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Stati fores in d = 2 + 1 SU(N) gauge theoriesHarvey B. MeyerDeutshes Elektronen-Synhrotron DESYPlatanenallee 6D-15738 Zeuthenharvey.meyer�desy.deAbstratUsing a three-level algorithm we perform a high-preision lattie omputation of thestati fore up to 1fm in the 2+1 dimensional SU(5) gauge theory. Disretization errorsand the ontinuum limit are disussed in detail. By omparison with existing SU(2) andSU(3) data it is found that �r20 = 1:65� �24 holds at an auray of 1% for all N � 2,where r0 is the Sommer referene sale. The e�etive entral harge (r) is obtainedand an intermediate distane rs is de�ned via the property (rs) = �24 . It separatesin a natural way the short-distane regime governed by perturbation theory from thelong-distane regime desribed by an e�etive string theory. The ratio rs=r0 dereasessigni�antly from SU(2) to SU(3) to SU(5), where rs < r0. We give a preliminaryestimate of its value in the large-N limit. The stati fore in the smallest representationof N -ality 2, whih tends to the k = 2 string tension as r ! 1, is also omputed upto 0.7fm. The deviation from Casimir saling is positive and grows from 0:1% to 1% inthat range.



1 IntrodutionOne of the prime observables giving an insight into the workings of four-dimensionalSU(N) gauge theories is the fore F (r) whih two stati quarks separated by a distaner exert on eah other. It may for instane serve to de�ne a renormalized ouplingonstant, and hene the knowledge of F (r) at all distanes allows one to extrat �2MS inunits of the string tension �, establishing the onnetion between the regime auratelydesribed by perturbation theory and the regime thought to be desribed by an e�etivestring theory. While in pratie �nite-volume shemes are better suited to overome thehierarhy problem in onneting the very-short-distane regime to the non-perturbativeregime [1℄, F (r) is ideally suited to probe the string properties of the hromo-eletriux lines, sine its funtional form at asymptoti distanes is a entral predition ofe�etive string theories [2, 3℄.Although the physially most important SU(N) gauge theories are undoubtedly de-�ned in d = 4 dimensions, in this paper we shall fous on the d = 3 theories. Apart frombeing interesting in their own right (they exhibit a mass gap and linear on�nement, asdemonstrated numerially in [4℄), the N = 3 ase desribes the magneti setor of QCDat asymptotially high temperatures and is thus relevant to the desription of real-worldphysis (see [5℄ for a review on this aspet).The theme of this paper is the N -dependene of stati fores. Due to super-renormalizability in d = 3, the quantity analogous to p�=�MS is p�=(g2N), whihhas been alulated in [4℄. Its N -dependene is well desribed by a onstant, plus smallO(1=N2) orretions. This means that one two SU(N) theories have been mathedin the ultraviolet (as originally proposed by t'Hooft [6℄), their far infrared behaviourwill agree too; and vie versa, these statements holding up to O(1=N2) orretions.The low-lying spetra of these theories, ompared in units of p�, are also very simi-lar [4, 7, 8℄. The stati fore F (r) gives us an independent way to ompare the theoriesat an adjustable distane sale.The asymptoti approah to a onstant fore is of partiular interest, beause theL�usher term [9℄, as well as the next term in the (�r2)�1 expansion [3℄, are universal.Thus by omparing the stati fores of di�erent SU(N) gauge theories, one obtains atest of universality. By the same token, the pre-asymptoti di�erenes between thesefuntions of r inform us on the N -dependene of higher order string orretions, as wellas on the terms that vanish at long distane faster than any power of 1=r. Indeed itis widely believed [12, 13℄ that the ux-tube also admits massive modes, in partiularlongitudinal ompression modes. How their e�ets are to be disentangled when only a�nite number of terms of the asymptoti series are known is however not lear to us.What an we expet about the N -dependene of the higher-order oeÆients inthe 1=r expansion of the stati fore? Sine the latter is related by open-losed stringduality [3℄ to the spetrum of torelons in the theory de�ned on a spatial L�1 ylinder,and that the spetrum is expeted to have a �nite large-N limit with 1=N2 orretions atall L, one would expet (although it is not mathematially guaranteed) the oeÆientsof the 1=r series to have a �nite large-N limit with 1=N2 orretions. Note that theperturbative series in g2N , whih is also asymptoti, does have this property, at least inthe low orders where the oeÆients are omputed expliitly.Powerful Monte-Carlo tehniques were developed in [14℄ that triggered a very a-1



urate determination of F (r) in the range 0:2fm < r < 1:2fm (throughout this paperthe `fermi' is identi�ed with 2r0, where r0 is the Sommer referene sale [15℄). Here weextend these tehniques to address the following physis issues:� what is the N -dependene of F (r)=�? A speial ase is the separation r = r0,where this amounts to studying the N -dependene of r20�;� sine the N -dependene of r20� turns out to be very weak, we then ask aboutthe N -dependene of the e�etive entral harge (r) � �12r3 dF (r)dr . Any e�etivetheory whose light degrees of freedom orrespond to the transverse utuations ofthe ux-tube predits limr!1 (r) = �24(d� 2), independently of N [10℄. Howeverthe approah to this asymptoti value does have an N -dependene whih turnsout to be substantial;� what is the dependene of the stati fore on the olor representation of theharges? Many on�nement models predit the stati fore in a representation R tobe proportional to its quadrati Casimir CR [16, 17, 18, 19, 20℄. This question hasbeen addressed extensively (in d = 4 [21, 22, 23℄, but also in d = 3 [24, 25, 26, 27℄);our aim will be to quantify the small deviations from the `Casimir saling' predi-tion.Conerning this last point, we fous on the representations of two `quarks' symme-trized or antisymmetrized in olor in the d = 3 SU(5) theory. These are partiularlyinteresting, as the orresponding stati fores are known [28℄ to be linearly on�ningwith a string tension larger than in the fundamental representation. Sine perturbationtheory predits Casimir saling of the stati fores to hold at short distanes [29℄, andthat the string tensions have been found to be near-proportional to the smallest Casimirof the given N -ality [28, 30℄, it is a priori plausible that Casimir saling of the statifore provides a good approximation at all separations r in the antisymmetri ase. Thesituation is thus di�erent from studies in SU(2) or SU(3), where the stati fore in anyrepresentation asymptotially vanishes or is given by the fundamental string tension.The di�erene is due to the Z(N) symmetry, whih protets the k = 2 string fromsreening one N � 4.Note that r20�, (r) and FR(r)=FF(r) (the index refers to the representation, F beingthe fundamental one) are all quantities whih have a ontinuum limit { unlike for instaner0V (r), the stati potential in units of r�10 . Beause we are after small e�ets (orretionsof (r) from �=24, deviation of FR(r)=FF(r) from CR=CF), the O(a2) disretization errorsneed to be at least estimated, or even better the ontinuum extrapolation must be arriedout.Aurate SU(3) data was obtained a few years ago with a multi-level algorithm ind = 3 and d = 4 [10℄ (in the latter ase also more reently in [11℄), and SU(2) datais also available in d = 3 [31, 33℄. Here we perform a d = 3 SU(5) alulation thatsupplements the existing data. We do so by generalizing the multi-level algorithm [14℄for the higher representations (see also [25℄ for the adjoint ase), and introdue a furtherlevel of fatorization [34, 35℄ of the Polyakov loop orrelator from whih the stati foreis extrated.The algorithmi and tehnial details are given in setion 2. The new stati foredata for SU(5) is presented in setion 3.1, and the N -dependene of F (r) disussed2



in 3.2. Setions 3.3 and 3.4 onern the e�etive entral harge; in the latter the SU(5)data is ompared to the existing SU(2) and SU(3) data. Setion 4 disusses the ratiosof stati fores and their deviations from Casimir saling. Our onlusions are gatheredin setion 5. The appendix ontains a disussion of disretization errors and of theontinuum limit.2 Lattie simulationsIn this setion we desribe the tehnial details of the omputation. The number ofdimensions d and the number of olors N are still kept unspei�ed at this stage.2.1 Ation and observablesWe use the standard plaquette ation:S = �N XplaqReTr F f1� Upg ; � = 2Na4�dg2o : (1)where Up 2 SU(N) is the ordered produt of links around a plaquette. The quantityTrRU is the trae of U in the representation R; the subsript R=F orresponds tothe fundamental representation. The size of the lattie is Ld�1T , and the boundaryonditions for the link variables are periodi in all diretions.Our primary observable is the Polyakov loop orrelatorhP �R(x)PR(y)i = 1Z Z D[U ℄ P �R(x)PR(y)e�S[U ℄; D[U ℄ =Yx;� dU�(x) (2)where dU is the normalized invariant measure, Z is suh that h1i = 1 andPR(x) = Tr RfUP (x)g; UP (x) = U0(x)U0(x+ a0̂) : : :U0(x+ (T � a)0̂): (3)The trae may be taken in a general representation R of SU(N). Sine the link variablesbelong to the fundamental representation, we relate TrRU to the trae in the funda-mental representation. Here are some examples for three irreduible representations:TrAfUg = jTr FfUgj2 � 1 (4)Tr 2afUg = 12 �(Tr FfUg)2 � Tr FfU2g� (5)Tr 2sfUg = 12 �(Tr FfUg)2 + Tr FfU2g� : (6)The representation A is the adjoint representation, 2a and 2s are the representations oftwo quarks (anti)symmetrized in olor. We have omputed the Polyakov loop orrelatorfor R=F, 2a and 2s. Throughout this paper the index `1', or an index omitted altogether,stands for the fundamental representation F.We now desribe the algorithmi details.3



2.2 The multi-level algorithmRather than alternating full-lattie sweeps with measurements, the algorithm we employproeeds in a multi-level sheme whih exploits the manifest loality of the ation (1)to fatorize the Polyakov loops orrelators into several more loal funtionals of thegauge �eld. The short distane utuations of the �elds may then be averaged outindependently on eah of these fators.2.2.1 Correlator in the fundamental representationThe fatorization whih yields the largest gain is the one introdued by L�usher andWeisz [14℄. In their algorithm, the two (untraed) Polyakov loops are slied up inton0 = T=�0 segments by n0 equidistant time-slies. Reall the diret produt of twomatries, (U 
 V )��Æ = U��VÆ: (7)We �rst introdue the one-line operatorT"s(x) = T Q�0=a�1j=0 U0(x[s℄ + aj0̂): (8)It depends only on the temporal links between time-slie s�0=a and (s+ 1)�0=a, time-slie T=a being identi�ed with time-slie 0. For a point x with x0 = 0, we de�nedx[s℄ = x + s�00̂, s = 0; : : : ; n0 � 1; x and y an of ourse be taken to lie in the x0 = 0time-slie without loss of generality. The symbol T means that the produt is time-ordered. Next we introdue a two-line operator:T#"s (x; y) = T"s(x)� 
T"s(y): (9)Reall the produt of two suh diret-produt matries(U 
 V ) � (U 0 
 V 0) = (UU 0)
 (V V 0); (10)and the trae TrfU 
 V g = Tr fUg Tr fV g: (11)The Polyakov loop operator in the fundamental representation an then be written asPF(x)�PF(y) = TrnT Qn0�1s=0 T#"s (x; y)o : (12)Beause the ontribution to the ation of a partiular link variable only depends onthe loal staples, the Boltzmann weight e�S[U ℄ also fatorizes and one an writehPF(x)�PF(y)i = hTrnT Qn0�1s=0 hT#"s (x; y)isoi (13)where h:is denotes the average with the same Boltzmann weight but with �xed spatiallinks in time-slies s�0=a and (s + 1)�0=a. This formula is the basis of the algorithmintrodued by L�usher and Weisz [14℄.We shall exploit an additional fatorization level [34, 35℄, by whih hT#"s (x; y)is anbe estimated as follows. Single out the diretion 1̂ and deompose the slab of volume4
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Figure 1: The geometry of slabs and bloks in the d = 3 ase. The thik lines symbolizethe Polyakov loops, and �?n? = L.Ld�1 ��0 into n1 = L=�1 smaller bloks of volume �1 � Ld�2 ��0. Fig. 1 may help tovisualize the situation. We then havehT#"s (x; y)is = hT"s(x)i�sbx 
 hT"s(y)isby : (14)The bloks labeled by the integers bx = [x1=�1℄ and by = [y1=�1℄ must be di�erent,with x belonging to the former and y belonging to the latter. The expetation valueh:isb is taken with �xed spatial links in time slies s�0 and (s+1)�0 and also �xed linksin the set fU�(z) j z1 = bz ��1 and � 6= 1g : (15)2.2.2 Higher representationsTo inorporate the Polyakov loop orrelator in higher representations in the multi-levelsheme desribed above, higher diret produts must be omputed. We generalize Eq. 7so that, for any two olor tensors U and V of rank n and m, (the olor indies takingvalues 1 to N), (U 
 V )�1;:::;�n;�1;:::;�m = U�1;:::;�nV�1;:::;�m : (16)With the de�nition T""s (x; y) = T"s(x)
 T"s(y); (17)5



we an de�ne the N -ality 2 version of the two-line operatorT##""s (x; y) = T""s (x; x)� 
T""s (y; y); (18)whih has N4�N4 entries. The produt of two suh objets is de�ned by the property�(U 
 U 0)
 (U 00 
 U 000)� � �(V 
 V 0)
 (V 00 
 V 000)� = (UV 
 U 0V 0)
 (U 00V 00 
 U 000V 000):and multilinearity.The observables needed to ompute the orrelator in the 2a and 2s representationsmay now be expressed as P 2F(x)�P 2F(y) = Tr2i nT Qn0�1s=0 T##""s (x; y)o ; (19)Tr fUP (x)2g�Tr fUP (y)2g = Tr2ii nT Qn0�1s=0 T##""s (x; y)o ; (20)P 2F(x)�Tr fUP (y)2g = Tr2iii nT Qn0�1s=0 T##""s (x; y)o ; (21)where the trae operations are de�ned suh thatTr2if(U 
 U 0)
 (V 
 V 0)g = Tr fUg Tr fU 0g Tr fV g Tr fV 0g; (22)Tr2iif(U 
 U 0)
 (V 
 V 0)g = Tr fUU 0g Tr fV V 0g; (23)Tr2iiif(U 
 U 0)
 (V 
 V 0)g = Tr fUg Tr fU 0g Tr fV V 0g: (24)For the adjoint representation, one needs the de�nitionT"##"s (x; y) = T#"s (x; x)� 
T#"s (y; y): (25)Then jPF(x)PF(y)j2 = Tr2i nT Qn0�1s=0 T"##"s (x; y)o (26)jPF(x)j2 = TrnT Qn0�1s=0 T#"s (x; x)o (27)As in going from Eq. 12 to Eq. 13, the expetation values of the orrelators an nowbe written in a form suitable for the implementation of the multi-level algorithm. Inthe expetation value of the Polyakov loop orrelators one may take the average valueh:is inside a slab of eah two-line operator appearing in Eq. 19|21, 26|27. To exploitthe fatorization into bloks along the diretion 1̂, we evaluate the slab-averages as inEq. 14 by taking the blok average values of the line operators on the right-hand side ofEq. 18 and Eq. 25.It should be lear that the Polyakov loop orrelator an be obtained in a fatorizedform for any desired representation. Also, the formulae presented hold for any numberof dimensions d � 2. We now turn to some pratial onsiderations onerning theimplementation of the algorithm. 6



1. Produe an independent on�guration by doing a suÆient number of hybrid over-relaxation sweeps through the whole lattie;2. for all slabs, in inreasing time order:3. repeat the following proedure ms times:4. update the slab and then, for all bloks:5. do mb measurements of the needed line operatorsinside the blok separated by an update within the blok6. ompute the two-line operators and add them to their slab averages;7. multiply the produt of previous two-link operators by the new one;8. ompute the traes.Table 1: Outline of the three-level algorithm.� T=a L=a n0 n1 n? nmeas r0=aA20 38 20 22 4 2 11 2536 4.03879(39)A30 38 30 22 6 2 11 2275 4.03943(35)B 44 25 26 5 2 13 1731 4.82879(58)C 54 30 30 5 3 10 1647 6.1323(11)Table 2: The d = 3 SU(5) simulation details.2.2.3 Algorithm implementation and eÆienyThe three-level algorithm desribed above that we applied to d = 3 SU(5) simulations isin essene the L�usher-Weisz algorithm, where however the slab-averages of the two-lineoperators are omputed in a fatorized way. Due to the fatorization along the dire-tion 1̂, we measure the Polyakov loop orrelator in that diretion only. The additionalfatorization breaks translational invariane and the symmetry between diretions 1̂and 2̂ and thus leads to a loss of statistis; on the other hand the short-distane u-tuations of the one-line operators an be averaged out separately. Test studies [36℄ inthe d = 3 SU(2) theory show that the three-level algorithm improves on the originalL�usher-Weisz algorithm for r � 0:9fm, a = 0:08fm, the latter being superior at shorterdistanes. This test onerns the stati fore in the fundamental representation, but inthe higher representations, and also at smaller lattie spaing, we expet the additionalfatorization to pay o� already at shorter distanes. Sine the orrelation is obtained atfewer points, but eah of them is evaluated more aurately, the memory requirement islowered.The algorithm proeeds as skethed in Tab. 1 (the sope of loops are given by theindentation of the lines). The simulation parameters are given in Tab. 2. The numbern0 of slabs and n1 of bloks per slab an be found there. Beause of memory limitations,we only omputed the line-operators every seond or third point in the 2̂ diretion. Thenumber n? in Tab. 2 is the number of transverse oordinates at whih the line-operators7



were omputed. We measured the orrelation from distane 2a to 10a in all simulations;hene nr = 9. And in all simulations ms = 20 and mb = 60 (see Tab. 1 for the meaningof these parameters). We did not use the multihit tehnique [37℄, beause for the higherrepresentations it inreases the number of two-line operator multipliations, whih areexpensive at large N . Finally, the total number of update sweeps between measurementsis 60. They are grouped in ompound sweeps onsisting of one heat-bath followed bythree over-relaxation sweeps [39, 40, 41℄. This proved suÆient to deorrelate almostentirely suessive measurements of the observables and still represents a negligible over-head with respet to the measurements. To update the slabs we used three ompoundsweeps, and only one between line-operator measurements inside the bloks.The program goes from slab to slab in a time-ordered way. It is in order to savememory that eah measurement of the two-line operator slab-averages is followed bytheir multipliation with the produt of the preeding slab-averages. In this way, theprogram only needs enough memory for two �elds of the sizen1 � n? � nr � size(T):The two-line operator (18) ontains N8 omplex numbers. Hene we reah the require-ment � 4 � 108 32-bit oating numbers for simulation C.For a given separation r, we orrelate the line operators as far as possible from theboundaries. That is, for the orrelator at a separation of 2na, we orrelate the lineoperators omputed at x1 = �1 � na with those omputed at x1 = �1 + na (and allequivalent points by translation of distane �1 in the diretion 1̂). For a separation of(2n + 1)a, we average the orrelation obtained at (�1 � na;�1 + (n + 1)a) with thatobtained at (�1 � (n+ 1)a;�1+ na).We introdue the notation�R(r) = hP �R(x)PR(x+ r1̂)i (28)for the on-axis Polyakov loop orrelator. Tab. 3 gives these orrelators in the fundamen-tal, as well as in the N -ality 2 representations 2a and 2s in simulation B. It turns outthat these measurements in the di�erent representations are quite strongly orrelatedat short distanes (and essentially unorrelated beyond r = r0), so that it will be ad-vantageous to take the ratio of stati fores measured in the same simulation. With thetuning of the algorithm used, we are able to maintain a signal to noise ratio below 1%beyond 1fm in the fundamental representation and beyond 0.7fm in the 2a representa-tion. The performane (and memory requirements) of the algorithm behave favourablyif the time extent is inreased, as a omparison of the data from simulations A20 andA30 will reveal.To give an idea of the omputing e�ort involved, one full measurement in simulationB took 1.7 hour on a single 2.4GHz Opteron with 4GB of memory, while the 60 full-lattie sweeps between eah of these full measurements took 61 seonds.The statistial errors are estimated with the Gamma method [42℄. Simulation Cwas run with 8 replia (= independent simulations) and the others with 4 replia; weheked in all ases that the results are onsistent aross replia. We also found thatusing the jaknife method gave error estimates in agreement with the Gamma method,whih is hardly surprising sine the suessive measurements were very deorrelated inthese runs. 8



3 The stati fore in the fundamental representationIn this setion we present our data on the stati fore. It is found that the quantity r20�has very small disretization errors. By omparison with the SU(3) data of L�usher andWeisz [10℄ and the SU(2) data of Majumdar [31℄ (see also [33℄), we �nd that it is alsovery weakly dependent on the number of olors N . We then ompare the N = 2; 3; 5results for the e�etive entral harge at �xed value of r0.3.1 The SU(5) stati foreThe stati fore is de�ned at �nite lattie spaing byFR(�r) = 1a [VR(r + a)� VR(r)℄; VR(r) = � 1T log �R(r): (29)We reuse the tree-level improved argument �r = r+a=2+O(a2) of the funtion FR givenin [10℄. The fundamental stati fore obtained in simulation B an be found in Tab. 4.The referene sale r0=a given in Tab. 2 is obtained in the standard manner [15℄, bylinearly interpolating (r=a)2 as a funtion of r2F (r) to the absissa 1.65.To a �rst approximation, the fore is onstant beyond 0.75fm, signalling linear on-�nement. To investigate this in more detail, we �nd it useful to de�ne the quantity�(r) = F (r)� �24r2 : (30)If the L�usher term does provide the leading asymptoti orretion to the linear poten-tial [9℄, then this quantity deserves the name of e�etive string tension and the notationis appropriate. Note that by de�nition,r20�(r0) = 1:65� �24 = 1:519100 : : : (31)at all lattie spaings. In partiular, disretization errors on r20�(r) are automatiallyredued around separation r = r0.The funtion r20�(r) is plotted in Fig. 2 for all data sets. The pratial advantage ofonsidering this funtion is that it is very at beyond 0.4fm (note the sale of the vertialaxis); in this way, the data an be visualized in more detail. We �rstly remark that thedata A20 and A30 agree within error bars at all separations; the ommon absissa ofthese data points have been split symmetrially for better visibility. This indiates thatthe time extent T � 5r0 is suÆient to `�lter out' the ground state of the transfer matrixin the presene of the two Polyakov loops [10℄ separated by r � 2r0; the statement holdsof ourse at the preision to whih we have been able to ompute the stati fore.Seondly, the saling violations of r20�(r) are at the few permille level (or less) aroundr = 1:4r0. To arry out a ontinuum extrapolation, we need to interpolate r20F (xr0) to afew �xed values of x. This is done by a linear interpolation in 1=x2 (in [10℄ a three-pointinterpolation in 1=x2 was used). The result is given for eah simulation in Tab. 6. Itturns out that extrapolating these quantities to the ontinuum with the expeted O(a2)orretions [43℄ yields poor �2 values (see Fig. 8). Therefore we extrapolate the datafrom the two smaller lattie spaings linearly in (a=r0)2, and use a quadrati �t to allthree lattie spaings to estimate the unertainty assoiated with the linear �t; we referthe reader to the appendix for more details. At least one additional simulation at a9
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where ~r = r+O(a2) is de�ned in [10℄. Fig. 3 shows the omputed e�etive entral harge(r) in the range of distanes 0.25 to 0.75fm. A preoious onvergene to values within5% of �24 is observed.By eye, the data at � = 44 and � = 54 pratially fall on top of eah other up to0.6fm, indiating that disretization errors are reasonably small. Beyond that point,the � = 54 data's auray no longer allows for a useful omparison. The data pointsobtained at the oarsest lattie spaing systematially lie slightly above the other points.This e�et was already seen in SU(2) and SU(3) alulations. Also, the data sets A20and A30 are well ompatible, indiating that the time extent was hosen long enoughfor the present statistial auray.The expeted behaviour at short distanes, as given by two-loop perturbation the-ory [29℄, is shown on the �gure, as well as the universal value �24 expeted at long dis-tanes. The ontinuum value of g2r0, whih determines the slope of the short-distanepredition, was estimated by extrapolating the value of g2or0 of simulations B and Clinearly in g2oa. Using the ontinuum value of p�=g2 of [4℄ and Eq. 38 yields a slopesmaller by 2%; the di�erene would hardly be notieable on Fig. 3.In view of taking the ontinuum limit, we interpolate (xr0) to a handful of valuesof x. We use a three-point polynomial interpolation in 1=x (following [10℄); the resultis given in Tab. 7. The ontinuum limit is desribed in the appendix, where also analternative de�nition of the e�etive entral harge is proposed and shown to lead tothe same ontinuum results (Fig. 8).3.4 The e�etive entral harge for all NIt is now interesting to ompare the e�etive entral harge urves obtained for N = 2; 3and 5. If we attempted to ompare the data in the ontinuum limit, the ontinuumextrapolation would lead to the dominant soure of unertainty, beause only threelattie spaings are available at eah N . Also, the data at the oarsest lattie spaing inthe SU(3) and SU(5) data sets are not (always) onsistent with O(a2) orretions. Forthat reason we prefer to ompare the data sets at the smallest ommon lattie spaing.This orresponds to � = 7:5; 20 and 54 for N = 2; 3 and 5 respetively. The values ofr0=a, 6.29, 6.71 and 6.13 respetively, indeed are mathed at the 10% level.The omparison is illustrated on Fig. 4. At short distanes, the urves are expeted todi�er by O(1=N2) from perturbation theory and the saling of g2Nr0. This is indiatedby the straight solid lines whih stop short at 0:4r0 around where perturbation theoryeases to be aurate. Remarkably, all three urves seem to approah the value of �24at larger distanes. This fat onstitutes strong evidene for the universality of thestring orretion in d = 3 SU(N) gauge theories. On the other hand, the approahto the asymptoti value is surprisingly preoious. The numerial loseness of (r)to �24 is probably deeptive, in so far that it suggests that any higher order stringorretions are already very small below 1fm. The leading orretion term is O(1=�r2),and its oeÆient is universal and positive in the e�etive theory desribing the masslesstransverse utuations of the ux-tube [10℄. The Nambu-Goto string in a non-ritialnumber of dimensions orresponds to a speial ase in this lass of theories; it provides aonsistent analyti predition for the r� T Polyakov loop orrelator to any �nite order12
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F2s(r)F1(r) CS= C2sC1 = 2(N + 2)N + 1 ����N=5 = 73 : (48)Perturbation theory predits [29℄FR(r) = CRg22�r h1 + 732g2Nr+O((g2Nr)2)i : (49)In partiular, Casimir saling of stati fores holds at least to order g4.The result for the ratio of stati fores obtained in simulation B is given in Tab. 4.Fig. 6 shows the Monte-Carlo data on the relative deviations of F2a=F1 from Casimirsaling in the SU(5) lattie gauge theory. The window in r is 0.2|0.7fm. Notie thesale of the vertial axis: the (2a) data points indiate a positive relative deviation whihgrows from about 0.001 to 0.01 in that range of distanes. The (2s) data on the otherhand shows a stronger, negative deviation. This is expeted, sine the stati harges inthis representation an be sreened to (2a). The fore between harges in the adjointrepresentation, whih an be sreened ompletely, also exhibits this behaviour [25℄. Apositive deviation is thus rather speial. It will remain positive at larger distanes if thek = 2 string tension is larger than C2a=C1 ��, or if it is given exatly by that expressionand its entral harge by �24 .Beyond r0, we are perhaps seeing the e�ets of �nite time extent: there is a 1.9�disrepany between the third (2a) data points of simulations A20 and A30 on Fig. 6. Ifpresent, this e�et omes from F2a, beause the quantity r20F1(r) is perfetly onsistentbetween A20 and A30 (see Tab. 6).It is lear from Fig. 6 that the (absolute) disretization errors are bounded by 0.001.The fore ratio F2a=F1 at distane xr0 has been interpolated to a few values of x inTab. 10. The two-parameter funtion f(x) = px2=(x2 + q2) was used to interpolatethe quantity plotted on Fig. 6, but the result never atually di�ers by more than onestandard deviation from a simple linear interpolation in x. Tab. 10 also gives the resultof a ontinuum extrapolation performed along the same lines as for r20F1(r).Sine there is a stable string in the N -ality 2 setor, it makes sense to onsider thee�etive entral harge in the 2a representation; Fig. 7 shows our data on 2a(r). Atshort distanes, it is roughly a fator 3/2 larger than in the fundamental representation,as predited by perturbation theory. The urve seems to atten o�, as it does in thefundamental representation, but the data does not extend far enough to show whetherit will bend down towards �24 , as we expet it to [45℄. It was observed [30℄ in losedk = 2 SU(8) strings that 2a < �2a�1 1.4.1 Mixed representation orrelatorsIt is interesting to look at the ross orrelation hP2a(x)�P2s(x+ r1̂)i. There is no sym-metry whih makes this orrelator vanish. However we �nd that it is onsistent withzero. For instane, the `overlap' hP2a(x)�P2s(x+ r1̂)ip�2a(r)�2s(r)16
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5 ConlusionWe omputed the stati fore in the d = 3 SU(5) gauge theory employing an eÆientthree-level algorithm. Linear on�nement is observed, and the e�etive string tensionde�ned in Eq. 30 is essentially onstant beyond 0.5fm. The string tension extrated at1fm agrees with the losed string tension extrated from torelon spetrosopy [4℄.By omparison with existing SU(2) [31, 33℄ and SU(3) [10℄ data, the quantity �r20 isfound to be independent of the number of olors at the 1% level; it also has very smalldisretization errors. Thus omparing SU(N) gauge theories at ommon string tensionor ommon Sommer referene sale is equivalent at that level of preision.The e�etive entral harge (r) was obtained in the range 0.25|0.75fm. It onvergesto within 5% of the expeted asymptoti value of �24 , on�rming the multipliity andthe bosoni nature of the ux-tube's massless degrees of freedom. A omparison withthe SU(2) and SU(3) data reveals that the distane rs where (r) rosses the value �24dereases steadily by almost a fator two from SU(2) to SU(5). Sine (bosoni) e�etivestring theory predits that the asymptoti value is approahed from above [3℄, it istempting to speulate that the asymptoti expansion's auray is higher at a �xedvalue of p�r for larger N .We also studied the stati fore in the symmetrized (2s) and antisymmetrized (2a)diret produt representations of two `quarks'. For N � 4, it is known [28℄ that suhstati harges of N -ality 2 are linearly on�ned with a di�erent string tension fromthe fundamental one. And indeed we �nd that the ratio F2a=F1 is onstant to a �rstapproximation, on�rming the linear on�nement property. Furthermore, it is very loseto the Casimir saling predition (3/2 in this ase). A more detailed study reveals thatdeviations are present at the 0:1% to 1% level in the range 0.2|0.7fm. They are positive,unlike the ase of the adjoint stati fore [25℄ where sreening of the adjoint ux mustset in at some distane r. The 2s representation on the other hand exhibits a negativedeviation, as one expets if there is a single stable string per N -ality and sreeningours.Sine the representation 2a has N -ality 2 and has the smallest quadrati Casimir ofall irreduible representations in that setor, one might expet to �nd again a preoiousonset of the e�etive entral harge 2a(r) for the k = 2 string. This is not the ase: atr = r0, where (r) lies within a few perent of �24 , 2a(r) is almost as large as 32 � �24 .Data at further distanes is needed to see whether it dereases towards �24 .AknowledgementsI thank the omputer team of DESY/NIC for providing an eÆient bath system. I amindebted to Pushan Majumdar for ommuniating unpublished SU(2) data and readingthe manusript. I also thank York Shr�oder for disussions and Rainer Sommer for aritial reading of the manusript. 18



Appendix: disretization errors and the ontinuum limitThe quantity r20F (r) has been extrapolated linearly in (a=r0)2 to the ontinuum, usingthe data from simulations B and C. This is our best estimate in the ontinuum limitand it an be found in Tab. 6. The �rst number in brakets is the statistial error onthe result (there is no �2). To estimate the systemati unertainty on this proedure,we also do a quadrati �t in (a=r0)2 to simulations A30, B and C (again, there is no�2). The seond number given in brakets is the ontinuum value obtained by quadratiextrapolation minus the quoted ontinuum result. Thus a onservative error estimateis the maximum of the absolute value of the two numbers in brakets. The ontinuumlimit is illustrated for r20�(r), whih is equivalent to r20F (r) for this purpose, on Fig. 8.We proeeded in the same way for F2a(r)=F1(r) (Tab. 10). For the e�etive entralharge, we also give the ontinuum (r) obtained in this way in Tab. 7. Reall that thede�nition of Ref. [10℄ was used to de�ne (r) at �nite lattie spaing. We now show thata di�erent de�nition gives the same result in the ontinuum limit.We propose to determine the parameters a2~�(r); a~�(r) and ~(r) by~(r) = �r(r � a)(r+ a)2a2 (V (r � a)� 2V (r) + V (r + a)) (50)a2~�(r) = 12(r� a) V (r � a)� r V (r) + 12(r + a) V (r+ a) (51)a~�(r) = �(r � a)(r + a2)a V (r � a) + 2r2a V (r)� (r + a)(r� a2)a V (r+ a): (52)This new de�nition is suh that if the on-axis lattie Polyakov loop orrelator was givenby e�V0(r)T ; V0(r) = �+ �r� r ; (53)then the e�etive parameters math those appearing in V0(r) exatly. Note that thefuntions  and ~ di�er only by O(a2) terms, and that ~(r) is simply a fator (1�(a=r)2)times the `naive' de�nition of the e�etive entral harge used in [31℄. And indeed,omparing Tab. 8 to Tab. 7, we �nd that ~(r) is ompatible with (r) in the ontinuumlimit, as it should be; see Fig. 8 for an illustration. This onsisteny-hek is also a testof our error analysis.
19
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r=a �1(r) �2a(r) �2s(r)2 7:4136(20) � 10�4 2:00130(80) � 10�5 5:1040(32) � 10�83 8:6971(40) � 10�5 8:0083(57) � 10�7 3:5219(40) � 10�104 1:29486(95) � 10�5 4:5651(52) � 10�8 4:332(24) � 10�125 2:1498(22) � 10�6 3:0544(48) � 10�8 5:41(93) � 10�146 3:7784(53) � 10�7 2:2198(54) � 10�10 {7 6:862(12) � 10�8 1:676(10) � 10�11 {8 1:2705(31) � 10�8 1:317(74) � 10�12 {9 2:3909(81) � 10�9 1:36(38) � 10�13 {10 4:553(37) � 10�10 { {Table 3: The raw data of simulation B.�r=a a2F1(�r) F2a(�r)=F1(�r) F2s(�r)=F1(�r)2.379 0.0857165(97) 1.501928(46) 2.32216(20)3.407 0.076183(12) 1.504059(99) 2.3092(28)4.432 0.071825(15) 1.50613(20) 2.424(95)5.448 0.069546(18) 1.50793(71) {6.458 0.068237(23) 1.5144(33) {7.464 0.067463(39) 1.507(33) {8.469 0.066812(67) { {9.473 0.06634(25) { {Table 4: The stati fores in simulation B.~r=a 1(~r) 2a(~r) 2s(~r)2.808 0.105535(54) 0.15671(10) 0.2560(23)3.838 0.12320(31) 0.18110(61) {4.875 0.13202(48) 0.1916(28) {5.902 0.1346(21) 0.158(24) {6.920 0.1283(45) { {7.932 0.162(16) { {Table 5: The e�etive entral harges in simulation B.23



r=r0 A20 A30 B C ont.0.50 { { 1.98604(28) 1.97861(46) |0.65 1.81564(22) 1.81552(18) 1.81409(28) 1.81380(35) 1.8133(10)(20)0.80 1.72229(22) 1.72211(18) 1.72119(15) 1.72108(30) 1.7209(8)(14)0.95 1.664406(60) 1.664354(48) 1.664300(52) 1.66417(12) 1.6640(3)(-2)1.00 1.65 1.65 1.65 1.65 1.651.05 1.637603(52) 1.637647(41) 1.637694(45) 1.63780(10) 1.6380(3)(1)1.20 1.60865(24) 1.60849(16) 1.60934(19) 1.61001(44) 1.6111(12)(-2)1.35 1.58855(46) 1.58815(30) 1.58977(47) 1.5890(11) 1.5877(29)(-45)1.50 1.57272(81) 1.57386(65) 1.57638(76) 1.5686(32) 1.556(9)(-20)1.65 1.5615(18) 1.5635(19) 1.5647(10) { {1.80 1.5536(47) 1.5558(55) 1.5551(23) { {2.00 1.562(13) 1.548(32) 1.5451(65) { {Table 6: The quantity r20F (r) interpolated, and its ontinuum limit (details in the App.).r=r0 A20 A30 B C ont.0.458 { { { 0.090714(40) {0.65 0.11028(74) 0.11141(56) 0.11284(27) 0.11163(19) 0.1096(7)(-50)0.80 0.12573(64) 0.12484(50) 0.12348(31) 0.12202(28) 0.1196(9)(-5)0.95 0.13282(56) 0.13235(44) 0.13006(36) 0.1304(10) 0.131(3)(5)1.00 0.13424(57) 0.13412(42) 0.13172(46) 0.1314(11) 0.131(3)(4)1.05 0.13534(71) 0.13564(48) 0.13279(44) 0.1315(12) 0.129(3)(2)1.20 0.1374(15) 0.1390(10) 0.1344(19) 0.1362(31) 0.139(8)(12)Table 7: The e�etive entral harge (r) interpolated, and its ontinuum limit.r=r0 A20 A30 B C ont.0.458 { { { 0.098331(44) {0.65 0.1105(19) 0.1135(15) 0.11787(15) 0.11611(21) 0.1132(6)(-114)0.80 0.13196(48) 0.13130(37) 0.12939(35) 0.12533(27) 0.1187(9)(-48)0.95 0.13995(64) 0.13921(51) 0.13491(33) 0.13260(92) 0.129(2)(3)1.00 0.14117(58) 0.14074(46) 0.13606(42) 0.1340(11) 0.131(3)(4)1.05 0.14194(62) 0.14190(45) 0.13690(45) 0.1339(12) 0.1289(32)(7)1.20 0.1425(14) 0.14393(92) 0.1375(16) 0.1367(27) 0.135(7)(6)Table 8: The e�etive entral harge ~(r) interpolated, and its ontinuum limit.24



r=r0 B C0.458 { 0.135447(60)0.65 0.16725(88) 0.16486(32)0.80 0.18146(60) 0.17752(69)0.95 0.1894(20) 0.1849(30)1.00 0.1912(27) 0.1860(54)1.05 0.1868(38) 0.186(12)1.20 0.162(21) 0.135(54)Table 9: The quantity 2a(r) interpolated.r=r0 A20 A30 B C ont.0.50 { { 1.324(31) 1.130(39) {0.65 2.434(65) 2.567(50) 2.279(50) 2.087(48) 1.77(15)(13)0.80 3.59(15) 3.693(97) 3.317(66) 3.32(12) 3.3(3)(7)0.95 5.09(36) 4.01(61) 4.28(15) 4.80(21) 5.7(6)(6)1.00 5.66(67) 3.94(81) 4.57(21) 5.35(29) 6.6(8)(4)1.05 6.25(84) 3.87(97) 4.86(30) 5.92(43) {1.20 { 8.5(3.2) 6.57(59) 7.0(2.2) {Table 10: The quantity 103 � (23F2a(r)=F1(r)� 1) interpolated, and its ontinuum limit.r=r0 B C0.50 -4.943(88) -4.55(10)0.65 -8.68(69) -8.73(57)Table 11: The quantity 103 � (37F2s(r)=F1(r)� 1) interpolated.25
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