
*H
EP
-T
H/
06
06
03
8*

Revised Version
ar

X
iv

:h
ep

-t
h/

06
06

03
8v

3 
  3

1 
Ja

n 
20

07

Preprint typeset in JHEP style - HYPER VERSION DESY-06-083ZMP-HH/06-09hep-th/0606038
Non-Supersymmetri Membrane Flows from FakeSupergravity and Multi-Trae Deformations
Ioannis PapadimitriouDESY Theory Group,Notkestrasse 85,D-22603 Hamburg, GermanyandCenter for Mathematial Physis,Bundesstrasse 55,D-20146 Hamburg, Germany.ioannis.papadimitriou�desy.deAbstrat: We use fake supergravity as a solution generating tehnique to obtain a on-tinuum of non-supersymmetri asymptotially AdS4 � S7 domain wall solutions of eleven-dimensional supergravity with non-trivial salars in the SL(8;R)=SO(8) oset. These solu-tions are ontinuously onneted to the supersymmetri domain walls desribing a uniformsetor of the Coulomb branh of the M2-brane theory. We also provide a general argu-ment that under ertain onditions identi�es the fake superpotential with the exat large-Nquantum e�etive potential of the dual theory, desribing a marginal multi-trae deforma-tion. This identi�ation strongly motivates further study of fake supergravity as a solutiongenerating method and it allows us to interpret our non-supersymmetri solutions as afamily of marginal triple-trae deformations of the Coulomb branh that ompletely breaksupersymmetry and to alulate the exat large-N anomalous dimensions of the opera-tors involved. The holographi one- and two-point funtions for these solutions are alsoomputed.

http://arxiv.org/abs/hep-th/0606038v3
mailto:ioannis.papadimitriou@desy.de


Contents1. Introdution and summary of results 22. The SL(N;R)=SO(N) setor of gauged maximal supergravity and its higher-dimensional origin 53. All asymptotially AdS Poinar�e domain walls of the SL(N;R)=SO(N)setor 84. The non-supersymmetri Poinar�e domain walls in D = 4 114.1 Domain walls with a single salar 134.2 Exat losed form solutions 155. Exat non-supersymmetri membrane ows 186. Holographi one-point funtions 216.1 � = �+ 256.2 � = �� 267. Holographi two-point funtions 298. The fake superpotential as a quantum e�etive potential and multi-traedeformations 348.1 Triple-trae deformation of the Coulomb branh 36A. Expliit form of the domain wall metri for W (�;�), to �rst order in�� �o and for general k 38B. Uplifting the MTZ blak hole to eleven dimensions 39C. Computation of the holographi two-point funtions 41D. Multi-trae deformations in the large-N limit and the AdS/CFT orre-spondene 42
{ 1 {



1. Introdution and summary of resultsThe study of domain wall solutions of various supergravity theories has been stronglymotivated in reent years by the role these play in a variety of physial ontexts, from theAdS/CFT orrespondene, where they desribe an RG ow of the onformal �eld theoryresiding on the onformal boundary of AdS, to `Brane World' senarios and osmologialmodels (see [1℄ for an extensive review of domain walls of N = 1 supergravity in fourdimensions). Although, when they arise as solutions to a partiular supergravity theory,suh domain walls are often supersymmetri, this need not be the ase. Indeed, manynon-supersymmetri gravitational theories admit domain wall solutions as well. In thispaper, however, we will emphasize the fat that true supergravity theories also admit non-supersymmetri domain wall solutions, whih an be physially important.We will fous on domain walls preserving Poinar�e invariane in d = D�1 dimensions,where D is the spaetime dimension where the given gravitational theory lives. Suhdomain walls take the form1ds2D = dr2 + e2A(r)�ijdxidxj ; �I = �I(r); (1.1)where � = diag (�1; 1; � � � ; 1) is the Minkowski metri in d dimensions. Sine only themetri and a number of salar �elds are involved in these solutions, they an generiallybe desribed by an e�etive gravitational theory with an ation of the formS = ZM dDxp�g� 12�2DR� 12GIJ(�)g�����I���J � V (�)� ; (1.2)where �2D = 8�GD is the e�etive gravitational onstant and GIJ is a generi (Riemannian)metri on the salar manifold. Suh theories arise naturally as onsistent trunations ofvarious gauged supergravities, in whih ase the salar potential is generated by the non-trivial gauging of (some of) the isometries of the salar manifold. Generially, however, thise�etive desription will only be valid loally in the moduli spae of a given supergravitytheory [3℄. Here we are interested in the appliation of domain walls to the AdS/CFTorrespondene and so we assume that the metri (1.1) is asymptotially AdS, whih isequivalent to the statement that A(r) � r as r !1. This in turn implies that the salarpotential V (�) has at least one stable �xed point at �I = �I� suh that V (��) < 0. By areparameterization of the salar manifold we an set �I� = 0. If this potential arises fromsome gauged supergravity, this �xed point orresponds to the maximally symmetri AdSDvauum.The equations of motion following from the ation (1.2) are Einstein's equationsR�� � 12Rg�� = �2DT�� ; (1.3)with the stress tensor given byT�� = GIJ(�)���I���J � g�� �12GIJ(�)g�����I���J + V (�)� ; (1.4)1More general domain walls with a di�erent isometry do exist, as is disussed e.g. in [2℄, but we will notdisuss them here. { 2 {



and r� �GIJ(�)���J�� 12 �GLM��I g�����L���M � �V��I = 0: (1.5)Substituting the domain wall ansatz (1.1) into the equations of motion one obtains thefollowing equations for the warp fator A(r) and the salar �elds �I(r):_A2 � �2d(d � 1) �GIJ(�) _�I _�J � 2V (�)� = 0;�A+ d _A2 + 2�2d� 1V (�) = 0;GIJ(�)��J + �GIJ��K _�K _�J � 12 �GLM��I _�L _�M + d _AGIJ(�) _�J � �V��I = 0; (1.6)where the dot denotes the derivative with respet to the radial oordinate r.It is important to distinguish between two types of solutions of these seond orderequations. Following [4℄ we will all a `BPS domain wall' any domain wall of the form (1.1)whih satis�es the �rst order equations_A = � �2d� 1W (�);_�I = GIJ(�)�W��J ; (1.7)for some funtion W (�) of the salar �elds suh that the salar potential an be expressedas V (�) = 12 �GIJ(�)�W��I �W��J � d�2d� 1W 2� : (1.8)Note that the �rst order equations (1.7) together with (1.8) ensure that the seond or-der equations (1.6) are automatially satis�ed. Given the expression (1.8) for the salarpotential in terms of the funtionW , the �rst order equations (1.7) an be derived �a la Bo-gomol'nyi by extremizing the energy funtional E[A;�℄ that has (1.6) as its Euler-Lagrangeequations [4, 5℄. In the ontext of gauged supergravity, a funtion W (�) satisfying (1.8)arises naturally as the superpotential, Wo(�), whih enters the gravitino and dilatino vari-ations Æ � = D�"� �22(d� 1)Wo(�)�"; (1.9)Æ�I = �����I + GIJ(�)�Wo��J � ": (1.10)It follows that the domain walls de�ned by the superpotential Wo(�) are supersymmetrisolutions of the partiular gauged supergravity. Cruially, however, equation (1.8) does notde�ne the funtion W (�) uniquely and hene there may generially exist other funtionsW (�) satisfying (1.8) in addition to Wo(�).2 This has been termed fake supergravity and in2Note, however, that not every funtionW (�) that satis�es (1.8) is aeptable, sine it will not generiallyorrespond to an asymptotially AdS domain wall. We will disuss in detail the onditionsW (�) must satisfybelow. See also [2, 4℄. { 3 {



this ontext any funtionW (�) that solves (1.8) is alled a fake superpotential [2, 3, 6, 7℄. In[7℄ it was shown that any BPS Poinar�e domain wall of the form (1.1), de�ned by a funtionW (�) whih is not neessarily the true superpotential of a given gauged supergravity, is`supersymmetri' in the sense that one an always �nd Killing spinors, at least loally.In [7℄ this was onsidered as an indiation that any funtion W (�) that solves (1.8) (andpossibly subjet to suitable boundary onditions) may be the true superpotential of somesupergravity theory, even though there is no systemati way to �nd whih is the relevant,known or unknown, theory [8℄. Despite the elegane of this statement, it is diÆult inpratie to on�rm or refute it. We will adopt a rather di�erent point of view here,however. Namely, we will on�ne ourselves to a partiular gauged supergravity, with aertain superpotentialWo(�). Clearly, any BPS domain wall de�ned by a solutionW (�) 6=Wo(�) of (1.8) is not supersymmetri in this ontext. We will nevertheless ontinue toall suh solutions `BPS' sine they satisfy the �rst order equations (1.7). They are stillspeial solutions beause they allow for the de�nition of fake Killing spinors via (1.9) withWo(�) replaed by the fake superpotentialW (�) [2℄.3 The existene of fake Killing spinorsimplies, in partiular, non-perturbative gravitational stability, at least in the absene ofnaked singularities [9, 4, 2℄.If the salar potential annot be written in the form (1.8), however, there an stillexist domain wall solutions of the form (1.1) that solve the seond order equations (1.6).We will refer to suh solutions as `non-BPS domain walls'.4 We will not onsider furthersuh domain walls here sine we are interested in salar potentials that arise from gaugedsupergravities, and suh potentials are guaranteed to be expressible in the form (1.8) sinethis is at least possible using the true superpotential Wo(�).5Although one often views fake supergravity as an e�etive subsetor of some gaugedsupergravity, by identifying both the salar potential and the fake superpotential of fakesupergravity with the true potential and superpotential respetively of the gauged super-gravity [4, 3, 6℄, we will instead treat fake supergravity as a powerful solution generatingtehnique for non-supersymmetri solutions of a given gauged supergravity. In partiular,we will treat (1.8) as a �rst order non-linear di�erential equation for the fake superpotentialW (�) [10, 11, 2, 12℄ (see also [13℄ where a very similar perspetive is adopted). For salarpotentials arising from some gauged supergravity this equation admits at least one solution,namely the true superpotential of the theory. Our aim here will be to determine all so-lutions of (1.8) satisfying appropriate boundary onditions. Eah solution W (�) 6= Wo(�)de�nes a non-supersymmetri domain wall solution of the given gauged supergravity, andtherefore desribes a non-supersymmetri RG ow of the dual �eld theory.The paper is organized as follows. In the next setion we will disuss a ommonsubsetor of gauged maximal supergravities in dimensions D = 4; 5; 7 with the salar3Note that our fake superpotential di�ers by a fator of � 2(d�1)�2 relative to the fake superpotentialde�ned in [2℄. The superovariant derivative is uniquely determined, however, by the requirement that itredues to that of pure AdS, namely (D� + 12l�)", when the salar �elds vanish.4Note though the analysis of [7℄, whih suggests that any potential that admits domain wall solutionsan be written in the form (1.8) and so there are no `non-BPS' domain walls.5Generially the superpotential Wo(�) will be a matrix, however, instead of a salar quantity. See e.g.[2℄. { 4 {



�elds parameterizing an SL(N;R)=SO(N) oset, where N = 8; 6; 5 respetively. Theomplete non-linear ansatz for uplifting any solution of this subsetor to eleven-dimensionalor Type IIB supergravity is known [14, 15℄, and all supersymmetri Poinar�e domain walls,desribing a uniform subsetor of the Coulomb branh of respetively the M2-, D3-, orM5-brane theory have been onstruted [16, 17, 18, 14, 5℄. In Setion 3 we solve equation(1.8) with the salar potential of gauged supergravity as a di�erential equation for the fakesuperpotentialW (�), subjet to suitable boundary onditions. We show that analyti non-supersymmetri solutions exist only in dimensionD = 4, while the superpotentialWo is theonly analyti solution of (1.8) for D = 5; 7. In Setion 4 we systematially disuss how toobtain these non-supersymmetri solutions in four dimensions in losed form by onsistentlyreduing the number of salar �elds, and we solve (1.8) exatly, obtaining a family of exatfake superpotentials, for a speial ase involving a single salar �eld. We then uplift thissolution to eleven dimensions in Setion 5 using the ansatz disussed in Setion 2 and,noting that the MTZ blak hole [19℄ in four dimensions is interestingly a solution of exatlythe same ation as our exat domain wall, we also give the eleven-dimensional blak holesolution (given expliitly in Appendix B). The holographi one- and two-point funtionsfor the non-supersymmetri domain walls are then omputed respetively in Setions 6 and7. Finally, in Setion 8 we show that under ertain irumstanes the fake superpotentialW (�) that solves (1.8) and orresponds to an asymptotially AdS domain wall, de�nes amarginal multi-trae deformation of the dual �eld theory. This means that solving equation(1.8) as a di�erential equation for the fake superpotential not only is interesting as a methodfor �nding exat non-supersymmetri supergravity solutions, but also, these solutions anoften be interpreted as the exat holographi duals of a marginal multi-trae deformation ofthe boundary theory. Applying this observation to the non-supersymmetri domain wallswe have onstruted leads to the onlusion that they orrespond to a ontinuous familyof marginal triple-trae deformations of the Coulomb branh of the M2-brane theory. Anumber of tehnial results are olleted in the appendies.2. The SL(N;R)=SO(N) setor of gauged maximal supergravity and itshigher-dimensional originThe salar manifold of D-dimensional maximal supergravity is the oset E11�D(11�D)=K,where En(n) is the maximally non-ompat form of the exeptional Lie groupEn andK is itsmaximal ompat subgroup.6 Following [18, 14, 5℄, we speialize to an SL(N;R) subgroupof E11�D, where N = 4(D � 2)=(D � 3), and onsider the 12N(N + 1) � 1 salars of theoset SL(N;R)=SO(N). This salar setor is ommon to all maximal supergravities in anydimension. In partiular, for D = 7 we onsider SL(5;R) �= E4, for D = 5 SL(6;R) � E6and for D = 4 SL(8;R) � E7.The Lagrangian density desribing this setor of the gauged version of maximal super-6For n < 6 the following identi�ations are made E5 �= D5; E4 �= A4; E3 �= A2 �A1; E2 �= A1 � R andE1 �= R. { 5 {



gravity in D dimensions, where the SO(N) symmetry is gauged, ise�1LD = 12�2DR+ 18�2D tr ���M��M�1�� V; (2.1)where M = STS is a symmetri N �N matrix, with S in the fundamental representationof SL(N;R), and the potential V takes the form7V = �(D � 3)216�2Dl2D �(trM)2 � 2tr (M2)� : (2.2)In these expressions the trae is taken in the fundamental of SL(N;R). Using an SO(N)rotation, the matrix M an be diagonalized so thatM = diag(X1; : : : ;XN ); (2.3)where the N salars Xi satisfy the onstraintdetM = NYi=1Xi = 1: (2.4)It might be useful to note that in terms of the non-trivial salars that we have kept at thispoint, the symmetri tensor Tij parameterizing the full salar manifold of the maximal su-pergravity takes the form Tij = XiÆij . The N onstrained salars Xi an be parameterizedby N � 1 independent salar �elds, 'I , I = 1; : : : ; N � 1, asXi = e� 12~bi�~'; (2.5)where the N vetors ~bi are (up to a fator of 2) the weight vetors of the fundamentalrepresentation of SL(N;R) and they satisfy~bi �~bj = 8Æij � 8N ; NXi=1 ~bi = 0; NXi=1 biIbiJ = 8ÆIJ : (2.6)After diagonalizing the matrix M and dropping the kineti terms for the originalo�-diagonal salars whih deouple, the Lagrangian (2.1) beomese�1LD = 12�2DR� 14�2D N�1XI=1 ��'I��'I � V; (2.7)where the potential is now given byV = �(D � 3)216�2Dl2D  ( NXi=1 Xi)2 � 2 NXi=1 X2i ! : (2.8)7Note that the AdSD radius, lD, is related to the oupling g in [14, 15℄ by lD = (D � 3)=2g.{ 6 {



This Lagrangian, whih is a speial ase of (1.2), falls into the framework of fake super-gravity desribed in the previous setion. In order to make ontat with our notation inthe previous setion we also de�ne the resaled salars�I � 1p2�D'I ; (2.9)whih have a anonially normalized kineti term.The equations of motion for this gravity-salar system an be written asR�� = 14 NXi=1 X�2i ��Xi��Xi + 2�2DD � 2V g�� ;� logXi = (D � 3)22l2D 0�2X2i �Xi NXj=1Xj � 2N NXj=1X2j + 1N ( NXj=1Xj)21A : (2.10)The seond of these equations an be derived by starting from the equation of motion forthe independent salar �elds 'I ,�'I = (D � 3)28l2D NXi=1 biIXi( NXj=1Xj � 2Xi); (2.11)notiing that the last equation in (2.6) implies that�'I = �14 NXi=1 biI logXi; (2.12)and adding a term to ensure that the sum over i is zero, in agreement with the onstraint(2.4).The gravity-salar theory we have just disussed was obtained as a onsistent trun-ation of gauged maximal supergravity in D dimensions. However, the maximal gaugedsupergravities in D = 4 and D = 7 are known to arise themselves as onsistent trunationsto the massless �elds of the Kaluza-Klein ompati�ation of eleven-dimensional super-gravity on S7 and S4 respetively [20, 21, 22℄. Moreover, the gauged maximal supergravityin D = 5 is also believed to arise as an S5 redution of Type IIB supergravity, althougha full proof is still laking. It is therefore expeted that the above gravity-salar theoryshould also be obtainable diretly as a onsistent trunation of eleven-dimensional or TypeIIB supergravity. Indeed, the full non-linear ansatz for this redution, valid for any D,was given in [14℄ and it was later proved in [15℄ that this is a onsistent trunation ofthe higher-dimensional theory, that is, the equations of motion of the higher dimensionaltheory with the ansatz (2.13) are satis�ed if and only if the equations of motion for thegravity-salar system (2.10) are satis�ed in D dimensions.The redution ansatz given in [14℄ isdŝ2 = � 2D�1ds2D + 4l2D(D � 3)2��(D�3D�1) NXi=1 X�1i d�2i ; (2.13)F̂ (D) = (D � 3)2lD NXi=1(2X2i �2i ��Xi)�(D) � lD(D � 3) NXi=1 X�1i �D dXi ^ d(�2i );
{ 7 {



where � = NXi=1 Xi�2i ; (2.14)and �i stand for a set of N diretion osines satisfyingNXi=1 �2i = 1: (2.15)Moreover, �(D) denotes the volume form of the metri ds2D, while the �eld strength F̂ (D)is identi�ed with the M-theory four-form for D = 4, its Hodge dual for D = 7, and withthe self-dual �ve-form of IIB supergravity for D = 5.3. All asymptotially AdS Poinar�e domain walls of the SL(N;R)=SO(N)setorFrom the disussion of the previous setion we know that any solution of the equations ofmotion (2.10) in D dimensions an be uplifted to solutions of either eleven-dimensionalor Type IIB supergravity. In partiular, any Poinar�e domain wall of the form (1.1)orresponds to a solution of the higher-dimensional theory. Indeed, all supersymmetriasymptotially AdSD domain walls in D = 4; 5; 7 have been onstruted [18, 14, 5℄.8These domain walls solve the �rst order equations (1.7) with the true superpotential ofthe SL(N;R)=SO(N) setor of gauged maximal supergravity, whih takes the formWo = �(D � 3)4�2DlD NXi=1 Xi: (3.1)It an be easily veri�ed that this superpotential solves (1.8) with the salar potential (2.8).The uplifted solutions are asymptotially AdS4�S7, AdS5�S5 or AdS7�S4 and orrespondto ontinuous distributions of parallel M2-, D3- or M5-branes respetively. Generially,they ontain naked null singularities, orresponding to the loation of the ontinuous branedistribution.It was argued in [18, 14, 5℄, following [16, 17℄, that these supersymmetri solutionsdesribe the RG ow of the dual CFTs due to the VEV of the salar operators dual tothe SL(N;R)=SO(N) salars, with the VEVs de�ned by the brane distribution. Althoughin D = 5; 7 this interpretation is unique due to the unambiguous identi�ation of theSL(N;R)=SO(N) salars as dual to operators of dimension 2 and 4 respetively, in D = 4there is an ambiguity in the dimension of the operators dual to the SL(8;R)=SO(8) salars.This beause, as we will explain in detail below, the salar potential (2.8) implies thatthe SL(N;R)=SO(N) salars, exept for D = 5 in whih ase the mass saturates theBreitenlohner-Freedman (BF) bound [23℄, have a mass that allows their assoiation withoperators of two possible dimensions instead of one [24℄. ForD = 7, however, this ambiguityis removed by symmetry. Namely, only the salars of dimension 4 appear in the massless8The ase D = 6, orresponding to an S4 redution of massive Type IIA was also onsidered in [14℄.{ 8 {



N = 2 supermultiplet. For D = 4 the 35 dimension 1 salars and the 35 dimension 2salars both appear in the massless N = 8 supermultiplet on an equal footing. Therefore,although the interpretation of these solutions in terms of VEVs for the dual operatorsremains orret, for D = 4 there is a seond possible interpretation in terms of deformationsof the CFT Lagrangian. We will analyze this issue arefully below, when we ompute inomplete generality the VEVs of the possible dual operators.In this setion, however, we will try to systematially �nd all asymptotially AdSPoinar�e domain wall solutions of the SL(N;R)=SO(N) setor, and in partiular, all non-supersymmetri ones. In other words, we will determine the most general fake superpoten-tial W (�) satisfying (1.8) with the salar potential given by (2.8).9 We will �nd that forD = 5 and D = 7, there are no analyti non-supersymmetri asymptotially AdS Poinar�edomain walls. For D = 4, however, we will show that there exists a ontinuum of analytinon-supersymmetri domain walls, ontinuously onneted to the supersymmetri ones, aswell as, a number of isolated non-supersymmetri domain walls.Equation (1.8) is a �rst order non-linear PDE in N � 1 variables for the fake super-potential W (�), and as suh, solving this equation in full generality for W (�) seems arather formidable task. However, not all solutions (1.8) are physially admissible, if oneis interested in asymptotially AdS domain walls. In partiular, the requirement that thedomain walls de�ned by W (�) via (1.7) asymptote to AdS spae as �I ! 0 implies thatW (0) = �(d� 1)�2DlD : (3.2)In addition we will assume that W (�) admits a Taylor expansion around the maximallysymmetri �xed point of V (�) orresponding to �I = 0, namelyW (�) = 1Xn=0W (n)I1:::In�I1 � � ��In ; (3.3)where all oeÆients are ompletely symmetri in their indies, and W (0) =W (0) is givenby (3.2). Within this framework, analyzing (1.8) in full generality is now tratable.We start by Taylor expanding the salar potential (2.8) around �I = 0. We �ndV = 1Xn=0 V (n)I1:::In�I1 � � ��In (3.4)= �d(d� 1)2�2Dl2D + 12m2I�I�I � (d� 2)(d � 3)p2�D48l2D NXi=1 biIbiJbiK�I�J�K +O(�4);where m2I l2D = �I(�I � d) = 2(2 � d). Inserting the expansions for V (�) and W (�) in(1.8) and mathing powers one obtains the following reursion relations for the oeÆients9As we have mentioned already, the fake superpotential an in general be matrix valued, but we willonly analyze the ase of a salar fake superpotential here.{ 9 {



W (n): nXm=0 �(m+ 1)(n�m+ 1)W (m+1)(I1:::ImJW (n�m+1)JIm+1:::In)s� d�2Dd� 1W (m)(I1:::ImW (n�m)Im+1:::In)s� = 2V (n); (3.5)where (: : :)s denotes symmetrization with weight 1. For n = 0 the reursion relations giveW (1)JW (1)J � d�2Dd� 1W (0)2 = 2V (0): (3.6)Using the values for W (0) and V (0) from (3.2) and (3.4) we dedue thatW (1)I = 0: (3.7)Sine V (1)I = 0, whih is guaranteed on general grounds by the requirement that AdS is a�xed point of the salar potential, the equation for n = 1, whih reads�2W (2)IJ + dlD ÆIJ�W (1)J = V (1)I ; (3.8)is automatially satis�ed. Using the fat that W (1)I = 0, the next two equations now takethe form n = 2 : �2W (2)IJ + dlD ÆIJ�W (2)JK = V (2)IK ; (3.9)n = 3 : �6W (2)IJ + dlD ÆIJ�W (3)JKL = V (3)IKL; (3.10)while for higher n the reursion relations give�2nW (2)IJ + dlD ÆIJ�W (n)JK1:::Kn�1 + : : : = V (n)IK1:::Kn�1 ; (3.11)where the dots stand for terms involving the oeÆients W (m) withm < n. It follows that,given the symmetri matrix W (2)IJ , the reursion relations uniquely determine all higheroeÆients of W (�), unless the matrix�2nW (2)IJ + dlD ÆIJ� ; (3.12)has some zero eigenvalues for some n > 2. To address the question if and when this anhappen we �rst have to solve equation (3.9) whih determines W (2)IJ .From (3.4) we see that V (2)IJ = � (d�2)l2D ÆIJ . Sine W (2)IJ is a symmetri matrix it anbe diagonalized by an orthogonal matrix RIJ . Suh a (rigid) rotation in the spae of theN � 1 independent salars would leave the form of the potential invariant sine it simplyrotates the weights bi, while preserving the relations (2.6). Hene, we an take W (2)IJ to{ 10 {



be diagonal: W (2)IJ = wIÆIJ . Equation (3.9) then redues to N � 1 deoupled equationsfor the diagonal omponents, wI , of W (2)IJ , namely(2wI + d=lD)wI + (d� 2)=l2D = 0; I = 1; : : : ; N � 1; (3.13)where there is no summation implied in this equation. The roots of this equation arewI = w�, where w+ = �1=lD, w� = �(d � 2)=2lD , and hene, for d 6= 4, there are 2N�1independent solutions W (2) = diag (w�; : : : ; w�), orresponding to the possible distribu-tions of w� along the diagonal. For d = 4 however, w+ and w� oinide and there is aunique solution for W (2). It follows that the matrix (3.12) is diagonal with diagonal values2nw� + d=lD. Now, 2nw+ + d=lD = (d� 2n)=lD an vanish if d is even, i.e. d = 4; 6 sinewe are interested in the ases d = 3; 4; 6. Similarly, 2nw� + d=lD = (d � n(d� 2))=lD anvanish if d=(d�2) is integer, i.e. for d = 3; 4. However, in either ase, d = 4 requires n = 2,whih is exluded sine we have already determined W (2). It follows that for d = 4, thetrue superpotentialWo given in (3.1) is the unique (physial) solution of (1.8). For d = 3; 6,however, we have seen that there are 2N�1 hoies for W (2) and for eah of them thereis possibly some freedom in the value of W (3) due to the vanishing of some of the eigen-values of the matrix (3.12), but all higher oeÆients in W (�) are ompletely determinedone a hoie for W (2) and W (3) has been made. Equation (3.10) however imposes furtheronstraints. Notiing from (3.4) that V (3) vanishes for d = 3 but not for d > 3, equation(3.10) implies that for d = 6, the matrix (3.12) must have no zero eigenvalues and thereforeboth W (2) = diag (w�; : : : ; w�) and W (3) are uniquely determined. So, as for d = 4, Wo in(3.1) is the unique solution of (1.8). For d = 3, however, V (3) vanishes identially and soeither the matrix (3.12) vanishes identially or W (3) vanishes identially. In the �rst aseW (2) = diag (w�; : : : ; w�) and W (3) is arbitrary, while in the seond ase W (3) = 0 andW (2) an be any of the 27 possible diagonal matries. We onlude that d = 3 is the onlyase whih allows additional Poinar�e domain wall solutions beyond the supersymmetriones orresponding to the superpotential (3.1). We will now examine these solutions morelosely and onstrut expliitly as many of these as possible.4. The non-supersymmetri Poinar�e domain walls in D = 4As we have just shown, only in four dimensions (d = 3) are there physially aeptable so-lutionsW (�) to (1.8), in addition to the supersymmetri solution (3.1). These solutions fallinto two general lasses. The �rst ase is when W (3) = 0 and W (2) = diag (w�; : : : ; w�),where all signs are hosen independently. There are therefore 27 suh solutions orre-sponding to the di�erent hoies of the signs in W (2). However, sine all seven salars areequivalent, only 8 solutions are distint, namely the ones orresponding to having n + signsand 7 � n � signs, with n = 0; : : : ; 7. However, the solution where all signs are minus isovered by the seond ase, where W (2) = diag (w�; : : : ; w�) and W (3) is arbitrary. Thereare therefore only 7 distint solutions in the �rst lass. For the seond lass there is aunique hoie for W (2), but W (3) is ompletely arbitrary.10 Sine W (3) is a ompletely10Note however that restritions on W (3) an arise as non-perturbative (in the salar �elds) e�ets. Wewill see how this happens in an exatly solvable ase below.{ 11 {



symmetri tensor of rank three, it has 13!(N � 1)N(N + 1) = 84 independent omponents.There is therefore an 84-parameter family of solutions in this ase. Note that this familyis ontinuously onneted to the supersymmetri solution orresponding to (3.1) sine Woalso has W (2) = diag (w�; : : : ; w�). (See (6.10) below for the Taylor expansion of Wo.)All these solutions an be onstruted systematially using the reursion relations (3.5).However, obtaining the solutions in losed form by summing up the Taylor expansion isnot very easy, if at all possible. We an, however, obtain in losed form a sublass of thesesolutions by going bak to equation (1.8) and try to solve it exatly by �rst reduing thenumber of dynamial salar �elds in a way that is onsistent with the equations of motion.A systemati way for doing this is setting some of the eight salar �elds Xi equal to eahother in all possible ways. Note that this is onsistent with the equations of motion (2.10).The independent ways to set a number of the salars Xi equal is to onsider all possiblen-partitions of 8. Eah n-partition orresponds to an independent way to keep n � 1dynamial salar �elds. Table 1 lists all suh partitions, together with the orrespondingisometry group [5℄. We will attempt to �nd a losed form for the above solutions onlyn partition of 8 salar �elds isometry group1 8 0 SO(8)2 1+7 1 SO(7)2+6 SO(2) � SO(6)3+5 SO(3) � SO(5)4+4 SO(4) � SO(4)3 1+1+6 2 SO(6)1+2+5 SO(2) � SO(5)1+3+4 SO(3) � SO(4)2+2+4 SO(2) � SO(2) � SO(4)2+3+3 SO(2) � SO(3) � SO(3)4 1+1+1+5 3 SO(5)1+1+2+4 SO(2) � SO(4)1+1+3+3 SO(3) � SO(3)1+2+2+3 SO(2) � SO(2) � SO(3)2+2+2+2 SO(2) � SO(2) � SO(2)� SO(2)5 1+1+1+1+4 4 SO(4)1+1+1+2+3 SO(2) � SO(3)1+1+2+2+2 SO(2) � SO(2) � SO(2)6 1+1+1+1+1+3 5 SO(3)1+1+1+1+2+2 SO(2) � SO(2)7 1+1+1+1+1+1+1+2 6 SO(2)8 1+1+1+1+1+1+1+1+1 7 -Table 1: The possible ways to redue the number of dynamial salar �elds Xi, by setting anumber of these equal to eah other, orrespond to the di�erent partitions of 8. The resultingisometry group is also shown.
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for the ases with a single dynamial �eld, however. As we will see, even this seeminglyinnouous ase, requires onsiderable e�ort.4.1 Domain walls with a single salarThe four distint one-salar trunations in Table 1 are obtained by setting X1 = : : : =Xk � X, Xk+1 = : : : = X8 = X�k=(8�k), where k = 4; 5; 6; 7. In this setion we will keep kas a parameter, however, so that we an disuss all four ases simultaneously. The salarpotential (2.8), whih for general k takes the form11V = � 116�2l2 �k(k � 2)X2 + 2k(8� k)X�2(k�4)=(8�k) + (8� k)(6 � k)X�2k=(8�k)� ;(4.1)is shown expliitly for eah of the four ases in Table 2. It is useful to parameterize thek isometry group �16�2l2V �xed points7 SO(7) 35X2 + 14X�6 �X�14 X = 1; 1=51=86 SO(2)� SO(6) 24 �X2 +X�2� X = 1 (double)5 SO(3)� SO(5) 3 �5X2 +X�10=3 + 10X�2=3� X = 14 SO(4)� SO(4) 8 �X2 +X�2 + 4� X = 1 (double)Table 2: The salar potential for the four possible one-salar trunations. Note that the �xedpoint X = 1, ommon to all potentials, orresponds to the AdS �xed point at � = 0.single salar �eld X in terms of a salar with a anonial kineti term asX = eq 8�k2k ��: (4.2)Equation then (1.8) takes the formV = �24 �(8� k)k (X�XW )2 � 3W 2� : (4.3)Moreover, the superpotential (3.1) beomesWo = � 14�2l �kX + (8� k)X� k(8�k)� ; (4.4)and it is easily seen to be a solution of (4.3).We have seen above that there exists a one-parameter family of funtions W (�;�)whih ontains Wo(�) as a speial ase. In partiular, the Taylor expansions of W (�;�)around � = 0, for a generi value of the free parameter �, and of Wo(�) have the same11From now on we drop the subsript D in the gravitational onstant � and the AdS radius l sine wewill always work in D = 4. { 13 {



quadrati term, orresponding to w� in the notation of the previous setion.12 In addition,however, there exists another isolated solution, fWo(�), whose quadrati term orrespondsto w+ and whose ubi term vanishes. The Taylor expansions of W (�;�) and fWo(�)around � = 0 are therefore not ontinuously onneted. This though does not exlude thepossibility that, non-perturbatively in �, W (�;�) and fWo(�) are ontinuously onneted.Remarkably, we will see below in an example where the exat one-parameter familyW (�;�)an be obtained exatly that W (�;�) interpolates between the supersymmetri solutionWo(�) and fWo(�).In the next setion we will address systematially the problem of solving equation(4.3) exatly. For the moment, however, we an use the fat that W (�;�) is ontinuouslyonneted to Wo(�) in order to obtain W (�;�) in an expansion in the free parameter �,for general k. Obviously, this approah an provide no information on fWo(�). We start bywriting W (�;�) in a formal asymptoti expansion as13W (�;�) =Wo(�) + 1Xn=1� �132�2l�n (�� �o)nW (n)(�); (4.5)where, �o = �(8 � k)(k � 4)k=24 and W (�;�o) � Wo(�). Inserting this expansion into(4.3) one obtains an in�nite set of linear equations for the funtions W (n)(�), namely�X�XWoX�X � 3k(8� k)Wo�W (n)+12 n�1Xm=1�X�XW (m)X�XW (n�m) � 3k(8� k)W (m)W (n�m)� = 0; (4.6)whih an be solved iteratively. For n = 1, this equation is homogeneous and its solutionis W (1) =  X 8(8�k) � 1X !3 : (4.7)Note that, as expeted from the general analysis above, W (1) = O(�3) as �! 0. For n > 1equation (4.6) is non-homogeneous but it an be solved with the help of an integratingfator R = exp�� 3k(8� k) Z dXX2 Wo�XWo� = 1W (1) : (4.8)The solution then takes the formW (n) =W (1) Z dXX Qn(X)W (1)(X) + nW (1); (4.9)where n are onstants andQn = � 12X�XWo n�1Xm=1�X�XW (m)X�XW (n�m) � 3k(8� k)W (m)W (n�m)� : (4.10)12Reall that the parameter � �rst enters in the ubi term in the Taylor expansion around � = 0.13The normalization of the free parameter is hosen so that it mathes the natural free parameter of theexat solution that we will present in the next setion for k = 6.{ 14 {



In partiular,W (2) = 6�2l X 8(8�k) � 1X !3� 1(8� k)X 4(k�2)(8�k) + 2(k � 4)(X 4(k�4)(8�k) � 1) + 1kX 4(k�6)(8�k) + 2(k)� ;(4.11)where the term involving k�4 in the denominator is understood as the limit k ! 4, givinglogX, for the ase k = 4. Moreover, the onstant 2(k) is not arbitrary. It is uniquely�xed by the requirement that W (2) does not ontribute to the ubi term in � of W (�;�),whih is neessary in order to identify (� � �o) (as opposed to some other funtion of �)with the free parameter of W . 2(k) = � 8k(8� k) : (4.12)The same argument determines all onstants n in Qn. Putting everything together, tothis order we haveW (�;�) = � 14�2l �kX + (8� k)X� k(8�k)� (4.13)� 132�2l (�� �o) X 8(8�k) � 1X !3�1� 316(�� �o)� 1(8� k)X 4(k�2)(8�k)+ 2(k � 4)(X 4(k�4)(8�k) � 1) + 1kX 4(k�6)(8�k) � 8k(8� k)��+O �(�� �o)3� :Given this perturbative (in ���o) fake superpotential, we an immediately obtain theorresponding domain wall solutions via the �rst order equations (1.7). We give expliitlythe form of these bakgrounds to �rst order in � � �o in Appendix A, sine we will needthem for the omputation of the one- and two-point funtions of the �eld theory duals ofthese domain walls.4.2 Exat losed form solutionsHaving obtained a perturbative solution for W (�;�) for all possible values of k, let us nowtry to solve (4.3) exatly. This should determine not only the fullW (�;�), but also fWo(�).It was observed in [12℄ that for a single salar �eld, �, equation (1.8), with an arbitrarypotential, an be reast in a standard form by means of the �eld rede�nitions =r d�2d� 1�; y = oth(u); W = lv osh(u); (4.14)where v = ���2(d� 1)d�2l2 V�1=2 : (4.15)In terms of these variables, equation (1.8) takes the form14y0( ) = �v0v y � 1� (y2 � 1); (4.16)14Note that the obvious solutions y = �1 of this equation are rejeted sine, via (4.14), they orrespondto u!1 and hene W !1. { 15 {



where the prime denotes derivative with respet to  . This equation is a speial ase ofAbel's equation of the �rst kind [25℄y0 = f3( )y3 + f2( )y2 + f1( )y + f0( ); (4.17)where fi( ) are arbitrary funtions. Abel's equation an in turn be ast in the anonialform z0 = ~f3( )z3 + ~f1( )z + ~f0( ); (4.18)by means of the transformation y = z � f23f3 : (4.19)Clearly, equation (4.18) an be integrated diretly if either ~f3 or ~f0 vanish. Moreover, itan also be integrated diretly if `Abel's invariant'I � �� ~f0 ~f 03 � ~f 00 ~f3 + 3 ~f0 ~f3 ~f1�327 ~f43 ~f50 ; (4.20)is a onstant [25℄. If it is not a onstant, however, no general solution of (4.18) is known. Inthat ase one an only hope that the equation at hand falls into one of the known integrablelasses of Abel's equation, eah of whih has a very partiular way of solution that is notappliable to other lasses. Some reent investigations and overviews of Abel's equationand its known integrable lasses an be found in [26, 25℄.In our ase, however, the funtions fi( ) are not ompletely arbitrary sine they areall related to the salar potential. Spei�ally, from (4.16) we readf3 = �f1 = q0; f2 = �f0 = �1; (4.21)where q � log jvj. Moreover, one an easily ompute the tilded oeÆients orrespondingto the transformed equation (4.18):~f3 = q0; ~f1 = � 13q0 (1 + 3q02); ~f0 = 13q02 (q00 + 2q02 � 2=9): (4.22)It follows that for a generi potential, and hene a generi q, Abel's invariant is not au-tomatially onstant. Requiring that it be a onstant, leads to a seond order, non-lineardi�erential equation for q0, whih seems more diÆult to solve than the original �rst orderequation. However, as we have already pointed out, requiring that either ~f3 or ~f0 vanish,also leads to a solvable equation. These onditions lead to di�erential equations for thepotential, whih are easily solvable. In partiular, ~f3 = q0 = 0 gives the onstant potentialV = �d(d� 1)2�2l2 ; (4.23)orresponding to exat AdS spae. More interesting is the ondition ~f0 = 13q02 (q00 + 2q02 �2=9) = 0, whih leads to the potentialV = �d(d� 1)2�2l2 osh�2 3 � : (4.24)
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The observation that this potential leads to a soluble Abel's equation was the only motiva-tion for onsidering this potential in [12℄. Curiously, however, noting from (4.2) and (4.14)that, for d = 3, X and  are related byX = eq8�k3k  ; (4.25)the potential (4.24) is seen to be idential to the potential (4.1) for k = 6. Hene, at leastfor the ase k = 6, we are able to solve (4.3) exatly. However, the potential (4.1) withgeneri k givesq0 = v0v =rk(8� k)3  (k � 2)e16 =p3k(8�k) � 2(k � 4)e8 =p3k(8�k) � (6� k)(k � 2)e16 =p3k(8�k) + 2(8 � k)e8 =p3k(8�k) + (6� k)(8 � k)! :(4.26)One an now easily hek that, exept for k = 6 in whih ase ~f0 vanishes, Abel's invariantis not onstant for any value of k. As we disussed already, this makes it muh harder tosolve (4.16) for the potential (4.1) with k 6= 6.To obtain the exat solution for the ase k = 6, we start by inserting the potential(4.24) in equation (4.16). The resulting equation takes the form21� s2 dsd� + 11� �2 ��s � 3� = 0; (4.27)where s = 1y ; � = tanh�2 3 � : (4.28)The general solution of this equation is [12℄s = �1� (1� �2)(1 + 2��+ �2)�1=2 ; (4.29)where � is an integration onstant. Sine the onformal boundary orresponds to � = 0,we an take � � 0. The hoie � � 0 is also possible but it is equivalent. The value of theintegration onstant � is then restrited by the requirement that 1+ 2��+ �2 � 0. This isguaranteed provided � � �1: (4.30)The fake superpotential is now obtained from (4.14) asW (�;�) = � 2�2l 1(1� �2)1=4 1p1� s2 : (4.31)Expanding this for small  , we see that the solution with the negative sign in (4.29) alwaysontains a linear term in  and it is therefore rejeted. For the positive sign solution we�nd W (�;�) = � 2�2l �1 + 16 2 + 127� 3 +O( 4)� ; (4.32)whih is preisely of the required form. We therefore expet that this is the full one-parameter family of fake superpotentials whose existene we predited above on general{ 17 {



grounds and whih we omputed perturbatively in the free parameter. In partiular, itshould ontain the true superpotential (4.4), whih for k = 6 beomesWo(�) = � 12�2l �3e =3 + e� � : (4.33)Indeed, this is the ase as it is easy to hek that for � = �1, W (�;�) redues to Wo(�):W (�;�1) =Wo(�): (4.34)Sine W (�;�) is the most general solution, however, one wonders where is the solutionfWo(�) whih we have predited and whose expansion around � = 0 should have a di�erentquadrati term from that of W (�;�). The answer is that fWo(�) is obtained from W (�;�)by sending � to in�nity:fWo(�) = lim�!1W (�;�) = � 2�2l osh3=2�2 3 � : (4.35)Expanding this for small  we �ndfWo(�) = � 2�2l �1 + 13 2 +O( 4)� : (4.36)This has preisely the desired form, namely a quadrati term orresponding to w+ anda vanishing ubi term. The fake superpotential W (�;�), therefore, interpolates betweenthe supersymmetri superpotential Wo(�) =W (�;�1) and fWo(�) =W (�;1).5. Exat non-supersymmetri membrane owsAll non-supersymmetri domain wall solutions we have obtained above in D = 4, in losedform or not, an in priniple be uplifted to asymptotially AdS4 �S7 non-supersymmetrisolutions of eleven-dimensional supergravity using the ansatz (2.13). We will only upliftexpliitly the losed form solutions we found in the previous setion, however. To do thiswe �rst need to determine the four-dimensional domain wall metris orresponding to theexat fake superpotentials for k = 6.Integrating the �rst order equations (1.7) using the fake superpotential (4.31) we �ndthat the full one-parameter family of Poinar�e domain walls takes the formds2� = 12�2 �1 + ��+p1 + 2��+ �2� l2d�2p1� �2(1 + 2��+ �2) + �2p1� �2 �ijdxidxj! ;� = r 32�2 tanh�1 �: (5.1)The integration onstant �2 an be absorbed by a resaling of the transverse oordinates xi,but we have introdued it for reasons that will beome lear soon. Namely, for any �nitevalue of �, and taking �2 = 1, the metri (5.1) is asymptotially AdS with anonial radial{ 18 {



oordinate � � e�r=l as �! 0. In partiular, the supersymmetri metri orresponding to� = �1 reads ds2�1 = 1�2 � l2d�2p1 + �(1� �)3=2 +p1 + �(1� �)3=2�ijdxidxj� : (5.2)In order for the metri (5.1) to have a well-de�ned limit as �!1, however, we must take�2 � onst:=� as �!1. Taking �2 � 2=� and evaluating the limit �!1, (5.1) beomesds21 = l2d�24�2p1� �2 + p1� �2� �ijdxidxj : (5.3)This is again an asymptotially AdS metri, but with anonial radial oordinate p� �e�r=l.Note that these metris are non-singular for 0 � � < 1. There is a singularity at� = 1, however, whih is in fat a urvature singularity from the four-dimensional pointof view and the salar �eld also diverges at this point. In fat, the urvature singularityof the supersymmetri metri, for whih the Rii salar behaves like R4 � (1 � �)�1=2as � ! 1, is milder that the urvature singularity of the non-supersymmetri metris, forwhih R4 � (1� �)�3=2 as �! 1. Moreover, the singularity is null for the supersymmetriase but timelike for the non-supersymmetri metri [11℄. Nevertheless, in both ases thesingularity is `good' aording to the riterion of [11℄ sine the salar potential (4.24) isbounded from above, not only on-shell but even o�-shell. Aordingly, in both ases, thepresene of the singularity signals some genuine IR phenomenon in the dual �eld theory.We an now use the ansatz (2.13) to uplift the four-dimensional solution (5.1) to elevendimensions. It is onvenient, however, to �rst use a redued ansatz obtained from (2.13)by setting the 8 salars Xi pairwise equal [14℄:X2a�1 = X2a � ~Xa; a = 1; 2; 3; 4; (5.4)so that ~X1 ~X2 ~X3 ~X4 = 1. This redution orresponds to the salar setor of the trunationof N = 8 supergravity to the maximal abelian subgroup, U(1)4, of its gauge group SO(8)[27, 28℄.15 Note, that this redution does not inlude all possible one-salar trunationsdisussed in Setion 4.1 sine the ases k = 3; 5 are not onsistent with this redution. Itdoes over however the ases k = 4 and k = 6, whih is the ase we are interested here.The redued ansatz readsdŝ211 = ~�2=3ds24 + 4l2 ~��1=3 4Xa=1 ~X�1a �d~�2a + ~�2ad�2a� ; (5.5)F̂ (4) = 1l 4Xa=1 � ~X2a ~�2a � ~� ~Xa� �(4) � l 4Xa=1 ~X�1a � d ~Xa ^ d(~�2a); (5.6)where ~� = P4a=1 ~Xa~�2a and the quantities ~�a and the four angles �a, 0 � �a � 2�, arerelated to the diretion osines �i in (2.13) by�2a�1 = ~�a os�a; �2a = ~�a sin�a; a = 1; 2; 3; 4; (5.7)15The U(1) gauge �elds and the three axions are set to zero here, however.{ 19 {



so that P4a=1 ~�2a =P8i=1 �2i = 1. The four ~�a an be parameterized in terms of the angleson a three-sphere as~�1 = os � os� os!; ~�2 = os � os� sin!; ~�3 = os � sin�; ~�4 = sin �; (5.8)0 � �; � � �, 0 � ! � 2�. Finally, the four salars ~Xa an be parameterized in terms ofthree dilatoni salars ~~' = ( ~'1; ~'2; ~'3):~Xa = e� 12~~b�~~'; (5.9)where ~~bi satisfy ~~ba �~~bb = 4Æab � 1: (5.10)A onvenient hoie for ~~ba is~~b1 = (1;�1;�1); ~~b2 = (�1; 1;�1); ~~b3 = (�1;�1; 1); ~~b4 = (1; 1; 1): (5.11)The k = 6 solution now orresponds to setting ~X1 = ~X2 = ~X3 � X, ~X4 = X�3.Realling from (4.25) that X = e =3 and the relation between  and � from (4.28), wededue that X = �1 + �1� ��1=4 : (5.12)Hene, ~� = �1 + �1� ��1=4 os2 � +�1� �1 + ��3=4 sin2 �: (5.13)Putting everything together, we have the following two solutions of eleven-dimensionalsupergravitydŝ211 = ~�2=3ds24 + 4l2 ~��1=3(�1 + �1� ��3=4 ��os2 � +�1� �1 + �� sin2 ��d�2 + sin2 �d�24�+�1� �1 + ��1=4 os2 �d
25) ; (5.14)where ds24 is given either by the �nite-� metri (5.1) or by the � ! 1 metri (5.3).Correspondingly, the four-form �eld strength is given byF̂�(4) = (1 + ��+p1 + 2�� + �2)2�2p1 + 2��+ �2�(1 + �)2�2 �2 os2 � +�1� �1 + �� (1 + 2 sin2 �)� (1 + ��+p1 + 2��+ �2)d�+4(1 + 2��+ �2) os � sin �d�� ^ ��(3); (5.15)F̂1(4) = 1p� �(1 + �)2�2 �2 os2 � +�1� �1 + �� (1 + 2 sin2 �)� d�+ 8 os � sin �d�� ^ ��(3):(5.16){ 20 {



It is not diÆult to hek that these satisfy dF̂ (4) = 0 and d�̂F̂ (4) = 0. Of ourse, (5.14)and (5.15)-(5.16) also satisfy Einstein's equation in eleven dimensions, as is guaranteed bythe fat that the four-dimensional theory is a onsistent trunation of eleven-dimensionalsupergravity [15℄. We have not heked this expliitly, however.A few omments are in order here. First, note that the ompat part the metri (5.14)does not depend on the parameter � and hene it desribes the same inhomogeneous de-formation of S7 as the supersymmetri solution with � = �1. Namely, at � = 0 theompat part of the metri is exatly the metri on S7. As one moves away from � = 0the S7 is deformed to a warped produt of an S5 of dereasing radius and a squashedS2 with inreasing radius. At � = 1, the S5 shrinks to zero size, while the S2 beomestotally squashed, but with in�nite radius. The supersymmetri solution orresponds to aontinuous non-uniform distribution of M2-branes on a dis of �nite radius on the equa-torial plane of the squashed S2 [16, 14℄. It would be very interesting to �nd an analogousinterpretation for the non-supersymmetri solutions. As the four-dimensional solutions,the uplifted metris have a urvature singularity at � = 1, but now the eleven-dimensionalRii salar behaves like R̂ = 16 F̂ (4)2 � (1 � �)�1=3 as � ! 1, independently of the valueof �. Of ourse, the singularity remains null for the supersymmetri ase and timelike forthe non-supersymmetri one sine the uplift does not alter the ausal struture. However,at least for the supersymmetri solution, the uplift helps identify the ause of the singu-larity, namely the fat that the distribution of the M2-branes is ontinuous [16℄, and as aresult understand how M-theory resolves the singularity. A similar interpretation for thenon-supersymmetri solution would therefore larify the nature of the singularity. Anotherimportant di�erene between the supersymmetri and non-supersymmetri solutions is thatthe part of the metri orthogonal to the squashed S2 beomes onformal to AdS4 � S5 as� ! 0 for the supersymmetri ase, while for the non-supersymmetri ase it beomesonformal to R4 � S5 as �! 0. Moreover, F̂ (4) vanishes at � = 0 for the supersymmetriase, while it is �nite but non-zero for the non-supersymmetri one.Interestingly, the same salar potential (4.24), orresponding to k = 6, led to theMTZ blak hole in four dimensions [19℄. Sine we know how to uplift solutions of thefour-dimensional salar-gravity system with this potential to eleven dimensions, we �ndit tempting to present the eleven-dimensional blak hole metri expliitly, whih we do inAppendix B.6. Holographi one-point funtionsThe asymptotially AdS domain walls (1.1) desribe, via the AdS/CFT duality, the RGow of the �eld theory living on the onformal boundary. Suh an RG ow an resultfrom a deformation of the Lagrangian of the UV CFT by a relevant operator, or from anon-onformal vauum, desribed by the VEVs of ertain operators. To determine whihof these possibilities is realized in a given domain wall bakground, one should evaluateholographially the one-point funtions of the operators dual to the non-trivial salar �elds,as well as the one-point funtion of the stress tensor.{ 21 {



One, therefore, �rst needs to identify the gauge-invariant operator O� dual to a givensalar �eld. Reall that the mass, m, of a salar �eld is related to the dimension, �, of thedual operator via m2l2 = �(�� d): (6.1)Sine this equation has two roots, ��, the question arises as to whih of the two is thedimension of the dual operator. It was argued in [24℄ that while for m2l2 > �(d=2)2 + 1the dual operator must unambiguously have dimension �+, for��d2�2 � m2l2 � ��d2�2 + 1; (6.2)both �� are possible dimensions for the dual operator. More spei�ally, there are twopossible quantizations of the salar �eld, orresponding to the two dimensions �� of thedual operator [23℄. The resulting generating funtionals of orrelation funtions of theorresponding operators are then related by a Legendre transformation as we will reviewbelow.An important property of the SL(N;R)=SO(N) salars is that their mass falls preiselyin the range (6.2) allowing two quantizations. Namely, reall from (3.4) that the mass ofthe salar �elds of the SL(N;R)=SO(N) setor ism2Il2D = 2(2� d): (6.3)With this mass, the ondition (6.2) translates into162 � d � 6; (6.4)whih inludes all ases for d we are interested in, namely d = 3; 4; 6. The two possibledimensions are �� = d2 � 12 jd� 4j; (6.5)whih oinide for d = 4. In this ase the mass saturates the BF bound m2l2 � �(d=2)2,and there is a unique quantization [24℄. For d = 3 or d = 6, however, there are two possiblequantizations and onsequently two possibilities for the dimension of the dual operators.As we have disussed, however, for d = 6 this ambiguity is removed by symmetry, whihdetermines that the dual operators have dimension �+ = 4. But we are interested in thease d = 3 here, whih is the only ase admitting non-supersymmetri fake superpotentials,and sine there is an ambiguity in this ase we will analyze the two possible quantizationsseparately. We will keep the analysis and the notation as general as possible, though, sothat the analysis is appliable to other ases too.Let us start by realling that the asymptoti form of the potential (3.4) implies that ageneri solution to the bulk salar �eld equation of motion takes the form�(r; x) � e���r=l(��(x) + � � � ) + e��+r=l(�+(x) + � � � ): (6.6)16Curiously, this is preisely the range of dimensions for whih there exist superonformal quantum �eldtheories. { 22 {



Sine we are exluding the ase where the BF bound is saturated, we have �� < �+ andso the term involving �� dominates asymptotially as r ! 1. For a partiular solution,however, suh as a domain wall of the form (1.1), one of the funtions �� an be zero. Thisdepends entirely on the fake superpotentialW (�) that de�nes the ow equations (1.7). Todetermine the VEV of the operator dual to the salar �eld �, one should evaluate the bulkation on the solution (6.6), whih is identi�ed with the generating funtional of orrelationfuntions of the dual operator [24℄.Now, the on-shell ation evaluated on a (Eulidean) Poinar�e domain wall (1.1) is[29, 30, 31℄ SBon�shell = Z ddxpBW (�B); (6.7)where Bij = e2AÆij and W (�B) is the fake superpotential that de�nes the ow equations(1.7). We have inluded the subsript B here to emphasize that this is the on-shell ationevaluated on the bakground domain wall solution. We will need to onsider utuationsaround this bakground when we alulate two-point funtions later on. As is well known,however, the on-shell ation diverges and one needs to remove this divergene by addingovariant ounterterms [32, 33, 34, 29, 35, 36, 37, 12℄. Although the ovariant ountertermsare a property of the supergravity ation (1.2) - that is, one onstruted in full generalityby the asymptoti analysis of the ation (1.2), they remove the divergenes of the on-shellation when evaluated on all extrema of (1.2) - for domain wall bakgrounds of the form(1.1) they take partiularly simple form, whih an be determined without the need to �rstompute the ounterterms in full generality. In partiular, the part of the the ountertermation that involves only the salar �elds, i.e. exluding the gravitational ounterterms(exept from the volume renormalization whih an be ounted with the salar �elds) andterms involving derivatives of the salars (whih vanish on the domain wall bakground),are given by a funtion U(�) that satis�es equation (1.8) at least asymptotially [29, 37, 31℄,and has an expansion U(�) = �d� 1�2l � 12l���I�I +O(�3): (6.8)The �rst term in this funtion is nothing but the well-known volume renormalization term.The quadrati term requires some explanation, however.Reall that, sine U(�) satis�es (1.8) and the potential has a Taylor expansion ofthe form (3.4), U(�) has an expansion of the form (3.3) with the quadrati term being adiagonal matrix with diagonal elements w� = ���=2l (see Setion 3).17 There are 2n suhmatries, where n is the number of independent salars. But as we will now explain, thereis a unique hoie for the ounterterms sine they must remove the divergenes for anyfake superpotential W (�), whose quadrati term an indeed be any of these 2n matries.It suÆes to onsider the ase of a single on-shell salar �eld, whih takes the form (6.6).If �� 6= 0, then its leading asymptoti behavior is � � e���r=l��, and so, by the owequations (1.7), the orresponding fake superpotential should have a quadrati term withoeÆient ���=2l. Sine this is the same quadrati term as that of the ounterterm U(�),17Note that for d > 4, however, w� = ���=2l. Here we are primarily interested in the ase d = 3.{ 23 {



the quadrati term in the on-shell ation will be aneled. In fat, one an take U(�) tobe the fake superpotential in this ase - although this may not be neessary if there areno higher order divergenes. It is ruial though that this same ounterterm U(�) removesthe divergenes for the ase when �� vanishes, sine the ounterterms are valid for anysolution to a given bulk ation. In this ase � � e��+r=l�+ asymptotially and so the fakesuperpotential should have a quadrati term proportional to ��+=2l. This means thatupon subtrating the ounterterm U(�), there will be a quadrati term � 12l (�+���)�2 leftin the ation. However, �2 = O(e2�+r=l), in this ase, and sine 2�+ > d, this term is notdivergent and will drop out of the on-shell ation as the regulator is removed. This argumentexplains why �� has to appear in the quadrati term of the ounterterm. Generalizingthis argument to more than one �elds,18 the ounterterm must have a quadrati termproportional to the unit matrix with oeÆient ���=2l.Let us now apply this to the ase we are interested in. From (6.5) we have�� = d� 2; d < 4; �� = 2; d > 4: (6.9)Expanding the true superpotential (3.1) we getWo(�) = �(d� 1)�2DlD � (d� 2)2lD �I�I + (d� 2)p2�D96lD NXi=1 biIbiJbiK�I�J�K +O(�4): (6.10)It follows that, for d < 4, we an use Wo(�) as the ounterterm U(�):U(�) =Wo(�): (6.11)A few omments are in order here. At �rst sight, it seems that for d = 6 we are notable to use Wo(�) as the ounterterm sine it has the wrong quadrati term, whih issurprising sine we know that Wo(�) orresponds to a supersymmetri domain wall and,hene, one should be able to hoose a supersymmetri renormalization sheme where theon-shell ation is identially zero. The answer is that, as we showed in Setion 3, ford = 6, the potential (3.4) requires that the quadrati term of any fake superpotential isdiag (��+=2l; : : : ;��+=2l).19 Hene, there are simply no solutions with non-zero �� inthis ase and so Wo(�) an be safely used as the ounterterm, resulting in the expetedsupersymmetri renormalization sheme. Seond, fousing on the ase d = 3 whih we areinterested in, we have seen that there is a ontinuous family of fake superpotentials, of thegeneri form W (�) = �(d� 1)�2DlD � (d� 2)2lD �I�I + CIJK�I�J�K +O(�4); (6.12)whih have the same quadrati term asWo(�) and an therefore be used as the ounterterm.They only di�er from Wo(�) at ubi order, whih orresponds to a �nite ounterterm. In18We assume that the salar �elds all have the same mass squared, but the argument generalizes in anobvious way to unequal masses.19This fat, in ombination with the fat that the dimension of the dual operators is unambiguouslydetermined to be �+ = 4, implies that all domain walls for the SL(5;R)=SO(5) salars in seven dimensionsneessarily desribe VEVs of the dual theory. { 24 {



priniple, one is perfetly allowed to use any of these fake superpotentials as the ountert-erm, orresponding to a di�erent renormalization sheme. However, sine the ountertermis valid, and the same, for any solution of a given bulk ation, there is a unique ountertermwhih ensures that the ation vanishes for the supersymmetri domain wall solution de�nedby Wo(�). Choosing any other ounterterm would simply result in a non-supersymmetrirenormalization sheme. Choosing the supersymmetri renormalization sheme, therefore,the renormalized on-shell ation is given bySBren = Z ddxpB(W (�B)�Wo(�B)): (6.13)The analysis so far is independent of the dimension hosen for the dual operator.However, we will now see that, depending on suh a hoie, this renormalized ation hasdi�erent interpretations in the dual theory.6.1 � = �+Consider �rst the more familiar ase where the dimension, �, of the dual operators OI� istaken to be �+. The leading asymptoti term �� in (6.6) orresponds then to the soureof the dual operator, sine �� = d � �+. In this ase the generating funtional of or-relation funtions is the renormalized on-shell ation, whih, evaluated on the bakgrounddomain wall solution, takes the form (6.13). Using the Hamiltonian version of holographirenormalization, we �nd that the VEV of the dual stress tensor is related to the extrinsiurvature of the domain wall metri by [31℄Kij = _AÆij = � �2d� 1W (�)Æij : (6.14)In partiular, the renormalized expetation value of the stress tensor is given byhT ij iren: = � 1�2 �K(d)ij �K(d)Æij� = �(W (�)� U(�))Æij : (6.15)Moreover, the renormalized VEV of the salar operators ishOI�+iren: = ���I (W (�)� U(�)): (6.16)The value of these one-point funtions depends on the form ofW (�), and in partiular,on the quadrati one, but possibly on higher order terms as well. To be onrete, let usreturn to the ase d = 3 and the SL(8;R)=SO(8) salars. Reall that in this ase themost general fake superpotentialW (�) has two possible forms. First, there is a ontinuousfamily of fake superpotentials whose quadrati term is the same as that of Wo(�), but havearbitrary ubi term. The Taylor expansion of these fake superpotentials takes the form(6.12). Evaluating the one-point funtions in this ase giveshT ij i+ = �(CIJK � CoIJK)�IB�JB�KB Æij ; hOI�+i = 3(CIJK � CoIJK)�JB�KB ; (6.17)where CoIJK = p2�96l P8i=1 biIbiJbiK is the ubi oeÆient of Wo(�) and the subsript + isa reminder that the VEV is taken in the theory where the operators dual to the salar �elds{ 25 {



have dimension �+. It is understood that these are the renormalized VEVs. There is also aseond lass of fake superpotentials whih have vanishing ubi term, but whose quadratiterm an be di�erent from that of Wo(�). Namely, the diagonal elements of the matrixmultiplying the quadrati term of W (�) an be either ��+=2l or ���=2l. Depending onwhih of these two values the I-th omponent takes, in this ase the one-point funtionsare given byhT ij i+ = CoIJK�IB�JB�KB Æij; hOI�+i = ( �3CoIJK�JB�KB ; ���=2l;�3CoIJK�JB�KB +1l (d� 2�+)�IB ; ��+=2l:(6.18)Note that the quadrati term of W (�) does not ontribute to the VEV of the stress tensorsine 2�+ > d. Moreover, in the terms involving CoIJK only the salars for whih thediagonal matrix multiplying the quadrati term of W (�) has values ���=2l ontribute,sine 3�� = d and 2�� = �+. The omponents involving salars with a quadratiterm ��+=2l in the fake superpotential do not ontribute to these terms. We shouldemphasize that although we do not in general know the full fake superpotentials, the one-point funtions we have alulated are in fat exat, sine they only depend on the quadratiand ubi terms of the fake superpotential. As a hek, one an easily verify that in bothases, the Ward identity hT ii i+ = �XI (d��+)�IBhOI�+i; (6.19)is satis�ed. Finally, for future referene, let us give more expliitly the VEVs for theone-salar solutions of Setion 4.1. Namely,hT ij i+ = �l 16(���o)(2k(8�k))3=2 �3BÆij , hO�+i = �3�l 16(���o)(2k(8�k))3=2�2B , for W (�;�),hT ij i+ = 0, hO�+i = �1l �B , for fWo(�), (6.20)and reall that �o = �(8� k)(k � 4)k=24.The VEVs we have just omputed show that if one assoiates the SL(8;R)=SO(8)salars with operators of dimension �+ = 2, the supersymmetri domain walls orrespond-ing to Wo(�) have zero VEVs and hene desribe a deformation of the CFT Lagrangian.The non-supersymmetri domain walls orresponding to fWo(�), however, desribe a non-onformal and non-supersymmetri vauum. Moreover, the ontinuous family of domainwalls de�ned by W (�;�), with � 6= �o, gives VEVs to both the stress tensor and the salaroperators, but these are non-linear in the salar soure. These VEVs are on top of thedeformation orresponding to Wo(�) and they break supersymmetry.6.2 � = ��Consider the ase where the dimension � of the dual operator is ��. Of ourse, theleading asymptoti behavior of the salar �eld (6.6) is still the term involving ��, butnow it annot be identi�ed with the soure of the dual operator sine it has the wrongasymptoti behavior for being the soure. This means that the renormalized ation (6.13){ 26 {



annot be the generating funtional of orrelation funtions of the operator O�� . So amore areful analysis is required in this ase.As we have already pointed out, the evaluation of the renormalized ation by addingovariant ounterterms is not a�eted by the question of whether the dual operator hasdimension �+ or ��. The only di�erene arises in the identi�ation of the funtionalthat generates the orresponding orrelation funtions of the dual operator. In any ase,therefore, following the standard proedure, we need to evaluate the renormalized on-shellation, whih we now all I[��℄. This is a funtional of �� - independently of whih hoiefor the dimension of the dual operator is made - sine the supergravity equations of motionwith Dirihlet boundary onditions express �+ as a funtional of ��. If the dimension ofthe dual operator is �+, as we have seen �� orresponds to the soure of the operatorand, hene, I[��℄ an be identi�ed with the generating funtional of onneted orrelatorsof O�+ . If the dimension of the dual operator is ��, however, this identi�ation annotbe made sine, the still arbitrary funtion ��, does not orrespond to the soure of O�� .In [24℄ it was suggested that in this ase the orret generating funtional is obtained fromI[��℄ by a Legendre transformation asL[ ���; ��℄ = I[��℄ + Z ddxpg(0) ���(x)��(x); (6.21)where g(0)ij is the boundary metri. Extremizing L[ ���; ��℄ with respet to ��, gives�I[ ���℄ � L[ ���; ���( ���)℄; (6.22)where ���( ���) is the solution toÆL[ ���; ��℄Æ�� ������� = ÆI[��℄Æ�� ������� + ���(x) = hO�+i��=��� + ���(x) = 0: (6.23)�I [ ���℄ is now identi�ed with the generating funtional of onneted orrelation funtionsof the operator O�� and ���(x) is identi�ed with the soure of O�� .20 In partiular, theexat and renormalized one-point funtion of O�� in the presene of a soure ishO��i��� � Æ �I [ ���℄Æ ��� = ���(���); (6.24)whih is simply the solution to (6.23). The last two equations tell us that the one-pointfuntion of the operator O�� is proportional to the soure, ��, of the operator O�+ andvie versa. We an now hek that an analogue of the Ward identity (6.19) holds forthis ase too. First we note that the stress tensors orresponding to the two generatingfuntionals I and �I are related byhTiji��� � 2pg(0) Æ �I [ ���; g(0)℄Æg(0)ij = hTiji�� � g(0)ij ���I�I�: (6.25)20Note that ���(x) � �+(x) up to some numerial fator. See e.g. [38℄.{ 27 {



Using now the Ward identity (6.19) for hT ii i�� together with the relations hOI�+i = ����Iand hOI��i = �I�, we obtainhT ii i��� = �XI (d���) ���IhOI��i; (6.26)where we have used �� +�+ = d.We an now evaluate the one-point funtion of the operators OI�� in the bakgrounddomain wall solutions very easily. Starting from the renormalized on-shell ation (6.13),we an immediately evaluate the one-point funtions by solving (6.23), whih in this asereads: ���I (W (�)�Wo(�)) + ���I = 0: (6.27)Comparing this to (6.16), we see that the soure ��� of the operator O�� is proportionalto the VEV of the operator O�+ . It follows that asymptotially ��� = O(e��+r=l) =O(e�(d���)r=l), as is required for the soure of an operator of dimension ��. This equationan be used to determine �B( ���B), but sine the domain wall solution is given in terms of�IB and not ��I�B , we an evaluate the VEVs in terms of �IB , instead of ��I�B. From (6.24)we get, depending on the oeÆient of the quadrati term in W (�),hOI��i = (�IB ; ���=2l;0; ��+=2l: (6.28)In this ase, therefore, the VEVs are muh simpler and ompletely independent of the ubiterm in W (�). Moreover, from (6.25) we �ndhT ij i� = 2(CIJK � CoIJK)�IB�JB�KB Æij ; (6.29)for the ontinuous family of fake superpotentials whih has a oeÆient ���=2l for thequadrati term of all salar �elds, whilehT ij i� = �2CoIJK�IB�JB�KB Æij ; (6.30)for the superpotentials that have a vanishing ubi term but any ombination of ���=2lfor the quadrati term. Again, only the salar �elds with ���=2l in the quadrati termontribute to the last expression.We see that the role of Wo(�) and fWo(�) have been interhanged now ompared tothe ase where the dual operators have dimension �+. Namely, the supersymmetri do-main walls now desribe a non-onformal but supersymmetri vauum, whih has beenidenti�ed with the Coulomb branh of the dual CFT [16℄, while the non-supersymmetridomain walls orresponding to fWo(�) desribe a (single-trae) deformation of the CFTLagrangian. The domain walls desribed by the ontinuous family of fake superpotentialsW (�;�) orrespond to a line of marginal triple-trae deformations of the Coulomb branh.We stress that this does not mean that the theory has a at diretion. At the supersym-metri point, i.e. the Coulomb branh, the salar operator an have an arbitrary VEV.If the marginal triple-trae deformation is turned on, it produes a potential for the VEV{ 28 {



of the salar operator foring it to zero. Nevertheless, it is possible to give an arbitraryVEV to this operator in this ase too, provided we simultaneously turn on a soure forthe single-trae operator, proportional to the marginal triple-trae deformation parame-ter. This single-trae deformation breaks onformal invariane expliitly, whih justi�esthe fat that the trae of the stress tensor in (6.29) is non-zero. Spontaneous breakingof the onformal symmetry only ours at the supersymmetri point orresponding to nodeformation. These ombined marginal triple-trae and indued single-trae deformationsallowing for an arbitrary VEV is preisely what is desribed by the non-supersymmetridomain walls orresponding to W (�;�).7. Holographi two-point funtionsTo further understand the RG ows desribed by the domain walls we have disussed, wenow turn to the omputation of the holographi two-point funtions. However, even forthe supersymmetri domain walls with a single salar �eld turned on, the linearized bulkequations of motion that we need to solve annot always be solved analytially. We willtherefore fous on a single salar �eld, and in partiular on the ase k = 4 for whih the two-point funtions orresponding to the supersymmetri bakground an be omputed exatly.Unfortunately for k = 4 we do not have the full non-perturbative fake superpotentialsW (�;�) or fWo(�) as for k = 6, but we do have W (�;�) perturbatively in � � �o and wean therefore ompute the two-point funtions for the orresponding non-supersymmetribakgrounds perturbatively in the parameter � � �o. Of ourse, this will provide us withno information on the domain wall de�ned by fWo(�), however. To evaluate these two-pointfuntions we will follow the approah suggested in [12℄, where the relevant ounterterms anbe evaluated diretly from the linearized equations, without the need for the omputationof the full non-linear set of ounterterms required in general for the gravity-salar ation.Indeed, as we will see, the ounterterms that we will need are almost trivial. For earlierwork on the holographi omputation of orrelation funtions see [39, 40, 41, 30, 42℄.To alulate the sought after two-point funtions, we need to linearize the bulk equa-tions of motion around the domain wall bakground (1.1). To this end, we write the bulkmetri in the form ds2 = dr2 + ij(r; x)dxidxj ; (7.1)and onsider linear utuationsij = Bij(r) + hij(r; x) = e2A(r)Æij + hij(r; x); � = �B(r) + '(r; x): (7.2)The extrinsi urvature, Kij = 12 _ij, then beomesKij = _AÆij + 12 _Sij; (7.3)where Sij � ikB hkj. Next we deompose Sij into irreduible omponents asSij = eij + �i�j + �j�i + dd� 1 �1dÆij � �i�j�B � f + �i�j�B S; (7.4)
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where �ieij = eii = �i�i = 0, �B = e�2A� = e�2AÆij�i�j , and indies are raised with theinverse bakground metri e�2AÆij . Conversely, the projetion operators�iklj = 12 ��ik�lj + �il�kj � 2d� 1�ij�lk� ; (7.5)and �ij = Æij � �i�j�B ; (7.6)allow one to uniquely express eah of the irreduible omponents in terms of Sij aseij = �ikljSkl ; �i = �li �k�B Skl ; f = �lkSkl ; S = ÆlkSkl : (7.7)The linearized equations for these modes are [12℄��2r + d _A�r + e�2A�� eij = 0;��2r + [d _A+ 2W�2� logW ℄�r + e�2A��! = 0;_f = �2�2 _�B';_S = 1(d� 1) _A h�e�2A�f + 2�2 � _�B _'� V 0(�B)'�i ; (7.8)where ! � WW 0'+ 12�2 f: (7.9)Note that in writing the linearized equations in this form we have used the di�eomorphisminvariane in the transverse spae to set �i � 0. The exat, unrenormalized, one-pointfuntions in the presene of linear soures are given by the anonial momenta _eij; _! et.The last two equations give immediately the momenta dual to f and S. To determine themomenta for eij and ! we note that, to linear order, we must have [12℄_eij = E(A;�B)eij ; _! = 
(A;�B)!: (7.10)Inserting these relations into the �rst two equations in (7.8), we obtain two �rst orderequations for E and 
 _E +E2 + d _AE � e�2Ap2 = 0;_
 + 
2 + [d _A+ 2W�2� logW ℄
� e�2Ap2 = 0; (7.11)where p denotes the transverse spae momentum. All anonial momenta an now be easilyexpressed in terms of E and 
. From (7.8) we dedue_eij = Eeij ;_f = �2�2W 0';_' = (W 00 +
)'+ 12�2 W 0W 
f;_S = � 1�2 "�W 0W �2 
+ e�2AW p2# f � 2W 0W �
+ d�2d� 1W�': (7.12)
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As we have pointed out, these are the unrenormalized momenta. To get the renormal-ized momenta we need to add appropriate ounterterms. In the Hamiltonian formulationof holographi renormalization the ounterterms for the anonial momenta are simplyomputed by expanding the latter in eigenfuntions of the dilatation operator [12℄ÆD � Z ddx2ij ÆÆij + (�� d)Z ddx� ÆÆ�: (7.13)As long as we are interested in the anonial momenta to linear order in the soures, whihis suÆient for omputing the two-point funtions, expanding the expressions (7.12) ineigenfuntions of the dilatation operator is partiularly simple, sine we only need to expandthe oeÆients of the linear utuations. These are only funtions of the bakground �eldsA and �B and so the dilatation operator simpli�es toÆD = �A + (�� d)�B��B : (7.14)It is important to keep in mind that, although the ovariant ounterterms for the anonialmomenta are omputed diretly by expanding the anonial momenta in eigenfuntions ofthe dilatation operator, the same result would be obtained by �rst omputing the ovariantounterterms for the on-shell ation and then deriving the renormalized momenta from therenormalized on-shell ation. Indeed, the ability to ompute the renormalized momenta,whih are linear in the utuations, without �rst having to ompute the renormalizedon-shell ation, whih is quadrati in the utuations, is one of the advantages of theHamiltonian approah. One must, however, ensure that the ounterterms for the anonialmomenta orrespond to a given renormalization sheme, whih is usually determined by�xing the value of the renormalized on-shell ation on a given bakground. Sine the onlynon-vanishing ontribution to the ounterterms, when evaluated on the bakground domainwall, is the funtion U(�) (see Setion 6), a given renormalization sheme is de�ned by ahoie of U(�). It follows that the renormalized momenta will automatially be ompatiblewith the hosen renormalization sheme one the ontribution of U(�) to the ountertermsof the anonial momenta has been taken into aount. As we have seen in Setion 6,for the domain walls we are interested in here we an take U(�) to be the superpotentialWo(�), orresponding to a supersymmetri renormalization sheme. The orrespondingounterterm �Z ddxpWo(�B + '); (7.15)leads to the following ontributions to the anonial momenta:_Sij : 2�2(d� 1)W 0o(�B)'Æij_' : �W 00o (�B)': (7.16){ 31 {



Adding these ontributions to the anonial momenta (7.12) we obtain_eij = Eeij ;_f = �2�2(W 0 �W 0o)';_' = (W 00 �W 00o +
)'+ 12�2 W 0W 
f;_S = � 1�2 "�W 0W �2
+ e�2AW p2# f � 2�W 0W 
+ d�2d� 1(W 0 �W 0o)�': (7.17)These are not yet the renormalized momenta, but it is now guaranteed that by expandingthese anonial momenta in eigenfuntions of the dilatation operator and keeping the termsof weight d = 3 for _eij ; _f and _S, and of weight �+ = 2 for _', we obtain the renormalizedmomenta that orrespond to the supersymmetri sheme de�ned by Wo.Sine W (�B) and Wo(�B) are known funtions of the bakground �elds, the only non-trivial step in omputing the renormalized anonial momenta is determining the expansionof E and 
 in eigenfuntions of the dilatation operator. This an be easily done by usingthe equations (7.11). One expands the radial derivative as�r = _A�A + _�B��B = � �2d� 1W (�B)�A +W 0(�B)��B � ÆD + � � � ; (7.18)as well as the funtions E and 
21E = E(1) + � � �+E(d) + � � � ;
 = 
(0) + � � �+
(2��d) + � � � ; (7.19)and inserts these expansions in equations (7.11). Colleting terms of the same dilata-tion weight then determines all terms in the expansions (7.19), exept for the oeÆientsE(d) and 
(2��d). These terms ontain all dynamial information about the two-pointfuntions and an only be determined by solving exatly the �rst two equations in (7.8)or, equivalently, equations (7.11). There is, however, an important tehnial di�erenebetween solving the former or the latter. By solving the linear seond order equationsin (7.8), one obtains two linearly independent solutions, namely the `normalizable' and`non-normalizable' modes. Generially, an arbitrary linear ombination of these solutionswill have a singularity somewhere in the interior of the asymptotially AdS spae. How-ever, there is usually a unique linear ombination whih leads to a non-singular solution.This requirement determines the oeÆient of the normalizable mode in terms of the non-normalizable mode, whih should be arbitrary sine it orresponds to the soure of the dualoperator. If one instead solves the �rst order equations (7.11) only one integration on-stant appears instead of two, whih simply reets the fat that the overall normalizationof the linearized solutions of (7.8) has been fatored out from E and 
. The integrationonstant in E and 
 an therefore be understood as the ratio of the normalizable and21In general one would have to inlude logarithmi terms in these expansions, but in our ase we do notneed them sine the boundary is three-dimensional. See [12℄ for the general ase.{ 32 {



non-normalizable modes of the solutions to the seond order equations (7.8). However, itis not always possible to determine this integration onstant by the requirement that theexat solutions for E and 
 are non-singular. This is beause it is possible that E and 
are non-singular, even though the orresponding solutions of the seond order equations(7.8) are singular. Pratially, therefore, to obtain the orret exat solution for E and 
,one should �rst solve the orresponding seond order equations (7.8), demand that theyare non-singular, and then dedue the orresponding E and 
. Equations (7.11) are stillessential, however, for determining the ovariant ounterterms for E and 
.We ompute E(3) and 
(1) expliitly in Appendix C for the k = 4 one-salar domainwall. The result is given in (C.7). Given these quantities one an now determine the one-point funtions with linearized soures and, onsequently, the exat two-point funtions.Expanding the anonial momenta (7.17) one easily dedues that the renormalized one-point funtions are given byhT ij i+ = ��8p2l�3BÆij � 12�2E(3)e(0)ij � 18�2B�ij
(1)f (0) +� 3��8p2l�2BÆij � 12�B�ij
(1)�'(0);hO�+i = � 3��8p2l�2B + 14�B
(1)f (0) +�� 3��4p2l�B +
(1)�'(0): (7.20)Again, one should keep in mind that these are the one-point funtions when the dualsalar operators are taken to have dimension �+. We will onsider the ase �� below. Itis reassuring that these one-point funtions satisfy the Ward identity (6.19) as they should.Di�erentiating with respet to the linear soures one �nally obtains the two-point funtionshT ijT kl i = � 1�2�ilkjE(3) � 14�2B�ij�kl 
(1);hT ijO�+i = � 3��8p2l�2BÆij + 12�B�ij
(1);hO�+O�+i = 3��4p2l�B � 
(1): (7.21)The two-point funtions for the ase where the dual salar operators have dimension�� an also be dedued from the one-point funtions (7.20). As we have seen in theprevious setion, the soure dual to O�� is given by the VEV of O�+ as�� = ��B + �' = �hO�+i; (7.22)from whih we infer' = � 3��4p2l�B � 
(1)��1� �'+ 14�B
(1)f (0)�= �
(1)�1�1 + 3��4p2l�B
(1)�1 +O(�2)�� �'+ 14�B
(1)f (0)� : (7.23)It follows thathO��i = (�B + ') = �B ��1 + 3��4p2l�B
(1)�1 +O(�2)��
(1)�1 �'+ 14�Bf (0)� : (7.24){ 33 {



Moreover, from (6.25) we obtainhT ij i� = hT ij i+ � ��hO��iÆij= � ��4p2l�3BÆij � 12�2E(3)e(0)ij � �B �Æij � 12�ij �1 + 3��4p2l�B
(1)�1 +O(�2)�� �'+ 3��32p2l�3B�ijf (0): (7.25)One again, these one-point funtions satisfy the Ward identity (6.26) as required. Di�er-entiating with respet to the soures we now obtain the two-point funtionshT ijT kl i = � 1�2�ilkjE(3) + 3��16p2l�3B�ij�kl ;hT ijO��i = �B �Æij � 12�ij �1 + 3��4p2l�B
(1)�1 +O(�2)�� ;hO��O��i = 
(1)�1�1 + 3��4p2l�B
(1)�1 +O(�2)� : (7.26)In order to disuss the physis of these two-point funtions, it is useful to reinstatethe dependene on theM2-brane distribution parameters, whih we have so far suppressedbeause this is di�erent for di�erent domain walls. For the ase k = 4 for whih we haveomputed the two-point funtions, the M2-branes are distributed on an S3 of radius l1.By uplifting our domain wall solution to eleven-dimensions we �nd that the salar VEV isas expeted proportional to the radius of the M2-branes distribution, �B = p2l1=�l, whilethe momenta, ~pi, on the world-volume of the M2-branes are related to the momenta aboveby pi = (l=l1)~pi. With these relations and the result (C.7) for 
(1) we an write the salartwo-point funtion ashO��O��i = 2~p2r~p2 + 4l21l4 �1� �l1 (9l8~p4 + 32l21l4~p2 + 16l41)2l10~p2(~p2 + 4l21=l4)3=2 +O(�2)� : (7.27)We an now extrat the physis. First, for � = 0, there is a massless Goldstone poleorresponding to the spontaneously broken sale invariane. Moreover, there is a ontinuousspetrum of states orresponding to the branh ut (4l21=l4;+1) on the omplex Lorentzian~p2L = �~p2 plane. Note that the threshold M2 = 4l21=l4 agrees preisely with that foundin [5℄ by di�erent means. Moreover, in the limit of vanishing VEV, l1 ! 0, we restorethe two-point funtion imposed by onformal invariane for an operator of dimension 1 inthree dimensions. Note in partiular that in this limit the deformation parameter does notmodify the two-point funtion, at least to the order we have omputed it. This suggeststhat the O�� does not aquire an anomalous dimension when the marginal deformation isturned on, again at least to the order in � we have omputed it and in the large-N limit,for whih the supergravity approximation holds.8. The fake superpotential as a quantum e�etive potential and multi-trae deformationsWe will now argue that, under ertain irumstanes, the fake superpotential that de�nesa given domain wall has a diret physial interpretation in the dual �eld theory as a{ 34 {



quantum e�etive potential desribing a marginal multi-trae deformation. As we will see,this interpretation requires that the bulk salar �elds admit two quantizations, as is thease for the SL(N;R)=SO(N) salars that we have been disussing. In this ase the on-shell supergravity ation plays two roles. More spei�ally, sine I[��℄ and �I [ ���℄ are theLegendre transform of eah other and hO�+i = ���� and hO��i = ��, it follows that� I[��℄ is the generating funtional of onneted orrelation funtions of O�+ and thequantum e�etive ation for O�� .� �I[ ���℄ is the generating funtional of onneted orrelation funtions of O�� and thequantum e�etive ation for O�+.We have seen above that on a domain wall solution de�ned by the fake superpotentialW (�), the renormalized on-shell supergravity ation omputed with the standard Dirihletboundary onditions is I = Z ddxp(W (�)�Wo(�)): (8.1)We will now show that this relation implies that the freedom in the fake superpotential,W (�), is equivalent to omputing the on-shell ation with modi�ed onformal boundaryonditions and hene to a marginal multi-trae deformation of the boundary theory.Multi-trae operators in any QFT that admits a large-N limit and in the AdS/CFTorrespondene are disussed in detail in Appendix D. In the AdS/CFT orrespondene,the e�et of deforming the CFT ation by a multi-trae operator f(O�+), for the �+quantization, or by �f(O��), for the �� quantization, an be summarized in equations(D.12) and (D.18) respetively. It follows that the e�et of a generi fake superpotential,W (�), an be reprodued by omputing the on-shell ation with the superpotential Wo(�)but with boundary onditions orresponding to a deformation�f(�) = W (�)�Wo(�); for ��;f(�)� �f 0(�) = W (�)�Wo(�); for �+; (8.2)or equivalently f(�) = ��Z d��2 (W (�)�Wo(�)) ; for �+: (8.3)However, sine the arguments of f and �f are the VEVs � and �� respetively, this interpre-tation of the fake superpotential is possible only when W = W+ for the �+ quantizationand W =W� for the �� quantization. In summary, then�f(�) = W�(�)�Wo(�) = O(�3); for ��;f(�) = ��Z d��2 (W+(�)�Wo(�)) = � 12l (�� ��+)�I�I +O(�3); for �+; (8.4)where we have used the expansionW�(�) = �(d� 1)�2l � 12l���I�I +O(�3): (8.5)
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But, if W = W+, then �2 orresponds to an irrelevant operator sine �+ > d=2. Itis therefore only for the �� quantization and for the fake superpotential W� that aninterpretation as a marginal multi-trae deformation of the boundary theory an arise.The above disussion an then be summarized in the following statement:The marginal multi-trae deformations of a CFT admitting a holographi dual andorresponding to the �� quantization are in one-to-one orrespondene with thepossible fake superpotentials W� of the dual bulk theory.These fake superpotentials are determined by solving equation (1.8) as a di�erentialequation for the fake superpotential. The onditions for suh an interpretation of the fakesuperpotential impose strit restritions on the dimension d of the �eld theory as well ason the onformal dimension �� of the loal operator. First, in order to get an n-traemarginal operator built from the single-trae operator O�� , we obviously need �� = d=n,where n > 2 is an integer. The ondition n > 2 arises beause the fake superpotential,W�, annot desribe double-trae deformations sine there is no freedom in its quadratiterm. Moreover �� is bounded by (d� 2)=2 � �� < d=2. The possible solutions of theseonditions are summarized in Table 3. Note that only for d = 3 is there an allowed ��whih is integer and yet it does not saturate the unitarity bound, namely �� = 1.8.1 Triple-trae deformation of d 2 3 4 5 6n n � 3 3, 4, 5, 6 3, 4 3 3�� 2=n 1; 3=4; 3=5;1=2 4=3;1 5=3 2Table 3: The possible dimensions d and onformal dimen-sions �� allowing for the interpretation of the fake super-potential as a multi-trae deformation of the dual theory.The dimensions in boldfae saturate the unitarity bound.
the Coulomb branhThe �eld theory on the worldvol-ume of N+1M2-branes is an N =8 (16 superharges) superonformal�eld theory with 8(N + 1) salarand 8(N + 1) fermioni degrees offreedom. Under the SO(8) R-symmetrygroup, the salars, fermions and supersymmetries transform respetively as 8v, 8 and 8s(see e.g. [51℄). One of the N = 8 multiplets orresponds to the free theory desribing theenter of mass motion, while the remaining degrees of freedom parameterize the modulispae (R8)N=SN+1. This theory is believed to arise as the infra red �xed point of N = 8supersymmetri Yang-Mills in three dimensions, while in the abelian ase it an also beobtained by ompatifying N = 4 supersymmetri Yang-Mills in four dimensions on airle in the limit of vanishing irle radius. For the non-abelian ase, however, this pro-edure is not well understood. In the large-N limit this theory is holographially dual toeleven-dimensional supergravity on AdS4�S7, whose massless setor is desribed by N = 8gauged supergravity in four dimensions. The 70 salars parameterizing the moduli spaeE(7)7=SU(8) of N = 8 gauged supergravity are holographially dual to BPS operators,whih in the abelian ase an be understood in terms the traeless bilinears of the 8 salarsand 8 fermions:OIJ = Tr (XIXJ)� 18ÆIJTr (XKXK); I; J; : : : = 1; : : : ; 8PAB = Tr (�A�B)� 18ÆABTr (�C�C); A;B; : : : = 1; : : : ; 8: (8.6)
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The 35 operators OIJ have onformal dimension � = 1 and transform in the 35v of SO(8),while the 35 salars PAB have onformal dimension � = 2 and transform in the 35. The35 salars parameterizing the SL(8;R)=SO(8) subspae of the salar manifold are usuallyidenti�ed as dual to the dimension 1 operators OIJ , in whih ase the supersymmetridomain wall solutions with non-trivial SL(8;R)=SO(8) salars desribe a uniform subse-tor of the Coulomb branh of the M2-brane theory [16, 14, 5℄. Nevertheless, sine theSL(8;R)=SO(8) salars have a mass allowing two possible quantizations as we have dis-ussed, and sine in this ase the � = 1 and � = 2 salars both belong to the masslessN = 8 supermultiplet and transform in SO(8) representations whih are related by trial-ity, it seems plausible that one ould also identify these salars as dual to the dimension2 operators PIJ .22 In this ase, as we have seen, the supersymmetri domain walls of theSL(8;R)=SO(8) setor orrespond to deformations of the CFT Lagrangian.When the SL(8;R)=SO(8) salars are identi�ed as dual to the dimension 1 operatorsOIJ , the non-supersymmetri domain walls we have found desribe the deformation of theuniform setor of the Coulomb branh, whih orresponds to the supersymmetri super-potential, by a marginal triple-trae operator ompletely breaking supersymmetry. Suhdeformations have been disussed before in [52, 53, 54, 55, 50℄. Indeed, as we have ar-gued above, the fake superpotentialsW we have found ompute the exat large-N e�etivepotential, given byVe�:(�) = �f(�) =W (�)�Wo(�) = (CIJK � CoIJK)�I�J�K +O(�4): (8.7)The higher order terms, whih vanish when the ut-o� is removed, orrespond to irrelevantoperators. Therefore, when the regulator is removed we are left with the triple-traeoperator (CIJK � CoIJK)OIOJOK . This operator is lassially marginal and remainsmarginal to leading order in 1=N for any �nite value of the dimensionless moduli CIJK .However, the limit CIJK ! 1, orresponding to replaing W (�;�) by fWo(�), does notommute with the ut-o� removal, presumably due to the fat that we are working inthe large-N limit. Hene, we annot simply drop the higher order irrelevant operatorsaltogether, but instead we need the full fake superpotential. The role of these higher orderterms an be understood by realling that the these domain walls desribe the Coulombbranh of the dual CFT and therefore, onformal invariane is spontaneously broken. Thismeans that the oupling CIJK will run or, equivalently, the operator O3 will renormalize.Sine there are no other free parameters in the fake superpotential other than the ouplingCIJK , the e�et of the irrelevant operators an be interpreted as the running of the ouplingCIJK or, equivalently, as the multipliative renormalization of O3.Lukily we have already omputed the exat fake superpotential for the one-salardomain wall with k = 6, whih we will now onsider as an example. For this ase the fullfake superpotential was given in (4.31). Using this we an now extrat the exat large-Nanomalous dimensions O and O3 . Starting from the kineti term for the e�etive salar�eld � away from the origin of the moduli spae [50℄ (� 6= 0 sine there is a non-zero VEV)K[�℄ = N28 ��1�i��i�; (8.8)22This is speial to four dimensions. In �ve or seven dimensions, one an unambiguously identify theSL(N;R)=SO(N) salars from symmetries, by looking at the states of the relevant massless supermultiplet.I would like to thank Henning Samtleben for useful omments on this.{ 37 {



and writing � = �� = �o� ~� ��o� �, with ~� ��o� � = O(�0) as � ! 1, and identifying theUV ut-o� with the AdS radial oordinate as � = er=l, we see that the multipliativerenormalization of O is given byZ�1O (�) = ~���o� � =~�(1): (8.9)It now follows from the �rst order equations (1.7) thatO = ��� logZO(�)j�!1 = �1� l W 0� �����!0 : (8.10)Evaluating this using the fake superpotential (4.31) we obtainO = (0; � <1;1; �!1: (8.11)The dimension of the operator O therefore jumps from 1 for �nite � to 2 in the � ! 1limit. In this sense then the marginal triple-trae deformation interpolates between thetwo possible quantizations of the bulk salar �eld, muh like the situation desribed in e.g.[43, 48℄.Similarly, we an now evaluate the anomalous dimension O3 . SineVe�: =W �Wo = �2�l �32�3=2 (�+ 1)27 �3 +O(�4) � �2�l �32�3=2 (�+ 1)27 Z�1O3�3; (8.12)we �nd O3 = ��� logZO3(�)j�!1 = (0; � <1;1; �!1: (8.13)Note that the running oupling is simply given by ��+1 = Z�1O3 (�+1) and so �� = (�+1)O3 .It follows that, in agreement with the expetation in [53℄, the triple-trae operator O3remains marginal for all �nite values of � and in the large-N limit. In the � ! 1 limit,however, O3 has dimension 4 and not the naively expeted dimension 6. It neverthelessremains an irrelevant operator in this limit.AknowledgmentsI am grateful to Professor Jerome Gauntlett for a helpful onversation on the signi�aneof urvature singularities in M-theory bakgrounds. I would also like to thank DimitryBelyaev for useful omments.A. Expliit form of the domain wall metri for W (�;�), to �rst order in�� �o and for general kIn this appendix we give the expliit form of the domain wall bakgrounds orrespondingto the fake superpotential (4.13) to �rst order in ���o. In order to disuss all values of k{ 38 {



at one, it is onvenient to trade the radial oordinate r in (1.1) for the single salar �eldX. Another advantage of this radial oordinate is that it is diretly related to the salar�eld � via (4.2) and so we only need to determine the domain wall metri. This an bedone by solving the ow equations (1.7), whih now beome_X = �2�8� k2k �X2�XW;�XA = �� k8� k� WX2�XW : (A.1)Inserting the fake superpotential (4.13) and integrating these equations to �rst order in(� � �o) we �nddrl = � 8(8� k) X k(8�k)�1dX(X 8(8�k) � 1) �1� 3(�� �o)2k(8� k)X k(8�k)�3(X 8(8�k) � 1)(kX 8(8�k) + 8� k)+O((�� �o)2)� ;eA = 8(8� k) X(X 8(8�k) � 1) �1 + (�� �o)2k(8 � k) �kX 4(k�2)(8�k) + 2k(8 � k)(k � 4) �X 4(k�4)(8�k) � 1��(8� k)X 4(k�6)(8�k) � 2(k � 4)�+O((� � �o)2)� : (A.2)Note that for � = �o one reovers the supersymmetri solutions of [14, 5℄.B. Uplifting the MTZ blak hole to eleven dimensionsThe gravity-salar system (1.2) in four dimensions with a single salar �eld and the potential(4.24) was also onsidered in [19℄, where a topologial blak hole with non-trivial salarhair was found. It was also pointed out in [19℄ that this salar potential aquires a verysimple form in the onformal frame de�ned by~ =3 = tanh( =3); ~g�� = osh2( =3)g�� ; (B.1)where ~ =q3�22 ~�. In this frame the ation takes the formS = ZM d4xp�~g� 12�2 ~R� 12~g���� ~��� ~�� 112 ~R~�2 � ~V (~�)� ; (B.2)where ~V (~�) = � 3�2l2 �1� (�2=6)2 ~�4� : (B.3)The salar �eld is now onformally oupled to gravity and the ~�4 potential ensures thatthe salar �eld equations are onformally invariant. Quite remarkably this system admitsan exat instanton solution [56℄. { 39 {



The four-dimensional blak hole found in [19℄, whih we will refer to as the MTZ blakhole, reads23ds24 = r(r + 2G�)(r +G�)2 8<:� r2l2 ��1 + G�r �2! dt2 + r2l2 ��1 + G�r �2!�1 dr2 + r2d�29=; ;� = r 34�G tanh�1� G�G�+ r� ; (B.4)where d�2 is the metri on a two-dimensional ompat manifold, �2, of onstant negativeurvature. This means that �2 �= H 2=�, where H 2 is the hyperboli plane and � is a freelyating disrete subgroup of the isometry group O(2; 1). This blak hole has urvaturesingularities at r = 0 and r = �2G�. The range of the radial oordinate is taken r > 0 for� > 0 and r > �2G� for � < 0. In either ase the urvature singularity is hidden behinda horizon loated at r+ = l2(1 +p1 + 4G�=l), provided� > � 14G: (B.5)Note also that � � 0 for � > 0 and � � 0 for � < 0. The mass of the blak hole is given byM = �4��; (B.6)where � is the area of �2, and its Hawking temperature isTH = 12�l �2r+l � 1� : (B.7)As in Setion 5, we an uplift this blak hole to eleven dimensions using the reduedansatz (5.5). In terms of the salar �eldX = e =3 = e��=p3 = �2G�+ rr �1=8 ; (B.8)and the quantity ~� = X os2 � +X�3 sin2 �; (B.9)the eleven-dimensional metri isdŝ211 = ~�2=3ds24 + 4l2 ~��1=3 �X3 �(os2 � +X�4 sin2 �)d�2 + sin2 �d�24�+X�1 os2 �d
25	 ;(B.10)and the four-form �eld strength readsF̂ (4) = �r4(r + 2G�)2l(r +G�)4 �2X2 os2 � +X�2(1 + 2 sin2 �)� dr+2G�lX "1� r2l2 �1 + G�r ��2# os � sin �d�) ^ dt ^ ��(2); (B.11)where ��(2) is the volume form on �2.23We have kept the notation of [19℄ here, hoping this will ause no onfusion. Note, in partiular, thatthe radial oordinate, r, here is not related to the radial oordinate in the domain wall metri (1.1), and,as usual, �2 = 8�G. { 40 {



C. Computation of the holographi two-point funtions
In this appendix we give the details of the omputation of the holographi two-point fun-tions for the domain walls de�ned by the fake superpotential (4.13), whih have beenonstruted expliitly in Appendix A.We start with the supersymmetri solutions orresponding to � = �o. For this asethe �rst two equations in (7.8) read respetively X2�2X + (16 � 5k)X 8(8�k) + (5k � 32)(8� k)(X 8(8�k) � 1) X�X � q2X 4(k�4)(8�k) ! eij = 0; X2�2X + k(16 � 5k)X 8(8�k) + (8� k)(5k � 32)(8� k)(kX 8(8�k) + 8� k) X�X � q2X 4(k�4)(8�k) !! = 0; (C.1)
where q2 = p2l2(8�k)2=64. We have managed to solve these equations analytially only forthe ase k = 4, and so we will fous on this ase. Having solved the supersymmetri ase,we an then obtain the solution for the non-supersymmetri fake superpotential W (�;�)perturbatively in � � �o. Sine for k = 4 we have �o = 0, the expansion is atually in �.For k = 4 then, to �rst order in �, the �rst two equations in (7.8) take the form��X2�2X � (X + 3X�1)(X �X�1) X�X � q2� (C.2)+3�4 �(X2 �X�2)(X2�2X +X�X) + q23 (X2 �X�2 + 8 lnX)�+O(�2)� eij = 0;(�X2�2X � (X � 3X�1)(X +X�1) X�X � q2� (C.3)+3�4  (X2 �X�2)X2�2X + "X2 �X�2 + 43 �(X +X�1)2 + 2X +X�1 �2#X�X+q23 (X2 �X�2 + 8 lnX)!+O(�2))! = 0:
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The solutions of these equations, whih are non-singular as X !1, are respetivelyeij = e(0)ijX�a �(1 + a)X + (1� a)X�1� (C.4)�1 + �8a2 �a2 �(2a� 1)X2 + (2a+ 1)X�2�� 8(a2 + 1)(a+ 1)X[(1 + a)X + (1� a)X�1℄�4 lnX �(2a2 � 2a+ 1)(1 + a)X + (2a2 + 2a+ 1)(1 � a)X�1(1 + a)X + (1� a)X�1 � (a2 � 1)a lnX��+O(�2)� ;! = !(0)X�a �(1 + a)X � (1� a)X�1� (C.5)�1 + �8a2 �a2 �(2a� 3)X2 + (2a+ 3)X�2�� 8[(a2 + 1)� (a2 � 1)(a2 � 2)℄(a+ 1)X[(1 + a)X � (1� a)X�1℄�4 lnX �(2a2 � 2a+ 1)(1 + a)X � (2a2 + 2a+ 1)(1 � a)X�1(1 + a)X � (1� a)X�1 � (a2 � 1)a lnX��+O(�2)� ;where a =p1 + q2 and e(0)ij and !(0) are arbitrary funtions of q.It is now straightforward to evaluate E and 
 using these exat solutions. To isolatethe desired oeÆients E(3) and 
(1) we �rst need to determine the terms E(1); E(2) aswell as 
(0) and subtrat them from the exat solutions for E and 
. This an be doneusing the �rst order equations (7.11) and the dilatation operator as desribed in Setion 7.One easily �ndsE(1) = 
(0) = 0; (C.6)E(2) = 4l (a2 � 1)e�2A = 14l (a2 � 1)(X �X�1)2 h1� �4 (X2 �X�2 + 8 lnX) +O(�2)i :Subtrating these from the exat solutions for E and 
 we �nally determineE(3) = �1l � �p2�3 �3Ba(a2 � 1)�1 + � (3a2 � 1)2a3(a2 � 1) +O(�2)� ;
(1) = 1l �p2�Ba�1(a2 � 1)�1 + �(3a2 � 1)(2a2 � 1)2a3(a2 � 1) +O(�2)� ; (C.7)whih allow one to evaluate the exat one-point funtions with linear soures (7.17) andhene the two-point funtions.D. Multi-trae deformations in the large-N limit and the AdS/CFT or-respondeneMulti-trae operators in the AdS/CFT orrespondene have been studied extensively [43,44, 45, 46, 47, 48, 49, 50℄. Before we disuss suh operators in the ontext of the AdS/CFTorrespondene, however, it is useful to review some generi �eld theoreti properties of{ 42 {



multi-trae operators in quantum �eld theories that admit a large-N limit. These propertiesare independent of the AdS/CFT orrespondene and will allow us to inorporate multi-trae operators in the AdS/CFT orrespondene in a very elegant way.We will �rst for ompleteness repeat the �eld theory argument given in [50℄, appli-able to any quantum �eld theory that admits a large-N limit. Let O(x) be a loalgauge-invariant single-trae operator, with the trae taken in the adjoint for onreteness,normalized suh that hOi = O(N0) as N ! 1. The generating funtional of onnetedorrelators, W [J ℄ is O(N2) and so it is onvenient to write W [J ℄ = N2w[J ℄. In terms ofthe �eld theory ation, S[�℄, thene�N2w[J℄ = Z [d�℄e�S[�℄�N2 R ddxJ(x)O(x): (D.1)Now de�ne �(x) � hOiJ = Æw[J ℄ÆJ : (D.2)The e�etive ation �[�℄ = N2��[�℄ is given bye�N2��[�℄ = Z [dJ ℄e�N2w[J℄+N2 R ddxJ(x)�(x); (D.3)and J = �Æ��[�℄Æ� : (D.4)Consider now the deformed ation Sf [�℄ = S[�℄ +N2 R ddxf(O). Then,e�N2wf [Jf ℄ = Z [d�℄e�S[�℄�N2 R ddx(JfO+f(O))= Z [d�℄e�S[�℄�N2 R ddx(JO+f(O)�f 0(�)O)N!1� e�N2w[J℄e�N2 R ddx(f(�)��f 0(�)); (D.5)where we introdued J � Jf + f 0(�); (D.6)in the seond line in order to remove the linear term from f(O) so that large-N fatorizationan be used in the last step. It follows that in the large-N limit, the generating funtionalof onneted orrelators in the deformed theory is given bywf [Jf ℄ = ��f [�℄ + Z ddxJf�= w[J ℄ + Z ddx �f(�)� �f 0(�)�����=Æw[J℄=ÆJ : (D.7)Moreover, e�N2��f [�℄ = Z [dJf ℄e�N2wf [Jf ℄+N2 R ddxJf�= Z [dJ ℄e�N2wf [J℄e�N2 R ddx(f(�)��f 0(�))eN2 R ddx(J�f 0(�))�= e�N2��[�℄�N2 R ddxf(�); (D.8){ 43 {



where we have used [dJf ℄ = [dJ ℄. Therefore,��f [�℄ = ��[�℄ + Z ddxf(�); (D.9)or equivalently V fe�(�) = Ve�(�) +N2f(�): (D.10)These results rely only on the existene of a large-N limit and are independent of theAdS/CFT orrespondene. However, they allow for an elegant reformulation of Witten's[43℄ presription for inorporating multi-trae operators in the AdS/CFT orrespondene.Reall, that in the supergravity approximation, one omputes the renormalized on-shellsupergravity ation I[�℄, whih is a funtional of �� only sine �+ is expressed in termsof �� by requiring regularity in the interior. Equipped with the renormalized on-shellsupergravity ation, the AdS/CFT presription for multi-trae operators an be stated asfollows, depending on the �� quantization:For the � = �+ quantization, one identi�es the generating funtional of the unde-formed theory as W [J ℄ � I[��℄j��=J : (D.11)For the deformed theory, Witten's presription amounts to settingWf [Jf ℄ � I[��℄j��=���(Jf )= I[��℄j��=J + Z ddx �f(�)� �f 0(�)�����=ÆI[��℄=Æ��j��=J ; (D.12)where ���(Jf ) is the solution to �� = Jf + f 0�ÆI[��℄Æ�� � : (D.13)Noting that �� = J and ÆI[��℄Æ�� = �, this equation is preisely equation (D.6), thus jus-tifying this presription for the inorporation of multi-trae operators in the AdS/CFTorrespondene.For the � = �� quantization, one merely needs to replae I[��℄ with the Legen-dre transform �I [ ���℄ de�ned in (6.21,6.22,6.23). Namely, the generating funtional of theundeformed theory is now given byW [ �J ℄ � �I[ ���℄j���= �J ; (D.14)while the e�etive ation is given by the on-shell ation�[��℄ = I[��℄: (D.15)For the deformed theory then W �f [ �J �f ℄ � �I[ ���℄j���=����( �J �f ); (D.16)
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