties.Finally, by ombining the ontinuum limit results of Eqs. (3.9-3.10) with thebare Neuberger fermions results of Table 1 we derive non-perturbative estimates of3The value of the referene sale r0 is set to r0 = 0:5 fm, and we take the ratio r0=a from [17℄.8



bare P.T. MFI P.T. non-perturbativeẐ+1 =Z2A 1.242 1.193 1.15(12)Ẑ�1 =Z2A 0.657 0.705 0.561(61)Ẑ�1 =Ẑ+1 0.525 0.582 0.584(62)Table 2: Perturbative and non-perturbative estimates for Neuberger fermions RGIrenormalisation fators at � = 5:8485.the RGI renormalisation fatorsẐ�1Z2A ������=5:8485 = R̂�Rov� ; Ẑ�1Ẑ+1 ������=5:8485 = Rov+ =Rov�R̂+=R̂� : (4.4)The results are olleted in the last olumn of Table 2, together with the orrespond-ing perturbative estimates, whih will be disussed in the next setion.5 Perturbative estimates of renormalisation fatorsIn this setion we will determine the RGI renormalisation fators of interest inperturbation theory. This provides a handle on the systematis related to theirnon-perturbative determination.The anomalous dimensions � of the operators Q�1 are known at two loopsfor several shemes. For disretisations based on the Neuberger-Dira operator,the renormalisation fators Zs(g0; a�) have been omputed for s = RI=MOM inperturbation theory at one loop in [18℄. The ratios of renormalisation onstants weare interested in, omputed with Neuberger fermions and in the RI/MOM sheme,an be written asZ�RI(g0; a�)Z2A(g0) = 1 + (1� 3) g2016�2 �2 ln(4�a)� 13(BS �BV)�+O(g40) ;Z�RI(g0; a�)Z+RI(g0; a�) = 1 + g2016�2 f12 ln(4�a)� 2(BS � BV)g+ O(g40) : (5.1)It is also possible to perform the expansion using \mean-�eld improvement" (MFI)[19℄, whih aims at improving the onvergene of the perturbative series. At thelevel of the ratios in Eq. (5.1), it is easy to hek that the implementation of MFIsimply amounts to replaing the bare oupling g20 by a \ontinuum-like" oupling~g2, whih we set to be g2MS.The oeÆients BS and BV in Eq. (5.1) are listed in Table 1 of [18℄. In order toobtain the orresponding RGI renormalisation fators, it is enough to multiply the9



above by the suitable perturbative running fators �RI(�=�). In our simulations weuse � = 6=g20 = 5:8485. For � = 2GeV and � = 238MeV [20℄, the NLO perturbativevalues for the oeÆients �RI are �RI(�=�) = 0:6259 and +RI(�=�) = 1:2735. Puttingthis together with Eq. (5.1), we obtain for the RGI renormalisation fators thevalues quoted in the �rst two olumns of Table 2. It is worth mentioning that thedi�erenes between perturbative results evaluated in \bare" and MFI perturbationtheory are relatively small. This is presumably a onsequene of having onsideredratios of operators, in whih ontributions of the self-energy type anel, and isin stark ontrast to the situation enountered in simple quark bilinears, where thedeviations between perturbative and non-perturbative estimates amount to about30% at similar values of the bare oupling [2, 21, 22℄.This analysis implies, furthermore, that it is unlikely that our non-perturbativeresults are a�eted by large uto� e�ets, e.g. those proportional to powers of thequark mass.6 ConlusionsIn this work we have laid out a general strategy for the non-perturbative renormal-isation of operators with Neuberger fermions, via a mathing to results obtainedwith Wilson-type regularisations. As an appliation, we have dealt with the overalllogarithmi renormalisation of the operators entering the �S = 1 e�etive Hamilto-nian with an ative harm quark, for whih we have omputed RGI renormalisationfators in the quenhed approximation. An immediate appliation of our resultsappears in the determination of the e�etive ouplings governing kaon deays in thelow-energy desription of the theory [3℄, in the spirit of [1℄.There are a few aveats in this approah:� From the tehnial point of view, we believe that our tmQCD results for theRGI Q̂� onstitute a signi�ant advane with respet to previous omputa-tions, in that they have been ahieved with two Wilson-type regularisations,non-perturbative renormalisation and RG running, at several bare ouplingset. In spite of this, the fat that ontinuum limit extrapolations are ratherlong renders the absene of O(a) improvement an important drawbak inour e�ort to obtain stable ontinuum limit results. As far as our Neubergerfermions omputations are onerned, we point out that, at present, we haveresults only at one bare oupling. Furthermore, exploring the dependene ofrenormalisation fators on the hoie of referene point would be useful toquantify the impat of O((am)2) uto� e�ets.� From the oneptual point of view, the spei� mathing proedure adoptedhere is based on �xing the matrix element h�jQ̂�jKi (at m� = mK = mphysK )10
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Figure 1: Continuum limit extrapolations of R̂� and R̂+R̂� .13
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