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DESY 06-111Vauum Birefringene as a Probe of Plank SaleNonommutativitySteven A. Abela, Joerg Jaekelb, Valentin V. Khozea and Andreas RingwaldbaCentre for Partile Theory, Durham University, Durham, DH1 3LE, UKbDeutshes Elektronen-Synhrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germanys.a.abel�durham.a.uk, jjaekel�mail.desy.de, valya.khoze�durham.a.uk,andreas.ringwald�desy.deAbstratBeause of ultraviolet/infrared (UV/IR) mixing, the low energy physis of nonommuta-tive gauge theories in the Moyal-Weyl approah seems to depend ruially on the detailsof the ultraviolet ompletion. However, motivated by reent string theory analyses, weargue that their phenomenology with a very general lass of UV ompletions an be a-urately modelled by a uto� lose to the Plank sale. In the infrared the theory tendsontinuously to the ommutative gauge theory. If the photon ontains ontributions froma trae-U(1), we would observe vauum birefringene, i.e. a polarisation dependent prop-agation speed, as a residual e�et of the nonommutativity. Constraints on this e�etrequire the nonommutativity sale to be lose to the Plank sale.



1 IntrodutionField theories on nonommuting spaetime,[x�; x� ℄ = i ��� ; (1.1)reeive a great deal of attention, not least beause they arise naturally in a partiular,Seiberg-Witten, limit [1℄ of string theories, see [2{4℄ for reviews. The orrespondinge�etive �eld theories an be derived from their ommutative ousins by simply replaingproduts of �elds in the Lagrangian by Weyl-Moyal star produts1,(� � ')(x) � �(x) e i2 ���  ��!�� '(x) : (1.2)The parameter ��� then appears in the verties of perturbation theory, and, sine it hasdimensions of mass�2, de�nes a seond mass sale in the theory (besides the string sale,Ms), the so-alled nonommutativity sale, MNC. A natural question to ask is what is theallowed range of MNC?In this paper we shall onsider the above question in as general a manner as possibleusing UV uto�s to mimi the e�ets of the UV omplete theory. As we go along we willompare our results with the string realisation of nonommutative �eld theory, namelystrings in bakground magneti (B) �elds, whih provide a nie, divergene-free frameworkin whih to examine nonommutativity. Despite this obvious attration of strings, mostof the phenomenology depends on very general properties of any UV ompletion (forexample that they should be divergene free, ontinuous and so on) and we will see thatthey are well modelled by UV uto�s.Before proeeding, let us try to make our question a little more preise. We anestimate the possible range of MNC by invoking the notion of naturalness. Consideringthe spei� example of string theory for a moment, pure nonommutative �eld theory isrealised as a speial limit of open strings in a bakground B�� �eld, in whih losed string(i.e. gravitational) modes are deoupled, leaving only open string interations. There isno potential for B whih as far as the string theory is onerned is just a rather mildbakground, so in priniple ��� ould be anything. Nevertheless it seems reasonable tosuppose that, if nonperturbative string physis �xes the value ofB to be nonzero, it does sowith vauum expetation values (VEVs) of order one in string units.2 A natural sale for� would in that ase be � �M�2s . Depending on the senario in question that still leavesopen a huge possible range: M�2P < � < M�2W , with the Plank sale MP and the weaksaleMW , the latter arising, for example, in large extra dimension senarios. What aboutother possible UV ompletions? One role of any UV ompletion would almost ertainly be1In the following, we will not onsider a more indiret alternative approah to nonommutativity whihuses the Seiberg-Witten map. For omments on the relation between the two approahes see [5{7℄).2Note that MNC � MP does not imply large VEVs for the B �elds. In general, sine � �1onst+BB 1onst�B (Lorentz indizes suppressed) vanishing B �elds imply vanishing � and thereforeMNC !1. 1



to desribe quantum gravity. As ��� is intimately involved in the properties of spaetime,a mild assumption is that its \natural" value would inevitably be determined by the onlymass sale in quantum gravity. Then one would assume that typially � �M�2P . As thestring theory example shows, the natural range of � ould be beefed-up by, for example,large volumes of extra ompat dimensions, but it is diÆult to see how muh smallerbut nonzero values ould arise very easily. If there is nonommutativity, therefore, it isnatural that � > M�2P , or equivalently,MNC < MP.So our slightly re�ned question is, an nonommutativity at energy sales as highas MP lead to observable e�ets? Surprisingly, the answer is yes. As we shall see inthis paper, urrent observations and experiments already severely restrit the range ofallowed nonommutativity sales. The reason for this lies in two interesting propertiesof nonommutative �eld theories that need to be taken into aount in the onstrutionof a viable nonommutative standard model extension [8; 9℄. First, there are strongonstraints on both the dynamis and the �eld ontent. Only U(N) gauge groups withmatter �elds in fundamental, bifundamental and adjoint representations are allowed [10{14℄ (for U(1) gauge groups harges are restrited to �1; 0 [15℄). Seond, as we will detailbelow, universality does not hold and ultraviolet/infrared (UV/IR) mixing ours [16{19℄.In four ontinuous dimensions (i.e. without any quantum gravity, high energy uto�or UV ompletion), nonommutative models of this type seem to onit badly withexperiment, as outlined in Ref. [6℄. Either there are superuous massless degrees offreedom or a nonvanishing (and Lorentz symmetry violating) mass term for the photon.Sine neither is observed this presents a hallenge for any attempt to onstrut a realistiextension of the Standard Model based on a nonommutative spae time.However, the result of Ref. [6℄ was based on the assumption that the gauge �elds liveon a ontinuous four dimensional spae time. In partiular, it assumed that the four di-mensional nonommutative gauge theory is valid up to arbitrarily large momentum sales.But if nonommutative gauge theories are realised as low energy e�etive �eld theories ofsome underlying theory suh as string theory, this assumption almost ertainly requiresmodi�ation. It is likely that nonommutative �eld theory gets spetaularly modi�ed atenergy sales approahing Ms. One possible avenue to explore then is the possible e�etsof \stringy features" suh as additional ompati�ed spae dimensions. These make thetheory e�etively higher dimensional at large momentum sales whih an be thought ofas an intermediate stage towards the string theory. Thanks to UV/IR mixing, the e�etsof extra dimensions an be transmitted to the IR in the trae-U(1) photon [20℄. Suhe�ets an be analysed in a �eld theoreti framework, and one may searh for helpfulproperties suh as the amelioration of onstraints on the nonommutativity sale due to,for example, power law deoupling of the trae-U(1) photon in the IR [20℄.Despite the obvious attration of the �eld-theoretial approah in [6; 20℄, the drawbakis that it is unable to desribe e�ets arising from physis above Ms. This regime isdesribed by the UV ompletion of the theory, whatever that may be. Normally of oursewe would not have to worry about suh a thing beause of universality: the inuene2



of physis above a uto� �UV on the physis at a momentum sale k is suppressed bypowers of k=�UV. If universality holds, a modi�ation at very high momentum salesannot modify the physis at muh smaller momentumsales. However, although ordinaryrenormalizable ommutative theories fall into this ategory, nonommutative theories donot, beause of UV/IR mixing, [16; 17℄ and [18; 19℄.The phenomenon of UV/IR mixing an be understood from a simple argument. Toaount for the e�ets of nonommutativity, we are instruted to replae ordinary produtsin our �eld theory by Weyl-Moyal star produts (1.2). This results in fators of exp(i~k �p)in the (non-planar) loop integrals [21℄, where ~k� = ���k� . Consider a typial loop integralwith massless partiles in the loop,Z d4p(2�)4 1p2(p + k)2 exp(i~k � p): (1.3)The osillating phase regularises the integral for large values of momentum p, and theintegral is dominated by regions where ~k � p � 1, or jpj � M2NC=jkj. This value of jpj islarge when the external momentum k is small. The large momenta in the loop p �M2NC=kindeed inuene the physis at small external momentum k. Now onsider the e�et ofheavy partiles of mass M in the loop. When jkj � M2NC=jpj, the loop integral is killedwhen jpj �M , and (broadly speaking) we may neglet the ontribution of heavy partiles.But when jkj � M2NC=jpj the phase is irrelevant and the integral reeives ontributionsfrom large values of p, jpj > M . In other words as we lower our external momentum k,we aess ever heavier modes in the loop.In general, therefore, a modi�ation of the nonommutative theory above a UV sale�UV will indeed inuene physis below an infrared sale �IR � M2NC=�UV, as we willsee in detail in Set. 2. The problemati mass term for the photon is an e�et of thisUV/IR mixing. Hene, it seems plausible that this problem an be treated with a UVmodi�ation of the theory. As we already stated, our aim here is to determine some generalphenomenologial features of nonommutativemodels and test them against experimentalonstraints. At �rst sight this looks like a hopeless task, sine onstraints orrespondingto the lowest energy sales (for example photon masses) are inuened by the highest massmodes in the loop integrals. It looks as though sooner or later we will run up against theUV ompletion of the theory, at whih point all hopes of generality will be lost. However,guided by reent work in Ref. [22℄, we an determine some generi properties for a largelass of theories (f. Set. 4). Indeed with fairly mild assumptions (whih are true forstring theory), the phenomenologial e�ets of the UV ompletion, suh as for examplethe restoration of normal Wilsonian behaviour in the deep IR, are well modelled by asimple UV uto�.As we have already mentioned, there is an important di�erene between the set-up weuse in the present paper and that of Refs. [6; 8; 20℄ in the way we interpret the underlyingnonommutative gauge theory from the perspetive of standard partile physis at lowenergies. The UV/IRmixing e�ets illustrated by the integral (1.3) our only in the trae-U(1) fators of the U(N) gauge group(s); the SU(N) degrees of freedom are free from the3



UV/IR mixing. The results of the present paper show, that, in presene of a fundamentaluto� �UV, the mixing of those U(1) gauge �elds (a�eted by the UV/IR mixing) withthe photon does not ause severe problems suh as generating a polarisation dependentphoton mass. This di�ers from the approah in Refs. [6; 8; 20℄, where �UV = 1. Aswill be explained in the next Setion, through the UV/IR mixing, an ultimate UV uto�indues an infrared sale �IR � M2NC=�UV. At energy sales below �IR, physis of alldegrees of freedom is governed by an ordinary ommutative low-energy e�etive theoryand the e�ets of the UV/IR mixing are very small. We now plae the Standard Modelat energies below �IR. This is di�erent from the set-up in Refs. [6; 8; 20℄ whih inthe language of this paper amounts to �UV = 1 and �IR = 0; thus implying that theStandard Model was embedded into a nonommutative theory at energies ESM in theopposite region: �IR < ESM < MNC < �UV.We will see in Set. 3 that the problem of the unwanted mass term for the trae-U(1) photon aused by the UV/IR mixing [6℄ softens onsiderably at energies below �IR.Instead of a mass term one gets, at low momentum sales, vauum birefringene, i.e. apolarisation dependent propagation speed. If MNC is lose enough to the uto� sale�UV � MP, this vauum birefringene an be pushed beyond the urrent experimentallimits. Thereby, a window opens for MNC where nonommutativity is still allowed. Asexperimental and observational sensitivity is likely to improve in the near future, thisprovides an interesting probe for sales MNC very lose to the Plank sale.In the following we will onentrate on the ase of a pure U(1) nonommutative gaugetheory. A pure U(1) gauge theory behaves qualitatively like the trae-U(1) fators ofU(N) theories and aptures all essential features of the UV/IR mixing.3The paper is organized as follows. In Set. 2, we disuss the essential features ofUV/IR mixing and the running gauge oupling in the presene of an ultimate UV uto�.In the following Set. 3, we demonstrate how this leads to vauum birefringene. Wedisuss experimental and observational bounds on this e�et and the resulting onstraintson the sale of nonommutativity MNC. The validity of using a fundamental UV uto�to simulate the UV ompletion is outlined in Set. 4, where we make a omparison withstring theory, and use it as evidene in support of our laim that the phenomenologyoutlined here is very generi. Finally, we onlude in Set. 5.2 UV/IR mixing in presene of a �nite UV uto�In nonommutative gauge theories, Lorentz symmetry is expliitly broken sine the matrix� on the right hand side of (1.1) is a onstant matrix to be spei�ed in a �xed refereneframe. This allows an additional transverse (gauge invariant) struture that might be3We reall that the nonommutative U(1) is an interating theory, whih is asymptotially free in theUV. Its ommutative ounterpart is of ourse a free theory.4



j= salar Weyl fermion gauge boson ghost�j -1 12 �12 1Cj 0 12 2 0dj 1 2 4 1Table 1: CoeÆients appearing in the evaluation of the loop diagrams.present in the polarisation tensor4,��� = �1(k2; ~k2) �k2g�� � k�k��+�2(k2; ~k2) ~k�~k�~k2 with ~k� = ���k� : (2.1)The �1 part multiplies the ordinary transverse struture and is related to the gaugerunning oupling via [18℄ 1g2(k; ~k) = 1g20 +�1(k; ~k): (2.2)�2 is a new Lorentz symmetry violating struture [16; 17℄. In theories with exat super-symmetry (SUSY) it is absent [17; 18℄. Its size is therefore related to the SUSY breakingsale [5℄.Performing a one loop alulation for the polarisation tensor one obtains [5; 18℄,���(k) = ���(k; l = 0)����(k; l = ~k); (2.3)with ���(k; l) = 2Xj �j Z d4q(2�)4�d(j) � (2q + k)�(2q + k)�(q2 +m2j)((q + k)2 +m2j) � 2Æ��q2 +m2j � (2.4)+4C(j) k2Æ�� � k�k�(q2+m2j )((q + k)2 +m2j)� exp (iq � l) ;where the oeÆients �j , d(j) and C(j) are given in Tab. 1.As we already stated in the introdution we want to model the UV �niteness of anunderlying theory by utting o� all utuations above a UV sale �UV. One suitable wayto do this is by introduing a fator of exp(� 1�2UV t2 ) in the integral over the Shwinger4Here, and in the following we will onentrate on the ase of a nonommutative U(1) gauge group.The generalisation to U(N ) gauge groups is straightforward. All statements remain valid, when applied tothe trae-U(1) part of the gauge group. The SU(N ) part is una�eted by nonommutativity, independentof the presene of a uto�. 5



time t. One obtains (s. [5℄),���(k) = 14�2 �k2Æ�� � k�k��� Xj �j Z 10 dx �4C(j)� (1� 2x)2d(j)� "K0 pAj�UV !�K0 pAj�e� !#+ 1(4�)2 ~k�~k� �2e�Xj �jd(j)Z 10 dxAjK2 pAj�e� !+ Æ�� [ gauge non-invariant term ℄ ; (2.5)where Aj = m2j + x(1� x)k2 (2.6)and 1�2e� = 1�2UV + ~k2: (2.7)We will neglet the gauge non-invariant terms in the following. They an be treated andeliminated by using modi�ed Ward-Takahashi identities [23{25℄.The employed regularisation uts o� the modes p & �UV in the loop integral in asmooth way. Of ourse there are lots of di�erent possibilities to do this. Sine universalitydoes not hold, di�erent regularisations will, in priniple, lead to di�erent results. However,as long as we leave the qualitative feature \all momenta p & �UV are ut o�" holds, weexpet that the qualitative results we obtain remain true. For some details on otherhoies for the implementation of the uto�, see Appendix A.Let us �rst onentrate on �1, i.e. the running gauge oupling, and for the momenteliminate �2 by onsidering a theory with unbroken supersymmetry.In Fig. 1, we plot the running gauge oupling for various values of the uto� �UV.As expeted the running stops at the UV sale �UV. In an ordinary ommutative theorywe would expet no further hanges. Here, however, we observe that the running stops,again, at an infrared sale �IR � M2NC=�UV. The running for k < �IR vanishes up tothreshold e�ets and is therefore essentially the same as that of a pure ommutative U(1)gauge theory (realling that the � funtion of a pure ommutative U(1) gauge theoryvanishes). It is easy to hek that a similar piture holds also for a more general matterontent. Stated di�erently, only in the range �IR < k < �UV do we observe a trulynonommutative behavior of the running gauge oupling. Outside this range the behavioris strongly a�eted by the presene of the UV uto�.So far we have rather sloppily been using the sale M2NC. Let us now give a morepreise de�nition, j~kj = M�2NC jkj; (2.8)6
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Figure 1: Running gauge oupling for a massless supersymmetri pure U(1) gauge theory.The red, blue and blak lines (bottom to top) are for �UV = 1000MNC ; 105MNC; 1MNC,respetively. We have �xed the maximal gauge oupling to be g2max = 4. One an learlysee that for �nite values of the uto� the running stops at � �UV in the UV and at�IR �M2NC=�UV in the IR.where MNC is the nonommutativity mass-sale. Heuristially, M�2NC � j�j but it maydepend on the diretion. E.g., for ��� in the anonial basis,��� = 0BB� 0 �1 0 0��1 0 0 00 0 0 �20 0 ��2 0 1CCA ; (2.9)only when �1 ' �2 does one have M�2NC = j�j: Otherwise the sale MNC depends on k�;M�2NC = j���k� jjkj = j�2js1 + �21 � �22�22 k20 + k21k2 : (2.10)If for example one of the �i = 0 one an have a situation where MNC ! 1. Ingeneral the truly nonommutative region �IR < k < �UV will depend on the diretionin momentum spae. This is depited in Fig. 2. While we have truly nonommutativebehavior inside we have uto� dominated nearly ommutative behavior outside this region.The ruial question is now in whih region we perform experiments. If the nonommu-tativity sale is low and the uto� suÆiently high, say MNC � fewTeV, �UV � 1018GeVwe would live in the fully nonommutative region (shaded area in Fig. 2). However, thishas already been exluded for a four dimensional theory [6℄. If we onsider high sales forMNC, say MNC � (10�3 � 1)MP, we �nd (using �UV = MP)�IR � (10�6 � 1)MP � kmax � 1TeV; (2.11)7
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for supersymmetri theories. When supersymmetry is softly broken5 we an easily derivethe following approximate expressions (for some additional details see Appendix A),�2 = D�M2SUSY; for M2NC�UV � k � �MSUSY; (3.2)�2 = D0�M2SUSY�2UV~k2; for k � M2NC�UV ; m2j � �2UV;where D;D0 are known onstants and�M2SUSY = 12Xb M2b �Xf M2f (3.3)is the (super-)trae of the mass matrix. Following the arguments given in [6℄ we an nowsolve the equations of motion for the photon,���(k)A�(k) = 0: (3.4)For onreteness, we now speify the nonommutativity,�13 = ��31 = � := 1M2NC ; (3.5)and all other omponents of ��� vanishing (in the 3-diretion, this use of MNC oinideswith our diretion dependent de�nition (2.8)). The photon ies in the three diretion,k� = (k0; 0; 0; k3): (3.6)Due to gauge invariane, only the two transverse polarisations are physial. They havethe polarisation vetors A�1 = (0; 1; 0; 0); A�2 = (0; 0; 1; 0): (3.7)Inserting into Eq. (3.4) we �nd (�1k2 ��2)A�1 = 0; (3.8)�1k2A�2 = 0:The photon polarized along A�2 obviously behaves like an ordinary massless photon. How-ever, in the A�1 diretion we observe new and interesting e�ets. To study these in moredetail let us now insert the approximate expressions (3.2). For the A�1 polarisation weobtain the following dispersion relations,k2 �D�M2SUSY�1 = 0; for �IR = M2NC�UV � k � �MSUSY; (3.9)k2 +D0 1�1�M2SUSY�2UVM4NC (k3)2 = 0; for k � M2NC�UV = �IR: (3.10)5Meaning that numbers of bosoni and fermioni degrees of freedom of the theory still math.9



Equation (3.9) yields a Lorentz symmetry violating mass term of the order of �M2SUSYthat was already disussed in detail in [6℄. Without uto�, i.e. in the limit �UV ! 1,this mass term persists down to k ! 0, thereby exluding any hane that this an bethe photon observed in nature. In presene of the uto�, Eq. (3.9) is only appliablefor k � �IR. Masslessness of the photon is well tested up to at least 1GeV. UsingMP � �UV = 1018GeV, this gives us a onservative lower bound of MNC > 109GeV.Nevertheless, this opens a rather large window of opportunity ompared to the �UV !1ase where all MNC < MP are exluded.For small photon momentum, Eq. (3.10) applies (reall from our disussion at the endof Set. 2 that we atually expet to live in this limit). To understand (3.10) better, letus restore the light speed  in our equations and use k0 = ! for the frequeny of the wave,!2 � 2� 11 + �n�2 (k3)2 = 0; (3.11)with �n � D02 1�1�M2SUSY�2UVM4NC (3.12)= 10�34�D0=2�110�4 ���MSUSY103GeV�2� �UV1018GeV�2� MNC1018GeV��4 � 1:Here, we have ombined the regularisation dependent loop fator D0 = O(1=4�2) and the�eld ontent dependent fator �1 = O(10 � 100) to parameterise the model dependene.From Eq. (3.11) we an see that the photon A�1 propagates with a speed6 � (1��n).Sine the A�1 photon propagates with  we observe birefringene, i.e. di�erent polarisationspropagate with di�erent speed.Although �n seems to be quite small we should ompare this to the urrent experi-mental sensitivity. In Ref. [26℄, a study of all possible dimension four Lorentz violatingoperators in eletrodynamis was onduted and onstraints derived. The most generaldimensions four Lagrangian whih is gauge and CPT invariant, but violates Lorentz sym-metry is, Lgeneral = �14F ��F�� � 14(kF )����F ��F ��: (3.13)Comparing the propagator derived from Eq. (3.13) with Eq. (2.1) we �nd(kF )���� = D02 1�1�M2SUSY�2UV������: (3.14)In Ref. [26℄, the oeÆients of kF have been onstrained using various methods. Forlaboratory measurements, their estimate translates toj�nlabj . 10�14 � 10�10; (3.15)6Note that �n < 0 is not inonsistent. Sine Lorentz symmetry is expliitly broken, propagation withspeeds >  is, in priniple, possible. 10
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Figure 3: Bounds on the sale of nonommutativity MNC in a four dimensional non-ommutative theory with an ultimate UV uto� �UV. The red area is exluded by therequirement that MNC < �UV. The other urves show lower limits on MNC derived viaEq. (3.12) from bounds on vauum birefringene. The grey band orresponds to estimatesfrom lab measurements. The blue (lower) and blak (upper) thik solid urves originatefrom observations at astrophysial and osmologial distanes, respetively. The thikdashed line gives the most reent onstraint from polarisation measurements of gammaray bursts [28℄. We used D0=2�1 = 10�4.depending on the pattern of the nonommutativity. Astrophysial observations alreadyprovide a muh tighter bound of j�nastroj . 10�16; (3.16)while the strongest onstraints ome from observations of objets at osmologial distanes(see also [27; 28℄), j�nosmoj . 10�37 � 10�32: (3.17)In Fig. 3, we show the lower limits on MNC originating from these experimental andobservational upper limits on the birefringene of the vauum.4 Cuto�s as a mimi of UV physisAfter having found that an ultimate UV uto� leads to interesting physis in nonommu-tative gauge theories, let us now disuss why suh a uto� provides a good approximationto the e�et of UV ompletion. As we stated in the Introdution, our evidene for thisomes from the understanding one gains from the string theory theory realisation of non-ommutativity. 11



In order to appreiate what happens in string theory, onsider what would happen ina more general �eld theory ontaining a tower of massive modes of mass mi. In Eulideanspae, the typial one loop diagrams would have a sum over the modes as followsI(�; k;�UV) =Xi Z d4p(2�)4 1(p2 +m2i )((p+ k)2 +m2i ) exp(i~k � p): (4.1)Again we will go to the Shwinger parameterisation. Using the identity1A1A2 = Z 10 dxZ 10 dt t e�t(xA1+(1�x)A2); (4.2)we may reast (4.1) asI(�; k;mi) = Z 10 dt t e� ~k24t Xi Z d4p(2�)4 Z 10 dx e�t(p2+k2x(1�x)+m2i ); (4.3)where we used k � ~k = 0. Very heuristially, the way string theory works as a �nite UVompletion is to arrange the masses mi so that the integrand resums into funtions withmodular properties that render the integral �nite. The additional modes that are requiredto do this have masses of order the string sale, i.e. the typial masses of the lowest lyingextra modes is order Ms; we all them UV modes7.More generally, we an onsider the lass of theories where the UV ompletion yieldsa one-loop ontribution of the formI(�; k;�UV) = Z 10 dT T f  ~k2�2UV4T !Z �T; k�UV� ; (4.4)where we have resaled to a dimensionless Shwinger parameter, t = T=�2UV. The funtionf ontains all the e�ets of nonommutativity, whereas Z would also be present in aommutative theory. Sine the ommutative theory should be �nite, too, Z implementsthe UV �niteness of the integral. This property is typially provided by the sum overan appropriate spetrum of massive modes as indiated by the sum in Eq. (4.3). It isthis onnetion whih imbues �UV with a physial meaning as the sale at whih the UVompletion modi�es the integrand. Roughly, it orresponds to the typial mass of thelightest UV modes mi. How this works in a string theoretial setting with a non-zeroB-�eld has been shown in Ref. [22℄. There, the role of �UV is played by 1=p�0, with thestring tension �0. Moreover, in that ase the form of the funtion f is indeed given byf = e� ~k2�2UV4T ; (4.5)7Atually the question of �niteness in the string theory is quite subtle in this ontext. It relies ononsisteny onditions, namely tadpole anellation. For more details see Ref. [22℄.12



for all T (f. Eq. (4.3)). In general, we expet this simple form only for small loop-momenta� �UV, orresponding to T � 1,limT�1 f = e� ~k2�2UV4T : (4.6)A ruial determinant of the behaviour is the interplay between f and Z. In orderto desribe this further, we will de�ne two properties of the UV omplete theory that wewill onsider to be neessary:� All ouplings in the k ! 0 limit tend to the ouplings of the � = 0 theory.� All physis in the �! 0 limit tends ontinuously to � = 0 physis.These we will take to be fundamental properties of a onsistent UV ompletion and areertainly true for both string theory and the �eld theory with a uto�. As stated in theintrodution, the non-zero B �eld is a mild bakground �eld that we an dial ontinuouslyto zero; it would be very odd for there to be any sort of disontinuity at B = 0. At leastthe seond of these assumptions is known to be false in nonommutative �eld theory, butthen of ourse that theory does not provide a �nite UV ompletion. Both properties areobviously true for the one-loop ontribution above if the integral is �nite and uniformlyonvergent, and if the funtion f is ontinuous.Given these assumptions it is lear that the behaviour of the theory is essentiallydetermined by whether it is the funtion f or Z whih is doing the regulating of theintegral. If the regularisation is ontrolled by Z, then the behaviour must by ontinuitybe idential to the ommutative string theory. However as we shall see more thoroughlyat the end of this setion, for momenta in the intermediate range �IR < k < �UV, theintegral is regulated by f . This leads to the �eld theoretial behaviour where the integralis e�etively regulated by the nonommutativity (f. Set. 2).To examine the question of ontinuity further, it is instrutive to onsider taking the� ! 0 limit by saling � ! ��. The only plae � appears is in f ; we may rede�ne�UV !p��UV and k !p�k. The net result isI(��; k;�UV) = I(�;p�k;p��UV) : (4.7)This equation looks a bit peuliar but on inspetion it makes sense: it says that the e�etof taking the ommutative limit is the same as lowering the mass sales of all the modesof the UV ompletion to zero and leaving � untouhed. In other words, on the right handside the threshold e�ets of an inreasing number of the additional UVmodes are inludedwhilst ~k � p � 1, and in the limit the one-loop orretion to the gauge oupling inludesall the same ontributions as the ommutative theory, thus proving the seond propertyfor gauge ouplings, namely that as �! 0 they tend to the ommutative ones. Note that13



this last statement is only true beause of the assumed onvergene of the integral in aUV �nite theory.However the seond property we are demanding of our theory is atually a strongerrequirement than this; nonommutativity introdues new operators where momenta areontrated with �'s, and the seond property says that they tend to zero in the IR. This isespeially surprising given that in nonommutative �eld theory the very same operatorsare divergent in the IR. A typial operator is preisely the ontribution to the vauumpolarisation tensor of the trae-U(1) photon,��� � �2(k2; ~k2) ~k�~k�~k2 : (4.8)�2 has dimensions of mass2, and in a generi non-supersymmetri �eld theory (withno mathing between numbers of bosoni and fermioni degrees of freedom) �2 � 1=~k2[16; 17℄. In the UV omplete theory, this ontribution is of the general form��� � ~k�~k�J(�; k;mi) = ~k�~k��4UV Z 10 dT T g ~k2�2UV4T !Z �T; k�UV� ; (4.9)where g is a funtion with the same properties as f . Importantly, ontinuity removes thepossibility that it ould have any divergenes in ~k2, and insists that in the limit k ! 0the integral J onverges to the value in the \ommutative theory" whih is of order unity.In the deep IR, therefore, we must have�2 � ~k2�4UV; (4.10)rather than any sort of divergene. In presene of softly broken SUSY, the �4UV is softenedto �M2SUSY�2UV (f. Eq. (3.2)).At what momentum sale does this behaviour take over from the usual nonommuta-tive �eld theory behaviour? The extra UV modes an only ontribute in the integral whenT < 1. Outside this region, ontributions from the UV modes in the Shwinger integralare exponentially suppressed, and the one loop ontributions are approximately those ofthe UV divergent �eld theory. Here, in the diagrams sensitive to the nonommutativity,the UV divergene is tamed by the funtions f , g, whih at as a uto� for modes withT < 4~k2�2UV. When the seond inequality saturates the �rst, that is when~k2 > 14�2UV ; i:e: k2 > M4NC4�2UV � �2IR; (4.11)we never get ontributions from UV modes in the integral and the behaviour is entirely�eld theoretial. On the other hand when ~k2 is less than this value, there is a region4~k2�2UV < T < 1 where the UV modes are ontributing signi�antly. In this regime,the integration tends to the values that we dedued from the onvergene and ontinuity14



properties of the UV ompletion and approahes a �nite value as k ! 0. Thus we ande�ne a \deep-IR" region, jkj < �IR = M2NC�UV ; (4.12)in whih one-loop integrals give approximately onstant ontributions, and Wilsonianbehaviour is restored.All of these properties are true for string theory, and by inspetion, they are mimikedby the introdution of a uto� in the Shwinger integral, thus justifying the approah thatwe have taken in the previous setions.5 ConlusionsNonommutative gauge theories are not universal. Therefore, any disussion of low energye�ets requires the spei�ation of the ultraviolet setor. In this work we onsidered anonommutative �eld theory model where the utuations with momenta larger thanan ultraviolet uto� �UV give an overall vanishing ontribution. We argued that thisis a good approximation to a large lass of more fundamental UV �nite theories, whihinludes string theory.The presene of an ultraviolet uto� �UV indues an e�etive infrared sale �IR �M2NC=�UV below whih the running oupling behaves up to threshold orretions like thatof a ommutative gauge theory8. Only in the range �IR < k < �UV do we observe fullnonommutative behavior. However, for large nonommutativity sales MNC & 1011 GeVand a uto� �UV �MP one easily �nds that all known experiments are performed in thenearly ommutative region k < �IR.If supersymmetry is broken, an additional Lorentz symmetry violating struture ispresent in the polarisation tensor. For sales k > �IR it leads to a mass term for thegauge boson in aord with Refs. [5; 6℄. However, below �IR the mass term turns intoa modi�ation of the phase veloity of plane wave solutions, leading to birefringene. Ifthe trae-U(1) gauge boson is to be interpreted as (part of) the photon, a mass is notaeptable and birefringene must be smaller than the experimental limits. Using themost stringent limits from osmologial observations one obtains a rather strong limitof MNC & 0:1MP. If we use the more onservative astrophysial or laboratory limitsthe same argument yields only MNC & (10�7 � 10�5) MP. In this setting high preisionmeasurements of the properties of light are a wonderful tool to test (nearly) Plank salephysis.8This is in stark ontrast to a situation where the nonommutative gauge theory is assumed to bevalid at all sales and no ultraviolet uto� exists. There �IR = 0 and the theory shows strong e�ets ofnonommutativity at all sales. In suh a situation a nonommutative U(1) an never be the photon asdemonstrated in [5; 6℄. 15
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