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DESY 06-107SFB/CPP-06-31TTP06-22Fermioni Corretions to the Three-Loop MathingCoeÆient of the Vetor CurrentP. Marquard(a), J.H. Pilum(a;b), D. Seidel(a) , M. Steinhauser(a)(a) Institut f�ur Theoretishe Teilhenphysik, Universit�at Karlsruhe (TH)76128 Karlsruhe, Germany(b) II. Institut f�ur Theoretishe Physik, Universit�at Hamburg22761 Hamburg, GermanyAbstratIn this paper we onsider the mathing oeÆient of the vetor urrent betweenQuantum Chromodynamis (QCD) and Non-Relativisti QCD (NRQCD) to three-loop order in perturbation theory. We evaluate the fermioni orretions ontaininga losed massless fermion loop. The results are building bloks both for the bottomand top quark system at threshold. We explain in detail the methods used for theevaluation of the Feynman diagrams, lassify the ourring master integrals andprovide results for the latter. The numerial e�ets are signi�ant. They have thetendeny to improve the behaviour of the perturbative series | both for the bottomand top quark system.PACS numbers: 12.38.Bx 14.65.Ha



1 IntrodutionOne of the main goals of a future international linear ollider (ILC) is the preise mea-surement of the top quark threshold. Next to a preise extration of the strong ouplingan unrivaled determination of the top quark mass and its width is possible. This wouldopen up a new hapter in the eletroweak preision physis whih leads to very strongheks of the Standard Model or possible extensions.The theoretial alulations are based on an e�etive theory [1,2℄ (for a review see [3℄)whih enables the simultaneous expansion in the two small parameters present in thresholdphenomena, the strong oupling �s and the veloity of the heavy quarks, v. Furthermore,a resummation of orretion terms like (�s=v)n to all orders is possible in perturbationtheory. In a �rst step the e�etive theory is onstruted in a mathing proedure whereit is required that the Green funtions agree with the orresponding ones in full QCD inthe limit of in�nitely heavy top quark mass. In a seond step the Green funtion in thee�etive theory has to be evaluated leading to the desired ross setion.Experimental studies [4℄ have shown that an unertainty of less than 3% is neessaryfor the theoretial preditions for the ross setion of the reation e+e� ! t�t in thethreshold region, i.e. for ps � 350 GeV. This has not yet been ahieved.As far as the strong oupling is onerned urrently the analysis is omplete to next-to-next-to-leading order (NNLO) [5℄ demonstrating the urgent need for the third-orderorretions. This huge enterprise has been started already some years ago and manybuilding bloks have been evaluated starting from the determination of the third-orderHamiltonian [6℄, third-order orretions to the energy levels and wave funtions [7{9℄ upto the evaluation of the ontributions from the Coulomb potential to the non-relativistiGreen funtion [9℄. Next to �xed-order orretions also the resummation of next-to-next-to leading logarithmi terms has been onsidered and quite some progress has beenahieved [10{13℄.In order to reah a theory-unertainty below 3% it is also neessary to worry abouteletroweak e�ets whih an be parametrially as big as the third-order QCD terms.First results in this ontext are available [14,15℄ whih show that indeed numerial e�etsin the region of a few perent are possible.In this paper a further building blok needed for the N3LO analysis is provided: thefermioni orretions to the mathing oeÆient of the vetor urrent. More preisely weompute the three-loop ontributions to the mathing oeÆient ontaining at least onelosed loop of massless fermions whih we enumerate by nl.The paper is organized as follows: in the next setion we desribe in detail the theo-retial framework and the methods used for the alulation. In partiular, we lassify theourring integrals and disuss their evaluation. Setions 3 and 4 ontain a detailed dis-ussion about the wave funtion and mathing oeÆient up to order �3snl, respetively.In Setion 5 we briey disuss the phenomenologial impat of our result and Setion 6ontains our onlusions and outlook. In the Appendix a omplete list of master integralsis provided | both for the \natural" and the �-�nite basis.2



2 MethodThe mathing oeÆient establishing the relation between the quark urrent in the fulland e�etive theory onstitutes a building blok for all threshold phenomena involvingthe oupling of a photon or Z boson to heavy quarks. We de�ne the urrents throughj�v = �Q�Q ;~ji = �y�i� ; (1)and generially denote the heavy quark byQ. � and � are two-omponent Pauli spinors forquark and anti-quark, respetively. The de�nition of the mathing oeÆient is establishedthrough jkv = v(�)~jk + dv(�)6m2Q �y�k ~D2�+ : : : ; (2)where k = 1; 2; 3 denotes the spaial omponents. ~D ontains the spae-like omponents ofthe gauge-ovariant derivative involving the gluon �elds and the ellipsis stand for operatorsof higher mass dimension. The seond term on the r.h.s. of Eq. (2) is already of NNLOwith dv = 1 + O(�s). The Wilson oeÆients v and dv may be expressed as series in�s and represent the ontributions from the hard modes whih have been integrated outin order to arrive at the e�etive theory. Note that both the higher order terms in theinverse heavy quark mass and the time-like omponent is not of interest for the aim ofthis paper. The purpose of this paper is the evaluation of the fermioni orretion to thenon-singlet ontribution of v ontaining at least one losed massless quark loop. Theone-loop orretions to dv ontain no ontribution proportional to nl.In order to ompute v it is obvious to onsider the Q �Q vertex whih in the followingis denoted by �v. This e�etively transforms Eq. (2) intoZ2�v = v ~Z2 ~Z�1v ~�v + : : : ; (3)where we have on the left- and right-hand side quantities of the full and e�etive theory,respetively, and the ellipses denote terms suppressed by inverse powers of the heavy quarkmass. In Eq. (3) it is understood that the ouplings and masses in �v are renormalized.Sine v takes into aount the degrees of freedom whih have been integrated outfrom the full theory it depends in our ase only on �s and | for dimensional reasons |on ln�2=m2Q. In partiular, v does not expliitly depend on the momenta of the externalpartiles. Thus, it is useful to apply the so-alled threshold expansion [16, 17℄ to Eq. (3)whih has the onsequene that �v has to be evaluated for s = 4m2Q sine all exept thehard region anel in Eq. (3). Furthermore, on the right-hand side only tree ontributionshave to be onsidered. In partiular we have ~Z2 = 1.Starting from two-loop order the mathing proedure exhibits infra-red divergeneswhih are ompensated by ultra-violet divergenes of the e�etive theory rendering phys-ial quantities �nite. In Eq. (3) the renormalization onstant ~Zv whih generates the3



Figure 1: Feynman diagrams ontributing to the mathing oeÆient. Bold lines denoteheavy quarks with mass mQ, thin lines denote massless quarks and urly lines denotegluons. In (d) and (h) mass ounterterm diagrams are shown.anomalous dimension of ~jv takes over this part. Note that the vetor urrent in the fulltheory does not get renormalized.Sample Feynman diagrams ontributing to the one-, two- and three-loop fermioni partof v are shown in Fig. 1. Due to the speial kinemati situation with s = q2 = 4m2Q andon-shell heavy quark lines it is possible to perform a partial frationing in the integrandsorresponding to the various types of diagrams and map all ourring integrals to one ofthe following funtions:J (2)� (n1; : : : ; n5) = � �2�i�d=2�2 Z ddk ddl(k2)n1(l2)n2((k � l)2)n3(k2 + q � k)n4(l2 � q � l)n5 ;L(2)� (n1; : : : ; n5) =� �2�i�d=2�2 Z ddk ddl(k2)n1(l2)n2((k + l)2 + q � (k + l))n3(k2 + q � k)n4(l2 � q � l)n5 ;J (3)� (n1; : : : ; n9) = � �2�i�d=2�3 Z ddk ddl ddp(k2)n1(l2)n2(p2)n3((k � l)2)n4((l � p)2)n5((p� k)2)n6� (l2 + q � l)�n8(k2 + q � k)n7(p2 � q � p)n9 ;L(3;nl)� (n1; : : : ; n9) = � �2�i�d=2�3 Z ddk ddl ddp(k2)n1(l2)n2((k + l)2 + q � (k + l))n3(k2 + q � k)n4� (p2 + q � p)�n9(l2 � q � l)n5(p2)n6((p + k)2)n7((p � l)2)n8 : (4)For onveniene we have also listed the two-loop funtions J (2)� and L(2)� originally de�nedin Ref. [16℄. The three-loop funtions J (3)� and L(3;nl)� ontain irreduible salar produts4



whih are shown as numerators in the three-loop integrals in Eq. (4). The orrespondingindies an only adopt values less or equal to zero. Furthermore, only two out of the threeindies n6, n7 and n8 in L(3;nl)� an have positive values. Note that the integrals J (2)+ , L(2)+and J (3)+ are atually two-point funtions whereas the integrals J (2)� , L(2)� , J (3)� and L(3;nl)�orrespond to verties.All Feynman diagrams are generated with QGRAF [18℄. The various topologies areidenti�ed with the help of q2e and exp [19,20℄ whih also adapts the notation in order tomath the one of Eq. (4).In a next step the redution of the various funtions to so-alled master integrals hasto be ahieved. For this step we have hosen two approahes: the Laporta method [21,22℄and Baikov's method [23,24℄ in the formulation of [25℄. The appliation of these methodsredues the three-loop integrals to twelve master integrals. Sine some of the masterintegrals are only known numerially it is very useful to onstrut a so-alled �-�nitebasis [26℄. Details of this proedure and the results for the master integrals are given inAppendix A. Let us in the following provide more details on our implementation of eahof the two redution methods.2.1 Implementation of the Laporta algorithmThe Laporta algorithm is based on the integration-by-parts (IBP) relations [27℄ where ina �rst step a huge system of equations is reated by inserting numerial integer valuesinto the relations. After assigning a weight speifying the omplexity to eah ourringintegral the system of equations is solved step-by-step. In this way an arbitrary integralis expressed in terms of master integrals whih annot be further redued.To date there is only one publily available omputer ode, AIR [28℄, where the Laportaalgorithm is implemented. We have suessfully applied AIR to the two-loop diagrams.However, the three-loop integrals of Eq. (4) annot be treated with the help of AIR.For this reason we have hosen to write a new implementation of Laporta's algorithm,Crusher [29℄. It is written in C++ and uses GiNaC [30℄ for simple manipulations like takingderivatives of polynomial quantities. In the pratial implementation of the Laporta algo-rithm one of the most time-onsuming operations is the simpli�ation of the oeÆientsappearing in front of the individual integrals. This task is performed with the help ofFermat [31℄ where a speial interfae has been used (see Ref. [32℄). The main features ofthe implementation are the automated generation of the IBP identities and a ompletesymmetrization of the diagrams. Using Crusher we solved approximately forty millionequations to redue all integrals to master integrals.2.2 Baikov's methodBaikov's method is also based on the IBP relations. Here, however, one expliitly on-struts the oeÆient funtions of the master integrals as parametri integrals over somepolynomial, whih enodes the topology of the initial integral. The integrations an then5



be performed as Cauhy integrations around the origin or as ontour integrations be-tween the roots of the polynomial. The results are rational funtions depending on thedimension and the kinematial invariants.In some ases, however, it is not possible to perform the integrations in this way. Inthese ases one has to solve the integration-by-parts relations for the parametri integrals.They are similar to the relations for the initial integral, however, they depend on lessindies and are thus in general signi�antly simpler. Sine the relations an still be quiteompliated, it is onvenient to again use Laporta's algorithm. In the urrent alulationthe program AIR was used for this task.In order to perform the alulations, the algorithms for eah integral were implementedin FORM [33℄. In a �rst step, however, everything was implemented in Mathematia. Thisis very onvenient sine it is possible to produe almost all needed Mathematia odeautomatially. One the program is �nished, it an be easily translated to FORM and theMathematia version an be used for debugging.The two-loop alulation was done entirely with this method. In the three-loop ase,however, it turned out that a omplete solution of the reurrene relations for the oef-�ient funtions is not possible with AIR. The alulation was therefore done with theLaporta method desribed above. We used Baikov's method only for the n2l part and toross-hek some of the oeÆient funtions.3 Wave funtion renormalization onstantAording to Eq. (3) the wave funtion renormalization onstant in the on-shell shemeZ2 onstitutes a ruial input for the omputation of v. It has been omputed to two-and three-loop approximation in Refs. [34℄ and [35℄, respetively. We have repeated thealulation of the two-loop and fermioni three-loop ontributions whih are needed forthe present alulation and �nd omplete agreement with the literature. For ompletenesswe repeat the result for Z2 whih an be ast into the formZ2 = 1 + �s(�)� �eE4� ��� ÆZ(1)2 +��s(�)� �2�eE4� ��2� ÆZ(2)2+��s(�)� �3�eE4� ��3� �ÆZ(3;nl)2 + non-nl terms�+O ��4s� ; (5)with ÆZ(1)2 = �CF � 34� + 1 + 34L� +�2 + 116�2 + L� + 38L2�� �+�4 + 112�2 � 14�(3) +�2 + 116�2�L� + 12L2� + 18L3�� �2� ; (6)6



ÆZ(2)2 = � 1132�2 � 127192� � 1705384 + 516�2 � 12�2 ln 2 + 34�(3)� 21596 L� � 1132L2�+��9907768 + 7691152�2 � 238 �2 ln 2 + �2 ln2 2 + 12916 �(3)� 740�4 + 12 ln4 2 + 12a4+��2057192 + 109192�2 � �2 ln 2 + 32�(3)�L� � 25996 L2� � 1132L3�� ��CACF+ � 932�2 +�5164 + 916L�� 1� + 433128 � 4964�2 + �2 ln 2� 32�(3) + 5132L� + 916L2�+�211256 � 339128�2 + 234 �2 ln 2� 2�2 ln2 2� 29716 �(3) + 720�4 � ln4 2 � 24a4+�43364 � 4932�2 + 2�2 ln 2 � 3�(3)�L� + 5132L2� + 38L3�� ��C2F+ �� 116 + 14L�� 1� + 947288 � 516�2 + 1124L� + 38L2� +�179711728 � 445288�2+2�2 ln 2 � 8512�(3) +�1043144 � 2948�2�L� + 58L2� + 724L3�� ��CFT+ �� 18�2 + 1148� + 11396 + 112�2 + 1924L� + 18L2�++�851192 + 127288�2 + �(3) +�14548 + 316�2�L� + 2324L2� + 18L3�� ��CFTnl (7)
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andÆZ(3;nl)2 = CFTnl�� 1172�3 � 169432�2 +� 3131296 + 14�(3)� 1�+11179115552 + 1348�2 + 4736�2 ln 2 � 29�2 ln2 2� 3572�(3) + 191080�4 � 19 ln4 2 � 83a4+�16927 � 118�2 + 13�2 ln 2 + 14�(3)�L� + 469288L2� + 1172L3��CA+ � 332�3 +�� 19192 + 332L�� 1�2 +��235384 � 7128�2 � 14�(3)� 4164L� � 364L2�� 1��30832304 + 28452304�2 � 4718�2 ln 2 + 49�2 ln2 2 + 47396 �(3) � 2292160�4 + 29 ln4 2 + 163 a4+��1475384 + 133384�2 � 23�2 ln 2 + 14�(3)�L� � 179128L2� � 1164L3��CF+ �� 136 + 112L�� 1�2 +�� 5216 + 1144�2 � 19L� + 124L2�� 1��47211296 + 1954�2 � 136�(3) +��329108 + 25144�2�L� � 712L2� � 572L3��T+ �� 136�3 + 11216�2 + 51296� � 57677776 � 19108�2 � 718�(3)��167216 + 118�2�L� � 1972L2� � 136L3�� Tnl� ; (8)where L� = ln(�2=m2Q), CF = (N2 � 1)=(2N), CA = N, T = 1=2 and nl = nf � 1 isthe number of light-quark avours. N = 3 and �s is the strong oupling renormalizedin the MS sheme with nf ative avours. �(3) is Riemann's � funtion with the value�(3) = 1:202057 : : :, E is Euler's onstant with the value E = 0:577216 : : : and a4 =Li4(1=2) = 0:517479 : : :. Note that ÆZ(1)2 and ÆZ(2)2 are given to order �2 and �, respetively,whih is needed for the three-loop alulation of v.The integrals needed for Z2 onstitute a subset of the ones needed for v. In fat, fromEq. (4) only the integral types with a \+" sign ontribute. We also want to mention thatour alulation poses the �rst independent hek of the nl part of Ref. [35℄.4 Mathing oeÆientIt is onvenient to ast the perturbative expansion of the mathing oeÆient in the formv = 1 + �s(�)� (1)v +��s(�)� �2 (2)v +��s(�)� �3 (3)v +O(�4s) ; (9)8



where the one- [36℄ and two-loop [37,38℄ (see also Ref. [39℄) terms are given by(1)v = �2CF(2)v = ��15172 + 89144�2 � 56�2 ln 2 � 134 �(3)�CACF+�238 � 7936�2 + �2 ln 2� 12�(3)�C2F +�229 � 29�2�CFT+1118CFTnl � 12 �4�0 + �2�12CA + 13CF��CF ln �2m2Q ; (10)with �0 = (11CA=3 � 4Tnf=3)=4. Note that the terms proportional to �0 ln �2m2Q are on-neted to the hoie �s(�) in Eq. (9) whereas the ones proportional to �2 ln �2m2Q originatefrom the separation of hard and soft sales in the onstrution of NRQCD.The deomposition of (3)v aording to the olour strutures is given by(3)v = CFTnl (CF FFL + CAFAL + TFHL + TnlFLL) + non-nl terms : (11)In the notation of Eq. (3) it is understood that in �v the renormalization of the ou-pling onstant and heavy quark mass is already performed. The renormalization of theoupling onstant an be done straightforwardly by replaing the bare oupling with therenormalization onstant times the renormalized oupling. The mass renormalization,however, is more intriate sine we are dealing with on-shell integrals. It is therefore on-venient to alulate the ounterterms diretly by onsidering one- and two-loop diagramswith zero-momentum insertions in the massive fermion lines. Sample diagrams are shownin Fig. 1(d) and (h). The vertex denoted by a ross is replaed by the mass renormal-ization onstant in the on-shell sheme. One-loop diagrams with two insertions are notneeded at the order onsidered in this paper.Starting from three-loop level the wave funtion renormalization onstant begins todepend on the QCD gauge parameter, � [35℄. However, it is interesting to note that theolour strutures entering our result (f. Eq. (8)) are independent of �. As a onsequenethe quantity �v also has to be independent of � whih is indeed the ase in our alula-tion. Atually, the � dependene remaining in the sum of all genuine three-loop diagramsontributing to �v is aneled by the ontribution where a two-loop mass ounterterm isinserted in the one-loop vertex diagram (f. Fig. 1(d)). Note that the mass ountertermontribution from the two-loop fermioni diagram (f. Fig. 1(h)) is � independent. Theanellation of the gauge parameter serves as a welome hek for the orretness of ourresult.As already mentioned above, after taking into aount all ounterterm ontributionsthere are still infra-red divergenes left in the quantity Z2�v and thus in v ~Z�1v . This is aonsequene of the threshold expansion aompanied by dimensional regularization whihis used to extrat the mathing oeÆient. Alternatively it would have been possible tohoose a ut-o� for the momentum integrations whih �nally results in a fatorization sale9



separating the hard and soft momenta. In our approah the infra-red poles are absorbedinto ~Zv whih we de�ne in the MS sheme. As a onsequene the mathing oeÆientitself is �nite but sale dependent. In the physial quantities this sale dependene getsaneled against the orresponding ontributions from the e�etive theory. Of ourse, onehas to make sure that for the subtration of the poles in the e�etive theory the samesheme is used as in the full theory.For the renormalization onstant ~Zv we obtain~Zv = 1 +��s(�)� �2� 112C2F + 18CFCA� �2�+��s(�)� �3CFTnl �� 154CF + 136CA� �2�2 �� 25324CF + 37432CA� �2� �+ : : : ; (12)where the ellipses stand for non-nl and O (�4s) terms.Our �nal result for (3)v readsFFL = 46:7(1) +��1712 + 6136�2 � 23�2 ln 2 + 13�(3)�L� + 118�2L2� ;FAL = 39:6(1) +�18154 � 67432�2 + 59�2 ln 2 + 136 �(3)�L� +�119 + 112�2�L2� ;FHL = �557162 + 2681�2 +��5527 + 427�2�L� � 49L2� ;FLL = �163162 � 427�2 � 1127L� � 29L2� : (13)The unertainties assigned to the numerial onstants in FFL and FAL are based on aonservative estimate. Note that the preision of these quantities is more than enough forall phenomenologial appliations. Inserting the numerial values for the olour fatorswe obtain for � = mQ (3)v � �0:823n2l + 121: nl + non-nl terms : (14)The oeÆients in Eq. (13) orrespond to an expansion parameter �s(�), as given inEq. (9). Choosing instead �s(mQ) leads to�FFL = 46:7(1) + 25108�2L� � 118�2L2� ;�FAL = 39:6(1) + 37144�2L� � 112�2L2� ;�FHL = �557162 + 2681�2 ;�FLL = �163162 � 427�2 : (15)10



The dependene on L� in Eq. (15) is aneled against ontributions from the e�etivetheory. They agree with the ones of Ref. [40℄1.5 Phenomenologial appliationsLet us in this setion estimate the numerial e�et of our new terms on the bottom andtop system. In partiular we onsider the deay of the �(1S) bound state to leptons andthe prodution of top quark pairs lose to threshold.Next to the mathing oeÆient onsidered in the previous Setions a ruial ingredientfor these quantities is the wave funtion at the origin. Currently the seond order is knownompletely [41{45℄ and at order �3s the quadratially [46,47℄ and linearly [12,40℄ enhanedlogarithms and the orretions proportional to �30 [8, 9℄ are available. It is onvenient tointrodue the quantity �1 = j 1(0)j2=j C1 (0)j2 where the Coulomb wave funtion is givenby �� Cn (0)��2 = C3F�3sm3q=(8�n3). Let us for ompleteness list the results for priniplequantum number n = 1�1 = 1 + �s(�s)� ��4� 23�2��0 + 34a1�+��s(�s)� �2���CACF +��2 + 23S(S + 1)�C2F� �2 ln(CF�s(�s))+��53�2 + 20�(3) + 19�4��20 +�4 � 23�2��1 +�52 � 23�2��0a1+ 316a21 + 316a2 + 94�2CACF +�338 � 139 S(S + 1)� �2C2F�+��s(�s)� �3��2C2 ln2 (CF�s(�s)) + �2C1 ln (CF�s(�s)) + C�300 + : : :� ; (16)with C2 = ��2CACF +��4 + 43S(S + 1)�C2F��0 � 23C2ACF+��4112 + 712S(S + 1)�CAC2F � 32C3F ; (17)1Note that in Ref. [40℄ there is a typo in the oeÆient of the L2� term. The \�3=2" should read \+1".
11



C1 = ���3 + 23�2�CACF +�43�2 ��109 + 49�2�S(S + 1)�C2F��0+ ��34CACF +��94 + 23S(S + 1)�C2F� a1 + 14C3A +�5936 � 4 ln 2�C2ACF+�14336 � 4 ln 2 � 19108S(S + 1)�CAC2F +��3518 + 8 ln 2� 13S(S + 1)�C3F+��3215 + 2 ln 2 + (1 � ln 2)S(S + 1)�C2FT + 4936CACFTnl+�89 � 1027S(S + 1)�C2FTnl (18)and C�300 = �30" � 20 + 223 �2 + 112�(3) � 75�4 � 12�2�(3) � 40�(5) � 16�(3)2+ 4105�6# ; (19)where �s = CFmq�s(�s) is the soft sale. It is straightforward to obtain the result forgeneral �s(�) using standard renormalization group analyses. In Eqs. (16){(18) S is thespin quantum number whih is equal to one in our appliations. The ellipses in Eq. (16)represent yet unknown orretions like, e.g., the pure ultrasoft ontributions.For ompleteness we provide the one- and two-loop oeÆients of the � funtion andthe stati potential whih are given by�0 = 14 �113 CA � 43Tnl� ;�1 = 116 �343 C2A � 203 CATnl � 4CFTnl� ;a1 = 319 CA � 209 Tnl ;a2 = �4343162 + 4�2 + 223 �(3)� 14�4�C2A ��179881 + 563 �(3)�CATnl��553 � 16�(3)�CFTnl +�209 Tnl�2 : (20)5.1 Bottom systemThe leptoni deay of the �(1S) state an be ast in the form [41{45℄�(�(1S) ! l+l�) = �LO�1 �2v(mb) + C2F�2s(�s)12 v(mb) (dv(mb) + 3)�+ : : : ; (21)12



with �LO = 4�NQ2b�2j C1 (0)j2= (3m2b), Qb = �1=3, N = 3, � is Sommerfeld's �ne-struture onstant and nonperturbative ontributions to Eq. (21) are ignored.Inserting the perturbative expansion for �1 and v we obtain�1 � �LO1 �1 � 1:70�s(mb)� 7:98�2s(mb) + 30:0�3s (mb)jnl + : : :�� h1 � 0:30�s(�s) + �2s(�s) (17:2 � 5:19 ln�s(�s))+�3s(�s)��14:4 ln2 �s(�s) + 0:17 ln�s(�s)� 34:9j�30�+ : : :i ; (22)where in the mathing oeÆient � = mb has been hosen and the orresponding strongoupling is de�ned with �ve and �s(�s) with four ative avours.Starting from �s(MZ) = 0:118 we have used the program RunDe [48℄ to obtain�s(mb) = 0:2096 and �s(�s) = 0:2967 with mb = 5:3 GeV and �s = 2:0967 GeV whihleads to �1 � �LO1 (1� 0:446NLO + 1:75NNLO � 1:20N3LO0 + : : :) ; (23)where Eq. (22) is expanded and terms of order �4s are dropped onsistently. The prime re-minds that the third-order orretions are not omplete. Apart form the new ontributionto v and the known third-order orretions to �1 we have also inluded all interfereneterms whih are proportional to powers of nl. Note that the new orretions are responsi-ble for the redution of N3LO0 terms from �1:67 to �1:20 whih amounts to about 47% ofthe Born ross setion. However, in total the fermioni orretions tend to further reduethe strong inrease of the perturbative oeÆients leading to an overall orretion fatorof approximately 10%.We have performed the numerial analysis also for mb = 4:8 GeV. There are hangesin the individual ontributions to �1 (.f. Eq. (23)) of the order of a few per ent, however,the �nal orretion fator remains the same.5.2 Top systemIn the top-quark ase, the nonperturbative e�ets are negligible. However, the e�et ofthe top-quark total deay width �t has to be properly taken into aount [49℄, as it isrelatively large and smears out the Coulomb-like resonanes below threshold. The NNLOanalysis of the ross setion [5℄ shows that only the ground-state pole gives rise to aprominent resonane.A ruial quantity in onnetion to the threshold prodution of top quark pairs isthe peak of the normalized ross setion R = �(e+e� ! t�t)=�(e+e� ! �+��). It isdominated by the ontribution from the would-be toponium ground-state, whih an beast in the fromR1(e+e� ! t�t) = RLO1 �1 �2v(mt) + C2F�2s(�s)12 v(mt) (dv(mt) + 3)�+ : : : ; (24)13



with the leading order term RLO1 = 6�NQ2t j C1 (0)j2= (m2t�t). The ontributions from thehigher Coulomb-like poles and the ontinuum are not inluded in Eq. (24).The analog equations to Eqs. (22) and (23) readR1 � RLO1 �1� 1:70�s(mt)� 7:89�2s(mt) + 37:2�3s(mt)jnl + : : :�� h1� 0:43�s(�s) + �2s(�s) (16:1 � 5:19 ln�s(�s))+�3s(�s)��13:8 ln2 �s(�s) + 2:06 ln�s(�s)� 27:2j�30�+ : : :i ; (25)where �s(mt) and �s(�s) are de�ned with six and �ve ative avours, respetively. Usingagain �s(MZ) = 0:118 one gets �s(mt) = 0:1075 and �s(�s) = 0:1398 with mt = 175 GeVand �s = 32:625 GeV and �nallyR1 � RLO1 (1� 0:243NLO + 0:435NNLO � 0:195N3LO0 + : : :) : (26)The fermioni orretions to v are responsible for a redution of the third-order oeÆientfrom �0:268 to �0:195 and thus amount to moderate 7% of the leading order term.Similarly as for the bottom quark ase also for the top quark the perturbative series isalternating and the third-order oeÆient tends to stabilize the expansion. It is interestingto note that after the inlusion of our new terms the total orretions amount to less than1%.6 Conlusions and outlookThis paper deals with the question of establishing a relation for the vetor urrent betweenfull QCD and NRQCD. The orresponding mathing oeÆient, v, onstitutes a buildingblok in all threshold phenomena involving a vetor oupling. The main result of thispaper is the fermioni three-loop ontribution to v whih ontains a losed light fermionloop. The numerial e�et of the new terms is relatively big and amounts to about 47%for the bottom and to about 7% for the top quark system. However, their inlusion leadsto a redution of the overall orretions. E.g., in the ase of the top quark the orretionsto the normalization at the peak of the prodution ross setion amount to less than 1%after inluding all urrently known perturbative terms.Several steps still have to be taken in order to arrive at the omplete analysis of thetop-anti-top quark system at threshold. Next to the non-fermioni piees to v the majorbuilding bloks whih are still missing are the ultra-soft orretions and the three-loopstati potential.AknowledgementsWe would like to thank A.A. Penin and V.A. Smirnov for useful omments and disussions.J.H.P. would like to thank S. Bekava for disussions about Mellin-Barnes integrals andM. Kalmykov for useful advie on two-loop sunset integrals. We thank M. Tentyukovfor providing the interfae to Fermat. This work was supported by the \Impuls- undVernetzungsfonds" of the Helmholtz Assoiation, ontrat number VH-NG-008 and bythe DFG through SFB/TR 9. The Feynman diagrams were drawn with JaxoDraw [50℄14



I1 I2 I3 I4

I5 I6 I7 I8

I9 I10 I11 I12Figure 2: Three-loop master integrals. Bold lines denote massive lines with mass 2mQ,thin lines denote massive lines with mass mQ and dashed lines denote massless lines. Allexternal lines are on-shell. A dot on a line denotes a squared propagator.A Results for the master integralsThe master integrals for the three-loop funtions of Eq. (4) are shown in Fig. 2. For theself-energy integrals I1{I6 the external momentum squared equals the square of the heavyquark mass, q2 = m2Q. For the integrals I7 and I8 we have q2 = 4m2Q. The momentaq1 and q2 owing out of the vertex diagrams on the right ful�ll q21 = q22 = m2Q with(q1 + q2)2 = 4m2Q. In Minkowski spae the results for the master integrals readI1 = J (3)+ (0; 1; 0; 1; 1; 0; 1; 0; 1)= m2Q �2m2Q e�E!3�� 13�3 + 53�2 +�4 + 34�2� 1� � 103 + 114 �2 + 253 �(3)+��3023 + 2�2 + 893 �(3) + 30591440�4� �+��734 � 692 �2 + 16�(3) + 97511440�4+1074 �2�(3) + 23095 �(5)� �2 +O ��3�� ; (27)I2 = J (3)+ (0; 1; 1; 1; 0; 1; 1; 0; 0)= �m2Q �2m2Q!3� �4(1 � �)�2(�)�2(2 � 2�) �(3� � 1)�(3 � 6�)�(3 � 4�) ; (28)15



I3 = L(3;nl)+ (0; 0; 1; 1; 1; 1; 0; 1; 0)= m2Q �2m2Q e�E!3�� 23�3 + 103�2 +�263 + 12�2� 1� + 2 + 92�2 + 143 �(3)+��3983 + 532 �2 � 16�2 ln 2 + 2383 �(3) + 287720�4� �+��1038 + 2592 �2�160�2 ln 2 + 1283 �2 ln2 2 + 18623 �(3) + 323720�4 + 72�2�(3) + 4785 �(5)+643 ln4 2 + 512a4� �2 +O ��3�� ; (29)I4 = J (3)+ (0; 0; 0; 1; 1; 0; 1; 0; 1)= m4Q �2m2Q!3� �2(1� �)�(�)�2(2�� 1)�(3� � 2)�(4� � 2)�(2 � �) ; (30)I5 = J (3)+ (0; 1; 0; 1; 0; 0; 1; 0; 1)= m4Q �2m2Q!3� �(�� 1)�2(1 � �)�(�)�(2 � 2�) �(2� � 1)�(3 � 4�)�(3 � 3�) ; (31)I6 = J (3)+ (0; 0; 1; 1; 1; 0; 1; 0; 0)= m4Q �2m2Q!3� �3(1� �)�(2�� 1)�(3� � 2)�(5 � 6�)�(3 � 3�)�(4 � 4�) ; (32)I7 = J (3)� (0; 0; 0; 1; 1; 0; 1; 0; 1)= m4Q �2m2Q e�E!3�� 13�3 + 12�2 +��1736 + 112�2� 1� � 6:6827387(1)�56:300353(1)� � 209:48231(1)�2 +O ��3�� ; (33)I8 = J (3)� (0; 0; 0; 2; 1; 0; 1; 0; 1)= �m2Q �2m2Q e�E!3�� 13�3 + 23�2 +��83 + 56�2� 1� + 10:797602(1)+62:250613(1)� +O ��2�� ; (34)I9 = J (3)� (0; 1; 0; 1; 1; 0; 1; 0; 1)= m2Q �2m2Q e�E!3�� 13�3 + 53�2 +�103 + 34�2� 1� + 33:8328(4) + 152:870(4)�+O ��2�� ; (35)16



I10 = L(3;nl)+ (0; 0; 1; 1; 1; 0; 1; 1; 0)= m2Q �2m2Q e�E!3�� 23�3 + 103�2 +�8 + 12�2� 1� + 52:5698(4) + 145:087(4)�+562:250(14)�2 +O ��3�� ; (36)I11 = J (3)� (0; 1; 0; 1; 0; 1; 1; 0; 1)= m2Q �2m2Q e�E!3�� 12�3 + 116�2 +��16 + 2924�2� 1� + 34:791(4) + 154:08(2)�+O ��2�� ; (37)I12 = J (3)� (0; 1; 0; 1; 0; 1; 1; 0; 2)=  �2m2Qe�E!3�� 16�3 + 12�2 +�16 + 724�2� 1� + 7:024(4) + 32:04(2)�+O ��2�� ; (38)where �(5) = 1:036927 : : : and a4 = Li4(1=2) = 0:517479 : : :.I1 was alulated in Ref. [35℄. We have repeated the alulation desribed in thereferene with the program XSummer [51℄ and �nd omplete agreement. The results forI3{I6 an be found in Ref. [21℄. We have heked the result for I3 numerially withthe help of a one-fold Mellin-Barnes [52,53℄ representation and �nd omplete agreement.Note, that I2; I4; I5 and I6 are quite simple to evaluate and are available for general �.Nevertheless the result for I6 as given in Ref. [35℄ is not orret whereas the orret resultan be found in Ref. [21℄. The pole part of I7 agrees with the result of Ref. [54℄.The remaining master integrals, I7{I12, have been evaluated with the help of theMellin-Barnes method where the evaluation of the integrals has been performed withthe program MB [55℄. I7 and I8 an be expressed in terms of a one-fold Mellin-Barnesrepresentation and are thus known with a quite high preision. On the other hand, I10 isrepresented by a two-fold and I9, I11 and I12 even by a three-fold integration whih resultsin less aurate results. The quoted unertainties in the above equations orrespond totwie the Vegas error given by MB for the multi-dimensional integrals and to a onservativeestimate in ase of the one-dimensional integrals I7 and I8. Note that the latter errorsare negligible.As an be seen in the above results some of the master integrals are needed to higherorder in � whih on one hand makes the alulation very tedious and on the other handleads to less aurate results. For this reason we deided to hange basis and swith |at least for some of the integrals | to the so-alled �-�nite master integrals [26℄ whihhave the advantage that the oeÆient funtion is �nite and thus the integral itself is onlyneeded to order �0. 17
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f
12Figure 3: �-�nite master integrals. The same oding as in Fig. 2 is adopted.Sine I1{I6 are known analytially, a replaement is, of ourse, not neessary. Fur-thermore, for I7 and I8 the numerial preision is suÆient for our alulation. As faras the remaining four integrals are onerned, we found it onvenient to replae I9 andI12 by the integrals shown in Fig. 3. Their numerial evaluation with the help of MB isstraightforward leading to the resultsIf9 = J (3)� (0; 1; 1; 1; 1; 0; 1; 0; 1)=  �2m2Qe�E!3�� 16�3 + 32�2 +�556 + 38�2� 1� + 64:678(8) +O (�)� ; (39)If12 = J (3)� (0; 1; 0; 1; 1; 1; 1; 0; 1) =  �2m2Q e�E!3��2:4041(4)� + 8:1(2) +O (�)� :(40)Swithing from I9 and I12 to If9 and If12 redues the number of oeÆients whih areonly known numerially from 17 to 14. In partiular the 1=�-poles of I9 and I12 havebeen determined in analytial form from the �-�nite integrals via the orresponding IBPrelations.A further redution is ahieved after exploiting the loality and inorporating theknowledge of the linear ln(�2=m2Q) term in v [40℄ whih we have heked numerially ina �rst step. In this way the analytial result for the 1=�-pole of I11 has been determined.In total ten (eleven) numerial oeÆients ontribute to our �nal result given in Eqs. (13)and (14) using the �-�nite (\normal") basis.In the end it turned out, that the numerial preision is better using the \normal"basis. The reason is, that the unertainty of the �0-oeÆient of If12 is by far the largest.Still, it was useful to onsider the �-�nite basis sine it enabled us to determine analytialresults for two integral oeÆients of the \normal" basis.Referenes[1℄ W. E. Caswell and G. P. Lepage, Phys. Lett. B 167 (1986) 437.18
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