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.uk, jjae
kel�mail.desy.de, valya.khoze�durham.a
.uk,andreas.ringwald�desy.deAbstra
t. Restri
tions imposed by gauge invarian
e in non
ommutative spa
es together withthe e�e
ts of ultraviolet/infrared mixing lead to strong 
onstraints on possible 
andidates for anon
ommutative extension of the Standard Model. We study a general 
lass of non
ommutativemodels 
onsistent with these restri
tions. Spe
i�
ally we 
onsider models based upon agauge theory with the gauge group U(N1) � U(N2) � : : : � U(Nm) 
oupled to matter �eldstransforming in the (anti)-fundamental, bi-fundamental and adjoint representations. We payparti
ular attention to overall tra
e-U(1) fa
tors of the gauge group whi
h are a�e
ted by theultraviolet/infrared mixing. Typi
ally, these tra
e-U(1) gauge �elds do not de
ouple suÆ
ientlyfast in the infrared, and lead to sizable Lorentz symmetry violating e�e
ts in the low-energye�e
tive theory. In a 4-dimensional theory on a 
ontinuous spa
e-time making these e�e
tsunobservable would require making the e�e
ts of non
ommutativity tiny, MNC � MP. Thisseverely limits the phenomenologi
al prospe
ts of su
h models. However, adding additionaluniversal extra dimensions the tra
e-U(1) fa
tors de
ouple with a power law and the 
onstrainton the non
ommutativity s
ale is weakened 
onsiderably. Finally, we brie
y mention someinteresting properties of the photon that 
ould arise if the non
ommutative theory is modi�edat a high energy s
ale.1. Introdu
tionGauge theories on spa
es with non
ommuting 
oordinates,[x�; x�℄ = i ��� ; (1)provide a very interesting new 
lass of quantum �eld theories with intriguing and sometimesunexpe
ted features. These non
ommutative models 
an arise naturally as low-energye�e
tive theories from string theory and D-branes. As �eld theories they must satisfy anumber of restri
tive 
onstraints detailed below, and this makes them parti
ularly interestingand 
hallenging for purposes of parti
le physi
s model building. For general reviews ofnon
ommutative gauge theories the reader 
an 
onsult e.g. Refs. [4, 5, 6℄.There are two distin
t approa
hes used in the re
ent literature for 
onstru
ting quantum �eldtheories on non
ommutative spa
es. The �rst approa
h uses the Weyl-Moyal star-produ
ts tointrodu
e non
ommutativity. In this 
ase, non
ommutative �eld theories are de�ned by repla
ingthe ordinary produ
ts of all �elds in the Lagrangians of their 
ommutative 
ounterparts by thestar-produ
ts (� � ')(x) � �(x) e i2 ���  ��!�� '(x) : (2)1 This is based on a talk given by J. Jae
kel at the CORFU 2005 Satellite workshop: \Non
ommutative Geometryin Field and String Theories". For additional details see [1, 2, 3℄.



Non
ommutative theories in the Weyl-Moyal formalism 
an be viewed as �eld theories onordinary 
ommutative spa
etime. For example, the non
ommutative pure gauge theory a
tionis S = � 12g2 Z d4x Tr(F�� � F��) ; (3)where the 
ommutator in the �eld strength also 
ontains the star-produ
t. The importantfeature of this approa
h is the fa
t that phase fa
tors in the star-produ
ts are not expanded inpowers of � and the � dependen
e in the Lagrangian is 
aptured entirely. This ability to workto all orders in � famously gives rise to the ultraviolet/infrared (UV/IR) mixing [7, 8℄ in thenon
ommutative quantum �eld theory whi
h we will review below.The se
ond indire
t approa
h to non
ommutativity does not employ star-produ
ts. It insteadrelies [9, 10℄ on the Seiberg-Witten map whi
h represents non
ommutative �elds as a fun
tionof � and ordinary 
ommutative �elds. This approa
h essentially redu
es non
ommutativity toan introdu
tion of an in�nite set of higher-dimensional (irrelevant) operators, ea
h suppressedby the 
orresponding power of �, into the a
tion. There are two main di�eren
es 
ompared tothe Weyl-Moyal approa
h. First, in pra
ti
e one always works with the �rst few terms in thepower series in � and in this setting the UV/IR mixing 
annot be 
aptured. Se
ond, the Seiberg-Witten map is a non-linear �eld transformation. Therefore, one expe
ts a non-trivial Ja
obianand possibly a quantum theory di�erent from the one obtained in the Weyl-Moyal approa
h. Inthis paper we will use the original dire
t formulation of the theory on a non
ommutative spa
ein terms of the Weyl-Moyal star produ
t.In the 
ontext of Weyl-Moyal non
ommutative Standard Model building, a number of featuresof non
ommutative gauge theories have to be taken into a

ount whi
h are believed to begeneri
 [11℄:1. the mixing of ultraviolet and infrared e�e
ts [7, 8℄ and the asymptoti
 de
oupling of U(1)degrees of freedom [12, 13℄ in the infrared;2. the gauge groups are restri
ted to U(N) groups [14, 15℄ or produ
ts of thereof;3. �elds 
an transform only in (anti-)fundamental, bi-fundamental and adjoint representa-tions [16, 17, 18℄;4. the 
harges of matter �elds are restri
ted [19℄ to 0 and �1, thus requiring extra 
are in orderto give fra
tional ele
tri
 
harges to the quarks.Building upon an earlier proposal by Chai
hian et al. [20℄, the authors of Ref. [11℄ 
onstru
tedan example of a non
ommutative embedding of the Standard Model with the purpose tosatisfy all the requirements listed above. The model of [11℄ is based on the gauge groupU(4)�U(3)�U(2)with matter �elds transforming in non
ommutatively allowed representations.Higgs �elds break the non
ommutative gauge group down to a low-energy 
ommutative gaugetheory whi
h in
ludes the Standard Model group SU(3) � SU(2) � U(1)Y . The U(1)Y grouphere 
orresponds to ordinary QED, or more pre
isely to the hyper
harge Y Abelian gaugetheory. The generator of U(1)Y was 
onstru
ted from a linear 
ombination of tra
eless diagonalgenerators of the mi
ros
opi
 theory U(4)� U(3)� U(2): Be
ause of this, the UV/IR e�e
ts {whi
h 
an a�e
t only the overall tra
e-U(1) subgroup of ea
h U(N) { were not 
ontributing tothe hyper
harge U(1)Y : However some of the overall tra
e-U(1) degrees of freedom 
an survivethe Higgs me
hanism and thus 
ontribute to the low-energy e�e
tive theory, in addition to theStandard Model �elds. These additional tra
e-U(1) gauge �elds logarithmi
ally de
ouple fromthe low-energy e�e
tive theory and were negle
ted in the analysis of Ref. [11℄. Here, we takethese e�e
ts into a

ount.We will �nd that the non
ommutative model building 
onstraints, and, spe
i�
ally, theUV/IR mixing e�e
ts in the tra
e-U(1) fa
tors in the item 1 above, lead to an una

eptabledefe
tive behavior of the low-energy theory, when we try to 
onstru
t a model having the2



photon as the only massless 
olourless U(1) gauge boson. Our �ndings pose extremely severe
onstraints on su
h models e�e
tively ruling them out. One way out is to modify some of theassumptions. We will dis
uss the introdu
tion of universal extradimensions and modi�
ationsof the non
ommutative �eld theory at very high energy s
ales.The UV/IR mixing in non
ommutative theories arises from the fa
t that 
ertain 
lasses ofFeynman diagrams a
quire fa
tors of the form eik����p� (where k is an external momentum andp is a loop momentum) 
ompared to their 
ommutative 
ounter-parts. These fa
tors dire
tlyfollow from the use of the Weyl-Moyal star-produ
t (2). At large values of the loop momentump, the os
illations of eik����p� improve the 
onvergen
e of the loop integrals. However, as theexternal momentum vanishes, k ! 0; the divergen
e reappears and what would have been aUV divergen
e is now reinterpreted as an IR divergen
e instead. This phenomenon of UV/IRmixing is spe
i�
 to non
ommutative theories and does not o

ur in the 
ommutative settingswhere the physi
s of high energy degrees of freedom does not a�e
t the physi
s at low energies.There are two important points 
on
erning the UV/IR mixing [8, 12, 13, 15℄ whi
h wewant to stress here. First, the UV/IR mixing o

urs only in the tra
e-U(1) 
omponents ofthe non
ommutative U(N) theory, leaving the SU(N) degrees of freedom una�e
ted. Se
ond,there are two separate sour
es of the UV/IR mixing 
ontributing to the dispersion relation ofthe tra
e-U(1) gauge �elds: the �1 e�e
ts and the �2 e�e
ts, as will be explained momentarily.A study of the Wilsonian e�e
tive a
tion, obtained by integrating out the high-energy degreesof freedom using the ba
kground �eld method, and keeping tra
k of the UV/IR mixing e�e
ts,has given strong hints in favour of a non-universality in the infrared [12, 13℄. In parti
ular, thepolarisation tensor of the gauge bosons in a non
ommutative U(N) gauge theory takes a form[8, 12, 13℄�AB�� = �AB1 (k2; ~k2) �k2g�� � k�k��+ �AB2 (k2; ~k2) ~k�~k�~k2 ; with ~k� = ���k� : (4)Here A;B = 0; 1; : : :N2 � 1 are adjoint labels of U(N) gauge �elds, AA� , su
h that A;B = 0
orrespond to the overall U(1) subgroup, i.e. to the tra
e-U(1) fa
tor. The term in (4)proportional to ~k�~k�=~k2 would not appear in ordinary 
ommutative theories. It is transverse,but not Lorentz invariant, as it expli
itly depends on ��� : Nevertheless it is perfe
tly allowedin non
ommutative theories. It is known that �2 vanishes for supersymmetri
 non
ommutativegauge theories with unbroken supersymmetry, as was �rst dis
ussed in [8℄.In general, both �1 and �2 terms in (4) are a�e
ted by the UV/IR mixing. More pre
isely,as already mentioned earlier, the UV/IR mixing a�e
ts spe
i�
ally the �001 
omponents andgenerates the �0 02 
omponents in (4). The UV/IR mixing in �0 01 a�e
ts the running of thetra
e-U(1) 
oupling 
onstant in the infrared. For a pure non
ommutative gauge theory In 4
ontinuous dimensions one �nds,1g(k; ~k)2U(1) = �001 (k2; ~k2) ! � b0(4�)2 log k2 ; as k2 ! 0 ; (5)leading to a logarithmi
 de
oupling of the tra
e-U(1) gauge �elds from the SU(N) low-energytheory, see Refs. [11, 12, 13℄ for more detail.For nonsupersymmetri
 theories, �0 02 
an present more serious problems. In theories withoutsupersymmetry, �0 02 � 1=~k2; at small momenta, and this leads to una

eptable quadrati
 IRsingularities [8℄. In theories with softly broken supersymmetry (i.e. with mat
hing number ofbosoni
 and fermioni
 degrees of freedom) the quadrati
 singularities in �0 02 
an
el [8, 12, 13℄.However, the subleading 
ontribution �0 02 � 
onst; survives [21℄ unless the supersymmetryis exa
t. For the rest of the paper we will 
on
entrate on non
ommutative Standard Model
andidates with softly broken supersymmetry, in order to avoid quadrati
 IR divergen
ies. In3



this 
ase, �002 � �M2susy;2 as explained in [21℄. The presen
e of su
h �2 e�e
ts will lead touna

eptable pathologies su
h as Lorentz-noninvariant dispersion relations giving mass to onlyone of the polarisations of the tra
e-U(1) gauge �eld, leaving the other polarisation massless.The presen
e of the UV/IR e�e
ts in the tra
e-U(1) fa
tors makes it pretty 
lear that a simplenon
ommutative U(1) theory taken on its own has nothing to do with ordinary QED. The low-energy theory emerging from the non
ommutative U(1) theory will be
ome free at k2 ! 0(rather than just weakly 
oupled) and in addition will have other pathologies [11, 12, 13, 21℄.However, one would expe
t that it is 
on
eivable to embed a 
ommutative SU(N) theory, su
has e.g. QCD or the weak se
tor of the Standard Model into a supersymmetri
 non
ommutativetheory in the UV, but some extra 
are should be taken with the QED U(1) se
tor [11℄. Wewill show that the only realisti
 way to embed QED into non
ommutative settings is to re
overthe ele
tromagneti
 U(1) from a tra
eless diagonal generator of some higher U(N) gauge theory.So it seems that in order to embed QED into a non
ommutative theory one should learn howto embed the whole Standard Model [11℄. We will see, however, that the additional tra
e-U(1)fa
tors remaining from the non
ommutative U(N) groups will make the resulting low-energytheories unviable (for the 4 dimensional models 
onsidered in the �rst half of this paper).In order to pro
eed we would like to disentangle the mass-e�e
ts due to the Higgs me
hanismfrom the mass-e�e
ts due to non-vanishing �2: Hen
e we �rst set �2 = 0 (this 
an be a
hievedby starting with an exa
tly supersymmetri
 theory). It is then straightforward to show (see [1℄)that the Higgs me
hanism alone 
annot remove all of the tra
e-U(1) fa
tors from the masslesstheory. More pre
isely, the following statement is true: Consider a s
enario where a set offundamental, bifundamental and adjoint Higgs �elds breaks U(N1)�U(N2)�� � ��U(Nm)! H;su
h that H is non-trivial. Then there is at least one generator of the unbroken subgroup H withnon-vanishing tra
e. This generator 
an be 
hosen su
h that it generates a U(1) subgroup.We 
an now 
ount all the massless U(1) fa
tors in a generi
 non
ommutative theory with�2 = 0 and after the Higgs symmetry breaking. In general we 
an have the following s
enariosfor massless U(1) degrees of freedom in H :(a) U(1)Y is tra
eless and in addition there is one or more fa
tors of tra
e-U(1) in H .(b) U(1)Y arises from a mixture of tra
eless and tra
e-U(1) generators of the non
ommutativeprodu
t group U(N1)�U(N2)� � � � �U(Nm):(
) U(1)Y has an admixture of tra
e-U(1) generators as in (b) plus there are additional masslesstra
e-U(1) fa
tors in H .In the following se
tions we will see that none of these options lead to an a

eptable low-energy theory on
e we have swit
hed on �2 6= 0, i.e. on
e we have introdu
ed mass di�eren
esbetween superpartners. It is well-known [8, 21℄ that �2 6= 0 leads to strong Lorentz symmetryviolating e�e
ts in the dispersion relation of the 
orresponding tra
e-U(1) ve
tor bosons, and inparti
ular, to mass-di�eren
e of their heli
ity 
omponents. If option (a) was realised in nature,it would lead (in addition to the standard photon) to a new 
olourless ve
tor �eld with onepolarisation being massless, and one massive due to �2:The options (b) and (
) are also not viable sin
e an admixture of the tra
e-U(1) generatorsto the photon would also perversely a�e
t photon polarisations and make some of them massive.In the rest of this note we will explain these observations in more detail.We end this se
tion with some general 
omments on non
ommutative Standard Modelling.In an earlier analysis [11℄ the tra
e-U(1) fa
tors were assumed to be 
ompletely de
oupled in theextreme infrared and, hen
e, were negle
ted. However, it is important to keep in mind that thede
oupling of the tra
e-U(1)'s is logarithmi
 and hen
e slow. For a 4 dimensional 
ontinuumtheory one �nds that even in presen
e of a huge hierar
hy between the non
ommutative2 �M2SUSY = 12PsM2s �Pf M2f is a measure of SUSY breaking.4



mass s
ale MNC, say of the order of the Plan
k s
ale MP � 1019 GeV, and the s
ale� � (10�14 � 109) eV (ele
troweak and QCD s
ale, respe
tively), where the SU(N) subgroupbe
omes strong, the ratio g2U(1)g2SU(N) � log � k2�2�log�M4NC�2k2 � & 10�3 (6)is not negligible. In parti
ular, the above inequality holds for any MNC > k & 2�. Hen
e, the
omplete de
oupling of the tra
e-U(1) degrees of freedom at small non-zero momenta does notappear to be fully justi�ed and the tra
e-U(1) would leave its tra
es in s
attering experimentsat a

essible momentum s
ales k � 1 eV� 1010 eV (see Se
t. 2 for more detail).However, Eq. (6) already gives us a hint how one 
an avoid that the tra
e-U(1)'s leaveobservable tra
es. The logarithms in Eq. (6) are a typi
al property of the 4 dimensional theory.Adding universal extra dimensions (where gauge �elds 
an propagate into the extra dimensions)one expe
ts that one gets a mu
h faster power like de
oupling. We will explore this possibility inin Se
t. 4. Finally, starting from the original motivation from string theory another possibility toavoid the 
on
lusions stated above presents itself. Viewed as originating from string theory, thenon
ommutative �eld theory is only a low energy limit. At very high s
ales the non
ommutative�eld theory is not ne
essarily a good des
ription anymore. We dis
uss a simple (but not toounreasonable) modi�
ation and study its 
onsequen
es in Se
t. 5.2. UV/IR mixing and properties of the tra
e-U(1)UV/IR mixing manifests itself only in the tra
e-U(1) part of the full non
ommutative U(N).For this part it strongly a�e
ts �1 and is responsible for the generation of nonvanishing �2 (ifSUSY is not exa
t). In this se
tion we will brie
y review how the UV/IR mixing arises in thetra
e-U(1) se
tor and how this leads us to rule out options (a) and (
) dis
ussed in Se
t. 1.2.1. Running gauge 
ouplingFollowing Refs. [12, 13℄, we will 
onsider a U(N) non
ommutative theory with matter �eldstransforming in the adjoint and fundamental representations of the gauge group. We use theba
kground �eld method, de
omposing the gauge �eld A� = B� +N� into a ba
kground �eldB� and a 
u
tuating quantum �eld N�, and the appropriate ba
kground version of Feynmangauge, to determine the e�e
tive a
tion Se�(B) by fun
tionally integrating over the 
u
tuating�elds.To determine the e�e
tive gauge 
oupling in the ba
kground �eld method, it suÆ
es to studythe terms quadrati
 in the ba
kground �eld. In the e�e
tive a
tion these take the following form(
apital letters denote full U(N) indi
es and run from 0 to N2 � 1) 3,Se� 3 12 Z d4k(2�)4BA� (k)BB� (�k)�AB�� (k): (7)At tree level, �AB�� = (k2g�� � k�k�) ÆAB=g20 is the standard transverse tensor originating fromthe gauge kineti
 term. In a 
ommutative theory, gauge and Lorentz invarian
e restri
t theLorentz stru
ture to be identi
al to the one of the tree level term. In non
ommutative theories,Lorentz invarian
e is violated by �. The most general allowed stru
ture is then given by Eq.(4). The se
ond term may lead to the strong Lorentz violation mentioned in the introdu
tion.This term is absent in supersymmetri
 theories [8, 12℄.3 We use eu
lidean momenta when appropriate and the analyti
 
ontinuation when 
onsidering the equations ofmotion in subse
tion 2.2. 5



Let us start with a dis
ussion of the e�e
ts non
ommutativity has on �1 and the running ofthe gauge 
oupling. That is, for the moment, we postpone the study of �2-e�e
ts by 
onsideringa model with unbroken supersymmetry4. As usual, we de�ne the running gauge 
oupling as� 1g2�AB = � 1g20�AB + �AB1 loop(k): (8)where g20 is the mi
ros
opi
 
oupling (i.e. the tree level 
ontribution) and �loop in
ludes onlythe 
ontributions from loop diagrams. Hen
eforth, we will drop the loop subs
ript.To evaluate � at one loop order one has to evaluate the appropriate Feynman diagrams.The e�e
ts of non
ommutativity appear via additional phase fa
tors � exp(ip~k2 ) in the loop-integrals. Using trigonometri
 relations one 
an group the integrals into terms where thesefa
tors 
ombine to unity, the so 
alled planar parts, and those where they yield � 
os(p~k), theso 
alled non-planar parts.For �elds in the fundamental representation, the phase fa
tors 
an
el exa
tly5 and only theplanar part is non-vanishing. Fundamental �elds therefore 
ontribute as in the 
ommutativetheory [12℄. In all loop integrals6 involving adjoint �elds one �nds the following fa
tor [13℄,MAB(k; p) = (�d sin k~p2 + f 
os k~p2 )ALM (d sin k~p2 + f 
os k~p2 )BML: (9)Using trigonometri
 and group theoreti
 relations this 
ollapses toMAB(k; p) = �N ÆAB(1� Æ0A 
osk~p): (10)We 
an now easily see that all e�e
ts from UV/IR mixing, marked by the presen
e of the 
osk~p,appear only in the tra
e-U(1) part of the gauge group. The planar parts, however, are equal forthe U(1) and SU(N) parts.Summing everything up we �nd the planar 
ontribution (the 
oeÆ
ients �j ; Cj; dj are givenin Table 1 and C(r) is the Casimir operator in the representation r)�1planar(k2) = � 8(4�)2�Xj;r �jC(r)�2Cj + 89dj (11)+ Z 10 dx �Cj � (1� 2x)2dj� log A(k2; x;m2j;r)�2 ��;where mj;r is the mass of a spin j parti
le belonging to the representation r of the gauge group,A(k2; x;m2j;r) = k2x(1� x) +m2j;r; (12)and � appears via dimensional transmutation similar to �MS in QCD. We have 
hosen therenormalisation s
heme, i.e. the �nite 
onstants, su
h that �1planar vanishes at k = �.For the tra
e-U(1) part the nonplanar parts do not vanish and we �nd�1 nonplanar = 2k2 ��̂� ~�� ; (13)4 Nevertheless, we will give general expressions for �1 valid also in the non-supersymmetri
 
ase.5 One may roughly imagine that for ea
h fundamental �eld that appears in a Feynman diagram there is also the
omplex 
onjugate �eld whi
h 
an
els the exponential fa
tor.6 To keep the equations simple we 
onsider in this se
tion a situation where all parti
les of a given spin andrepresentation have equal diagonal masses. Please note that the masses for fermions and bosons in the samerepresentation may be di�erent as required for SUSY breaking.6



j= s
alar Weyl fermion gauge boson ghost�j -1 12 �12 1Cj 0 12 2 0dj 1 2 4 1Table 1. CoeÆ
ients appearing in the evaluation of the loop diagrams.
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Figure 1. The running gauge 
ouplings gU(1) (solid) and gSU(2) (dashed) for a U(2) theory withtwo matter multiplets and all parti
les of equal mass m = 0; 104; 108; 1012; 1016�, from top tobottom (left side, solid), as a fun
tion of the momentum k, for a 
hoi
e of j~kj = �e� jkj, with�e� = 10�20��2.with �̂ = C(G)(4�)2 �8dj~k2 � k2 [12Cj � dj ℄Z 10 dx K0(pAj~kj)� ; (14)~� = 4C(G)(4�)2 �dj~k2 ��Cjk2 � dj �2�2j~kj�Z 10 dx K0(pAj~kj)� ; (15)where C(G) = N is the Casimir operator in the adjoint representation.For illustration, we plot in Fig. 1 the 
oupling (8) for a toy model whi
h is a supersymmetri
U(2) gauge theory with two matter multiplets and all masses (of all �elds) taken to be equal.We observe that even for large masses the running of the U(1) part (solid lines) does not stopin the infrared. For masses smaller than the non
ommutative mass s
ale m2 �MNC the tra
e-U(1) gauge 
oupling has a sharp bend at MNC where the nonplanar parts start to 
ontribute.For larger masses the running stops at the mass s
ale m2 only to resume running at a s
ale� M4NC=m2 whi
h is, of 
ourse, again due to the nonplanar parts. The dashed lines in Fig. 1give the running of the SU(2) part whi
h re
eives no nonplanar 
ontributions and behaves likein an ordinary 
ommutative theory. For m2 = 0 the SU(2) gauge 
oupling rea
hes a Landaupole at k = �, for all non vanishing masses the running stops at the mass s
ale. We observethat the ratio between the SU(2) 
oupling and the tra
e-U(1) 
oupling is not negligibly smallover a wide range of s
ales, in support of our assertion (6) in Se
. 1.Further support 
omes from looking at the following approximate form for the running of the7



gauge 
oupling. We assume the hierar
hy �2 �m2 �M2NC,4�2g2U(1) = bp0 log�k2�2� ; for k2 �M2NC; (16)4�2g2U(1) = bp0 log�k2�2�� bnp0 log� k2M2NC� ; for m2 � k2 �M2NC;4�2g2U(1) = bp0 log�m2�2 �� bnp0 �log� m2M2NC�+ 12 log� k2m2�� ; for k2 � m2:Here, we have simpli�ed the dis
ussion by writingj~kj = M�2NC jkj; (17)where MNC is the non
ommutativity mass-s
ale. Heuristi
ally, M�2NC � j�j but it may dependon the dire
tion. E.g., for ��� in the 
anoni
al basis,��� = 0BB� 0 �1 0 0��1 0 0 00 0 0 �20 0 ��2 0 1CCA ; (18)only when �1 ' �2 one has M�2NC = j�j: Otherwise the s
ale MNC depends on k�;M�2NC = j���k� jjkj = j�2js1 + �21 � �22�22 k20 + k21k2 : (19)It is nevertheless a useful s
ale.The gauge 
oupling for the SU(N) subgroup g2SU(N) is obtained by setting bnp0 = 0. Forsimpli
ity let us now 
onsider a situation where we have only �elds in the adjoint representation.One �nds [11, 13℄ that bnp0 = 2bp0, andg2U(1)g2SU(N) = 1; for k2 �M2NC; (20)g2U(1)g2SU(N) = log� k2�2�log�M4NC�2k2� ; for m2 � k2 �M2NC;g2U(1)g2SU(N) = log�m2�2 �log�M4NC�2k2� ; for k2 � m2:To rea
h g2U(1)g2SU(N) < � = 10�3 (21)we need log �M4NC�2k2 � and in turn MNC to be large.8



g(k) g(k)k�!Figure 2. A typi
al Feynman diagram for s
attering. The e�e
tive 
oupling g depends on themomentum k.As a generi
 example let us use � = �W � 10�14 eV (the s
ale where the ordinary ele
troweakSU(2) would be
ome strong, in absen
e of ele
troweak symmetry breaking) and k = 1 eV7. We�nd MNC > � 12k 12 exp� 14� log� k2�2�� � 106974MP: (22)Taking ele
troweak symmetry breaking into a

ount we have to repla
e log� k2�2� by log �M2EW�2 �with MEW � 100GeV in (22). We �ndMNC > 1012474MP: (23)Let us in
rease the 
oupling strength of the SU(N) by using � = 0:5 eV. k = 1 eV is now quite
lose to the strong 
oupling s
ale of the SU(N). Without symmetry breaking we �ndMNC > 10131MP: (24)We might be able to redu
e this number by some orders of magnitude but without using anextreme �eld 
ontent it remains always extraordinarily large. Indeed, one 
an typi
ally �nd as
ale k whi
h is not too 
lose to the strong 
oupling s
ale of the SU(N) whi
h strengthens thebounds dramati
ally. Therefore, as a 
onservative estimate we propose8MNC > 10100MP: (25)Let us note that this strong 
onstraint is based on the assumption that the 4 dimensionalnon
ommutative �eld theory is a valid des
ription up to arbitrarily high momentum s
ales. Thisassumption is not ne
essarily ful�lled if the non
ommutative theory is embedded into a morefundamental theory, e.g. string theory. In the later Se
ts. 4 and 5 we will investigate situationswhere this assumption is not valid anymore and the 
onstraints 
an be weakened.To 
on
lude this subse
tion, let us point out that, in a s
attering experiment (as depi
ted inFig. 2), k is really the s
ale of the internal momentum, and therefore, non-vanishing. ~k, too, isnon-vanishing in appropriate (remember that we have Lorentz symmery violation) dire
tions oft-
hannel s
attering.7 It is obvious that k2 � M2NC. In this regime our formulas (16) and (20) approximate the full result to a veryhigh pre
ision sin
e threshold e�e
ts are negligible.8 Please note that this implies small va
uum expe
tation value for the B-�elds that 
ould be the origin ofnon
ommutativity in string theory. The reason is that M�2NC � � � 1
onst+BB 1
onst�B and hen
e MNC ! 1 forB ! 0 (we have omitted the Lorentz indi
es for simpli
ity).9



2.2. The e�e
ts of a non vanishing �2 from SUSY breakingIn the previous subse
tion we made �2 vanish by working in a supersymmetri
 theory. Let usnow study, what happens, when supersymmetry is (softly) broken.Looking only at the tra
e-U(1) degrees of freedom of a generi
 non
ommutative theory wehave �2 = 2Xj �j h(3~�j � �̂j)i : (26)One easily 
he
ks that �2 �Xj �jdjf(k2; ~k2; mj): (27)If SUSY is unbroken, all masses are equal. Using supersymmetri
 mat
hing between bosoni
and fermioni
 degrees of freedom, Xj �jdj = 0; (28)we reprodu
e the vanishing of �2. If SUSY is softly broken this 
an
ellation is not 
ompleteanymore (in fa
t (28) still holds and this removes the leading power-like IR divergen
e in �2,however, the subleading e�e
ts in �2 survive). �2 gets a 
ontribution [21℄�2 = DXj �jdjm2j hK0(m~k) +K2(m~k)i+ O(k2) (29)= C�M2SUSY + C0Xj �jdjm2j log(m2j~k2) + � � � ;with known 
onstants C, C 0 and D. This has dire 
onsequen
es for the gauge boson. Letus look at the equations of motion resulting from this additional Lorentz symmetry violating
ontribution to the polarisation tensor.In presen
e of a Higgs �eld whi
h generates a mass term m2 and using unitary gauge the�eld equations in presen
e of non vanishing �2 read �1(k2g�� � k�k�) + �2 ~k�~k�~k2 �m2g��!A� = 0: (30)Using that unitary gauge implies Lorentz gauge, k�A� = 0, we 
an simplify(�1k2 �m2)A� +�2 ~k�~k�~k2 A� = 0: (31)To pro
eed further it is useful to spe
ify a dire
tion for the momentum and the non
ommutativityparameters. The photon 
ies in 3-dire
tion and we havek� = (k0; 0; 0; k3): (32)What is the 
orresponding value of ~k? Sin
e ��� breaks Lorentz invarian
e, we need to spe
ify��� in a parti
ular frame. For the latter, a natural one is the system where the 
osmi
 mi
rowaveba
kground is at rest. In this frame, we assume that the only non-vanishing 
omponents of ���are �13 = ��31 = �: (33)This yields, ~k� = ���k� = (0; �k3; 0; 0); j~k 2j = (�k3)2: (34)10



We start with the ordinary transverse 
omponents of A� ,A�1 = (0; 1; 0; 0): (35)In this dire
tion, (31) yields (�1k2 �m2 ��2)A1;� = 0: (36)In the other transverse dire
tion, A�2 = (0; 0; 1; 0); (37)we �nd (�1k2 �m2)A2;� : (38)Finally we have the third polarisation (whi
h 
an be gauged away if and only if m2 = 0),A� = (a; 0; 0; b); k0a� k3b = 0 (39)whi
h results in (�1k2 �m2)A3;� : (40)We note that the di�erent polarisation states do not mix due to the presen
e of �2. The se
ondand the third polarisation state behave more or less like in the ordinary 
ommutative 
ase.However, the �rst has a modi�ed equation of motion, (36), in presen
e of a non-vanishing �29.This is another strong argument against a tra
e-U(1) being the photon [21℄. If the gaugesymmetry is unbroken and m2 = 0 we usually have two massless polarisations. However, anon vanishing �2 redu
es this to one. The other one gets an additional mass �2�1 . Sin
e onlyone polarisation is a�e
ted this is a strong Lorentz symmetry violating e�e
t. Moreover, anegative �2 would lead to ta
hyons while a positive mass is phenomenologi
ally ruled out bythe 
onstraint [22℄ m
 < 6� 10�17 eV (41)on the photon mass10.If we take the tra
e-U(1) as an additional (to the photon) gauge boson from the unbrokensubgroup H , we would still get strong Lorentz symmetry violation sin
e the tra
e-U(1) is not
ompletely de
oupled.In summary, we found in this se
tion that additional tra
e-U(1) subgroups are not 
ompletelyde
oupled and should lead to observable e�e
ts. In parti
ular, if SUSY is not exa
t we havenon-vanishing �2 whi
h gives rise to strong Lorentz symmetry violation whi
h has not beenobserved. This rules out possibilities (a) and (
) of Se
. 1. Moreover, we 
on�rmed that atra
e-U(1) is not suitable as a photon 
andidate.3. Mixing of tra
e and tra
eless partsFrom the previous se
tion we 
on
luded that the tra
e-U(1) groups are unviable as 
andidatesfor the SM photon. Therefore, it has been suggested to 
onstru
t the photon from tra
elessU(1) subgroups [11℄. It turns out, however, that typi
ally tra
e and tra
eless parts mix and thetra
e parts 
ontribute their Lorentz symmetry violating properties to the mixed parti
le.9 One might argue that instead of Eq. (36) one has to use the res
aled equation (we set m2 = 0 for simpli
ity)k2 � �2(k2;~k2)�1(k2; ~k2) = 0. For k2 ! 0, the se
ond term vanishes sin
e �1 diverges in this limit. Therefore, we �nd anadditional solution. However, this solution is rather strange. It does not 
orrespond to a pole in the propagator(it goes like a log). Moreover, if one 
al
ulates the 
ross se
tion �2 still upsets the angular dependen
e quiteseverely 
ompared to the ordinary 
ommutative 
ase.10 Even �ne-tuning of (64) to zero is not an option. Sin
e we have only a �nite number of masses this is at bestpossible for a �nite number of values of j~kj and we will surely �nd values of j~kj where �2 is nonzero.11



For U(2) broken by a fundamental Higgs, the standard Higgs me
hanism yields the symmetrybreaking U(2)! U(1). However, the remaining U(1) is a mixture of tra
e and tra
eless parts.If SUSY is broken, the tra
e-U(1) has a �2 part in the polarisation tensor. Taking this intoa

ount we �nd the following matrix for the equations of motion0BB� �U(1)1 k2 � �2 �m2 m2m2 �SU(2)1 k2 �m2 �U(1)1 k2 �m2 m2m2 �SU(2)1 k2 �m2 �U(1)1 k2 �m2 m2m2 �SU(2)1 k2 �m2 1CCA ; (42)where the adjoint U(2) and polarisation indi
es are (0; 1); (3; 1); (0; 2); (3; 2); (0; 3); (3; 3). Weomitted the values 1 and 2 for the adjoint U(2) indi
es whi
h do not mix with the tra
e-U(1)and are not qualitatively di�erent from the 
ommutative 
ase.The matrix is blo
k diagonal and the se
ond and third polarisation (lower right 
orner) behavemore or less like their 
ommutative 
ounterparts. We 
an 
on
entrate on the upper left 2 � 2matrix 
orresponding to the transverse polarisations a�e
ted by �2.This 2� 2 matrix admits two solutions for the equations of motion. Expanding for small �2we �nd, ��U(1)1 +�SU(N)1 � k2 = �2 +O(�22); (43)��U(1)1 +�SU(N)1 � k2 = ��U(1)1 + �SU(N)1 �2�U(1)1 �SU(N)1 m2 + �SU(N)1�U(1)1 �2 +O(�22);in analogy to (36). In absen
e of �2 the �rst solution in Eq. (43) is a massless one 
orrespondingto the massless 
ombination of gauge bosons (think of it as the photon). The se
ond is a massive
ombination (similar to the Z boson). The presen
e of non-vanishing �2 again leads to a mass�2�U(1) for the �rst solution and rules out the \massless" 
ombination as a reasonable photon
andidate.This example demonstrates that the disastrous e�e
ts of �2 are also present in any
ombination whi
h has an admixture of tra
e-U(1) degrees of freedom. Hen
e, this rules outpossibilities (b) and (
) from the introdu
tion.4. Universal extra dimensions and power law running in the UV and IRIn the introdu
tion we already mentioned that a possible way out of the dilemma with thetra
e-U(1)'s is the introdu
tion of universal extra dimensions11. Let us now investigate thisoption.In most of the following dis
ussion we will adopt a four-dimensional point of view in des
ribingextra-dimensional theories. That is, be
ause we are interested in renormalisation group e�e
tsasso
iated with the 4-dimensional momentum, it makes more sense to in
lude the e�e
ts ofextra dimensions by 
onsidering the e�e
t of a simple Kaluza-Klein tower of states. (In theUV-
omplete string models there are other e�e
ts whi
h, at one-loop order and in 
ompa
tdimensions signi�
antly larger than the string length, will be se
ondary.)Intuitively it is obvious that the main fa
tor a�e
ting the running of the gauge 
ouplings willbe the non
ommutativity parameter ~k, and in parti
ular how it mixes the additional (
ompa
t)dimensions with the ordinary four large dimensions. We will now give a somewhat heuristi
presentation of how ~k a�e
ts the running of the gauge 
ouplings. A more pre
ise and general
al
ulation is given in [2℄ and we will just quote the results from there in the last part of thisse
tion.11 A parti
ularly interesting possibility is that the extra dimensions may arise dynami
ally [23℄.12



4.1. The UV regimeLet us start by brie
y reviewing power law running in the UV at s
ales well above the
ompa
ti�
ation s
ale. In the UV regime the planar diagrams dominate the two point fun
tionand so there is no di�eren
e to the ordinary 
ommutative 
ase (see [24℄). Be
ause of this it issuÆ
ient to use an intuitive approa
h based on thresholds12.Consider �rst the most simple 
ase of one 
ompa
t extra dimension of size M�1
 . Negle
tingthreshold e�e
ts the one loop running of the gauge 
oupling in four dimensions typi
ally follows(t = log(k)) ��tg2 = Xm2i<k2 
ig4; (44)where the 
i are 
oeÆ
ients depending on the spin and representation of the parti
le i. In thesum only parti
les with massm2i smaller than the momentum s
ale k2 
ontribute (in any suitablemassive renormalisation s
heme). This leads to the typi
al de
oupling of massive modes. Forsimpli
ity, let us now 
onsider a situation where all parti
les have (approximately) the samemass m2 �M2
 . We �nd ��tg2 = �b0g4; for m2 � k2 �M2
; (45)where we have 
hosen the sign of the 
onstant b0 su
h that it is positive when the theory isasymptoti
ally free. (For example, in N = 2 supersymmetri
 pure gauge theory b0 = N=(4�2)in this notation.)Above the 
ompa
ti�
ation s
ale, more pre
isely at m2 +M2
 < k2 < m2 + 4M2
 , the �rstKaluza-Klein mode gives an identi
al 
ontribution to the �-fun
tion, and in general one �nds��tg2 = �NKK(k)b0g4; (46)where NKK(k) is the number of Kaluza-Klein modes (in
luding the zero mode) 
ontributing atthe s
ale k. Sin
e the mass of the nth Kaluza-Klein mode is given by pm2 + n2M2
 one easily�nds the approximate formula NKK(k) � C1 kM
 for k�M
; (47)where we have introdu
ed the 
onstant C1 to a

ount for the details of the 
ompa
ti�
ation andthreshold e�e
ts. This already suggests power law running. More pre
isely, one easily 
he
ksthat for k2 �M2
 and appropriate initial 
onditions the solution approa
hesg2 � 1C1b0M
k (48)whi
h is indeed a power law.Expressions (47) and (48) are easily generalized to arbitrary dimension D = n+4 (k2 �M2
 )��tg2 = �NKK(k)b0g4; (49)NKK(k) � Cn� kM
�n ;g2 � nCnb0 �M
k �n ;12 A fuller treatment based on dimensional regularisation is presented in [2℄. An even better one is presented inRef. [25℄. In those treatments it be
omes evident that higher-dimensional operators appear in the e�e
tive a
tion.These operators are due to a di�erent form of UV/IR mixing from regions of KK momenta that are zero in somedire
tions and high in others. These diÆ
ulties are absent for the IR regime whi
h is the main point of interestin the present dis
ussion so we do not dwell on them here.13



where again the 
onstant Cn depends on the details of the 
ompa
ti�
ation.The 
ow equation (49) for the running 
oupling 
an be also dis
ussed using the more naturale�e
tive 
oupling ĝ2 of the D-dimensional theory,ĝ2 = � kM
�n g2: (50)From the lower-dimensional viewpoint (50) 
an be understood by remembering that theamplitudes of all Kaluza-Klein modes add up and therefore in
rease the e�e
tive 
oupling by afa
tor NKK. Inserting (50) into (49) yields the 
ow equation for ĝ2,��t ĝ2 = nĝ2 � Cnb0ĝ4 = (n� Cnb0ĝ2)ĝ2; for k2 � M2
: (51)If we start at small values for ĝ2 the 
oupling in
reases toward the infrared until it rea
hes a�xed point at ĝ2�xed = nCnb0 . The 
orresponding 
oupling of the 4-dimensional theory is theng2�xed(k) = ĝ2�xed�M
k �n = nCnb0 �M
k �n ; (52)in agreement with the last equation in (49). This dis
ussion implies that power-law runningin extra dimensions originates from a �xed point in the e�e
tive higher-dimensional 
oupling
onstant ĝ2. This implies that the power-law running of g2 is a strong 
oupling phenomenonin terms of ĝ2 and one should exer
ise 
aution sin
e Eqs. (49) and (51) are one-loop results.In parti
ular a large number of extra-dimensions in
reases the value of the �xed point 
ouplingand the approximation may break down. The issues of existen
e of a �xed point of ĝ2 wereinvestigated in literature on extra-dimensional gauge theories, see e.g. [26℄.From now on we will 
ontinue assuming that (ordinary 
ommutative) extra-dimensional gaugetheories do provide a power-law running of the 
oupling in the extreme ultraviolet (i.e. at energieswell above the 
ompa
ti�
ation s
ale). We will then show that in non
ommutative settings themixing between ultraviolet and infrared degrees of freedom will indu
e in the extreme infrareda power-law de
oupling of the tra
e-U(1) degrees of freedom.4.2. IR running { non
ommutativity restri
ted to 4 dimensionsAs spe
i�ed in Eq. (4) �1 and therefore the gauge 
oupling depends on the additional s
ale ~k(
f. [8, 7, 13, 12℄) ~k� = ���k� . In fa
t, the 
oupling depends only on the absolute values j~kj aswell as jkj, as 
an be seen from Eqs. (14) and (15).Sin
e we are mostly interested in low-energy physi
s (
ompared to the 
ompa
ti�
ation s
ale)the e�e
ts of extra dimensions 
an 
ontribute only through loops in perturbation theory. Thusthe external momenta k� are taken to be 4-dimensional, i.e. external parti
les will not in
ludeex
ited Kaluza-Klein modes, while internal loop momenta p� (in Feynman diagrams) are keptgeneral.In this se
tion we 
onsider a s
enario where only the four in�nite dimensions arenon
ommutative, ��� 6= 0; ��b = 0; �ab = 0 (53)where �; � = 0; : : : ; 3 and a; b = 4; : : : ; 3 + n:From Eq. (8) together with (13) one easily �nds that in a 4-dimensional non
ommutativegauge theory with all parti
les of equal non-zero massm, the tra
e-U(1) 
ouplings runs a

ordingto ��tg2 = bnp0 g4 for k2 � min�M2NC;M4NCm2 � : (54)14



Here bnp0 is a positive number whi
h spe
i�es the non-planar 
ontribution to the running gauge
oupling.From Eq. (54) one 
an see that in general non
ommutative theory when we lower momentum-s
ale k2 suÆ
iently, even very massive modes start to 
ontribute. This holds for Kaluza-Kleinmodes, too, as long as we have non
ommutativity only in the four in�nite dimensions a

ordingto Eq. (53). In analogy to (49) we �nd (k2 � min(M2NC; M4NCM2
 ))��tg2 = N IRKK(k)bnp0 g4; (55)N IRKK(k) � CIRn �M2NCM
k �n ;g2 � nCIRn bnp0 � kM
M2NC�n :The right hand side of the IR 
ow equation in (55) has the opposite sign to that of the UV 
owequation (49). This implies that the tra
e-U(1) 
oupling g2 be
omes small in the IR and theUV regimes. The enhan
ement by the N IRKK(k) fa
tor gives the power-like de
oupling of theseunwanted degrees of freedom from the SU(N) theory (whi
h is una�e
ted by the UV/IR mixinge�e
ts).4.3. IR running for arbitrary non
ommutativityIf the matrix ��� has nonvanishing entries that mix the ordinary four dimensions with the extradimensions we may have a non-vanishingk̂a = �a�k� (a = 4 : : : ; 3 + n): (56)In the 
al
ulation of the polarisation tensor this leads to phase fa
tors in the sum over theKaluza-Klein modes, Xm2Zn eimR �k̂ (57)(in addition to the usual �-dependent phases in non-planar 
ontributions). In this situation it isadvantageous to dire
tly perform the sum over Kaluza-Klein modes in the polarisation tensor.We have done this expli
itly in [2℄. Here we will quote the result (for an N = 2 supersymmetri
U(N) theory without adjoint matter �elds),�1 = 
onst + 2C(G)(4�)2 (4�)n2 ��n2�Yi Ri �j~kj�n� ; (58)where Ri are the 
ompa
ti�
ation radii and ~k is now the total non
ommutative momentum~kM = �M�k� (M = 0 : : :3 + n). This equation is valid fork � min�M
; M2NCM
 � ; (59)with MNC still de�ned as M�2NC = j~kjjkj .The fa
t that the a
tual running is now given by repla
ing the 4-dimensional 
omponents of~k with the total ~k is not too surprising sin
e the infrared running 
omes from very ultravioletmodes, i.e. it involves momenta mu
h higher than the 
ompa
ti�
ation s
ale where the theory15



is e�e
tively higher-dimensional. At these s
ales there is no distin
tion between the ordinaryfour dimensions and the extra dimensions.Eq. (58) has the additional advantage that it already 
orresponds to the integrated result.It dire
tly gives g(k) without the need to solve a di�erential equation (Ri = 1=M
),g2U(1)(k) = 1AU(1) + CIRn bnp0n �M2NCM
k �n : (60)Here we have �xed, CIRn = n2 (4�)n2 ��n2� ; (61)bnp0 = 4(4�)2C(G);where we still 
onsider the N = 2 
ase and none of the matter �elds are in the adjointrepresentation13. AU(1) is a renormalisation 
onstant determined from the bare 
oupling andthe planar diagrams only. Therefore in the regime (59) this 
onstant is 
onne
ted to thegauge 
oupling of the SU(N)-part (up to logarithmi
 
orre
tions whi
h we negle
ted in ourapproximation) g2SU(N)(k) � 1ASU(N) with AU(1) = ASU(N): (62)4.4. Lorentz violating mass term for tra
e-U(1)In non
ommutative �eld theories the gauge 
oupling is not the only part of the polarisationtensor that is a�e
ted by power law running. Re
all that in non
ommutative �eld theories the(4-dimensional) polarisation tensor has an additional Lorentz symmetry violating part [8, 12℄,whi
h is 
alled �2 in Eq. (4).For softly broken supersymmetry only the IR-singular (pole) 
ontribution to �2 vanishes, buta 
onstant term �2 � �M2SUSY; �M2SUSY = 12Xs M2s �Xf M2f ; (63)remains. In (63) the sums run over all bosons and fermions. Therefore, if we have 
ompa
ti�edextra dimensions, we must in
lude the Kaluza-Klein modes, e�e
tively multiplying the four-dimensional �M2SUSY by the number of Kaluza-Klein modes. The number of 
ontributingKaluza-Klein modes is, again, given roughly by N IRKK of Eq. (55). Hen
e, we �nd�2 � N IRKK(k)�M2SUSY � �M2NCM
k �n for k2 � min(M2NC; M4NCM2
 ): (64)Repeating the analysis of Se
t. 2.2 one �nds, again, one ordinary massless polarisation stateand one with a Lorentz symmetry breaking mass,m2LV � �2�1 � �M2SUSY; (65)whi
h is roughly 
onstant although both �1 and �2 s
ale with a power law. Yet, these powerlaws 
an
el sin
e they are the same for �1 and �2.13 A generalisation to an arbitrary number of matter multiplets 
an be easily obtained from the results given in[2℄. 16



4.5. Weaker 
onstraints from power law runningWe found in Se
t. 4.4 that the Lorentz violating mass term for the tra
e-U(1) fa
tors remainsroughly 
onstant. Hen
e tra
e-U(1)'s are still unsuitable as photon 
andidates. With a similarargument as in Se
t. 3 one �nds that this also holds for mixtures of tra
e and tra
eless parts.Therefore a suitable photon 
andidate must be 
onstru
ted (as in four dimensions) from anunbroken 
ombination of tra
eless generators. In [1℄ we found that su
h a 
ombination 
an onlyexist together with additional unbroken U(1)'s whi
h have nonvanishing tra
e. Here the resultsof Se
t. 4 help us, sin
e they allow for a fast de
oupling of tra
e-U(1) degrees of freedom. Thisis in 
ontrast to the four-dimensional 
ase, where the (only) logarithmi
 de
oupling ne
essitatedin
redibly large non
ommutativity s
ales MNC � MP. With additional (
ompa
ti�ed) spa
edimensions we have power law running a

ording to (55). This de
ouples the unwanted tra
e-U(1)'s mu
h faster in the IR thereby weakening the 
onstraints dramati
ally.Let us now estimate the new 
onstraints obtained from power law running. As alreadymentioned earlier, 
urrent experiments probe the regime well below M
. To apply Eq. (60) wealso need k � ks, ks = M2NCM
 : (66)This is also assured, sin
e the dis
ussion of Se
t. 4.2 shows that for k � ks the tra
e-U(1) andthe SU(N) have gauge 
ouplings whi
h are of the same order. (Until k � MNC both gauge
ouplings are approximately equal and power law running sets in only below ks.)Negle
ting the slow logarithmi
 running of the SU(N) 
ouplings we �nd from Eqs. (60) and(62), g2U(1)g2SU(N) � nCIRn bnp0 1g2SU(N)(ks) � kks�n = Dkn� M
M2NC�n for k� ks (67)D = nCIRn bnp0 1g2SU(N)(ks) � (4�)24Ng2SU(N) ;where the � in the se
ond line holds for a pure non
ommutative U(N). To haveg2U(1)(k0)g2SU(N)(k0) < � (68)we need M2NCM
 > k0�D� � 1n : (69)As an illustration we have plotted the ex
luded region in Fig. 3. This shows that when we allowfor a 5% un
ertainty in the ele
tromagneti
 
oupling at 100 GeV, the allowed region of MNCstarts already at a few TeV, depending on the 
ompa
ti�
ation s
ale.5. Va
uum birefringen
e - a remnant e�e
t of high s
ale non
ommutativityIn the last Se
t. 4 we have already seen that a modi�
ation of the theory at high energy s
ales(there it was the introdu
tion of extra dimensions) 
an alter the behavior of the non
ommutative�eld theory at infrared s
ales. Therefore it makes sense to investigate the 
onsequen
es of amodi�
ation at a high energy s
ale � � MP even for a 4 dimensional theory. A simple andnatural possibility to model a non-lo
al UV-�nite mi
ros
opi
 theory like, e.g., string theory, isto simply 
ut o� all 
u
tuations with momenta larger than � (for a more detailed dis
ussion ofthis 
hoi
e see [3℄). 17
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Figure 3. Ex
luded regions in the (M
;MNC)-plane (in TeV). The blue region is ex
ludedbe
ause the tra
e-U(1) still has nonnegligible 
oupling. We have 
hosen � = 0:05, C1bnp0 = 0:1,g2SU(N)(k0) = 0:2, k0 = 0:1TeV, and n = 1.As we will see this 
uto� softens the problem of the unwanted mass term for the photon
onsiderably. Instead of a mass term one has va
uum birefringen
e at low momentum s
ales. IfMNC is 
lose enough to the 
uto� s
ale � �MP this va
uum birefringen
e 
an be pushed beyondthe 
urrent experimental limits. Thereby a window for MNC opens where non
ommutativityis still allowed. As experimental and observational sensitivity is likely to improve in the nearfuture this provides an interesting probe for s
ales MNC very 
lose to the Plan
k s
ale.In the following we will restri
t ourselves to the 
ase of a pure U(1) non
ommutative gaugetheory. The dis
ussion of the previous se
tions shows how this 
an be generalised to morerealisti
 situations where the photon gets an admixture of a tra
e-U(1).Let us now 
ut o� the 
u
tuations with momenta larger than � by introdu
ing a fa
tor ofexp(� 1�2t2 ) in the integral over the S
hwinger time t. One obtains (s. [21℄),���(p) = 1�2 �p2Æ�� � p�p��� Xj �j Z 10 dx �4C(j)� (1� 2x)2d(j)�"K0 p�j� !�K0 p�j�e� !#+ 1(�)2 ~p�~p� �2e�Xj �jd(j) Z 10 dx�jK2 p�j�e� !+ Æ�� [ gauge non-invariant term ℄ : (70)We will negle
t the gauge non-invariant terms in the following. They 
ould be treated andeliminated by using modi�ed Ward-Takahashi identities [27, 28, 29℄.The employed regularisation 
uts o� the modes p & � in the loop integral in a smooth way.Of 
ourse there are lots of di�erent possibilities to do this. Sin
e universality does not hold,di�erent regularisations will in prin
iple lead to di�erent results. However, as long as we leavethe qualitative feature \all momenta p & � are 
ut o�" holds, we expe
t that the qualitativeresults we obtain remain true.Let us �rst 
on
entrate on �1, i.e. the running gauge 
oupling.In Fig. 4 we plot the running gauge 
oupling for various values of the 
uto� �. As expe
tedthe running stops at the UV s
ale �. In an ordinary 
ommutative theory we would expe
t no18
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Figure 4. Running gauge 
oupling for a massless supersymmetri
 pure U(1) gauge theory. Theblue, red and bla
k line are for � = 1000MNC; 105MNC; 1MNC, respe
tively. We have �xedthe maximal gauge 
oupling to be g2max = 4. One 
an 
learly see that for �nite values of the
uto� the running stops at � � in the UV and at � M2NC� in the IR.further 
hanges. Here, however, we observe that the running stops, again, at an infrared s
ale� M2NC� . Therefore the running for k < M2NC� is essentially the same as that of a 
ommutativeU(1) gauge theory.Let us now turn to the �2 part of the polarisation tensor. It, too, is a�e
ted by the presen
eof a �nite UV 
uto�. For softly broken broken we 
an easily derive the following approximateexpressions �2 = D�M2SUSY for M2NC� � k� �MSUSY (71)�2 = D0�M2SUSY ~p2�2 for k� M2NC� ;where D;D0 are known 
onstants. Following the arguments of Se
t. 2.2 we 
an now solve theequations of motion for the two transverse photon polarisations (non
ommutativity matrix asgiven in Eq. (33)), (�1k2 � �2)A�1 = 0 (72)�1k2A�2 = 0:Let us now 
on
entrate on the polarisation state A�1 whi
h is a�e
ted by the presen
e of �2.Inserting the approximate expressions (71) we 
an now study the dispersion relation,k2 �D�M2SUSY�1 = 0; for M2NC� � k� �MSUSY; (73)k2 +D0 �2�1 �M2SUSY�2M4NC (k3)2 = 0; for k� M2NC� : (74)Eq. (73) yields the Lorentz symmetry violating mass term of the order of �M2SUSY alreadydis
ussed in detail in Se
t. 2.2. Without 
uto�, i.e. in the limit �!1 this mass term persists19



down to k ! 0. Thereby ex
luding any 
han
e that this 
an be the photon observed in nature.In presen
e of the 
uto� Eq. (73) is only appli
able for k � M2NC� . Masslessness of the photonis well tested up to at least 1GeV. Using � � MP � 1018GeV this gives us a 
onservativelower bound of MNC > 109GeV. Nevertheless, this opens a rather large window of opportunity
ompared to the �!1 
ase where there was no allowed range of MNC < MP.For small photon momentum Eq. (74) applies. To understand (74) better, let us restore thelight speed 
 in our equations and use k0 = ! for the frequen
y of the wave,!2 � 
2(1��n)2(k3)2 = 0; (75)with �nD2 �2�1 �M2SUSY�2M4NC � 10�34��=1018GeVMNC �4 � 1; (76)where we have used �M2SUSY � 103GeV and �1 � 100.From Eq. (75) we 
an see that the photon A�1 propagates with a speed 
(1 � �n). Sin
ethe A�1 photon propagates with 
 we observe birefringen
e, i.e. di�erent polarisations propagatewith di�erent speed.Although �n seems to be quite small we should 
ompare this to the 
urrent experimentalsensitivity. In [30℄ a study of all possible dimension four Lorentz violating operators inele
trodynami
s was 
ondu
ted and 
onstraints derived. The most general dimensions fourLagrangian whi
h is gauge and CPT invariant but violates Lorentz symmetry is,Lgeneral = �14F��F�� � 14(kF )����F��F�� : (77)Comparing the propagator derived from (77) with Eq. (4) we �nd(kF )���� = D2 �M2SUSY�2������: (78)In [30℄ the 
oeÆ
ients of kF have been 
onstrained using various methods. For laboratorymeasurements their estimate translates to,�nlab . 10�10 � 10�14; (79)depending on the pattern of the non
ommutativity. Astrophysi
al obervations already providea mu
h tighter bound of �nastro . 10�16 (80)while the strongest 
onstraints 
ome from observations of obje
ts at 
osmologi
al distan
es (seealso [31℄) �n
osmo . 10�32: (81)6. Con
lusionsNon
ommutative gauge symmetry in the Weyl-Moyal approa
h leads to two main featureswhi
h have to be taken into a

ount for sensible model building. First, there are strong
onstraints on the dynami
s and the �eld 
ontent. The only allowed gauge groups are U(N).In addition, the matter �elds are restri
ted to transform as fundamental, bifundamental andadjoint representations of the gauge group. Se
ond, there are the e�e
ts of ultraviolet/infraredmixing. Those lead to asymptoti
 infrared freedom of the tra
e-U(1) subgroup and, if the model20



does not have unbroken supersymmetry, to Lorentz symmetry violating terms in the polarisationtensor for this tra
e-U(1) subgroup.For a 4 dimensional 
ontinuum theory we have demonstrated that, although the tra
e-U(1)de
ouples in the limit k ! 0, the 
oupling is not negligibly small at �nite momentum s
ales k, asthey appear, for example, in s
attering experiments. Therefore, observations rule out additionalunbroken (massless) tra
e-U(1) subgroups.Non
ommutativity expli
itly breaks Lorentz invarian
e. Therefore an additionalLorentz symmetry violating stru
ture is allowed in the polarisation tensor. This stru
ture isabsent only in supersymmetri
 models. If supersymmetry is (softly) broken, this additionalstru
ture is present in the polarisation tensor of the tra
e-U(1). It leads to an additional mass� �M2SUSY for one of the transverse polarisation states [21℄. The tight 
onstraints on the photonmass therefore ex
lude tra
e-U(1)'s as a 
andidate for the photon. It turns out that even a smalladmixture of a tra
e part to a tra
eless part (una�e
ted by these problems) is fatal. The onlyway out seems to be the 
onstru
tion of the photon from a 
ompletely tra
eless generator. Agroup theoreti
 argument shows, that this is impossible whithout having additional unbrokenU(1) subgroups. However, those are already ex
luded from the arguments given above.This result severely restri
ts the possibilities to 
onstru
t a non
ommutative Standard modelextension. If all of the 
onstraints given at the beginning are ful�lled the non
ommutativitys
ale is pushed to s
ales far beyond MP.In general there is no reason to assume that the simple non
ommutative model used heredes
ribes 
orre
tly the physi
s at energies ranging from a few eV up to the Plan
k mass. In fa
t,due to the ultraviolet/infrared mixing, a di�erent ultraviolet embedding of the theory wouldmodify the theory not only in the ultraviolet, but also in the infrared whi
h 
an drasti
allyalter these 
on
lusions. E.g., a powerlike de
oupling of the tra
e-U(1) 
an e�e
tively hide themfrom observation. We have demonstrated that in a non
ommutative U(N) gauge theory with
ompa
t extra dimensions, the ultraviolet/infrared mixing e�e
ts lead to su
h a fast power-likede
oupling of the tra
e-U(1) degrees of freedom. In su
h a setting the bounds are weakened
onsiderably if the 
ompa
ti�
ation s
ale is small enough.As an alternative to extra dimensions we have dis
ussed a modi�
ation obtained by simply
utting o� all 
u
tuations with momenta larger than a 
uto� � � MP. The presen
e of anultraviolet 
uto� � indu
es an e�e
tive infrared s
ale kIR � M2NC� below whi
h the theory behavesessentially like a 
ommutative gauge theory14. In parti
ular, up to threshold e�e
ts the runningis that of a 
ommutative �eld theory. If supersymmetry is broken, we have a Lorentz symmetryviolating mass term at s
ales k > kIR in a

ord with [1, 21℄. However, below kIR the mass termturns into a modi�
ation of the phase velo
ity of plane wave solutions, leading to birefringen
e.Nevertheless, if su
h a tra
e-U(1) gauge boson is to be interpreted as (part of) a photon amass is not a

eptable and birefringen
e must be smaller than the experimental limits. Usingthe most stringent limits from 
osmologi
al observations one obtains a rather strong limit ofMNC & 0:1MP. If we use the more 
onservative astrophysi
al or laboratory limits the sameargument yields only MNC & (10�7 � 10�5)MP. In this setting high pre
ision measurements ofthe properties of light are a wonderful tool to test (nearly) Plan
k s
ale physi
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