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Eletroweak two-loop orretionsto the e�etive weak mixing angleM. Awramik1�, M. Czakon2y and A. Freitas3z1 II. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, D-22761 Hamburg, GermanyandInstitute of Nulear Physis, Radzikowskiego 152, PL-31342 Krak�ow, Poland2 Institut f�ur Theoretishe Physik und Astrophysik, Universit�at W�urzburg, Am Hubland,D-97074 W�urzburg, GermanyandInstitute of Physis, University of Silesia, Uniwersyteka 4, PL-40007 Katowie, Poland3 Institut f�ur Theoretishe Physik, Universit�at Z�urih,Winterthurerstrasse 190, CH-8057 Z�urih, SwitzerlandAbstratReently exat results for the omplete eletroweak two-loop ontributions to thee�etive weak mixing angle were published. This paper illustrates the tehniques usedfor this omputation, in partiular the methods for evaluating the loop diagrams andthe proper de�nition of Z-pole observables at next-to-next-to-leading order. Numerialresults are presented in terms of simple parametrization formulae and ompared in de-tail with a previous result of an expansion up to next-to-leading order in the top-quarkmass. Finally, an estimate of the remaining theoretial unertainties from unknownhigher-order orretions is given.�email: Malgorzata.Awramik�desy.deyemail: mzakon�yahoo.omzemail: afreitas�physik.unizh.h



1 IntrodutionOne of the most important quantities for testing the Standard Model or its extensions is thesine of the e�etive leptoni weak mixing angle sin2 �lepte� . In the global �t of the StandardModel to all relevant eletroweak data, the e�etive leptoni weak mixing angle has a strongimpat on indiret onstraints on MH. It an be de�ned through the e�etive vetor andaxial-vetor ouplings, vl and al, of the Z boson to leptons (l) at the Z boson pole. Writingthe Z boson-lepton vertex as �[Zl+l�℄ = i l�(vl + al5)l Z�, one obtainssin2 �lepte� = 14 �1 + Re vlal� : (1)Experimentally, sin2 �lepte� is derived from various asymmetries measured around the Z bosonpeak at e+e� olliders after subtration of QED e�ets. It an also be determined fromasymmetries measured at enter-of-mass energies away from the Z pole, requiring a theoret-ial extrapolation in order to math it to sin2 �lepte� on the Z pole. The urrent experimentalauray, sin2 �lepte� = 0:23147� 0:00017 [1℄, ould be improved by an order of magnitude ata future high-luminosity linear ollider running in a low-energy mode at the Z boson pole(GigaZ) [2℄. This o�ers the prospet for highly sensitive tests of the eletroweak theory [3℄,provided that the auray of the theoretial predition mathes the experimental preision.Typially, the theoretial predition of sin2 �lepte� within the Standard Model is given interms of the following input parameters: the �ne struture onstant �, the Fermi onstantG�,the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever theyare numerially relevant). The W -boson mass MW is alulated from the Fermi onstant,whih is preisely derived from the muon deay lifetime. As a onsequene, the omputationof sin2 �lepte� involves two major parts: the radiative orretions to the relation between G� andMW, and the orretions to the Z-lepton vertex form fators. The latter an be inorporatedinto the quantity � = 1 +��, de�ned in the on-shell sheme,sin2 �lepte� = �1�M2W=M2Z� (1 + ��) ; (2)At tree-level, �� = 0 and the sine of the e�etive mixing angle is idential to the sine of theon-shell weak mixing angle sin2 �W � sW = 1 �M2W=M2Z. The quantity �� is only weaklysensitive to MW.For the omputation of theW -boson mass, the omplete eletroweak two-loop orretions,inluding partial higher-order orretions, have been arried out in Ref. [4{7℄. In this report,the alulation of the orresponding ontributions for the form fator �� and ombinedpreditions for sin2 �lepte� will be disussed.The quantum orretions to sin2 �lepte� have been under extensive theoretial study overthe last two deades. The one-loop result [8, 9℄ involves large fermioni ontributions fromthe leading ontribution to the � parameter, ��, whih is quadratially dependent on thetop-quark mass mt, resulting from the top-bottom mass splitting [10℄. The orretion ��1



enters both in the omputation of MW from the Fermi onstant (for a disussion see e.g.Ref. [4, 5℄), as well as into the vertex orretion fator ��,1 + ��(�) = 1 + 2Ws2W�� +��rem(MH); (3)with 2W = M2W=M2Z, s2W = 1 �M2W=M2Z. The remainder part ��rem ontains in partiularthe dependene on the Higgs-boson mass, MH.Beyond the one-loop order, resummations of the leading one-loop ontribution �� havebeen derived [11, 12℄. They orretly take into aount the terms of the form (��)2 and(����). Here �� is the shift in the �ne struture onstant due to light fermions, �� /logmf , whih enters through the orretions to the relation between G� andMW, sine �� =��(MW) is a funtion ofMW. These resummation results have been on�rmed and extendedby an expliit alulation of the pure fermion-loop orretions at O(�2) (i.e. ontributionsontaining two fermion loops) [13℄. Reently, the leading three-loop ontributions to the �parameter of O(G3�m6t ) and O(G2��sm4t ) for large top-quark mass [14℄, as well as O(G3�M4H)for large Higgs mass [15℄ have been omputed.Higher order QCD orretions to sin2 �lepte� have been alulated at O(��s) [16℄ and forthe top-bottom ontributions at O(��2s ) [17℄ and O(��3s ) [18℄. The O(��2s ) ontributionswith light quarks in the loops an be derived from eqs. (29){(31) in [19℄ and turn out to beompletely negligible. For the eletroweak two-loop ontributions, only partial results usinglarge mass expansions in the Higgs mass [20℄ and top-quark mass [21{23℄ have been knownpreviously. Conerning the expansion in mt, the formally leading term of O(G2�m4t ) [21, 22℄and the next-to-leading term of O(G2�m2tM2Z) [23℄ were found to be numerially signi�antand of similar magnitude. Therefore, a omplete alulation of eletroweak two-loop orre-tions to sin2 �lepte� beyond the leading terms of expansions is desirable.As a �rst step in this diretion, exat results have been obtained for the Higgs-massdependene (i.e. the quantity sin2 �lepte�,sub(MH) � sin2 �lepte� (MH) � sin2 �lepte� (MH = 65 GeV))of the two-loop orretions with at least one losed fermion loop to the preision observ-ables [13,24℄. They were shown to agree well with the previous results of the top-quark massexpansion [25℄.This paper disusses the omplete omputation of all eletroweak two-loop orretions tosin2 �lepte� . In addition to the orretions to the predition of the W -boson mass, whih havebeen analyzed before [4, 5℄, this inludes all two-loop diagrams ontributing to the Zl+l�vertex on the Z pole. The diagrams an be onveniently divided into two groups; fermioniontributions with at least one losed fermion loop, and bosoni ontributions without losedfermion loops. The genuine fermioni two-loop vertex diagrams are represented by the generitopologies in Fig. 1 and some examples of bosoni two-loop diagrams are given in Fig. 2.Results for the omplete two-loop orretions have been presented �rst in Ref. [26, 27℄.The results for the fermioni ontributions have been on�rmed in Ref. [28℄ and partialresults for the bosoni ontributions were also obtained in Ref. [29℄. This paper desribesthe omputational methods and analysis in more detail.The paper is organized as follows. In setion 2, the proess e+e� ! l+l� is analyzed at2
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ZFigure 1: Genuine fermioni two-loop Zl+l� vertex diagrams ontributing to sin2 �lepte� .next-to-next-to-leading order near the Z-boson pole and the O(�2) de�nition of the sin2 �lepte�is extrated. Furthermore the general strategies for the alulation of two-loop ontributionsto the form fator �� are disussed. Setions 3 and 4 explain the alulation of the fermioniand bosoni two-loop diagrams in detail. For two-loop vauum and self-energy diagrams,well-established tehniques exist and have been used for the omputation of MW [4{6℄. Thenew part in this projet are the two-loop vertex topologies, whih have been treated withtwo oneptually independent methods. A disussion of the numerial results and remainingtheoretial unertainties due to unknown higher orders an be found in setion 5. In additionto the e�etive leptoni weak mixing angle, results are given also for the e�etive weak mixingangle for other �nal state avors, i.e. for ouplings of the Z boson to other fermions. Finallythe implementation of our new results into the program Zfitter is desribed.2 Outline of the alulationThe two-loop orretions to the e�etive weak mixing angle sin2 �fe� are part of the next-to-next-to-leading order orretions to the proess e+e� ! f �f for enter-of-mass energies nearthe Z-boson mass, ps �MZ. To set the sene for this alulation, a framework for the next-to-next-to-leading order analysis of f �f prodution needs to be established. Furthermore ithas to be heked whether sin2 �fe� is a well-de�ned, i.e. gauge-invariant and �nite, quantityat this order in perturbation theory.
3



(a)
γ,Z

W

W

(b)
W

W

W

H

()
γ,Z,W

(d)
γ,Z,W

Figure 2: Examples of bosoni two-loop Zl+l� vertex diagrams ontributing to sin2 �lepte� .2.1 De�nition of the e�etive weak mixing angle at next-to-next-to-leading orderIn higher-order alulations, ourrenes of unstable intermediate partiles need to be treatedarefully in order to preserve gauge-invariane and unitarity. Currently, the only shemeproven to ful�ll both requirements to all orders in perturbation theory is the pole sheme[30{32℄. It involves a systemati Laurent expansion around the omplex pole M2 = M2 �iM� assoiated with the propagator of the unstable partile with mass M and width �. Inthe ase of the proess e+e� ! f �f , e 6= f , near the Z pole, the amplitude is written asA[e+e� ! f �f ℄ = Rs�M2Z + S + (s�M2Z)S 0 + : : : (4)with M2Z = M2Z � iMZ�Z: (5)Owing to the analytiity of the S-matrix, all oeÆients of Laurent expansion, R; S; S 0; : : :and the pole loationM2Z are individually gauge-invariant, UV- and IR-�nite, when soft andollinear real photon emission is added.The �rst term in (4) orresponds to a Breit-Wigner parametrization of the Z line shapewith a onstant deay width. Experimentally, however, the gauge-boson mass is determinedbased on a Breit-Wigner funtion with a running (energy-dependent) width,A / 1s�M2Z + is�Z=MZ : (6)As a onsequene of these di�erent parameterizations, there is a shift between the experi-mental mass parameter, MZ, and the mass parameter of the pole sheme, MZ, [33℄,M 2Z = M2Z=(1 + �2Z=M2Z); (7)4



amounting to MZ �MZ� 34:1 MeV. In the following, barred quantities always refer to polesheme parameters.The evaluation of higher order ontributions in the pole sheme involves a simultaneousexpansion around the pole loation and in the perturbation order �. Sine near the Z pole�, �Z and (s �M2Z) are all of the same order, for a next-to-next-leading order alulationR needs to be determined to O(�2), S only to O(�), while a tree-level result is suÆient forS 0. The e�etive weak mixing angle is ontained in the pole term residue R in (4). Forfurther use, the following notations for vertex and self-energy form fators are introdued,
Zµ

f

f

� �[Z�f �f ℄ � zf;� = i�(vf + af5); (8)
γµ

f

f

� �[�f �f ℄ � gf;� = i�(qf + pf5); (9)
V1,µ = γµ,Zµ V2,ν = γν,Zν = ���V1V2 ; (10)where the shaded blobs stand for one-partile irreduible loop ontributions. It is alsoonvenient to de�ne Zf �f vertex form fators inluding the e�et of Z- mixing,ẑf;�(k2) = i� �v̂f(k2) + âf(k2)5�� i� �vf(k2) + af(k2)5�� i� �qf(k2) + pf(k2)5� �Z(k2)k2 + �(k2)= Zµ

f

f

+ Zµ γµ

f

f

+ Zµ γµγµ

f

f

+ : : : ;(11)where k is the momentum of the external Z line. With these de�nitions, the residue R upto next-to-next-to-leading order an be ast into the form [31℄R = z(0)e RZZ z(0)f + hẑ(1)e (M2Z) z(0)f + z(0)e ẑ(1)f (M2Z)i h1 + �(1)Z 0(M2Z)i+ ẑ(2)e (M2Z) z(0)f + z(0)e ẑ(2)f (M2Z) + ẑ(1)e (M2Z) ẑ(1)f (M2Z)� iMZ�Z hẑ(1)e 0(M2Z) z(0)f + z(0)e ẑ(1)f 0(M2Z)i ; (12)
RZZ = 1� �(1)ZZ 0(M2Z)� �(2)ZZ 0(M2Z) + ��(1)ZZ 0(M2Z)�2 + iMZ�Z �(1)ZZ 00(M2Z)� 1M4Z ��(1)Z(M2Z)�2 + 2M2Z �(1)Z(M2Z) �(1)Z 0(M2Z): (13)
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Here the Lorentz indies have been suppressed. Based on the de�nition of sin2 �lepte� ineqs. (1),(2), the two-loop result of the e�etive weak mixing angle is derived from R assin2 �fe� �  1� M 2WM 2Z !Re�1 + ��fZ(M2Z)	=  1� M 2WM2Z !Re(1 + â(1)f v(0)f � v̂(1)f a(0)fa(0)f (a(0)f � v(0)f ) �����k2=M2Z+ â(2)f v(0)f a(0)f � v̂(2)f (a(0)f )2 � (â(1)f )2 v(0)f + â(1)f v̂(1)f a(0)f(a(0)f )2(a(0)f � v(0)f ) �����k2=M2Z): (14)
Sine the pole sheme is based on a formal Laurent series of the physial amplitude, alloeÆients in the expansion and thus the e�etive weak mixing angle are manifestly gauge-invariant and UV-�nite. While the pole sheme formalism does not make any statementabout IR �niteness, it an be heked that eq. (14) is also a IR-safe quantity, i.e. all IR-divergenies from photon exhange diagrams anel. Similarly, ollinear divergenies (orSudakov fators for massive fermions) also anel. This an be explained by the fat thatthe QED ontributions in the soft and ollinear limits fatorize from massive loop e�etsand therefore drop out in the ratio of the vetor and axial-vetor form fator in eq. (1). Atthe diagrammati level, this anellation of divergenies ours not only between two-loopdiagrams, but also between 2-loop and produts of 1-loop diagrams, for example

Z
Z γ = Z

γ + �nite; with 
 = Z
Z : (15)Experimentally, the e�etive weak mixing angle is determined from measurements offorward-bakward and left-right asymmetries of the proess e+e� ! f �f . The derivationof sin2 �fe� from these asymmetries requires the subtration of e�ets from QED and QCDorretions, s-hannel photon exhange and -Z interferene, o�-shellness of the Z-boson andbox ontributions. These non-resonant e�ets enter into the amplitude through the next-to-leading term S in the pole expansion (4), and need to be omputed up to one-loop order.In order to relate the O(�2) result (14) for sin2 �fe� to the value quoted by the experimentalanalyses, it needs to be heked that the subtrated e�ets are onsistent with the polesheme presription.In experimental studies, the program Zfitter [35℄ is widely used for predition of theontributions from QED and QCD orretions, s-hannel photon exhange and -Z interfer-ene, o�-shellness of the Z-boson and box ontributions. In Zfitter, the radiative orre-
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tions to the proess e+e� ! f �f are parametrized by four form fators �ef , �e, �f , �ef ,A[e+e� ! f �f ℄ = 4�i � QeQfs � 
 �+ i p2G�M2Z1 + i�Z=MZ I(3)e I(3)f 1s�M 2Z + iMZ�Z� �ef h�(1 + 5)
 �(1 + 5)� 4jQejs2W �e � 
 �(1 + 5)� 4jQfjs2W �f �(1 + 5)
 �+ 16jQeQf js4W �ef � 
 �i
(16)

Note that apart from the Z propagator, the gauge boson masses are de�ned aording tothe running width presription (un-barred symbols) instead of the pole sheme de�nition(barred symbols). As a result the form fators �e, �f , �ef an di�er from the orrespondingform fators �e, �f , �ef in the pole sheme. In the following, the relation between the twosets of quantities will be worked out.Zfitter inludes all radiative orretions to e+e� ! f �f onsistently at the one-looplevel with some leading two-loop ontributions. However, it has not been designed for aomplete next-to-next-to-leading order analysis and inonsistenies ould our at this level.In Zfitter QED and QCD orretions are inluded via a onvolution of the ross-setion.They will be disussed in more detail later. The e�ets from s-hannel photon exhange,-Z interferene, o�-shellness of the Z-boson and massive (non-QED) box ontributions aretaken into aount by the formulae [35℄�ef(s) = �e(s)�f(s)� M2Z � ss 1(a(0)e � v(0)e )(a(0)f � v(0)f )� "q(1)e q(0)f + q(1)f q(0)e � p(1)f q(0)e v(0)fa(0)f � p(1)e q(0)f v(0)ea(0)e � q(0)e q(0)f �(1)s + boxes# ; (17)�e;f(s) = �e;fZ (s) + M2Z � ss " q(0)e;fa(0)e;f � v(0)e;f p(1)f;ea(0)f;e + boxes# ; (18)�fZ(s) = �fZ(M2Z) + (s�M2Z) â(1)f 0(M2Z) v(0)f � v̂(1)f 0(M2Z) a(0)fa(0)f (a(0)f � v(0)f ) : (19)
7



From the pole expansion sheme one obtains in ontrast to eqs. (17),(18)�ef(s) = �e(s)�f(s)� M2Z � iMZ�Z � ss 1(a(0)e � v(0)e )(a(0)f � v(0)f )� "q(1)e q(0)f + q(1)f q(0)e � p(1)f q(0)e v(0)fa(0)f � p(1)e q(0)f v(0)ea(0)e � q(0)e q(0)f �(1)s + boxes# ; (20)�e;f(s) = �e;fZ (s) + M2Z � iMZ�Z � ss " q(0)e;fa(0)e;f � v(0)e;f p(1)f;ea(0)f;e + boxes# : (21)with �f = �f �1 + 2Ws2W � �2WM2W � �2ZM2Z�� ; (22)�ef = �ef �1 + 2Ws2W � �2WM2W � �2ZM2Z��2 ; (23)Note that for next-to-next-to-leading auray it is not neessary to distinguish betweenbarred and un-barred symbols in the radiative orretions, sine M2Z �M2Z = O(�2).From eqs. (17{21) one �nds a di�erene for the derivation of the value of sin2 �fe� betweenZfitter and the pole sheme:sin2 �fe�,Zfitter = s2W Re��fZ(M2Z)	 (24)sin2 �fe�;pole = s2W Re��fZ(M2Z)	 = sin2 �fe�,Zfitter � �ZMZ q(0)fa(0)e (a(0)f � v(0)f ) Im�p(1)e 	 (25)with s2W =  1� M 2WM 2Z ! = s2W �1 + 2Ws2W � �2WM2W � �2ZM2Z���1 : (26)A similar deviation is found for the ontribution of the form fators �ef ; �ef between the twoshemes, whih however annot be expressed diretly as a shift in sin2 �fe�.In priniple, an additional disrepany arises from the box ontributions. The massiveboxes with Z andW boson exhange are inluded in Zfitter at the one-loop level, whih issuÆient for the next-to-next-to-leading order alulation in the pole sheme. Nevertheless,in (21) an extra term stemming from the box ontributions arises, whih is proportional toiMZ�Z. However, this term does not ontribute to the squared matrix element sine themassive boxes have no absorptive part1.1A speial ase is Bhabha sattering, f = e, where additional box and t-hannel diagrams ontribute. Forthe purpose of this work, the subtration of these ontributions has not been analyzed in detail, justi�ed bythe fat that the e+e� �nal state has a relatively small impat on the determination of the e�etive weakmixing angle at present. In general, a more areful analysis of this proess should be done in the future.8



Besides the ontributions from s-hannel photon exhange and boxes, the translation be-tween the measured asymmetries and the e�etive weak mixing angle requires the subtrationof QED and QCD orretions to the external fermions.In the left-right asymmetry, the e�et of �nal state QED and QCD orretions and initial-�nal state QED interferene anels [36℄ up to next-to-next-to-leading order. Initial-stateQED radiation an be treated through onvolution with a radiator funtion and has beenomputed inluding the exat O(�2) orretions and higher-order leading ontributions [37℄.For the forward-bakward asymmetry on the Z pole, the ontribution from �nal-statevirtual and soft photon radiation vanishes for massless external fermions [12, 36, 38℄. Thisstatement is valid up to orretions of the order O(��E=ps), where �E is the soft-photon ut-o�, and terms of order O(�mf=ps, where mf is the �nal-state fermion mass.Nevertheless, the omplete one-loop ontributions to �nal-state radiation are known andtaken into aount in the extration of the e�etive weak mixing angle [35℄. The leadinge�et of �nal-state fermion masses of O(�mf=ps) is also known and inluded [39℄, withthe remaining e�ets of order O(�2�E=ps), O(�2mf=ps, O(�m2f=s) being numeriallynegligible for the two-loop analysis for sin2 �fe� under study here. Multiple hard �nal-statephoton radiation is taken into aount by Monte-Carlo methods, see e.g. [40℄, with a smallnumerial error. QCD �nal state e�ets are treated similarly to the QED ontributions.Interferene of initial-�nal state photon radiation is also known up to order O(�)for theforward-bakward asymmetry. For suÆiently loose soft-photon ut, �E >� �Z, the initial-�nal interferene of soft and virtual photons at the Z pole is suppressed by the width �Z ofthe Z boson [12,38℄, so that the O(�2) ontribution is e�etively of order O(�2�Z=MZ), i.e.beyond the next-to-next-to-leading order orretions under study in this work. As before,initial-state radiation to the forward-bakward asymmetry is inluded up to O(�2), andpartially beyond, by means of a onvolution. Thus while a omplete next-to-next-to-leadingorder alulation of QED orretions to the forward-bakward asymmetry is not available,the present treatment of QED orretions is suÆient for a two-loop analysis of sin2 �fe�.Nevertheless, a omplete O(�2) alulation of QED e�ets would be desirable.In summary, it was found that the treatment of non-resonant ontributions in Zfitteris not onsistent with the pole sheme at next-to-next-to-leading order. As a result, thevalue of sin2 �fe� needs to be orreted by a shifts2W Æ�f = � �ZMZ q(0)fa(0)e (a(0)f � v(0)f ) Im�p(1)e 	 : (27)Numerially this shift amounts to s2W Æ�f � 1:5� 10�6, well below the urrent experimentalerror of 1:7� 10�4 [1℄. Therefore, this shift will be negleted in the analysis in setion 5. Itwas heked that a similar shift Æ�ef in the form fator �ef also leads to a negligible numeriale�et on sin2 �fe�.2.2 RenormalizationIn this work the on-shell renormalization sheme is employed. It de�nes the mass parametersand oupling onstants in lose relation to physial observables. The renormalized squared9



masses are de�ned as the real part of the propagator poles, while the external �elds are renor-malized to unity at the position of the poles. The eletromagneti harge is de�ned as theoupling strength of the eletromagneti vertex in the Thomson limit. Expliit expressionsfor the neessary ounterterms an be found in Ref. [5℄.As desribed in the previous setion, the omputation of radiative orretions to thee�etive weak mixing angle entails the alulation of loop ontributions to the Zf �f vertex.In priniple this involves a �eld renormalization for the Z boson, whih appears as an externalpartile of the vertex. Beyond one-loop order, the treatment of �eld renormalizations forunstable partiles proves to be not straightforward [41℄. However, in the alulation ofsin2 �fe� all ourrenes of the Z boson �eld renormalization drop out between the vetor andaxial-vetor form fators in eq. (14). The independene of sin2 �fe� on the total normalizationof the Z boson �eld strength an already be seen in eq. (1), where the e�etive weak mixingangle is de�ned through the ratio of vertex form fators.While the on-shell ounterterms anel the UV-divergenies in the virtual loop orre-tions, all IR- and ollinear divergenies drop out in the quantity sin2 �fe�, as explained inthe previous setion. The omputation of the loop integrals is performed using dimensionalregularization. With this regularization sheme, speial are is needed for the treatment ofthe 5 matrix in triangle fermion sub-loops. A pratial solution to this problem will bedisussed in detail in setion 3.3.2.3 PreliminariesThroughout the alulation of the two-loop orretions, the masses and Yukawa ouplingsof all fermions but the top quark are negleted. The quark mixing matrix is assumed tobe diagonal. The vetor and axial-vetor omponents of the vertex orretions ẑf;� wereprojeted out by ontration with suitable projetion operators,v̂f(k2) = 12(2�D)k2 Tr[� p=1 ẑf;�(k2) p=2℄; (28)âf(k2) = 12(2�D)k2 Tr[5 � p=1 ẑf;�(k2) p=2℄; (29)where D is the spae-time dimension and p1;2 are the momenta of the external fermions. Asa result, only salar integrals remain after projetion, but there are non-trivial strutures ofsalar produts in the numerators of the integrals, whih require further treatment.3 Calulation of fermioni two-loop vertex diagramsThe omputation of the two-loop orretions to the e�etive weak mixing angle an bedivided into the alulation of the vertex loop ontributions to the Zf �f vertex and theon-shell ounterterms. The latter involve two-loop vauum and self-energy ontributions,similar to the two-loop orretions to the W -boson mass [4,5℄, while the former also ontain10
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LF1(p2; m2) = p

m

Figure 4: Example of salar prototype in-tegral. The thik line is massive with massm, while the thin lines represent masslesspropagators.general analytial results only exist for two-loop diagrams with up to two di�erent sales,this would require a simultaneous expansion in mt and MH, as in Ref. [23, 45℄. In orderto obtain a preise result, the one-dimensional integral representations are more suitableinstead.The ontributions with light fermions ontain only the sales MW and MZ and are there-fore funtions of only one dimensionless variable ! = M2W=M2Z. In this ase it is possible toevaluate all ontributions analytially using the di�erential equation method [47℄. The �nalresult is thus expressed through polylogarithms and generalized polylogarithms.As a simple example onsider the salar integral in Fig. 4. Using integration-by-partsidentities [48℄, the following di�erential equation an be derived:p2 ddp2 24 35 = 12 p2p2 +m2 (4�D)(4 + 5m2p2 )24 35+ (10� 3D)24 35� (2�D) � �!: (32)
Here the thik lines represent massive propagators with mass m and the thin lines denotemassless propagators. Besides the integral LF1 under study, the di�erential equation involvesa simpler salar vertex integral and a vauum integral on the right-hand side. Feeding inanalytial expression for these integrals from the literature [42,49℄, the di�erential equationan be solved in terms of Nielsen's polylogarithms [50℄. The �nite part of LF1 readsLF1(p2; m2) = � Li2(�x)��2 + 2 log(m2) + 3 log(�x) + log(1 + x)�+ 4Li3(�x)� S1;2(�x)+ 12 log(1 + x)�2�2 � log(�x)�(�4 + 4 log(m2) + 2 log(�x) + log(1 + x)��;(33)with x = p2=m2 and Nielsen's polylogarithm S1;2 de�ned in Ref. [51℄. The integral LF1 hasalso been alulated in Ref. [52℄. However, some of the prototype integrals needed for thisprojet have not been known before and were omputed for the �rst time in this work. Allintegrals have been heked by di�erent expansions in physial and unphysial regimes.Several relevant integrals were also reently omputed in Ref. [53℄. However, their resultswere presented in terms of generalized harmoni polylogarithms, whih in general involvenumerial integrations for the numerial evaluation.After performing the Dira and Lorentz algebra for the relevant two-loop vertex diagrams,the result ontains a large number of di�erent salar integrals with terms in the numerator12



Figure 5: Salar master integrals for diagrams with a light fermion loop. Thik lines indiatemassive gauge boson propagators, while thin lines orrespond to light fermions of photons,whih are taken massless. The dot in the last diagram indiates that this propagator appearstwo times.that annot be anelled against any of the propagators in the denominator. Here it isadvantageous to perform an algebrai redution to a minimal set of master integrals.For the redution to master integrals, the Laporta algorithm is used [54℄. It is based onintegration-by-parts [48℄ and Lorentz identities [55℄, whih establish linear relations betweensalar loop integrals. For a suÆiently large set of these relations, the linear equation systeman be solved in order to express the more ompliated integrals with non-trivial numeratorsin terms of a set of simple master integrals with unit numerators. This redution algorithmis implemented in the C++ library IdSolver [56℄, whih allows for a fast evaluation of linearsystems involving several thousand equations.The set of master integrals that appear within this alulation for the light fermionontributions is summarized in Fig. 5. Analytial expressions were found by the di�erentialequation method for all but the fourth topology in Fig. 5, whih was evaluated numerially.3.2 Semi-numerial integrationsThe seond method employs numerial integrations for the master integrals. This tehniqueis based on a dispersion representation of the one-loop self-energy funtion B0,B0(p2; m21; m22) = Z 1(m1+m2)2 ds �B0(s;m21; m22)s� p2 ; (34)�B0(s;m21; m22) = (4��2)4�D �(D=2� 1)�(D � 2) �(D�3)=2(s;m21; m22)sD=2�1 ; (35)where D is the spae-time dimension and �(a; b; ) = (a� b� )2 � 4b. Using this relation,any salar two-loop integral T with a self-energy sub-loop as in Fig. 6 (a) an be expressedas [43℄TN+1(pi;m2i ) = � Z 1s0 ds �B0(s;m2N ; m2N+1)� Z d4q 1q2 � s 1(q + p1)2 �m21 � � � 1(q + p1 + � � �+ pN�1)2 �m2N�1 : (36)Here the integral in the seond line is a N -point one-loop funtion, and the integration overs is performed numerially. While in priniple it is also possible to introdue dispersion13
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5(a) (b)Figure 6: (a) General representation of a two-loop salar diagram with self-energy sub-loop.(b) Redution of triangle sub-loop to self-energy sub-loop by means of Feynman parameters.relations for triangle sub-loops [44, 57℄, it is tehnially easier to redue them to self-energysub-loops by introduing Feynman parameters [58℄,[(q + p1)2 �m21℄�1 [(q + p2)2 �m22℄�1 = Z 10 dx [(q + �p)2 �m2℄�2�p = x p1 + (1� x)p2; m2 = xm21 + (1� x)m22 � x(1� x)(p1 � p2)2: (37)This is indiated diagrammatially in Fig. 6 (b). The integration over the Feynman parame-ters is also performed numerially. As a result, all master integrals for the vertex topologiesan be evaluated by at most 3-dim. numerial integrations.The basi salar two-loop integrals might ontain UV- and IR-divergenies. These needto be subtrated before the numerial integration an be arried out. An elegant method toremove the divergenies is by subtrating a term from the integrand that an be integratedanalytially. This an be illustrated by the subtration of UV divergenies in the followingexample:
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3775�nite : (38)The UV divergent part of the two-loop vertex diagram an be identi�ed by the sum of thesame diagram with zero external momenta and the ontribution from sub-loop renormaliza-tion. The �rst term orresponds to a two-loop vauum diagram for whih analytial formulaeare available in the literature [42℄, while the seond and third terms are produts of one-loopfuntions,
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Here the momentum sale m24 for the sub-loop ounterterm was hosen to be able to handlethe ase 0 = m1 = m2 6= m4. Subtrating these terms in the integrand of the two-loopvertex integral results in a �nite ontribution, that an be integrated numerially,2664 p1
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3775�nite= � Z 1(m1+m2)2 ds �B0(s;m21; m22)� �C0 �(p1 + p2)2; p21; p22; m23; m24; s�� C0 �0; 0; 0; m23; m24; s�+ 1s�m24 hB0 �(p1 + p2)2; m23; m24��B0 �0; m23; m24�i�: (41)
For all other two-loop vertex master integrals, the divergent parts an be removed in a similarfashion.As before, the redution of integrals with irreduible numerators to a small set of masterintegrals is aomplished by using integration-by-parts and Lorentz-invariane identities,whih were implemented in an independent realization of the Laporta algorithm withinMathematia.3.3 Diagrams with fermion loop triangles and treatment of 5Diagrams with a fermion triangle sub-loop pose a speial problem in onjuntion with theuse of dimensional regularization. The fermion triangle loop involves terms likeTr(��Æ5) = 4i ���Æ; (42)whih annot be extended to D dimensions simultaneously with the anti-ommutation rulef�; 5g = 0. However, renormalizability of the Standard Model demands that terms orig-inating from expressions like eq. (42) are always UV-�nite in any two-loop diagram. Asa onsequene, the diagrams with a fermion triangle loop an be treated in two steps [4℄:First the omplete diagrams are alulated using naive dimensional regularization with anti-ommuting 5, where the trae in eq. (42) is zero. The �nite ontributions resulting in epsilontensors are omputed independently in four dimensions, and �nally the two ontributionsare added.An additional ompliation arises from diagrams with internal photon lines and masslessexternal fermions, Fig. 7, whih ould give rise to soft-ollinear divergenies. While these softand ollinear divergenies are spurious singularities, thus dropping out in the total result,they result in inonsistenies if dimensional regularization is used. In this ase the ontri-butions involving epsilon tensors from the fermion triangle annot be treated onsistently infour dimensions anymore.In this work, the soft and ollinear divergenies in these diagrams were instead regulatedwith a photon mass. In the omplete result, the limit of zero photon mass was taken bymeans of an expansion, involving a areful treatment in the mixed Sudakov/threshold regime.The result for the diagrams with two photons has been heked against Ref. [46℄.15
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 (a) (b)Figure 7: Diagrams with fermion triangle sub-loops and soft-ollinear divergenies.3.4 CheksThe master integrals have been heked with published results where appliable [52,53℄. Somemaster integrals were tested by means of Mellin-Barnes representations, see also [59{61℄, andwith a low-momentum expansion. In addition, omplete diagrams were tested with a low-momentum expansion. In the omparison of the two methods explained in the previoussetions, omplete agreement was found.4 Calulation of bosoni two-loop vertex diagramsAs explained in the previous hapter, the alulation of the bosoni two-loop orretionsfall into two ategories, the bare vertex diagrams and the on-shell renormalization terms.The omputation of the renormalization ounterterms has been established previously [5,6℄,whereas the alulation of the vertex diagrams will be addressed here. In our ase, thisinvolves massive two-loop three-point funtion with one massive external leg and up to threedi�erent mass sales.Contrary to the fermioni orretions, the bosoni diagrams do not depend on the topquark. On the other hand, there is a dependene on the Higgs boson mass, whih is not a�xed parameter and an assume a broad range of values. Due to omplexity of the problemwith several hundred diagrams and many more di�erent algebrai integral strutures, thealulation annot be performed in a straightforward way with any known omputationalmethod. Here the task is approahed by using an expansion in the various parameters inorder to obtain a result expressed through single sale integrals, whih have to be evaluatednumerially in a �nal step.In a �rst step, we apply an expansion in the di�erene of the masses of the W and Zbosons, where the expansion parameter is just s2W. Sine there are diagrams where there is athreshold when MW = MZ, the appearane of divergenes at higher orders in the expansionis inevitable. In this ase, we apply the method of expansions by regions, see [62℄. In thisapproah, one analyzes the momentum regions whih an ontribute to the integral andexpands the integrand in eah region with a di�erent expansion parameter. The two regionsthat ontribute to the result ome from the ultrasoft momenta, q1;2 � s2WMZ, and hardmomenta, q1;2 � MZ, where q1;2 are the loop momenta. Then the redution to the set ofmaster integrals proeeds with Integration-By-Parts identities [48℄ solved with the Laporta16



algorithm [54℄ as implemented in the IdSolver library [56℄.The MH dependene is treated in two regimes. For low values of MH an expansion in themass di�erene between MH and MZ is used, with the expansion parameter de�ned to bes2H = 1� M2HM2Z ; (43)where this time no non-trivial thresholds are enountered. It is found that a good preisionis ahieved by performing the expansion to the sixth order in s2W and s2H. The seond regimeis for large values of MH �MZ, where a large mass expansion [62℄ is used.The resulting single sale master integrals are treated with various methods, usually withtwo or three di�erent ones for test purposes. Most integrals an be obtained with numerialintegrations based on dispersion relations as desribed in setion 3.2. The advantage ofthis method is that with reasonable investment of omputer time, it an be pushed tohigh preision, whih is required sine large numerial anellations are observed betweenindividual integrals. Diagrams of simpler topologies an also be evaluated with di�erentialequations [63, 64℄ and large mass expansions. For more ompliated topologies, Mellin-Barnes representations are employed, using the MB pakage [59℄, see also [60, 61℄. Aftersimpli�ation, the Mellin-Barnes representations an be evaluated by numerial integrationsor in�nite series. In priniple, this method ould be used for all salar integrals, however,depending on the mass on�guration, the integration and/or the series evaluation does notonverge. The onvergene behavior an be improved by rotating the integration ontoursinto the omplex plane, but this also solves the problem only in a few ases. Wheneverpossible the results were ross-heked with setor deomposition [65℄.The redution to master integrals an oasionally an produe spurious 1=(D� 4) polesin the oeÆients of some master integrals. In priniple, this problem an be avoided byhoosing an appropriate basis of master integrals, at the expense, however, that some of theseintegrals are more ompliated. Here, on the other hand, a basis was hosen that introduesonly relatively few spurious poles, but in front of simple integrals. Sine it is advantageousto hek the anellation of divergenies exatly, it was thus neessary to evaluate the �nitepiees of some master integrals analytially. These integrals are presented in Ref. [66℄.As a �nal algebrai hek of the whole proedure, the anellation of the gauge parameterdependene in a general ovariant R� gauge was veri�ed. Due to the enormous omplexity ofthe intermediate expressions, this test was only possible for the �rst orders in the expansion,but nevertheless allowed a non-trivial ross-hek between di�erent diagram topologies.5 Numerial ResultsIn order to arrive at a preise predition for the e�etive weak mixing angle, the eletroweakorretions of one- and two-loop order are ombined with one- and two-loop QCD orretions[16, 17℄, and leading three-loop orretions of order O(G3�m6t ) and O(G2��sm4t ) [14℄. Otherhigher-order orretions to the rho parameter of order O(G3�M4H) [15℄ and O(G�m2t�3s ) [18℄are very small (forMH < 1 TeV) and thus not inluded in the numerial analysis. The result17



Input parameter ValueMW 80:404� 0:030 GeVMZ 91:1876� 0:0021 GeV�Z 2:4952 GeVmt 172:5� 2:3 GeVmb 4:85 GeV��(M2Z) 0:05907� 0:00036�s(MZ) 0:119� 0:002G� 1:16637� 10�5 GeV�2Table 1: Experimental input parameters used in the numerial evaluation; from Refs. [67,68℄.is expressed as a perturbative expansion in �, not G�.Instead, all higher-order reduibleontributions, that arise from terms proportional to �� and ��, are inluded expliity atthe given loop order in the omputation. A �nite b quark mass was retained in the O(�)and O(��s) ontributions, but negleted in all higher-order terms.In Tab. 2, the e�ets of the various loop ontributions on the vertex form fator �� areshown for the input parameters in Tab. 1. �� is de�ned as the real part of the shift of thephoton vauum polarization funtion �(q2) between q2 = 0 and q2 = M2Z that stems fromlight fermions, �� = Re��lf(0)� �lf(M2Z)	; �(q2) = �lf(q2) + �rest(q2): (44)It is important to note that the experimental values for the W and Z boson masses inTab. 1 orrespond to a Breit-Wigner parametrization with a running width, that have to betranslated to the pole mass sheme used in the loop alulations [4℄. In e�et, this translationresults in a downward shift [69℄ of MZ by 34 MeV and MW by 28 MeV, respetively.As evident from the table, the fermioni and bosoni ontributions to �� are of the samemagnitude. This hanges, however, when expressing the result through the Fermi onstantG� as input parameter. For this, the orresponding loop orretions, �r, to the W bosonmass need to be inorporated,M2W �1� M2WM2Z � = ��p2G� (1 + �r) : (45)The inlusion of the orretions to MW lead to an enhanement of the fermioni two-looporretions to sin2 �lepte� , but to a partial anellation between the bosoni two-loop orretionsin �� and �r. The e�et of the di�erent loop orders in sin2 �lepte� with G� as input parameteris summarized in Fig. 8. The �gure shows that the ontribution from the fermioni two-loop18



MH O(�) O(�2)ferm O(�2)bos O(��s) O(��2s ) O(�2�sm4t ) O(�3m6t ) red.[GeV℄ [10�4℄100 413.33 1.07 -0.74 -35.58 -7.25 1.15 0.14 0.69200 394.02 -0.32 -0.47 -35.58 -7.25 1.90 0.07 0.70600 354.06 -2.89 0.17 -35.58 -7.25 3.70 0.08 0.721000 333.16 -2.61 1.11 -35.58 -7.25 4.53 0.91 0.72Table 2: Loop ontributions to �� with �xed MW as input parameter as a funtion of theHiggs mass MH. Here "red." orresponds to reduible three-loop ontributions stemmingfrom �� and ��.orretions amount to roughly � 10�3, while the resulting e�et of the bosoni two-looporretions is about or less than � 10�5, so that the two urves for O(�+��s+��2s +�2ferm)and O(�+ ��s + ��2s + �2ferm + �2bos) pratially overlap.For the analysis in the following setions, the new full result always inludes terms of theorders �, �2, ��s, ��2s , �2�sm4t and �3m6t ,sin2 �lepte� ��full = sin2 �lepte� ���+�2+��s+��2s+�2�sm4t+�3m6t : (46)5.1 Comparison with previous resultsThe most preise previous result for the two-loop eletroweak orretions to sin2 �lepte� wasobtained from the alulation of the next-to-leading term O(G2�m2tM2Z) in an expansion forlarge values of the top-quark mass mt [23℄. The impat of the new result, as de�ned ineq. (46), is shown in Tab. 3 (a) by omparing with the previous result as in the �ttingformula in Ref. [70℄ and in the implementation of the program Zfitter 5.10 (and laterversions) [35℄.A more detailed analysis reveals that there are several soures for the deviations listedin Tab. 3 (a). First of all, there is the e�et of the trunated series expansion in m�2t ,whih was evaluated only up to order m2t in Ref. [23℄. In addition, the genuine light-fermiontwo-loop ontributions were not inluded in that work. Moreover, the implementation ofthe orretion form fator �r to the W mass and the parametrization with G� instead of� in Ref. [23℄ introdues higher-order terms that an be sizeable. Here it is important tonote that the OSI sheme in Ref. [23℄, whih is the basis for the implementation of theseorretions in ZFITTER, uses the MS de�nition for ��, whih is numerially larger than theleadingm2t term, so that the resummation e�ets of ��MS are rather large. Finally, Zfitterversions before 6.40 use an outdated implementation of the QCD orretions. Sine all theseontributions are non-negligible at the urrent level of preision, it is interesting to studythem separately.In partiular, using the results of setion 3.1 the e�et of the trunated top-mass expan-19



Figure 8: Contribution of several orders of radiative orretions to the e�etive leptoni weakmixing angle sin2 �lepte� as a funtion of the Higgs mass MH. The tree-level value is not shown.sion is shown in Tab. 3 (b)2. It turns out that the expansion onverges quite well for realistivalues of mt andMH. However, the terms beyond the order m2t indue a di�erene of 4.3% inthe two-loop orretions with top-bottom loops, orresponding to a shift of about 0:2� 10�4in sin2 �lepte� , whih is roughly a quarter of the total di�erene reported in Tab. 3 (a). As aross-hek, also the result for very large values of mt and MH are shown in Tab. 3 (b), toillustrate that in this ase the series onverges muh faster.5.2 Error estimateWhile the inlusion of the fermioni two-loop orretions is a substantial improvement ofthe predition of sin2 �lepte� in the Standard Model, unertainties from missing higher orderontributions an still be sizeable. Here we try to give an estimate of the error induedby these unknown ontributions. The most relevant missing higher order ontributions areorretions of the order O(�2�s) beyond the leading m4t term, O(�3) beyond the leading m6tterm and O(��3s ). Sine the �nal predition for sin2 �lepte� is based on G� as input, the loope�ets in the both quantities �r (for the omputation of MW) and �� (for the Zl+l� vertexorretions) need to be onsidered.When ombining the two form fators, it turns out that there are some anellationsbetween the known orretions to MW and the Z vertex. It is expeted that similar anel-lations our when adding an additional QCD loop, sine QCD orretions enter with thesame relative sign in the orretions to MW and the Z vertex. Sine the dominant missing2As a by-produt of this omparison, we found a typo in Ref. [45℄, where a term 32m2t=(M2Zs2W) log 2W ismissing in the expression for MH � mt. 20



(a)MH ��sin2 �lepte� �ZFITTER ��sin2 �lepte� �[70℄[GeV℄ [10�4℄ [10�4℄100 -0.45 -0.40200 -0.69 -0.72600 -1.17 -0.941000 -1.60 -1.28
(b)mt;MH �[m4t ℄ �[m2t ℄ �[m�4t ℄[GeV℄175,400 20% 4.3% 0.02%800,1800 5% 1.9% 0.00002%

Table 3: (a) Di�erene between the new result of eq. (46) and the previous result fromRef. [23℄, as implemented in Zfitter (left olumn) and from the �tting formula in Ref. [70℄(right olumn). (b) Convergene of the expansion in m�2t for the two-loop diagrams with toppropagators. Here �[mkt ℄ = [sin2 �lepte� ℄(�2mkt )=[sin2 �lepte� ℄(�2exat) � 1 is the relative di�erenebetween the exat and the expanded result at the given order.Geometri progression Sale dependene Leading mt termsO(�2�s) beyond leading m4t 3:3 : : : 2:8� 10�5 0:8 : : : 2:1� 10�5 1:2 : : : 4:3� 10�5O(��3s ) 1:5 : : : 1:4 0:3 : : : 0:2O(�3) beyond leading m6t 2:5 : : : 3:5 0:3 : : : 0:8Sum 4:4 : : : 4:7� 10�5Table 4: Estimation of the unertainty from di�erent higher order ontributions for sin2 �lepte� ,with the quadrati sum of all error soures. Where appliable, two or three di�erent methodsfor the error estimate have been used.higher order e�ets are ontributions with an additional QCD loop, it is assumed in thefollowing that these anellations are natural and it is justi�ed to study the theoretial errorof both quantities �r and �� in onjuntion.A simple method to estimate the higher order unertainties is based on the assumptionthat the perturbation series follows roughly a geometri progression. This presumptionimplies relations like O(�2�s) = O(�2)O(�) O(��s): (47)From this one obtains the error estimates in the seond olumn of Tab. 4 for the di�erenthigher order ontributions, whih are given for a range of the Higgs MH mass between 10GeV and 1000 GeV. To aount for possible deviations from the geometri series behavior,an ad-ho overall fator p2 was inluded in all error determined via this method.Alternatively, the error from a higher-order QCD loop an be assessed by varying the saleof the strong oupling onstant �s or the top-quark mass mt in the MS sheme in the highest21



available perturbation order. By varying thus the sale � ofmt;MS in the O(�2) ontributionsbetween m2t=2 < �2 < 2m2t one obtains an error estimate for the O(�2�s) ontributionsbetween 0.1 and 3:9� 10�5, depending on the value of MH for 10 GeV < MH < 1000 GeV.Similarly, by varying �s(�) in the O(��2s ) orretions between m2t=2 < �2 < 2m2t leads toan error estimate for the O(��3s) ontributions of less than 10�6, see Tab. 4.An independent third estimate of the error of the O(�2�s) and O(�3) ontributions anbe obtained from the existing leading terms in the expansion for large top quark mass.Experiene from the O(�2) orretions suggests that for moderate values of MH, the leadingmt-term and the remaining non-leading terms are of similar order. These ontributions areshown in the last olumn of Tab. 4.As evident from the table, all methods give results of similar order of magnitude, whilethe geometri progression method tends to lead to the largest error evaluation. The totalestimated error is therefore omputed by summing in quadrature the error from di�erentontributions obtained by this method. It is found to amount to Æthsin2 �lepte� = 4:7� 10�5.5.3 Parametrization formulaeFollowing Ref. [26℄, the numerial results are expressed in terms of a �tting formula, whihreprodues the exat alulation with maximal and average deviations of 4:5 � 10�6 and1:2 � 10�6, respetively, as long as the input parameters stay within their 2� ranges andthe Higgs boson mass in the range 10 GeV � MH � 1 TeV. For the sake of omparabilitywith the result of Ref. [26℄, the slightly outdated entral values for the experimental inputparameters used there are also kept in the formulasin2 �fe� = s0 + d1LH + d2L2H + d3L4H + d4(�2H � 1) + d5��+ d6�t + d7�2t + d8�t(�H � 1) + d9��s + d10�Z ; (48)with LH = log� MH100 GeV� ; �H = MH100 GeV ; �� = ��0:05907 � 1;�t = � mt178:0 GeV�2 � 1; ��s = �s(MZ)0:117 � 1; �Z = MZ91:1876 GeV � 1: (49)The values of the oeÆients for the e�etive leptoni weak mixing angle sin2 �lepte� are givenin the seond olumn of Tab. 5. This parametrization inludes all relevant known orretionsat this time, as in eq. (46).For some purposes, it is however useful to have a numerial result for the two-loopeletroweak form fators �� and �r alone. For ��, the following parametrization providesa good approximation,��(�2) = ����(�) +��(�2)rem ; (50)��(�2)rem = k0 + k1LH + k2L2H + k3L4H + k4(�2H � 1) + k5�t + k6�2t + k7�tLH+ k8�W + k9�W�t + k10�Z ; (51)22



with �W = MW80:404 GeV � 1: (52)From a �t to the exat omputation, the oeÆients are obtained ask0 = �0:002711; k1 = �3:12� 10�5; k2 = �4:12� 10�5; k3 = 5:28� 10�6;k4 = 3:75� 10�6; k5 = �5:16� 10�3; k6 = �2:06� 10�3; k7 = �2:32� 10�4;k8 = �0:0647; k9 = �0:129; k10 = 0:0712: (53)This reprodues the exat result for ��(�2) with maximal deviations of 1:8 � 10�5 for 10GeV � MH � 1 TeV and the other input parameters in their 2� ranges. This error in�� orresponds to an error of 4� 10�6 for sin2 �lepte� . Sine the experimental values for thetop quark mass and the W -boson mass might hange substantially with future updates ofmeasurements from the Tevatron and the LHC, it is useful to see how well the �tting formulaworks for larger ranges of these two parameters. If the top quark mass and the W -bosonmass vary within 4� of their urrent experimental unertainty, the formula eq. (50) is stillaurate to 3:6� 10�5, orresponding to an error of 8� 10�6 for sin2 �lepte� .Similarly, for �r, the numerial result an be ast into the form�r(�2) = (��)2 + 2���r(�) +�r(�2)rem ; (54)�r(�2)rem = r0 + r1LH + r2L2H + r3L4H + r4(�2H � 1) + r5�t + r6�2t + r7�tLH+ r8�W + r9�W�t + r10�Z ; (55)wherer0 = 0:003354; r1 = �2:09� 10�4; r2 = 2:54� 10�5; r3 = �7:85� 10�6;r4 = �2:33� 10�6; r5 = 7:83� 10�3; r6 = 3:38� 10�3; r7 = �9:89� 10�6;r8 = 0:0939; r9 = 0:204; r10 = �0:103: (56)This agrees with the exat result within maximal deviations of 2:7�10�5 for 10 GeV �MH �1 TeV and the other input parameters in their 2� ranges, orresponding to an error of 0.4MeV for MW and 8 � 10�6 for sin2 �lepte� . For the top quark mass and the W -boson massvarying in their 4� ranges, the formula eq. (54) is aurate to 4:3� 10�5, orresponding toan error of 0.65 MeV for MW and 12:5� 10�6 for sin2 �lepte� .5.4 Results for other fermion avorsThe results presented in the previous setions and in Refs. [26, 27℄ give the e�etive weakmixing angle sin2 �lepte� de�ned for the leptoni Zl+l� vertex. For the Zf �f vertex with otherlight avors f = �; u; d in the �nal state, there are small but non-zero di�erenes withrespet to the leptoni e�etive weak mixing angle. In this setion, results are given forsin2 �fe� for di�erent �nal state fermions exept b-quarks. For the b�b �nal state, the two-loop23



f e; �; � �e;�;� u;  d; ss0 0.2312527 0.2308772 0.2311395 0.2310286d1 [10�4℄ 4.729 4.713 4.726 4.720d2 [10�5℄ 2.07 2.05 2.07 2.06d3 [10�6℄ 3.85 3.85 3.85 3.85d4 [10�6℄ �1.85 �1.85 �1.85 �1.85d5 [10�2℄ 2.07 2.06 2.07 2.07d6 [10�3℄ �2.851 �2.850 �2.853 �2.848d7 [10�4℄ 1.82 1.82 1.83 1.81d8 [10�6℄ �9.74 �9.71 �9.73 �9.73d9 [10�4℄ 3.98 3.96 3.98 3.97d10[10�1℄ �6.55 �6.54 �6.55 �6.55Table 5: CoeÆient of the �tting formulae eq. (48) for di�erent �nal states f �f .eletroweak orretions are still missing, sine they involve new topologies with additionaltop-quark propagators.Sine the numerial e�et of the fermioni eletroweak two-loop orretions is muh largerthan the orresponding bosoni ontributions, only the fermioni O(�2) diagrams are takeninto aount. As before, the omplete one-loop orretions and the (avor independent)ontributions of order O(��s), O(��2s ), O(�2�sm4t ) and O(�3m6t ) are also inluded.As before, the numerial results are expressed through the parametrization in eq. (48),whih reprodues the exat alulation with maximal deviations of 4:5 � 10�6, when theinput parameters stay within their 2� ranges and the Higgs boson mass in the range 10 GeV�MH � 1 TeV. The values of the oeÆients for the various �nal state avors are listed inTab. 5.5.5 Implementation into global Standard Model �tsThe fermioni two-loop orretions and some higher-order ontributions as listed in eq. (46)are implemented in the urrent version 6.42 of the program Zfitter [35,71℄, whih is widelyused for global �ts of the Standard Model to eletroweak preision data [67℄. Due to theomplexity of the two-loop omputation, the implementation of the exat result was notpossible, so that instead the numerial �tting formula eq. (48) was inluded in the ode.More details an be found in Ref. [71℄.The �tting formula has been inorporated exatly only for the leptoni e�etive weakmixing angle sin2 �lepte� , i.e. for the Zl+l� vertex. Results for other light avors f = u; d; ; s; �in the �nal state are implemented in an approximate way, whih reprodues the omplete24



results of setion 5.4 within an error of about 10�5 for f = u; d; ; s and 2� 10�5 for f = �.For the b�b �nal state, no two-loop eletroweak orretions beyond the leading m4t areinluded in Zfitter 6.42. They shall beome available in a future version. However, theurrent version 6.42 was adjusted with respet to previous version to inlude omplete two-loop orretions in the initial state vertex for the proess e+e� ! (Z)! b�b, see Refs. [71,72℄for details.6 ConlusionIn this paper, the evaluation of the omplete two-loop ontributions to the e�etive weakmixing angle has been desribed, expatiating the omputational methods and the quantita-tive impliations of the new result.It was shown how the e�etive weak mixing angle an be de�ned at next-to-next-to-leading order through the vetor and axial-vetor ouplings of the Z-boson. The omputationof the vertex loop diagrams using two independent tehniques for the fermioni part and aombination of several omputational methods for the bosoni part was eluidated in detail.Numerial results for the e�etive weak mixing angle for di�erent �nal state avors weregiven in terms of aurate numerial parameterizations, whih are valid for Higgs masses upto 1 TeV. The new result has been ompared in detail with a previous result obtained by anexpansion in powers of mt up to next-to-leading order.Furthermore, the remaining theoretial unertainties due to unknown higher orders wereanalyzed and an overall unertainty of the e�etive leptoni weak mixing angle sin2 �lepte� of4:7� 10�5 was estimated.Eletroweak preision data allows very preise tests of the Standard Model at the quan-tum level and puts the strongest onstraints on the Higgs boson mass and new physis. Withthe ompletion of the eletroweak two-loop orretions, the auray of the eletroweak pre-ision test was signi�antly enhaned, with theoretial unertainties now under muh betterontrol.AknowledgementsWe are grateful to G. Weiglein and K. M�onig for useful disussions and ommuniations.We thank T. Riemann for helping to update the new version of Zfitter.The work of M. A. was supported by the BMBF grant No. 05 HT4GUA/4 and by theDFG grant No. SFB 676. The work of M. C. was supported by the Sofja Kovalevskaja Awardof the Alexander von Humboldt Foundation sponsored by the German Federal Ministry ofEduation and Researh. A. F. is supported by the Shweizer Nationalfonds.
25



Referenes[1℄ The LEP Collaborations, the LEP Eletroweak Working Group and the SLD Ele-troweak and Heavy Flavour Groups, hep-ex/0412015.[2℄ R. Hawkings and K. M�onig, Eur. Phys. J. diretC1, 8 (1999).[3℄ J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein and P. M. Zerwas, Phys. Lett. B 486,125 (2000).[4℄ A. Freitas, W. Hollik, W. Walter and G. Weiglein, Phys. Lett. B 495, 338 (2000)[Erratum-ibid. B 570, 260 (2003)℄,M. Awramik and M. Czakon, Phys. Lett. B 568, 48 (2003).[5℄ A. Freitas, W. Hollik, W. Walter and G. Weiglein, Nul. Phys. B 632,189 (2002)[Erratum-ibid. B 666, 305 (2003)℄.[6℄ M. Awramik and M. Czakon, Phys. Rev. Lett. 89, 241801 (2002);A. Onishhenko and O. Veretin, Phys. Lett. B 551, 111 (2003);M. Awramik, M. Czakon, A. Onishhenko and O. Veretin, Phys. Rev. D 68, 053004(2003).[7℄ M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Phys. Rev. D 69, 053006 (2004).[8℄ A. Sirlin, Phys. Rev. D 22, 971 (1980);W. J. Mariano and A. Sirlin, Phys. Rev. D 22, 2695 (1980) [Erratum-ibid. D 31, 213(1980)℄.[9℄ G. Degrassi and A. Sirlin, Nul. Phys. B 352, 342 (1991);P. Gambino and A. Sirlin, Phys. Rev. D 49, 1160 (1994).[10℄ M. J. Veltman, Nul. Phys. B 123 89 (1977).[11℄ D. Bardin et al., in Reports of the Working Group on Preision Calulations for theZ Resonane, eds. D. Bardin, W. Hollik, G. Passarino, CERN Yellow Report CERN95-03, p. 7 (1995).[12℄ W. Hollik, Preditions for e+e� Proesses, in Preision Tests of the Standard Model, ed.P. Langaker (World Sienti�, Singapur, 1993), p. 117.[13℄ A. Stremplat, Diploma thesis (Univ. of Karlsruhe, 1998).[14℄ J. J. van der Bij, K. G. Chetyrkin, M. Faisst, G. Jikia and T. Seidenstiker, Phys. Lett.B 498, 156 (2001);M. Faisst, J. H. K�uhn, T. Seidenstiker and O. Veretin, Nul. Phys. B 665, 649 (2003).[15℄ R. Boughezal, J. B. Tausk and J. J. van der Bij, Nul. Phys. B 713, 278 (2005);R. Boughezal, J. B. Tausk and J. J. van der Bij, Nul. Phys. B 725, 3 (2005).26



[16℄ A. Djouadi and C. Verzegnassi, Phys. Lett. B 195, 265 (1987);A. Djouadi, Nuovo Cim. A 100, 357 (1988);B. A. Kniehl, Nul. Phys. B 347, 86 (1990);F. Halzen and B. A. Kniehl, Nul. Phys. B 353, 567 (1991);B. A. Kniehl and A. Sirlin, Nul. Phys. B 371, 141 (1992);B. A. Kniehl and A. Sirlin, Phys. Rev. D 47, 883 (1993);A. Djouadi and P. Gambino, Phys. Rev. D 49, 3499 (1994) [Erratum-ibid. D 53, 4111(1996)℄.[17℄ L. Avdeev, J. Fleisher, S. Mikhailov and O. Tarasov, Phys. Lett. B 336, 560 (1994)[Erratum-ibid. B 349, 597 (1994)℄;K. G. Chetyrkin, J. H. K�uhn and M. Steinhauser, Phys. Lett. B 351, 331 (1995);K. G. Chetyrkin, J. H. K�uhn and M. Steinhauser, Phys. Rev. Lett. 75, 3394 (1995).[18℄ Y. Shr�oder and M. Steinhauser, Phys. Lett. B 622, 124 (2005);K. G. Chetyrkin, M. Faisst, J. H. K�uhn, P. Maierhoefer and C. Sturm, hep-ph/0605201;R. Boughezal and M. Czakon, hep-ph/0606232.[19℄ K. G. Chetyrkin, J. H. K�uhn and M. Steinhauser, Nul. Phys. B 482, 213 (1996).[20℄ J. van der Bij and M. J. Veltman, Nul. Phys. B 231, 205 (1984).[21℄ J. J. van der Bij and F. Hoogeveen, Nul. Phys. B 283, 477 (1987).[22℄ R. Barbieri, M. Bearia, P. Ciafaloni, G. Curi and A. Viere, Phys. Lett. B 288, 95(1992) [Erratum-ibid. B 312, 511 (1993)℄;R. Barbieri, M. Bearia, P. Ciafaloni, G. Curi and A. Viere, Nul. Phys. B 409, 105(1993);J. Fleisher, O. V. Tarasov and F. Jegerlehner, Phys. Lett. B 319, 249 (1993);J. Fleisher, O. V. Tarasov and F. Jegerlehner, Phys. Rev. D 51, 3820 (1995).[23℄ G. Degrassi, P. Gambino and A. Sirlin, Phys. Lett. B 394, 188 (1997).[24℄ G. Weiglein, Ata Phys. Polon. B 29, 2735 (1998).[25℄ P. Gambino, A. Sirlin and G. Weiglein, JHEP 9904, 025 (1999).[26℄ M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Phys. Rev. Lett. 93, 201805(2004);M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Nul. Phys. Pro. Suppl. 135,119 (2004);M. Awramik, M. Czakon, A. Freitas and G. Weiglein, in Pro. of the InternationalConferene on Linear Colliders (LCWS 04), Paris, Frane, 19-24 Apr 2004 [hep-ph/0409142℄.[27℄ M. Awramik, M. Czakon and A. Freitas, hep-ph/0605339.27



[28℄ W. Hollik, U. Meier and S. Uirati, Nul. Phys. B 731, 213 (2005).[29℄ W. Hollik, U. Meier and S. Uirati, Phys. Lett. B 632, 680 (2006).[30℄ S. Willenbrok and G. Valenia, Phys. Lett. B 259, 373 (1991);A. Sirlin, Phys. Rev. Lett. 67, 2127 (1991);R. G. Stuart, Phys. Lett. B 262, 113 (1991).[31℄ H. Veltman, Z. Phys. C 62, 35 (1994).[32℄ M. Passera and A. Sirlin, Phys. Rev. D 58, 113010 (1998);P. Gambino and P. A. Grassi, Phys. Rev. D 62, 076002 (2000);A. R. Bohm and N. L. Harshman, Nul. Phys. B 581 91 (2000).[33℄ D. Y. Bardin, A. Leike, T. Riemann and M. Sahwitz, Phys. Lett. B 206, 539 (1988).[34℄ U. Baur et al., hep-ph/0202001, in Pro. of the APS/DPF/DPB Summer Study on theFuture of Partile Physis (Snowmass 2001) eds. R. Davidson and C. Quigg.[35℄ D. Y. Bardin, P. Christova, M. Jak, L. Kalinovskaya, A. Olhevski, S. Riemann andT. Riemann, Comput. Phys. Commun. 133, 229 (2001).[36℄ M. B�ohm and W. Hollik, Nul. Phys. B 204, 45 (1982).;S. Jadah, J. H. K�uhn, R. G. Stuart and Z. W�as, Z. Phys. C 38, 609 (1988) [Erratum-ibid. C 45, 528 (1990)℄.[37℄ F. A. Berends, W. L. van Neerven and G. J. H. Burgers, Nul. Phys. B 297, 429 (1988)[Erratum-ibid. B 304, 921 (1988)℄;F. A. Berends et al, in Z Physis at LEP 1, eds. G. Altarelli, R. Kleiss and C. Verzegnassi(CERN-89-08), p. 89;M. Skrzypek and S. Jadah, Z. Phys. C 49, 577 (1991);M. Skrzypek, Ata Phys. Polon. B 23, 135 (1992);M. Caiari, A. Deandrea, G. Montagna and O. Nirosini, Europhys. Lett. 17, 123(1992).[38℄ M. Greo, G. Panheri-Srivastava and Y. Srivastava, Nul. Phys. B 171, 118 (1980)[Erratum-ibid. B 197, 543 (1982)℄;F. A. Berends, R. Kleiss and S. Jadah, Nul. Phys. B 202, 63 (1982).[39℄ A. B. Arbuzov, D. Y. Bardin and A. Leike, Mod. Phys. Lett. A 7, 2029 (1992) [Erratum-ibid. A 9, 1515 (1994)℄.[40℄ S. Jadah, B. F. L. Ward and Z. W�as, Comput. Phys. Commun. 79, 503 (1994).[41℄ M. L. Nekrasov, talk presented at the XVth International Workshop High EnergyPhysis and Quantum Field Theory, Tver, September 2000, hep-ph/0102284;B. A. Kniehl and A. Sirlin, Phys. Lett. B 530, 129 (2002).28



[42℄ A. I. Davydyhev and J. B. Tausk, Nul. Phys. B 397, 123 (1993).[43℄ S. Bauberger, F. A. Berends, M. B�ohm and M. Buza, Nul. Phys. B 434, 383 (1995).[44℄ S. Bauberger and M. B�ohm, Nul. Phys. B 445, 25 (1995).[45℄ G. Degrassi, P. Gambino and A. Viini, Phys. Lett. B 383, 219 (1996).[46℄ B. A. Kniehl and J. H. K�uhn, Nul. Phys. B 329, 547 (1990).[47℄ A. V. Kotikov, Phys. Lett. B 259, 314 (1991);E. Remiddi, Nuovo Cim. A 110, 1435 (1997).[48℄ K. G. Chetyrkin and F. V. Tkahov, Nul. Phys. B 192, 159 (1981).[49℄ R. J. Gonsalves, Phys. Rev. D 28, 1542 (1983);G. Kramer and B. Lampe, J. Math. Phys. 28, 945 (1987).[50℄ N. Nielsen, Nova Ata Leopoldina (Halle) 90, 123 (1909).[51℄ L. Lewin, Polylogarithms and Assoiated Funtions, North Holland (1981).[52℄ B. Feuht, J. H. K�uhn and S. Moh, Phys. Lett. B 561, 111 (2003).[53℄ U. Aglietti and R. Boniani, Nul. Phys. B 668, 3 (2003);U. Aglietti and R. Boniani, Nul. Phys. B 698, 277 (2004).[54℄ S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000).[55℄ T. Gehrmann and E. Remiddi, Nul. Phys. B 580, 485 (2000).[56℄ M. Czakon, DiaGen/IdSolver (unpublished);see also M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Nul. Phys. Pro. Suppl.135, 119 (2004).[57℄ A. Czarneki, U. Kilian and D. Kreimer, Nul. Phys. B 433, 259 (1995);A. Frink, B. A. Kniehl, D. Kreimer and K. Riesselmann, Phys. Rev. D 54, 4548 (1996);A. Frink, U. Kilian and D. Kreimer, Nul. Phys. B 488, 426 (1997).[58℄ A. Ghinulov and J. J. van der Bij, Nul. Phys. B 436, 30 (1995).[59℄ M. Czakon, hep-ph/0511200.[60℄ V. A. Smirnov, Phys. Lett. B 460, 397 (1999);J. B. Tausk, Phys. Lett. B 469, 225 (1999).[61℄ C. Anastasiou and A. Daleo, hep-ph/0511176.[62℄ V. A. Smirnov, \Applied asymptoti expansions in momenta and masses", Springer,Berlin, Germany (2002). 29



[63℄ A. V. Kotikov, Phys. Lett. B 254, 158 (1991);A. V. Kotikov, Phys. Lett. B 259, 314 (1991).[64℄ E. Remiddi, Nuovo Cim. A 110, 1435 (1997).[65℄ T. Binoth and G. Heinrih, Nul. Phys. B 585, 741 (2000);T. Binoth and G. Heinrih, Nul. Phys. B 680, 375 (2004).[66℄ M. Czakon, M. Awramik and A. Freitas, in Pro. of 7th International Symposium onRadiative Corretions (RADCOR 2005), Shonan Village, Kanagawa, Japan, 2-7 Ot2005 [hep-ph/0602029℄.[67℄ http://lepewwg.web.ern.h/LEPEWWG/.[68℄ S. Eidelman et al. [Partile Data Group Collaboration℄, Phys. Lett. B 592, 1 (2004);also 2005 partial update for edition 2006, available on http://pdg.lbl.gov.[69℄ D. Y. Bardin, A. Leike, T. Riemann and M. Sahwitz, Phys. Lett. B 206, 539 (1988).[70℄ G. Degrassi, P. Gambino, M. Passera and A. Sirlin, Phys. Lett. B 418, 209 (1998).[71℄ A. B. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M. W. Gr�unewald, K. M�onig,S. Riemann, T. Riemann, Comput. Phys. Commun. 174, 728 (2006).[72℄ A. Freitas and K. M�onig, Eur. Phys. J. C 40, 493 (2005).

30


