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Preprint SINP MSU 2006-03/802Real and Image Fields of a Relativisti
 Bun
hB. B. Lev
henko1Skobeltsyn Institute of Nu
lear Physi
s, Mos
ow State UniversityAbstra
tWe derive analyti
al expressions for external �elds of a 
harged relativisti
 bun
hwith a 
ir
ular 
ross se
tion. At distan
es far from the bun
h, the �eld redu
esto the relativisti
 modi�ed Coulomb form and in the near region, reprodu
e theexternal �elds of a 
ontinuous beam. If the bun
h is surrounded by 
ondu
tingsurfa
es, the bun
h self-�elds are modi�ed. Image �elds generated by a bun
hbetween two parallel 
ondu
ting planes are studied in detail. Exa
t summationof image �elds by the dire
t method invented by Laslett allows the in�nite seriesto be represented in terms of elementary trigonometri
 fun
tions.1 Introdu
tionIn an a

elerator, the 
harged beam is in
uen
ed by an environment (beam pipe, a

eleratorgaps, magnets, 
ollimators, et
.), and a high-intensity bun
h indu
es surfa
e 
harges or
urrents into this environment. This modi�es the ele
tri
 and magneti
 �elds around thebun
h. There is a relatively simple method to a

ount for the e�e
t of the environment byintrodu
ing image 
harges and 
urrents.Over forty years ago Laslett [1℄ analyzed the in
uen
e of the transverse spa
e-
hargephenomena, due to image for
es, on the instability of the 
oherent transverse motion of anintense beam. Methods of image �elds summation are des
ribed in his paper [1℄ whi
h pre-sented some �eld 
oeÆ
ients 
al
ulated for in�nite parallel plate va
uum 
hambers, magneti
poles and va
uum 
hambers with ellipti
al 
ross se
tions and variable aspe
t rations. Theresulting image �eld was 
al
ulated only in the linear approximation and depends linearly onthe deviations �x and x of the bun
h 
enter and the position of a test parti
le, respe
tively,from the axis. They a
t therefore like a quadrupole 
ausing a 
oherent tune shift. Theapproximation used is in
orre
t if the �eld observation point x is lo
ated far from the bun
hor if the bun
h 
enter is 
lose to a 
ondu
ting wall.In the present paper we 
onsider the problem of the image �eld summation on
e again fora very simple geometry, namely, a relativisti
 bun
h moving between in�nitely wide parallel
ondu
ting planes. The problem is far from being a pure a
ademi
 one [2℄. In appli
ations,in parti
ular by study of the ele
tron 
loud e�e
t [3℄ and the dynami
s of photoele
trons inthe beam transport system, it is important to know the distribution of ele
tromagneti
 �eldsnot only in vi
inity of the bun
h, but in the whole gap. We did not �nd publi
ations withattempts to sum up the series (17) in an approximation beyond the linear one. In Se
tion 3we present the exa
t solution of the problem.To solve the problem formulated above, in Se
tion 2 we �rst derive an equation for theexternal ele
tromagneti
 �eld generated by a 
ylindri
al bun
h of 
harged parti
les. Thetask is spe
i�ed as follows.1e-mail: levt
hen�mail.desy.de 1



The external radial ele
tri
 ~E?, and azimuthal magnet ~B� self �elds for a round un-bun
hed relativisti
 beam of the radius b and a uniform 
harge density are [5℄-[7℄E? = �2q�r ; (1)B� = �04� 2q�r 
�; (2)where � = 1=4��0, � is the linear 
harge density, q is the 
harge, � = v=
 is a normalizedvelo
ity of the beam 
onstituents and 
 is the velo
ity of light. In many appli
ations, equa-tions (1) and (2) are used to des
ribe �elds of an individual bun
h too. However, in the form(1), (2) the bun
h �elds do not depend on the bun
h energy and at large distan
es do notfollow the Coulomb asymptoti
. This 
ontrasts sharply with the �elds produ
ed (at t = 0)by a rapidly moving single 
harge q~E = �q 
r2 h 1� �21� �2 sin2 �i3=2 ~rr ; ~B � ~� � ~E; (3)where � is the angle whi
h the ve
tor ~r makes with the z-axis. Along the dire
tion of motionthe ele
tri
 �eld is be
ome weaker in 
2 times, while in the transverse dire
tion the ele
tri
�eld is enhan
ed by the fa
tor 
 E? = �q 
r2 : (4)Here, 
 denotes the parti
le Lorentz fa
tor.In the next se
tion we derive an expression for the transverse 
omponent of the bun
hele
tri
 �eld, whi
h the defe
ts indi
ated above are re
ti�ed, and �nd the 
onditions at whi
hthe bun
h �elds are represented by (1) and (2).2 Self-Fields of a Charged Finite Cylinderwith a Cir
ular Cross Se
tionLet us 
onsider a bun
h of 
harged parti
les uniformly distributed with a density � within a
ylinder of length L and an ellipti
al 
ross se
tion. The ellipsoid semi-axis in the x-y planeare a and b and the 
oordinate z-axis is along the bun
h axis. Suppose that the bun
h ismoving along the z-axis with a relativisti
 velo
ity ~v = 
~�.To 
ompute the radial ele
tri
 �eld of su
h a rapidly moving bun
h, we have to sum up�elds of the type (3), generated by the bun
h 
onstituents. In this way we get [4℄E?(r; �; z) = ��
fzI1 + (L� z)I2g (5)with I1 = Z Z (r� � 
os(� � �)) �d�d�(r2 + �2 � 2r� 
os(� � �))p
2z2 + r2 + �2 � 2r� 
os(� � �) (6)I2 = Z Z (r� � 
os(� � �)) �d�d�(r2 + �2 � 2r� 
os(� � �))p
2(L� z)2 + r2 + �2 � 2r� 
os(� � �) (7)where � is the distan
e in the x-y plane from the z-axis to the elementary 
harged volumeand 0 < � < abpa2 sin2 �+ b2 
os2 �; 0 < � < 2�: (8)2



Equation (5) represents the radial ele
tri
 �eld as observed at a distan
e r from the bun
haxis, at an angle � relative to the x axis and at a distan
e z from the bun
h tail.The integrals I1 and I2 
an be estimated only numeri
ally [4℄, if integrands are taken asit is. However, the integrands are easy to simplify if the bun
h is relativisti
, 
 � 1, and wewould like 
al
ulate the �eld in vi
inity of the bun
h, r � L, but at distan
es mu
h largerthan the bun
h radius, b� r.To simplify, we make use of the notationA = �r ; B = A 
os(� � �); Y = A2 � 2B; C1 = h1 + 
2z2r2 i�1; X = C1 � Yand the integrand of I1 
an be written as(r2 + 
2z2)�1=2A(1�B)(1 + Y )�1(1 +X)�1=2 : (9)Now we expand the above expression in a power series by using A as a small parameter andkeeping only terms up to the power A4 at ea
h step. For the bun
h shaped as a 
ir
ular
ylinder, a = b and we may set � = 0. Due to the fa
t thatZ 2�0 
os2k+1 � d� = 0; (10)all odd power of B vanish after integration in �. This greatly simpli�es the series generatedfrom (9). After lengthy algebrai
 manipulations with (9), we get(r2 + 
2z2)�1=2Ah1� (1 + 12C1)A2 + (2 + C1 + 32C21)B2i: (11)Substituting this expression in (6), we getI1 = �b2rpr2 + 
2z2�1 + 38C21 b2r2�: (12)By 
hanging z2 to (L� z)2 in (12), we obtain for I2 the following resultI2 = �b2rpr2 + 
2(L� z)2�1 + 38C22 b2r2�; (13)where C2 = h1 + 
2(L � z)2=r2i�1. Noti
e that for parti
les uniformly distributed in thebun
h volume, � = qN=�b2L, where N is number parti
les per bun
h. Substituting equations(12)-(13) in (5), �nally we arrive toE?(r; z) = �qN
Lr n zpr2 + 
2z2�1 + 38 b2r2C21�+ L� zpr2 + 
2(L� z)2�1 + 38 b2r2C22�o: (14)This equation des
ribe the ele
tri
 �eld produ
ed by a rapidly moving 
ir
ular bun
h.The �eld of a relativisti
 bun
h des
ribed by (14), has di�erent behavior at distan
es farapart of the bun
h and in the near region, r � L. At very large distan
es, r � 
z andr � 
(L� z), equation (14) redu
es to the Coulomb form (4). At the same time, in the nearregion and beyond the bun
h tails, 
z � 
(L� z)� r and equation (14) simpli�es toE? = �2qNL 1r ; (15)whi
h 
oin
ide with the external �eld (1) of a 
ontinuous beam with � = N=L.Similarly we 
an show that the azimuthal magneti
 �eld of the bun
h isB� = �04� �
� E?(r; z): (16)3



3 Fields from Image ChargesFollowing Laslett [1℄ (see also [5℄), we 
onsider a relativisti
 bun
h of the length L betweenin�nitely wide 
ondu
ting planes at x = �h. Suppose that 
onstituents of the bun
h arepositively 
harged. For full generality, let the 
ir
ular parti
le bun
h be displa
ed in thehorizontal plane by �x from the midplane (0,y,z), and the observation point of the �eld beat (x; 0; 0) between the 
ondu
ting parallel planes. The end points of the bun
h are atz = �L=2. The boundary 
ondition for ele
tri
 �elds is Ez(�h) = 0 on the 
ondu
ting planeand is satis�ed if the image 
harges 
hange sign from image to image. Suppose that thedistan
e between planes is of the order L. Thus, the ele
tri
 �eld of ea
h image is des
ribedby (15). To 
al
ulate the image ele
tri
 �eld E?;image(x) in front of the plate, we add the
ontributions from all image �elds in the in�nite series [1℄E?;image(x; �x) = �2qNL �n (2h� x1)�1 � (2h+ x1)�1 � (4h� x2)�1 + (4h+ x2)�1+ (6h� x1)�1 � (6h+ x1)�1 � (8h� x2)�1 + (8h+ x2)�1+ (10h� x1)�1 � (10h+ x1)�1 � (12h� x2)�1 + (12h+ x2)�1 + :::o;(17)where x1 = x+ �x and x2 = x� �x. These image �elds must be added to the dire
t �eld of thebun
h (15) to meet the boundary 
ondition that the ele
tri
 �eld enters 
ondu
ting surfa
esperpendi
ularly.In the original paper [1℄, the series (17) was summed up only in the linear approximationin x and �x, E?;image(x; �x) = �4qNL �1h2 (2�x+ x): (18)The 
oeÆ
ient �1 = �2=48 is known as the Laslett 
oeÆ
ient (or form fa
tor) for in�niteparallel plate va
uum 
hambers and magneti
 poles. The approximation used in (18) isin
orre
t if the deviation of the bun
h 
enter from the axis is large (�x � h) or if the �eldobservation point x is lo
ated far o� the bun
h. Therefore, below we present the exa
tsolution of the problem.In Appendixes A and B we prove that the exa
t summation of the series (17) givesE?;image(x; �x) = �4qNLh �(Æ; �Æ); (19)where the image �eld stru
ture fun
tion � depends only on normalized variables Æ = x=h,�Æ = �x=h in the form �(Æ; �Æ) = 12h�2 � 
os(�2 �Æ)sin(�2 Æ)� sin(�2 �Æ) � 1Æ � �Æi: (20)In Appendix A it is shown that in the linear approximation equation (19) re
overs the part(18) derived by Laslett.We shall now estimate values of the fun
tion � in several parti
ular points. If the obser-vation point of the �eld is lo
ated at the plane, x = h, then Æ = 1 and the stru
ture fun
tiondepends only on the bun
h 
enter position between planes, �Æ. Thus, from (20) we get�(1; �Æ) = 12n�2 1 + sin(�2 �Æ)
os(�2 �Æ) � 11� �Æo: (21)4



Equation (21) is singular at �Æ ! 1 and shows that the 
ondu
ting plane attra
ts the bun
hwith in
reasing for
e with the bun
h displa
ement from the midplane. This phenomenon,involving the transverse movement of the bun
h as a whole, arises from image for
es and
ould lead to a transverse instability.For a bun
h in the midplane, �Æ = 0, the summed image �eld at the surfa
e equalsE?;image(h; 0) = �4qNLh �(1; 0) = �2qNLh (�2 � 1): (22)The image �eld (19) must be added to the dire
t �eld of the bun
h (15) to meet theboundary 
ondition. ThusE?;tot(x; �x) = E?;bun
h +E?;image = �2qNLh �1Æ + 2�(Æ; �Æ)�: (23)For a bun
h in the midplane, �Æ = 0, we �nd from (23) the expression of the transverse
omponent of ele
tri
 �eld generated by a relativisti
 bun
h moving between wide 
ondu
tingparallel planes E?;tot(x; 0) = �2qNLh � �=2sin(�2 Æ) : (24)That is, at the surfa
e, Æ = 1, the �eld is enhan
ed by a fa
tor �=2 due to the presen
e ofthe 
ondu
ting planes.Noti
e that in the linear approximation (18) the �eld gradient, �E?=�x, is independentof position x. Thus the tune shift experien
ed by ea
h parti
le in the bun
h is the same(a 
oherent tune shift). However, the exa
t result (19) demonstrates that the 
oheren
e isviolated and equation (19) allows us to estimate the a

ura
y of the linear approximation.4 Magneti
 ImagesIn the above, we have used ele
trostati
 images. Magneti
 images 
an be treated in mu
hthe same way. Let the ferromagneti
 boundaries be represented by a pair of in�nitely wideparallel surfa
es at x = �g. The magneti
 �eld lines must enter the magneti
 pole fa
esperpendi
ularly. For magneti
 image �elds we distinguish between DC and AC image �elds.The DC �eld penetrates the metalli
 va
uum 
hamber and rea
hes the ferromagneti
 poles.In 
ase of bun
hed beams the AC �elds are of rather high frequen
y and we assume thatthey do not penetrate the thi
k metalli
 va
uum 
hamber.The DC Fourier 
omponent of a bun
hed beam 
urrent is equal to twi
e the averagebeam 
urrent q
��B [5℄, where B is the the Laslett bun
hing fa
tor. Thus,By;image;DC(x; �x) = ��04� 2qN�
L B � 4g�(�; ��); (25)where � = x=g and �� = �x=g and the fun
tion � is of the form (21).The 
ontribution of magneti
 AC image �eld due to eddy 
urrents in va
uum 
hamberwalls is similar to ele
tri
 image �eldsBy;image;AC(x; �x) = �04� 2qN�
L (1�B) � 2h�(Æ; �Æ); (26)where the fa
tor (1�B) a

ounts for the subtra
tion of the DC 
omponent.5



The magneti
 image �elds must be added to the dire
t magneti
 �eld (2) from the bun
hto meet the boundary 
ondition of normal 
omponents at ferromagneti
 surfa
es. That is,the summary magneti
 �eld between the 
ondu
ting planes isBy;tot(x; �x) = By +By;image;DC +By;image;AC= �04� 2qN�
L n 1x + (1�B) 2h�(Æ; �Æ)� B 4g�(�; ��)o: (27)5 SummaryWe have derived an approximate expressions for ele
tri
 (14) and magneti
 (16) self-�eldsprodu
ed by a relativisti
 
ir
ular bun
h with uniform 
harge density. They show that atdistan
es far from the bun
h the ele
tromagneti
 �eld 
oinsides with the �eld generated by apoint-like 
harged pari
le. At the same time, in the near region and beyond the bun
h tails,the �elds 
oin
ide with the external self-�elds of a 
ontinuous beam (1)-(2).We re-analyzed the problem of summing the image �elds generated by a bun
h of 
hargedparti
les moving with a relativisti
 velo
ity between in�nitely wide parallel 
ondu
ting planes.The exa
t solution of the problem represented by the stru
ture fun
tion of image �elds �(20) depending only of the normalized variables.A
knowledgmentsThe author is grateful to P. Bussey and E. Lohrmann for reading a paper draft, 
ommentsand useful dis
ussions. This study is partially supported by the Russian Foundation for Basi
Resear
h under Grant no. 05-02-39028.Appendi
esA Image Fields in Vi
inity of a Bun
hHere we derive the main formula (20).Let split the 
ontribution of all image �elds (17) given in bra
es into two parts,(2h� x1)�1 � (2h+ x1)�1 � (4h� x2)�1 + (4h+ x2)�1+ (6h� x1)�1 � (6h+ x1)�1 � (8h� x2)�1 + (8h+ x2)�1+ (10h� x1)�1 � (10h+ x1)�1 � (12h� x2)�1 + (12h+ x2)�1 + ::: (28)= 1Xk �k(x1; h)� 1Xm �m(x2; h); (29)where �k represents the 
ontribution from the negative 
harged images and �m is the 
ontri-bution from the positive 
harged images. Here and hereinafter, indexes k and m are possessodd, k=1,3,5,..., and even, m=2,4,6,... values.An expansion of denominators of �k and �m into a power series of small parametersÆ1 = x1=h < 1 and Æ2 = x2=h < 1 gives�k(x1; h) = 12kh� x1 � 12kh+ x1 = 2x1(2kh)2 � x21 = 2h 1Xn=1 Æ2n�11(2k)2n ; (30)�m(x2; h) = 12mh� x2 � 12mh+ x2 = 2x2(2mh)2 � x22 = 2h 1Xn=1 Æ2n�12(2m)2n : (31)6



Now it is evident that the spa
e stru
ture of the image �elds between planes is 
hara
terizedby a spe
i�
 fun
tion �(Æ1; Æ2), we term it the stru
ture fun
tion,1Xk �k � 1Xm �m = 2h�(Æ1; Æ2): (32)with �(Æ1; Æ2) = 1Xk h Æ1(2k)2 + Æ31(2k)4 + :::i� 1Xm h Æ2(2m)2 + Æ32(2m)4 + :::i: (33)The stru
ture fun
tion � depends only on the normalized variables.To pro
eed further, let us de�ne the following auxiliary quantitiesM (�)j = 1Xk 1(2k)2j � 1Xm 1(2m)2j = 1Xn=1 (�1)n+1(2n)2j = 122j � (22j�1 � 1)�2j(2j)! jB2jj; (34)M (+)j = 1Xk 1(2k)2j + 1Xm 1(2m)2j = 1Xn=1 1(2n)2j = 122j � 22j�1 � �2j(2j)! jB2jj; (35)where B2j are Bernoulli numbers, B2 = 1=6, B4 = �1=30, B6 = 1=42 et
. By adding andsubtra
ting the leftmost parts of (34) and (35), we express k and m numeri
al series of (33)in terms of M (�)j and M (+)j . Therefore, we get from (33)�(Æ1; Æ2) = 12 1Xn=1 h(M (�)n +M (+)n )Æ2n�11 + (M (�)n �M (+)n )Æ2n�12 i (36)or after substituting of (34)-(35) in (36), we �nd the following form of the stru
ture fun
tiongenerated by the 
harged bun
h,�(Æ1; Æ2) = 12 1Xn=1 h(22n � 1)Æ2n�11 � Æ2n�12 i �2n22n(2n)! jB2nj : (37)Using only the linear terms we re
over the part derived by Laslett [1℄ (see equation (18))�(�x; x; h) = 1h � �1(2�x+ x): (38)An inspe
tion of (37) shows that the 
ontributions of negative 
harged images are enhan
edby the fa
tor 22n � 1, as 
ompared with the 
ontributions from the positive 
harged images.Equation (37) also shows that for x in the bun
h 
enter, Æ2 = 0 and the 
ontributions fromthe positive 
harged images are vanish.At the �nal step, it is possible to rewrite the in�nite series (37) in terms of elementarytrigonometri
 fun
tions. To do this, re
all the relations between the Bernoulli numbers andthe trigonometri
 fun
tions [8℄,[9℄z tan(z) = 1Xn=1 (22n � 1)(2z)2n(2n)! jB2nj; z 
ot(z) = 1� 1Xn=1 (2z)2n(2n)! jB2nj: (39)After some algebrai
 manipulations and the use of (39), we get from (37) a new exa
t and
ompa
t expression of the stru
ture fun
tion�(Æ1; Æ2) = 12h�4 tan(�4 Æ1) + �4 
ot(�4 Æ2) � 1Æ2i: (40)7



Now, if we re
all that Æ1 = (x+ �x)=h = Æ + �Æ and Æ2 = (x� �x)=h = Æ � �Æ, we obtain�(Æ; �Æ) = 12h�2 � 
os(�2 �Æ)sin(�2 Æ)� sin(�2 �Æ) � 1Æ � �Æi: (41)At a �rst glan
e, equation (40) or (41) is singular at Æ2 = 0 or Æ = �Æ, respe
tively.However, as we already dis
ussed right after (37), it is not the 
ase. Starting on
e again from(37) with Æ2 = 0 and a

ount (39), we get formally�(�Æ; �Æ) = �8 tan (�2 �Æ): (42)Equations (37), (40) and (41) were derived assuming Æ < 1 and �Æ < 1. Therefore, one
ast doubts on validity of (41) at Æ � 1, near the 
ondu
ting plane. For that reason in thenext se
tion we re-expand the series (28) into a power series of new small parameters.B Image Fields in Vi
inity of a Condu
ting PlaneA similar derivation is used to obtain the �eld stru
ture near a 
ondu
ting surfa
e. Forthe 
ase under 
onsideration we have to 
hoose new small parameters for the expansion.Ea
h bra
ket in (28) we represent in the form (1��)�1 and expand in series, re
alling thatat the plane x � h, �1 = h� x1h � 1; and �2 = h� x2h � 1:In this way,(2kh� x1)�1 = [(2k� 1)h℄�1h1 + �12k � 1i�1 = 1h 1Xn=1 (�1)n�1�n�11(2k� 1)n ; (43)(2kh+ x1)�1 = [(2k+ 1)h℄�1h1� �12k + 1i�1 = 1h 1Xn=1 �n�11(2k+ 1)n ; (44)(2mh� x2)�1 = [(2m� 1)h℄�1h1 + �22m� 1i�1 = 1h 1Xn=1 (�1)n�1�n�12(2m� 1)n ; (45)(2mh+ x2)�1 = [(2m+ 1)h℄�1h1� �22m+ 1i�1 = 1h 1Xn=1 �n�12(2m+ 1)n : (46)Let us introdu
e the following auxiliary notationsL(�)j = 1Xk h (�1)j�1(2k � 1)j � 1(2k + 1)j i � 1Xm h (�1)j�1(2m� 1)j � 1(2m+ 1)j i; (47)L(�)1;j = 1Xk 1(2k� 1)j � 1Xm 1(2m� 1)j = 1Xn=1 (�1)n+1(2n� 1)j ; (48)L(�)2;j = 1Xk 1(2k+ 1)j � 1Xm 1(2m+ 1)j = 1Xn=1 (�1)n+1(2n+ 1)j ; (49)L(+)1;j = 1Xk 1(2k� 1)j + 1Xm 1(2m� 1)j = 1Xn=1 1(2n� 1)j ; (50)L(+)2;j = 1Xk 1(2k+ 1)j + 1Xm 1(2m+ 1)j = 1Xn=1 1(2n+ 1)j : (51)8



By simple manipulations with seriess (48)-(49) and (50)-(51), it is easy to prove thatL(�)2;j = 1� L(�)1;j ; L(+)2;j = L(+)1;j � 1: (52)From (48)-(52) now easy to �ndL(+)n + L(�)n = [(�1)n�1 � 1℄L(+)1;n + [(�1)n�1 + 1℄L(�)1;n ; (53)L(+)n � L(�)n = [(�1)n�1 � 1℄L(+)1;n � [(�1)n�1 + 1℄L(�)1;n + 2: (54)Let introdu
e the image �eld stru
ture fun
tion � in the way similar to (32) and rewrite �in terms of notations (47)�(�1;�2) == 12 1Xn=1n�n�11 h 1Xk � (�1)n�1(2k � 1)n � 1(2k+ 1)n�i��n�12 h 1Xm � (�1)n�1(2m� 1)n � 1(2m+ 1)n�io= 122 1Xn=1n�n�11 (L(+)n + L(�)n )��n�12 (L(+)n � L(�)n )o: (55)To perform the summation in (55), we have to split the series (55) into even, n = 2i, andodd, n = 2i� 1 parts and substitute (53), (54) in equation (55)�(�1;�2) = 12 1Xn=0 h(�2n1 +�2n2 )L(�)1;2n+1� (�2n+11 ��2n+12 )L(+)1;2(n+1)��2n2 ��2n+12 i: (56)With the help of (48), (50) and [8℄ we �ndL(�)1;2n+1 = �2n+122(n+1)(2n)! jE2nj; L(+)1;2(n+1) = (22(n+1) � 1)�2(n+1)2 � [2(n+ 1)℄! jB2(n+1)j; (57)and 1Xn=0(�2n2 + �2n+12 ) = 11��2 ; (58)where Bn and En are Bernoulli and Euler numbers, respe
tively. Thus,�(�1;�2) = 12n2 � �4 � 11��2 + �28 (�2 ��1)+ 1Xn=1 h(�2n1 +�2n2 )L(�)1;2n+1 � (�2n+11 ��2n+12 )L(+)1;2(n+1)io: (59)By using the results obtained in the previous se
tion and the de
ompositionse
(x) = 1Xn=0 jE2nj(2n)!x2n; (60)equation (59) 
an be �nally expressed in terms of trigonometri
 fun
tions,�(�1;�2) = 12n�4 se
(�2�1) � �4 tan(�2�1) + �4 se
(�2�2) + �4 tan(�2�2) � 11��2o: (61)9



The stru
ture fun
tion �(�1;�2), as written in (61), looks very di�erent from (40). However,it is not diÆ
ult to 
he
k that by use of the relations �1 = 1� Æ1 and �2 = 1� Æ2, equation(61) transforms in (40) or (41).In this way we ensure that equations (40), (41) and (61) are 
orre
t and represent exa
tsummation of image �elds generated by a 
harged bun
h between in�nitely wide 
ondu
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