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AbstratWe ompute orrelation funtions of losed strings in Misner spae, a big runhbig bang universe. We develop a general method for orrelators with twist �elds,whih are relevant for the investigation on the ondensation of winding tahyon. Wepropose to ompute the orrelation funtions by performing an analyti ontinuationof the results in C=ZN Eulidean orbifold. In partiular, we obtain a �nite resultfor a general four point funtion of twist �elds, whih might be important for theinterpretation as the quarti term of the tahyon potential. Three point funtionsare read o� through the fatorization, whih are onsistent with the known results.
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1 IntrodutionLorentzian (time-dependent) orbifolds attrat muh attention reently, beause theyare solvable models desribing strings in big runh/big bang universes (see, for reviews,[1, 2, 3℄). Typial Lorentzian orbifolds, however, have pathology assoiated with their bigbang singularities. It was shown in [4, 5, 6℄ that 2! 2 sattering amplitude of untwistedstates diverges due to graviton exhanges near the big bang singularity. Moreover, it waspointed out in [7℄ that a probe string indues a large bakreation due to the blue shiftnear the singularity, and produes a large blak hole. One way to resolve the singularity isto add non-trivial diretions suh that the geometry has no region inluding the singularpoint [8, 5, 9℄. This way of resolution, however, does not give any hint for stringy e�etsaround the singularity.The stringy way of resolution may ome from perturbative or non-perturbative e�ets.A perturbative way is the ondensation of winding strings, whih ould be massless [10, 11℄or tahyoni [12, 13℄. It was suggested in [10℄ that the winding strings are pair-reateddue to the time-dependent bakground, and the bakreation may resolve the singularity.On the other hand, it was onjetured in [12℄ that the big bang singularity is replaed byso-alled tahyon state. The tahyon ondensation was also investigated by D-instantonprobe in [14, 15, 16℄. A non-perturbative way may be given by Matrix model desriptionof M-theory on time-dependent bakgrounds. The bakgrounds ould be the ones withnull-linear dilaton [17℄ as well as Lorentzian orbifolds [18, 19℄. In the dual desription,the singular region orresponds to the weak oupling region, where newly appearing non-Abelian �elds seem to resolve the singularity. Reent developments along this diretionare given, e.g., in [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35℄.In this paper, we ompute orrelation funtions of losed strings in Misner spae,1whih is obtained as (1+1) dimensional Minkowski spae-time divided by a disrete boost.The bakground inludes a big runh/big bang singularity, and open and losed strings inthe model have been investigated in [39, 40, 10, 11, 41, 42℄. We develop a general formalismto ompute the orrelation funtions, in partiular, we obtain the four point funtions ofwinding strings, and �nd a �nite result. Considering the sattering of massless windingstrings, then the result suggests that the winding strings feel the singularity milder thanthe untwisted strings. The four point funtion may also give sensible information on thequarti oupling of tahyoni �elds due to its �niteness.We propose to ompute the general orrelation funtions in the following way. Firstwe de�ne the Lorentzian orbifold, whih desribes strings in Misner spae, by an analyti1Some of the orrelation funtions were already omputed in [11℄. Though the orrelators with lessthan two twist �elds an be omputed in operator formalism as in [11℄, it is diÆult for those withmore than two. It was proposed in [11℄ that the three point funtions of twist �elds an be obtainedby utilizing the results of Nappi-Witten model in [36, 37, 38℄. However, it is obviously important toonstrut a general formalism to ompute the orrelation funtions in the Lorentzian orbifold.1



ontinuation of C =ZN Eulidean orbifold theory in the next setion. In partiular, we willexplain in detail how to map the spetra in Misner spae and in C =ZN orbifold theory.One we have the map, then we only need to ompute general orrelation funtions in theC =ZN theory. We start from several simple examples to get a feeling of our method insetion 3, and then we move to general ones in setion 4. We mainly follow the tehniquedeveloped in [43, 44℄, where monodromy onditions around the twist �elds are utilized toompute orrelators in the C =ZN orbifold. Four point funtions are obtained in subsetion4.1 by utilizing the method, and three point funtions are dedued from the four pointfuntions in subsetions 4.2 and 4.3. In partiular, the three point funtions reprodue theresults in [11℄. In setion 5, we onlude our results and disuss the physial impliationsof the orrelation funtions. In the appendix, we summarize the formula of hyergeometrifuntion.2 Misner spae and C =ZN orbifoldMisner spae is de�ned as the (1+1) dimensional Minkowski spae-time with the iden-ti�ation of the disrete boost (R1;1=Z)x� � e�2�x� ; x� = 1p2(x1 � x0) : (2.1)Sine the boost does not mix the regions inside and outside of the light-one, the universeis divided by the lines x+x� = 0. The regions with x+x� < 0 are alled as osmologialregions, and the regions with x+x� > 0 are alled as whisker regions. Changing theoordinates as x� = � 1p2te� for x+x� < 0 and x� = 1p2re�� for x+x� > 0, the metriis given by ds2 = �dt2 + t2d 2 ; ds2 = dr2 � r2d�2 ; (2.2)where  �  + 2� and � �  + 2�. In the osmologial regions, the radius of spaeirle depends on the time, and in partiular, there is a big runh/big bang singularityat t = 0. In the whisker regions, there are losed time-like urves due to the periodiityof the time �. These regions are onjetured to be exised from the universe by tahyonondensation [45℄, whih will be disussed later. In the ontext of ritial string theory,we impliitly add d extra at diretions, where d = 24 for bosoni strings and d = 8 forsuperstrings.In the following, we will onnet this model with a Eulidean orbifold (C =ZN) withan enough large integer N .2 The Eulidean orbifold is de�ned as 2 dimensional at spae2In order to perform the path integral to ompute orrelation funtions, we may have to Wik rotatethe target spae into a Eulidean spae. In the orbifold theory, the identi�ation by a disrete boost hasto be also mapped to the one by 2�=N rotation. It might be more transparent to use an irrational N forthe purpose of the Wik rotation. The assumption that N is integer is only used in the next subsetionto make lear the normalization of untwisted states.2



with the identi�ation of 2�=N rotationx� � e�2�i=Nx� ; x� = 1p2(x1 � ix2) : (2.3)The ondition for Misner spae (2.1) may be obtained just by replaing 1=N $�i andx2 $ �ix0. In the next setion, we extend the orbifold proedure in the untwisted setorfrom the Eulidean orbifold ase into the Lorentzian orbifold ase. We should take a areon the fat that in�nitely many images of the disrete boost should be summed over inthe Lorentzian orbifold. In subsetion 2.2, we propose how to de�ne the map between thespetra of both the orbifolds. In fat, the twisted setor is found to be more subtle, andwe need a trik to perform the analyti ontinuation.2.1 The untwisted setorWe start from the states in the untwisted setor, whih orrespond to tahyon orgraviton �elds propagating the universe. Thus, the orrelators involving these statesprovide information about the bakground geometry. In the 2 dimensional at spae, thetahyon �eld may be de�ned asVp = ei�pX++ipX� ; hVp(1)Vp0(0)i = (2�)2Æ(2)(p � p0) ; (2.4)or in the bra and ket form ashp; �pjp0; �p0i = (2�)2Æ(2)(p� p0) : (2.5)Here we de�ned p = 1p2(p1 + ip2) and �p = 1p2(p1 � ip2). In the C =ZN orbifold theory, theinvariant state is given by summing over the orbifold images asjp; �piN = 1N N�1Xn=0 je 2�inN p; e�2�inN �pi ; Nhp; �pjp0; �p0iN = (2�)2 1N N�1Xn=0 Æ(2)(p� e 2�inN p0) : (2.6)We an similarly de�ne the orbifold invariant states in the Misner spae asjp; �pi = 1Z Xn2Zje2�np+; e�2�np�i ;hp; �pjp0; �p0i = (2�)2 1Z Xn2ZÆ(p+ � e2�np+0)Æ(p� � e�2�np�0) ; (2.7)where p� = 1p2(p1 � p0). Note that we divide by the in�nite fator Z = Pn 1. Theompleteness onditions are1 = Z dpd�p(2�)2 jp; �pihp; �pj = Z dpd�p(2�)2 jp; �piNNhp; �pj = Z dp+dp�(2�)2 jp+; p�ihp+; p�j ; (2.8)3



whih will be used to fatorize four point funtions into the produt of two three pointfuntions. Keeping these relations in mind, we will adopt the integral over the omplexplane of p and the basis for the at spae.The standard basis in Misner spae [39, 6℄ is not the one in (2.7), but the both an bemapped into eah other as follows. Let us de�ne asjq; niN = 1N Z N0 dsje 2�isN p; e�2�isN �pie�2�ins ; (2.9)with jpj = q, whih is also invariant under the orbifold ation. The measure is given byPn2ZR qdq(2�) . The two point funtion an be omputed asN hq; njq0; n0iN = 1N2 Z N0 ds Z N0 ds0(2�)2Æ(2)(e 2�isN q � e 2�is0N q0)e2�i(ns�n0s0) : (2.10)The phase fators are absorbed by the onstant shift of s and s0 impliitly. Changing thevariables as �� = s� s0, we obtain12N2 Z 2N0 d�+ Z N0 d��(2�)21q Æ(q � q0)Æ(2�N ��)e�i((n�n0)�++(n+n0)��) : (2.11)The integral over �+ gives the delta funtion 2NÆn;n0 , and the integral over �� piks upthe delta funtion and leads N=(2�). Therefore, we obtain the inner produt of this basisas N hq; njq0; n0iN = (2�)1q Æ(q � q0)Æn;n0 : (2.12)The ompleteness ondition an be also shown asXn Z 10 qdq2� jq; niNN hq; nj= 1N2 Z 10 qdq2� Z N0 ds Z N0 ds0jqe 2�isN ; qe� 2�isN ihqe 2�is0N ; qe� 2�is0N jXm Æ(s� s0 +m)= 1N Z 10 qdq(2�)2 Z 2�0 d Xm jqei ; qe�i ihqei + 2�imN ; qe�i � 2�imN j = 1 : (2.13)In the �rst equality, the sum over n is taken, whih leads to the delta funtion. In theseond equality, the integral over s0 piks up the delta funtion, and the variable hanges as = 2�s=N . The last equality is the onsequene of (2.8). With a simple generalization,we an de�ne the basis in Misner spae asjq; ni = 1Z 0 Z 1�1 dsje2�sp+; e�2�sp�ie�2�ins ; (2.14)whih is the same as the one in [39, 6℄. The inner produt and the ompleteness onditionare satis�ed with Z 0 = qPn 1=. In this way, we have shown that the result does notdepend on the hoie of the basis. 4



2.2 The twisted setorsAs mentioned above, it is a subtle problem to de�ne the Hilbert spae of twistedsetors in Misner spae. In order to larify the problem, we �rst study the well-knownspetrum in the C =ZN orbifold theory. In the twisted setor, the losed strings have tosatisfy the twisted boundary onditionsX�(e2�iz; e�2�i�z) = e� 2�ikN X�(z; �z) (2.15)with an integer k 6= 0.3 Therefore, the mode expansion in the k-th twisted setor is givenby4 X�(z; �z) = iXn 1(n� kN ) ��nzn� kN + iXn 1(n� kN ) ~��n�zn� kN ; (2.16)where the mode operators satisfy[��m; �+n ℄ = (m+ kN )Æm+n ; [~��m; ~�+n ℄ = (m� kN )Æm+n : (2.17)The Hilbert spae is generated by ating the negative mode operators to the states withquasi-zero modes (we assume k > 0 from now on)jn; ~n; kiN = (�+0 )n(~��0 )~njkiN ; (2.18)where the vauum state has the property as�+n>0jkiN = ��n�0jkiN = 0 ; ~�+n�0jkiN = ~��n>0jkiN = 0 : (2.19)Note that the (quasi-)zero mode part is di�erent from one in the untwisted setor sinethe quasi-zero modes satisfy non-trivial ommutation relations (2.17).Naively we expet that the spetrum of twisted setors in Misner spae is given justby replaing 1=N $ �i, X2 $ �iX0. Indeed, we an obtain in this way the boundaryonditions X�(e2�iz; e�2�i�z) = e�2�kX�(z; �z) ; (2.20)and the mode expansionsX�(z; �z) = iXn 1(n� ik) ��nzn�ik + iXn 1(n� ik) ~��n�zn�ik (2.21)with [��m; �+n ℄ = (m� ik)Æm+n ; [~��m; ~�+n ℄ = (m+ ik)Æm+n : (2.22)3We should assume jkj < N in the C=ZN theory, but we an extend to any integer number in Misnerspae ase.4We set �0 = 2 throughout this paper. 5



However, the de�nition of the Hilbert spae is a subtle problem. As was pointed out in[39℄, if we de�ne the Hilbert spae as in the C =ZN orbifold, then there is no physial state.This is beause the Virasoro generators are impliitly de�ned asL0 = �12ik(1 + ik) + �+0 ��0 +Xn>0(�+�n��n + ���n�+n ) ;~L0 = �12ik(1 + ik) + ~��0 ~�+0 +Xn>0(~�+�n ~��n + ~���n ~�+n ) ; (2.23)and they are imaginary for every states in the Hilbert spae.A solution was proposed in [40℄. In terms of Virasoro generators, the hange shouldbe made as L0 = �12(ik)2 + 12(�+0 ��0 + ��0 �+0 ) +Xn>0(�+�n��n + ���n�+n ) ;~L0 = �12(ik)2 + 12(~��0 ~�+0 + ~�+0 ~��0 ) +Xn>0(~�+�n ~��n + ~���n ~�+n ) ; (2.24)whih means that the vauum state is not the one in (2.19) but the eigenstates as12(�+0 ��0 + ��0 �+0 )j!2; ~!2; ki = !2j!2; �!2; ki ;12(~�+0 ~��0 + ~��0 ~�+0 )j!2; ~!2; ki = ~!2j!2; ~!2; ki : (2.25)By means of the vauum state (2.19), this state may be expressed asj!2; ~!2; ki = (�+�+0 )� !2ik� 12 (~��~��0 )� ~!2ik� 12 jki ; (2.26)whih has the extra labels �+; ~�� = �1 as explained below.Restriting to the quasi-zero mode setor, we an see the physial piture of thesestates. For the massive ase !2 = ~!2 = �M2 < 0, the solutions with ��0 = ��M and~��0 = �~� ~M lead to (now we set z = ei(�+�) and �z = ei(���))X�(�; �) = �2Mk e�k� sinh k� ; X�(�; �) = 2Mk e�k� osh k� : (2.27)The �rst solution is for � = ~� = +1, and it desribes a string winding around  -yle andwrapping the whole osmologial regions. This type of winding string may be used tostudy the singularity by the winding string probe. The seond solution is for � = �~� = +1,and it desribes a string winding around the periodi time � and the string exists from apoint r0 = 2p2M=(k) to a spatial in�nity.For the tahyoni ase !2 = ~!2 > 0, the solutions with ��0 = �! and ~��0 = ~�~! lead toX�(�; �) = 2!k e�k� sinh k� ; X�(�; �) = �2!k e�k� osh k� : (2.28)6



The �rst solution is for � = ~� = +1, and it desribes a string wrapping the whole whiskerregions. In the ontext of tahyon ondensation, this type of tahyon is interesting sinethe ondensation may remove the whisker regions [45℄, and at the same time resolve the bigbang singularity in the osmologial region [16℄. The seond solution is for � = �~� = +1,and it desribes strings pair reated at a spei� time t0 = 2p2!=(k).We need a speial are on dealing with the state (2.26), sine it is given by theomplex power of the operators. In order to de�ne this omplex power, we utilize theMellin transform as in [11℄(�+�+0 )� !2ik� 12 = 1�( !2ik + 12) Z 10 dxx !2ik� 12 e��+�+0 x ; e��+0 y = 1Xn=0 (�+0 )n(�y)nn! : (2.29)In other words, we de�ne the exponential form of the state asjy; ~y; kiN = 1Xn=0 (�y)n(�~y)~nn!~n! jn; ~n; kiN ; (2.30)and perform the Wik rotation, namely, replae X2 $ �iX0 and 1=N $ �i. Moreover,we may perform the Mellin transformation (2.29), sine the above basis (2.30) is not theeigenstate of L0 and ~L0. In summary, it is enough to ompute the orrelators of the states(2.30) in the C =ZN orbifold theory sine the orrelators in Misner spae an be obtainedthrough the map.3 Simple examplesBefore moving to the full analysis of orrelation funtions, we start from some simplealulations. In the next subsetion, we ompute orrelation funtions with two twist�elds. Sine we an map two twisted �elds to in and out states, we an apply operatorformalism to this type of orrelators. In order to ompute orrelators with more than twotwist �elds, we have to apply more general formalism, whih will be developed in the nextsetion. In subsetion 3.2, we ompute lassial three point funtions of twisted �elds,whih are given by the overlaps of orresponding wave funtions. The both orrelatorswere already omputed in [11℄, but we rederive them in a bit di�erent way suh that ourpresription is manifest.3.1 Correlation funtions in operator formalismFirst we ompute two point funtions in the twisted setor, even though the two pintfuntions are nothing but the normalization of the states. For the out states, we de�nethe bra states as N hn; ~n; kj = N hkj(��0 )n(~�+0 )~n ; (3.1)7



where the vauum state satis�esN hkj�+n�0 = N hkj��n<0 = 0 ; N hkj~�+n<0 = N hkj~��n�0 = 0 (3.2)and Nhkjk0iN = Æk;k0 : (3.3)With the help of the ommutation relations for the operators (2.17), we �ndN hn; ~n; kjn; ~n; kiN = n!~n! kN !n+~n ; Nhy; ~y; kjx0; ~y0; kiN = e kN (yy0+~y~y0) : (3.4)In the Misner spae ase, 1=N is replaed by �i. Furthermore, we have to perform theMellin transformation (2.29), in order to hange the basis into the one in (2.26). In thisase, we an expliitly integrate over y; y0; ~y; ~y0, whih readsh!2; ~!2; kj!02; ~!02; ki = �(�i)2(ik)� !2ik� ~!2ik�1�( !2ik + 12)�( ~!2ik + 12) Æ(!2 � !02)Æ(~!2 � ~!02) (3.5)with � = (�+��)� !2ik� 12 (~��~�+)� ~!2ik� 12 . It might be onvenient to hange the normalizationof the two point funtion suh that the oeÆient of the delta funtion is one.In order to ompute more hight point funtions, we need to insert vertex operators. Inthe untwisted setor, we already have the vertex operator, whih is given by the summationor the integral of (2.4) as explained in subsetion 2.1. However, in the twisted setors, it isknown to be diÆult to onstrut vertex operators. In this subsetion, we therefore onlyompute the following three point funtion with the insertion of tahyon vertex operatorNhn; ~n; kj : ei�pX++ipX� : (1)jn; ~n; kiN ; (3.6)where the summation or the integration over the momentum may be needed. The threepoint funtion orresponds to the tahyon tadpole, whih may represent the deformationof the geometry due to the ondensation of twist �eld, for instane, the winding tahyon.The higher point funtions an be omputed if the extra vertex operators are in theuntwisted setor.5In the Hilbert spae of twisted setor, we should take are of the normal ordering ofthe vertex operator. Here we adopt the normal ordering as: ei�pX++ipX� : (z) = limw!z ei�pX+(w)eipX�(z)e�p�p[Xu;+< (w);Xu;�> (z)℄ : (3.7)The supersript u denotes the mode expansion in the untwisted setor, and the subsripts> and < represent the positive and negative modes, respetively. In the k-th twistedsetor, the vertex operator is expliitly written as: ei�pX++ipX� := ei�pX+<+ipX�< ei�pX+>+ipX�> ei�px+0 +ip~x�0 eipx�0 +i�p~x+0 Æ�p�pk ; (3.8)5See [11℄ for the four point funtion of two twist and two untwisted �elds.8



where we have de�ned ( is the Euler number)ln Æk = 1Xn=0 "�2 1n+ 1 + 1n+ kN + 1n + 1� kN # = 2 (1) �  ( kN )�  (1� kN ) ; (x) = ddx ln �(x) = � � 1Xn=0� 1z + n � 1n+ 1� ; (3.9)and for the quasi-zero mode parts asx+0 = �iNk �+0 z kN ; x�0 = iNk ��0 z� kN ; ~x+0 = iNk ~�+0 �z� kN ; ~x�0 = �iNk ~��0 �z kN : (3.10)Without the exitation of quasi-zero modes, we therefore obtainNhkj : ei�pX++ipX� : (1)jkiN = Æ�p�pk : (3.11)This fator arises due to a higher mode e�et, and the e�et in Misner spae was examinedin [11℄ as stringy fuzziness.Now we an inlude the exitation of quasi-zero modes. We need to omputeNhkje�y��0 �~y ~�+0 e�pNk �+0 +pNk ~��0 e�pNk ��0 ��pNk ~�+0 e�y0�+0 �~y0 ~��0 jkiN ; (3.12)whih an be evaluated by utilizing Baker-Campbell-Hausdor� formula. Gathering thequasi-zero mode and higher mode parts, we obtainNhy; ~y; kj : ei�pX++ipX� : (1)jy0; ~y0; kiN = e kN (yy0+~y~y0)��p(y�~y0)+p(y0�~y)Æ�p�pk : (3.13)If we insert �i instead of 1=N , then we obtain the Misner spae result, whih is the sameas the one in [11℄. The Mellin transformation (2.29) of this funtion is also possible, andthe result may be expressed by Triomi's onuent hyperboli funtion ash!2; ~!2; kj : ei�pX++ipX� : (1)j!02; ~!02; ki = �(�p)!2�!02ik (��p) ~!2�~!02ik (ik)�1�!2+~!2ik�U  !2ik + 12 ; !2 � !02ik + 1; ip�pk !U  ~!2ik + 12 ; ~!2 � ~!02ik + 1; ip�pk ! Æ�p�pk ; (3.14)where the integral representationU(a; b; z) = 1�(a) Z 10 e�ztta�1(t+ 1)�a+b�1dt (3.15)is used. As disussed before, the ondensation of winding tahyon may deform the geom-etry near the big bang singularity in the osmologial region. This result suggests that astringy e�et enhanes the deformed region due to the string fuzziness.9



3.2 Classial three point funtions of twist �eldsThe wave funtions orresponding to the twisted states in C =ZN theory an be on-struted as follows. Beause the quasi-zero modes satisfy the ommutation relations(2.17), the operators may be represented as��0 = �i�� � i k2Nx� ; ~��0 = �i�� � i k2Nx� : (3.16)The de�nition of the vauum state (2.19) gives the ondition that the orresponding wavefuntion 	+k should be annihilated by ��0 and ~�+0 . The ondition leads that the wavefuntion is of the Gaussian form as	+k (x�) = Ce� k2N x+x� ; 	�k (x�) �= 	+k (x�)�� = C�e� k2N x+x� : (3.17)The normalization is �xed as C = q kN� , so that R dx2	�k 	+k = 1. The three point funtionwithout exitation is then omputed as the overlap of the wave funtions as (k1 = k2+k3)C3 = Z dx2	�k1	�k2	�k3 = 1p�vuut k2N k3Nk1N : (3.18)The inlusion of exitation is given by ating the reation operators to the vauum wavefuntion as	+;n;~nk = (�+0 )n(~��0 )~n	+k = (�i�� + i k2Nx+)n(�i�+ + i k2Nx�)�n	+k ; (3.19)and also 	�;n;~nk = (	+;~n;nk )�.Using the above wave funtions, now we an ompute the overlaps of the exited wavefuntions, for example, asZ dx2	�;m;0k1 	�;n;0k2 	�k3 = Æm;nm! k2N !mC3 ; (3.20)Z dx2	�k1	�;n;0k2 	�;0;~nk3 = Æn;~nn! � k2N k3Nk1N !n C3 : (3.21)Non-trivial overlaps may beZ dx2	�k1	�;n;~nk2 	�k3 = Æn;~nn! k2N k3Nk1N !nC3 ; (3.22)and Z dx2	�;n~nk1 	�k2	�k3 = 0 ; (3.23)where we should use �+0 ~��0 = � kN kN x+x� + kN : (3.24)10



In the language of the basis 	�;y;~yk =Xn;~n (�y)n(�~y)~nn!~n! 	�;n;~nk ; (3.25)the three point funtions an be summarized asZ dx2	�;y1;~y1k1 	�;y2;~y2k2 	�;y3;~y3k3 = ey3( k1N y1+ k2N y2)+~y3( k1N ~y1+ k2N ~y2)+ k2N k3Nk1N (y2�y3)(~y2�~y3)C3 : (3.26)Replaing 1=N by �i, we reprodue the result in [11℄. In subsetion 4.2, we derive theorrelators in the full quantum level by utilizing the monodromy onditions.4 Correlation funtionsIn the C =ZN orbifold model, the oordinate �elds X� have twisted boundary ondi-tions (2.15), and the twist an be generated by the insertion of twist �eld ��k (k > 0),whose operator produt expansions (OPEs) arei�X+(z)�+k (w; �w) � �+(w; �w)(z � w)1� kN ; i�X�(z)�+k (w; �w) � �+0(w; �w)(z � w) kN ;i��X+(�z)�+k (w; �w) � ~�+0(w; �w)(�z � �w) kN ; i��X�(�z)�+k (w; �w) � ~�+(w; �w)(�z � �w)1� kN ; (4.1)and similar ones for ��k . These twist �elds are related to the vauum states in the twistedsetor by limz!0 �+k (z)j0iN = jkiN ; limz!1(�z2)hkNh0j��k (z) = N hkj ; (4.2)where we denote the onformal weight as hk = 12 kN (1� kN ). We an de�ne the twist �eldswith the exitation of quasi-zero modes by repeating the OPEs (4.1) as: (i�X+)n(i��X�)~n : (z; �z)�+k (w; �w) � �+;n;�nk (w; �w)(z �w)n(1� kN )(�z � �w)~n(1� kN ) ;��k (z; �z) : (i�X�)n(i��X+)~n : (w; �w) � ��;n;�nk (w; �w)(z �w)n(1� kN )(�z � �w)~n(1� kN ) : (4.3)The orderings are hosen to be onsistent with the de�nitions (4.2) and (2.18), (3.2). Thisde�nition of exited twist �elds implies �+;1;0k = �+, �+;0;1k = ~�+. Note that �+0 and ~�+0inlude not quasi-zero modes but higher exited modes. We an also de�ne��;y;~yk = 1Xn;~n=0 (�y)n(�~y)~nn!~n! ��;n;~nk ; (4.4)11



and ��;!2;~!2k by replaing 1=N $ �i, X2 $ �iX0 and performing the Mellin transfor-mation (2.29). In the following, we will try to ompute orrelation funtions involvingthe twist �elds of the form (4.4).We will utilize the monodromy onditions around twist �elds as in [43℄. This methodmay be applied to any orrelators, but we mainly ompute four point funtions and reado� the three point funtions through the fatorization. We begin with the four pointfuntion without exitation ZN (zi; �zi) = h 4Yi=1 ��iki(zi; �zi)iN ; (4.5)where k1 + k3 = k2 + k4 and �1 = ��2 = �3 = ��4 = �1. The green funtions in thepresene of the twist �elds are de�ned asg(z;w; zi; �zi) = h��X+(z)�X�(w)Q4i=1 ��iki(zi; �zi)iNhQ4i=1 ��iki(zi; �zi)iN ; (4.6)and h(�z;w; zi; �zi) = h���X+(�z)�X�(w)Q4i=1 ��iki(zi; �zi)iNhQ4i=1 ��iki(zi; �zi)iN : (4.7)We also de�ne the other green funtions �g(�z; �w) and �h(z; �w) by interhanging � $ ��.The exitation of quasi-zero modes an be inorporated by utilizing the green funtionsash��;n;0k1 (z1)�+;n;0k2 (z2)��k3(z3)�+k4(z4)iN= limz!z2 ;w!z1(z � z2)n(1� k2N )(z1 � w)n(1� k1N )h(i�X+(z))n(i�X�(w))n 4Yi=1 ��iki(zi; �zi)iN= n!g0(z2; z1; zi; �zi)nh 4Yi=1 ��iki(zi; �zi)iN ; (4.8)where we have de�nedg0(z2; z1; zi; �zi) = limz!z2 ;w!z1(z � z2)1� k2N (z1 � w)1� k1N g(z;w; zi:�zi) : (4.9)Reall that we have de�ned the exited states through the OPEs (4.3). We will also usethe funtions h0; �g0; �h0, whih are de�ned in the same proedure to take the limits. It isstraightforward to onvert into the basis (4.4) ash��;y1;0k1 (z1)�+;y2;0k2 (z2)��k3(z3)�+k4(z4)iN = ey2y1g0(z2;z1;zi;�zi)h 4Yi=1 ��iki(zi; �zi)iN : (4.10)12



Generalizing this, we an write down the four point funtions with general exitations interms of g0; �g0; h0; �h0 ash 4Yi=1 ��i;yi ;~yiki (zi)iN = ey2y1g0(z2;z1)+y2y3g0(z2;z3)+y4y1g0(z4;z1)+y4y3g0(z4;z3)� e~y1y1h0(�z1;z1)+~y1y3h0(�z1;z3)+~y3y1h0(�z3;z1)+~y3y3h0(�z3;z3) (4.11)� e~y1~y2�g0(�z1;�z2)+~y1~y4�g0(�z1;�z4)+~y3 ~y2�g0(�z3;�z2)+~y3 ~y4�g0(�z3;�z4)� ey2~y2�h0(z2;�z2)+y4~y2�h0(z4;�z2)+y2 ~y4�h0(z2;�z4)+y4 ~y4�h0(z4;�z4)h 4Yi=1 ��iki(zi; �zi)iN :The expliit form will be determined through the monodromy onditions below.The three point funtions an be read o� from the above four point funtion (4.11)though the fatorization as follows. Consider the four point funtion of primary �eldsh 4Yi=1�i(zi; �zi)i : (4.12)We suppose that the primary �elds �i have the onformal weights (hi; �hi). If we take thelimit of z1 ! z2 and z3 ! z4, then it is useful to use the OPEs of the primary �elds�1(z1; �z1)�2(z2; �z2) =XI CI12�I(z2; �z2)z�1212 �z ��1212 ; �3(z3; �z3)�4(z4; �z4) =XI CI34�I (z4; �z4)z�3434 �z ��3434 ;(4.13)where z12 = z1 � z2, �12 = h1 + h2 � hI , and so on. Therefore, in this limit, the leadingterm of the four point funtion is given by the produt of three point funtions ash 4Yi=1�i(zi; �zi)i �Xp 1z2hp24 �z2�hI24 CI12z�1212 �z ��1212 C34Iz�3434 �z ��3434 : (4.14)In the following analysis, we may set (z1; z2; z3; z4) = (0; x; 1;1), and take the limit ofx! 0 or x!1. When we take the limit of x! 0, we use the OPE between �2 and �1,and when we take the limit of x!1, we use the OPE between �2 and �4.In the next subsetion, we ompute a general four point funtion by following [43℄.After that, we dedue the three point funtions of twisted �elds in subsetion 4.2, whihare the quantum version of the ones in subsetion 3.2. Then, we move to the three pointfuntions with an untwisted �elds in subsetion 4.3, whih is found to be onsistent withthe results in subsetion 3.1.4.1 Four point funtionsWe start from the four point funtion of twist �elds without exitation (4.5), whihwill be determined from the green funtions (4.6) and (4.7) as explained below. Utilizing13



the monodromy onditions (4.1), we an �x the form of the green funtion (4.6) almostuniquely as6 g(z;w; zi; �zi) = !k(z)!N�k(w) "P (z;w; zi)(z � w)2 +A(zi; �zi)# (4.15)with un�xed funtion A(zi; �zi). The lassial parts �X+(z) = !k(z) and �X�(z) =!N�k(z) are determined as!k(z) = (z � z1)� k1N (z � z2)�1+ k2N (z � z3)� k3N (z � z4)�1+ k4N ;!N�k(z) = (z � z1)�1+ k1N (z � z2)� k2N (z � z3)�1+ k3N (z � z4)� k4N ; (4.16)whih reprodues the monodromy (4.1). The funtion P (z;w; zi) is �xed to reprodue thesingular behavior i�X+(z)i�X�(w) � 1=(z � w)2 asP (z;w; zi) = hk1N � k2N i (z � z1)(z � z2)(w � z3)(w � z4) (4.17)+ k2N (z � z1)(z � z3)(w � z2)(w � z4) + h1� k4N i (z � z2)(z � z4)(w � z1)(w � z3)+ hk3N � k2N i (z � z2)(z � z3)(w � z1)(w � z4) :In partiular, there should be no single pole for z � w. This funtion is unique up to theshift of A(zi; �zi).The funtion A(zi; �zi) an be determined by global monodromy onditionsICi dz�X+ + ICi d�z ��X+ = 0 ; (4.18)where the ontours Ci (i = 1; 2) are taken so that X� reeive totally no phase fatorsaround the twist �elds inside the ontours. Here we take the losed loops C1 rounding k2times around z1 and k1 times around z2 and C2 rounding k3 times around z2 and k2 timesaround z3. The onditions (4.18) may be expressed asICi dzg(z;w) + ICi d�zh(�z;w) = 0 ; (4.19)where h(�z;w) is de�ned in (4.7). This green funtion is also determined up to unknownfuntion B(zi; �zi) as h(�z;w; zi; �zi) = �!N�k(�z)!N�k(w)B(zi; �zi) : (4.20)Beause we have now two independent global monodromy onditions (4.19), we anuniquely �x the undetermined funtions A(zi; �zi) and B(zi; �zi).6We should note that the assumption of integer N is not needed here and below. In fat, the fourpoint funtion (4.5) was already alulated for an irrational orbifold ase in [36℄ as a free �eld realizationof Nappi-Witten model. 14



Let us solve the onditions (4.19). We �rst take w!1, and then set z1 = 0, z2 = x,z3 = 1 and z4 !1. Using the integral representation of hypergeometri funtion (A.2),the onditions (4.19) now readÂx k2N � k1N �(1 � k1N )�(k2N )�(1 � k1N + k2N )F1(x) + B̂�x k1N � k2N �(k1N )�(1 � k2N )�(1 � k2N + k1N ) �G1(�x)= (1� k4N )x1� k1N + k2N �(1 � k1N )�(1 + k2N )�(2 � k1N + k2N ) K1(x) ; (4.21)Â(1� x) k2N � k3N �(1 � k3N )�(k2N )�(1 � k3N + k2N )F2(1� x)� B̂(1� �x) k3N � k2N �(k3N )�(1 � k2N )�(1 � k2N + k3N ) �G2(1 � �x)= �(1� k4N )(1 � x)1� k3N + k2N �(1 � k3N )�(1 + k2N )�(2 � k3N + f2N ) K2(1 � x) ; (4.22)whereF1(x) = F (k3N ; 1� k1N ; 1 � k1N + k2N ;x) ; F2(1 � x) = F (k1N ; 1� k3N ; 1 � k3N + k2N ; 1� x) ;�G1(�x) = F (1� k3N ; k1N ; 1 + k1N � k2N ; �x) ; �G2(1 � �x) = F (1� k1N ; k3N ; 1 � k2N + k3N ; 1� �x) ;K1(x) = F (k3N ; 1� k1N ; 2� k1N + k2N ;x) ; K2(1 � x) = F (k1N ; 1� k3N ; 2 � k3N + k2N ; 1� x) :(4.23)Here we have de�nedÂ(x; �x) = � limz4!1 z4A(0; x; 1; z4) ; B̂(x; �x) = limz4!1 jz4j� 2k4N B(0; x; 1; z4) : (4.24)Solving these two equations we �ndÂ(x; �x) = x(1� x) ��x ln I(x; �x) (4.25)with I(x; �x) = j1� xj 2N (k3�k2)�(1 � k1N )�(k2N )�(k3N )�(1 � k2N )�(1 � k1N + k2N )�(1 � k2N + k3N ) F1(x) �G2(1 � �x)+jxj 2N (k1�k2)�(1 � k3N )�(k2N )�(k1N )�(1 � k2N )�(1 � k3N + k2N )�(1 � k2N + k1N ) F2(1 � x) �G1(�x) ; (4.26)andB̂(x; �x) = x(1� x)�(1� k1N )�(k2N )�(1 � k3N )�(k2N )�(1 � k1N + k2N )�(1 � k3N + k2N ) I�1(x; �x) (4.27)� �(1 � x) k2N � k3N F2(1 � x)�x �(1 � x) k3N � k2N F1(x)�� x k2N � k1N F1(x)�x �x k1N � k2N F2(1 � x)�� :15



During the omputation, we utilized the formula A.3. Inserting these funtions Â(x; �x)and B̂(x; �x), we have the expliit form of the green funtions g(z;w;x; �x) (4.6) andh(�z;w;x; �x) (4.7). The other two green funtions �g(�z; �w;x; �x) and �g(z; �w;x; �x) are givenby replaing the arguments with bar and without bar and ki $ N � ki.From the expression of Â(x; �x), we an read o� the four point funtion (4.5) as follows.A limit of the green funtion (4.6) gives the orrelation funtion involving the energymomentum tensor aslimz!w "g(z;w) � 1(z � w)2# = hT (z)Q4i=1 ��iki(zi; �zi)ihQ4i=1 ��iki(zi; �zi)i : (4.28)Sine the OPE with the energy momentum tensor reads7T (z)�+k2(z2) � h2(z � z2)2 + �z2�k2(z2)z � z2 ; (4.29)we an obtain from the orrelation funtion (4.28) as�z2 lnZN (zi; �zi) = A(zi; �zi)(z2 � z1)(z2 � z3)(z2 � z4) � (1� k1N )k2Nz2 � z1 � (1 � k3N )k2Nz2 � z3 � k2N k4Nz2 � z4 :(4.30)Setting (z1; z2; z3; z4) = (0; x; 1;1) and integrating by x, we �ndZN (x; �x) = Njxj� 2k2N (1� k1N )j1 � xj� 2k2N (1� k3N )I�1(x; �x) (4.31)with a onstant N , whih will be �xed later. Here we have de�nedZN (x; �x) = limz4!1 j � z24jh4ZN (zi; �zi) : (4.32)In this way, we have obtained the expliit form of the four point funtion without exita-tion (4.5) as (4.31).Now that we have the expliit form of the green funtions (4.6), (4.7) and the fourpoint funtion (4.5), it is easy to write down expliitly the general four point funtionthrough (4.11). We only need to ompute the limit like (4.9). The one in (4.9) is givenby g0(z2; z1; zi; �zi) = e�i(�1+ k1N )(z2 � z1)� k1N (z2 � z3)� k3N (z2 � z4)�1+ k4N� (z1 � z2)� k2N (z1 � z3)�1+ k3N (z1 � z4)� k4N hA(zi; �zi) + k2N (z3 � z2)(z2 � z4)i= e�i k4N x� k1N � k2N (x� 1)� k3N hÂ(x; �x) + k2N (1� x)i : (4.33)7We denote hi(= hki) = 12 kiN (1� kiN ). 16



In the last equation, we �x the positions as (z1; z2; z3; z4) = (0; x; 1;1). In the same way,we obtain g0(z2; z3) = �x� k1N (1� x)� k2N � k3N hÂ(x; �x)� k2N xi : (4.34)When we take the limit of z ! z4 and also z4 !1, we need to de�ne asg0(z4; z1;x; �x) = limz4!1(�z24) k4N g0(z4; z1; 0; x; 1; z4) (4.35)= �e�i k4N x� k2N hÂ(x; �x) � k1N + k2N � k2N xi ;g0(z4; z3;x; �x) = limz4!1(�z24) k4N g0(z4; z3; 0; x; 1; z4) (4.36)= e�i k3N (1 � x)� k2N hÂ(x; �x) + k3N � k2N xi :For the green funtion h(�z;w) (4.6), we similarly obtainh0(�z1; z1) = jxj� 2k2N B̂(x; �x) ; h0(�z1; z3) = e��i(�1+ k3N )[�x(x� 1)℄� 2k2N B̂(x; �x) ;h0(�z1; z1) = e�i(�1+ k3N )[x(�x� 1)℄� 2k2N B̂(x; �x) ; h0(�z3; z3) = j1� xj� 2k2N B̂(x; �x) : (4.37)In the next two subsetions, we will read o� the three point funtions from the fatoriza-tion, where the limits x! 0 and x!1 of the above green funtions are taken.4.2 Three point funtions of exited twist �eldsThe four point funtion an be fatorized by the produt of three point funtionswhen expanding around x � 0 or x � 1 (and also x � 1) as explained before. We beginwith the four point funtion without exitation (4.5). First we examine the fatorizationaround x; �x � 0, where we should use the OPE between the twist �elds ��k1 and �+k2.Suppose k1 � k2 = �k3 + k4 = kI > 0, where the twist number of the intermediate �eld��kI is set by the twist number onservation. Then, we an use the OPEs as��k1(z; �z)�+k2(w; �w) � C(�;I)(�;1)(+;2)��kI (w; �w)jz � wj2h1+2h2�2hI ;��k3(z; �z)�+k4(w; �w) � C(+;I)(�;3)(+;4)�+kI (w; �w)jz � wj2h3+2h4�2hI ; (4.38)whih leads to the fatorization of the four point funtion asZN (x; �x) � jxj�2h1�2h2+2hIC(�;I)(�;1)(+;2)C(�;3)(+;4)(�;I) : (4.39)17



Here we should note that the index is raised or lowered by the two point funtionh��k (1)�+k0(0)i = Æk;k0.Sine the four point funtion is written in terms of I(x; �x) as in (4.31), we an read o�the three point funtions (4.38) from the asymptoti behavior of I(x; �x) around x; �x � 0I(x; �x) � �(1 � k1N )�(k2N )�(k3N )�(k1N � k2N )�(k4N )�(1 + k2N � k1N )+ �(1 � k3N )�(k1N )�(1 � k2N )�(k2N � k1N )�(1 � k4N )�(1 � k2N + k1N ) jxj 2N (k1�k2) : (4.40)For later onveniene, we rewrite the normalization N asN = vvuut �2 sin �k4Nsin �k1N sin �k2N sin �k3N ; (4.41)then the three point funtions (4.38) are given asC(�;1)(+;2)(+;I) =vuutv (k1N )(k2N )(kIN ) ; C(�;3)(+;4)(�;I) = vuutv (k4N )(k3N )(kIN ) ; (4.42)where we have used the notation (x) = �(x)=�(1�x). In the large N limit, we reproduethe lassial expression (3.18) with the help of the relation(k1N )(k2N )(kIN ) � k2N kINk1N : (4.43)For k2 � k1 = �k4 + k3 = kI > 0, we an similarly obtain the fatorization asZN (x; �x) = jxj�2h1�2h2+2hIC(+;I)(�;1)(+;2)C(�;3)(+;4)(+;I) : (4.44)The three point funtions are also read from the asymptoti behavior of I(x; �x) asC(�;1)(+;2)(�;I) =vuutv (k2N )(k1N )(kIN ) ; C(�;3)(+;4)(+;I) = vuutv (k3N )(kIN )(k4N ) ; (4.45)whih are the same as the previous ones (4.42). Sine the intermediate �eld is in theuntwisted setor for k2 � k1 = 0, we will disuss it separately in the next subsetion.We an also obtain similar fatorization for x; �x � 1, where the OPE between �+k2and �+k4 is used. Sine the funtion I(x; �x) has the asymptoti behaviorI(x; �x) � jxj� 2k2N �(k1N )�(k2N )�(k3N )�(1� k1N � k3N )�(1 � k4N )�(k1N + k3N ) ; (4.46)the four point funtion (4.5) is fatorized asj � x2j2h2ZN (x; �x) � ����1x�����2h2�2h4+2hI C(+;I)(+;2)(+;4)C(�;1)(�;3)(+;I) (4.47)18



with kI = k2 + k4 = k1 + k3, and the three point funtions are read asC(+;2)(+;4)(�;I) = vuutv (kIN )(k2N )(k4N ) ; C(�;1)(�;3)(+;I) = vuutv (kIN )(k1N )(k3N ) : (4.48)These results reprodue (4.42) obtained for x; �x � 0 as well.We move to inlude exitations, namely, to ompute the quantum version of threepoint funtion (3.26). We start from the ase of (3.22), whih an be dedued from thefour point funtion without exitation (4.5). Sine the asymptoti behavior of the funtionI(x; �x) is given by (4.40), non-trivial orretions are written for k1 � k2 = kI > 0 asZN (x; �x) �Xn=0 jxj�2h1�2h2+2hI+ 2nkIN C(�;I;n;n)(�;1)(+;2)C(�;3)(+;4)(�;I;n;n) ; (4.49)where the three point funtions areC(�;1)(+;2)(+;I;n;n) = n! � (k1N )(k2N )(kIN )!n C(�;1)(+;2)(+;I) ;C(�;3)(+;4)(�;I;n;n) = n! � (k4N )(k3N )(kIN )!n C(�;3)(+;4)(�;I) : (4.50)The index (+; I; n; n) means that the intermediate �eld is an exited �eld �+;n;nkI , whosenormalization is given by (3.4). The phase fator � = �1 annot be determined here,so we will �x it below in another way of fatorization. This expression reprodues thelassial one (3.22) if we use � = +1 and (4.43). We an obtain the similar result fork2 � k1 > 0.In order to deal with other types of exitation, we have to onsider the four pointfuntions with quasi-zero modes. First we onsider the orrelation funtionZN = h��;n;0k1 (z1; �z1)�+;n;0k2 (z2; �z2)��k3(z3; �z3)�+k4(z4; �z4)iN ; (4.51)where we inlude (i�X+(z))n and (i�X�(w))n in the four point funtion (4.5) and takethe limits z ! z2 and w ! z1. Setting (z1; z2; z3; z4) = (0; x; 1;1) and taking the limitx; �x � 0, we an obtain the quantum ounterpart of (3.20) through the fatorizationas follows. Sine the limit of green funtion is given in (4.33), the funtion behaves fork1 � k2 = kI > 0 as g0(z2; z1) � e�i( k1N � k2N )x� k1N � k2N k2N : (4.52)Therefore, the above orrelator may be fatorized asZN � x�nk1N �nk2N jxj�2h1�2h2+2hIC(�;I)(�;1;n;0)(+;2;n;0)C(�;3)(+;4)(�;I) ; (4.53)19



where the three point funtion is8C(�;1;n;0)(+;2;n;0)(+;I) = n! k2N !n C(�;1)(+;2)(+;I) : (4.54)This result means that the lassial result (3.20) does not reeive any quantum orretions.Similarly, for k2 � k1 = kI > 0, we �ndZN � x�nk1N �nk2N jxj�2h1�2h2+2hIC(+;I)(�;1;n;0)(+;2;n;0)C(�;3)(+;4)(+;I) ; (4.55)where the three point funtion isC(�;1;n;0)(+;2;n;0)(�;I) = n! k1N !n C(�;1)(+;2)(�;I) : (4.56)This also reprodues (3.20). We an obtain the same result even if we use the limit ofx; �x � 1. In that ase, however, we annot �x the phase fator � = �1 as in (4.50).Next we ompute the quantum three point funtions of the type (3.22) to �x the phasefator in (4.50). The ase of (3.21) follows soon. For that purpose, it is onvenient toonsider the four point funtionZN = h��;n;nk1 (z1; �z1)�+k2(z2; �z2)��k3(z3; �z3)�+k4(z4; �z4)iN ; (4.57)and take x; �x � 1 with (z1; z2; z3; z4) = (0; x; 1;1). After some omputation, we obtainthe limit of the green funtion (4.37)h0(�z1; z1) = jxj� 2k2N B̂(x; �x) ; B̂(x; �x) � x(x� 1)jxj 2k2N (kIN )(k3N )(k1N )x�2 (4.58)with kI = k1 + k3 = k2 + k4. Therefore, the four point funtion is fatorized intoj � x2j2h2ZN � ����1x �����2h2�2h4+2hI C(+;I)(+;2)(+;4)C(�;1;n;n)(�;3)(+;I) (4.59)with the three point funtionC(�;1;n;n)(�;3)(+;I) = n! (kIN )(k1N )(k3N )!n C(�;1)(�;3)(+;I) : (4.60)Notie that we an �x the phase fator in (4.50) as � = 1.The other three point funtion of the type (3.21) an be obtained in a similar way.Here we onsider ZN = h��;n;0k1 (z1; �z1)�+k2(z2; �z2)��;0;nk3 (z3; �z3)�+k4(z4; �z4)i ; (4.61)8We will neglet the phase fator like e�i( k1N � k2N ) in the following. This phase fator arises when weinsert (z1; z2; z3; z4) = (0; x; 1;1) in the fatorization formula (4.14) if the onformal weights do notmath for holomorphi and anti-holomorphi parts.20



and take x; �x � 1 with (z1; z2; z3; z4) = (0; x; 1;1). Making use of the behavior of thegreen funtion involved (4.37)h0(�z1; z3) � �jxj� 2k2N B̂(x; �x) ; B̂(x; �x) � jxj 2k2N (kIN )(k3N )(k1N ) ; (4.62)the four point funtion an be fatorized asj � x2j2h2ZN � ����1x �����2h2�2h4+2hI C(+;I)(+;2)(+;4)C(�;1;n;0)(�;3;0;n)(+;I) (4.63)with the three point funtionC(�;1;n;0)(�;3;0;n)(+;I) = n! � (kIN )(k1N )(k3N )!n C(�;1)(�;3)(+;I) : (4.64)This reprodues the lassial result (3.21) if we apply (4.43).Now we have every non-trivial three point funtions with the exitation of quasi-zeromode. In the basis of (2.30), we an express for k1 = k2 + k3 asN hy1; ~y1;�k1j��;y2;~y2k2 jy3; ~y3;�k3iN= ey3( k1N y1+ k2N y2)+~y3( k1N ~y1+ k2N ~y2)+ ( k1N )( k2N )( k3N ) (y2�y3)(~y2�~y3)C(�;1)(+;2)(+;3) : (4.65)This expression oinides with the one in [11℄, where they applied an analyti ontinuationto the result of Nappi-Witten model [36, 37, 38℄. Our method does not only reproduetheir results, but gives a way to ompute more generi orrelation funtions. For instane,we have obtained a generi four point funtion in (4.11). The other orrelation funtionsan be omputed by following our method.4.3 Three point funtions with an untwisted �eldIn this setion, we rederive the three point funtions with two twisted states andone untwisted state. The orrelation funtions were already obtained in subsetion 3.1 inoperator formalism, but we will show that our method orretly reprodues the results. Weonsider the four point funtion (4.5) without exitation for k1 = k2 = k and k3 = k4 = land take the limit of x; �x � 0. Here we should note that the asymptoti behavior of thehypergeometri funtions beomesF2(1� x) � �(1 � lN + kN )�( kN )�(1 � lN ) h2 (1)�  ( kN )�  (1� lN )� lnxi ;�G2(1� �x) � �(1 � kN + lN )�( lN )�(1 � kN ) h2 (1)�  ( lN )�  (1� kN )� ln �xi ; (4.66)21



and hene the funtion I(x; �x) behaves asI(x; �x) � �sin �kN ln ÆkÆljxj2 ; (4.67)where we have used the notation of Æn in (3.9). Using a formula �2 ln jxjpÆkÆl!�n�1 = 12�n! Z dpd�p(p�p)n  jxjpÆkÆl!2p�p ; (4.68)we �nd ZN (x; �x) = v jxj�4hk�2 ln jxjpÆkÆl = jxj�4hk Z dpd�p(2�)2  jxjpÆkÆl!2p�p : (4.69)The above equation (4.69) implies that the three point funtions areC(�;k)(+;k)p = Æ�p�pk ; C(�;l)(+;l)p = Æ�p�pl : (4.70)The normalization is set as9 v = 12� suh that C(�;k)(+;k)0 = 1. Here we should reall thatin the untwisted setor we an map the basis of the at spae into the orbifold one as insubsetion 2.1.We then inlude the exitation of quasi-zero modes. We �rst ompute the four pointfuntion ZN = h��k (z1; �z1)�+;m;0k (z2; �z2)��;m;0l (z3; �z3)�+l (z4; �z4)iN ; (4.71)and take the limit of x; �x � 0 with (z1; z2; z3; z4) = (0; x; 1;1). We utilize the greenfuntion (4.34), whih behaves asg0(z2; z3) = �(�1) lN x� kN (1� x)� kN� lN [Â(x; �x)� kN x℄ ; A(x; �x) � 1� ln ÆkÆljxj2 : (4.72)With the help of this behavior and the formula (4.68), we an obtain the fatorization asZN � vx�mkN jxj�4hk�2 ln jxjpÆkÆl m!0� 1�2 ln jxjpÆkÆl 1Am= x�mkN jxj�4hk Z dpd�p(2�)2Cp(�;k)(+;k;m;0)C(�;l;m;0)(+;l)p ; (4.73)where the three point funtions are10C(�;k)(+;k;m;0)p = (�p)mÆ�p�pk ; C(�;l;m;0)(+;l)p = (��p)mÆ�p�pl : (4.74)9This does not ontradit the lassial result (3.18) where v = 1=� in this notation. This an be seenfrom the fat that it takes v = 1�0� if �0 = 2 is written expliitly.10The phase fator annot be �xed only from the fatorization. We use the one onsistent with theresult in operator formalism. 22



We next ompute a more generi four point funtionZN = h��;n;0k (z1; �z1)�+;n+m;0k (z2; �z2)��;m;0l (z3; �z3)�+l (z4; �z4)iN ; (4.75)and take the limit of x; �x � 0 with (z1; z2; z3; z4) = (0; x; 1;1). Here we use the limit ofthe green funtion (4.33) as well. From the similar omputation, we obtainZN � vx� (2n+m)kN jxj�4hk�2 ln jxjpÆkÆl (n+m)!0� kN � 1�2 ln jxjpÆkÆl 1An 0� 1�2 ln jxjpÆkÆl 1Am (4.76)= x� (2n+m)kN jxj�4hk Z dpd�p(2�)2 jxj2p�pCp(�;k;n;0)(+;k;n+m;0)C(�;l;m;0)(+;k)p (4.77)with the three point funtionC(�;k;n;0)(+;k;n+m;0)p = (n+m)! kN !n+m �p�mL(�m)n+m �Np�pk � Æ�p�pk : (4.78)The de�nition of generalized Laguerre polynomialL(m)n (x) = nXl=0(�1)l0�n+mn � l 1A xll! (4.79)was used in the above oeÆient.In the similar manner, we an show that the three point funtions of the type likeC(�;k;n;�n)(+;k)p vanishes from the behavior of the green funtion h0(�z1; z1). Combined withthe anti-holomorphi part, we therefore onlude thatNhy1; ~y1; kj : ei�pX++ipX� : jy2; ~y2; kiN = e kN (y1y2+~y1~y2)��p(y1�~y2)+p(y2�~y1) ; (4.80)whih reprodues the result in operator formalism (3.13). The generating funtion for thegeneralized Laguerre polynomialexy+r(x�y) = 1Xn;l=0 rn�ll! L(n�l)l (r2)xnyl (4.81)was used to summarize in the above form.5 Conlusion and disussionsIn this paper, we have developed a general method to ompute orrelation funtions inMisner spae. Even though the orrelators with less than two twist �elds an be omputedin operator formalism as in subsetion 3.1, we need a general tehnique to ompute thosewith more twist �elds. In order to perform the path integral to ompute orrelationfuntions, we may have to deal with an Eulidean target spae. We therefore perform the23



Wik rotation to the Lorentzian orbifold, and relate to the C =ZN orbifold theory. It isa subtle problem to determine the spetrum in Misner spae, and we utilized the Mellintransformation (2.29) to onstrut a map from the spetrum in the C =ZN orbifold. Thegeneral method to ompute orrelators in the C =ZN orbifold was already developed in[43, 44℄ by making use of the monodromy onditions. We have omputed a general fourpoint funtion (4.11), where the exitation of quasi-zero modes are inluded by utilizingthe green funtions in the presene of four twist �elds. The three point funtions havebeen read o� from the four point funtion through the fatorization, and we obtained(4.65) for those of twist �elds and (4.80) for those with an untwisted �eld.A motivation to ompute the orrelation funtions is to investigate the role of windingstrings in Misner spae, in partiular, the relation to the (possible) resolution of thebig runh/big bang singularity. Let us �rst see the ondensation of tahyoni stringswrapped on the whole whisker regions (2.28). From the viewpoint of worldsheet theory,the ondensation is desribed by the deformation of twist �eldsS = S0 + �k Z d2zVk + ��k Z d2zV�k ; (5.1)where V�k denote the twist �elds orresponding to the winding tahyon �elds. The hangeof geometry may be read from the graviton satteringhG��G��i� = hG��G��i0 + j�kj2hV�kG��G��Vki0 + � � � ; (5.2)where the orrelators are given by the overlaps of the orresponding wave funtions withthe stringy orretion like in (3.13). Therefore, in the region where the tahyon �elds areloalized, the graviton modes are frozen out due to the large mass term or the deformationof the bakground geometry. Sine the tahyon �elds are wrapped over the whisker regions,the regions with losed time-like urves may be exised as suggested in [45℄. Moreover,the singularity in the osmologial regions may be resolved by the the same e�ets [12℄possibly with the enhanement by string e�ets.The e�etive ation for the winding strings may be onstruted from the orrelationfuntions of twist �elds. We have omputed a general four point funtion of the formhV�k1Vk2V�k3Vk4i ; (5.3)whih is related to the quarti term of the winding string interation. Our result (4.11)implies that this quantity is �nite, whih may lead the following impliations. Considerthe 2 ! 2 sattering of winding strings. The �niteness of the sattering means that thewinding string does not feel the singular property of the bakground ontrary to stringsin the untwisted setor. Moreover, we may be able to apply to the tahyon ondensation.In Eulidean orbifold ase, it was shown in [46℄ that the ondensation of loalized tahyonhanges the geometry, say, from C =ZN into C =ZM with M < N . The height of tahyonpotential is proposed to be the same as the di�erene of the geometry volume [47℄, and24



this proposal was investigated by means of string �eld theory [48, 49℄ and e�etive �eldtheory [50, 51℄. Sine we found the quarti term is �nite, it has a meaning to studywhether a similar situation would happen or not.We would like to investigate the following problems. An interesting problem is whetherthe tahyon ondensation would separate the big runh region and the big bang region. Inorder to answer this question, we may need to develop a way to sum over all ontributionin the abbreviation of (5.2). We ould expet that this investigation gives insights tothe property of the tahyon state [12, 13℄. It is also worth applying our method tomore general bakgrounds. In partiular, the paraboli or null orbifold ase [4, 5℄ seemsinteresting beause of the presene of supersymmetry. We hope that we ould report onthis subjet in near future. The holographi dual desription is also important beauseit might give a non-perturbative piture of the resolution of the singularity as mentionedbefore.AknowledgementWe would like to thank N. Iizuka, I. Papadimitriou, S. Ribault, V. Shomerus andJ. Teshner for useful disussions. This work is supported by JSPS Postdotoral Fellow-ships for Researh Abroad H18-143.A Formula for hypergeometri funtionThe hypergeometri funtion is de�ned asF (�; �; ; z) = 1Xn=0 (�)n(�)n()n znn! ; (�)n = �(�+ n)�(�) ; (A.1)and the integral expression is given byF (�; �; ; z) = �()�(�)�( � �) Z 10 dtt��1(1 � t)���1(1 � tz)�� : (A.2)We use the following relation involving the derivative(1� z)�zF (�; �; ; z)= ( � �)( � �)F (�; �;  + 1; z) + (�+ � � )F (�; �; ; z) : (A.3)In order to see the asymptoti behavior of hypergeometri funtion, the followingrelations are useful asF (�; �; ; z) = �()�(� + � � )�(�)�(�) (1 � z)����F ( � �;  � �;  � �� � + 1; 1� z)+ �()�( � �� �)�( � �)�( � �)F (�; �; �+ � �  + 1; 1 � z) ; (A.4)25



F (�; �; ; z) = �()�(� � �)�(�)�( � �)(�z)��F (�;��  + 1; � � � + 1; 1z )+ �()�(� � �)�(�)�( � �)(�z)��F (�; � �  + 1; � � �+ 1; 1z ) ; (A.5)F (�; �; ; z) = �()�(� � �)�(�)�( � �)(1� z)��F (�;  � �; �� � + 1; 11� z )+ �()�(� � �)�(�)�( � �)(1 � z)��F (�;  � �; � � � + 1; 11� z ) : (A.6)Let us apply these relations to the funtions de�ned in (4.23). For x; �x � 0, it is onvenientto rewrite asF2(1 � x) = �(1 + k2N � k3N )�(k1N � k2N )�(k1N )�(1 � k3N ) x k2N � k1N F (1� k4N ; k2N ; 1 + k2N � k1N ;x)+ �(1 + k2N � k3N )�(k2N � k1N )�(1 � k4N )�(k2N ) F (k1N ; 1� k3N ; 1 + k1N � k2N ;x) ; (A.7)�G2(1 � �x) = �(1 + k3N � k2N )�(k2N � k1N )�(k3N )�(1 � k1N ) �x k1N � k2N F (k4N ; 1� k2N ; 1 + k1N � k2N ; �x)+ �(1 + k3N � k2N )�(k1N � k2N )�(k4N )�(1 � k2N ) F (1� k1N ; k3N ; 1 + k2N � k1N ; �x) ; (A.8)and for x; �x � 1F1(x) = �(1 + k2N � k1N )�(1 � k1N � k3N )�(1 � k1N )�(1 � k4N ) (�x)� k3N F (k3N ; k4N ; k1N + k3N ; 1x) (A.9)+ �(1 + k2N � k1N )�(�1 + k1N + k3N )�(k3N )�(k2N ) (�x)�1+ k1N F (1� k1N ; 1� k2N ; 2 � k1N � k3N ; 1x) ;�G1(�x) = �(1 + k1N � k2N )�(�1 + k1N + k3N )�(k1N )�(k4N ) (��x)�1+ k3N F (1� k3N ; 1� k4N ; 2 � k1N � k2N ; 1�x)+ �(1 + k1N � k2N )�(1 � k1N � k3N )�(1 � k3N )�(1 � k2N ) (��x)� k1N F (k1N ; k2N ; k1N + k3N ; 1�x) ; (A.10)andF2(1� x) = �(1 + k2N � k3N )�(1 � k1N � k3N )�(1 � k3N )�(1 � k4N ) x� k1N F (k1N ; k2N ; k1N + k3N ; 1x) (A.11)+ �(1 + k2N � k3N )�(�1 + k1N + k3N )�(k1N )�(k2N ) x�1+ k3N F (1� k3N ; 1� k4N ; 2� k1N � k3N ; 1x) ;26
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