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tRe
ently exa
t results for the 
omplete ele
troweak two-loop 
ontributions to thee�e
tive weak mixing angle were published. This paper illustrates the te
hniques usedfor this 
omputation, in parti
ular the methods for evaluating the loop diagrams andthe proper de�nition of Z-pole observables at next-to-next-to-leading order. Numeri
alresults are presented in terms of simple parametrization formulae and 
ompared in de-tail with a previous result of an expansion up to next-to-leading order in the top-quarkmass. Finally, an estimate of the remaining theoreti
al un
ertainties from unknownhigher-order 
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1 Introdu
tionOne of the most important quantities for testing the Standard Model or its extensions is thesine of the e�e
tive leptoni
 weak mixing angle sin2 �lepte� . In the global �t of the StandardModel to all relevant ele
troweak data, the e�e
tive leptoni
 weak mixing angle has a strongimpa
t on indire
t 
onstraints on MH. It 
an be de�ned through the e�e
tive ve
tor andaxial-ve
tor 
ouplings, vl and al, of the Z boson to leptons (l) at the Z boson pole. Writingthe Z boson-lepton vertex as �[Zl+l�℄ = i l
�(vl + al
5)l Z�, one obtainssin2 �lepte� = 14 �1 + Re vlal� : (1)Experimentally, sin2 �lepte� is derived from various asymmetries measured around the Z bosonpeak at e+e� 
olliders after subtra
tion of QED e�e
ts. It 
an also be determined fromasymmetries measured at 
enter-of-mass energies away from the Z pole, requiring a theoret-i
al extrapolation in order to mat
h it to sin2 �lepte� on the Z pole. The 
urrent experimentala

ura
y, sin2 �lepte� = 0:23147� 0:00017 [1℄, 
ould be improved by an order of magnitude ata future high-luminosity linear 
ollider running in a low-energy mode at the Z boson pole(GigaZ) [2℄. This o�ers the prospe
t for highly sensitive tests of the ele
troweak theory [3℄,provided that the a

ura
y of the theoreti
al predi
tion mat
hes the experimental pre
ision.Typi
ally, the theoreti
al predi
tion of sin2 �lepte� within the Standard Model is given interms of the following input parameters: the �ne stru
ture 
onstant �, the Fermi 
onstantG�,the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever theyare numeri
ally relevant). The W -boson mass MW is 
al
ulated from the Fermi 
onstant,whi
h is pre
isely derived from the muon de
ay lifetime. As a 
onsequen
e, the 
omputationof sin2 �lepte� involves two major parts: the radiative 
orre
tions to the relation between G� andMW, and the 
orre
tions to the Z-lepton vertex form fa
tors. The latter 
an be in
orporatedinto the quantity � = 1 +��, de�ned in the on-shell s
heme,sin2 �lepte� = �1�M2W=M2Z� (1 + ��) ; (2)At tree-level, �� = 0 and the sine of the e�e
tive mixing angle is identi
al to the sine of theon-shell weak mixing angle sin2 �W � sW = 1 �M2W=M2Z. The quantity �� is only weaklysensitive to MW.For the 
omputation of theW -boson mass, the 
omplete ele
troweak two-loop 
orre
tions,in
luding partial higher-order 
orre
tions, have been 
arried out in Ref. [4{7℄. In this report,the 
al
ulation of the 
orresponding 
ontributions for the form fa
tor �� and 
ombinedpredi
tions for sin2 �lepte� will be dis
ussed.The quantum 
orre
tions to sin2 �lepte� have been under extensive theoreti
al study overthe last two de
ades. The one-loop result [8, 9℄ involves large fermioni
 
ontributions fromthe leading 
ontribution to the � parameter, ��, whi
h is quadrati
ally dependent on thetop-quark mass mt, resulting from the top-bottom mass splitting [10℄. The 
orre
tion ��1



enters both in the 
omputation of MW from the Fermi 
onstant (for a dis
ussion see e.g.Ref. [4, 5℄), as well as into the vertex 
orre
tion fa
tor ��,1 + ��(�) = 1 + 
2Ws2W�� +��rem(MH); (3)with 
2W = M2W=M2Z, s2W = 1 �M2W=M2Z. The remainder part ��rem 
ontains in parti
ularthe dependen
e on the Higgs-boson mass, MH.Beyond the one-loop order, resummations of the leading one-loop 
ontribution �� havebeen derived [11, 12℄. They 
orre
tly take into a

ount the terms of the form (��)2 and(����). Here �� is the shift in the �ne stru
ture 
onstant due to light fermions, �� /logmf , whi
h enters through the 
orre
tions to the relation between G� andMW, sin
e �� =��(MW) is a fun
tion ofMW. These resummation results have been 
on�rmed and extendedby an expli
it 
al
ulation of the pure fermion-loop 
orre
tions at O(�2) (i.e. 
ontributions
ontaining two fermion loops) [13℄. Re
ently, the leading three-loop 
ontributions to the �parameter of O(G3�m6t ) and O(G2��sm4t ) for large top-quark mass [14℄, as well as O(G3�M4H)for large Higgs mass [15℄ have been 
omputed.Higher order QCD 
orre
tions to sin2 �lepte� have been 
al
ulated at O(��s) [16℄ and forthe top-bottom 
ontributions at O(��2s ) [17℄ and O(��3s ) [18℄. The O(��2s ) 
ontributionswith light quarks in the loops 
an be derived from eqs. (29){(31) in [19℄ and turn out to be
ompletely negligible. For the ele
troweak two-loop 
ontributions, only partial results usinglarge mass expansions in the Higgs mass [20℄ and top-quark mass [21{23℄ have been knownpreviously. Con
erning the expansion in mt, the formally leading term of O(G2�m4t ) [21, 22℄and the next-to-leading term of O(G2�m2tM2Z) [23℄ were found to be numeri
ally signi�
antand of similar magnitude. Therefore, a 
omplete 
al
ulation of ele
troweak two-loop 
orre
-tions to sin2 �lepte� beyond the leading terms of expansions is desirable.As a �rst step in this dire
tion, exa
t results have been obtained for the Higgs-massdependen
e (i.e. the quantity sin2 �lepte�,sub(MH) � sin2 �lepte� (MH) � sin2 �lepte� (MH = 65 GeV))of the two-loop 
orre
tions with at least one 
losed fermion loop to the pre
ision observ-ables [13,24℄. They were shown to agree well with the previous results of the top-quark massexpansion [25℄.This paper dis
usses the 
omplete 
omputation of all ele
troweak two-loop 
orre
tions tosin2 �lepte� . In addition to the 
orre
tions to the predi
tion of the W -boson mass, whi
h havebeen analyzed before [4, 5℄, this in
ludes all two-loop diagrams 
ontributing to the Zl+l�vertex on the Z pole. The diagrams 
an be 
onveniently divided into two groups; fermioni

ontributions with at least one 
losed fermion loop, and bosoni
 
ontributions without 
losedfermion loops. The genuine fermioni
 two-loop vertex diagrams are represented by the generi
topologies in Fig. 1 and some examples of bosoni
 two-loop diagrams are given in Fig. 2.Results for the 
omplete two-loop 
orre
tions have been presented �rst in Ref. [26, 27℄.The results for the fermioni
 
ontributions have been 
on�rmed in Ref. [28℄ and partialresults for the bosoni
 
ontributions were also obtained in Ref. [29℄. This paper des
ribesthe 
omputational methods and analysis in more detail.The paper is organized as follows. In se
tion 2, the pro
ess e+e� ! l+l� is analyzed at2



(a)
γ,Z,W

(b)
W

W

W(
)
γ,Z,W

(d)
γ,Z

H

ZFigure 1: Genuine fermioni
 two-loop Zl+l� vertex diagrams 
ontributing to sin2 �lepte� .next-to-next-to-leading order near the Z-boson pole and the O(�2) de�nition of the sin2 �lepte�is extra
ted. Furthermore the general strategies for the 
al
ulation of two-loop 
ontributionsto the form fa
tor �� are dis
ussed. Se
tions 3 and 4 explain the 
al
ulation of the fermioni
and bosoni
 two-loop diagrams in detail. For two-loop va
uum and self-energy diagrams,well-established te
hniques exist and have been used for the 
omputation of MW [4{6℄. Thenew part in this proje
t are the two-loop vertex topologies, whi
h have been treated withtwo 
on
eptually independent methods. A dis
ussion of the numeri
al results and remainingtheoreti
al un
ertainties due to unknown higher orders 
an be found in se
tion 5. In additionto the e�e
tive leptoni
 weak mixing angle, results are given also for the e�e
tive weak mixingangle for other �nal state 
avors, i.e. for 
ouplings of the Z boson to other fermions. Finallythe implementation of our new results into the program Zfitter is des
ribed.2 Outline of the 
al
ulationThe two-loop 
orre
tions to the e�e
tive weak mixing angle sin2 �fe� are part of the next-to-next-to-leading order 
orre
tions to the pro
ess e+e� ! f �f for 
enter-of-mass energies nearthe Z-boson mass, ps �MZ. To set the s
ene for this 
al
ulation, a framework for the next-to-next-to-leading order analysis of f �f produ
tion needs to be established. Furthermore ithas to be 
he
ked whether sin2 �fe� is a well-de�ned, i.e. gauge-invariant and �nite, quantityat this order in perturbation theory.
3



(a)
γ,Z

W

W

(b)
W

W

W

H

(
)
γ,Z,W

(d)
γ,Z,W

Figure 2: Examples of bosoni
 two-loop Zl+l� vertex diagrams 
ontributing to sin2 �lepte� .2.1 De�nition of the e�e
tive weak mixing angle at next-to-next-to-leading orderIn higher-order 
al
ulations, o

urren
es of unstable intermediate parti
les need to be treated
arefully in order to preserve gauge-invarian
e and unitarity. Currently, the only s
hemeproven to ful�ll both requirements to all orders in perturbation theory is the pole s
heme[30{32℄. It involves a systemati
 Laurent expansion around the 
omplex pole M2 = M2 �iM� asso
iated with the propagator of the unstable parti
le with mass M and width �. Inthe 
ase of the pro
ess e+e� ! f �f , e 6= f , near the Z pole, the amplitude is written asA[e+e� ! f �f ℄ = Rs�M2Z + S + (s�M2Z)S 0 + : : : (4)with M2Z = M2Z � iMZ�Z: (5)Owing to the analyti
ity of the S-matrix, all 
oeÆ
ients of Laurent expansion, R; S; S 0; : : :and the pole lo
ationM2Z are individually gauge-invariant, UV- and IR-�nite, when soft and
ollinear real photon emission is added.The �rst term in (4) 
orresponds to a Breit-Wigner parametrization of the Z line shapewith a 
onstant de
ay width. Experimentally, however, the gauge-boson mass is determinedbased on a Breit-Wigner fun
tion with a running (energy-dependent) width,A / 1s�M2Z + is�Z=MZ : (6)As a 
onsequen
e of these di�erent parameterizations, there is a shift between the experi-mental mass parameter, MZ, and the mass parameter of the pole s
heme, MZ, [33℄,M 2Z = M2Z=(1 + �2Z=M2Z); (7)4



amounting to MZ �MZ� 34:1 MeV. In the following, barred quantities always refer to poles
heme parameters.The evaluation of higher order 
ontributions in the pole s
heme involves a simultaneousexpansion around the pole lo
ation and in the perturbation order �. Sin
e near the Z pole�, �Z and (s �M2Z) are all of the same order, for a next-to-next-leading order 
al
ulationR needs to be determined to O(�2), S only to O(�), while a tree-level result is suÆ
ient forS 0. The e�e
tive weak mixing angle is 
ontained in the pole term residue R in (4). Forfurther use, the following notations for vertex and self-energy form fa
tors are introdu
ed,
Zµ

f

f

� �[Z�f �f ℄ � zf;� = i
�(vf + af
5); (8)
γµ

f

f

� �[
�f �f ℄ � gf;� = i
�(qf + pf
5); (9)
V1,µ = γµ,Zµ V2,ν = γν,Zν = ���V1V2 ; (10)where the shaded blobs stand for one-parti
le irredu
ible loop 
ontributions. It is also
onvenient to de�ne Zf �f vertex form fa
tors in
luding the e�e
t of Z-
 mixing,ẑf;�(k2) = i
� �v̂f(k2) + âf(k2)
5�� i
� �vf(k2) + af(k2)
5�� i
� �qf(k2) + pf(k2)
5� �
Z(k2)k2 + �

(k2)= Zµ

f

f

+ Zµ γµ

f

f

+ Zµ γµγµ

f

f

+ : : : ;(11)where k is the momentum of the external Z line. With these de�nitions, the residue R upto next-to-next-to-leading order 
an be 
ast into the form [31℄R = z(0)e RZZ z(0)f + hẑ(1)e (M2Z) z(0)f + z(0)e ẑ(1)f (M2Z)i h1 + �(1)
Z 0(M2Z)i+ ẑ(2)e (M2Z) z(0)f + z(0)e ẑ(2)f (M2Z) + ẑ(1)e (M2Z) ẑ(1)f (M2Z)� iMZ�Z hẑ(1)e 0(M2Z) z(0)f + z(0)e ẑ(1)f 0(M2Z)i ; (12)
RZZ = 1� �(1)ZZ 0(M2Z)� �(2)ZZ 0(M2Z) + ��(1)ZZ 0(M2Z)�2 + iMZ�Z �(1)ZZ 00(M2Z)� 1M4Z ��(1)
Z(M2Z)�2 + 2M2Z �(1)
Z(M2Z) �(1)
Z 0(M2Z): (13)

5



Here the Lorentz indi
es have been suppressed. Based on the de�nition of sin2 �lepte� ineqs. (1),(2), the two-loop result of the e�e
tive weak mixing angle is derived from R assin2 �fe� �  1� M 2WM 2Z !Re�1 + ��fZ(M2Z)	=  1� M 2WM2Z !Re(1 + â(1)f v(0)f � v̂(1)f a(0)fa(0)f (a(0)f � v(0)f ) �����k2=M2Z+ â(2)f v(0)f a(0)f � v̂(2)f (a(0)f )2 � (â(1)f )2 v(0)f + â(1)f v̂(1)f a(0)f(a(0)f )2(a(0)f � v(0)f ) �����k2=M2Z): (14)
Sin
e the pole s
heme is based on a formal Laurent series of the physi
al amplitude, all
oeÆ
ients in the expansion and thus the e�e
tive weak mixing angle are manifestly gauge-invariant and UV-�nite. While the pole s
heme formalism does not make any statementabout IR �niteness, it 
an be 
he
ked that eq. (14) is also a IR-safe quantity, i.e. all IR-divergen
ies from photon ex
hange diagrams 
an
el. Similarly, 
ollinear divergen
ies (orSudakov fa
tors for massive fermions) also 
an
el. This 
an be explained by the fa
t thatthe QED 
ontributions in the soft and 
ollinear limits fa
torize from massive loop e�e
tsand therefore drop out in the ratio of the ve
tor and axial-ve
tor form fa
tor in eq. (1). Atthe diagrammati
 level, this 
an
ellation of divergen
ies o

urs not only between two-loopdiagrams, but also between 2-loop and produ
ts of 1-loop diagrams, for example

Z
Z γ = Z

γ + �nite; with 
 = Z
Z : (15)Experimentally, the e�e
tive weak mixing angle is determined from measurements offorward-ba
kward and left-right asymmetries of the pro
ess e+e� ! f �f . The derivationof sin2 �fe� from these asymmetries requires the subtra
tion of e�e
ts from QED and QCD
orre
tions, s-
hannel photon ex
hange and 
-Z interferen
e, o�-shellness of the Z-boson andbox 
ontributions. These non-resonant e�e
ts enter into the amplitude through the next-to-leading term S in the pole expansion (4), and need to be 
omputed up to one-loop order.In order to relate the O(�2) result (14) for sin2 �fe� to the value quoted by the experimentalanalyses, it needs to be 
he
ked that the subtra
ted e�e
ts are 
onsistent with the poles
heme pres
ription.In experimental studies, the program Zfitter [35℄ is widely used for predi
tion of the
ontributions from QED and QCD 
orre
tions, s-
hannel photon ex
hange and 
-Z interfer-en
e, o�-shellness of the Z-boson and box 
ontributions. In Zfitter, the radiative 
orre
-

6



tions to the pro
ess e+e� ! f �f are parametrized by four form fa
tors �ef , �e, �f , �ef ,A[e+e� ! f �f ℄ = 4�i � QeQfs 
� 
 
�+ i p2G�M2Z1 + i�Z=MZ I(3)e I(3)f 1s�M 2Z + iMZ�Z� �ef h
�(1 + 
5)
 
�(1 + 
5)� 4jQejs2W �e 
� 
 
�(1 + 
5)� 4jQfjs2W �f 
�(1 + 
5)
 
�+ 16jQeQf js4W �ef 
� 
 
�i
(16)

Note that apart from the Z propagator, the gauge boson masses are de�ned a

ording tothe running width pres
ription (un-barred symbols) instead of the pole s
heme de�nition(barred symbols). As a result the form fa
tors �e, �f , �ef 
an di�er from the 
orrespondingform fa
tors �e, �f , �ef in the pole s
heme. In the following, the relation between the twosets of quantities will be worked out.Zfitter in
ludes all radiative 
orre
tions to e+e� ! f �f 
onsistently at the one-looplevel with some leading two-loop 
ontributions. However, it has not been designed for a
omplete next-to-next-to-leading order analysis and in
onsisten
ies 
ould o

ur at this level.In Zfitter QED and QCD 
orre
tions are in
luded via a 
onvolution of the 
ross-se
tion.They will be dis
ussed in more detail later. The e�e
ts from s-
hannel photon ex
hange,
-Z interferen
e, o�-shellness of the Z-boson and massive (non-QED) box 
ontributions aretaken into a

ount by the formulae [35℄�ef(s) = �e(s)�f(s)� M2Z � ss 1(a(0)e � v(0)e )(a(0)f � v(0)f )� "q(1)e q(0)f + q(1)f q(0)e � p(1)f q(0)e v(0)fa(0)f � p(1)e q(0)f v(0)ea(0)e � q(0)e q(0)f �(1)

s + boxes# ; (17)�e;f(s) = �e;fZ (s) + M2Z � ss " q(0)e;fa(0)e;f � v(0)e;f p(1)f;ea(0)f;e + boxes# ; (18)�fZ(s) = �fZ(M2Z) + (s�M2Z) â(1)f 0(M2Z) v(0)f � v̂(1)f 0(M2Z) a(0)fa(0)f (a(0)f � v(0)f ) : (19)
7



From the pole expansion s
heme one obtains in 
ontrast to eqs. (17),(18)�ef(s) = �e(s)�f(s)� M2Z � iMZ�Z � ss 1(a(0)e � v(0)e )(a(0)f � v(0)f )� "q(1)e q(0)f + q(1)f q(0)e � p(1)f q(0)e v(0)fa(0)f � p(1)e q(0)f v(0)ea(0)e � q(0)e q(0)f �(1)

s + boxes# ; (20)�e;f(s) = �e;fZ (s) + M2Z � iMZ�Z � ss " q(0)e;fa(0)e;f � v(0)e;f p(1)f;ea(0)f;e + boxes# : (21)with �f = �f �1 + 
2Ws2W � �2WM2W � �2ZM2Z�� ; (22)�ef = �ef �1 + 
2Ws2W � �2WM2W � �2ZM2Z��2 ; (23)Note that for next-to-next-to-leading a

ura
y it is not ne
essary to distinguish betweenbarred and un-barred symbols in the radiative 
orre
tions, sin
e M2Z �M2Z = O(�2).From eqs. (17{21) one �nds a di�eren
e for the derivation of the value of sin2 �fe� betweenZfitter and the pole s
heme:sin2 �fe�,Zfitter = s2W Re��fZ(M2Z)	 (24)sin2 �fe�;pole = s2W Re��fZ(M2Z)	 = sin2 �fe�,Zfitter � �ZMZ q(0)fa(0)e (a(0)f � v(0)f ) Im�p(1)e 	 (25)with s2W =  1� M 2WM 2Z ! = s2W �1 + 
2Ws2W � �2WM2W � �2ZM2Z���1 : (26)A similar deviation is found for the 
ontribution of the form fa
tors �ef ; �ef between the twos
hemes, whi
h however 
annot be expressed dire
tly as a shift in sin2 �fe�.In prin
iple, an additional dis
repan
y arises from the box 
ontributions. The massiveboxes with Z andW boson ex
hange are in
luded in Zfitter at the one-loop level, whi
h issuÆ
ient for the next-to-next-to-leading order 
al
ulation in the pole s
heme. Nevertheless,in (21) an extra term stemming from the box 
ontributions arises, whi
h is proportional toiMZ�Z. However, this term does not 
ontribute to the squared matrix element sin
e themassive boxes have no absorptive part1.1A spe
ial 
ase is Bhabha s
attering, f = e, where additional box and t-
hannel diagrams 
ontribute. Forthe purpose of this work, the subtra
tion of these 
ontributions has not been analyzed in detail, justi�ed bythe fa
t that the e+e� �nal state has a relatively small impa
t on the determination of the e�e
tive weakmixing angle at present. In general, a more 
areful analysis of this pro
ess should be done in the future.8



Besides the 
ontributions from s-
hannel photon ex
hange and boxes, the translation be-tween the measured asymmetries and the e�e
tive weak mixing angle requires the subtra
tionof QED and QCD 
orre
tions to the external fermions.In the left-right asymmetry, the e�e
t of �nal state QED and QCD 
orre
tions and initial-�nal state QED interferen
e 
an
els [36℄ up to next-to-next-to-leading order. Initial-stateQED radiation 
an be treated through 
onvolution with a radiator fun
tion and has been
omputed in
luding the exa
t O(�2) 
orre
tions and higher-order leading 
ontributions [37℄.For the forward-ba
kward asymmetry on the Z pole, the 
ontribution from �nal-statevirtual and soft photon radiation vanishes for massless external fermions [12, 36, 38℄. Thisstatement is valid up to 
orre
tions of the order O(��E
=ps), where �E
 is the soft-photon 
ut-o�, and terms of order O(�mf=ps, where mf is the �nal-state fermion mass.Nevertheless, the 
omplete one-loop 
ontributions to �nal-state radiation are known andtaken into a

ount in the extra
tion of the e�e
tive weak mixing angle [35℄. The leadinge�e
t of �nal-state fermion masses of O(�mf=ps) is also known and in
luded [39℄, withthe remaining e�e
ts of order O(�2�E
=ps), O(�2mf=ps, O(�m2f=s) being numeri
allynegligible for the two-loop analysis for sin2 �fe� under study here. Multiple hard �nal-statephoton radiation is taken into a

ount by Monte-Carlo methods, see e.g. [40℄, with a smallnumeri
al error. QCD �nal state e�e
ts are treated similarly to the QED 
ontributions.Interferen
e of initial-�nal state photon radiation is also known up to order O(�)for theforward-ba
kward asymmetry. For suÆ
iently loose soft-photon 
ut, �E
 >� �Z, the initial-�nal interferen
e of soft and virtual photons at the Z pole is suppressed by the width �Z ofthe Z boson [12,38℄, so that the O(�2) 
ontribution is e�e
tively of order O(�2�Z=MZ), i.e.beyond the next-to-next-to-leading order 
orre
tions under study in this work. As before,initial-state radiation to the forward-ba
kward asymmetry is in
luded up to O(�2), andpartially beyond, by means of a 
onvolution. Thus while a 
omplete next-to-next-to-leadingorder 
al
ulation of QED 
orre
tions to the forward-ba
kward asymmetry is not available,the present treatment of QED 
orre
tions is suÆ
ient for a two-loop analysis of sin2 �fe�.Nevertheless, a 
omplete O(�2) 
al
ulation of QED e�e
ts would be desirable.In summary, it was found that the treatment of non-resonant 
ontributions in Zfitteris not 
onsistent with the pole s
heme at next-to-next-to-leading order. As a result, thevalue of sin2 �fe� needs to be 
orre
ted by a shifts2W Æ�f = � �ZMZ q(0)fa(0)e (a(0)f � v(0)f ) Im�p(1)e 	 : (27)Numeri
ally this shift amounts to s2W Æ�f � 1:5� 10�6, well below the 
urrent experimentalerror of 1:7� 10�4 [1℄. Therefore, this shift will be negle
ted in the analysis in se
tion 5. Itwas 
he
ked that a similar shift Æ�ef in the form fa
tor �ef also leads to a negligible numeri
ale�e
t on sin2 �fe�.2.2 RenormalizationIn this work the on-shell renormalization s
heme is employed. It de�nes the mass parametersand 
oupling 
onstants in 
lose relation to physi
al observables. The renormalized squared9



masses are de�ned as the real part of the propagator poles, while the external �elds are renor-malized to unity at the position of the poles. The ele
tromagneti
 
harge is de�ned as the
oupling strength of the ele
tromagneti
 vertex in the Thomson limit. Expli
it expressionsfor the ne
essary 
ounterterms 
an be found in Ref. [5℄.As des
ribed in the previous se
tion, the 
omputation of radiative 
orre
tions to thee�e
tive weak mixing angle entails the 
al
ulation of loop 
ontributions to the Zf �f vertex.In prin
iple this involves a �eld renormalization for the Z boson, whi
h appears as an externalparti
le of the vertex. Beyond one-loop order, the treatment of �eld renormalizations forunstable parti
les proves to be not straightforward [41℄. However, in the 
al
ulation ofsin2 �fe� all o

urren
es of the Z boson �eld renormalization drop out between the ve
tor andaxial-ve
tor form fa
tors in eq. (14). The independen
e of sin2 �fe� on the total normalizationof the Z boson �eld strength 
an already be seen in eq. (1), where the e�e
tive weak mixingangle is de�ned through the ratio of vertex form fa
tors.While the on-shell 
ounterterms 
an
el the UV-divergen
ies in the virtual loop 
orre
-tions, all IR- and 
ollinear divergen
ies drop out in the quantity sin2 �fe�, as explained inthe previous se
tion. The 
omputation of the loop integrals is performed using dimensionalregularization. With this regularization s
heme, spe
ial 
are is needed for the treatment ofthe 
5 matrix in triangle fermion sub-loops. A pra
ti
al solution to this problem will bedis
ussed in detail in se
tion 3.3.2.3 PreliminariesThroughout the 
al
ulation of the two-loop 
orre
tions, the masses and Yukawa 
ouplingsof all fermions but the top quark are negle
ted. The quark mixing matrix is assumed tobe diagonal. The ve
tor and axial-ve
tor 
omponents of the vertex 
orre
tions ẑf;� wereproje
ted out by 
ontra
tion with suitable proje
tion operators,v̂f(k2) = 12(2�D)k2 Tr[
� p=1 ẑf;�(k2) p=2℄; (28)âf(k2) = 12(2�D)k2 Tr[
5 
� p=1 ẑf;�(k2) p=2℄; (29)where D is the spa
e-time dimension and p1;2 are the momenta of the external fermions. Asa result, only s
alar integrals remain after proje
tion, but there are non-trivial stru
tures ofs
alar produ
ts in the numerators of the integrals, whi
h require further treatment.3 Cal
ulation of fermioni
 two-loop vertex diagramsThe 
omputation of the two-loop 
orre
tions to the e�e
tive weak mixing angle 
an bedivided into the 
al
ulation of the vertex loop 
ontributions to the Zf �f vertex and theon-shell 
ounterterms. The latter involve two-loop va
uum and self-energy 
ontributions,similar to the two-loop 
orre
tions to the W -boson mass [4,5℄, while the former also 
ontain10
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t Figure 3: Example of a two-loop vertex diagramwith a top-quark sub-loop.two-loop vertex topologies as a new 
ompli
ation. The generi
 two-loop vertex diagramswith 
losed fermion loops are shown in Fig. 1.The evaluation of the two-loop vertex 
ontributions has been performed with two inde-pendent methods, in order to allow for a non-trivial 
he
k of the result. One method is basedon large mass expansions for the diagrams involving internal top quark propagators and dif-ferential equations for the diagrams with only light fermions. The se
ond method makes useof numeri
al integrations derived from dispersion relations and Feynman parameterizations.3.1 Large top-quark mass expansions and analyti
al resultsThis approa
h divides the fermioni
 two-loop verti
es in two 
ategories: diagrams withinternal top quark lines and diagrams that have only light fermion lines.Observing that the ratio x = M2Z=m2t � 1=4 is a small number, the top-quark 
ontri-butions 
an be 
onveniently 
al
ulated by performing an expansion in x. The 
oeÆ
ientsof this large-mass expansion de
ompose 
ompletely into one-loop integrals and two-loopva
uum integrals, for whi
h analyti
al formulae are available in the literature [42℄.An example of a typi
al s
alar two-loop vertex diagram is shown in Fig. 3. The expansionof this diagram readsx �(2)3 + x2 ��(2)12 � 536 + 112 logx� + x3 ��(2)45 � 791200 + 120 log x� + : : : (30)Numeri
ally this amounts to0:1483� 0:0081� 0:0019 + 0:0003 + : : : (31)The ex
ellent 
onvergen
e of this series is typi
al for all diagrams that only 
ontain neutral
urrent ex
hange in the loop. Diagrams involving 
harged 
urrent ex
hange 
onverge moreslowly, whi
h is an e�e
t of the top-bottom mass splitting.For this work, the large-mass expansion is exe
uted up to order x5 = M10Z =m10t , whi
hyields an overall pre
ision of 10�7, by far suÆ
ient for pra
ti
al purposes. This high a

ura
yis a substantial improvement over the previous work in Ref. [23℄, where only the �rst twoterms in an expansion for largemt were 
al
ulated. Please note that the large-mass expansionwas only used for the two-loop vertex diagrams. The two-loop 
ounterterms, whi
h inaddition to the mass s
ales MW, MZ and mt also involve the parameter MH, were evaluatedusing one-dimensional integral representations as in Refs. [43,44℄. In prin
iple it would alsobe possible to 
ompute the 
ounterterms using large-mass expansions. However, sin
e in11



LF1(p2; m2) = p

m

Figure 4: Example of s
alar prototype in-tegral. The thi
k line is massive with massm, while the thin lines represent masslesspropagators.general analyti
al results only exist for two-loop diagrams with up to two di�erent s
ales,this would require a simultaneous expansion in mt and MH, as in Ref. [23, 45℄. In orderto obtain a pre
ise result, the one-dimensional integral representations are more suitableinstead.The 
ontributions with light fermions 
ontain only the s
ales MW and MZ and are there-fore fun
tions of only one dimensionless variable ! = M2W=M2Z. In this 
ase it is possible toevaluate all 
ontributions analyti
ally using the di�erential equation method [47℄. The �nalresult is thus expressed through polylogarithms and generalized polylogarithms.As a simple example 
onsider the s
alar integral in Fig. 4. Using integration-by-partsidentities [48℄, the following di�erential equation 
an be derived:p2 ddp2 24 35 = 12 p2p2 +m2 (4�D)(4 + 5m2p2 )24 35+ (10� 3D)24 35� (2�D) � �!: (32)
Here the thi
k lines represent massive propagators with mass m and the thin lines denotemassless propagators. Besides the integral LF1 under study, the di�erential equation involvesa simpler s
alar vertex integral and a va
uum integral on the right-hand side. Feeding inanalyti
al expression for these integrals from the literature [42,49℄, the di�erential equation
an be solved in terms of Nielsen's polylogarithms [50℄. The �nite part of LF1 readsLF1(p2; m2) = � Li2(�x)��2 + 2 log(m2) + 3 log(�x) + log(1 + x)�+ 4Li3(�x)� S1;2(�x)+ 12 log(1 + x)�2�2 � log(�x)�(�4 + 4 log(m2) + 2 log(�x) + log(1 + x)��;(33)with x = p2=m2 and Nielsen's polylogarithm S1;2 de�ned in Ref. [51℄. The integral LF1 hasalso been 
al
ulated in Ref. [52℄. However, some of the prototype integrals needed for thisproje
t have not been known before and were 
omputed for the �rst time in this work. Allintegrals have been 
he
ked by di�erent expansions in physi
al and unphysi
al regimes.Several relevant integrals were also re
ently 
omputed in Ref. [53℄. However, their resultswere presented in terms of generalized harmoni
 polylogarithms, whi
h in general involvenumeri
al integrations for the numeri
al evaluation.After performing the Dira
 and Lorentz algebra for the relevant two-loop vertex diagrams,the result 
ontains a large number of di�erent s
alar integrals with terms in the numerator12



Figure 5: S
alar master integrals for diagrams with a light fermion loop. Thi
k lines indi
atemassive gauge boson propagators, while thin lines 
orrespond to light fermions of photons,whi
h are taken massless. The dot in the last diagram indi
ates that this propagator appearstwo times.that 
annot be 
an
elled against any of the propagators in the denominator. Here it isadvantageous to perform an algebrai
 redu
tion to a minimal set of master integrals.For the redu
tion to master integrals, the Laporta algorithm is used [54℄. It is based onintegration-by-parts [48℄ and Lorentz identities [55℄, whi
h establish linear relations betweens
alar loop integrals. For a suÆ
iently large set of these relations, the linear equation system
an be solved in order to express the more 
ompli
ated integrals with non-trivial numeratorsin terms of a set of simple master integrals with unit numerators. This redu
tion algorithmis implemented in the C++ library IdSolver [56℄, whi
h allows for a fast evaluation of linearsystems involving several thousand equations.The set of master integrals that appear within this 
al
ulation for the light fermion
ontributions is summarized in Fig. 5. Analyti
al expressions were found by the di�erentialequation method for all but the fourth topology in Fig. 5, whi
h was evaluated numeri
ally.3.2 Semi-numeri
al integrationsThe se
ond method employs numeri
al integrations for the master integrals. This te
hniqueis based on a dispersion representation of the one-loop self-energy fun
tion B0,B0(p2; m21; m22) = Z 1(m1+m2)2 ds �B0(s;m21; m22)s� p2 ; (34)�B0(s;m21; m22) = (4��2)4�D �(D=2� 1)�(D � 2) �(D�3)=2(s;m21; m22)sD=2�1 ; (35)where D is the spa
e-time dimension and �(a; b; 
) = (a� b� 
)2 � 4b
. Using this relation,any s
alar two-loop integral T with a self-energy sub-loop as in Fig. 6 (a) 
an be expressedas [43℄TN+1(pi;m2i ) = � Z 1s0 ds �B0(s;m2N ; m2N+1)� Z d4q 1q2 � s 1(q + p1)2 �m21 � � � 1(q + p1 + � � �+ pN�1)2 �m2N�1 : (36)Here the integral in the se
ond line is a N -point one-loop fun
tion, and the integration overs is performed numeri
ally. While in prin
iple it is also possible to introdu
e dispersion13
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5(a) (b)Figure 6: (a) General representation of a two-loop s
alar diagram with self-energy sub-loop.(b) Redu
tion of triangle sub-loop to self-energy sub-loop by means of Feynman parameters.relations for triangle sub-loops [44, 57℄, it is te
hni
ally easier to redu
e them to self-energysub-loops by introdu
ing Feynman parameters [58℄,[(q + p1)2 �m21℄�1 [(q + p2)2 �m22℄�1 = Z 10 dx [(q + �p)2 �m2℄�2�p = x p1 + (1� x)p2; m2 = xm21 + (1� x)m22 � x(1� x)(p1 � p2)2: (37)This is indi
ated diagrammati
ally in Fig. 6 (b). The integration over the Feynman parame-ters is also performed numeri
ally. As a result, all master integrals for the vertex topologies
an be evaluated by at most 3-dim. numeri
al integrations.The basi
 s
alar two-loop integrals might 
ontain UV- and IR-divergen
ies. These needto be subtra
ted before the numeri
al integration 
an be 
arried out. An elegant method toremove the divergen
ies is by subtra
ting a term from the integrand that 
an be integratedanalyti
ally. This 
an be illustrated by the subtra
tion of UV divergen
ies in the followingexample:
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3775�nite : (38)The UV divergent part of the two-loop vertex diagram 
an be identi�ed by the sum of thesame diagram with zero external momenta and the 
ontribution from sub-loop renormaliza-tion. The �rst term 
orresponds to a two-loop va
uum diagram for whi
h analyti
al formulaeare available in the literature [42℄, while the se
ond and third terms are produ
ts of one-loopfun
tions,
p1

p1+p2

p2

3

4

= B0 �(p1 + p2)2; m23; m24�� B0 �m24; m21; m22� ; (39)
3

4

= B0 �0; m23; m24��B0 �m24; m21; m22� : (40)14



Here the momentum s
ale m24 for the sub-loop 
ounterterm was 
hosen to be able to handlethe 
ase 0 = m1 = m2 6= m4. Subtra
ting these terms in the integrand of the two-loopvertex integral results in a �nite 
ontribution, that 
an be integrated numeri
ally,2664 p1

p1+p2

p2

12

3

4

3775�nite= � Z 1(m1+m2)2 ds �B0(s;m21; m22)� �C0 �(p1 + p2)2; p21; p22; m23; m24; s�� C0 �0; 0; 0; m23; m24; s�+ 1s�m24 hB0 �(p1 + p2)2; m23; m24��B0 �0; m23; m24�i�: (41)
For all other two-loop vertex master integrals, the divergent parts 
an be removed in a similarfashion.As before, the redu
tion of integrals with irredu
ible numerators to a small set of masterintegrals is a

omplished by using integration-by-parts and Lorentz-invarian
e identities,whi
h were implemented in an independent realization of the Laporta algorithm withinMathemati
a.3.3 Diagrams with fermion loop triangles and treatment of 
5Diagrams with a fermion triangle sub-loop pose a spe
ial problem in 
onjun
tion with theuse of dimensional regularization. The fermion triangle loop involves terms likeTr(
�
�


Æ
5) = 4i ���
Æ; (42)whi
h 
annot be extended to D dimensions simultaneously with the anti-
ommutation rulef
�; 
5g = 0. However, renormalizability of the Standard Model demands that terms orig-inating from expressions like eq. (42) are always UV-�nite in any two-loop diagram. Asa 
onsequen
e, the diagrams with a fermion triangle loop 
an be treated in two steps [4℄:First the 
omplete diagrams are 
al
ulated using naive dimensional regularization with anti-
ommuting 
5, where the tra
e in eq. (42) is zero. The �nite 
ontributions resulting in epsilontensors are 
omputed independently in four dimensions, and �nally the two 
ontributionsare added.An additional 
ompli
ation arises from diagrams with internal photon lines and masslessexternal fermions, Fig. 7, whi
h 
ould give rise to soft-
ollinear divergen
ies. While these softand 
ollinear divergen
ies are spurious singularities, thus dropping out in the total result,they result in in
onsisten
ies if dimensional regularization is used. In this 
ase the 
ontri-butions involving epsilon tensors from the fermion triangle 
annot be treated 
onsistently infour dimensions anymore.In this work, the soft and 
ollinear divergen
ies in these diagrams were instead regulatedwith a photon mass. In the 
omplete result, the limit of zero photon mass was taken bymeans of an expansion, involving a 
areful treatment in the mixed Sudakov/threshold regime.The result for the diagrams with two photons has been 
he
ked against Ref. [46℄.15
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 (a) (b)Figure 7: Diagrams with fermion triangle sub-loops and soft-
ollinear divergen
ies.3.4 Che
ksThe master integrals have been 
he
ked with published results where appli
able [52,53℄. Somemaster integrals were tested by means of Mellin-Barnes representations, see also [59{61℄, andwith a low-momentum expansion. In addition, 
omplete diagrams were tested with a low-momentum expansion. In the 
omparison of the two methods explained in the previousse
tions, 
omplete agreement was found.4 Cal
ulation of bosoni
 two-loop vertex diagramsAs explained in the previous 
hapter, the 
al
ulation of the bosoni
 two-loop 
orre
tionsfall into two 
ategories, the bare vertex diagrams and the on-shell renormalization terms.The 
omputation of the renormalization 
ounterterms has been established previously [5,6℄,whereas the 
al
ulation of the vertex diagrams will be addressed here. In our 
ase, thisinvolves massive two-loop three-point fun
tion with one massive external leg and up to threedi�erent mass s
ales.Contrary to the fermioni
 
orre
tions, the bosoni
 diagrams do not depend on the topquark. On the other hand, there is a dependen
e on the Higgs boson mass, whi
h is not a�xed parameter and 
an assume a broad range of values. Due to 
omplexity of the problemwith several hundred diagrams and many more di�erent algebrai
 integral stru
tures, the
al
ulation 
annot be performed in a straightforward way with any known 
omputationalmethod. Here the task is approa
hed by using an expansion in the various parameters inorder to obtain a result expressed through single s
ale integrals, whi
h have to be evaluatednumeri
ally in a �nal step.In a �rst step, we apply an expansion in the di�eren
e of the masses of the W and Zbosons, where the expansion parameter is just s2W. Sin
e there are diagrams where there is athreshold when MW = MZ, the appearan
e of divergen
es at higher orders in the expansionis inevitable. In this 
ase, we apply the method of expansions by regions, see [62℄. In thisapproa
h, one analyzes the momentum regions whi
h 
an 
ontribute to the integral andexpands the integrand in ea
h region with a di�erent expansion parameter. The two regionsthat 
ontribute to the result 
ome from the ultrasoft momenta, q1;2 � s2WMZ, and hardmomenta, q1;2 � MZ, where q1;2 are the loop momenta. Then the redu
tion to the set ofmaster integrals pro
eeds with Integration-By-Parts identities [48℄ solved with the Laporta16



algorithm [54℄ as implemented in the IdSolver library [56℄.The MH dependen
e is treated in two regimes. For low values of MH an expansion in themass di�eren
e between MH and MZ is used, with the expansion parameter de�ned to bes2H = 1� M2HM2Z ; (43)where this time no non-trivial thresholds are en
ountered. It is found that a good pre
isionis a
hieved by performing the expansion to the sixth order in s2W and s2H. The se
ond regimeis for large values of MH �MZ, where a large mass expansion [62℄ is used.The resulting single s
ale master integrals are treated with various methods, usually withtwo or three di�erent ones for test purposes. Most integrals 
an be obtained with numeri
alintegrations based on dispersion relations as des
ribed in se
tion 3.2. The advantage ofthis method is that with reasonable investment of 
omputer time, it 
an be pushed tohigh pre
ision, whi
h is required sin
e large numeri
al 
an
ellations are observed betweenindividual integrals. Diagrams of simpler topologies 
an also be evaluated with di�erentialequations [63, 64℄ and large mass expansions. For more 
ompli
ated topologies, Mellin-Barnes representations are employed, using the MB pa
kage [59℄, see also [60, 61℄. Aftersimpli�
ation, the Mellin-Barnes representations 
an be evaluated by numeri
al integrationsor in�nite series. In prin
iple, this method 
ould be used for all s
alar integrals, however,depending on the mass 
on�guration, the integration and/or the series evaluation does not
onverge. The 
onvergen
e behavior 
an be improved by rotating the integration 
ontoursinto the 
omplex plane, but this also solves the problem only in a few 
ases. Wheneverpossible the results were 
ross-
he
ked with se
tor de
omposition [65℄.The redu
tion to master integrals 
an o

asionally 
an produ
e spurious 1=(D� 4) polesin the 
oeÆ
ients of some master integrals. In prin
iple, this problem 
an be avoided by
hoosing an appropriate basis of master integrals, at the expense, however, that some of theseintegrals are more 
ompli
ated. Here, on the other hand, a basis was 
hosen that introdu
esonly relatively few spurious poles, but in front of simple integrals. Sin
e it is advantageousto 
he
k the 
an
ellation of divergen
ies exa
tly, it was thus ne
essary to evaluate the �nitepie
es of some master integrals analyti
ally. These integrals are presented in Ref. [66℄.As a �nal algebrai
 
he
k of the whole pro
edure, the 
an
ellation of the gauge parameterdependen
e in a general 
ovariant R� gauge was veri�ed. Due to the enormous 
omplexity ofthe intermediate expressions, this test was only possible for the �rst orders in the expansion,but nevertheless allowed a non-trivial 
ross-
he
k between di�erent diagram topologies.5 Numeri
al ResultsIn order to arrive at a pre
ise predi
tion for the e�e
tive weak mixing angle, the ele
troweak
orre
tions of one- and two-loop order are 
ombined with one- and two-loop QCD 
orre
tions[16, 17℄, and leading three-loop 
orre
tions of order O(G3�m6t ) and O(G2��sm4t ) [14℄. Otherhigher-order 
orre
tions to the rho parameter of order O(G3�M4H) [15℄ and O(G�m2t�3s ) [18℄are very small (forMH < 1 TeV) and thus not in
luded in the numeri
al analysis. The result17



Input parameter ValueMW 80:404� 0:030 GeVMZ 91:1876� 0:0021 GeV�Z 2:4952 GeVmt 172:5� 2:3 GeVmb 4:85 GeV��(M2Z) 0:05907� 0:00036�s(MZ) 0:119� 0:002G� 1:16637� 10�5 GeV�2Table 1: Experimental input parameters used in the numeri
al evaluation; from Refs. [67,68℄.is expressed as a perturbative expansion in �, not G�.Instead, all higher-order redu
ible
ontributions, that arise from terms proportional to �� and ��, are in
luded expli
ity atthe given loop order in the 
omputation. A �nite b quark mass was retained in the O(�)and O(��s) 
ontributions, but negle
ted in all higher-order terms.In Tab. 2, the e�e
ts of the various loop 
ontributions on the vertex form fa
tor �� areshown for the input parameters in Tab. 1. �� is de�ned as the real part of the shift of thephoton va
uum polarization fun
tion �(q2) between q2 = 0 and q2 = M2Z that stems fromlight fermions, �� = Re��lf(0)� �lf(M2Z)	; �(q2) = �lf(q2) + �rest(q2): (44)It is important to note that the experimental values for the W and Z boson masses inTab. 1 
orrespond to a Breit-Wigner parametrization with a running width, that have to betranslated to the pole mass s
heme used in the loop 
al
ulations [4℄. In e�e
t, this translationresults in a downward shift [69℄ of MZ by 34 MeV and MW by 28 MeV, respe
tively.As evident from the table, the fermioni
 and bosoni
 
ontributions to �� are of the samemagnitude. This 
hanges, however, when expressing the result through the Fermi 
onstantG� as input parameter. For this, the 
orresponding loop 
orre
tions, �r, to the W bosonmass need to be in
orporated,M2W �1� M2WM2Z � = ��p2G� (1 + �r) : (45)The in
lusion of the 
orre
tions to MW lead to an enhan
ement of the fermioni
 two-loop
orre
tions to sin2 �lepte� , but to a partial 
an
ellation between the bosoni
 two-loop 
orre
tionsin �� and �r. The e�e
t of the di�erent loop orders in sin2 �lepte� with G� as input parameteris summarized in Fig. 8. The �gure shows that the 
ontribution from the fermioni
 two-loop18



MH O(�) O(�2)ferm O(�2)bos O(��s) O(��2s ) O(�2�sm4t ) O(�3m6t ) red.[GeV℄ [10�4℄100 413.33 1.07 -0.74 -35.58 -7.25 1.15 0.14 0.69200 394.02 -0.32 -0.47 -35.58 -7.25 1.90 0.07 0.70600 354.06 -2.89 0.17 -35.58 -7.25 3.70 0.08 0.721000 333.16 -2.61 1.11 -35.58 -7.25 4.53 0.91 0.72Table 2: Loop 
ontributions to �� with �xed MW as input parameter as a fun
tion of theHiggs mass MH. Here "red." 
orresponds to redu
ible three-loop 
ontributions stemmingfrom �� and ��.
orre
tions amount to roughly � 10�3, while the resulting e�e
t of the bosoni
 two-loop
orre
tions is about or less than � 10�5, so that the two 
urves for O(�+��s+��2s +�2ferm)and O(�+ ��s + ��2s + �2ferm + �2bos) pra
ti
ally overlap.For the analysis in the following se
tions, the new full result always in
ludes terms of theorders �, �2, ��s, ��2s , �2�sm4t and �3m6t ,sin2 �lepte� ��full = sin2 �lepte� ���+�2+��s+��2s+�2�sm4t+�3m6t : (46)5.1 Comparison with previous resultsThe most pre
ise previous result for the two-loop ele
troweak 
orre
tions to sin2 �lepte� wasobtained from the 
al
ulation of the next-to-leading term O(G2�m2tM2Z) in an expansion forlarge values of the top-quark mass mt [23℄. The impa
t of the new result, as de�ned ineq. (46), is shown in Tab. 3 (a) by 
omparing with the previous result as in the �ttingformula in Ref. [70℄ and in the implementation of the program Zfitter 5.10 (and laterversions) [35℄.A more detailed analysis reveals that there are several sour
es for the deviations listedin Tab. 3 (a). First of all, there is the e�e
t of the trun
ated series expansion in m�2t ,whi
h was evaluated only up to order m2t in Ref. [23℄. In addition, the genuine light-fermiontwo-loop 
ontributions were not in
luded in that work. Moreover, the implementation ofthe 
orre
tion form fa
tor �r to the W mass and the parametrization with G� instead of� in Ref. [23℄ introdu
es higher-order terms that 
an be sizeable. Here it is important tonote that the OSI s
heme in Ref. [23℄, whi
h is the basis for the implementation of these
orre
tions in ZFITTER, uses the MS de�nition for ��, whi
h is numeri
ally larger than theleadingm2t term, so that the resummation e�e
ts of ��MS are rather large. Finally, Zfitterversions before 6.40 use an outdated implementation of the QCD 
orre
tions. Sin
e all these
ontributions are non-negligible at the 
urrent level of pre
ision, it is interesting to studythem separately.In parti
ular, using the results of se
tion 3.1 the e�e
t of the trun
ated top-mass expan-19



Figure 8: Contribution of several orders of radiative 
orre
tions to the e�e
tive leptoni
 weakmixing angle sin2 �lepte� as a fun
tion of the Higgs mass MH. The tree-level value is not shown.sion is shown in Tab. 3 (b)2. It turns out that the expansion 
onverges quite well for realisti
values of mt andMH. However, the terms beyond the order m2t indu
e a di�eren
e of 4.3% inthe two-loop 
orre
tions with top-bottom loops, 
orresponding to a shift of about 0:2� 10�4in sin2 �lepte� , whi
h is roughly a quarter of the total di�eren
e reported in Tab. 3 (a). As a
ross-
he
k, also the result for very large values of mt and MH are shown in Tab. 3 (b), toillustrate that in this 
ase the series 
onverges mu
h faster.5.2 Error estimateWhile the in
lusion of the fermioni
 two-loop 
orre
tions is a substantial improvement ofthe predi
tion of sin2 �lepte� in the Standard Model, un
ertainties from missing higher order
ontributions 
an still be sizeable. Here we try to give an estimate of the error indu
edby these unknown 
ontributions. The most relevant missing higher order 
ontributions are
orre
tions of the order O(�2�s) beyond the leading m4t term, O(�3) beyond the leading m6tterm and O(��3s ). Sin
e the �nal predi
tion for sin2 �lepte� is based on G� as input, the loope�e
ts in the both quantities �r (for the 
omputation of MW) and �� (for the Zl+l� vertex
orre
tions) need to be 
onsidered.When 
ombining the two form fa
tors, it turns out that there are some 
an
ellationsbetween the known 
orre
tions to MW and the Z vertex. It is expe
ted that similar 
an
el-lations o

ur when adding an additional QCD loop, sin
e QCD 
orre
tions enter with thesame relative sign in the 
orre
tions to MW and the Z vertex. Sin
e the dominant missing2As a by-produ
t of this 
omparison, we found a typo in Ref. [45℄, where a term 32m2t=(M2Zs2W) log 
2W ismissing in the expression for MH � mt. 20



(a)MH ��sin2 �lepte� �ZFITTER ��sin2 �lepte� �[70℄[GeV℄ [10�4℄ [10�4℄100 -0.45 -0.40200 -0.69 -0.72600 -1.17 -0.941000 -1.60 -1.28
(b)mt;MH �[m4t ℄ �[m2t ℄ �[m�4t ℄[GeV℄175,400 20% 4.3% 0.02%800,1800 5% 1.9% 0.00002%

Table 3: (a) Di�eren
e between the new result of eq. (46) and the previous result fromRef. [23℄, as implemented in Zfitter (left 
olumn) and from the �tting formula in Ref. [70℄(right 
olumn). (b) Convergen
e of the expansion in m�2t for the two-loop diagrams with toppropagators. Here �[mkt ℄ = [sin2 �lepte� ℄(�2mkt )=[sin2 �lepte� ℄(�2exa
t) � 1 is the relative di�eren
ebetween the exa
t and the expanded result at the given order.Geometri
 progression S
ale dependen
e Leading mt termsO(�2�s) beyond leading m4t 3:3 : : : 2:8� 10�5 0:8 : : : 2:1� 10�5 1:2 : : : 4:3� 10�5O(��3s ) 1:5 : : : 1:4 0:3 : : : 0:2O(�3) beyond leading m6t 2:5 : : : 3:5 0:3 : : : 0:8Sum 4:4 : : : 4:7� 10�5Table 4: Estimation of the un
ertainty from di�erent higher order 
ontributions for sin2 �lepte� ,with the quadrati
 sum of all error sour
es. Where appli
able, two or three di�erent methodsfor the error estimate have been used.higher order e�e
ts are 
ontributions with an additional QCD loop, it is assumed in thefollowing that these 
an
ellations are natural and it is justi�ed to study the theoreti
al errorof both quantities �r and �� in 
onjun
tion.A simple method to estimate the higher order un
ertainties is based on the assumptionthat the perturbation series follows roughly a geometri
 progression. This presumptionimplies relations like O(�2�s) = O(�2)O(�) O(��s): (47)From this one obtains the error estimates in the se
ond 
olumn of Tab. 4 for the di�erenthigher order 
ontributions, whi
h are given for a range of the Higgs MH mass between 10GeV and 1000 GeV. To a

ount for possible deviations from the geometri
 series behavior,an ad-ho
 overall fa
tor p2 was in
luded in all error determined via this method.Alternatively, the error from a higher-order QCD loop 
an be assessed by varying the s
aleof the strong 
oupling 
onstant �s or the top-quark mass mt in the MS s
heme in the highest21



available perturbation order. By varying thus the s
ale � ofmt;MS in the O(�2) 
ontributionsbetween m2t=2 < �2 < 2m2t one obtains an error estimate for the O(�2�s) 
ontributionsbetween 0.1 and 3:9� 10�5, depending on the value of MH for 10 GeV < MH < 1000 GeV.Similarly, by varying �s(�) in the O(��2s ) 
orre
tions between m2t=2 < �2 < 2m2t leads toan error estimate for the O(��3s) 
ontributions of less than 10�6, see Tab. 4.An independent third estimate of the error of the O(�2�s) and O(�3) 
ontributions 
anbe obtained from the existing leading terms in the expansion for large top quark mass.Experien
e from the O(�2) 
orre
tions suggests that for moderate values of MH, the leadingmt-term and the remaining non-leading terms are of similar order. These 
ontributions areshown in the last 
olumn of Tab. 4.As evident from the table, all methods give results of similar order of magnitude, whilethe geometri
 progression method tends to lead to the largest error evaluation. The totalestimated error is therefore 
omputed by summing in quadrature the error from di�erent
ontributions obtained by this method. It is found to amount to Æthsin2 �lepte� = 4:7� 10�5.5.3 Parametrization formulaeFollowing Ref. [26℄, the numeri
al results are expressed in terms of a �tting formula, whi
hreprodu
es the exa
t 
al
ulation with maximal and average deviations of 4:5 � 10�6 and1:2 � 10�6, respe
tively, as long as the input parameters stay within their 2� ranges andthe Higgs boson mass in the range 10 GeV � MH � 1 TeV. For the sake of 
omparabilitywith the result of Ref. [26℄, the slightly outdated 
entral values for the experimental inputparameters used there are also kept in the formulasin2 �fe� = s0 + d1LH + d2L2H + d3L4H + d4(�2H � 1) + d5��+ d6�t + d7�2t + d8�t(�H � 1) + d9��s + d10�Z ; (48)with LH = log� MH100 GeV� ; �H = MH100 GeV ; �� = ��0:05907 � 1;�t = � mt178:0 GeV�2 � 1; ��s = �s(MZ)0:117 � 1; �Z = MZ91:1876 GeV � 1: (49)The values of the 
oeÆ
ients for the e�e
tive leptoni
 weak mixing angle sin2 �lepte� are givenin the se
ond 
olumn of Tab. 5. This parametrization in
ludes all relevant known 
orre
tionsat this time, as in eq. (46).For some purposes, it is however useful to have a numeri
al result for the two-loopele
troweak form fa
tors �� and �r alone. For ��, the following parametrization providesa good approximation,��(�2) = ����(�) +��(�2)rem ; (50)��(�2)rem = k0 + k1LH + k2L2H + k3L4H + k4(�2H � 1) + k5�t + k6�2t + k7�tLH+ k8�W + k9�W�t + k10�Z ; (51)22



with �W = MW80:404 GeV � 1: (52)From a �t to the exa
t 
omputation, the 
oeÆ
ients are obtained ask0 = �0:002711; k1 = �3:12� 10�5; k2 = �4:12� 10�5; k3 = 5:28� 10�6;k4 = 3:75� 10�6; k5 = �5:16� 10�3; k6 = �2:06� 10�3; k7 = �2:32� 10�4;k8 = �0:0647; k9 = �0:129; k10 = 0:0712: (53)This reprodu
es the exa
t result for ��(�2) with maximal deviations of 1:8 � 10�5 for 10GeV � MH � 1 TeV and the other input parameters in their 2� ranges. This error in�� 
orresponds to an error of 4� 10�6 for sin2 �lepte� . Sin
e the experimental values for thetop quark mass and the W -boson mass might 
hange substantially with future updates ofmeasurements from the Tevatron and the LHC, it is useful to see how well the �tting formulaworks for larger ranges of these two parameters. If the top quark mass and the W -bosonmass vary within 4� of their 
urrent experimental un
ertainty, the formula eq. (50) is stilla

urate to 3:6� 10�5, 
orresponding to an error of 8� 10�6 for sin2 �lepte� .Similarly, for �r, the numeri
al result 
an be 
ast into the form�r(�2) = (��)2 + 2���r(�) +�r(�2)rem ; (54)�r(�2)rem = r0 + r1LH + r2L2H + r3L4H + r4(�2H � 1) + r5�t + r6�2t + r7�tLH+ r8�W + r9�W�t + r10�Z ; (55)wherer0 = 0:003354; r1 = �2:09� 10�4; r2 = 2:54� 10�5; r3 = �7:85� 10�6;r4 = �2:33� 10�6; r5 = 7:83� 10�3; r6 = 3:38� 10�3; r7 = �9:89� 10�6;r8 = 0:0939; r9 = 0:204; r10 = �0:103: (56)This agrees with the exa
t result within maximal deviations of 2:7�10�5 for 10 GeV �MH �1 TeV and the other input parameters in their 2� ranges, 
orresponding to an error of 0.4MeV for MW and 8 � 10�6 for sin2 �lepte� . For the top quark mass and the W -boson massvarying in their 4� ranges, the formula eq. (54) is a

urate to 4:3� 10�5, 
orresponding toan error of 0.65 MeV for MW and 12:5� 10�6 for sin2 �lepte� .5.4 Results for other fermion 
avorsThe results presented in the previous se
tions and in Refs. [26, 27℄ give the e�e
tive weakmixing angle sin2 �lepte� de�ned for the leptoni
 Zl+l� vertex. For the Zf �f vertex with otherlight 
avors f = �; u; d in the �nal state, there are small but non-zero di�eren
es withrespe
t to the leptoni
 e�e
tive weak mixing angle. In this se
tion, results are given forsin2 �fe� for di�erent �nal state fermions ex
ept b-quarks. For the b�b �nal state, the two-loop23



f e; �; � �e;�;� u; 
 d; ss0 0.2312527 0.2308772 0.2311395 0.2310286d1 [10�4℄ 4.729 4.713 4.726 4.720d2 [10�5℄ 2.07 2.05 2.07 2.06d3 [10�6℄ 3.85 3.85 3.85 3.85d4 [10�6℄ �1.85 �1.85 �1.85 �1.85d5 [10�2℄ 2.07 2.06 2.07 2.07d6 [10�3℄ �2.851 �2.850 �2.853 �2.848d7 [10�4℄ 1.82 1.82 1.83 1.81d8 [10�6℄ �9.74 �9.71 �9.73 �9.73d9 [10�4℄ 3.98 3.96 3.98 3.97d10[10�1℄ �6.55 �6.54 �6.55 �6.55Table 5: CoeÆ
ient of the �tting formulae eq. (48) for di�erent �nal states f �f .ele
troweak 
orre
tions are still missing, sin
e they involve new topologies with additionaltop-quark propagators.Sin
e the numeri
al e�e
t of the fermioni
 ele
troweak two-loop 
orre
tions is mu
h largerthan the 
orresponding bosoni
 
ontributions, only the fermioni
 O(�2) diagrams are takeninto a

ount. As before, the 
omplete one-loop 
orre
tions and the (
avor independent)
ontributions of order O(��s), O(��2s ), O(�2�sm4t ) and O(�3m6t ) are also in
luded.As before, the numeri
al results are expressed through the parametrization in eq. (48),whi
h reprodu
es the exa
t 
al
ulation with maximal deviations of 4:5 � 10�6, when theinput parameters stay within their 2� ranges and the Higgs boson mass in the range 10 GeV�MH � 1 TeV. The values of the 
oeÆ
ients for the various �nal state 
avors are listed inTab. 5.5.5 Implementation into global Standard Model �tsThe fermioni
 two-loop 
orre
tions and some higher-order 
ontributions as listed in eq. (46)are implemented in the 
urrent version 6.42 of the program Zfitter [35,71℄, whi
h is widelyused for global �ts of the Standard Model to ele
troweak pre
ision data [67℄. Due to the
omplexity of the two-loop 
omputation, the implementation of the exa
t result was notpossible, so that instead the numeri
al �tting formula eq. (48) was in
luded in the 
ode.More details 
an be found in Ref. [71℄.The �tting formula has been in
orporated exa
tly only for the leptoni
 e�e
tive weakmixing angle sin2 �lepte� , i.e. for the Zl+l� vertex. Results for other light 
avors f = u; d; 
; s; �in the �nal state are implemented in an approximate way, whi
h reprodu
es the 
omplete24



results of se
tion 5.4 within an error of about 10�5 for f = u; d; 
; s and 2� 10�5 for f = �.For the b�b �nal state, no two-loop ele
troweak 
orre
tions beyond the leading m4t arein
luded in Zfitter 6.42. They shall be
ome available in a future version. However, the
urrent version 6.42 was adjusted with respe
t to previous version to in
lude 
omplete two-loop 
orre
tions in the initial state vertex for the pro
ess e+e� ! (Z)! b�b, see Refs. [71,72℄for details.6 Con
lusionIn this paper, the evaluation of the 
omplete two-loop 
ontributions to the e�e
tive weakmixing angle has been des
ribed, expatiating the 
omputational methods and the quantita-tive impli
ations of the new result.It was shown how the e�e
tive weak mixing angle 
an be de�ned at next-to-next-to-leading order through the ve
tor and axial-ve
tor 
ouplings of the Z-boson. The 
omputationof the vertex loop diagrams using two independent te
hniques for the fermioni
 part and a
ombination of several 
omputational methods for the bosoni
 part was elu
idated in detail.Numeri
al results for the e�e
tive weak mixing angle for di�erent �nal state 
avors weregiven in terms of a

urate numeri
al parameterizations, whi
h are valid for Higgs masses upto 1 TeV. The new result has been 
ompared in detail with a previous result obtained by anexpansion in powers of mt up to next-to-leading order.Furthermore, the remaining theoreti
al un
ertainties due to unknown higher orders wereanalyzed and an overall un
ertainty of the e�e
tive leptoni
 weak mixing angle sin2 �lepte� of4:7� 10�5 was estimated.Ele
troweak pre
ision data allows very pre
ise tests of the Standard Model at the quan-tum level and puts the strongest 
onstraints on the Higgs boson mass and new physi
s. Withthe 
ompletion of the ele
troweak two-loop 
orre
tions, the a

ura
y of the ele
troweak pre-
ision test was signi�
antly enhan
ed, with theoreti
al un
ertainties now under mu
h better
ontrol.A
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