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Stati
 for
es in d = 2 + 1 SU(N) gauge theoriesHarvey B. MeyerDeuts
hes Elektronen-Syn
hrotron DESYPlatanenallee 6D-15738 Zeuthenharvey.meyer�desy.deAbstra
tUsing a three-level algorithm we perform a high-pre
ision latti
e 
omputation of thestati
 for
e up to 1fm in the 2+1 dimensional SU(5) gauge theory. Dis
retization errorsand the 
ontinuum limit are dis
ussed in detail. By 
omparison with existing SU(2) andSU(3) data it is found that �r20 = 1:65� �24 holds at an a

ura
y of 1% for all N � 2,where r0 is the Sommer referen
e s
ale. The e�e
tive 
entral 
harge 
(r) is obtainedand an intermediate distan
e rs is de�ned via the property 
(rs) = �24 . It separatesin a natural way the short-distan
e regime governed by perturbation theory from thelong-distan
e regime des
ribed by an e�e
tive string theory. The ratio rs=r0 de
reasessigni�
antly from SU(2) to SU(3) to SU(5), where rs < r0. We give a preliminaryestimate of its value in the large-N limit. The stati
 for
e in the smallest representationof N -ality 2, whi
h tends to the k = 2 string tension as r ! 1, is also 
omputed upto 0.7fm. The deviation from Casimir s
aling is positive and grows from 0:1% to 1% inthat range.



1 Introdu
tionOne of the prime observables giving an insight into the workings of four-dimensionalSU(N) gauge theories is the for
e F (r) whi
h two stati
 quarks separated by a distan
er exert on ea
h other. It may for instan
e serve to de�ne a renormalized 
oupling
onstant, and hen
e the knowledge of F (r) at all distan
es allows one to extra
t �2MS inunits of the string tension �, establishing the 
onne
tion between the regime a

uratelydes
ribed by perturbation theory and the regime thought to be des
ribed by an e�e
tivestring theory. While in pra
ti
e �nite-volume s
hemes are better suited to over
ome thehierar
hy problem in 
onne
ting the very-short-distan
e regime to the non-perturbativeregime [1℄, F (r) is ideally suited to probe the string properties of the 
hromo-ele
tri

ux lines, sin
e its fun
tional form at asymptoti
 distan
es is a 
entral predi
tion ofe�e
tive string theories [2, 3℄.Although the physi
ally most important SU(N) gauge theories are undoubtedly de-�ned in d = 4 dimensions, in this paper we shall fo
us on the d = 3 theories. Apart frombeing interesting in their own right (they exhibit a mass gap and linear 
on�nement, asdemonstrated numeri
ally in [4℄), the N = 3 
ase des
ribes the magneti
 se
tor of QCDat asymptoti
ally high temperatures and is thus relevant to the des
ription of real-worldphysi
s (see [5℄ for a review on this aspe
t).The theme of this paper is the N -dependen
e of stati
 for
es. Due to super-renormalizability in d = 3, the quantity analogous to p�=�MS is p�=(g2N), whi
hhas been 
al
ulated in [4℄. Its N -dependen
e is well des
ribed by a 
onstant, plus smallO(1=N2) 
orre
tions. This means that on
e two SU(N) theories have been mat
hedin the ultraviolet (as originally proposed by t'Hooft [6℄), their far infrared behaviourwill agree too; and vi
e versa, these statements holding up to O(1=N2) 
orre
tions.The low-lying spe
tra of these theories, 
ompared in units of p�, are also very simi-lar [4, 7, 8℄. The stati
 for
e F (r) gives us an independent way to 
ompare the theoriesat an adjustable distan
e s
ale.The asymptoti
 approa
h to a 
onstant for
e is of parti
ular interest, be
ause theL�us
her term [9℄, as well as the next term in the (�r2)�1 expansion [3℄, are universal.Thus by 
omparing the stati
 for
es of di�erent SU(N) gauge theories, one obtains atest of universality. By the same token, the pre-asymptoti
 di�eren
es between thesefun
tions of r inform us on the N -dependen
e of higher order string 
orre
tions, as wellas on the terms that vanish at long distan
e faster than any power of 1=r. Indeed itis widely believed [12, 13℄ that the 
ux-tube also admits massive modes, in parti
ularlongitudinal 
ompression modes. How their e�e
ts are to be disentangled when only a�nite number of terms of the asymptoti
 series are known is however not 
lear to us.What 
an we expe
t about the N -dependen
e of the higher-order 
oeÆ
ients inthe 1=r expansion of the stati
 for
e? Sin
e the latter is related by open-
losed stringduality [3℄ to the spe
trum of torelons in the theory de�ned on a spatial L�1 
ylinder,and that the spe
trum is expe
ted to have a �nite large-N limit with 1=N2 
orre
tions atall L, one would expe
t (although it is not mathemati
ally guaranteed) the 
oeÆ
ientsof the 1=r series to have a �nite large-N limit with 1=N2 
orre
tions. Note that theperturbative series in g2N , whi
h is also asymptoti
, does have this property, at least inthe low orders where the 
oeÆ
ients are 
omputed expli
itly.Powerful Monte-Carlo te
hniques were developed in [14℄ that triggered a very a
-1




urate determination of F (r) in the range 0:2fm < r < 1:2fm (throughout this paperthe `fermi' is identi�ed with 2r0, where r0 is the Sommer referen
e s
ale [15℄). Here weextend these te
hniques to address the following physi
s issues:� what is the N -dependen
e of F (r)=�? A spe
ial 
ase is the separation r = r0,where this amounts to studying the N -dependen
e of r20�;� sin
e the N -dependen
e of r20� turns out to be very weak, we then ask aboutthe N -dependen
e of the e�e
tive 
entral 
harge 
(r) � �12r3 dF (r)dr . Any e�e
tivetheory whose light degrees of freedom 
orrespond to the transverse 
u
tuations ofthe 
ux-tube predi
ts limr!1 
(r) = �24(d� 2), independently of N [10℄. Howeverthe approa
h to this asymptoti
 value does have an N -dependen
e whi
h turnsout to be substantial;� what is the dependen
e of the stati
 for
e on the 
olor representation of the
harges? Many 
on�nement models predi
t the stati
 for
e in a representation R tobe proportional to its quadrati
 Casimir CR [16, 17, 18, 19, 20℄. This question hasbeen addressed extensively (in d = 4 [21, 22, 23℄, but also in d = 3 [24, 25, 26, 27℄);our aim will be to quantify the small deviations from the `Casimir s
aling' predi
-tion.Con
erning this last point, we fo
us on the representations of two `quarks' symme-trized or antisymmetrized in 
olor in the d = 3 SU(5) theory. These are parti
ularlyinteresting, as the 
orresponding stati
 for
es are known [28℄ to be linearly 
on�ningwith a string tension larger than in the fundamental representation. Sin
e perturbationtheory predi
ts Casimir s
aling of the stati
 for
es to hold at short distan
es [29℄, andthat the string tensions have been found to be near-proportional to the smallest Casimirof the given N -ality [28, 30℄, it is a priori plausible that Casimir s
aling of the stati
for
e provides a good approximation at all separations r in the antisymmetri
 
ase. Thesituation is thus di�erent from studies in SU(2) or SU(3), where the stati
 for
e in anyrepresentation asymptoti
ally vanishes or is given by the fundamental string tension.The di�eren
e is due to the Z(N) symmetry, whi
h prote
ts the k = 2 string froms
reening on
e N � 4.Note that r20�, 
(r) and FR(r)=FF(r) (the index refers to the representation, F beingthe fundamental one) are all quantities whi
h have a 
ontinuum limit { unlike for instan
er0V (r), the stati
 potential in units of r�10 . Be
ause we are after small e�e
ts (
orre
tionsof 
(r) from �=24, deviation of FR(r)=FF(r) from CR=CF), the O(a2) dis
retization errorsneed to be at least estimated, or even better the 
ontinuum extrapolation must be 
arriedout.A

urate SU(3) data was obtained a few years ago with a multi-level algorithm ind = 3 and d = 4 [10℄ (in the latter 
ase also more re
ently in [11℄), and SU(2) datais also available in d = 3 [31, 33℄. Here we perform a d = 3 SU(5) 
al
ulation thatsupplements the existing data. We do so by generalizing the multi-level algorithm [14℄for the higher representations (see also [25℄ for the adjoint 
ase), and introdu
e a furtherlevel of fa
torization [34, 35℄ of the Polyakov loop 
orrelator from whi
h the stati
 for
eis extra
ted.The algorithmi
 and te
hni
al details are given in se
tion 2. The new stati
 for
edata for SU(5) is presented in se
tion 3.1, and the N -dependen
e of F (r) dis
ussed2



in 3.2. Se
tions 3.3 and 3.4 
on
ern the e�e
tive 
entral 
harge; in the latter the SU(5)data is 
ompared to the existing SU(2) and SU(3) data. Se
tion 4 dis
usses the ratiosof stati
 for
es and their deviations from Casimir s
aling. Our 
on
lusions are gatheredin se
tion 5. The appendix 
ontains a dis
ussion of dis
retization errors and of the
ontinuum limit.2 Latti
e simulationsIn this se
tion we des
ribe the te
hni
al details of the 
omputation. The number ofdimensions d and the number of 
olors N are still kept unspe
i�ed at this stage.2.1 A
tion and observablesWe use the standard plaquette a
tion:S = �N XplaqReTr F f1� Upg ; � = 2Na4�dg2o : (1)where Up 2 SU(N) is the ordered produ
t of links around a plaquette. The quantityTrRU is the tra
e of U in the representation R; the subs
ript R=F 
orresponds tothe fundamental representation. The size of the latti
e is Ld�1T , and the boundary
onditions for the link variables are periodi
 in all dire
tions.Our primary observable is the Polyakov loop 
orrelatorhP �R(x)PR(y)i = 1Z Z D[U ℄ P �R(x)PR(y)e�S[U ℄; D[U ℄ =Yx;� dU�(x) (2)where dU is the normalized invariant measure, Z is su
h that h1i = 1 andPR(x) = Tr RfUP (x)g; UP (x) = U0(x)U0(x+ a0̂) : : :U0(x+ (T � a)0̂): (3)The tra
e may be taken in a general representation R of SU(N). Sin
e the link variablesbelong to the fundamental representation, we relate TrRU to the tra
e in the funda-mental representation. Here are some examples for three irredu
ible representations:TrAfUg = jTr FfUgj2 � 1 (4)Tr 2afUg = 12 �(Tr FfUg)2 � Tr FfU2g� (5)Tr 2sfUg = 12 �(Tr FfUg)2 + Tr FfU2g� : (6)The representation A is the adjoint representation, 2a and 2s are the representations oftwo quarks (anti)symmetrized in 
olor. We have 
omputed the Polyakov loop 
orrelatorfor R=F, 2a and 2s. Throughout this paper the index `1', or an index omitted altogether,stands for the fundamental representation F.We now des
ribe the algorithmi
 details.3



2.2 The multi-level algorithmRather than alternating full-latti
e sweeps with measurements, the algorithm we employpro
eeds in a multi-level s
heme whi
h exploits the manifest lo
ality of the a
tion (1)to fa
torize the Polyakov loops 
orrelators into several more lo
al fun
tionals of thegauge �eld. The short distan
e 
u
tuations of the �elds may then be averaged outindependently on ea
h of these fa
tors.2.2.1 Correlator in the fundamental representationThe fa
torization whi
h yields the largest gain is the one introdu
ed by L�us
her andWeisz [14℄. In their algorithm, the two (untra
ed) Polyakov loops are sli
ed up inton0 = T=�0 segments by n0 equidistant time-sli
es. Re
all the dire
t produ
t of twomatri
es, (U 
 V )��
Æ = U��V
Æ: (7)We �rst introdu
e the one-line operatorT"s(x) = T Q�0=a�1j=0 U0(x[s℄ + aj0̂): (8)It depends only on the temporal links between time-sli
e s�0=a and (s+ 1)�0=a, time-sli
e T=a being identi�ed with time-sli
e 0. For a point x with x0 = 0, we de�nedx[s℄ = x + s�00̂, s = 0; : : : ; n0 � 1; x and y 
an of 
ourse be taken to lie in the x0 = 0time-sli
e without loss of generality. The symbol T means that the produ
t is time-ordered. Next we introdu
e a two-line operator:T#"s (x; y) = T"s(x)� 
T"s(y): (9)Re
all the produ
t of two su
h dire
t-produ
t matri
es(U 
 V ) � (U 0 
 V 0) = (UU 0)
 (V V 0); (10)and the tra
e TrfU 
 V g = Tr fUg Tr fV g: (11)The Polyakov loop operator in the fundamental representation 
an then be written asPF(x)�PF(y) = TrnT Qn0�1s=0 T#"s (x; y)o : (12)Be
ause the 
ontribution to the a
tion of a parti
ular link variable only depends onthe lo
al staples, the Boltzmann weight e�S[U ℄ also fa
torizes and one 
an writehPF(x)�PF(y)i = hTrnT Qn0�1s=0 hT#"s (x; y)isoi (13)where h:is denotes the average with the same Boltzmann weight but with �xed spatiallinks in time-sli
es s�0=a and (s + 1)�0=a. This formula is the basis of the algorithmintrodu
ed by L�us
her and Weisz [14℄.We shall exploit an additional fa
torization level [34, 35℄, by whi
h hT#"s (x; y)is 
anbe estimated as follows. Single out the dire
tion 1̂ and de
ompose the slab of volume4
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Figure 1: The geometry of slabs and blo
ks in the d = 3 
ase. The thi
k lines symbolizethe Polyakov loops, and �?n? = L.Ld�1 ��0 into n1 = L=�1 smaller blo
ks of volume �1 � Ld�2 ��0. Fig. 1 may help tovisualize the situation. We then havehT#"s (x; y)is = hT"s(x)i�sbx 
 hT"s(y)isby : (14)The blo
ks labeled by the integers bx = [x1=�1℄ and by = [y1=�1℄ must be di�erent,with x belonging to the former and y belonging to the latter. The expe
tation valueh:isb is taken with �xed spatial links in time sli
es s�0 and (s+1)�0 and also �xed linksin the set fU�(z) j z1 = bz ��1 and � 6= 1g : (15)2.2.2 Higher representationsTo in
orporate the Polyakov loop 
orrelator in higher representations in the multi-levels
heme des
ribed above, higher dire
t produ
ts must be 
omputed. We generalize Eq. 7so that, for any two 
olor tensors U and V of rank n and m, (the 
olor indi
es takingvalues 1 to N), (U 
 V )�1;:::;�n;�1;:::;�m = U�1;:::;�nV�1;:::;�m : (16)With the de�nition T""s (x; y) = T"s(x)
 T"s(y); (17)5



we 
an de�ne the N -ality 2 version of the two-line operatorT##""s (x; y) = T""s (x; x)� 
T""s (y; y); (18)whi
h has N4�N4 entries. The produ
t of two su
h obje
ts is de�ned by the property�(U 
 U 0)
 (U 00 
 U 000)� � �(V 
 V 0)
 (V 00 
 V 000)� = (UV 
 U 0V 0)
 (U 00V 00 
 U 000V 000):and multilinearity.The observables needed to 
ompute the 
orrelator in the 2a and 2s representationsmay now be expressed as P 2F(x)�P 2F(y) = Tr2i nT Qn0�1s=0 T##""s (x; y)o ; (19)Tr fUP (x)2g�Tr fUP (y)2g = Tr2ii nT Qn0�1s=0 T##""s (x; y)o ; (20)P 2F(x)�Tr fUP (y)2g = Tr2iii nT Qn0�1s=0 T##""s (x; y)o ; (21)where the tra
e operations are de�ned su
h thatTr2if(U 
 U 0)
 (V 
 V 0)g = Tr fUg Tr fU 0g Tr fV g Tr fV 0g; (22)Tr2iif(U 
 U 0)
 (V 
 V 0)g = Tr fUU 0g Tr fV V 0g; (23)Tr2iiif(U 
 U 0)
 (V 
 V 0)g = Tr fUg Tr fU 0g Tr fV V 0g: (24)For the adjoint representation, one needs the de�nitionT"##"s (x; y) = T#"s (x; x)� 
T#"s (y; y): (25)Then jPF(x)PF(y)j2 = Tr2i nT Qn0�1s=0 T"##"s (x; y)o (26)jPF(x)j2 = TrnT Qn0�1s=0 T#"s (x; x)o (27)As in going from Eq. 12 to Eq. 13, the expe
tation values of the 
orrelators 
an nowbe written in a form suitable for the implementation of the multi-level algorithm. Inthe expe
tation value of the Polyakov loop 
orrelators one may take the average valueh:is inside a slab of ea
h two-line operator appearing in Eq. 19|21, 26|27. To exploitthe fa
torization into blo
ks along the dire
tion 1̂, we evaluate the slab-averages as inEq. 14 by taking the blo
k average values of the line operators on the right-hand side ofEq. 18 and Eq. 25.It should be 
lear that the Polyakov loop 
orrelator 
an be obtained in a fa
torizedform for any desired representation. Also, the formulae presented hold for any numberof dimensions d � 2. We now turn to some pra
ti
al 
onsiderations 
on
erning theimplementation of the algorithm. 6



1. Produ
e an independent 
on�guration by doing a suÆ
ient number of hybrid over-relaxation sweeps through the whole latti
e;2. for all slabs, in in
reasing time order:3. repeat the following pro
edure ms times:4. update the slab and then, for all blo
ks:5. do mb measurements of the needed line operatorsinside the blo
k separated by an update within the blo
k6. 
ompute the two-line operators and add them to their slab averages;7. multiply the produ
t of previous two-link operators by the new one;8. 
ompute the tra
es.Table 1: Outline of the three-level algorithm.� T=a L=a n0 n1 n? nmeas r0=aA20 38 20 22 4 2 11 2536 4.03879(39)A30 38 30 22 6 2 11 2275 4.03943(35)B 44 25 26 5 2 13 1731 4.82879(58)C 54 30 30 5 3 10 1647 6.1323(11)Table 2: The d = 3 SU(5) simulation details.2.2.3 Algorithm implementation and eÆ
ien
yThe three-level algorithm des
ribed above that we applied to d = 3 SU(5) simulations isin essen
e the L�us
her-Weisz algorithm, where however the slab-averages of the two-lineoperators are 
omputed in a fa
torized way. Due to the fa
torization along the dire
-tion 1̂, we measure the Polyakov loop 
orrelator in that dire
tion only. The additionalfa
torization breaks translational invarian
e and the symmetry between dire
tions 1̂and 2̂ and thus leads to a loss of statisti
s; on the other hand the short-distan
e 
u
-tuations of the one-line operators 
an be averaged out separately. Test studies [36℄ inthe d = 3 SU(2) theory show that the three-level algorithm improves on the originalL�us
her-Weisz algorithm for r � 0:9fm, a = 0:08fm, the latter being superior at shorterdistan
es. This test 
on
erns the stati
 for
e in the fundamental representation, but inthe higher representations, and also at smaller latti
e spa
ing, we expe
t the additionalfa
torization to pay o� already at shorter distan
es. Sin
e the 
orrelation is obtained atfewer points, but ea
h of them is evaluated more a

urately, the memory requirement islowered.The algorithm pro
eeds as sket
hed in Tab. 1 (the s
ope of loops are given by theindentation of the lines). The simulation parameters are given in Tab. 2. The numbern0 of slabs and n1 of blo
ks per slab 
an be found there. Be
ause of memory limitations,we only 
omputed the line-operators every se
ond or third point in the 2̂ dire
tion. Thenumber n? in Tab. 2 is the number of transverse 
oordinates at whi
h the line-operators7



were 
omputed. We measured the 
orrelation from distan
e 2a to 10a in all simulations;hen
e nr = 9. And in all simulations ms = 20 and mb = 60 (see Tab. 1 for the meaningof these parameters). We did not use the multihit te
hnique [37℄, be
ause for the higherrepresentations it in
reases the number of two-line operator multipli
ations, whi
h areexpensive at large N . Finally, the total number of update sweeps between measurementsis 60. They are grouped in 
ompound sweeps 
onsisting of one heat-bath followed bythree over-relaxation sweeps [39, 40, 41℄. This proved suÆ
ient to de
orrelate almostentirely su

essive measurements of the observables and still represents a negligible over-head with respe
t to the measurements. To update the slabs we used three 
ompoundsweeps, and only one between line-operator measurements inside the blo
ks.The program goes from slab to slab in a time-ordered way. It is in order to savememory that ea
h measurement of the two-line operator slab-averages is followed bytheir multipli
ation with the produ
t of the pre
eding slab-averages. In this way, theprogram only needs enough memory for two �elds of the sizen1 � n? � nr � size(T):The two-line operator (18) 
ontains N8 
omplex numbers. Hen
e we rea
h the require-ment � 4 � 108 32-bit 
oating numbers for simulation C.For a given separation r, we 
orrelate the line operators as far as possible from theboundaries. That is, for the 
orrelator at a separation of 2na, we 
orrelate the lineoperators 
omputed at x1 = �1 � na with those 
omputed at x1 = �1 + na (and allequivalent points by translation of distan
e �1 in the dire
tion 1̂). For a separation of(2n + 1)a, we average the 
orrelation obtained at (�1 � na;�1 + (n + 1)a) with thatobtained at (�1 � (n+ 1)a;�1+ na).We introdu
e the notation�R(r) = hP �R(x)PR(x+ r1̂)i (28)for the on-axis Polyakov loop 
orrelator. Tab. 3 gives these 
orrelators in the fundamen-tal, as well as in the N -ality 2 representations 2a and 2s in simulation B. It turns outthat these measurements in the di�erent representations are quite strongly 
orrelatedat short distan
es (and essentially un
orrelated beyond r = r0), so that it will be ad-vantageous to take the ratio of stati
 for
es measured in the same simulation. With thetuning of the algorithm used, we are able to maintain a signal to noise ratio below 1%beyond 1fm in the fundamental representation and beyond 0.7fm in the 2a representa-tion. The performan
e (and memory requirements) of the algorithm behave favourablyif the time extent is in
reased, as a 
omparison of the data from simulations A20 andA30 will reveal.To give an idea of the 
omputing e�ort involved, one full measurement in simulationB took 1.7 hour on a single 2.4GHz Opteron with 4GB of memory, while the 60 full-latti
e sweeps between ea
h of these full measurements took 61 se
onds.The statisti
al errors are estimated with the Gamma method [42℄. Simulation Cwas run with 8 repli
a (= independent simulations) and the others with 4 repli
a; we
he
ked in all 
ases that the results are 
onsistent a
ross repli
a. We also found thatusing the ja
knife method gave error estimates in agreement with the Gamma method,whi
h is hardly surprising sin
e the su

essive measurements were very de
orrelated inthese runs. 8



3 The stati
 for
e in the fundamental representationIn this se
tion we present our data on the stati
 for
e. It is found that the quantity r20�has very small dis
retization errors. By 
omparison with the SU(3) data of L�us
her andWeisz [10℄ and the SU(2) data of Majumdar [31℄ (see also [33℄), we �nd that it is alsovery weakly dependent on the number of 
olors N . We then 
ompare the N = 2; 3; 5results for the e�e
tive 
entral 
harge at �xed value of r0.3.1 The SU(5) stati
 for
eThe stati
 for
e is de�ned at �nite latti
e spa
ing byFR(�r) = 1a [VR(r + a)� VR(r)℄; VR(r) = � 1T log �R(r): (29)We reuse the tree-level improved argument �r = r+a=2+O(a2) of the fun
tion FR givenin [10℄. The fundamental stati
 for
e obtained in simulation B 
an be found in Tab. 4.The referen
e s
ale r0=a given in Tab. 2 is obtained in the standard manner [15℄, bylinearly interpolating (r=a)2 as a fun
tion of r2F (r) to the abs
issa 1.65.To a �rst approximation, the for
e is 
onstant beyond 0.75fm, signalling linear 
on-�nement. To investigate this in more detail, we �nd it useful to de�ne the quantity�(r) = F (r)� �24r2 : (30)If the L�us
her term does provide the leading asymptoti
 
orre
tion to the linear poten-tial [9℄, then this quantity deserves the name of e�e
tive string tension and the notationis appropriate. Note that by de�nition,r20�(r0) = 1:65� �24 = 1:519100 : : : (31)at all latti
e spa
ings. In parti
ular, dis
retization errors on r20�(r) are automati
allyredu
ed around separation r = r0.The fun
tion r20�(r) is plotted in Fig. 2 for all data sets. The pra
ti
al advantage of
onsidering this fun
tion is that it is very 
at beyond 0.4fm (note the s
ale of the verti
alaxis); in this way, the data 
an be visualized in more detail. We �rstly remark that thedata A20 and A30 agree within error bars at all separations; the 
ommon abs
issa ofthese data points have been split symmetri
ally for better visibility. This indi
ates thatthe time extent T � 5r0 is suÆ
ient to `�lter out' the ground state of the transfer matrixin the presen
e of the two Polyakov loops [10℄ separated by r � 2r0; the statement holdsof 
ourse at the pre
ision to whi
h we have been able to 
ompute the stati
 for
e.Se
ondly, the s
aling violations of r20�(r) are at the few permille level (or less) aroundr = 1:4r0. To 
arry out a 
ontinuum extrapolation, we need to interpolate r20F (xr0) to afew �xed values of x. This is done by a linear interpolation in 1=x2 (in [10℄ a three-pointinterpolation in 1=x2 was used). The result is given for ea
h simulation in Tab. 6. Itturns out that extrapolating these quantities to the 
ontinuum with the expe
ted O(a2)
orre
tions [43℄ yields poor �2 values (see Fig. 8). Therefore we extrapolate the datafrom the two smaller latti
e spa
ings linearly in (a=r0)2, and use a quadrati
 �t to allthree latti
e spa
ings to estimate the un
ertainty asso
iated with the linear �t; we referthe reader to the appendix for more details. At least one additional simulation at a9
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tive string tension in units of r�20 . By interpolation all datago through the 
ross (by de�nition of r0).latti
e spa
ing of a � 0:1r0 is required to take the 
ontinuum limit in a way that doesnot blow up the �nal un
ertainty.Finally, we did not investigate �nite-volume e�e
ts, but sin
e 2:45fm < L < 2:72fmin these simulations, we do not expe
t them to a�e
t our 
on
lusions.3.2 The quantity �r20 for all NIn 
omparing SU(N) gauge theories, perhaps the most natural way to set the 
ommonenergy s
ale is by equating their (fundamental) string tensions �. This quantity ishowever more diÆ
ult to 
ompute with high pre
ision than r0, be
ause it involves anextrapolation to in�nite string length [15℄. For that reason, we are now going to showthat the dimensionless quantity r20� is N -independent to a pre
ision better than 1%.As a 
onsequen
e, 
omparing SU(N) gauge theories at �xed value of r0 is essentiallyequivalent to �xing the value of �.We 
an extra
t the e�e
tive string tension at 1fm straightforwardly. A dire
t 
om-parison of our data with the SU(3) data of L�us
her and Weisz at the same latti
e spa
inga = 0:207r0 gives r20�(2r0) = 1:5124(65); SU(5); � = 44; (32)r20�(2r0) = 1:51776(24); SU(3); � = 15: (33)Interestingly, the string tension has also been 
omputed in the 
losed string 
hannel byTeper [4℄ at these values of �. Using the values of r0 quoted above, we haveSU(5) : r20 �
losed = 1:521(8) (34)SU(3) : r20 �
losed = 1:520(14): (35)10
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tive 
entral 
harge at several latti
e spa
ings. The perturbativepredi
tion is shown at short distan
e, and the horizontal line marks the value �24 .The string tension quoted by Teper is also an e�e
tive string tension (as de�ned bym(L) = �(L)L� �6L), but at a 
losed string length of 3:3r0, where higher order string
orre
tions are presumably mu
h redu
ed. In the SU(3) 
ase an additional 
al
ulation ofhis at string length of 5:0r0 yielded the same string tension (and a

ura
y). We 
on
ludethat the 
losed string tension extra
ted from torelon masses agrees with the open stringtension extra
ted from the stati
 for
e at 1fm at a pre
ision of 1%.Majumdar [31℄ reports almost identi
al values of r20� in the SU(2) theory at latti
espa
ings a � 0:16r0. In parti
ular, a 
omparison between SU(2) and SU(3) 
loser to the
ontinuum yieldsr20�(2r0) = 1:523(2) SU(2); � = 7:5; r0 = 6:29a (36)r20�(2r0) = 1:51999(34) SU(3); � = 20; r0 = 6:71a: (37)Cuto� e�e
ts on r20� are thus seen to lie well below the per
ent level. Assuming thatno strong N -dependen
e appears beyond N = 5 (the 
ontrary would be very surprisingin view of the results obtained in [4℄), we rea
h the following remarkable 
on
lusion:r20� = 1:52 � (1� 1%) 8N � 2; a � 0:21r0: (38)In parti
ular, � = �(r0) � (1� 1%) 8N � 2 (39)holds in the 
ontinuum limit (see also Fig. 8).3.3 The e�e
tive 
entral 
hargeThe e�e
tive 
entral 
harge is de�ned by
(~r) = �12 ~r3[V (r � a)� 2V (r) + V (r + a)℄=a2; (40)11



where ~r = r+O(a2) is de�ned in [10℄. Fig. 3 shows the 
omputed e�e
tive 
entral 
harge
(r) in the range of distan
es 0.25 to 0.75fm. A pre
o
ious 
onvergen
e to values within5% of �24 is observed.By eye, the data at � = 44 and � = 54 pra
ti
ally fall on top of ea
h other up to0.6fm, indi
ating that dis
retization errors are reasonably small. Beyond that point,the � = 54 data's a

ura
y no longer allows for a useful 
omparison. The data pointsobtained at the 
oarsest latti
e spa
ing systemati
ally lie slightly above the other points.This e�e
t was already seen in SU(2) and SU(3) 
al
ulations. Also, the data sets A20and A30 are well 
ompatible, indi
ating that the time extent was 
hosen long enoughfor the present statisti
al a

ura
y.The expe
ted behaviour at short distan
es, as given by two-loop perturbation the-ory [29℄, is shown on the �gure, as well as the universal value �24 expe
ted at long dis-tan
es. The 
ontinuum value of g2r0, whi
h determines the slope of the short-distan
epredi
tion, was estimated by extrapolating the value of g2or0 of simulations B and Clinearly in g2oa. Using the 
ontinuum value of p�=g2 of [4℄ and Eq. 38 yields a slopesmaller by 2%; the di�eren
e would hardly be noti
eable on Fig. 3.In view of taking the 
ontinuum limit, we interpolate 
(xr0) to a handful of valuesof x. We use a three-point polynomial interpolation in 1=x (following [10℄); the resultis given in Tab. 7. The 
ontinuum limit is des
ribed in the appendix, where also analternative de�nition of the e�e
tive 
entral 
harge is proposed and shown to lead tothe same 
ontinuum results (Fig. 8).3.4 The e�e
tive 
entral 
harge for all NIt is now interesting to 
ompare the e�e
tive 
entral 
harge 
urves obtained for N = 2; 3and 5. If we attempted to 
ompare the data in the 
ontinuum limit, the 
ontinuumextrapolation would lead to the dominant sour
e of un
ertainty, be
ause only threelatti
e spa
ings are available at ea
h N . Also, the data at the 
oarsest latti
e spa
ing inthe SU(3) and SU(5) data sets are not (always) 
onsistent with O(a2) 
orre
tions. Forthat reason we prefer to 
ompare the data sets at the smallest 
ommon latti
e spa
ing.This 
orresponds to � = 7:5; 20 and 54 for N = 2; 3 and 5 respe
tively. The values ofr0=a, 6.29, 6.71 and 6.13 respe
tively, indeed are mat
hed at the 10% level.The 
omparison is illustrated on Fig. 4. At short distan
es, the 
urves are expe
ted todi�er by O(1=N2) from perturbation theory and the s
aling of g2Nr0. This is indi
atedby the straight solid lines whi
h stop short at 0:4r0 around where perturbation theory
eases to be a

urate. Remarkably, all three 
urves seem to approa
h the value of �24at larger distan
es. This fa
t 
onstitutes strong eviden
e for the universality of thestring 
orre
tion in d = 3 SU(N) gauge theories. On the other hand, the approa
hto the asymptoti
 value is surprisingly pre
o
ious. The numeri
al 
loseness of 
(r)to �24 is probably de
eptive, in so far that it suggests that any higher order string
orre
tions are already very small below 1fm. The leading 
orre
tion term is O(1=�r2),and its 
oeÆ
ient is universal and positive in the e�e
tive theory des
ribing the masslesstransverse 
u
tuations of the 
ux-tube [10℄. The Nambu-Goto string in a non-
riti
alnumber of dimensions 
orresponds to a spe
ial 
ase in this 
lass of theories; it provides a
onsistent analyti
 predi
tion for the r� T Polyakov loop 
orrelator to any �nite order12
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tive 
entral 
harge for several gauge groups. The SU(3) data is takenfrom [10℄, the SU(2) data from [32℄. The perturbative predi
tion is shown at shortdistan
e (the slope in
reases slightly with N) and the Nambu-Goto predi
tion at longdistan
es, while the horizontal line marks the value �24 .in 1=r or 1=T [10℄. It predi
ts an e�e
tive 
entral 
harge [44℄ of the form
(NG)(r) = �24 �1� �12�r2��3=2 ; (41)shown for illustration in the upper right 
orner of Fig. 4. It suggests that the e�e
tivestring theory be
omes a

urate at signi�
antly larger distan
es. To summarize, sin
e
(r) < �24 at short distan
es; sin
e the 1=r series for 
(r) at large distan
es is almost
ertainly asymptoti
; and sin
e the O(1=�r2) term is positive, this term improves onthe leading order predi
tion at the earliest when the e�e
tive 
entral 
harge 
omputedin the gauge theory rises above the value �24 .The pre
eding arguments thus motivate the de�nition of the distan
e rs where thee�e
tive 
entral 
harge 
rosses �24 : 
(rs) � �24 : (42)This distan
e is a natural separation s
ale between the perturbative regime and the stringregime. The ratio rs=r0 is expe
ted to have a 
ontinuum limit with O(a2) dis
retizationerrors, and at �nite latti
e spa
ing an interpolation formula must be pres
ribed to de�neit. In general we propose to use a three-point polynomial interpolation in r using thethree nearest data points, be
ause 
(r) has quite some 
urvature around rs.Fig. 4 shows quite strikingly that as the number of 
olors is in
reased, the 
urve 
(r)interpolates over an even shorter distan
e range between the perturbative behaviour andthe value �24 . We therefore study the N -dependen
e of rs=r0. To do so we shall presentlyuse a simple linear interpolation between the two nearest points to the 
rossing, be
ause13
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Figure 5: The dependen
e of rs=r0 on the number of 
olors N . The SU(3) data is takenfrom [10℄, the SU(2) data from [32℄.the SU(2) and SU(5) data rapidly be
ome less a

urate beyond the 
rossing. Lu
kily inall three 
ases there is a point lying almost exa
tly at �24 , whi
h makes the details of theinterpolation a negligible sour
e of un
ertainty. In order to have the same dis
retizations
heme for all data sets, we repla
ed r by ~r in the SU(2) values of the e�e
tive 
entral
harge [31, 32℄. We thus �nd: rsr0 = 8><>: 1:79(5) N = 21:32(5) N = 30:96(2) N = 5 (43)The smaller un
ertainty at SU(5) re
e
ts the fa
t that 
(r) 
uts the horizontal �24 line ata shorter distan
e and with a larger slope than for SU(2) and SU(3). At N = 5; � = 44we obtain rs=r0 = 0:977(11), in agreement with (43). The trend that rs=r0 stronglyde
reases with the number of 
olors is quite striking and 
onstitutes a rare example ofa physi
al quantity in SU(N) gauge theories whi
h has a strong N -dependen
e. Thisdependen
e is shown on Fig. 5. The data is well 
ompatible with a linear fun
tionin 1=N : rsr0 = 0:402(45)+ 2:80(20) 1N (�2=d:o:f ' 0:01): (44)Could it be that rs be
omes as small as 0.2fm in the large-N limit? An SU(8) 
al
ulationwould provide a useful 
lue to answer the question. In the mean time, we 
an 
omparethe value to two other distan
e s
ales whi
h are natural in this 
ontext. The �rst 
omesfrom the Arvis formula, Eq. 41. The latter be
omes singular at a distan
e ra given byrar0 = r �12� 1r0 = 0:415(4): (45)14
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Figure 6: Relative deviation of the for
e ratios FR=FF from Casimir s
aling in the SU(5)gauge theory. The points above and below zero 
orrespond to the representations R=2aand R=2s respe
tively.where we have used Eq. 38. It is intriguing that the naively obtained value rs(N =1)is 
ompatible with ra. Se
ondly, the dotted line on Fig. 4 is the 
ontinuation of the
urve 
orresponding to the perturbative two-loop result [29℄ in the large-N limit (usinglimN!1p�=g2N = 0:1975(10) from [4℄ and Eq. 38). It 
uts �24 at distan
e rpt given byrptr0 = 0:527(4): (46)The rise of 
(r) up to and beyond �24 , whi
h be
omes more rapid as N is in
reased,
ould be a sign that the asymptoti
 series in (�r2)�1 provided by the e�e
tive stringtheory 
onverges better at a given value of p�r if the number of 
olors is in
reased.This is not un
on
eivable, be
ause 
ertain e�e
ts su
h as the radiation of glueballs by ahighly ex
ited string, whi
h exist in the gauge theory but are negle
ted in the e�e
tivestring theory, are 1=N2 suppressed.4 What is the size of Casimir s
aling violations?We now address this question in the 
ase of the two smallest irredu
ible representations ofSU(5) of N -ality 2. These are obtained by taking the dire
t produ
t of two fundamental
harges and forming the (anti)symmetri
 linear 
ombinations, as in Eq. 5 and 6. Wedis
uss the ratio of these for
es to the for
e in the fundamental representation. Notethat, unlike the ratio of stati
 potentials, this quantity has a 
ontinuum limit.The Casimir s
aling predi
tion is, in a range of distan
es rmin < r < rmax,F2a(r)F1(r) CS= C2aC1 = 2(N � 2)N � 1 ����N=5 = 32 : (47)15



F2s(r)F1(r) CS= C2sC1 = 2(N + 2)N + 1 ����N=5 = 73 : (48)Perturbation theory predi
ts [29℄FR(r) = CRg22�r h1 + 732g2Nr+O((g2Nr)2)i : (49)In parti
ular, Casimir s
aling of stati
 for
es holds at least to order g4.The result for the ratio of stati
 for
es obtained in simulation B is given in Tab. 4.Fig. 6 shows the Monte-Carlo data on the relative deviations of F2a=F1 from Casimirs
aling in the SU(5) latti
e gauge theory. The window in r is 0.2|0.7fm. Noti
e thes
ale of the verti
al axis: the (2a) data points indi
ate a positive relative deviation whi
hgrows from about 0.001 to 0.01 in that range of distan
es. The (2s) data on the otherhand shows a stronger, negative deviation. This is expe
ted, sin
e the stati
 
harges inthis representation 
an be s
reened to (2a). The for
e between 
harges in the adjointrepresentation, whi
h 
an be s
reened 
ompletely, also exhibits this behaviour [25℄. Apositive deviation is thus rather spe
ial. It will remain positive at larger distan
es if thek = 2 string tension is larger than C2a=C1 ��, or if it is given exa
tly by that expressionand its 
entral 
harge by �24 .Beyond r0, we are perhaps seeing the e�e
ts of �nite time extent: there is a 1.9�dis
repan
y between the third (2a) data points of simulations A20 and A30 on Fig. 6. Ifpresent, this e�e
t 
omes from F2a, be
ause the quantity r20F1(r) is perfe
tly 
onsistentbetween A20 and A30 (see Tab. 6).It is 
lear from Fig. 6 that the (absolute) dis
retization errors are bounded by 0.001.The for
e ratio F2a=F1 at distan
e xr0 has been interpolated to a few values of x inTab. 10. The two-parameter fun
tion f(x) = px2=(x2 + q2) was used to interpolatethe quantity plotted on Fig. 6, but the result never a
tually di�ers by more than onestandard deviation from a simple linear interpolation in x. Tab. 10 also gives the resultof a 
ontinuum extrapolation performed along the same lines as for r20F1(r).Sin
e there is a stable string in the N -ality 2 se
tor, it makes sense to 
onsider thee�e
tive 
entral 
harge in the 2a representation; Fig. 7 shows our data on 
2a(r). Atshort distan
es, it is roughly a fa
tor 3/2 larger than in the fundamental representation,as predi
ted by perturbation theory. The 
urve seems to 
atten o�, as it does in thefundamental representation, but the data does not extend far enough to show whetherit will bend down towards �24 , as we expe
t it to [45℄. It was observed [30℄ in 
losedk = 2 SU(8) strings that 
2a < �2a�1 
1.4.1 Mixed representation 
orrelatorsIt is interesting to look at the 
ross 
orrelation hP2a(x)�P2s(x+ r1̂)i. There is no sym-metry whi
h makes this 
orrelator vanish. However we �nd that it is 
onsistent withzero. For instan
e, the `overlap' hP2a(x)�P2s(x+ r1̂)ip�2a(r)�2s(r)16
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Figure 7: The SU(5) e�e
tive 
entral 
harge in the 2a representation. The perturbativepredi
tion is shown at short distan
e and the Nambu-Goto predi
tion at long distan
e.The horizontal line marks the value �24 .is 
onsistent with zero in simulation B with a statisti
al un
ertainty of 5 � 10�5, 3 � 10�4and 4 � 10�3 at distan
es r = 2a; 3a and 4a respe
tively. Sin
ehP2a(x)�P2s(y)i = 14 �h(Tr fU�P g)2(x) (Tr fUP g)2(y)i � hTr fU2P g�(x) Tr fU2P g(y)i� ;the statement that the 
ross 
orrelation vanishes is equivalent to the property that thetwo 
orrelators on the RHS of this equation are equal.The interpretation that we propose is based on the observation that the dire
t pro-du
t of the representations (2a)� and 2s does not 
ontain the singlet representation(though it does 
ontain the adjoint representation). Therefore if we imagine insertingthe stati
 parti
les adiabati
ally into the system, they initially have an overall 
olor
harge. The only way the free energy 
an be made �nite is if virtual adjoint 
hargess
reen the system. Sin
e the external 
olor 
harge obje
t is extended, it presumably
osts a large amount of energy to s
reen it. In addition, statisti
ally speaking the 
olorof the virtual adjoint 
harge must mat
h that of the stati
 system, whi
h happens witha probability of order 1=N2. Thus one expe
ts the overlap to be 1=N2 
olor-phase-spa
e suppressed [28℄. All this results in a very small 
ross-
orrelation of the Polyakovloops. This large-N argument was already made in [30℄ to explain the fa
t that in
losed k-string 
omputations [28, 30℄, the wavefun
tion of the lightest state is very wellapproximated by a (fuzzy) Polyakov loop in the totally antisymmetri
 representation ofN -ality k. 17



5 Con
lusionWe 
omputed the stati
 for
e in the d = 3 SU(5) gauge theory employing an eÆ
ientthree-level algorithm. Linear 
on�nement is observed, and the e�e
tive string tensionde�ned in Eq. 30 is essentially 
onstant beyond 0.5fm. The string tension extra
ted at1fm agrees with the 
losed string tension extra
ted from torelon spe
tros
opy [4℄.By 
omparison with existing SU(2) [31, 33℄ and SU(3) [10℄ data, the quantity �r20 isfound to be independent of the number of 
olors at the 1% level; it also has very smalldis
retization errors. Thus 
omparing SU(N) gauge theories at 
ommon string tensionor 
ommon Sommer referen
e s
ale is equivalent at that level of pre
ision.The e�e
tive 
entral 
harge 
(r) was obtained in the range 0.25|0.75fm. It 
onvergesto within 5% of the expe
ted asymptoti
 value of �24 , 
on�rming the multipli
ity andthe bosoni
 nature of the 
ux-tube's massless degrees of freedom. A 
omparison withthe SU(2) and SU(3) data reveals that the distan
e rs where 
(r) 
rosses the value �24de
reases steadily by almost a fa
tor two from SU(2) to SU(5). Sin
e (bosoni
) e�e
tivestring theory predi
ts that the asymptoti
 value is approa
hed from above [3℄, it istempting to spe
ulate that the asymptoti
 expansion's a

ura
y is higher at a �xedvalue of p�r for larger N .We also studied the stati
 for
e in the symmetrized (2s) and antisymmetrized (2a)dire
t produ
t representations of two `quarks'. For N � 4, it is known [28℄ that su
hstati
 
harges of N -ality 2 are linearly 
on�ned with a di�erent string tension fromthe fundamental one. And indeed we �nd that the ratio F2a=F1 is 
onstant to a �rstapproximation, 
on�rming the linear 
on�nement property. Furthermore, it is very 
loseto the Casimir s
aling predi
tion (3/2 in this 
ase). A more detailed study reveals thatdeviations are present at the 0:1% to 1% level in the range 0.2|0.7fm. They are positive,unlike the 
ase of the adjoint stati
 for
e [25℄ where s
reening of the adjoint 
ux mustset in at some distan
e r. The 2s representation on the other hand exhibits a negativedeviation, as one expe
ts if there is a single stable string per N -ality and s
reeningo

urs.Sin
e the representation 2a has N -ality 2 and has the smallest quadrati
 Casimir ofall irredu
ible representations in that se
tor, one might expe
t to �nd again a pre
o
iousonset of the e�e
tive 
entral 
harge 
2a(r) for the k = 2 string. This is not the 
ase: atr = r0, where 
(r) lies within a few per
ent of �24 , 
2a(r) is almost as large as 32 � �24 .Data at further distan
es is needed to see whether it de
reases towards �24 .A
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Appendix: dis
retization errors and the 
ontinuum limitThe quantity r20F (r) has been extrapolated linearly in (a=r0)2 to the 
ontinuum, usingthe data from simulations B and C. This is our best estimate in the 
ontinuum limitand it 
an be found in Tab. 6. The �rst number in bra
kets is the statisti
al error onthe result (there is no �2). To estimate the systemati
 un
ertainty on this pro
edure,we also do a quadrati
 �t in (a=r0)2 to simulations A30, B and C (again, there is no�2). The se
ond number given in bra
kets is the 
ontinuum value obtained by quadrati
extrapolation minus the quoted 
ontinuum result. Thus a 
onservative error estimateis the maximum of the absolute value of the two numbers in bra
kets. The 
ontinuumlimit is illustrated for r20�(r), whi
h is equivalent to r20F (r) for this purpose, on Fig. 8.We pro
eeded in the same way for F2a(r)=F1(r) (Tab. 10). For the e�e
tive 
entral
harge, we also give the 
ontinuum 
(r) obtained in this way in Tab. 7. Re
all that thede�nition of Ref. [10℄ was used to de�ne 
(r) at �nite latti
e spa
ing. We now show thata di�erent de�nition gives the same result in the 
ontinuum limit.We propose to determine the parameters a2~�(r); a~�(r) and ~
(r) by~
(r) = �r(r � a)(r+ a)2a2 (V (r � a)� 2V (r) + V (r + a)) (50)a2~�(r) = 12(r� a) V (r � a)� r V (r) + 12(r + a) V (r+ a) (51)a~�(r) = �(r � a)(r + a2)a V (r � a) + 2r2a V (r)� (r + a)(r� a2)a V (r+ a): (52)This new de�nition is su
h that if the on-axis latti
e Polyakov loop 
orrelator was givenby e�V0(r)T ; V0(r) = �+ �r� 
r ; (53)then the e�e
tive parameters mat
h those appearing in V0(r) exa
tly. Note that thefun
tions 
 and ~
 di�er only by O(a2) terms, and that ~
(r) is simply a fa
tor (1�(a=r)2)times the `naive' de�nition of the e�e
tive 
entral 
harge used in [31℄. And indeed,
omparing Tab. 8 to Tab. 7, we �nd that ~
(r) is 
ompatible with 
(r) in the 
ontinuumlimit, as it should be; see Fig. 8 for an illustration. This 
onsisten
y-
he
k is also a testof our error analysis.
19
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r=a �1(r) �2a(r) �2s(r)2 7:4136(20) � 10�4 2:00130(80) � 10�5 5:1040(32) � 10�83 8:6971(40) � 10�5 8:0083(57) � 10�7 3:5219(40) � 10�104 1:29486(95) � 10�5 4:5651(52) � 10�8 4:332(24) � 10�125 2:1498(22) � 10�6 3:0544(48) � 10�8 5:41(93) � 10�146 3:7784(53) � 10�7 2:2198(54) � 10�10 {7 6:862(12) � 10�8 1:676(10) � 10�11 {8 1:2705(31) � 10�8 1:317(74) � 10�12 {9 2:3909(81) � 10�9 1:36(38) � 10�13 {10 4:553(37) � 10�10 { {Table 3: The raw data of simulation B.�r=a a2F1(�r) F2a(�r)=F1(�r) F2s(�r)=F1(�r)2.379 0.0857165(97) 1.501928(46) 2.32216(20)3.407 0.076183(12) 1.504059(99) 2.3092(28)4.432 0.071825(15) 1.50613(20) 2.424(95)5.448 0.069546(18) 1.50793(71) {6.458 0.068237(23) 1.5144(33) {7.464 0.067463(39) 1.507(33) {8.469 0.066812(67) { {9.473 0.06634(25) { {Table 4: The stati
 for
es in simulation B.~r=a 
1(~r) 
2a(~r) 
2s(~r)2.808 0.105535(54) 0.15671(10) 0.2560(23)3.838 0.12320(31) 0.18110(61) {4.875 0.13202(48) 0.1916(28) {5.902 0.1346(21) 0.158(24) {6.920 0.1283(45) { {7.932 0.162(16) { {Table 5: The e�e
tive 
entral 
harges in simulation B.23



r=r0 A20 A30 B C 
ont.0.50 { { 1.98604(28) 1.97861(46) |0.65 1.81564(22) 1.81552(18) 1.81409(28) 1.81380(35) 1.8133(10)(20)0.80 1.72229(22) 1.72211(18) 1.72119(15) 1.72108(30) 1.7209(8)(14)0.95 1.664406(60) 1.664354(48) 1.664300(52) 1.66417(12) 1.6640(3)(-2)1.00 1.65 1.65 1.65 1.65 1.651.05 1.637603(52) 1.637647(41) 1.637694(45) 1.63780(10) 1.6380(3)(1)1.20 1.60865(24) 1.60849(16) 1.60934(19) 1.61001(44) 1.6111(12)(-2)1.35 1.58855(46) 1.58815(30) 1.58977(47) 1.5890(11) 1.5877(29)(-45)1.50 1.57272(81) 1.57386(65) 1.57638(76) 1.5686(32) 1.556(9)(-20)1.65 1.5615(18) 1.5635(19) 1.5647(10) { {1.80 1.5536(47) 1.5558(55) 1.5551(23) { {2.00 1.562(13) 1.548(32) 1.5451(65) { {Table 6: The quantity r20F (r) interpolated, and its 
ontinuum limit (details in the App.).r=r0 A20 A30 B C 
ont.0.458 { { { 0.090714(40) {0.65 0.11028(74) 0.11141(56) 0.11284(27) 0.11163(19) 0.1096(7)(-50)0.80 0.12573(64) 0.12484(50) 0.12348(31) 0.12202(28) 0.1196(9)(-5)0.95 0.13282(56) 0.13235(44) 0.13006(36) 0.1304(10) 0.131(3)(5)1.00 0.13424(57) 0.13412(42) 0.13172(46) 0.1314(11) 0.131(3)(4)1.05 0.13534(71) 0.13564(48) 0.13279(44) 0.1315(12) 0.129(3)(2)1.20 0.1374(15) 0.1390(10) 0.1344(19) 0.1362(31) 0.139(8)(12)Table 7: The e�e
tive 
entral 
harge 
(r) interpolated, and its 
ontinuum limit.r=r0 A20 A30 B C 
ont.0.458 { { { 0.098331(44) {0.65 0.1105(19) 0.1135(15) 0.11787(15) 0.11611(21) 0.1132(6)(-114)0.80 0.13196(48) 0.13130(37) 0.12939(35) 0.12533(27) 0.1187(9)(-48)0.95 0.13995(64) 0.13921(51) 0.13491(33) 0.13260(92) 0.129(2)(3)1.00 0.14117(58) 0.14074(46) 0.13606(42) 0.1340(11) 0.131(3)(4)1.05 0.14194(62) 0.14190(45) 0.13690(45) 0.1339(12) 0.1289(32)(7)1.20 0.1425(14) 0.14393(92) 0.1375(16) 0.1367(27) 0.135(7)(6)Table 8: The e�e
tive 
entral 
harge ~
(r) interpolated, and its 
ontinuum limit.24



r=r0 B C0.458 { 0.135447(60)0.65 0.16725(88) 0.16486(32)0.80 0.18146(60) 0.17752(69)0.95 0.1894(20) 0.1849(30)1.00 0.1912(27) 0.1860(54)1.05 0.1868(38) 0.186(12)1.20 0.162(21) 0.135(54)Table 9: The quantity 
2a(r) interpolated.r=r0 A20 A30 B C 
ont.0.50 { { 1.324(31) 1.130(39) {0.65 2.434(65) 2.567(50) 2.279(50) 2.087(48) 1.77(15)(13)0.80 3.59(15) 3.693(97) 3.317(66) 3.32(12) 3.3(3)(7)0.95 5.09(36) 4.01(61) 4.28(15) 4.80(21) 5.7(6)(6)1.00 5.66(67) 3.94(81) 4.57(21) 5.35(29) 6.6(8)(4)1.05 6.25(84) 3.87(97) 4.86(30) 5.92(43) {1.20 { 8.5(3.2) 6.57(59) 7.0(2.2) {Table 10: The quantity 103 � (23F2a(r)=F1(r)� 1) interpolated, and its 
ontinuum limit.r=r0 B C0.50 -4.943(88) -4.55(10)0.65 -8.68(69) -8.73(57)Table 11: The quantity 103 � (37F2s(r)=F1(r)� 1) interpolated.25
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