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Preprint SINP MSU 2006-03/802Real and Image Fields of a Relativisti BunhB. B. Levhenko1Skobeltsyn Institute of Nulear Physis, Mosow State UniversityAbstratWe derive analytial expressions for external �elds of a harged relativisti bunhwith a irular ross setion. At distanes far from the bunh, the �eld reduesto the relativisti modi�ed Coulomb form and in the near region, reprodue theexternal �elds of a ontinuous beam. If the bunh is surrounded by ondutingsurfaes, the bunh self-�elds are modi�ed. Image �elds generated by a bunhbetween two parallel onduting planes are studied in detail. Exat summationof image �elds by the diret method invented by Laslett allows the in�nite seriesto be represented in terms of elementary trigonometri funtions.1 IntrodutionIn an aelerator, the harged beam is inuened by an environment (beam pipe, aeleratorgaps, magnets, ollimators, et.), and a high-intensity bunh indues surfae harges orurrents into this environment. This modi�es the eletri and magneti �elds around thebunh. There is a relatively simple method to aount for the e�et of the environment byintroduing image harges and urrents.Over forty years ago Laslett [1℄ analyzed the inuene of the transverse spae-hargephenomena, due to image fores, on the instability of the oherent transverse motion of anintense beam. Methods of image �elds summation are desribed in his paper [1℄ whih pre-sented some �eld oeÆients alulated for in�nite parallel plate vauum hambers, magnetipoles and vauum hambers with elliptial ross setions and variable aspet rations. Theresulting image �eld was alulated only in the linear approximation and depends linearly onthe deviations �x and x of the bunh enter and the position of a test partile, respetively,from the axis. They at therefore like a quadrupole ausing a oherent tune shift. Theapproximation used is inorret if the �eld observation point x is loated far from the bunhor if the bunh enter is lose to a onduting wall.In the present paper we onsider the problem of the image �eld summation one again fora very simple geometry, namely, a relativisti bunh moving between in�nitely wide parallelonduting planes. The problem is far from being a pure aademi one [2℄. In appliations,in partiular by study of the eletron loud e�et [3℄ and the dynamis of photoeletrons inthe beam transport system, it is important to know the distribution of eletromagneti �eldsnot only in viinity of the bunh, but in the whole gap. We did not �nd publiations withattempts to sum up the series (17) in an approximation beyond the linear one. In Setion 3we present the exat solution of the problem.To solve the problem formulated above, in Setion 2 we �rst derive an equation for theexternal eletromagneti �eld generated by a ylindrial bunh of harged partiles. Thetask is spei�ed as follows.1e-mail: levthen�mail.desy.de 1



The external radial eletri ~E?, and azimuthal magnet ~B� self �elds for a round un-bunhed relativisti beam of the radius b and a uniform harge density are [5℄-[7℄E? = �2q�r ; (1)B� = �04� 2q�r �; (2)where � = 1=4��0, � is the linear harge density, q is the harge, � = v= is a normalizedveloity of the beam onstituents and  is the veloity of light. In many appliations, equa-tions (1) and (2) are used to desribe �elds of an individual bunh too. However, in the form(1), (2) the bunh �elds do not depend on the bunh energy and at large distanes do notfollow the Coulomb asymptoti. This ontrasts sharply with the �elds produed (at t = 0)by a rapidly moving single harge q~E = �q r2 h 1� �21� �2 sin2 �i3=2 ~rr ; ~B � ~� � ~E; (3)where � is the angle whih the vetor ~r makes with the z-axis. Along the diretion of motionthe eletri �eld is beome weaker in 2 times, while in the transverse diretion the eletri�eld is enhaned by the fator  E? = �q r2 : (4)Here,  denotes the partile Lorentz fator.In the next setion we derive an expression for the transverse omponent of the bunheletri �eld, whih the defets indiated above are reti�ed, and �nd the onditions at whihthe bunh �elds are represented by (1) and (2).2 Self-Fields of a Charged Finite Cylinderwith a Cirular Cross SetionLet us onsider a bunh of harged partiles uniformly distributed with a density � within aylinder of length L and an elliptial ross setion. The ellipsoid semi-axis in the x-y planeare a and b and the oordinate z-axis is along the bunh axis. Suppose that the bunh ismoving along the z-axis with a relativisti veloity ~v = ~�.To ompute the radial eletri �eld of suh a rapidly moving bunh, we have to sum up�elds of the type (3), generated by the bunh onstituents. In this way we get [4℄E?(r; �; z) = ��fzI1 + (L� z)I2g (5)with I1 = Z Z (r� � os(� � �)) �d�d�(r2 + �2 � 2r� os(� � �))p2z2 + r2 + �2 � 2r� os(� � �) (6)I2 = Z Z (r� � os(� � �)) �d�d�(r2 + �2 � 2r� os(� � �))p2(L� z)2 + r2 + �2 � 2r� os(� � �) (7)where � is the distane in the x-y plane from the z-axis to the elementary harged volumeand 0 < � < abpa2 sin2 �+ b2 os2 �; 0 < � < 2�: (8)2



Equation (5) represents the radial eletri �eld as observed at a distane r from the bunhaxis, at an angle � relative to the x axis and at a distane z from the bunh tail.The integrals I1 and I2 an be estimated only numerially [4℄, if integrands are taken asit is. However, the integrands are easy to simplify if the bunh is relativisti,  � 1, and wewould like alulate the �eld in viinity of the bunh, r � L, but at distanes muh largerthan the bunh radius, b� r.To simplify, we make use of the notationA = �r ; B = A os(� � �); Y = A2 � 2B; C1 = h1 + 2z2r2 i�1; X = C1 � Yand the integrand of I1 an be written as(r2 + 2z2)�1=2A(1�B)(1 + Y )�1(1 +X)�1=2 : (9)Now we expand the above expression in a power series by using A as a small parameter andkeeping only terms up to the power A4 at eah step. For the bunh shaped as a irularylinder, a = b and we may set � = 0. Due to the fat thatZ 2�0 os2k+1 � d� = 0; (10)all odd power of B vanish after integration in �. This greatly simpli�es the series generatedfrom (9). After lengthy algebrai manipulations with (9), we get(r2 + 2z2)�1=2Ah1� (1 + 12C1)A2 + (2 + C1 + 32C21)B2i: (11)Substituting this expression in (6), we getI1 = �b2rpr2 + 2z2�1 + 38C21 b2r2�: (12)By hanging z2 to (L� z)2 in (12), we obtain for I2 the following resultI2 = �b2rpr2 + 2(L� z)2�1 + 38C22 b2r2�; (13)where C2 = h1 + 2(L � z)2=r2i�1. Notie that for partiles uniformly distributed in thebunh volume, � = qN=�b2L, where N is number partiles per bunh. Substituting equations(12)-(13) in (5), �nally we arrive toE?(r; z) = �qNLr n zpr2 + 2z2�1 + 38 b2r2C21�+ L� zpr2 + 2(L� z)2�1 + 38 b2r2C22�o: (14)This equation desribe the eletri �eld produed by a rapidly moving irular bunh.The �eld of a relativisti bunh desribed by (14), has di�erent behavior at distanes farapart of the bunh and in the near region, r � L. At very large distanes, r � z andr � (L� z), equation (14) redues to the Coulomb form (4). At the same time, in the nearregion and beyond the bunh tails, z � (L� z)� r and equation (14) simpli�es toE? = �2qNL 1r ; (15)whih oinide with the external �eld (1) of a ontinuous beam with � = N=L.Similarly we an show that the azimuthal magneti �eld of the bunh isB� = �04� �� E?(r; z): (16)3



3 Fields from Image ChargesFollowing Laslett [1℄ (see also [5℄), we onsider a relativisti bunh of the length L betweenin�nitely wide onduting planes at x = �h. Suppose that onstituents of the bunh arepositively harged. For full generality, let the irular partile bunh be displaed in thehorizontal plane by �x from the midplane (0,y,z), and the observation point of the �eld beat (x; 0; 0) between the onduting parallel planes. The end points of the bunh are atz = �L=2. The boundary ondition for eletri �elds is Ez(�h) = 0 on the onduting planeand is satis�ed if the image harges hange sign from image to image. Suppose that thedistane between planes is of the order L. Thus, the eletri �eld of eah image is desribedby (15). To alulate the image eletri �eld E?;image(x) in front of the plate, we add theontributions from all image �elds in the in�nite series [1℄E?;image(x; �x) = �2qNL �n (2h� x1)�1 � (2h+ x1)�1 � (4h� x2)�1 + (4h+ x2)�1+ (6h� x1)�1 � (6h+ x1)�1 � (8h� x2)�1 + (8h+ x2)�1+ (10h� x1)�1 � (10h+ x1)�1 � (12h� x2)�1 + (12h+ x2)�1 + :::o;(17)where x1 = x+ �x and x2 = x� �x. These image �elds must be added to the diret �eld of thebunh (15) to meet the boundary ondition that the eletri �eld enters onduting surfaesperpendiularly.In the original paper [1℄, the series (17) was summed up only in the linear approximationin x and �x, E?;image(x; �x) = �4qNL �1h2 (2�x+ x): (18)The oeÆient �1 = �2=48 is known as the Laslett oeÆient (or form fator) for in�niteparallel plate vauum hambers and magneti poles. The approximation used in (18) isinorret if the deviation of the bunh enter from the axis is large (�x � h) or if the �eldobservation point x is loated far o� the bunh. Therefore, below we present the exatsolution of the problem.In Appendixes A and B we prove that the exat summation of the series (17) givesE?;image(x; �x) = �4qNLh �(Æ; �Æ); (19)where the image �eld struture funtion � depends only on normalized variables Æ = x=h,�Æ = �x=h in the form �(Æ; �Æ) = 12h�2 � os(�2 �Æ)sin(�2 Æ)� sin(�2 �Æ) � 1Æ � �Æi: (20)In Appendix A it is shown that in the linear approximation equation (19) reovers the part(18) derived by Laslett.We shall now estimate values of the funtion � in several partiular points. If the obser-vation point of the �eld is loated at the plane, x = h, then Æ = 1 and the struture funtiondepends only on the bunh enter position between planes, �Æ. Thus, from (20) we get�(1; �Æ) = 12n�2 1 + sin(�2 �Æ)os(�2 �Æ) � 11� �Æo: (21)4



Equation (21) is singular at �Æ ! 1 and shows that the onduting plane attrats the bunhwith inreasing fore with the bunh displaement from the midplane. This phenomenon,involving the transverse movement of the bunh as a whole, arises from image fores andould lead to a transverse instability.For a bunh in the midplane, �Æ = 0, the summed image �eld at the surfae equalsE?;image(h; 0) = �4qNLh �(1; 0) = �2qNLh (�2 � 1): (22)The image �eld (19) must be added to the diret �eld of the bunh (15) to meet theboundary ondition. ThusE?;tot(x; �x) = E?;bunh +E?;image = �2qNLh �1Æ + 2�(Æ; �Æ)�: (23)For a bunh in the midplane, �Æ = 0, we �nd from (23) the expression of the transverseomponent of eletri �eld generated by a relativisti bunh moving between wide ondutingparallel planes E?;tot(x; 0) = �2qNLh � �=2sin(�2 Æ) : (24)That is, at the surfae, Æ = 1, the �eld is enhaned by a fator �=2 due to the presene ofthe onduting planes.Notie that in the linear approximation (18) the �eld gradient, �E?=�x, is independentof position x. Thus the tune shift experiened by eah partile in the bunh is the same(a oherent tune shift). However, the exat result (19) demonstrates that the oherene isviolated and equation (19) allows us to estimate the auray of the linear approximation.4 Magneti ImagesIn the above, we have used eletrostati images. Magneti images an be treated in muhthe same way. Let the ferromagneti boundaries be represented by a pair of in�nitely wideparallel surfaes at x = �g. The magneti �eld lines must enter the magneti pole faesperpendiularly. For magneti image �elds we distinguish between DC and AC image �elds.The DC �eld penetrates the metalli vauum hamber and reahes the ferromagneti poles.In ase of bunhed beams the AC �elds are of rather high frequeny and we assume thatthey do not penetrate the thik metalli vauum hamber.The DC Fourier omponent of a bunhed beam urrent is equal to twie the averagebeam urrent q��B [5℄, where B is the the Laslett bunhing fator. Thus,By;image;DC(x; �x) = ��04� 2qN�L B � 4g�(�; ��); (25)where � = x=g and �� = �x=g and the funtion � is of the form (21).The ontribution of magneti AC image �eld due to eddy urrents in vauum hamberwalls is similar to eletri image �eldsBy;image;AC(x; �x) = �04� 2qN�L (1�B) � 2h�(Æ; �Æ); (26)where the fator (1�B) aounts for the subtration of the DC omponent.5



The magneti image �elds must be added to the diret magneti �eld (2) from the bunhto meet the boundary ondition of normal omponents at ferromagneti surfaes. That is,the summary magneti �eld between the onduting planes isBy;tot(x; �x) = By +By;image;DC +By;image;AC= �04� 2qN�L n 1x + (1�B) 2h�(Æ; �Æ)� B 4g�(�; ��)o: (27)5 SummaryWe have derived an approximate expressions for eletri (14) and magneti (16) self-�eldsprodued by a relativisti irular bunh with uniform harge density. They show that atdistanes far from the bunh the eletromagneti �eld oinsides with the �eld generated by apoint-like harged parile. At the same time, in the near region and beyond the bunh tails,the �elds oinide with the external self-�elds of a ontinuous beam (1)-(2).We re-analyzed the problem of summing the image �elds generated by a bunh of hargedpartiles moving with a relativisti veloity between in�nitely wide parallel onduting planes.The exat solution of the problem represented by the struture funtion of image �elds �(20) depending only of the normalized variables.AknowledgmentsThe author is grateful to P. Bussey and E. Lohrmann for reading a paper draft, ommentsand useful disussions. This study is partially supported by the Russian Foundation for BasiResearh under Grant no. 05-02-39028.AppendiesA Image Fields in Viinity of a BunhHere we derive the main formula (20).Let split the ontribution of all image �elds (17) given in braes into two parts,(2h� x1)�1 � (2h+ x1)�1 � (4h� x2)�1 + (4h+ x2)�1+ (6h� x1)�1 � (6h+ x1)�1 � (8h� x2)�1 + (8h+ x2)�1+ (10h� x1)�1 � (10h+ x1)�1 � (12h� x2)�1 + (12h+ x2)�1 + ::: (28)= 1Xk �k(x1; h)� 1Xm �m(x2; h); (29)where �k represents the ontribution from the negative harged images and �m is the ontri-bution from the positive harged images. Here and hereinafter, indexes k and m are possessodd, k=1,3,5,..., and even, m=2,4,6,... values.An expansion of denominators of �k and �m into a power series of small parametersÆ1 = x1=h < 1 and Æ2 = x2=h < 1 gives�k(x1; h) = 12kh� x1 � 12kh+ x1 = 2x1(2kh)2 � x21 = 2h 1Xn=1 Æ2n�11(2k)2n ; (30)�m(x2; h) = 12mh� x2 � 12mh+ x2 = 2x2(2mh)2 � x22 = 2h 1Xn=1 Æ2n�12(2m)2n : (31)6



Now it is evident that the spae struture of the image �elds between planes is haraterizedby a spei� funtion �(Æ1; Æ2), we term it the struture funtion,1Xk �k � 1Xm �m = 2h�(Æ1; Æ2): (32)with �(Æ1; Æ2) = 1Xk h Æ1(2k)2 + Æ31(2k)4 + :::i� 1Xm h Æ2(2m)2 + Æ32(2m)4 + :::i: (33)The struture funtion � depends only on the normalized variables.To proeed further, let us de�ne the following auxiliary quantitiesM (�)j = 1Xk 1(2k)2j � 1Xm 1(2m)2j = 1Xn=1 (�1)n+1(2n)2j = 122j � (22j�1 � 1)�2j(2j)! jB2jj; (34)M (+)j = 1Xk 1(2k)2j + 1Xm 1(2m)2j = 1Xn=1 1(2n)2j = 122j � 22j�1 � �2j(2j)! jB2jj; (35)where B2j are Bernoulli numbers, B2 = 1=6, B4 = �1=30, B6 = 1=42 et. By adding andsubtrating the leftmost parts of (34) and (35), we express k and m numerial series of (33)in terms of M (�)j and M (+)j . Therefore, we get from (33)�(Æ1; Æ2) = 12 1Xn=1 h(M (�)n +M (+)n )Æ2n�11 + (M (�)n �M (+)n )Æ2n�12 i (36)or after substituting of (34)-(35) in (36), we �nd the following form of the struture funtiongenerated by the harged bunh,�(Æ1; Æ2) = 12 1Xn=1 h(22n � 1)Æ2n�11 � Æ2n�12 i �2n22n(2n)! jB2nj : (37)Using only the linear terms we reover the part derived by Laslett [1℄ (see equation (18))�(�x; x; h) = 1h � �1(2�x+ x): (38)An inspetion of (37) shows that the ontributions of negative harged images are enhanedby the fator 22n � 1, as ompared with the ontributions from the positive harged images.Equation (37) also shows that for x in the bunh enter, Æ2 = 0 and the ontributions fromthe positive harged images are vanish.At the �nal step, it is possible to rewrite the in�nite series (37) in terms of elementarytrigonometri funtions. To do this, reall the relations between the Bernoulli numbers andthe trigonometri funtions [8℄,[9℄z tan(z) = 1Xn=1 (22n � 1)(2z)2n(2n)! jB2nj; z ot(z) = 1� 1Xn=1 (2z)2n(2n)! jB2nj: (39)After some algebrai manipulations and the use of (39), we get from (37) a new exat andompat expression of the struture funtion�(Æ1; Æ2) = 12h�4 tan(�4 Æ1) + �4 ot(�4 Æ2) � 1Æ2i: (40)7



Now, if we reall that Æ1 = (x+ �x)=h = Æ + �Æ and Æ2 = (x� �x)=h = Æ � �Æ, we obtain�(Æ; �Æ) = 12h�2 � os(�2 �Æ)sin(�2 Æ)� sin(�2 �Æ) � 1Æ � �Æi: (41)At a �rst glane, equation (40) or (41) is singular at Æ2 = 0 or Æ = �Æ, respetively.However, as we already disussed right after (37), it is not the ase. Starting one again from(37) with Æ2 = 0 and aount (39), we get formally�(�Æ; �Æ) = �8 tan (�2 �Æ): (42)Equations (37), (40) and (41) were derived assuming Æ < 1 and �Æ < 1. Therefore, oneast doubts on validity of (41) at Æ � 1, near the onduting plane. For that reason in thenext setion we re-expand the series (28) into a power series of new small parameters.B Image Fields in Viinity of a Conduting PlaneA similar derivation is used to obtain the �eld struture near a onduting surfae. Forthe ase under onsideration we have to hoose new small parameters for the expansion.Eah braket in (28) we represent in the form (1��)�1 and expand in series, realling thatat the plane x � h, �1 = h� x1h � 1; and �2 = h� x2h � 1:In this way,(2kh� x1)�1 = [(2k� 1)h℄�1h1 + �12k � 1i�1 = 1h 1Xn=1 (�1)n�1�n�11(2k� 1)n ; (43)(2kh+ x1)�1 = [(2k+ 1)h℄�1h1� �12k + 1i�1 = 1h 1Xn=1 �n�11(2k+ 1)n ; (44)(2mh� x2)�1 = [(2m� 1)h℄�1h1 + �22m� 1i�1 = 1h 1Xn=1 (�1)n�1�n�12(2m� 1)n ; (45)(2mh+ x2)�1 = [(2m+ 1)h℄�1h1� �22m+ 1i�1 = 1h 1Xn=1 �n�12(2m+ 1)n : (46)Let us introdue the following auxiliary notationsL(�)j = 1Xk h (�1)j�1(2k � 1)j � 1(2k + 1)j i � 1Xm h (�1)j�1(2m� 1)j � 1(2m+ 1)j i; (47)L(�)1;j = 1Xk 1(2k� 1)j � 1Xm 1(2m� 1)j = 1Xn=1 (�1)n+1(2n� 1)j ; (48)L(�)2;j = 1Xk 1(2k+ 1)j � 1Xm 1(2m+ 1)j = 1Xn=1 (�1)n+1(2n+ 1)j ; (49)L(+)1;j = 1Xk 1(2k� 1)j + 1Xm 1(2m� 1)j = 1Xn=1 1(2n� 1)j ; (50)L(+)2;j = 1Xk 1(2k+ 1)j + 1Xm 1(2m+ 1)j = 1Xn=1 1(2n+ 1)j : (51)8



By simple manipulations with seriess (48)-(49) and (50)-(51), it is easy to prove thatL(�)2;j = 1� L(�)1;j ; L(+)2;j = L(+)1;j � 1: (52)From (48)-(52) now easy to �ndL(+)n + L(�)n = [(�1)n�1 � 1℄L(+)1;n + [(�1)n�1 + 1℄L(�)1;n ; (53)L(+)n � L(�)n = [(�1)n�1 � 1℄L(+)1;n � [(�1)n�1 + 1℄L(�)1;n + 2: (54)Let introdue the image �eld struture funtion � in the way similar to (32) and rewrite �in terms of notations (47)�(�1;�2) == 12 1Xn=1n�n�11 h 1Xk � (�1)n�1(2k � 1)n � 1(2k+ 1)n�i��n�12 h 1Xm � (�1)n�1(2m� 1)n � 1(2m+ 1)n�io= 122 1Xn=1n�n�11 (L(+)n + L(�)n )��n�12 (L(+)n � L(�)n )o: (55)To perform the summation in (55), we have to split the series (55) into even, n = 2i, andodd, n = 2i� 1 parts and substitute (53), (54) in equation (55)�(�1;�2) = 12 1Xn=0 h(�2n1 +�2n2 )L(�)1;2n+1� (�2n+11 ��2n+12 )L(+)1;2(n+1)��2n2 ��2n+12 i: (56)With the help of (48), (50) and [8℄ we �ndL(�)1;2n+1 = �2n+122(n+1)(2n)! jE2nj; L(+)1;2(n+1) = (22(n+1) � 1)�2(n+1)2 � [2(n+ 1)℄! jB2(n+1)j; (57)and 1Xn=0(�2n2 + �2n+12 ) = 11��2 ; (58)where Bn and En are Bernoulli and Euler numbers, respetively. Thus,�(�1;�2) = 12n2 � �4 � 11��2 + �28 (�2 ��1)+ 1Xn=1 h(�2n1 +�2n2 )L(�)1;2n+1 � (�2n+11 ��2n+12 )L(+)1;2(n+1)io: (59)By using the results obtained in the previous setion and the deompositionse(x) = 1Xn=0 jE2nj(2n)!x2n; (60)equation (59) an be �nally expressed in terms of trigonometri funtions,�(�1;�2) = 12n�4 se(�2�1) � �4 tan(�2�1) + �4 se(�2�2) + �4 tan(�2�2) � 11��2o: (61)9



The struture funtion �(�1;�2), as written in (61), looks very di�erent from (40). However,it is not diÆult to hek that by use of the relations �1 = 1� Æ1 and �2 = 1� Æ2, equation(61) transforms in (40) or (41).In this way we ensure that equations (40), (41) and (61) are orret and represent exatsummation of image �elds generated by a harged bunh between in�nitely wide ondutingplanes.Referenes[1℄ L.J. Laslett, On intensity limitations imposed by transverse spae-harge e�ets. Rept.BNL-7534, Brookhaven National Laboratory, 1963. In "Seleted Works of J.JaksonLaslett", Lawrene Berkeley Laboratory, University of California, PUB-616, Vol. III,1987.[2℄ B. B. Levhenko, in preparation.[3℄ R. Cimino et. al, Phys. Rev. Lett. 93, 014801 (2004).[4℄ M. Ferrario, V. Fuso and M. Migliorati, Preprint SPARC-BD-03/002, 2003.[5℄ H. Wiedemann, Partile aelerator physis, vol.2, Springer, 1995.[6℄ M. Sands, The physis of eletron storage rings. An introdution, SLAC-121, StanfordLinear Aelerator Center, 1970.[7℄ A. Wu Chao, Physis of Colletive Beam Instabilities in High Energy Aelerators, JohnWiley & Sons, In, 1993[8℄ I.S. Gradshteyn and I.M. Rizhik, "Tables of Integrals, Sums, Series, and Derivatives",Nauka, Mosow, 1971, (in Russian).[9℄ Cong Lin, On Bernoulii numbers and its properties, E arXiv:math.HO/0408082, 2004.
10

http://arxiv.org/abs/math/0408082

	Introduction
	Self-Fields of a Charged Finite Cylinder       with a Circular Cross Section
	Fields from Image Charges
	Magnetic Images
	Summary
	 Image Fields in Vicinity of a Bunch 

