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DESY 06-087IPPP/06/34DCPT/06/68Photon Defets in Nonommutative Standard ModelCandidates1S. A. Abela, J. Jaekelb, V. V. Khozea and A. RingwaldbaCenter for Partile Theory, Durham University, Durham, DH1 3LE, UKbDeutshes Elektronen-Synhrotron DESY, Notkestrasse 85, D-22607 Hamburg, GermanyE-mail: s.a.abel�durham.a.uk, jjaekel�mail.desy.de, valya.khoze�durham.a.uk,andreas.ringwald�desy.deAbstrat. Restritions imposed by gauge invariane in nonommutative spaes together withthe e�ets of ultraviolet/infrared mixing lead to strong onstraints on possible andidates for anonommutative extension of the Standard Model. We study a general lass of nonommutativemodels onsistent with these restritions. Spei�ally we onsider models based upon agauge theory with the gauge group U(N1) � U(N2) � : : : � U(Nm) oupled to matter �eldstransforming in the (anti)-fundamental, bi-fundamental and adjoint representations. We paypartiular attention to overall trae-U(1) fators of the gauge group whih are a�eted by theultraviolet/infrared mixing. Typially, these trae-U(1) gauge �elds do not deouple suÆientlyfast in the infrared, and lead to sizable Lorentz symmetry violating e�ets in the low-energye�etive theory. In a 4-dimensional theory on a ontinuous spae-time making these e�etsunobservable would require making the e�ets of nonommutativity tiny, MNC � MP. Thisseverely limits the phenomenologial prospets of suh models. However, adding additionaluniversal extra dimensions the trae-U(1) fators deouple with a power law and the onstrainton the nonommutativity sale is weakened onsiderably. Finally, we briey mention someinteresting properties of the photon that ould arise if the nonommutative theory is modi�edat a high energy sale.1. IntrodutionGauge theories on spaes with nonommuting oordinates,[x�; x�℄ = i ��� ; (1)provide a very interesting new lass of quantum �eld theories with intriguing and sometimesunexpeted features. These nonommutative models an arise naturally as low-energye�etive theories from string theory and D-branes. As �eld theories they must satisfy anumber of restritive onstraints detailed below, and this makes them partiularly interestingand hallenging for purposes of partile physis model building. For general reviews ofnonommutative gauge theories the reader an onsult e.g. Refs. [4, 5, 6℄.There are two distint approahes used in the reent literature for onstruting quantum �eldtheories on nonommutative spaes. The �rst approah uses the Weyl-Moyal star-produts tointrodue nonommutativity. In this ase, nonommutative �eld theories are de�ned by replaingthe ordinary produts of all �elds in the Lagrangians of their ommutative ounterparts by thestar-produts (� � ')(x) � �(x) e i2 ���  ��!�� '(x) : (2)1 This is based on a talk given by J. Jaekel at the CORFU 2005 Satellite workshop: \Nonommutative Geometryin Field and String Theories". For additional details see [1, 2, 3℄.



Nonommutative theories in the Weyl-Moyal formalism an be viewed as �eld theories onordinary ommutative spaetime. For example, the nonommutative pure gauge theory ationis S = � 12g2 Z d4x Tr(F�� � F��) ; (3)where the ommutator in the �eld strength also ontains the star-produt. The importantfeature of this approah is the fat that phase fators in the star-produts are not expanded inpowers of � and the � dependene in the Lagrangian is aptured entirely. This ability to workto all orders in � famously gives rise to the ultraviolet/infrared (UV/IR) mixing [7, 8℄ in thenonommutative quantum �eld theory whih we will review below.The seond indiret approah to nonommutativity does not employ star-produts. It insteadrelies [9, 10℄ on the Seiberg-Witten map whih represents nonommutative �elds as a funtionof � and ordinary ommutative �elds. This approah essentially redues nonommutativity toan introdution of an in�nite set of higher-dimensional (irrelevant) operators, eah suppressedby the orresponding power of �, into the ation. There are two main di�erenes ompared tothe Weyl-Moyal approah. First, in pratie one always works with the �rst few terms in thepower series in � and in this setting the UV/IR mixing annot be aptured. Seond, the Seiberg-Witten map is a non-linear �eld transformation. Therefore, one expets a non-trivial Jaobianand possibly a quantum theory di�erent from the one obtained in the Weyl-Moyal approah. Inthis paper we will use the original diret formulation of the theory on a nonommutative spaein terms of the Weyl-Moyal star produt.In the ontext of Weyl-Moyal nonommutative Standard Model building, a number of featuresof nonommutative gauge theories have to be taken into aount whih are believed to begeneri [11℄:1. the mixing of ultraviolet and infrared e�ets [7, 8℄ and the asymptoti deoupling of U(1)degrees of freedom [12, 13℄ in the infrared;2. the gauge groups are restrited to U(N) groups [14, 15℄ or produts of thereof;3. �elds an transform only in (anti-)fundamental, bi-fundamental and adjoint representa-tions [16, 17, 18℄;4. the harges of matter �elds are restrited [19℄ to 0 and �1, thus requiring extra are in orderto give frational eletri harges to the quarks.Building upon an earlier proposal by Chaihian et al. [20℄, the authors of Ref. [11℄ onstrutedan example of a nonommutative embedding of the Standard Model with the purpose tosatisfy all the requirements listed above. The model of [11℄ is based on the gauge groupU(4)�U(3)�U(2)with matter �elds transforming in nonommutatively allowed representations.Higgs �elds break the nonommutative gauge group down to a low-energy ommutative gaugetheory whih inludes the Standard Model group SU(3) � SU(2) � U(1)Y . The U(1)Y grouphere orresponds to ordinary QED, or more preisely to the hyperharge Y Abelian gaugetheory. The generator of U(1)Y was onstruted from a linear ombination of traeless diagonalgenerators of the mirosopi theory U(4)� U(3)� U(2): Beause of this, the UV/IR e�ets {whih an a�et only the overall trae-U(1) subgroup of eah U(N) { were not ontributing tothe hyperharge U(1)Y : However some of the overall trae-U(1) degrees of freedom an survivethe Higgs mehanism and thus ontribute to the low-energy e�etive theory, in addition to theStandard Model �elds. These additional trae-U(1) gauge �elds logarithmially deouple fromthe low-energy e�etive theory and were negleted in the analysis of Ref. [11℄. Here, we takethese e�ets into aount.We will �nd that the nonommutative model building onstraints, and, spei�ally, theUV/IR mixing e�ets in the trae-U(1) fators in the item 1 above, lead to an unaeptabledefetive behavior of the low-energy theory, when we try to onstrut a model having the2



photon as the only massless olourless U(1) gauge boson. Our �ndings pose extremely severeonstraints on suh models e�etively ruling them out. One way out is to modify some of theassumptions. We will disuss the introdution of universal extradimensions and modi�ationsof the nonommutative �eld theory at very high energy sales.The UV/IR mixing in nonommutative theories arises from the fat that ertain lasses ofFeynman diagrams aquire fators of the form eik����p� (where k is an external momentum andp is a loop momentum) ompared to their ommutative ounter-parts. These fators diretlyfollow from the use of the Weyl-Moyal star-produt (2). At large values of the loop momentump, the osillations of eik����p� improve the onvergene of the loop integrals. However, as theexternal momentum vanishes, k ! 0; the divergene reappears and what would have been aUV divergene is now reinterpreted as an IR divergene instead. This phenomenon of UV/IRmixing is spei� to nonommutative theories and does not our in the ommutative settingswhere the physis of high energy degrees of freedom does not a�et the physis at low energies.There are two important points onerning the UV/IR mixing [8, 12, 13, 15℄ whih wewant to stress here. First, the UV/IR mixing ours only in the trae-U(1) omponents ofthe nonommutative U(N) theory, leaving the SU(N) degrees of freedom una�eted. Seond,there are two separate soures of the UV/IR mixing ontributing to the dispersion relation ofthe trae-U(1) gauge �elds: the �1 e�ets and the �2 e�ets, as will be explained momentarily.A study of the Wilsonian e�etive ation, obtained by integrating out the high-energy degreesof freedom using the bakground �eld method, and keeping trak of the UV/IR mixing e�ets,has given strong hints in favour of a non-universality in the infrared [12, 13℄. In partiular, thepolarisation tensor of the gauge bosons in a nonommutative U(N) gauge theory takes a form[8, 12, 13℄�AB�� = �AB1 (k2; ~k2) �k2g�� � k�k��+ �AB2 (k2; ~k2) ~k�~k�~k2 ; with ~k� = ���k� : (4)Here A;B = 0; 1; : : :N2 � 1 are adjoint labels of U(N) gauge �elds, AA� , suh that A;B = 0orrespond to the overall U(1) subgroup, i.e. to the trae-U(1) fator. The term in (4)proportional to ~k�~k�=~k2 would not appear in ordinary ommutative theories. It is transverse,but not Lorentz invariant, as it expliitly depends on ��� : Nevertheless it is perfetly allowedin nonommutative theories. It is known that �2 vanishes for supersymmetri nonommutativegauge theories with unbroken supersymmetry, as was �rst disussed in [8℄.In general, both �1 and �2 terms in (4) are a�eted by the UV/IR mixing. More preisely,as already mentioned earlier, the UV/IR mixing a�ets spei�ally the �001 omponents andgenerates the �0 02 omponents in (4). The UV/IR mixing in �0 01 a�ets the running of thetrae-U(1) oupling onstant in the infrared. For a pure nonommutative gauge theory In 4ontinuous dimensions one �nds,1g(k; ~k)2U(1) = �001 (k2; ~k2) ! � b0(4�)2 log k2 ; as k2 ! 0 ; (5)leading to a logarithmi deoupling of the trae-U(1) gauge �elds from the SU(N) low-energytheory, see Refs. [11, 12, 13℄ for more detail.For nonsupersymmetri theories, �0 02 an present more serious problems. In theories withoutsupersymmetry, �0 02 � 1=~k2; at small momenta, and this leads to unaeptable quadrati IRsingularities [8℄. In theories with softly broken supersymmetry (i.e. with mathing number ofbosoni and fermioni degrees of freedom) the quadrati singularities in �0 02 anel [8, 12, 13℄.However, the subleading ontribution �0 02 � onst; survives [21℄ unless the supersymmetryis exat. For the rest of the paper we will onentrate on nonommutative Standard Modelandidates with softly broken supersymmetry, in order to avoid quadrati IR divergenies. In3



this ase, �002 � �M2susy;2 as explained in [21℄. The presene of suh �2 e�ets will lead tounaeptable pathologies suh as Lorentz-noninvariant dispersion relations giving mass to onlyone of the polarisations of the trae-U(1) gauge �eld, leaving the other polarisation massless.The presene of the UV/IR e�ets in the trae-U(1) fators makes it pretty lear that a simplenonommutative U(1) theory taken on its own has nothing to do with ordinary QED. The low-energy theory emerging from the nonommutative U(1) theory will beome free at k2 ! 0(rather than just weakly oupled) and in addition will have other pathologies [11, 12, 13, 21℄.However, one would expet that it is oneivable to embed a ommutative SU(N) theory, suhas e.g. QCD or the weak setor of the Standard Model into a supersymmetri nonommutativetheory in the UV, but some extra are should be taken with the QED U(1) setor [11℄. Wewill show that the only realisti way to embed QED into nonommutative settings is to reoverthe eletromagneti U(1) from a traeless diagonal generator of some higher U(N) gauge theory.So it seems that in order to embed QED into a nonommutative theory one should learn howto embed the whole Standard Model [11℄. We will see, however, that the additional trae-U(1)fators remaining from the nonommutative U(N) groups will make the resulting low-energytheories unviable (for the 4 dimensional models onsidered in the �rst half of this paper).In order to proeed we would like to disentangle the mass-e�ets due to the Higgs mehanismfrom the mass-e�ets due to non-vanishing �2: Hene we �rst set �2 = 0 (this an be ahievedby starting with an exatly supersymmetri theory). It is then straightforward to show (see [1℄)that the Higgs mehanism alone annot remove all of the trae-U(1) fators from the masslesstheory. More preisely, the following statement is true: Consider a senario where a set offundamental, bifundamental and adjoint Higgs �elds breaks U(N1)�U(N2)�� � ��U(Nm)! H;suh that H is non-trivial. Then there is at least one generator of the unbroken subgroup H withnon-vanishing trae. This generator an be hosen suh that it generates a U(1) subgroup.We an now ount all the massless U(1) fators in a generi nonommutative theory with�2 = 0 and after the Higgs symmetry breaking. In general we an have the following senariosfor massless U(1) degrees of freedom in H :(a) U(1)Y is traeless and in addition there is one or more fators of trae-U(1) in H .(b) U(1)Y arises from a mixture of traeless and trae-U(1) generators of the nonommutativeprodut group U(N1)�U(N2)� � � � �U(Nm):() U(1)Y has an admixture of trae-U(1) generators as in (b) plus there are additional masslesstrae-U(1) fators in H .In the following setions we will see that none of these options lead to an aeptable low-energy theory one we have swithed on �2 6= 0, i.e. one we have introdued mass di�erenesbetween superpartners. It is well-known [8, 21℄ that �2 6= 0 leads to strong Lorentz symmetryviolating e�ets in the dispersion relation of the orresponding trae-U(1) vetor bosons, and inpartiular, to mass-di�erene of their heliity omponents. If option (a) was realised in nature,it would lead (in addition to the standard photon) to a new olourless vetor �eld with onepolarisation being massless, and one massive due to �2:The options (b) and () are also not viable sine an admixture of the trae-U(1) generatorsto the photon would also perversely a�et photon polarisations and make some of them massive.In the rest of this note we will explain these observations in more detail.We end this setion with some general omments on nonommutative Standard Modelling.In an earlier analysis [11℄ the trae-U(1) fators were assumed to be ompletely deoupled in theextreme infrared and, hene, were negleted. However, it is important to keep in mind that thedeoupling of the trae-U(1)'s is logarithmi and hene slow. For a 4 dimensional ontinuumtheory one �nds that even in presene of a huge hierarhy between the nonommutative2 �M2SUSY = 12PsM2s �Pf M2f is a measure of SUSY breaking.4



mass sale MNC, say of the order of the Plank sale MP � 1019 GeV, and the sale� � (10�14 � 109) eV (eletroweak and QCD sale, respetively), where the SU(N) subgroupbeomes strong, the ratio g2U(1)g2SU(N) � log � k2�2�log�M4NC�2k2 � & 10�3 (6)is not negligible. In partiular, the above inequality holds for any MNC > k & 2�. Hene, theomplete deoupling of the trae-U(1) degrees of freedom at small non-zero momenta does notappear to be fully justi�ed and the trae-U(1) would leave its traes in sattering experimentsat aessible momentum sales k � 1 eV� 1010 eV (see Set. 2 for more detail).However, Eq. (6) already gives us a hint how one an avoid that the trae-U(1)'s leaveobservable traes. The logarithms in Eq. (6) are a typial property of the 4 dimensional theory.Adding universal extra dimensions (where gauge �elds an propagate into the extra dimensions)one expets that one gets a muh faster power like deoupling. We will explore this possibility inin Set. 4. Finally, starting from the original motivation from string theory another possibility toavoid the onlusions stated above presents itself. Viewed as originating from string theory, thenonommutative �eld theory is only a low energy limit. At very high sales the nonommutative�eld theory is not neessarily a good desription anymore. We disuss a simple (but not toounreasonable) modi�ation and study its onsequenes in Set. 5.2. UV/IR mixing and properties of the trae-U(1)UV/IR mixing manifests itself only in the trae-U(1) part of the full nonommutative U(N).For this part it strongly a�ets �1 and is responsible for the generation of nonvanishing �2 (ifSUSY is not exat). In this setion we will briey review how the UV/IR mixing arises in thetrae-U(1) setor and how this leads us to rule out options (a) and () disussed in Set. 1.2.1. Running gauge ouplingFollowing Refs. [12, 13℄, we will onsider a U(N) nonommutative theory with matter �eldstransforming in the adjoint and fundamental representations of the gauge group. We use thebakground �eld method, deomposing the gauge �eld A� = B� +N� into a bakground �eldB� and a utuating quantum �eld N�, and the appropriate bakground version of Feynmangauge, to determine the e�etive ation Se�(B) by funtionally integrating over the utuating�elds.To determine the e�etive gauge oupling in the bakground �eld method, it suÆes to studythe terms quadrati in the bakground �eld. In the e�etive ation these take the following form(apital letters denote full U(N) indies and run from 0 to N2 � 1) 3,Se� 3 12 Z d4k(2�)4BA� (k)BB� (�k)�AB�� (k): (7)At tree level, �AB�� = (k2g�� � k�k�) ÆAB=g20 is the standard transverse tensor originating fromthe gauge kineti term. In a ommutative theory, gauge and Lorentz invariane restrit theLorentz struture to be idential to the one of the tree level term. In nonommutative theories,Lorentz invariane is violated by �. The most general allowed struture is then given by Eq.(4). The seond term may lead to the strong Lorentz violation mentioned in the introdution.This term is absent in supersymmetri theories [8, 12℄.3 We use eulidean momenta when appropriate and the analyti ontinuation when onsidering the equations ofmotion in subsetion 2.2. 5



Let us start with a disussion of the e�ets nonommutativity has on �1 and the running ofthe gauge oupling. That is, for the moment, we postpone the study of �2-e�ets by onsideringa model with unbroken supersymmetry4. As usual, we de�ne the running gauge oupling as� 1g2�AB = � 1g20�AB + �AB1 loop(k): (8)where g20 is the mirosopi oupling (i.e. the tree level ontribution) and �loop inludes onlythe ontributions from loop diagrams. Heneforth, we will drop the loop subsript.To evaluate � at one loop order one has to evaluate the appropriate Feynman diagrams.The e�ets of nonommutativity appear via additional phase fators � exp(ip~k2 ) in the loop-integrals. Using trigonometri relations one an group the integrals into terms where thesefators ombine to unity, the so alled planar parts, and those where they yield � os(p~k), theso alled non-planar parts.For �elds in the fundamental representation, the phase fators anel exatly5 and only theplanar part is non-vanishing. Fundamental �elds therefore ontribute as in the ommutativetheory [12℄. In all loop integrals6 involving adjoint �elds one �nds the following fator [13℄,MAB(k; p) = (�d sin k~p2 + f os k~p2 )ALM (d sin k~p2 + f os k~p2 )BML: (9)Using trigonometri and group theoreti relations this ollapses toMAB(k; p) = �N ÆAB(1� Æ0A osk~p): (10)We an now easily see that all e�ets from UV/IR mixing, marked by the presene of the osk~p,appear only in the trae-U(1) part of the gauge group. The planar parts, however, are equal forthe U(1) and SU(N) parts.Summing everything up we �nd the planar ontribution (the oeÆients �j ; Cj; dj are givenin Table 1 and C(r) is the Casimir operator in the representation r)�1planar(k2) = � 8(4�)2�Xj;r �jC(r)�2Cj + 89dj (11)+ Z 10 dx �Cj � (1� 2x)2dj� log A(k2; x;m2j;r)�2 ��;where mj;r is the mass of a spin j partile belonging to the representation r of the gauge group,A(k2; x;m2j;r) = k2x(1� x) +m2j;r; (12)and � appears via dimensional transmutation similar to �MS in QCD. We have hosen therenormalisation sheme, i.e. the �nite onstants, suh that �1planar vanishes at k = �.For the trae-U(1) part the nonplanar parts do not vanish and we �nd�1 nonplanar = 2k2 ��̂� ~�� ; (13)4 Nevertheless, we will give general expressions for �1 valid also in the non-supersymmetri ase.5 One may roughly imagine that for eah fundamental �eld that appears in a Feynman diagram there is also theomplex onjugate �eld whih anels the exponential fator.6 To keep the equations simple we onsider in this setion a situation where all partiles of a given spin andrepresentation have equal diagonal masses. Please note that the masses for fermions and bosons in the samerepresentation may be di�erent as required for SUSY breaking.6



j= salar Weyl fermion gauge boson ghost�j -1 12 �12 1Cj 0 12 2 0dj 1 2 4 1Table 1. CoeÆients appearing in the evaluation of the loop diagrams.
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Figure 1. The running gauge ouplings gU(1) (solid) and gSU(2) (dashed) for a U(2) theory withtwo matter multiplets and all partiles of equal mass m = 0; 104; 108; 1012; 1016�, from top tobottom (left side, solid), as a funtion of the momentum k, for a hoie of j~kj = �e� jkj, with�e� = 10�20��2.with �̂ = C(G)(4�)2 �8dj~k2 � k2 [12Cj � dj ℄Z 10 dx K0(pAj~kj)� ; (14)~� = 4C(G)(4�)2 �dj~k2 ��Cjk2 � dj �2�2j~kj�Z 10 dx K0(pAj~kj)� ; (15)where C(G) = N is the Casimir operator in the adjoint representation.For illustration, we plot in Fig. 1 the oupling (8) for a toy model whih is a supersymmetriU(2) gauge theory with two matter multiplets and all masses (of all �elds) taken to be equal.We observe that even for large masses the running of the U(1) part (solid lines) does not stopin the infrared. For masses smaller than the nonommutative mass sale m2 �MNC the trae-U(1) gauge oupling has a sharp bend at MNC where the nonplanar parts start to ontribute.For larger masses the running stops at the mass sale m2 only to resume running at a sale� M4NC=m2 whih is, of ourse, again due to the nonplanar parts. The dashed lines in Fig. 1give the running of the SU(2) part whih reeives no nonplanar ontributions and behaves likein an ordinary ommutative theory. For m2 = 0 the SU(2) gauge oupling reahes a Landaupole at k = �, for all non vanishing masses the running stops at the mass sale. We observethat the ratio between the SU(2) oupling and the trae-U(1) oupling is not negligibly smallover a wide range of sales, in support of our assertion (6) in Se. 1.Further support omes from looking at the following approximate form for the running of the7



gauge oupling. We assume the hierarhy �2 �m2 �M2NC,4�2g2U(1) = bp0 log�k2�2� ; for k2 �M2NC; (16)4�2g2U(1) = bp0 log�k2�2�� bnp0 log� k2M2NC� ; for m2 � k2 �M2NC;4�2g2U(1) = bp0 log�m2�2 �� bnp0 �log� m2M2NC�+ 12 log� k2m2�� ; for k2 � m2:Here, we have simpli�ed the disussion by writingj~kj = M�2NC jkj; (17)where MNC is the nonommutativity mass-sale. Heuristially, M�2NC � j�j but it may dependon the diretion. E.g., for ��� in the anonial basis,��� = 0BB� 0 �1 0 0��1 0 0 00 0 0 �20 0 ��2 0 1CCA ; (18)only when �1 ' �2 one has M�2NC = j�j: Otherwise the sale MNC depends on k�;M�2NC = j���k� jjkj = j�2js1 + �21 � �22�22 k20 + k21k2 : (19)It is nevertheless a useful sale.The gauge oupling for the SU(N) subgroup g2SU(N) is obtained by setting bnp0 = 0. Forsimpliity let us now onsider a situation where we have only �elds in the adjoint representation.One �nds [11, 13℄ that bnp0 = 2bp0, andg2U(1)g2SU(N) = 1; for k2 �M2NC; (20)g2U(1)g2SU(N) = log� k2�2�log�M4NC�2k2� ; for m2 � k2 �M2NC;g2U(1)g2SU(N) = log�m2�2 �log�M4NC�2k2� ; for k2 � m2:To reah g2U(1)g2SU(N) < � = 10�3 (21)we need log �M4NC�2k2 � and in turn MNC to be large.8



g(k) g(k)k�!Figure 2. A typial Feynman diagram for sattering. The e�etive oupling g depends on themomentum k.As a generi example let us use � = �W � 10�14 eV (the sale where the ordinary eletroweakSU(2) would beome strong, in absene of eletroweak symmetry breaking) and k = 1 eV7. We�nd MNC > � 12k 12 exp� 14� log� k2�2�� � 106974MP: (22)Taking eletroweak symmetry breaking into aount we have to replae log� k2�2� by log �M2EW�2 �with MEW � 100GeV in (22). We �ndMNC > 1012474MP: (23)Let us inrease the oupling strength of the SU(N) by using � = 0:5 eV. k = 1 eV is now quitelose to the strong oupling sale of the SU(N). Without symmetry breaking we �ndMNC > 10131MP: (24)We might be able to redue this number by some orders of magnitude but without using anextreme �eld ontent it remains always extraordinarily large. Indeed, one an typially �nd asale k whih is not too lose to the strong oupling sale of the SU(N) whih strengthens thebounds dramatially. Therefore, as a onservative estimate we propose8MNC > 10100MP: (25)Let us note that this strong onstraint is based on the assumption that the 4 dimensionalnonommutative �eld theory is a valid desription up to arbitrarily high momentum sales. Thisassumption is not neessarily ful�lled if the nonommutative theory is embedded into a morefundamental theory, e.g. string theory. In the later Sets. 4 and 5 we will investigate situationswhere this assumption is not valid anymore and the onstraints an be weakened.To onlude this subsetion, let us point out that, in a sattering experiment (as depited inFig. 2), k is really the sale of the internal momentum, and therefore, non-vanishing. ~k, too, isnon-vanishing in appropriate (remember that we have Lorentz symmery violation) diretions oft-hannel sattering.7 It is obvious that k2 � M2NC. In this regime our formulas (16) and (20) approximate the full result to a veryhigh preision sine threshold e�ets are negligible.8 Please note that this implies small vauum expetation value for the B-�elds that ould be the origin ofnonommutativity in string theory. The reason is that M�2NC � � � 1onst+BB 1onst�B and hene MNC ! 1 forB ! 0 (we have omitted the Lorentz indies for simpliity).9



2.2. The e�ets of a non vanishing �2 from SUSY breakingIn the previous subsetion we made �2 vanish by working in a supersymmetri theory. Let usnow study, what happens, when supersymmetry is (softly) broken.Looking only at the trae-U(1) degrees of freedom of a generi nonommutative theory wehave �2 = 2Xj �j h(3~�j � �̂j)i : (26)One easily heks that �2 �Xj �jdjf(k2; ~k2; mj): (27)If SUSY is unbroken, all masses are equal. Using supersymmetri mathing between bosoniand fermioni degrees of freedom, Xj �jdj = 0; (28)we reprodue the vanishing of �2. If SUSY is softly broken this anellation is not ompleteanymore (in fat (28) still holds and this removes the leading power-like IR divergene in �2,however, the subleading e�ets in �2 survive). �2 gets a ontribution [21℄�2 = DXj �jdjm2j hK0(m~k) +K2(m~k)i+ O(k2) (29)= C�M2SUSY + C0Xj �jdjm2j log(m2j~k2) + � � � ;with known onstants C, C 0 and D. This has dire onsequenes for the gauge boson. Letus look at the equations of motion resulting from this additional Lorentz symmetry violatingontribution to the polarisation tensor.In presene of a Higgs �eld whih generates a mass term m2 and using unitary gauge the�eld equations in presene of non vanishing �2 read �1(k2g�� � k�k�) + �2 ~k�~k�~k2 �m2g��!A� = 0: (30)Using that unitary gauge implies Lorentz gauge, k�A� = 0, we an simplify(�1k2 �m2)A� +�2 ~k�~k�~k2 A� = 0: (31)To proeed further it is useful to speify a diretion for the momentum and the nonommutativityparameters. The photon ies in 3-diretion and we havek� = (k0; 0; 0; k3): (32)What is the orresponding value of ~k? Sine ��� breaks Lorentz invariane, we need to speify��� in a partiular frame. For the latter, a natural one is the system where the osmi mirowavebakground is at rest. In this frame, we assume that the only non-vanishing omponents of ���are �13 = ��31 = �: (33)This yields, ~k� = ���k� = (0; �k3; 0; 0); j~k 2j = (�k3)2: (34)10



We start with the ordinary transverse omponents of A� ,A�1 = (0; 1; 0; 0): (35)In this diretion, (31) yields (�1k2 �m2 ��2)A1;� = 0: (36)In the other transverse diretion, A�2 = (0; 0; 1; 0); (37)we �nd (�1k2 �m2)A2;� : (38)Finally we have the third polarisation (whih an be gauged away if and only if m2 = 0),A� = (a; 0; 0; b); k0a� k3b = 0 (39)whih results in (�1k2 �m2)A3;� : (40)We note that the di�erent polarisation states do not mix due to the presene of �2. The seondand the third polarisation state behave more or less like in the ordinary ommutative ase.However, the �rst has a modi�ed equation of motion, (36), in presene of a non-vanishing �29.This is another strong argument against a trae-U(1) being the photon [21℄. If the gaugesymmetry is unbroken and m2 = 0 we usually have two massless polarisations. However, anon vanishing �2 redues this to one. The other one gets an additional mass �2�1 . Sine onlyone polarisation is a�eted this is a strong Lorentz symmetry violating e�et. Moreover, anegative �2 would lead to tahyons while a positive mass is phenomenologially ruled out bythe onstraint [22℄ m < 6� 10�17 eV (41)on the photon mass10.If we take the trae-U(1) as an additional (to the photon) gauge boson from the unbrokensubgroup H , we would still get strong Lorentz symmetry violation sine the trae-U(1) is notompletely deoupled.In summary, we found in this setion that additional trae-U(1) subgroups are not ompletelydeoupled and should lead to observable e�ets. In partiular, if SUSY is not exat we havenon-vanishing �2 whih gives rise to strong Lorentz symmetry violation whih has not beenobserved. This rules out possibilities (a) and () of Se. 1. Moreover, we on�rmed that atrae-U(1) is not suitable as a photon andidate.3. Mixing of trae and traeless partsFrom the previous setion we onluded that the trae-U(1) groups are unviable as andidatesfor the SM photon. Therefore, it has been suggested to onstrut the photon from traelessU(1) subgroups [11℄. It turns out, however, that typially trae and traeless parts mix and thetrae parts ontribute their Lorentz symmetry violating properties to the mixed partile.9 One might argue that instead of Eq. (36) one has to use the resaled equation (we set m2 = 0 for simpliity)k2 � �2(k2;~k2)�1(k2; ~k2) = 0. For k2 ! 0, the seond term vanishes sine �1 diverges in this limit. Therefore, we �nd anadditional solution. However, this solution is rather strange. It does not orrespond to a pole in the propagator(it goes like a log). Moreover, if one alulates the ross setion �2 still upsets the angular dependene quiteseverely ompared to the ordinary ommutative ase.10 Even �ne-tuning of (64) to zero is not an option. Sine we have only a �nite number of masses this is at bestpossible for a �nite number of values of j~kj and we will surely �nd values of j~kj where �2 is nonzero.11



For U(2) broken by a fundamental Higgs, the standard Higgs mehanism yields the symmetrybreaking U(2)! U(1). However, the remaining U(1) is a mixture of trae and traeless parts.If SUSY is broken, the trae-U(1) has a �2 part in the polarisation tensor. Taking this intoaount we �nd the following matrix for the equations of motion0BB� �U(1)1 k2 � �2 �m2 m2m2 �SU(2)1 k2 �m2 �U(1)1 k2 �m2 m2m2 �SU(2)1 k2 �m2 �U(1)1 k2 �m2 m2m2 �SU(2)1 k2 �m2 1CCA ; (42)where the adjoint U(2) and polarisation indies are (0; 1); (3; 1); (0; 2); (3; 2); (0; 3); (3; 3). Weomitted the values 1 and 2 for the adjoint U(2) indies whih do not mix with the trae-U(1)and are not qualitatively di�erent from the ommutative ase.The matrix is blok diagonal and the seond and third polarisation (lower right orner) behavemore or less like their ommutative ounterparts. We an onentrate on the upper left 2 � 2matrix orresponding to the transverse polarisations a�eted by �2.This 2� 2 matrix admits two solutions for the equations of motion. Expanding for small �2we �nd, ��U(1)1 +�SU(N)1 � k2 = �2 +O(�22); (43)��U(1)1 +�SU(N)1 � k2 = ��U(1)1 + �SU(N)1 �2�U(1)1 �SU(N)1 m2 + �SU(N)1�U(1)1 �2 +O(�22);in analogy to (36). In absene of �2 the �rst solution in Eq. (43) is a massless one orrespondingto the massless ombination of gauge bosons (think of it as the photon). The seond is a massiveombination (similar to the Z boson). The presene of non-vanishing �2 again leads to a mass�2�U(1) for the �rst solution and rules out the \massless" ombination as a reasonable photonandidate.This example demonstrates that the disastrous e�ets of �2 are also present in anyombination whih has an admixture of trae-U(1) degrees of freedom. Hene, this rules outpossibilities (b) and () from the introdution.4. Universal extra dimensions and power law running in the UV and IRIn the introdution we already mentioned that a possible way out of the dilemma with thetrae-U(1)'s is the introdution of universal extra dimensions11. Let us now investigate thisoption.In most of the following disussion we will adopt a four-dimensional point of view in desribingextra-dimensional theories. That is, beause we are interested in renormalisation group e�etsassoiated with the 4-dimensional momentum, it makes more sense to inlude the e�ets ofextra dimensions by onsidering the e�et of a simple Kaluza-Klein tower of states. (In theUV-omplete string models there are other e�ets whih, at one-loop order and in ompatdimensions signi�antly larger than the string length, will be seondary.)Intuitively it is obvious that the main fator a�eting the running of the gauge ouplings willbe the nonommutativity parameter ~k, and in partiular how it mixes the additional (ompat)dimensions with the ordinary four large dimensions. We will now give a somewhat heuristipresentation of how ~k a�ets the running of the gauge ouplings. A more preise and generalalulation is given in [2℄ and we will just quote the results from there in the last part of thissetion.11 A partiularly interesting possibility is that the extra dimensions may arise dynamially [23℄.12



4.1. The UV regimeLet us start by briey reviewing power law running in the UV at sales well above theompati�ation sale. In the UV regime the planar diagrams dominate the two point funtionand so there is no di�erene to the ordinary ommutative ase (see [24℄). Beause of this it issuÆient to use an intuitive approah based on thresholds12.Consider �rst the most simple ase of one ompat extra dimension of size M�1 . Negletingthreshold e�ets the one loop running of the gauge oupling in four dimensions typially follows(t = log(k)) ��tg2 = Xm2i<k2 ig4; (44)where the i are oeÆients depending on the spin and representation of the partile i. In thesum only partiles with massm2i smaller than the momentum sale k2 ontribute (in any suitablemassive renormalisation sheme). This leads to the typial deoupling of massive modes. Forsimpliity, let us now onsider a situation where all partiles have (approximately) the samemass m2 �M2 . We �nd ��tg2 = �b0g4; for m2 � k2 �M2; (45)where we have hosen the sign of the onstant b0 suh that it is positive when the theory isasymptotially free. (For example, in N = 2 supersymmetri pure gauge theory b0 = N=(4�2)in this notation.)Above the ompati�ation sale, more preisely at m2 +M2 < k2 < m2 + 4M2 , the �rstKaluza-Klein mode gives an idential ontribution to the �-funtion, and in general one �nds��tg2 = �NKK(k)b0g4; (46)where NKK(k) is the number of Kaluza-Klein modes (inluding the zero mode) ontributing atthe sale k. Sine the mass of the nth Kaluza-Klein mode is given by pm2 + n2M2 one easily�nds the approximate formula NKK(k) � C1 kM for k�M; (47)where we have introdued the onstant C1 to aount for the details of the ompati�ation andthreshold e�ets. This already suggests power law running. More preisely, one easily heksthat for k2 �M2 and appropriate initial onditions the solution approahesg2 � 1C1b0Mk (48)whih is indeed a power law.Expressions (47) and (48) are easily generalized to arbitrary dimension D = n+4 (k2 �M2 )��tg2 = �NKK(k)b0g4; (49)NKK(k) � Cn� kM�n ;g2 � nCnb0 �Mk �n ;12 A fuller treatment based on dimensional regularisation is presented in [2℄. An even better one is presented inRef. [25℄. In those treatments it beomes evident that higher-dimensional operators appear in the e�etive ation.These operators are due to a di�erent form of UV/IR mixing from regions of KK momenta that are zero in somediretions and high in others. These diÆulties are absent for the IR regime whih is the main point of interestin the present disussion so we do not dwell on them here.13



where again the onstant Cn depends on the details of the ompati�ation.The ow equation (49) for the running oupling an be also disussed using the more naturale�etive oupling ĝ2 of the D-dimensional theory,ĝ2 = � kM�n g2: (50)From the lower-dimensional viewpoint (50) an be understood by remembering that theamplitudes of all Kaluza-Klein modes add up and therefore inrease the e�etive oupling by afator NKK. Inserting (50) into (49) yields the ow equation for ĝ2,��t ĝ2 = nĝ2 � Cnb0ĝ4 = (n� Cnb0ĝ2)ĝ2; for k2 � M2: (51)If we start at small values for ĝ2 the oupling inreases toward the infrared until it reahes a�xed point at ĝ2�xed = nCnb0 . The orresponding oupling of the 4-dimensional theory is theng2�xed(k) = ĝ2�xed�Mk �n = nCnb0 �Mk �n ; (52)in agreement with the last equation in (49). This disussion implies that power-law runningin extra dimensions originates from a �xed point in the e�etive higher-dimensional ouplingonstant ĝ2. This implies that the power-law running of g2 is a strong oupling phenomenonin terms of ĝ2 and one should exerise aution sine Eqs. (49) and (51) are one-loop results.In partiular a large number of extra-dimensions inreases the value of the �xed point ouplingand the approximation may break down. The issues of existene of a �xed point of ĝ2 wereinvestigated in literature on extra-dimensional gauge theories, see e.g. [26℄.From now on we will ontinue assuming that (ordinary ommutative) extra-dimensional gaugetheories do provide a power-law running of the oupling in the extreme ultraviolet (i.e. at energieswell above the ompati�ation sale). We will then show that in nonommutative settings themixing between ultraviolet and infrared degrees of freedom will indue in the extreme infrareda power-law deoupling of the trae-U(1) degrees of freedom.4.2. IR running { nonommutativity restrited to 4 dimensionsAs spei�ed in Eq. (4) �1 and therefore the gauge oupling depends on the additional sale ~k(f. [8, 7, 13, 12℄) ~k� = ���k� . In fat, the oupling depends only on the absolute values j~kj aswell as jkj, as an be seen from Eqs. (14) and (15).Sine we are mostly interested in low-energy physis (ompared to the ompati�ation sale)the e�ets of extra dimensions an ontribute only through loops in perturbation theory. Thusthe external momenta k� are taken to be 4-dimensional, i.e. external partiles will not inludeexited Kaluza-Klein modes, while internal loop momenta p� (in Feynman diagrams) are keptgeneral.In this setion we onsider a senario where only the four in�nite dimensions arenonommutative, ��� 6= 0; ��b = 0; �ab = 0 (53)where �; � = 0; : : : ; 3 and a; b = 4; : : : ; 3 + n:From Eq. (8) together with (13) one easily �nds that in a 4-dimensional nonommutativegauge theory with all partiles of equal non-zero massm, the trae-U(1) ouplings runs aordingto ��tg2 = bnp0 g4 for k2 � min�M2NC;M4NCm2 � : (54)14



Here bnp0 is a positive number whih spei�es the non-planar ontribution to the running gaugeoupling.From Eq. (54) one an see that in general nonommutative theory when we lower momentum-sale k2 suÆiently, even very massive modes start to ontribute. This holds for Kaluza-Kleinmodes, too, as long as we have nonommutativity only in the four in�nite dimensions aordingto Eq. (53). In analogy to (49) we �nd (k2 � min(M2NC; M4NCM2 ))��tg2 = N IRKK(k)bnp0 g4; (55)N IRKK(k) � CIRn �M2NCMk �n ;g2 � nCIRn bnp0 � kMM2NC�n :The right hand side of the IR ow equation in (55) has the opposite sign to that of the UV owequation (49). This implies that the trae-U(1) oupling g2 beomes small in the IR and theUV regimes. The enhanement by the N IRKK(k) fator gives the power-like deoupling of theseunwanted degrees of freedom from the SU(N) theory (whih is una�eted by the UV/IR mixinge�ets).4.3. IR running for arbitrary nonommutativityIf the matrix ��� has nonvanishing entries that mix the ordinary four dimensions with the extradimensions we may have a non-vanishingk̂a = �a�k� (a = 4 : : : ; 3 + n): (56)In the alulation of the polarisation tensor this leads to phase fators in the sum over theKaluza-Klein modes, Xm2Zn eimR �k̂ (57)(in addition to the usual �-dependent phases in non-planar ontributions). In this situation it isadvantageous to diretly perform the sum over Kaluza-Klein modes in the polarisation tensor.We have done this expliitly in [2℄. Here we will quote the result (for an N = 2 supersymmetriU(N) theory without adjoint matter �elds),�1 = onst + 2C(G)(4�)2 (4�)n2 ��n2�Yi Ri �j~kj�n� ; (58)where Ri are the ompati�ation radii and ~k is now the total nonommutative momentum~kM = �M�k� (M = 0 : : :3 + n). This equation is valid fork � min�M; M2NCM � ; (59)with MNC still de�ned as M�2NC = j~kjjkj .The fat that the atual running is now given by replaing the 4-dimensional omponents of~k with the total ~k is not too surprising sine the infrared running omes from very ultravioletmodes, i.e. it involves momenta muh higher than the ompati�ation sale where the theory15



is e�etively higher-dimensional. At these sales there is no distintion between the ordinaryfour dimensions and the extra dimensions.Eq. (58) has the additional advantage that it already orresponds to the integrated result.It diretly gives g(k) without the need to solve a di�erential equation (Ri = 1=M),g2U(1)(k) = 1AU(1) + CIRn bnp0n �M2NCMk �n : (60)Here we have �xed, CIRn = n2 (4�)n2 ��n2� ; (61)bnp0 = 4(4�)2C(G);where we still onsider the N = 2 ase and none of the matter �elds are in the adjointrepresentation13. AU(1) is a renormalisation onstant determined from the bare oupling andthe planar diagrams only. Therefore in the regime (59) this onstant is onneted to thegauge oupling of the SU(N)-part (up to logarithmi orretions whih we negleted in ourapproximation) g2SU(N)(k) � 1ASU(N) with AU(1) = ASU(N): (62)4.4. Lorentz violating mass term for trae-U(1)In nonommutative �eld theories the gauge oupling is not the only part of the polarisationtensor that is a�eted by power law running. Reall that in nonommutative �eld theories the(4-dimensional) polarisation tensor has an additional Lorentz symmetry violating part [8, 12℄,whih is alled �2 in Eq. (4).For softly broken supersymmetry only the IR-singular (pole) ontribution to �2 vanishes, buta onstant term �2 � �M2SUSY; �M2SUSY = 12Xs M2s �Xf M2f ; (63)remains. In (63) the sums run over all bosons and fermions. Therefore, if we have ompati�edextra dimensions, we must inlude the Kaluza-Klein modes, e�etively multiplying the four-dimensional �M2SUSY by the number of Kaluza-Klein modes. The number of ontributingKaluza-Klein modes is, again, given roughly by N IRKK of Eq. (55). Hene, we �nd�2 � N IRKK(k)�M2SUSY � �M2NCMk �n for k2 � min(M2NC; M4NCM2 ): (64)Repeating the analysis of Set. 2.2 one �nds, again, one ordinary massless polarisation stateand one with a Lorentz symmetry breaking mass,m2LV � �2�1 � �M2SUSY; (65)whih is roughly onstant although both �1 and �2 sale with a power law. Yet, these powerlaws anel sine they are the same for �1 and �2.13 A generalisation to an arbitrary number of matter multiplets an be easily obtained from the results given in[2℄. 16



4.5. Weaker onstraints from power law runningWe found in Set. 4.4 that the Lorentz violating mass term for the trae-U(1) fators remainsroughly onstant. Hene trae-U(1)'s are still unsuitable as photon andidates. With a similarargument as in Set. 3 one �nds that this also holds for mixtures of trae and traeless parts.Therefore a suitable photon andidate must be onstruted (as in four dimensions) from anunbroken ombination of traeless generators. In [1℄ we found that suh a ombination an onlyexist together with additional unbroken U(1)'s whih have nonvanishing trae. Here the resultsof Set. 4 help us, sine they allow for a fast deoupling of trae-U(1) degrees of freedom. Thisis in ontrast to the four-dimensional ase, where the (only) logarithmi deoupling neessitatedinredibly large nonommutativity sales MNC � MP. With additional (ompati�ed) spaedimensions we have power law running aording to (55). This deouples the unwanted trae-U(1)'s muh faster in the IR thereby weakening the onstraints dramatially.Let us now estimate the new onstraints obtained from power law running. As alreadymentioned earlier, urrent experiments probe the regime well below M. To apply Eq. (60) wealso need k � ks, ks = M2NCM : (66)This is also assured, sine the disussion of Set. 4.2 shows that for k � ks the trae-U(1) andthe SU(N) have gauge ouplings whih are of the same order. (Until k � MNC both gaugeouplings are approximately equal and power law running sets in only below ks.)Negleting the slow logarithmi running of the SU(N) ouplings we �nd from Eqs. (60) and(62), g2U(1)g2SU(N) � nCIRn bnp0 1g2SU(N)(ks) � kks�n = Dkn� MM2NC�n for k� ks (67)D = nCIRn bnp0 1g2SU(N)(ks) � (4�)24Ng2SU(N) ;where the � in the seond line holds for a pure nonommutative U(N). To haveg2U(1)(k0)g2SU(N)(k0) < � (68)we need M2NCM > k0�D� � 1n : (69)As an illustration we have plotted the exluded region in Fig. 3. This shows that when we allowfor a 5% unertainty in the eletromagneti oupling at 100 GeV, the allowed region of MNCstarts already at a few TeV, depending on the ompati�ation sale.5. Vauum birefringene - a remnant e�et of high sale nonommutativityIn the last Set. 4 we have already seen that a modi�ation of the theory at high energy sales(there it was the introdution of extra dimensions) an alter the behavior of the nonommutative�eld theory at infrared sales. Therefore it makes sense to investigate the onsequenes of amodi�ation at a high energy sale � � MP even for a 4 dimensional theory. A simple andnatural possibility to model a non-loal UV-�nite mirosopi theory like, e.g., string theory, isto simply ut o� all utuations with momenta larger than � (for a more detailed disussion ofthis hoie see [3℄). 17
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Figure 3. Exluded regions in the (M;MNC)-plane (in TeV). The blue region is exludedbeause the trae-U(1) still has nonnegligible oupling. We have hosen � = 0:05, C1bnp0 = 0:1,g2SU(N)(k0) = 0:2, k0 = 0:1TeV, and n = 1.As we will see this uto� softens the problem of the unwanted mass term for the photononsiderably. Instead of a mass term one has vauum birefringene at low momentum sales. IfMNC is lose enough to the uto� sale � �MP this vauum birefringene an be pushed beyondthe urrent experimental limits. Thereby a window for MNC opens where nonommutativityis still allowed. As experimental and observational sensitivity is likely to improve in the nearfuture this provides an interesting probe for sales MNC very lose to the Plank sale.In the following we will restrit ourselves to the ase of a pure U(1) nonommutative gaugetheory. The disussion of the previous setions shows how this an be generalised to morerealisti situations where the photon gets an admixture of a trae-U(1).Let us now ut o� the utuations with momenta larger than � by introduing a fator ofexp(� 1�2t2 ) in the integral over the Shwinger time t. One obtains (s. [21℄),���(p) = 1�2 �p2Æ�� � p�p��� Xj �j Z 10 dx �4C(j)� (1� 2x)2d(j)�"K0 p�j� !�K0 p�j�e� !#+ 1(�)2 ~p�~p� �2e�Xj �jd(j) Z 10 dx�jK2 p�j�e� !+ Æ�� [ gauge non-invariant term ℄ : (70)We will neglet the gauge non-invariant terms in the following. They ould be treated andeliminated by using modi�ed Ward-Takahashi identities [27, 28, 29℄.The employed regularisation uts o� the modes p & � in the loop integral in a smooth way.Of ourse there are lots of di�erent possibilities to do this. Sine universality does not hold,di�erent regularisations will in priniple lead to di�erent results. However, as long as we leavethe qualitative feature \all momenta p & � are ut o�" holds, we expet that the qualitativeresults we obtain remain true.Let us �rst onentrate on �1, i.e. the running gauge oupling.In Fig. 4 we plot the running gauge oupling for various values of the uto� �. As expetedthe running stops at the UV sale �. In an ordinary ommutative theory we would expet no18
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Figure 4. Running gauge oupling for a massless supersymmetri pure U(1) gauge theory. Theblue, red and blak line are for � = 1000MNC; 105MNC; 1MNC, respetively. We have �xedthe maximal gauge oupling to be g2max = 4. One an learly see that for �nite values of theuto� the running stops at � � in the UV and at � M2NC� in the IR.further hanges. Here, however, we observe that the running stops, again, at an infrared sale� M2NC� . Therefore the running for k < M2NC� is essentially the same as that of a ommutativeU(1) gauge theory.Let us now turn to the �2 part of the polarisation tensor. It, too, is a�eted by the preseneof a �nite UV uto�. For softly broken broken we an easily derive the following approximateexpressions �2 = D�M2SUSY for M2NC� � k� �MSUSY (71)�2 = D0�M2SUSY ~p2�2 for k� M2NC� ;where D;D0 are known onstants. Following the arguments of Set. 2.2 we an now solve theequations of motion for the two transverse photon polarisations (nonommutativity matrix asgiven in Eq. (33)), (�1k2 � �2)A�1 = 0 (72)�1k2A�2 = 0:Let us now onentrate on the polarisation state A�1 whih is a�eted by the presene of �2.Inserting the approximate expressions (71) we an now study the dispersion relation,k2 �D�M2SUSY�1 = 0; for M2NC� � k� �MSUSY; (73)k2 +D0 �2�1 �M2SUSY�2M4NC (k3)2 = 0; for k� M2NC� : (74)Eq. (73) yields the Lorentz symmetry violating mass term of the order of �M2SUSY alreadydisussed in detail in Set. 2.2. Without uto�, i.e. in the limit �!1 this mass term persists19



down to k ! 0. Thereby exluding any hane that this an be the photon observed in nature.In presene of the uto� Eq. (73) is only appliable for k � M2NC� . Masslessness of the photonis well tested up to at least 1GeV. Using � � MP � 1018GeV this gives us a onservativelower bound of MNC > 109GeV. Nevertheless, this opens a rather large window of opportunityompared to the �!1 ase where there was no allowed range of MNC < MP.For small photon momentum Eq. (74) applies. To understand (74) better, let us restore thelight speed  in our equations and use k0 = ! for the frequeny of the wave,!2 � 2(1��n)2(k3)2 = 0; (75)with �nD2 �2�1 �M2SUSY�2M4NC � 10�34��=1018GeVMNC �4 � 1; (76)where we have used �M2SUSY � 103GeV and �1 � 100.From Eq. (75) we an see that the photon A�1 propagates with a speed (1 � �n). Sinethe A�1 photon propagates with  we observe birefringene, i.e. di�erent polarisations propagatewith di�erent speed.Although �n seems to be quite small we should ompare this to the urrent experimentalsensitivity. In [30℄ a study of all possible dimension four Lorentz violating operators ineletrodynamis was onduted and onstraints derived. The most general dimensions fourLagrangian whih is gauge and CPT invariant but violates Lorentz symmetry is,Lgeneral = �14F��F�� � 14(kF )����F��F�� : (77)Comparing the propagator derived from (77) with Eq. (4) we �nd(kF )���� = D2 �M2SUSY�2������: (78)In [30℄ the oeÆients of kF have been onstrained using various methods. For laboratorymeasurements their estimate translates to,�nlab . 10�10 � 10�14; (79)depending on the pattern of the nonommutativity. Astrophysial obervations already providea muh tighter bound of �nastro . 10�16 (80)while the strongest onstraints ome from observations of objets at osmologial distanes (seealso [31℄) �nosmo . 10�32: (81)6. ConlusionsNonommutative gauge symmetry in the Weyl-Moyal approah leads to two main featureswhih have to be taken into aount for sensible model building. First, there are strongonstraints on the dynamis and the �eld ontent. The only allowed gauge groups are U(N).In addition, the matter �elds are restrited to transform as fundamental, bifundamental andadjoint representations of the gauge group. Seond, there are the e�ets of ultraviolet/infraredmixing. Those lead to asymptoti infrared freedom of the trae-U(1) subgroup and, if the model20



does not have unbroken supersymmetry, to Lorentz symmetry violating terms in the polarisationtensor for this trae-U(1) subgroup.For a 4 dimensional ontinuum theory we have demonstrated that, although the trae-U(1)deouples in the limit k ! 0, the oupling is not negligibly small at �nite momentum sales k, asthey appear, for example, in sattering experiments. Therefore, observations rule out additionalunbroken (massless) trae-U(1) subgroups.Nonommutativity expliitly breaks Lorentz invariane. Therefore an additionalLorentz symmetry violating struture is allowed in the polarisation tensor. This struture isabsent only in supersymmetri models. If supersymmetry is (softly) broken, this additionalstruture is present in the polarisation tensor of the trae-U(1). It leads to an additional mass� �M2SUSY for one of the transverse polarisation states [21℄. The tight onstraints on the photonmass therefore exlude trae-U(1)'s as a andidate for the photon. It turns out that even a smalladmixture of a trae part to a traeless part (una�eted by these problems) is fatal. The onlyway out seems to be the onstrution of the photon from a ompletely traeless generator. Agroup theoreti argument shows, that this is impossible whithout having additional unbrokenU(1) subgroups. However, those are already exluded from the arguments given above.This result severely restrits the possibilities to onstrut a nonommutative Standard modelextension. If all of the onstraints given at the beginning are ful�lled the nonommutativitysale is pushed to sales far beyond MP.In general there is no reason to assume that the simple nonommutative model used heredesribes orretly the physis at energies ranging from a few eV up to the Plank mass. In fat,due to the ultraviolet/infrared mixing, a di�erent ultraviolet embedding of the theory wouldmodify the theory not only in the ultraviolet, but also in the infrared whih an drastiallyalter these onlusions. E.g., a powerlike deoupling of the trae-U(1) an e�etively hide themfrom observation. We have demonstrated that in a nonommutative U(N) gauge theory withompat extra dimensions, the ultraviolet/infrared mixing e�ets lead to suh a fast power-likedeoupling of the trae-U(1) degrees of freedom. In suh a setting the bounds are weakenedonsiderably if the ompati�ation sale is small enough.As an alternative to extra dimensions we have disussed a modi�ation obtained by simplyutting o� all utuations with momenta larger than a uto� � � MP. The presene of anultraviolet uto� � indues an e�etive infrared sale kIR � M2NC� below whih the theory behavesessentially like a ommutative gauge theory14. In partiular, up to threshold e�ets the runningis that of a ommutative �eld theory. If supersymmetry is broken, we have a Lorentz symmetryviolating mass term at sales k > kIR in aord with [1, 21℄. However, below kIR the mass termturns into a modi�ation of the phase veloity of plane wave solutions, leading to birefringene.Nevertheless, if suh a trae-U(1) gauge boson is to be interpreted as (part of) a photon amass is not aeptable and birefringene must be smaller than the experimental limits. Usingthe most stringent limits from osmologial observations one obtains a rather strong limit ofMNC & 0:1MP. If we use the more onservative astrophysial or laboratory limits the sameargument yields only MNC & (10�7 � 10�5)MP. In this setting high preision measurements ofthe properties of light are a wonderful tool to test (nearly) Plank sale physis.Referenes[1℄ J. Jaekel, V. V. Khoze and A. Ringwald, \Telltale traes of U(1) �elds in nonommutative standard modelextensions," JHEP 0602 (2006) 028 [hep-ph/0508075℄.[2℄ S. A. Abel, J. Jaekel, V. V. Khoze and A. Ringwald, \Nonommutativity, extra dimensions, and power lawrunning in the infrared," JHEP 0601 (2006) 105 [hep-ph/0511197℄.14 This is in stark ontrast to the situation disussed above where the nonommutative gauge theory is assumedto be valid at all sales and no ultraviolet uto� exists. There kIR = 0 and the theory shows strong e�ets ofnonommutativity at all sales. 21
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