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1. Introduction

Current simulations with 2-1 flavors require highly improved gauge and quark actions.
Renormalization group improved gauge actions are oftfef) improved and should be preferred
to the #'(a) improved plaquette gauge action. In accordance with ouremigal simulations we
take the Symanzik improved gauge actifin[1, 2]

%ymanmk: g—62 [CO Zplaq:%, ReTr(l—UpIaquette) +c1 zrect%ReTr(l—Urectangm)] (1.2)
with
1
1_27
As the fermionic action, we use the clover improved actiomprposed by Sheikholeslami and
Wohlert [3] which means that one has to add the so-calledeclearm to the standard Wilson
fermion action

. R g
lover _ $V|lson_ Cow Z Z ig an IvFuv(n) Yn, 1.2)
TR

whereF, (n) is the field strength in clover form ama,, =i/2(yuW — W Yu). An additional im-
provement can be achieved with ultraviolet filtering or srm&pthe gauge links); in the fermionic
Wilson action§Y1so™ it reduces the chiral symmetry breaking of Wilson quark®oagilight fla-
vors. There have been proposed several smearing techiffquesietailed discussion sd¢ [4]). We
use the stout smearing of Morningstar and Pearfdon [5]. Ivengoy a sequence of transformations

U, —»Uu 50 5ol =0,, (1.3)

with
UMY (x) = @ Ve y [ (x)

The functionQL”) (U, wyy) depends on the staples of the gauge link under consideratidon the
stout parameteray,, which determine the strength of smearing. We chose an [gotparameter
wyy = w and one step smearing which is recommended by various igagens.

It is of importance to determine the improvement faatey appearing in[(1]2) as precisely
as possible. Non-perturbative determinations are to fenpeel but for the combination described
above there are no results obtained so far. In perturbateorycsy, has the form

Cow=1+g?cal+ O(gh). (1.4)

There have been published results cf&, for plaquette action with twisted antiperiodic boundary
conditions [p] and Schrédinger functional meth@d [7]. Fome popular improved gauge actions
Aoki and Kuramashi[J8] calculated the one-loop correctising conventional perturbation theory.
All results are obtained for unsmeared gauge links in thelail regime.

In this paper we calculate(slv)v for Symanzik improved gauge action with stout smearing in
conventional perturbation theory. We do the calculatidiasb&ll. This enables us to determine
the one-loop contribution to the non gauge-invariant imprent coefficientyg, for the quark
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fields ¢ as proposed if9]. Using BRST symmetry arguments the asitvaposed the off-shell
improvement for the quark fieldg, to be

W, = (1+aco B +aig cnel A)Y, (1.5)

where the coefficientyg does not contribute on-shell. Its perturbative expanssokniown to

be [9]
CNGl = 92 Cg\llgﬂ + ﬁ(g“) . (16)

In order to determinaa:ﬁll();I either a two-loop calculation of the quark propagator or a-lmop
calculation of the quark-quark-gluon vertex is requirdde improvement coefficierp has been
calculated to one-loop order ifi J14].

2. Improvement procedure

In the approach of conventional perturbation theory we b®eduark-quark-gluon vertex
Au(p1, p2) as discussed irf][8] already. Looking at #iéa) expansion of tree-levefkflo)(pl, p2) as
derived from action[(T]2)

A (02, p1) = —igyu —ghari(ps+ p2)y — Cowig daroua(pa— p)a + 682,  (2.1)

one can see by inserting ([L.4) that a one-loop calculatiofdp,, p1) provides necessary condi-
tions to determine:(slv)v. We omit in all three-point functions the common overalladiactort?.
In (B.3) p1 (p2) are the incoming (outgoing) momenta. The off-shell imgrment condition states
that the non-amputated improved three-point func@mn, (p2, p1) has to be free of’(a) terms in

one-loop. The unimproved and improved three-point fumstiare defined by

Gu(p2, p1) = S(P2)Av (P2, P1)S(P1)Dyp(a), (2.2)
Guu(P2, P1) = Sc(P2)Asv (P2, P1)S.(P1)Dup(a), (2.3)

with = p2 — p1. Dy (Q) is the full gluon propagator which &'(a)-improved already/Ay (p2, p1)
andA, ,(p2, p1) are the unimproved and improved amputated three-pointifurg The corre-
sponding quark propagators are given by
1ipy ap® . 1. Zw(p)
S 1(p) = 1 BE,(p)+ 25 2w(p) =1 BZp(p) (1 ai AL ) @.4)
S (p) = i BZp(p)- (2.5)

In terms of the improved quark fields (L.8),(p2, p1) can be related to its improved version

Gu(p2, P1) = G (P2, p1) — @ig et Z (AP + DL K) ALY (2.6)

In deriving (2.6) we have assum¢d) = 0, % denotes the Fourier transform. Taking into account
(L.6) we insert in our one-loop calculation the correspogdiee-level expressions

aigove 7 [((KD 1+ D 1K) Ay = aigdcll, <v% + %v) Di(q),  (2.7)
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or its amputated version
aigove 7 (KD D7 A) Awine] = —ad e (Bovi + v ) (28)
If we amputate[(2]2) and use (2.4), {2.6) aphd](2.8) we getffhehell improvement condition

Au(P2, 1) = Aupu(P2. pr) +a g og (B + Vu B)
1 ., Swip2) 1. Zw(p1)
—Zai o——N, ,p1) — =ail\, , _—, 2.9
2 ¢2 Zp(pz) ,u(pZ pl) 2 Y (p2 pl) ¢l Zp(pl) ( )
which should hold to ordef(g®) by determiningt:,(\,l()3I andc(slv)v correctly.

3. Calculation

=P, Py

A2
A R

Figure 1: One-loop diagrams contributing to the amputated quarkigghion vertex

(d)

The diagrams contributing to the amputated one-loop thoéet function are shown in Fid] 1.
The calculation is performed combining symbolic and nuoannethods. For the symbolic com-
putation we use dMathematicapackage that we developed for one-loop calculations iicéatt
perturbation theory (for a more detailed description sg#])[1lt is based on the infinite volume
algorithm of Kawai et al.[[10]. The analytic treatment hagesal advantages: one can extract the
infrared singularities exactly and the results are givefuastions of lattice integrals which can
be determined with high precision. The disadvantage canisisrery large expressions especially
for the problem under consideration. In the analytic metti@ddivergencies are isolated by dif-
ferentiation with respect to external momenta. As can ba Be€ig. [] diagrams (b) and (c) have
two gluon propagators. So no parametrization can be choibromly internal momentum flowing
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through the gluon lines. Therefore at least one gluon prajgaidhas to be differentiated. Look-
ing at the full analytic form of the gluon propagator for iroped gauge actiong [[L3] one easily
sees that huge analytic expression would arise. As disgusgfi3] one can split the full gluon
propagatOID'mpro"ed(k)

Dmproved(k) _ plaquette(k +ADuv(k) (3.1)

The diagrams wittD!2""**{k) only contain the logarithmic parts and are treated with tiaydic
Mathematicapackage. The diagrams with at least @i, (k) are infrared finite and can be de-
termined safely with pure numeric methods. We have writt€hpaiogram with a Gauss-Legendre
integration algorithm in four dimensions (for a descriptiaf the method se¢ [IL[L,]12]). We choose
a sequence of small external momefpa, p,) and perform an extrapolation to vanishing momenta
in order to extract the corresponding values. Additionallg have written an independent FOR-
TRAN code which computes the one-loop contributions fothediagram including the infrared
logarithms. Results for both methods agree within accuracy

The Feynman rules for non-smeared Symanzik gauge acti@ndemn summarized ifi [8]. For
the stout smeared gauge links in the clover action the ruéegigen for the forward case bf [4]. The
corresponding Feynman rules needed for the quark-quadaglertex are much more complicated
and have been derived by the authors. They are too long asgiweaein this proceedings [IL5].

The calculation has been done in Feynman gauge with Wilscampaterr = 1. All the one-
loop coefficients are calculated @y = 1 becausgcsw = g% + O(g°).

4. Results
The anticipated general structure for the amputated thoé#-function in one-loop is

Au(p2,p1) = /\;'\TS( pz, p1) + At i3y

+B|at (¢2 Yu + Yu ¢1) +Clat g Oua Qo (4.1)

2

Al'\l"_s(pz, p1) is the universal part of the three-point function indepenaé the chosen gauge action
computed in théIS-scheme

MS . a ,oa
;l\z/l (P2, p1) = —'QVu—gil(plqupzu)—Cswlg—Uana
+ig3F1,[,1(p17 p27 +a93|:2 pla p2,9 ) (42)

F1(p1,P2,0) and R, (p1, p2,0) are complicated functions involving polylogarithms andde
rithms. They will be given in[[15]. The quantititéS;, Bjar andCiy; are obtained as

Aiat = Cr (0.03783- 0.93653w + 3.42833w? +0.01266 loday))

+N¢ (~0.02200+ 0.01266 logay)) ,
Biar = Cr (0.03804— 1.0374%w + 3.437910 + 0.02533 logay))

+Ne (—0.02432+ 0.01925w + 0.01266 loday)) , (4.3)
Ciat = Cr (0.11618+ 0.82813w — 2.45508w?)

+N; (0.01215+ 0.01109w — 0.30228w7) ,
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with Ce = (N2 —1)/(2Nc) for SU(N;). As shown in [2]9) we need the self energy pagép) and
>w(p) as defined in[(2]4) to solve the off-shell improvement caadit

o°Cr

Zp(p) = 1- T [log(ap)® + 2] ,
Sw(p) = 1— 916 = [2log(ap) +22] (4.4)

It turns out that the self energy palfs andZ, contribute only tocﬁllél. For the Symanzik gauge
action we will present them if [IL5]. For the plaquette actianget

sPlad _ 820627 19644600w + 739.68364w7,
sPlad _ 7 35794 20858321 + 7115652607 . (4.5)

We use [4]2) and (4.4) to construct the left hand sid¢ of (@®reas[(4]4) with[(4]5) are inserted
into the right hand side. In order to fulfill (2.9) we get thdldaing improvement coefficients for
the plaquette action

c(-Pa® — N, (0.00143-0.01166w) , (4.6)
csi®® = Cr (0.16764+ 1.079150 — 3.6866807)
+Nc (0.01502+ 0.00962 — 0.28479%°) . 4.7)

For the Symanzik improved gauge action we find the improvemmfficientc(slv)v

coy = Cr (0.11618+ 0.82813w — 2.45508w?)
+N (0.01215+ 0.0110% — 0.30228w7) . (4.8)

5. Mean field improvement

It is known that lattice artefacts make the perturbativeagmgion worse. One possible im-
provement procedure is to replace the naive coupling congthy its mean field improved value
OMF = g/u% whereug is the average plaquette value for the corresponding gaelgeafttion. By
scaling all gauge links in the clover field strendgthy, (n) in ([.2) by 3/up one obtains the mean
field improvedcsy as

C8w = Up Csw- (5.1)

The perturbative expansion of is known to be

Giur Cr

—1-
to 1672

ku (5.2)

wherek, for popular gauge actions are given n|[13]. Therefore, mypbative expression for the
mean field improvedsyy is given by

1
Csw = iy Up® = B (1+9MF (C(sw 162 kU> + ﬁ(Qﬁ'AF)) =ciw’+O(Ghe).  (5.3)
o
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For the future simulations of the QCDSF collaboration weehée following numbers for the
Symanzik action and 2+1 flavors

Cr=4/3, N.=3, uj=0.6065 giyr =1.71335 k,=0.7325247.
This gives the one-loop expression ¥y parameter as
csw = 14 g?(0.19136+ 1.137450 — 4.1802%°) + (g, (5.4)

1
caeP — 2 (1+ g% (0.19136+ 1.137450 — 4.18029w?) — g8 0.18313
0

= 1.47557+ 2.83568w — 10.42148002 (5.5)

For no stout-smearing{ = 0) the result [5]4) has to be compared with the number givéH]in

chVj\K) = 0.196244491). The minor difference to our valwélv)v: 0.19136 can possibly be related

to an inaccuracy in our numerical integrations. In the satibn the stout parametew is chosen
to bew = 0.1 leading to a mean field improved vald,” = 1.65492.

This investigation has been supported by the DFG under acinffOR 465 (Forschergruppe
Gitter-Hadronen-Phanomenologie).
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