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Non-Supersymmetri
 Membrane Flows from FakeSupergravity and Multi-Tra
e Deformations
Ioannis PapadimitriouDESY Theory Group,Notkestrasse 85,D-22603 Hamburg, GermanyandCenter for Mathemati
al Physi
s,Bundesstrasse 55,D-20146 Hamburg, Germany.ioannis.papadimitriou�desy.deAbstra
t: We use fake supergravity as a solution generating te
hnique to obtain a 
on-tinuum of non-supersymmetri
 asymptoti
ally AdS4 � S7 domain wall solutions of eleven-dimensional supergravity with non-trivial s
alars in the SL(8;R)=SO(8) 
oset. These solu-tions are 
ontinuously 
onne
ted to the supersymmetri
 domain walls des
ribing a uniformse
tor of the Coulomb bran
h of the M2-brane theory. We also provide a general argu-ment that under 
ertain 
onditions identi�es the fake superpotential with the exa
t large-Nquantum e�e
tive potential of the dual theory, des
ribing a marginal multi-tra
e deforma-tion. This identi�
ation strongly motivates further study of fake supergravity as a solutiongenerating method and it allows us to interpret our non-supersymmetri
 solutions as afamily of marginal triple-tra
e deformations of the Coulomb bran
h that 
ompletely breaksupersymmetry and to 
al
ulate the exa
t large-N anomalous dimensions of the opera-tors involved. The holographi
 one- and two-point fun
tions for these solutions are also
omputed.
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1. Introdu
tion and summary of resultsThe study of domain wall solutions of various supergravity theories has been stronglymotivated in re
ent years by the role these play in a variety of physi
al 
ontexts, from theAdS/CFT 
orresponden
e, where they des
ribe an RG 
ow of the 
onformal �eld theoryresiding on the 
onformal boundary of AdS, to `Brane World' s
enarios and 
osmologi
almodels (see [1℄ for an extensive review of domain walls of N = 1 supergravity in fourdimensions). Although, when they arise as solutions to a parti
ular supergravity theory,su
h domain walls are often supersymmetri
, this need not be the 
ase. Indeed, manynon-supersymmetri
 gravitational theories admit domain wall solutions as well. In thispaper, however, we will emphasize the fa
t that true supergravity theories also admit non-supersymmetri
 domain wall solutions, whi
h 
an be physi
ally important.We will fo
us on domain walls preserving Poin
ar�e invarian
e in d = D�1 dimensions,where D is the spa
etime dimension where the given gravitational theory lives. Su
hdomain walls take the form1ds2D = dr2 + e2A(r)�ijdxidxj ; �I = �I(r); (1.1)where � = diag (�1; 1; � � � ; 1) is the Minkowski metri
 in d dimensions. Sin
e only themetri
 and a number of s
alar �elds are involved in these solutions, they 
an generi
allybe des
ribed by an e�e
tive gravitational theory with an a
tion of the formS = ZM dDxp�g� 12�2DR� 12GIJ(�)g�����I���J � V (�)� ; (1.2)where �2D = 8�GD is the e�e
tive gravitational 
onstant and GIJ is a generi
 (Riemannian)metri
 on the s
alar manifold. Su
h theories arise naturally as 
onsistent trun
ations ofvarious gauged supergravities, in whi
h 
ase the s
alar potential is generated by the non-trivial gauging of (some of) the isometries of the s
alar manifold. Generi
ally, however, thise�e
tive des
ription will only be valid lo
ally in the moduli spa
e of a given supergravitytheory [3℄. Here we are interested in the appli
ation of domain walls to the AdS/CFT
orresponden
e and so we assume that the metri
 (1.1) is asymptoti
ally AdS, whi
h isequivalent to the statement that A(r) � r as r !1. This in turn implies that the s
alarpotential V (�) has at least one stable �xed point at �I = �I� su
h that V (��) < 0. By areparameterization of the s
alar manifold we 
an set �I� = 0. If this potential arises fromsome gauged supergravity, this �xed point 
orresponds to the maximally symmetri
 AdSDva
uum.The equations of motion following from the a
tion (1.2) are Einstein's equationsR�� � 12Rg�� = �2DT�� ; (1.3)with the stress tensor given byT�� = GIJ(�)���I���J � g�� �12GIJ(�)g�����I���J + V (�)� ; (1.4)1More general domain walls with a di�erent isometry do exist, as is dis
ussed e.g. in [2℄, but we will notdis
uss them here. { 2 {



and r� �GIJ(�)���J�� 12 �GLM��I g�����L���M � �V��I = 0: (1.5)Substituting the domain wall ansatz (1.1) into the equations of motion one obtains thefollowing equations for the warp fa
tor A(r) and the s
alar �elds �I(r):_A2 � �2d(d � 1) �GIJ(�) _�I _�J � 2V (�)� = 0;�A+ d _A2 + 2�2d� 1V (�) = 0;GIJ(�)��J + �GIJ��K _�K _�J � 12 �GLM��I _�L _�M + d _AGIJ(�) _�J � �V��I = 0; (1.6)where the dot denotes the derivative with respe
t to the radial 
oordinate r.It is important to distinguish between two types of solutions of these se
ond orderequations. Following [4℄ we will 
all a `BPS domain wall' any domain wall of the form (1.1)whi
h satis�es the �rst order equations_A = � �2d� 1W (�);_�I = GIJ(�)�W��J ; (1.7)for some fun
tion W (�) of the s
alar �elds su
h that the s
alar potential 
an be expressedas V (�) = 12 �GIJ(�)�W��I �W��J � d�2d� 1W 2� : (1.8)Note that the �rst order equations (1.7) together with (1.8) ensure that the se
ond or-der equations (1.6) are automati
ally satis�ed. Given the expression (1.8) for the s
alarpotential in terms of the fun
tionW , the �rst order equations (1.7) 
an be derived �a la Bo-gomol'nyi by extremizing the energy fun
tional E[A;�℄ that has (1.6) as its Euler-Lagrangeequations [4, 5℄. In the 
ontext of gauged supergravity, a fun
tion W (�) satisfying (1.8)arises naturally as the superpotential, Wo(�), whi
h enters the gravitino and dilatino vari-ations Æ � = D�"� �22(d� 1)Wo(�)
�"; (1.9)Æ�I = �
����I + GIJ(�)�Wo��J � ": (1.10)It follows that the domain walls de�ned by the superpotential Wo(�) are supersymmetri
solutions of the parti
ular gauged supergravity. Cru
ially, however, equation (1.8) does notde�ne the fun
tion W (�) uniquely and hen
e there may generi
ally exist other fun
tionsW (�) satisfying (1.8) in addition to Wo(�).2 This has been termed fake supergravity and in2Note, however, that not every fun
tionW (�) that satis�es (1.8) is a

eptable, sin
e it will not generi
ally
orrespond to an asymptoti
ally AdS domain wall. We will dis
uss in detail the 
onditionsW (�) must satisfybelow. See also [2, 4℄. { 3 {



this 
ontext any fun
tionW (�) that solves (1.8) is 
alled a fake superpotential [2, 3, 6, 7℄. In[7℄ it was shown that any BPS Poin
ar�e domain wall of the form (1.1), de�ned by a fun
tionW (�) whi
h is not ne
essarily the true superpotential of a given gauged supergravity, is`supersymmetri
' in the sense that one 
an always �nd Killing spinors, at least lo
ally.In [7℄ this was 
onsidered as an indi
ation that any fun
tion W (�) that solves (1.8) (andpossibly subje
t to suitable boundary 
onditions) may be the true superpotential of somesupergravity theory, even though there is no systemati
 way to �nd whi
h is the relevant,known or unknown, theory [8℄. Despite the elegan
e of this statement, it is diÆ
ult inpra
ti
e to 
on�rm or refute it. We will adopt a rather di�erent point of view here,however. Namely, we will 
on�ne ourselves to a parti
ular gauged supergravity, with a
ertain superpotentialWo(�). Clearly, any BPS domain wall de�ned by a solutionW (�) 6=Wo(�) of (1.8) is not supersymmetri
 in this 
ontext. We will nevertheless 
ontinue to
all su
h solutions `BPS' sin
e they satisfy the �rst order equations (1.7). They are stillspe
ial solutions be
ause they allow for the de�nition of fake Killing spinors via (1.9) withWo(�) repla
ed by the fake superpotentialW (�) [2℄.3 The existen
e of fake Killing spinorsimplies, in parti
ular, non-perturbative gravitational stability, at least in the absen
e ofnaked singularities [9, 4, 2℄.If the s
alar potential 
annot be written in the form (1.8), however, there 
an stillexist domain wall solutions of the form (1.1) that solve the se
ond order equations (1.6).We will refer to su
h solutions as `non-BPS domain walls'.4 We will not 
onsider furthersu
h domain walls here sin
e we are interested in s
alar potentials that arise from gaugedsupergravities, and su
h potentials are guaranteed to be expressible in the form (1.8) sin
ethis is at least possible using the true superpotential Wo(�).5Although one often views fake supergravity as an e�e
tive subse
tor of some gaugedsupergravity, by identifying both the s
alar potential and the fake superpotential of fakesupergravity with the true potential and superpotential respe
tively of the gauged super-gravity [4, 3, 6℄, we will instead treat fake supergravity as a powerful solution generatingte
hnique for non-supersymmetri
 solutions of a given gauged supergravity. In parti
ular,we will treat (1.8) as a �rst order non-linear di�erential equation for the fake superpotentialW (�) [10, 11, 2, 12℄ (see also [13℄ where a very similar perspe
tive is adopted). For s
alarpotentials arising from some gauged supergravity this equation admits at least one solution,namely the true superpotential of the theory. Our aim here will be to determine all so-lutions of (1.8) satisfying appropriate boundary 
onditions. Ea
h solution W (�) 6= Wo(�)de�nes a non-supersymmetri
 domain wall solution of the given gauged supergravity, andtherefore des
ribes a non-supersymmetri
 RG 
ow of the dual �eld theory.The paper is organized as follows. In the next se
tion we will dis
uss a 
ommonsubse
tor of gauged maximal supergravities in dimensions D = 4; 5; 7 with the s
alar3Note that our fake superpotential di�ers by a fa
tor of � 2(d�1)�2 relative to the fake superpotentialde�ned in [2℄. The super
ovariant derivative is uniquely determined, however, by the requirement that itredu
es to that of pure AdS, namely (D� + 12l
�)", when the s
alar �elds vanish.4Note though the analysis of [7℄, whi
h suggests that any potential that admits domain wall solutions
an be written in the form (1.8) and so there are no `non-BPS' domain walls.5Generi
ally the superpotential Wo(�) will be a matrix, however, instead of a s
alar quantity. See e.g.[2℄. { 4 {



�elds parameterizing an SL(N;R)=SO(N) 
oset, where N = 8; 6; 5 respe
tively. The
omplete non-linear ansatz for uplifting any solution of this subse
tor to eleven-dimensionalor Type IIB supergravity is known [14, 15℄, and all supersymmetri
 Poin
ar�e domain walls,des
ribing a uniform subse
tor of the Coulomb bran
h of respe
tively the M2-, D3-, orM5-brane theory have been 
onstru
ted [16, 17, 18, 14, 5℄. In Se
tion 3 we solve equation(1.8) with the s
alar potential of gauged supergravity as a di�erential equation for the fakesuperpotentialW (�), subje
t to suitable boundary 
onditions. We show that analyti
 non-supersymmetri
 solutions exist only in dimensionD = 4, while the superpotentialWo is theonly analyti
 solution of (1.8) for D = 5; 7. In Se
tion 4 we systemati
ally dis
uss how toobtain these non-supersymmetri
 solutions in four dimensions in 
losed form by 
onsistentlyredu
ing the number of s
alar �elds, and we solve (1.8) exa
tly, obtaining a family of exa
tfake superpotentials, for a spe
ial 
ase involving a single s
alar �eld. We then uplift thissolution to eleven dimensions in Se
tion 5 using the ansatz dis
ussed in Se
tion 2 and,noting that the MTZ bla
k hole [19℄ in four dimensions is interestingly a solution of exa
tlythe same a
tion as our exa
t domain wall, we also give the eleven-dimensional bla
k holesolution (given expli
itly in Appendix B). The holographi
 one- and two-point fun
tionsfor the non-supersymmetri
 domain walls are then 
omputed respe
tively in Se
tions 6 and7. Finally, in Se
tion 8 we show that under 
ertain 
ir
umstan
es the fake superpotentialW (�) that solves (1.8) and 
orresponds to an asymptoti
ally AdS domain wall, de�nes amarginal multi-tra
e deformation of the dual �eld theory. This means that solving equation(1.8) as a di�erential equation for the fake superpotential not only is interesting as a methodfor �nding exa
t non-supersymmetri
 supergravity solutions, but also, these solutions 
anoften be interpreted as the exa
t holographi
 duals of a marginal multi-tra
e deformation ofthe boundary theory. Applying this observation to the non-supersymmetri
 domain wallswe have 
onstru
ted leads to the 
on
lusion that they 
orrespond to a 
ontinuous familyof marginal triple-tra
e deformations of the Coulomb bran
h of the M2-brane theory. Anumber of te
hni
al results are 
olle
ted in the appendi
es.2. The SL(N;R)=SO(N) se
tor of gauged maximal supergravity and itshigher-dimensional originThe s
alar manifold of D-dimensional maximal supergravity is the 
oset E11�D(11�D)=K,where En(n) is the maximally non-
ompa
t form of the ex
eptional Lie groupEn andK is itsmaximal 
ompa
t subgroup.6 Following [18, 14, 5℄, we spe
ialize to an SL(N;R) subgroupof E11�D, where N = 4(D � 2)=(D � 3), and 
onsider the 12N(N + 1) � 1 s
alars of the
oset SL(N;R)=SO(N). This s
alar se
tor is 
ommon to all maximal supergravities in anydimension. In parti
ular, for D = 7 we 
onsider SL(5;R) �= E4, for D = 5 SL(6;R) � E6and for D = 4 SL(8;R) � E7.The Lagrangian density des
ribing this se
tor of the gauged version of maximal super-6For n < 6 the following identi�
ations are made E5 �= D5; E4 �= A4; E3 �= A2 �A1; E2 �= A1 � R andE1 �= R. { 5 {



gravity in D dimensions, where the SO(N) symmetry is gauged, ise�1LD = 12�2DR+ 18�2D tr ���M��M�1�� V; (2.1)where M = STS is a symmetri
 N �N matrix, with S in the fundamental representationof SL(N;R), and the potential V takes the form7V = �(D � 3)216�2Dl2D �(trM)2 � 2tr (M2)� : (2.2)In these expressions the tra
e is taken in the fundamental of SL(N;R). Using an SO(N)rotation, the matrix M 
an be diagonalized so thatM = diag(X1; : : : ;XN ); (2.3)where the N s
alars Xi satisfy the 
onstraintdetM = NYi=1Xi = 1: (2.4)It might be useful to note that in terms of the non-trivial s
alars that we have kept at thispoint, the symmetri
 tensor Tij parameterizing the full s
alar manifold of the maximal su-pergravity takes the form Tij = XiÆij . The N 
onstrained s
alars Xi 
an be parameterizedby N � 1 independent s
alar �elds, 'I , I = 1; : : : ; N � 1, asXi = e� 12~bi�~'; (2.5)where the N ve
tors ~bi are (up to a fa
tor of 2) the weight ve
tors of the fundamentalrepresentation of SL(N;R) and they satisfy~bi �~bj = 8Æij � 8N ; NXi=1 ~bi = 0; NXi=1 biIbiJ = 8ÆIJ : (2.6)After diagonalizing the matrix M and dropping the kineti
 terms for the originalo�-diagonal s
alars whi
h de
ouple, the Lagrangian (2.1) be
omese�1LD = 12�2DR� 14�2D N�1XI=1 ��'I��'I � V; (2.7)where the potential is now given byV = �(D � 3)216�2Dl2D  ( NXi=1 Xi)2 � 2 NXi=1 X2i ! : (2.8)7Note that the AdSD radius, lD, is related to the 
oupling g in [14, 15℄ by lD = (D � 3)=2g.{ 6 {



This Lagrangian, whi
h is a spe
ial 
ase of (1.2), falls into the framework of fake super-gravity des
ribed in the previous se
tion. In order to make 
onta
t with our notation inthe previous se
tion we also de�ne the res
aled s
alars�I � 1p2�D'I ; (2.9)whi
h have a 
anoni
ally normalized kineti
 term.The equations of motion for this gravity-s
alar system 
an be written asR�� = 14 NXi=1 X�2i ��Xi��Xi + 2�2DD � 2V g�� ;� logXi = (D � 3)22l2D 0�2X2i �Xi NXj=1Xj � 2N NXj=1X2j + 1N ( NXj=1Xj)21A : (2.10)The se
ond of these equations 
an be derived by starting from the equation of motion forthe independent s
alar �elds 'I ,�'I = (D � 3)28l2D NXi=1 biIXi( NXj=1Xj � 2Xi); (2.11)noti
ing that the last equation in (2.6) implies that�'I = �14 NXi=1 biI logXi; (2.12)and adding a term to ensure that the sum over i is zero, in agreement with the 
onstraint(2.4).The gravity-s
alar theory we have just dis
ussed was obtained as a 
onsistent trun-
ation of gauged maximal supergravity in D dimensions. However, the maximal gaugedsupergravities in D = 4 and D = 7 are known to arise themselves as 
onsistent trun
ationsto the massless �elds of the Kaluza-Klein 
ompa
ti�
ation of eleven-dimensional super-gravity on S7 and S4 respe
tively [20, 21, 22℄. Moreover, the gauged maximal supergravityin D = 5 is also believed to arise as an S5 redu
tion of Type IIB supergravity, althougha full proof is still la
king. It is therefore expe
ted that the above gravity-s
alar theoryshould also be obtainable dire
tly as a 
onsistent trun
ation of eleven-dimensional or TypeIIB supergravity. Indeed, the full non-linear ansatz for this redu
tion, valid for any D,was given in [14℄ and it was later proved in [15℄ that this is a 
onsistent trun
ation ofthe higher-dimensional theory, that is, the equations of motion of the higher dimensionaltheory with the ansatz (2.13) are satis�ed if and only if the equations of motion for thegravity-s
alar system (2.10) are satis�ed in D dimensions.The redu
tion ansatz given in [14℄ isdŝ2 = � 2D�1ds2D + 4l2D(D � 3)2��(D�3D�1) NXi=1 X�1i d�2i ; (2.13)F̂ (D) = (D � 3)2lD NXi=1(2X2i �2i ��Xi)�(D) � lD(D � 3) NXi=1 X�1i �D dXi ^ d(�2i );
{ 7 {



where � = NXi=1 Xi�2i ; (2.14)and �i stand for a set of N dire
tion 
osines satisfyingNXi=1 �2i = 1: (2.15)Moreover, �(D) denotes the volume form of the metri
 ds2D, while the �eld strength F̂ (D)is identi�ed with the M-theory four-form for D = 4, its Hodge dual for D = 7, and withthe self-dual �ve-form of IIB supergravity for D = 5.3. All asymptoti
ally AdS Poin
ar�e domain walls of the SL(N;R)=SO(N)se
torFrom the dis
ussion of the previous se
tion we know that any solution of the equations ofmotion (2.10) in D dimensions 
an be uplifted to solutions of either eleven-dimensionalor Type IIB supergravity. In parti
ular, any Poin
ar�e domain wall of the form (1.1)
orresponds to a solution of the higher-dimensional theory. Indeed, all supersymmetri
asymptoti
ally AdSD domain walls in D = 4; 5; 7 have been 
onstru
ted [18, 14, 5℄.8These domain walls solve the �rst order equations (1.7) with the true superpotential ofthe SL(N;R)=SO(N) se
tor of gauged maximal supergravity, whi
h takes the formWo = �(D � 3)4�2DlD NXi=1 Xi: (3.1)It 
an be easily veri�ed that this superpotential solves (1.8) with the s
alar potential (2.8).The uplifted solutions are asymptoti
ally AdS4�S7, AdS5�S5 or AdS7�S4 and 
orrespondto 
ontinuous distributions of parallel M2-, D3- or M5-branes respe
tively. Generi
ally,they 
ontain naked null singularities, 
orresponding to the lo
ation of the 
ontinuous branedistribution.It was argued in [18, 14, 5℄, following [16, 17℄, that these supersymmetri
 solutionsdes
ribe the RG 
ow of the dual CFTs due to the VEV of the s
alar operators dual tothe SL(N;R)=SO(N) s
alars, with the VEVs de�ned by the brane distribution. Althoughin D = 5; 7 this interpretation is unique due to the unambiguous identi�
ation of theSL(N;R)=SO(N) s
alars as dual to operators of dimension 2 and 4 respe
tively, in D = 4there is an ambiguity in the dimension of the operators dual to the SL(8;R)=SO(8) s
alars.This be
ause, as we will explain in detail below, the s
alar potential (2.8) implies thatthe SL(N;R)=SO(N) s
alars, ex
ept for D = 5 in whi
h 
ase the mass saturates theBreitenlohner-Freedman (BF) bound [23℄, have a mass that allows their asso
iation withoperators of two possible dimensions instead of one [24℄. ForD = 7, however, this ambiguityis removed by symmetry. Namely, only the s
alars of dimension 4 appear in the massless8The 
ase D = 6, 
orresponding to an S4 redu
tion of massive Type IIA was also 
onsidered in [14℄.{ 8 {



N = 2 supermultiplet. For D = 4 the 35 dimension 1 s
alars and the 35 dimension 2s
alars both appear in the massless N = 8 supermultiplet on an equal footing. Therefore,although the interpretation of these solutions in terms of VEVs for the dual operatorsremains 
orre
t, for D = 4 there is a se
ond possible interpretation in terms of deformationsof the CFT Lagrangian. We will analyze this issue 
arefully below, when we 
ompute in
omplete generality the VEVs of the possible dual operators.In this se
tion, however, we will try to systemati
ally �nd all asymptoti
ally AdSPoin
ar�e domain wall solutions of the SL(N;R)=SO(N) se
tor, and in parti
ular, all non-supersymmetri
 ones. In other words, we will determine the most general fake superpoten-tial W (�) satisfying (1.8) with the s
alar potential given by (2.8).9 We will �nd that forD = 5 and D = 7, there are no analyti
 non-supersymmetri
 asymptoti
ally AdS Poin
ar�edomain walls. For D = 4, however, we will show that there exists a 
ontinuum of analyti
non-supersymmetri
 domain walls, 
ontinuously 
onne
ted to the supersymmetri
 ones, aswell as, a number of isolated non-supersymmetri
 domain walls.Equation (1.8) is a �rst order non-linear PDE in N � 1 variables for the fake super-potential W (�), and as su
h, solving this equation in full generality for W (�) seems arather formidable task. However, not all solutions (1.8) are physi
ally admissible, if oneis interested in asymptoti
ally AdS domain walls. In parti
ular, the requirement that thedomain walls de�ned by W (�) via (1.7) asymptote to AdS spa
e as �I ! 0 implies thatW (0) = �(d� 1)�2DlD : (3.2)In addition we will assume that W (�) admits a Taylor expansion around the maximallysymmetri
 �xed point of V (�) 
orresponding to �I = 0, namelyW (�) = 1Xn=0W (n)I1:::In�I1 � � ��In ; (3.3)where all 
oeÆ
ients are 
ompletely symmetri
 in their indi
es, and W (0) =W (0) is givenby (3.2). Within this framework, analyzing (1.8) in full generality is now tra
table.We start by Taylor expanding the s
alar potential (2.8) around �I = 0. We �ndV = 1Xn=0 V (n)I1:::In�I1 � � ��In (3.4)= �d(d� 1)2�2Dl2D + 12m2I�I�I � (d� 2)(d � 3)p2�D48l2D NXi=1 biIbiJbiK�I�J�K +O(�4);where m2I l2D = �I(�I � d) = 2(2 � d). Inserting the expansions for V (�) and W (�) in(1.8) and mat
hing powers one obtains the following re
ursion relations for the 
oeÆ
ients9As we have mentioned already, the fake superpotential 
an in general be matrix valued, but we willonly analyze the 
ase of a s
alar fake superpotential here.{ 9 {



W (n): nXm=0 �(m+ 1)(n�m+ 1)W (m+1)(I1:::ImJW (n�m+1)JIm+1:::In)s� d�2Dd� 1W (m)(I1:::ImW (n�m)Im+1:::In)s� = 2V (n); (3.5)where (: : :)s denotes symmetrization with weight 1. For n = 0 the re
ursion relations giveW (1)JW (1)J � d�2Dd� 1W (0)2 = 2V (0): (3.6)Using the values for W (0) and V (0) from (3.2) and (3.4) we dedu
e thatW (1)I = 0: (3.7)Sin
e V (1)I = 0, whi
h is guaranteed on general grounds by the requirement that AdS is a�xed point of the s
alar potential, the equation for n = 1, whi
h reads�2W (2)IJ + dlD ÆIJ�W (1)J = V (1)I ; (3.8)is automati
ally satis�ed. Using the fa
t that W (1)I = 0, the next two equations now takethe form n = 2 : �2W (2)IJ + dlD ÆIJ�W (2)JK = V (2)IK ; (3.9)n = 3 : �6W (2)IJ + dlD ÆIJ�W (3)JKL = V (3)IKL; (3.10)while for higher n the re
ursion relations give�2nW (2)IJ + dlD ÆIJ�W (n)JK1:::Kn�1 + : : : = V (n)IK1:::Kn�1 ; (3.11)where the dots stand for terms involving the 
oeÆ
ients W (m) withm < n. It follows that,given the symmetri
 matrix W (2)IJ , the re
ursion relations uniquely determine all higher
oeÆ
ients of W (�), unless the matrix�2nW (2)IJ + dlD ÆIJ� ; (3.12)has some zero eigenvalues for some n > 2. To address the question if and when this 
anhappen we �rst have to solve equation (3.9) whi
h determines W (2)IJ .From (3.4) we see that V (2)IJ = � (d�2)l2D ÆIJ . Sin
e W (2)IJ is a symmetri
 matrix it 
anbe diagonalized by an orthogonal matrix RIJ . Su
h a (rigid) rotation in the spa
e of theN � 1 independent s
alars would leave the form of the potential invariant sin
e it simplyrotates the weights bi, while preserving the relations (2.6). Hen
e, we 
an take W (2)IJ to{ 10 {



be diagonal: W (2)IJ = wIÆIJ . Equation (3.9) then redu
es to N � 1 de
oupled equationsfor the diagonal 
omponents, wI , of W (2)IJ , namely(2wI + d=lD)wI + (d� 2)=l2D = 0; I = 1; : : : ; N � 1; (3.13)where there is no summation implied in this equation. The roots of this equation arewI = w�, where w+ = �1=lD, w� = �(d � 2)=2lD , and hen
e, for d 6= 4, there are 2N�1independent solutions W (2) = diag (w�; : : : ; w�), 
orresponding to the possible distribu-tions of w� along the diagonal. For d = 4 however, w+ and w� 
oin
ide and there is aunique solution for W (2). It follows that the matrix (3.12) is diagonal with diagonal values2nw� + d=lD. Now, 2nw+ + d=lD = (d� 2n)=lD 
an vanish if d is even, i.e. d = 4; 6 sin
ewe are interested in the 
ases d = 3; 4; 6. Similarly, 2nw� + d=lD = (d � n(d� 2))=lD 
anvanish if d=(d�2) is integer, i.e. for d = 3; 4. However, in either 
ase, d = 4 requires n = 2,whi
h is ex
luded sin
e we have already determined W (2). It follows that for d = 4, thetrue superpotentialWo given in (3.1) is the unique (physi
al) solution of (1.8). For d = 3; 6,however, we have seen that there are 2N�1 
hoi
es for W (2) and for ea
h of them thereis possibly some freedom in the value of W (3) due to the vanishing of some of the eigen-values of the matrix (3.12), but all higher 
oeÆ
ients in W (�) are 
ompletely determinedon
e a 
hoi
e for W (2) and W (3) has been made. Equation (3.10) however imposes further
onstraints. Noti
ing from (3.4) that V (3) vanishes for d = 3 but not for d > 3, equation(3.10) implies that for d = 6, the matrix (3.12) must have no zero eigenvalues and thereforeboth W (2) = diag (w�; : : : ; w�) and W (3) are uniquely determined. So, as for d = 4, Wo in(3.1) is the unique solution of (1.8). For d = 3, however, V (3) vanishes identi
ally and soeither the matrix (3.12) vanishes identi
ally or W (3) vanishes identi
ally. In the �rst 
aseW (2) = diag (w�; : : : ; w�) and W (3) is arbitrary, while in the se
ond 
ase W (3) = 0 andW (2) 
an be any of the 27 possible diagonal matri
es. We 
on
lude that d = 3 is the only
ase whi
h allows additional Poin
ar�e domain wall solutions beyond the supersymmetri
ones 
orresponding to the superpotential (3.1). We will now examine these solutions more
losely and 
onstru
t expli
itly as many of these as possible.4. The non-supersymmetri
 Poin
ar�e domain walls in D = 4As we have just shown, only in four dimensions (d = 3) are there physi
ally a

eptable so-lutionsW (�) to (1.8), in addition to the supersymmetri
 solution (3.1). These solutions fallinto two general 
lasses. The �rst 
ase is when W (3) = 0 and W (2) = diag (w�; : : : ; w�),where all signs are 
hosen independently. There are therefore 27 su
h solutions 
orre-sponding to the di�erent 
hoi
es of the signs in W (2). However, sin
e all seven s
alars areequivalent, only 8 solutions are distin
t, namely the ones 
orresponding to having n + signsand 7 � n � signs, with n = 0; : : : ; 7. However, the solution where all signs are minus is
overed by the se
ond 
ase, where W (2) = diag (w�; : : : ; w�) and W (3) is arbitrary. Thereare therefore only 7 distin
t solutions in the �rst 
lass. For the se
ond 
lass there is aunique 
hoi
e for W (2), but W (3) is 
ompletely arbitrary.10 Sin
e W (3) is a 
ompletely10Note however that restri
tions on W (3) 
an arise as non-perturbative (in the s
alar �elds) e�e
ts. Wewill see how this happens in an exa
tly solvable 
ase below.{ 11 {



symmetri
 tensor of rank three, it has 13!(N � 1)N(N + 1) = 84 independent 
omponents.There is therefore an 84-parameter family of solutions in this 
ase. Note that this familyis 
ontinuously 
onne
ted to the supersymmetri
 solution 
orresponding to (3.1) sin
e Woalso has W (2) = diag (w�; : : : ; w�). (See (6.10) below for the Taylor expansion of Wo.)All these solutions 
an be 
onstru
ted systemati
ally using the re
ursion relations (3.5).However, obtaining the solutions in 
losed form by summing up the Taylor expansion isnot very easy, if at all possible. We 
an, however, obtain in 
losed form a sub
lass of thesesolutions by going ba
k to equation (1.8) and try to solve it exa
tly by �rst redu
ing thenumber of dynami
al s
alar �elds in a way that is 
onsistent with the equations of motion.A systemati
 way for doing this is setting some of the eight s
alar �elds Xi equal to ea
hother in all possible ways. Note that this is 
onsistent with the equations of motion (2.10).The independent ways to set a number of the s
alars Xi equal is to 
onsider all possiblen-partitions of 8. Ea
h n-partition 
orresponds to an independent way to keep n � 1dynami
al s
alar �elds. Table 1 lists all su
h partitions, together with the 
orrespondingisometry group [5℄. We will attempt to �nd a 
losed form for the above solutions onlyn partition of 8 s
alar �elds isometry group1 8 0 SO(8)2 1+7 1 SO(7)2+6 SO(2) � SO(6)3+5 SO(3) � SO(5)4+4 SO(4) � SO(4)3 1+1+6 2 SO(6)1+2+5 SO(2) � SO(5)1+3+4 SO(3) � SO(4)2+2+4 SO(2) � SO(2) � SO(4)2+3+3 SO(2) � SO(3) � SO(3)4 1+1+1+5 3 SO(5)1+1+2+4 SO(2) � SO(4)1+1+3+3 SO(3) � SO(3)1+2+2+3 SO(2) � SO(2) � SO(3)2+2+2+2 SO(2) � SO(2) � SO(2)� SO(2)5 1+1+1+1+4 4 SO(4)1+1+1+2+3 SO(2) � SO(3)1+1+2+2+2 SO(2) � SO(2) � SO(2)6 1+1+1+1+1+3 5 SO(3)1+1+1+1+2+2 SO(2) � SO(2)7 1+1+1+1+1+1+1+2 6 SO(2)8 1+1+1+1+1+1+1+1+1 7 -Table 1: The possible ways to redu
e the number of dynami
al s
alar �elds Xi, by setting anumber of these equal to ea
h other, 
orrespond to the di�erent partitions of 8. The resultingisometry group is also shown.
{ 12 {



for the 
ases with a single dynami
al �eld, however. As we will see, even this seeminglyinno
uous 
ase, requires 
onsiderable e�ort.4.1 Domain walls with a single s
alarThe four distin
t one-s
alar trun
ations in Table 1 are obtained by setting X1 = : : : =Xk � X, Xk+1 = : : : = X8 = X�k=(8�k), where k = 4; 5; 6; 7. In this se
tion we will keep kas a parameter, however, so that we 
an dis
uss all four 
ases simultaneously. The s
alarpotential (2.8), whi
h for general k takes the form11V = � 116�2l2 �k(k � 2)X2 + 2k(8� k)X�2(k�4)=(8�k) + (8� k)(6 � k)X�2k=(8�k)� ;(4.1)is shown expli
itly for ea
h of the four 
ases in Table 2. It is useful to parameterize thek isometry group �16�2l2V �xed points7 SO(7) 35X2 + 14X�6 �X�14 X = 1; 1=51=86 SO(2)� SO(6) 24 �X2 +X�2� X = 1 (double)5 SO(3)� SO(5) 3 �5X2 +X�10=3 + 10X�2=3� X = 14 SO(4)� SO(4) 8 �X2 +X�2 + 4� X = 1 (double)Table 2: The s
alar potential for the four possible one-s
alar trun
ations. Note that the �xedpoint X = 1, 
ommon to all potentials, 
orresponds to the AdS �xed point at � = 0.single s
alar �eld X in terms of a s
alar with a 
anoni
al kineti
 term asX = eq 8�k2k ��: (4.2)Equation then (1.8) takes the formV = �24 �(8� k)k (X�XW )2 � 3W 2� : (4.3)Moreover, the superpotential (3.1) be
omesWo = � 14�2l �kX + (8� k)X� k(8�k)� ; (4.4)and it is easily seen to be a solution of (4.3).We have seen above that there exists a one-parameter family of fun
tions W (�;�)whi
h 
ontains Wo(�) as a spe
ial 
ase. In parti
ular, the Taylor expansions of W (�;�)around � = 0, for a generi
 value of the free parameter �, and of Wo(�) have the same11From now on we drop the subs
ript D in the gravitational 
onstant � and the AdS radius l sin
e wewill always work in D = 4. { 13 {



quadrati
 term, 
orresponding to w� in the notation of the previous se
tion.12 In addition,however, there exists another isolated solution, fWo(�), whose quadrati
 term 
orrespondsto w+ and whose 
ubi
 term vanishes. The Taylor expansions of W (�;�) and fWo(�)around � = 0 are therefore not 
ontinuously 
onne
ted. This though does not ex
lude thepossibility that, non-perturbatively in �, W (�;�) and fWo(�) are 
ontinuously 
onne
ted.Remarkably, we will see below in an example where the exa
t one-parameter familyW (�;�)
an be obtained exa
tly that W (�;�) interpolates between the supersymmetri
 solutionWo(�) and fWo(�).In the next se
tion we will address systemati
ally the problem of solving equation(4.3) exa
tly. For the moment, however, we 
an use the fa
t that W (�;�) is 
ontinuously
onne
ted to Wo(�) in order to obtain W (�;�) in an expansion in the free parameter �,for general k. Obviously, this approa
h 
an provide no information on fWo(�). We start bywriting W (�;�) in a formal asymptoti
 expansion as13W (�;�) =Wo(�) + 1Xn=1� �132�2l�n (�� �o)nW (n)(�); (4.5)where, �o = �(8 � k)(k � 4)k=24 and W (�;�o) � Wo(�). Inserting this expansion into(4.3) one obtains an in�nite set of linear equations for the fun
tions W (n)(�), namely�X�XWoX�X � 3k(8� k)Wo�W (n)+12 n�1Xm=1�X�XW (m)X�XW (n�m) � 3k(8� k)W (m)W (n�m)� = 0; (4.6)whi
h 
an be solved iteratively. For n = 1, this equation is homogeneous and its solutionis W (1) =  X 8(8�k) � 1X !3 : (4.7)Note that, as expe
ted from the general analysis above, W (1) = O(�3) as �! 0. For n > 1equation (4.6) is non-homogeneous but it 
an be solved with the help of an integratingfa
tor R = exp�� 3k(8� k) Z dXX2 Wo�XWo� = 1W (1) : (4.8)The solution then takes the formW (n) =W (1) Z dXX Qn(X)W (1)(X) + 
nW (1); (4.9)where 
n are 
onstants andQn = � 12X�XWo n�1Xm=1�X�XW (m)X�XW (n�m) � 3k(8� k)W (m)W (n�m)� : (4.10)12Re
all that the parameter � �rst enters in the 
ubi
 term in the Taylor expansion around � = 0.13The normalization of the free parameter is 
hosen so that it mat
hes the natural free parameter of theexa
t solution that we will present in the next se
tion for k = 6.{ 14 {



In parti
ular,W (2) = 6�2l X 8(8�k) � 1X !3� 1(8� k)X 4(k�2)(8�k) + 2(k � 4)(X 4(k�4)(8�k) � 1) + 1kX 4(k�6)(8�k) + 
2(k)� ;(4.11)where the term involving k�4 in the denominator is understood as the limit k ! 4, givinglogX, for the 
ase k = 4. Moreover, the 
onstant 
2(k) is not arbitrary. It is uniquely�xed by the requirement that W (2) does not 
ontribute to the 
ubi
 term in � of W (�;�),whi
h is ne
essary in order to identify (� � �o) (as opposed to some other fun
tion of �)with the free parameter of W . 
2(k) = � 8k(8� k) : (4.12)The same argument determines all 
onstants 
n in Qn. Putting everything together, tothis order we haveW (�;�) = � 14�2l �kX + (8� k)X� k(8�k)� (4.13)� 132�2l (�� �o) X 8(8�k) � 1X !3�1� 316(�� �o)� 1(8� k)X 4(k�2)(8�k)+ 2(k � 4)(X 4(k�4)(8�k) � 1) + 1kX 4(k�6)(8�k) � 8k(8� k)��+O �(�� �o)3� :Given this perturbative (in ���o) fake superpotential, we 
an immediately obtain the
orresponding domain wall solutions via the �rst order equations (1.7). We give expli
itlythe form of these ba
kgrounds to �rst order in � � �o in Appendix A, sin
e we will needthem for the 
omputation of the one- and two-point fun
tions of the �eld theory duals ofthese domain walls.4.2 Exa
t 
losed form solutionsHaving obtained a perturbative solution for W (�;�) for all possible values of k, let us nowtry to solve (4.3) exa
tly. This should determine not only the fullW (�;�), but also fWo(�).It was observed in [12℄ that for a single s
alar �eld, �, equation (1.8), with an arbitrarypotential, 
an be re
ast in a standard form by means of the �eld rede�nitions =r d�2d� 1�; y = 
oth(u); W = lv 
osh(u); (4.14)where v = ���2(d� 1)d�2l2 V�1=2 : (4.15)In terms of these variables, equation (1.8) takes the form14y0( ) = �v0v y � 1� (y2 � 1); (4.16)14Note that the obvious solutions y = �1 of this equation are reje
ted sin
e, via (4.14), they 
orrespondto u!1 and hen
e W !1. { 15 {



where the prime denotes derivative with respe
t to  . This equation is a spe
ial 
ase ofAbel's equation of the �rst kind [25℄y0 = f3( )y3 + f2( )y2 + f1( )y + f0( ); (4.17)where fi( ) are arbitrary fun
tions. Abel's equation 
an in turn be 
ast in the 
anoni
alform z0 = ~f3( )z3 + ~f1( )z + ~f0( ); (4.18)by means of the transformation y = z � f23f3 : (4.19)Clearly, equation (4.18) 
an be integrated dire
tly if either ~f3 or ~f0 vanish. Moreover, it
an also be integrated dire
tly if `Abel's invariant'I � �� ~f0 ~f 03 � ~f 00 ~f3 + 3 ~f0 ~f3 ~f1�327 ~f43 ~f50 ; (4.20)is a 
onstant [25℄. If it is not a 
onstant, however, no general solution of (4.18) is known. Inthat 
ase one 
an only hope that the equation at hand falls into one of the known integrable
lasses of Abel's equation, ea
h of whi
h has a very parti
ular way of solution that is notappli
able to other 
lasses. Some re
ent investigations and overviews of Abel's equationand its known integrable 
lasses 
an be found in [26, 25℄.In our 
ase, however, the fun
tions fi( ) are not 
ompletely arbitrary sin
e they areall related to the s
alar potential. Spe
i�
ally, from (4.16) we readf3 = �f1 = q0; f2 = �f0 = �1; (4.21)where q � log jvj. Moreover, one 
an easily 
ompute the tilded 
oeÆ
ients 
orrespondingto the transformed equation (4.18):~f3 = q0; ~f1 = � 13q0 (1 + 3q02); ~f0 = 13q02 (q00 + 2q02 � 2=9): (4.22)It follows that for a generi
 potential, and hen
e a generi
 q, Abel's invariant is not au-tomati
ally 
onstant. Requiring that it be a 
onstant, leads to a se
ond order, non-lineardi�erential equation for q0, whi
h seems more diÆ
ult to solve than the original �rst orderequation. However, as we have already pointed out, requiring that either ~f3 or ~f0 vanish,also leads to a solvable equation. These 
onditions lead to di�erential equations for thepotential, whi
h are easily solvable. In parti
ular, ~f3 = q0 = 0 gives the 
onstant potentialV = �d(d� 1)2�2l2 ; (4.23)
orresponding to exa
t AdS spa
e. More interesting is the 
ondition ~f0 = 13q02 (q00 + 2q02 �2=9) = 0, whi
h leads to the potentialV = �d(d� 1)2�2l2 
osh�2 3 � : (4.24)
{ 16 {



The observation that this potential leads to a soluble Abel's equation was the only motiva-tion for 
onsidering this potential in [12℄. Curiously, however, noting from (4.2) and (4.14)that, for d = 3, X and  are related byX = eq8�k3k  ; (4.25)the potential (4.24) is seen to be identi
al to the potential (4.1) for k = 6. Hen
e, at leastfor the 
ase k = 6, we are able to solve (4.3) exa
tly. However, the potential (4.1) withgeneri
 k givesq0 = v0v =rk(8� k)3  (k � 2)e16 =p3k(8�k) � 2(k � 4)e8 =p3k(8�k) � (6� k)(k � 2)e16 =p3k(8�k) + 2(8 � k)e8 =p3k(8�k) + (6� k)(8 � k)! :(4.26)One 
an now easily 
he
k that, ex
ept for k = 6 in whi
h 
ase ~f0 vanishes, Abel's invariantis not 
onstant for any value of k. As we dis
ussed already, this makes it mu
h harder tosolve (4.16) for the potential (4.1) with k 6= 6.To obtain the exa
t solution for the 
ase k = 6, we start by inserting the potential(4.24) in equation (4.16). The resulting equation takes the form21� s2 dsd� + 11� �2 ��s � 3� = 0; (4.27)where s = 1y ; � = tanh�2 3 � : (4.28)The general solution of this equation is [12℄s = �1� (1� �2)(1 + 2��+ �2)�1=2 ; (4.29)where � is an integration 
onstant. Sin
e the 
onformal boundary 
orresponds to � = 0,we 
an take � � 0. The 
hoi
e � � 0 is also possible but it is equivalent. The value of theintegration 
onstant � is then restri
ted by the requirement that 1+ 2��+ �2 � 0. This isguaranteed provided � � �1: (4.30)The fake superpotential is now obtained from (4.14) asW (�;�) = � 2�2l 1(1� �2)1=4 1p1� s2 : (4.31)Expanding this for small  , we see that the solution with the negative sign in (4.29) always
ontains a linear term in  and it is therefore reje
ted. For the positive sign solution we�nd W (�;�) = � 2�2l �1 + 16 2 + 127� 3 +O( 4)� ; (4.32)whi
h is pre
isely of the required form. We therefore expe
t that this is the full one-parameter family of fake superpotentials whose existen
e we predi
ted above on general{ 17 {



grounds and whi
h we 
omputed perturbatively in the free parameter. In parti
ular, itshould 
ontain the true superpotential (4.4), whi
h for k = 6 be
omesWo(�) = � 12�2l �3e =3 + e� � : (4.33)Indeed, this is the 
ase as it is easy to 
he
k that for � = �1, W (�;�) redu
es to Wo(�):W (�;�1) =Wo(�): (4.34)Sin
e W (�;�) is the most general solution, however, one wonders where is the solutionfWo(�) whi
h we have predi
ted and whose expansion around � = 0 should have a di�erentquadrati
 term from that of W (�;�). The answer is that fWo(�) is obtained from W (�;�)by sending � to in�nity:fWo(�) = lim�!1W (�;�) = � 2�2l 
osh3=2�2 3 � : (4.35)Expanding this for small  we �ndfWo(�) = � 2�2l �1 + 13 2 +O( 4)� : (4.36)This has pre
isely the desired form, namely a quadrati
 term 
orresponding to w+ anda vanishing 
ubi
 term. The fake superpotential W (�;�), therefore, interpolates betweenthe supersymmetri
 superpotential Wo(�) =W (�;�1) and fWo(�) =W (�;1).5. Exa
t non-supersymmetri
 membrane 
owsAll non-supersymmetri
 domain wall solutions we have obtained above in D = 4, in 
losedform or not, 
an in prin
iple be uplifted to asymptoti
ally AdS4 �S7 non-supersymmetri
solutions of eleven-dimensional supergravity using the ansatz (2.13). We will only upliftexpli
itly the 
losed form solutions we found in the previous se
tion, however. To do thiswe �rst need to determine the four-dimensional domain wall metri
s 
orresponding to theexa
t fake superpotentials for k = 6.Integrating the �rst order equations (1.7) using the fake superpotential (4.31) we �ndthat the full one-parameter family of Poin
ar�e domain walls takes the formds2� = 12�2 �1 + ��+p1 + 2��+ �2� l2d�2p1� �2(1 + 2��+ �2) + �2p1� �2 �ijdxidxj! ;� = r 32�2 tanh�1 �: (5.1)The integration 
onstant �2 
an be absorbed by a res
aling of the transverse 
oordinates xi,but we have introdu
ed it for reasons that will be
ome 
lear soon. Namely, for any �nitevalue of �, and taking �2 = 1, the metri
 (5.1) is asymptoti
ally AdS with 
anoni
al radial{ 18 {




oordinate � � e�r=l as �! 0. In parti
ular, the supersymmetri
 metri
 
orresponding to� = �1 reads ds2�1 = 1�2 � l2d�2p1 + �(1� �)3=2 +p1 + �(1� �)3=2�ijdxidxj� : (5.2)In order for the metri
 (5.1) to have a well-de�ned limit as �!1, however, we must take�2 � 
onst:=� as �!1. Taking �2 � 2=� and evaluating the limit �!1, (5.1) be
omesds21 = l2d�24�2p1� �2 + p1� �2� �ijdxidxj : (5.3)This is again an asymptoti
ally AdS metri
, but with 
anoni
al radial 
oordinate p� �e�r=l.Note that these metri
s are non-singular for 0 � � < 1. There is a singularity at� = 1, however, whi
h is in fa
t a 
urvature singularity from the four-dimensional pointof view and the s
alar �eld also diverges at this point. In fa
t, the 
urvature singularityof the supersymmetri
 metri
, for whi
h the Ri

i s
alar behaves like R4 � (1 � �)�1=2as � ! 1, is milder that the 
urvature singularity of the non-supersymmetri
 metri
s, forwhi
h R4 � (1� �)�3=2 as �! 1. Moreover, the singularity is null for the supersymmetri

ase but timelike for the non-supersymmetri
 metri
 [11℄. Nevertheless, in both 
ases thesingularity is `good' a

ording to the 
riterion of [11℄ sin
e the s
alar potential (4.24) isbounded from above, not only on-shell but even o�-shell. A

ordingly, in both 
ases, thepresen
e of the singularity signals some genuine IR phenomenon in the dual �eld theory.We 
an now use the ansatz (2.13) to uplift the four-dimensional solution (5.1) to elevendimensions. It is 
onvenient, however, to �rst use a redu
ed ansatz obtained from (2.13)by setting the 8 s
alars Xi pairwise equal [14℄:X2a�1 = X2a � ~Xa; a = 1; 2; 3; 4; (5.4)so that ~X1 ~X2 ~X3 ~X4 = 1. This redu
tion 
orresponds to the s
alar se
tor of the trun
ationof N = 8 supergravity to the maximal abelian subgroup, U(1)4, of its gauge group SO(8)[27, 28℄.15 Note, that this redu
tion does not in
lude all possible one-s
alar trun
ationsdis
ussed in Se
tion 4.1 sin
e the 
ases k = 3; 5 are not 
onsistent with this redu
tion. Itdoes 
over however the 
ases k = 4 and k = 6, whi
h is the 
ase we are interested here.The redu
ed ansatz readsdŝ211 = ~�2=3ds24 + 4l2 ~��1=3 4Xa=1 ~X�1a �d~�2a + ~�2ad�2a� ; (5.5)F̂ (4) = 1l 4Xa=1 � ~X2a ~�2a � ~� ~Xa� �(4) � l 4Xa=1 ~X�1a � d ~Xa ^ d(~�2a); (5.6)where ~� = P4a=1 ~Xa~�2a and the quantities ~�a and the four angles �a, 0 � �a � 2�, arerelated to the dire
tion 
osines �i in (2.13) by�2a�1 = ~�a 
os�a; �2a = ~�a sin�a; a = 1; 2; 3; 4; (5.7)15The U(1) gauge �elds and the three axions are set to zero here, however.{ 19 {



so that P4a=1 ~�2a =P8i=1 �2i = 1. The four ~�a 
an be parameterized in terms of the angleson a three-sphere as~�1 = 
os � 
os� 
os!; ~�2 = 
os � 
os� sin!; ~�3 = 
os � sin�; ~�4 = sin �; (5.8)0 � �; � � �, 0 � ! � 2�. Finally, the four s
alars ~Xa 
an be parameterized in terms ofthree dilatoni
 s
alars ~~' = ( ~'1; ~'2; ~'3):~Xa = e� 12~~b�~~'; (5.9)where ~~bi satisfy ~~ba �~~bb = 4Æab � 1: (5.10)A 
onvenient 
hoi
e for ~~ba is~~b1 = (1;�1;�1); ~~b2 = (�1; 1;�1); ~~b3 = (�1;�1; 1); ~~b4 = (1; 1; 1): (5.11)The k = 6 solution now 
orresponds to setting ~X1 = ~X2 = ~X3 � X, ~X4 = X�3.Re
alling from (4.25) that X = e =3 and the relation between  and � from (4.28), wededu
e that X = �1 + �1� ��1=4 : (5.12)Hen
e, ~� = �1 + �1� ��1=4 
os2 � +�1� �1 + ��3=4 sin2 �: (5.13)Putting everything together, we have the following two solutions of eleven-dimensionalsupergravitydŝ211 = ~�2=3ds24 + 4l2 ~��1=3(�1 + �1� ��3=4 ��
os2 � +�1� �1 + �� sin2 ��d�2 + sin2 �d�24�+�1� �1 + ��1=4 
os2 �d
25) ; (5.14)where ds24 is given either by the �nite-� metri
 (5.1) or by the � ! 1 metri
 (5.3).Correspondingly, the four-form �eld strength is given byF̂�(4) = (1 + ��+p1 + 2�� + �2)2�2p1 + 2��+ �2�(1 + �)2�2 �2 
os2 � +�1� �1 + �� (1 + 2 sin2 �)� (1 + ��+p1 + 2��+ �2)d�+4(1 + 2��+ �2) 
os � sin �d�� ^ ��(3); (5.15)F̂1(4) = 1p� �(1 + �)2�2 �2 
os2 � +�1� �1 + �� (1 + 2 sin2 �)� d�+ 8 
os � sin �d�� ^ ��(3):(5.16){ 20 {



It is not diÆ
ult to 
he
k that these satisfy dF̂ (4) = 0 and d�̂F̂ (4) = 0. Of 
ourse, (5.14)and (5.15)-(5.16) also satisfy Einstein's equation in eleven dimensions, as is guaranteed bythe fa
t that the four-dimensional theory is a 
onsistent trun
ation of eleven-dimensionalsupergravity [15℄. We have not 
he
ked this expli
itly, however.A few 
omments are in order here. First, note that the 
ompa
t part the metri
 (5.14)does not depend on the parameter � and hen
e it des
ribes the same inhomogeneous de-formation of S7 as the supersymmetri
 solution with � = �1. Namely, at � = 0 the
ompa
t part of the metri
 is exa
tly the metri
 on S7. As one moves away from � = 0the S7 is deformed to a warped produ
t of an S5 of de
reasing radius and a squashedS2 with in
reasing radius. At � = 1, the S5 shrinks to zero size, while the S2 be
omestotally squashed, but with in�nite radius. The supersymmetri
 solution 
orresponds to a
ontinuous non-uniform distribution of M2-branes on a dis
 of �nite radius on the equa-torial plane of the squashed S2 [16, 14℄. It would be very interesting to �nd an analogousinterpretation for the non-supersymmetri
 solutions. As the four-dimensional solutions,the uplifted metri
s have a 
urvature singularity at � = 1, but now the eleven-dimensionalRi

i s
alar behaves like R̂ = 16 F̂ (4)2 � (1 � �)�1=3 as � ! 1, independently of the valueof �. Of 
ourse, the singularity remains null for the supersymmetri
 
ase and timelike forthe non-supersymmetri
 one sin
e the uplift does not alter the 
ausal stru
ture. However,at least for the supersymmetri
 solution, the uplift helps identify the 
ause of the singu-larity, namely the fa
t that the distribution of the M2-branes is 
ontinuous [16℄, and as aresult understand how M-theory resolves the singularity. A similar interpretation for thenon-supersymmetri
 solution would therefore 
larify the nature of the singularity. Anotherimportant di�eren
e between the supersymmetri
 and non-supersymmetri
 solutions is thatthe part of the metri
 orthogonal to the squashed S2 be
omes 
onformal to AdS4 � S5 as� ! 0 for the supersymmetri
 
ase, while for the non-supersymmetri
 
ase it be
omes
onformal to R4 � S5 as �! 0. Moreover, F̂ (4) vanishes at � = 0 for the supersymmetri

ase, while it is �nite but non-zero for the non-supersymmetri
 one.Interestingly, the same s
alar potential (4.24), 
orresponding to k = 6, led to theMTZ bla
k hole in four dimensions [19℄. Sin
e we know how to uplift solutions of thefour-dimensional s
alar-gravity system with this potential to eleven dimensions, we �ndit tempting to present the eleven-dimensional bla
k hole metri
 expli
itly, whi
h we do inAppendix B.6. Holographi
 one-point fun
tionsThe asymptoti
ally AdS domain walls (1.1) des
ribe, via the AdS/CFT duality, the RG
ow of the �eld theory living on the 
onformal boundary. Su
h an RG 
ow 
an resultfrom a deformation of the Lagrangian of the UV CFT by a relevant operator, or from anon-
onformal va
uum, des
ribed by the VEVs of 
ertain operators. To determine whi
hof these possibilities is realized in a given domain wall ba
kground, one should evaluateholographi
ally the one-point fun
tions of the operators dual to the non-trivial s
alar �elds,as well as the one-point fun
tion of the stress tensor.{ 21 {



One, therefore, �rst needs to identify the gauge-invariant operator O� dual to a givens
alar �eld. Re
all that the mass, m, of a s
alar �eld is related to the dimension, �, of thedual operator via m2l2 = �(�� d): (6.1)Sin
e this equation has two roots, ��, the question arises as to whi
h of the two is thedimension of the dual operator. It was argued in [24℄ that while for m2l2 > �(d=2)2 + 1the dual operator must unambiguously have dimension �+, for��d2�2 � m2l2 � ��d2�2 + 1; (6.2)both �� are possible dimensions for the dual operator. More spe
i�
ally, there are twopossible quantizations of the s
alar �eld, 
orresponding to the two dimensions �� of thedual operator [23℄. The resulting generating fun
tionals of 
orrelation fun
tions of the
orresponding operators are then related by a Legendre transformation as we will reviewbelow.An important property of the SL(N;R)=SO(N) s
alars is that their mass falls pre
iselyin the range (6.2) allowing two quantizations. Namely, re
all from (3.4) that the mass ofthe s
alar �elds of the SL(N;R)=SO(N) se
tor ism2Il2D = 2(2� d): (6.3)With this mass, the 
ondition (6.2) translates into162 � d � 6; (6.4)whi
h in
ludes all 
ases for d we are interested in, namely d = 3; 4; 6. The two possibledimensions are �� = d2 � 12 jd� 4j; (6.5)whi
h 
oin
ide for d = 4. In this 
ase the mass saturates the BF bound m2l2 � �(d=2)2,and there is a unique quantization [24℄. For d = 3 or d = 6, however, there are two possiblequantizations and 
onsequently two possibilities for the dimension of the dual operators.As we have dis
ussed, however, for d = 6 this ambiguity is removed by symmetry, whi
hdetermines that the dual operators have dimension �+ = 4. But we are interested in the
ase d = 3 here, whi
h is the only 
ase admitting non-supersymmetri
 fake superpotentials,and sin
e there is an ambiguity in this 
ase we will analyze the two possible quantizationsseparately. We will keep the analysis and the notation as general as possible, though, sothat the analysis is appli
able to other 
ases too.Let us start by re
alling that the asymptoti
 form of the potential (3.4) implies that ageneri
 solution to the bulk s
alar �eld equation of motion takes the form�(r; x) � e���r=l(��(x) + � � � ) + e��+r=l(�+(x) + � � � ): (6.6)16Curiously, this is pre
isely the range of dimensions for whi
h there exist super
onformal quantum �eldtheories. { 22 {



Sin
e we are ex
luding the 
ase where the BF bound is saturated, we have �� < �+ andso the term involving �� dominates asymptoti
ally as r ! 1. For a parti
ular solution,however, su
h as a domain wall of the form (1.1), one of the fun
tions �� 
an be zero. Thisdepends entirely on the fake superpotentialW (�) that de�nes the 
ow equations (1.7). Todetermine the VEV of the operator dual to the s
alar �eld �, one should evaluate the bulka
tion on the solution (6.6), whi
h is identi�ed with the generating fun
tional of 
orrelationfun
tions of the dual operator [24℄.Now, the on-shell a
tion evaluated on a (Eu
lidean) Poin
ar�e domain wall (1.1) is[29, 30, 31℄ SBon�shell = Z ddxp
BW (�B); (6.7)where 
Bij = e2AÆij and W (�B) is the fake superpotential that de�nes the 
ow equations(1.7). We have in
luded the subs
ript B here to emphasize that this is the on-shell a
tionevaluated on the ba
kground domain wall solution. We will need to 
onsider 
u
tuationsaround this ba
kground when we 
al
ulate two-point fun
tions later on. As is well known,however, the on-shell a
tion diverges and one needs to remove this divergen
e by adding
ovariant 
ounterterms [32, 33, 34, 29, 35, 36, 37, 12℄. Although the 
ovariant 
ountertermsare a property of the supergravity a
tion (1.2) - that is, on
e 
onstru
ted in full generalityby the asymptoti
 analysis of the a
tion (1.2), they remove the divergen
es of the on-shella
tion when evaluated on all extrema of (1.2) - for domain wall ba
kgrounds of the form(1.1) they take parti
ularly simple form, whi
h 
an be determined without the need to �rst
ompute the 
ounterterms in full generality. In parti
ular, the part of the the 
ounterterma
tion that involves only the s
alar �elds, i.e. ex
luding the gravitational 
ounterterms(ex
ept from the volume renormalization whi
h 
an be 
ounted with the s
alar �elds) andterms involving derivatives of the s
alars (whi
h vanish on the domain wall ba
kground),are given by a fun
tion U(�) that satis�es equation (1.8) at least asymptoti
ally [29, 37, 31℄,and has an expansion U(�) = �d� 1�2l � 12l���I�I +O(�3): (6.8)The �rst term in this fun
tion is nothing but the well-known volume renormalization term.The quadrati
 term requires some explanation, however.Re
all that, sin
e U(�) satis�es (1.8) and the potential has a Taylor expansion ofthe form (3.4), U(�) has an expansion of the form (3.3) with the quadrati
 term being adiagonal matrix with diagonal elements w� = ���=2l (see Se
tion 3).17 There are 2n su
hmatri
es, where n is the number of independent s
alars. But as we will now explain, thereis a unique 
hoi
e for the 
ounterterms sin
e they must remove the divergen
es for anyfake superpotential W (�), whose quadrati
 term 
an indeed be any of these 2n matri
es.It suÆ
es to 
onsider the 
ase of a single on-shell s
alar �eld, whi
h takes the form (6.6).If �� 6= 0, then its leading asymptoti
 behavior is � � e���r=l��, and so, by the 
owequations (1.7), the 
orresponding fake superpotential should have a quadrati
 term with
oeÆ
ient ���=2l. Sin
e this is the same quadrati
 term as that of the 
ounterterm U(�),17Note that for d > 4, however, w� = ���=2l. Here we are primarily interested in the 
ase d = 3.{ 23 {



the quadrati
 term in the on-shell a
tion will be 
an
eled. In fa
t, one 
an take U(�) tobe the fake superpotential in this 
ase - although this may not be ne
essary if there areno higher order divergen
es. It is 
ru
ial though that this same 
ounterterm U(�) removesthe divergen
es for the 
ase when �� vanishes, sin
e the 
ounterterms are valid for anysolution to a given bulk a
tion. In this 
ase � � e��+r=l�+ asymptoti
ally and so the fakesuperpotential should have a quadrati
 term proportional to ��+=2l. This means thatupon subtra
ting the 
ounterterm U(�), there will be a quadrati
 term � 12l (�+���)�2 leftin the a
tion. However, �2 = O(e2�+r=l), in this 
ase, and sin
e 2�+ > d, this term is notdivergent and will drop out of the on-shell a
tion as the regulator is removed. This argumentexplains why �� has to appear in the quadrati
 term of the 
ounterterm. Generalizingthis argument to more than one �elds,18 the 
ounterterm must have a quadrati
 termproportional to the unit matrix with 
oeÆ
ient ���=2l.Let us now apply this to the 
ase we are interested in. From (6.5) we have�� = d� 2; d < 4; �� = 2; d > 4: (6.9)Expanding the true superpotential (3.1) we getWo(�) = �(d� 1)�2DlD � (d� 2)2lD �I�I + (d� 2)p2�D96lD NXi=1 biIbiJbiK�I�J�K +O(�4): (6.10)It follows that, for d < 4, we 
an use Wo(�) as the 
ounterterm U(�):U(�) =Wo(�): (6.11)A few 
omments are in order here. At �rst sight, it seems that for d = 6 we are notable to use Wo(�) as the 
ounterterm sin
e it has the wrong quadrati
 term, whi
h issurprising sin
e we know that Wo(�) 
orresponds to a supersymmetri
 domain wall and,hen
e, one should be able to 
hoose a supersymmetri
 renormalization s
heme where theon-shell a
tion is identi
ally zero. The answer is that, as we showed in Se
tion 3, ford = 6, the potential (3.4) requires that the quadrati
 term of any fake superpotential isdiag (��+=2l; : : : ;��+=2l).19 Hen
e, there are simply no solutions with non-zero �� inthis 
ase and so Wo(�) 
an be safely used as the 
ounterterm, resulting in the expe
tedsupersymmetri
 renormalization s
heme. Se
ond, fo
using on the 
ase d = 3 whi
h we areinterested in, we have seen that there is a 
ontinuous family of fake superpotentials, of thegeneri
 form W (�) = �(d� 1)�2DlD � (d� 2)2lD �I�I + CIJK�I�J�K +O(�4); (6.12)whi
h have the same quadrati
 term asWo(�) and 
an therefore be used as the 
ounterterm.They only di�er from Wo(�) at 
ubi
 order, whi
h 
orresponds to a �nite 
ounterterm. In18We assume that the s
alar �elds all have the same mass squared, but the argument generalizes in anobvious way to unequal masses.19This fa
t, in 
ombination with the fa
t that the dimension of the dual operators is unambiguouslydetermined to be �+ = 4, implies that all domain walls for the SL(5;R)=SO(5) s
alars in seven dimensionsne
essarily des
ribe VEVs of the dual theory. { 24 {



prin
iple, one is perfe
tly allowed to use any of these fake superpotentials as the 
ountert-erm, 
orresponding to a di�erent renormalization s
heme. However, sin
e the 
ountertermis valid, and the same, for any solution of a given bulk a
tion, there is a unique 
ountertermwhi
h ensures that the a
tion vanishes for the supersymmetri
 domain wall solution de�nedby Wo(�). Choosing any other 
ounterterm would simply result in a non-supersymmetri
renormalization s
heme. Choosing the supersymmetri
 renormalization s
heme, therefore,the renormalized on-shell a
tion is given bySBren = Z ddxp
B(W (�B)�Wo(�B)): (6.13)The analysis so far is independent of the dimension 
hosen for the dual operator.However, we will now see that, depending on su
h a 
hoi
e, this renormalized a
tion hasdi�erent interpretations in the dual theory.6.1 � = �+Consider �rst the more familiar 
ase where the dimension, �, of the dual operators OI� istaken to be �+. The leading asymptoti
 term �� in (6.6) 
orresponds then to the sour
eof the dual operator, sin
e �� = d � �+. In this 
ase the generating fun
tional of 
or-relation fun
tions is the renormalized on-shell a
tion, whi
h, evaluated on the ba
kgrounddomain wall solution, takes the form (6.13). Using the Hamiltonian version of holographi
renormalization, we �nd that the VEV of the dual stress tensor is related to the extrinsi

urvature of the domain wall metri
 by [31℄Kij = _AÆij = � �2d� 1W (�)Æij : (6.14)In parti
ular, the renormalized expe
tation value of the stress tensor is given byhT ij iren: = � 1�2 �K(d)ij �K(d)Æij� = �(W (�)� U(�))Æij : (6.15)Moreover, the renormalized VEV of the s
alar operators ishOI�+iren: = ���I (W (�)� U(�)): (6.16)The value of these one-point fun
tions depends on the form ofW (�), and in parti
ular,on the quadrati
 one, but possibly on higher order terms as well. To be 
on
rete, let usreturn to the 
ase d = 3 and the SL(8;R)=SO(8) s
alars. Re
all that in this 
ase themost general fake superpotentialW (�) has two possible forms. First, there is a 
ontinuousfamily of fake superpotentials whose quadrati
 term is the same as that of Wo(�), but havearbitrary 
ubi
 term. The Taylor expansion of these fake superpotentials takes the form(6.12). Evaluating the one-point fun
tions in this 
ase giveshT ij i+ = �(CIJK � CoIJK)�IB�JB�KB Æij ; hOI�+i = 3(CIJK � CoIJK)�JB�KB ; (6.17)where CoIJK = p2�96l P8i=1 biIbiJbiK is the 
ubi
 
oeÆ
ient of Wo(�) and the subs
ript + isa reminder that the VEV is taken in the theory where the operators dual to the s
alar �elds{ 25 {



have dimension �+. It is understood that these are the renormalized VEVs. There is also ase
ond 
lass of fake superpotentials whi
h have vanishing 
ubi
 term, but whose quadrati
term 
an be di�erent from that of Wo(�). Namely, the diagonal elements of the matrixmultiplying the quadrati
 term of W (�) 
an be either ��+=2l or ���=2l. Depending onwhi
h of these two values the I-th 
omponent takes, in this 
ase the one-point fun
tionsare given byhT ij i+ = CoIJK�IB�JB�KB Æij; hOI�+i = ( �3CoIJK�JB�KB ; ���=2l;�3CoIJK�JB�KB +1l (d� 2�+)�IB ; ��+=2l:(6.18)Note that the quadrati
 term of W (�) does not 
ontribute to the VEV of the stress tensorsin
e 2�+ > d. Moreover, in the terms involving CoIJK only the s
alars for whi
h thediagonal matrix multiplying the quadrati
 term of W (�) has values ���=2l 
ontribute,sin
e 3�� = d and 2�� = �+. The 
omponents involving s
alars with a quadrati
term ��+=2l in the fake superpotential do not 
ontribute to these terms. We shouldemphasize that although we do not in general know the full fake superpotentials, the one-point fun
tions we have 
al
ulated are in fa
t exa
t, sin
e they only depend on the quadrati
and 
ubi
 terms of the fake superpotential. As a 
he
k, one 
an easily verify that in both
ases, the Ward identity hT ii i+ = �XI (d��+)�IBhOI�+i; (6.19)is satis�ed. Finally, for future referen
e, let us give more expli
itly the VEVs for theone-s
alar solutions of Se
tion 4.1. Namely,hT ij i+ = �l 16(���o)(2k(8�k))3=2 �3BÆij , hO�+i = �3�l 16(���o)(2k(8�k))3=2�2B , for W (�;�),hT ij i+ = 0, hO�+i = �1l �B , for fWo(�), (6.20)and re
all that �o = �(8� k)(k � 4)k=24.The VEVs we have just 
omputed show that if one asso
iates the SL(8;R)=SO(8)s
alars with operators of dimension �+ = 2, the supersymmetri
 domain walls 
orrespond-ing to Wo(�) have zero VEVs and hen
e des
ribe a deformation of the CFT Lagrangian.The non-supersymmetri
 domain walls 
orresponding to fWo(�), however, des
ribe a non-
onformal and non-supersymmetri
 va
uum. Moreover, the 
ontinuous family of domainwalls de�ned by W (�;�), with � 6= �o, gives VEVs to both the stress tensor and the s
alaroperators, but these are non-linear in the s
alar sour
e. These VEVs are on top of thedeformation 
orresponding to Wo(�) and they break supersymmetry.6.2 � = ��Consider the 
ase where the dimension � of the dual operator is ��. Of 
ourse, theleading asymptoti
 behavior of the s
alar �eld (6.6) is still the term involving ��, butnow it 
annot be identi�ed with the sour
e of the dual operator sin
e it has the wrongasymptoti
 behavior for being the sour
e. This means that the renormalized a
tion (6.13){ 26 {




annot be the generating fun
tional of 
orrelation fun
tions of the operator O�� . So amore 
areful analysis is required in this 
ase.As we have already pointed out, the evaluation of the renormalized a
tion by adding
ovariant 
ounterterms is not a�e
ted by the question of whether the dual operator hasdimension �+ or ��. The only di�eren
e arises in the identi�
ation of the fun
tionalthat generates the 
orresponding 
orrelation fun
tions of the dual operator. In any 
ase,therefore, following the standard pro
edure, we need to evaluate the renormalized on-shella
tion, whi
h we now 
all I[��℄. This is a fun
tional of �� - independently of whi
h 
hoi
efor the dimension of the dual operator is made - sin
e the supergravity equations of motionwith Diri
hlet boundary 
onditions express �+ as a fun
tional of ��. If the dimension ofthe dual operator is �+, as we have seen �� 
orresponds to the sour
e of the operatorand, hen
e, I[��℄ 
an be identi�ed with the generating fun
tional of 
onne
ted 
orrelatorsof O�+ . If the dimension of the dual operator is ��, however, this identi�
ation 
annotbe made sin
e, the still arbitrary fun
tion ��, does not 
orrespond to the sour
e of O�� .In [24℄ it was suggested that in this 
ase the 
orre
t generating fun
tional is obtained fromI[��℄ by a Legendre transformation asL[ ���; ��℄ = I[��℄ + Z ddxpg(0) ���(x)��(x); (6.21)where g(0)ij is the boundary metri
. Extremizing L[ ���; ��℄ with respe
t to ��, gives�I[ ���℄ � L[ ���; ���( ���)℄; (6.22)where ���( ���) is the solution toÆL[ ���; ��℄Æ�� ������� = ÆI[��℄Æ�� ������� + ���(x) = hO�+i��=��� + ���(x) = 0: (6.23)�I [ ���℄ is now identi�ed with the generating fun
tional of 
onne
ted 
orrelation fun
tionsof the operator O�� and ���(x) is identi�ed with the sour
e of O�� .20 In parti
ular, theexa
t and renormalized one-point fun
tion of O�� in the presen
e of a sour
e ishO��i��� � Æ �I [ ���℄Æ ��� = ���(���); (6.24)whi
h is simply the solution to (6.23). The last two equations tell us that the one-pointfun
tion of the operator O�� is proportional to the sour
e, ��, of the operator O�+ andvi
e versa. We 
an now 
he
k that an analogue of the Ward identity (6.19) holds forthis 
ase too. First we note that the stress tensors 
orresponding to the two generatingfun
tionals I and �I are related byhTiji��� � 2pg(0) Æ �I [ ���; g(0)℄Æg(0)ij = hTiji�� � g(0)ij ���I�I�: (6.25)20Note that ���(x) � �+(x) up to some numeri
al fa
tor. See e.g. [38℄.{ 27 {



Using now the Ward identity (6.19) for hT ii i�� together with the relations hOI�+i = ����Iand hOI��i = �I�, we obtainhT ii i��� = �XI (d���) ���IhOI��i; (6.26)where we have used �� +�+ = d.We 
an now evaluate the one-point fun
tion of the operators OI�� in the ba
kgrounddomain wall solutions very easily. Starting from the renormalized on-shell a
tion (6.13),we 
an immediately evaluate the one-point fun
tions by solving (6.23), whi
h in this 
asereads: ���I (W (�)�Wo(�)) + ���I = 0: (6.27)Comparing this to (6.16), we see that the sour
e ��� of the operator O�� is proportionalto the VEV of the operator O�+ . It follows that asymptoti
ally ��� = O(e��+r=l) =O(e�(d���)r=l), as is required for the sour
e of an operator of dimension ��. This equation
an be used to determine �B( ���B), but sin
e the domain wall solution is given in terms of�IB and not ��I�B , we 
an evaluate the VEVs in terms of �IB , instead of ��I�B. From (6.24)we get, depending on the 
oeÆ
ient of the quadrati
 term in W (�),hOI��i = (�IB ; ���=2l;0; ��+=2l: (6.28)In this 
ase, therefore, the VEVs are mu
h simpler and 
ompletely independent of the 
ubi
term in W (�). Moreover, from (6.25) we �ndhT ij i� = 2(CIJK � CoIJK)�IB�JB�KB Æij ; (6.29)for the 
ontinuous family of fake superpotentials whi
h has a 
oeÆ
ient ���=2l for thequadrati
 term of all s
alar �elds, whilehT ij i� = �2CoIJK�IB�JB�KB Æij ; (6.30)for the superpotentials that have a vanishing 
ubi
 term but any 
ombination of ���=2lfor the quadrati
 term. Again, only the s
alar �elds with ���=2l in the quadrati
 term
ontribute to the last expression.We see that the role of Wo(�) and fWo(�) have been inter
hanged now 
ompared tothe 
ase where the dual operators have dimension �+. Namely, the supersymmetri
 do-main walls now des
ribe a non-
onformal but supersymmetri
 va
uum, whi
h has beenidenti�ed with the Coulomb bran
h of the dual CFT [16℄, while the non-supersymmetri
domain walls 
orresponding to fWo(�) des
ribe a (single-tra
e) deformation of the CFTLagrangian. The domain walls des
ribed by the 
ontinuous family of fake superpotentialsW (�;�) 
orrespond to a line of marginal triple-tra
e deformations of the Coulomb bran
h.We stress that this does not mean that the theory has a 
at dire
tion. At the supersym-metri
 point, i.e. the Coulomb bran
h, the s
alar operator 
an have an arbitrary VEV.If the marginal triple-tra
e deformation is turned on, it produ
es a potential for the VEV{ 28 {



of the s
alar operator for
ing it to zero. Nevertheless, it is possible to give an arbitraryVEV to this operator in this 
ase too, provided we simultaneously turn on a sour
e forthe single-tra
e operator, proportional to the marginal triple-tra
e deformation parame-ter. This single-tra
e deformation breaks 
onformal invarian
e expli
itly, whi
h justi�esthe fa
t that the tra
e of the stress tensor in (6.29) is non-zero. Spontaneous breakingof the 
onformal symmetry only o

urs at the supersymmetri
 point 
orresponding to nodeformation. These 
ombined marginal triple-tra
e and indu
ed single-tra
e deformationsallowing for an arbitrary VEV is pre
isely what is des
ribed by the non-supersymmetri
domain walls 
orresponding to W (�;�).7. Holographi
 two-point fun
tionsTo further understand the RG 
ows des
ribed by the domain walls we have dis
ussed, wenow turn to the 
omputation of the holographi
 two-point fun
tions. However, even forthe supersymmetri
 domain walls with a single s
alar �eld turned on, the linearized bulkequations of motion that we need to solve 
annot always be solved analyti
ally. We willtherefore fo
us on a single s
alar �eld, and in parti
ular on the 
ase k = 4 for whi
h the two-point fun
tions 
orresponding to the supersymmetri
 ba
kground 
an be 
omputed exa
tly.Unfortunately for k = 4 we do not have the full non-perturbative fake superpotentialsW (�;�) or fWo(�) as for k = 6, but we do have W (�;�) perturbatively in � � �o and we
an therefore 
ompute the two-point fun
tions for the 
orresponding non-supersymmetri
ba
kgrounds perturbatively in the parameter � � �o. Of 
ourse, this will provide us withno information on the domain wall de�ned by fWo(�), however. To evaluate these two-pointfun
tions we will follow the approa
h suggested in [12℄, where the relevant 
ounterterms 
anbe evaluated dire
tly from the linearized equations, without the need for the 
omputationof the full non-linear set of 
ounterterms required in general for the gravity-s
alar a
tion.Indeed, as we will see, the 
ounterterms that we will need are almost trivial. For earlierwork on the holographi
 
omputation of 
orrelation fun
tions see [39, 40, 41, 30, 42℄.To 
al
ulate the sought after two-point fun
tions, we need to linearize the bulk equa-tions of motion around the domain wall ba
kground (1.1). To this end, we write the bulkmetri
 in the form ds2 = dr2 + 
ij(r; x)dxidxj ; (7.1)and 
onsider linear 
u
tuations
ij = 
Bij(r) + hij(r; x) = e2A(r)Æij + hij(r; x); � = �B(r) + '(r; x): (7.2)The extrinsi
 
urvature, Kij = 12 _
ij, then be
omesKij = _AÆij + 12 _Sij; (7.3)where Sij � 
ikB hkj. Next we de
ompose Sij into irredu
ible 
omponents asSij = eij + �i�j + �j�i + dd� 1 �1dÆij � �i�j�B � f + �i�j�B S; (7.4)
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where �ieij = eii = �i�i = 0, �B = e�2A� = e�2AÆij�i�j , and indi
es are raised with theinverse ba
kground metri
 e�2AÆij . Conversely, the proje
tion operators�iklj = 12 ��ik�lj + �il�kj � 2d� 1�ij�lk� ; (7.5)and �ij = Æij � �i�j�B ; (7.6)allow one to uniquely express ea
h of the irredu
ible 
omponents in terms of Sij aseij = �ikljSkl ; �i = �li �k�B Skl ; f = �lkSkl ; S = ÆlkSkl : (7.7)The linearized equations for these modes are [12℄��2r + d _A�r + e�2A�� eij = 0;��2r + [d _A+ 2W�2� logW ℄�r + e�2A��! = 0;_f = �2�2 _�B';_S = 1(d� 1) _A h�e�2A�f + 2�2 � _�B _'� V 0(�B)'�i ; (7.8)where ! � WW 0'+ 12�2 f: (7.9)Note that in writing the linearized equations in this form we have used the di�eomorphisminvarian
e in the transverse spa
e to set �i � 0. The exa
t, unrenormalized, one-pointfun
tions in the presen
e of linear sour
es are given by the 
anoni
al momenta _eij; _! et
.The last two equations give immediately the momenta dual to f and S. To determine themomenta for eij and ! we note that, to linear order, we must have [12℄_eij = E(A;�B)eij ; _! = 
(A;�B)!: (7.10)Inserting these relations into the �rst two equations in (7.8), we obtain two �rst orderequations for E and 
 _E +E2 + d _AE � e�2Ap2 = 0;_
 + 
2 + [d _A+ 2W�2� logW ℄
� e�2Ap2 = 0; (7.11)where p denotes the transverse spa
e momentum. All 
anoni
al momenta 
an now be easilyexpressed in terms of E and 
. From (7.8) we dedu
e_eij = Eeij ;_f = �2�2W 0';_' = (W 00 +
)'+ 12�2 W 0W 
f;_S = � 1�2 "�W 0W �2 
+ e�2AW p2# f � 2W 0W �
+ d�2d� 1W�': (7.12)
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As we have pointed out, these are the unrenormalized momenta. To get the renormal-ized momenta we need to add appropriate 
ounterterms. In the Hamiltonian formulationof holographi
 renormalization the 
ounterterms for the 
anoni
al momenta are simply
omputed by expanding the latter in eigenfun
tions of the dilatation operator [12℄ÆD � Z ddx2
ij ÆÆ
ij + (�� d)Z ddx� ÆÆ�: (7.13)As long as we are interested in the 
anoni
al momenta to linear order in the sour
es, whi
his suÆ
ient for 
omputing the two-point fun
tions, expanding the expressions (7.12) ineigenfun
tions of the dilatation operator is parti
ularly simple, sin
e we only need to expandthe 
oeÆ
ients of the linear 
u
tuations. These are only fun
tions of the ba
kground �eldsA and �B and so the dilatation operator simpli�es toÆD = �A + (�� d)�B��B : (7.14)It is important to keep in mind that, although the 
ovariant 
ounterterms for the 
anoni
almomenta are 
omputed dire
tly by expanding the 
anoni
al momenta in eigenfun
tions ofthe dilatation operator, the same result would be obtained by �rst 
omputing the 
ovariant
ounterterms for the on-shell a
tion and then deriving the renormalized momenta from therenormalized on-shell a
tion. Indeed, the ability to 
ompute the renormalized momenta,whi
h are linear in the 
u
tuations, without �rst having to 
ompute the renormalizedon-shell a
tion, whi
h is quadrati
 in the 
u
tuations, is one of the advantages of theHamiltonian approa
h. One must, however, ensure that the 
ounterterms for the 
anoni
almomenta 
orrespond to a given renormalization s
heme, whi
h is usually determined by�xing the value of the renormalized on-shell a
tion on a given ba
kground. Sin
e the onlynon-vanishing 
ontribution to the 
ounterterms, when evaluated on the ba
kground domainwall, is the fun
tion U(�) (see Se
tion 6), a given renormalization s
heme is de�ned by a
hoi
e of U(�). It follows that the renormalized momenta will automati
ally be 
ompatiblewith the 
hosen renormalization s
heme on
e the 
ontribution of U(�) to the 
ountertermsof the 
anoni
al momenta has been taken into a

ount. As we have seen in Se
tion 6,for the domain walls we are interested in here we 
an take U(�) to be the superpotentialWo(�), 
orresponding to a supersymmetri
 renormalization s
heme. The 
orresponding
ounterterm �Z ddxp
Wo(�B + '); (7.15)leads to the following 
ontributions to the 
anoni
al momenta:_Sij : 2�2(d� 1)W 0o(�B)'Æij_' : �W 00o (�B)': (7.16){ 31 {



Adding these 
ontributions to the 
anoni
al momenta (7.12) we obtain_eij = Eeij ;_f = �2�2(W 0 �W 0o)';_' = (W 00 �W 00o +
)'+ 12�2 W 0W 
f;_S = � 1�2 "�W 0W �2
+ e�2AW p2# f � 2�W 0W 
+ d�2d� 1(W 0 �W 0o)�': (7.17)These are not yet the renormalized momenta, but it is now guaranteed that by expandingthese 
anoni
al momenta in eigenfun
tions of the dilatation operator and keeping the termsof weight d = 3 for _eij ; _f and _S, and of weight �+ = 2 for _', we obtain the renormalizedmomenta that 
orrespond to the supersymmetri
 s
heme de�ned by Wo.Sin
e W (�B) and Wo(�B) are known fun
tions of the ba
kground �elds, the only non-trivial step in 
omputing the renormalized 
anoni
al momenta is determining the expansionof E and 
 in eigenfun
tions of the dilatation operator. This 
an be easily done by usingthe equations (7.11). One expands the radial derivative as�r = _A�A + _�B��B = � �2d� 1W (�B)�A +W 0(�B)��B � ÆD + � � � ; (7.18)as well as the fun
tions E and 
21E = E(1) + � � �+E(d) + � � � ;
 = 
(0) + � � �+
(2��d) + � � � ; (7.19)and inserts these expansions in equations (7.11). Colle
ting terms of the same dilata-tion weight then determines all terms in the expansions (7.19), ex
ept for the 
oeÆ
ientsE(d) and 
(2��d). These terms 
ontain all dynami
al information about the two-pointfun
tions and 
an only be determined by solving exa
tly the �rst two equations in (7.8)or, equivalently, equations (7.11). There is, however, an important te
hni
al di�eren
ebetween solving the former or the latter. By solving the linear se
ond order equationsin (7.8), one obtains two linearly independent solutions, namely the `normalizable' and`non-normalizable' modes. Generi
ally, an arbitrary linear 
ombination of these solutionswill have a singularity somewhere in the interior of the asymptoti
ally AdS spa
e. How-ever, there is usually a unique linear 
ombination whi
h leads to a non-singular solution.This requirement determines the 
oeÆ
ient of the normalizable mode in terms of the non-normalizable mode, whi
h should be arbitrary sin
e it 
orresponds to the sour
e of the dualoperator. If one instead solves the �rst order equations (7.11) only one integration 
on-stant appears instead of two, whi
h simply re
e
ts the fa
t that the overall normalizationof the linearized solutions of (7.8) has been fa
tored out from E and 
. The integration
onstant in E and 
 
an therefore be understood as the ratio of the normalizable and21In general one would have to in
lude logarithmi
 terms in these expansions, but in our 
ase we do notneed them sin
e the boundary is three-dimensional. See [12℄ for the general 
ase.{ 32 {



non-normalizable modes of the solutions to the se
ond order equations (7.8). However, itis not always possible to determine this integration 
onstant by the requirement that theexa
t solutions for E and 
 are non-singular. This is be
ause it is possible that E and 
are non-singular, even though the 
orresponding solutions of the se
ond order equations(7.8) are singular. Pra
ti
ally, therefore, to obtain the 
orre
t exa
t solution for E and 
,one should �rst solve the 
orresponding se
ond order equations (7.8), demand that theyare non-singular, and then dedu
e the 
orresponding E and 
. Equations (7.11) are stillessential, however, for determining the 
ovariant 
ounterterms for E and 
.We 
ompute E(3) and 
(1) expli
itly in Appendix C for the k = 4 one-s
alar domainwall. The result is given in (C.7). Given these quantities one 
an now determine the one-point fun
tions with linearized sour
es and, 
onsequently, the exa
t two-point fun
tions.Expanding the 
anoni
al momenta (7.17) one easily dedu
es that the renormalized one-point fun
tions are given byhT ij i+ = ��8p2l�3BÆij � 12�2E(3)e(0)ij � 18�2B�ij
(1)f (0) +� 3��8p2l�2BÆij � 12�B�ij
(1)�'(0);hO�+i = � 3��8p2l�2B + 14�B
(1)f (0) +�� 3��4p2l�B +
(1)�'(0): (7.20)Again, one should keep in mind that these are the one-point fun
tions when the duals
alar operators are taken to have dimension �+. We will 
onsider the 
ase �� below. Itis reassuring that these one-point fun
tions satisfy the Ward identity (6.19) as they should.Di�erentiating with respe
t to the linear sour
es one �nally obtains the two-point fun
tionshT ijT kl i = � 1�2�ilkjE(3) � 14�2B�ij�kl 
(1);hT ijO�+i = � 3��8p2l�2BÆij + 12�B�ij
(1);hO�+O�+i = 3��4p2l�B � 
(1): (7.21)The two-point fun
tions for the 
ase where the dual s
alar operators have dimension�� 
an also be dedu
ed from the one-point fun
tions (7.20). As we have seen in theprevious se
tion, the sour
e dual to O�� is given by the VEV of O�+ as�� = ��B + �' = �hO�+i; (7.22)from whi
h we infer' = � 3��4p2l�B � 
(1)��1� �'+ 14�B
(1)f (0)�= �
(1)�1�1 + 3��4p2l�B
(1)�1 +O(�2)�� �'+ 14�B
(1)f (0)� : (7.23)It follows thathO��i = (�B + ') = �B ��1 + 3��4p2l�B
(1)�1 +O(�2)��
(1)�1 �'+ 14�Bf (0)� : (7.24){ 33 {



Moreover, from (6.25) we obtainhT ij i� = hT ij i+ � ��hO��iÆij= � ��4p2l�3BÆij � 12�2E(3)e(0)ij � �B �Æij � 12�ij �1 + 3��4p2l�B
(1)�1 +O(�2)�� �'+ 3��32p2l�3B�ijf (0): (7.25)On
e again, these one-point fun
tions satisfy the Ward identity (6.26) as required. Di�er-entiating with respe
t to the sour
es we now obtain the two-point fun
tionshT ijT kl i = � 1�2�ilkjE(3) + 3��16p2l�3B�ij�kl ;hT ijO��i = �B �Æij � 12�ij �1 + 3��4p2l�B
(1)�1 +O(�2)�� ;hO��O��i = 
(1)�1�1 + 3��4p2l�B
(1)�1 +O(�2)� : (7.26)In order to dis
uss the physi
s of these two-point fun
tions, it is useful to reinstatethe dependen
e on theM2-brane distribution parameters, whi
h we have so far suppressedbe
ause this is di�erent for di�erent domain walls. For the 
ase k = 4 for whi
h we have
omputed the two-point fun
tions, the M2-branes are distributed on an S3 of radius l1.By uplifting our domain wall solution to eleven-dimensions we �nd that the s
alar VEV isas expe
ted proportional to the radius of the M2-branes distribution, �B = p2l1=�l, whilethe momenta, ~pi, on the world-volume of the M2-branes are related to the momenta aboveby pi = (l=l1)~pi. With these relations and the result (C.7) for 
(1) we 
an write the s
alartwo-point fun
tion ashO��O��i = 2~p2r~p2 + 4l21l4 �1� �l1 (9l8~p4 + 32l21l4~p2 + 16l41)2l10~p2(~p2 + 4l21=l4)3=2 +O(�2)� : (7.27)We 
an now extra
t the physi
s. First, for � = 0, there is a massless Goldstone pole
orresponding to the spontaneously broken s
ale invarian
e. Moreover, there is a 
ontinuousspe
trum of states 
orresponding to the bran
h 
ut (4l21=l4;+1) on the 
omplex Lorentzian~p2L = �~p2 plane. Note that the threshold M2 = 4l21=l4 agrees pre
isely with that foundin [5℄ by di�erent means. Moreover, in the limit of vanishing VEV, l1 ! 0, we restorethe two-point fun
tion imposed by 
onformal invarian
e for an operator of dimension 1 inthree dimensions. Note in parti
ular that in this limit the deformation parameter does notmodify the two-point fun
tion, at least to the order we have 
omputed it. This suggeststhat the O�� does not a
quire an anomalous dimension when the marginal deformation isturned on, again at least to the order in � we have 
omputed it and in the large-N limit,for whi
h the supergravity approximation holds.8. The fake superpotential as a quantum e�e
tive potential and multi-tra
e deformationsWe will now argue that, under 
ertain 
ir
umstan
es, the fake superpotential that de�nesa given domain wall has a dire
t physi
al interpretation in the dual �eld theory as a{ 34 {



quantum e�e
tive potential des
ribing a marginal multi-tra
e deformation. As we will see,this interpretation requires that the bulk s
alar �elds admit two quantizations, as is the
ase for the SL(N;R)=SO(N) s
alars that we have been dis
ussing. In this 
ase the on-shell supergravity a
tion plays two roles. More spe
i�
ally, sin
e I[��℄ and �I [ ���℄ are theLegendre transform of ea
h other and hO�+i = ���� and hO��i = ��, it follows that� I[��℄ is the generating fun
tional of 
onne
ted 
orrelation fun
tions of O�+ and thequantum e�e
tive a
tion for O�� .� �I[ ���℄ is the generating fun
tional of 
onne
ted 
orrelation fun
tions of O�� and thequantum e�e
tive a
tion for O�+.We have seen above that on a domain wall solution de�ned by the fake superpotentialW (�), the renormalized on-shell supergravity a
tion 
omputed with the standard Diri
hletboundary 
onditions is I = Z ddxp
(W (�)�Wo(�)): (8.1)We will now show that this relation implies that the freedom in the fake superpotential,W (�), is equivalent to 
omputing the on-shell a
tion with modi�ed 
onformal boundary
onditions and hen
e to a marginal multi-tra
e deformation of the boundary theory.Multi-tra
e operators in any QFT that admits a large-N limit and in the AdS/CFT
orresponden
e are dis
ussed in detail in Appendix D. In the AdS/CFT 
orresponden
e,the e�e
t of deforming the CFT a
tion by a multi-tra
e operator f(O�+), for the �+quantization, or by �f(O��), for the �� quantization, 
an be summarized in equations(D.12) and (D.18) respe
tively. It follows that the e�e
t of a generi
 fake superpotential,W (�), 
an be reprodu
ed by 
omputing the on-shell a
tion with the superpotential Wo(�)but with boundary 
onditions 
orresponding to a deformation�f(�) = W (�)�Wo(�); for ��;f(�)� �f 0(�) = W (�)�Wo(�); for �+; (8.2)or equivalently f(�) = ��Z d��2 (W (�)�Wo(�)) ; for �+: (8.3)However, sin
e the arguments of f and �f are the VEVs � and �� respe
tively, this interpre-tation of the fake superpotential is possible only when W = W+ for the �+ quantizationand W =W� for the �� quantization. In summary, then�f(�) = W�(�)�Wo(�) = O(�3); for ��;f(�) = ��Z d��2 (W+(�)�Wo(�)) = � 12l (�� ��+)�I�I +O(�3); for �+; (8.4)where we have used the expansionW�(�) = �(d� 1)�2l � 12l���I�I +O(�3): (8.5)
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But, if W = W+, then �2 
orresponds to an irrelevant operator sin
e �+ > d=2. Itis therefore only for the �� quantization and for the fake superpotential W� that aninterpretation as a marginal multi-tra
e deformation of the boundary theory 
an arise.The above dis
ussion 
an then be summarized in the following statement:The marginal multi-tra
e deformations of a CFT admitting a holographi
 dual and
orresponding to the �� quantization are in one-to-one 
orresponden
e with thepossible fake superpotentials W� of the dual bulk theory.These fake superpotentials are determined by solving equation (1.8) as a di�erentialequation for the fake superpotential. The 
onditions for su
h an interpretation of the fakesuperpotential impose stri
t restri
tions on the dimension d of the �eld theory as well ason the 
onformal dimension �� of the lo
al operator. First, in order to get an n-tra
emarginal operator built from the single-tra
e operator O�� , we obviously need �� = d=n,where n > 2 is an integer. The 
ondition n > 2 arises be
ause the fake superpotential,W�, 
annot des
ribe double-tra
e deformations sin
e there is no freedom in its quadrati
term. Moreover �� is bounded by (d� 2)=2 � �� < d=2. The possible solutions of these
onditions are summarized in Table 3. Note that only for d = 3 is there an allowed ��whi
h is integer and yet it does not saturate the unitarity bound, namely �� = 1.8.1 Triple-tra
e deformation of d 2 3 4 5 6n n � 3 3, 4, 5, 6 3, 4 3 3�� 2=n 1; 3=4; 3=5;1=2 4=3;1 5=3 2Table 3: The possible dimensions d and 
onformal dimen-sions �� allowing for the interpretation of the fake super-potential as a multi-tra
e deformation of the dual theory.The dimensions in boldfa
e saturate the unitarity bound.
the Coulomb bran
hThe �eld theory on the worldvol-ume of N+1M2-branes is an N =8 (16 super
harges) super
onformal�eld theory with 8(N + 1) s
alarand 8(N + 1) fermioni
 degrees offreedom. Under the SO(8) R-symmetrygroup, the s
alars, fermions and supersymmetries transform respe
tively as 8v, 8
 and 8s(see e.g. [51℄). One of the N = 8 multiplets 
orresponds to the free theory des
ribing the
enter of mass motion, while the remaining degrees of freedom parameterize the modulispa
e (R8)N=SN+1. This theory is believed to arise as the infra red �xed point of N = 8supersymmetri
 Yang-Mills in three dimensions, while in the abelian 
ase it 
an also beobtained by 
ompa
tifying N = 4 supersymmetri
 Yang-Mills in four dimensions on a
ir
le in the limit of vanishing 
ir
le radius. For the non-abelian 
ase, however, this pro-
edure is not well understood. In the large-N limit this theory is holographi
ally dual toeleven-dimensional supergravity on AdS4�S7, whose massless se
tor is des
ribed by N = 8gauged supergravity in four dimensions. The 70 s
alars parameterizing the moduli spa
eE(7)7=SU(8) of N = 8 gauged supergravity are holographi
ally dual to BPS operators,whi
h in the abelian 
ase 
an be understood in terms the tra
eless bilinears of the 8 s
alarsand 8 fermions:OIJ = Tr (XIXJ)� 18ÆIJTr (XKXK); I; J; : : : = 1; : : : ; 8PAB = Tr (�A�B)� 18ÆABTr (�C�C); A;B; : : : = 1; : : : ; 8: (8.6)

{ 36 {



The 35 operators OIJ have 
onformal dimension � = 1 and transform in the 35v of SO(8),while the 35 s
alars PAB have 
onformal dimension � = 2 and transform in the 35
. The35 s
alars parameterizing the SL(8;R)=SO(8) subspa
e of the s
alar manifold are usuallyidenti�ed as dual to the dimension 1 operators OIJ , in whi
h 
ase the supersymmetri
domain wall solutions with non-trivial SL(8;R)=SO(8) s
alars des
ribe a uniform subse
-tor of the Coulomb bran
h of the M2-brane theory [16, 14, 5℄. Nevertheless, sin
e theSL(8;R)=SO(8) s
alars have a mass allowing two possible quantizations as we have dis-
ussed, and sin
e in this 
ase the � = 1 and � = 2 s
alars both belong to the masslessN = 8 supermultiplet and transform in SO(8) representations whi
h are related by trial-ity, it seems plausible that one 
ould also identify these s
alars as dual to the dimension2 operators PIJ .22 In this 
ase, as we have seen, the supersymmetri
 domain walls of theSL(8;R)=SO(8) se
tor 
orrespond to deformations of the CFT Lagrangian.When the SL(8;R)=SO(8) s
alars are identi�ed as dual to the dimension 1 operatorsOIJ , the non-supersymmetri
 domain walls we have found des
ribe the deformation of theuniform se
tor of the Coulomb bran
h, whi
h 
orresponds to the supersymmetri
 super-potential, by a marginal triple-tra
e operator 
ompletely breaking supersymmetry. Su
hdeformations have been dis
ussed before in [52, 53, 54, 55, 50℄. Indeed, as we have ar-gued above, the fake superpotentialsW we have found 
ompute the exa
t large-N e�e
tivepotential, given byVe�:(�) = �f(�) =W (�)�Wo(�) = (CIJK � CoIJK)�I�J�K +O(�4): (8.7)The higher order terms, whi
h vanish when the 
ut-o� is removed, 
orrespond to irrelevantoperators. Therefore, when the regulator is removed we are left with the triple-tra
eoperator (CIJK � CoIJK)OIOJOK . This operator is 
lassi
ally marginal and remainsmarginal to leading order in 1=N for any �nite value of the dimensionless moduli CIJK .However, the limit CIJK ! 1, 
orresponding to repla
ing W (�;�) by fWo(�), does not
ommute with the 
ut-o� removal, presumably due to the fa
t that we are working inthe large-N limit. Hen
e, we 
annot simply drop the higher order irrelevant operatorsaltogether, but instead we need the full fake superpotential. The role of these higher orderterms 
an be understood by re
alling that the these domain walls des
ribe the Coulombbran
h of the dual CFT and therefore, 
onformal invarian
e is spontaneously broken. Thismeans that the 
oupling CIJK will run or, equivalently, the operator O3 will renormalize.Sin
e there are no other free parameters in the fake superpotential other than the 
ouplingCIJK , the e�e
t of the irrelevant operators 
an be interpreted as the running of the 
ouplingCIJK or, equivalently, as the multipli
ative renormalization of O3.Lu
kily we have already 
omputed the exa
t fake superpotential for the one-s
alardomain wall with k = 6, whi
h we will now 
onsider as an example. For this 
ase the fullfake superpotential was given in (4.31). Using this we 
an now extra
t the exa
t large-Nanomalous dimensions 
O and 
O3 . Starting from the kineti
 term for the e�e
tive s
alar�eld � away from the origin of the moduli spa
e [50℄ (� 6= 0 sin
e there is a non-zero VEV)K[�℄ = N28 ��1�i��i�; (8.8)22This is spe
ial to four dimensions. In �ve or seven dimensions, one 
an unambiguously identify theSL(N;R)=SO(N) s
alars from symmetries, by looking at the states of the relevant massless supermultiplet.I would like to thank Henning Samtleben for useful 
omments on this.{ 37 {



and writing � = �� = �o� ~� ��o� �, with ~� ��o� � = O(�0) as � ! 1, and identifying theUV 
ut-o� with the AdS radial 
oordinate as � = er=l, we see that the multipli
ativerenormalization of O is given byZ�1O (�) = ~���o� � =~�(1): (8.9)It now follows from the �rst order equations (1.7) that
O = ��� logZO(�)j�!1 = �1� l W 0� �����!0 : (8.10)Evaluating this using the fake superpotential (4.31) we obtain
O = (0; � <1;1; �!1: (8.11)The dimension of the operator O therefore jumps from 1 for �nite � to 2 in the � ! 1limit. In this sense then the marginal triple-tra
e deformation interpolates between thetwo possible quantizations of the bulk s
alar �eld, mu
h like the situation des
ribed in e.g.[43, 48℄.Similarly, we 
an now evaluate the anomalous dimension 
O3 . Sin
eVe�: =W �Wo = �2�l �32�3=2 (�+ 1)27 �3 +O(�4) � �2�l �32�3=2 (�+ 1)27 Z�1O3�3; (8.12)we �nd 
O3 = ��� logZO3(�)j�!1 = (0; � <1;1; �!1: (8.13)Note that the running 
oupling is simply given by ��+1 = Z�1O3 (�+1) and so �� = (�+1)
O3 .It follows that, in agreement with the expe
tation in [53℄, the triple-tra
e operator O3remains marginal for all �nite values of � and in the large-N limit. In the � ! 1 limit,however, O3 has dimension 4 and not the naively expe
ted dimension 6. It neverthelessremains an irrelevant operator in this limit.A
knowledgmentsI am grateful to Professor Jerome Gauntlett for a helpful 
onversation on the signi�
an
eof 
urvature singularities in M-theory ba
kgrounds. I would also like to thank DimitryBelyaev for useful 
omments.A. Expli
it form of the domain wall metri
 for W (�;�), to �rst order in�� �o and for general kIn this appendix we give the expli
it form of the domain wall ba
kgrounds 
orrespondingto the fake superpotential (4.13) to �rst order in ���o. In order to dis
uss all values of k{ 38 {



at on
e, it is 
onvenient to trade the radial 
oordinate r in (1.1) for the single s
alar �eldX. Another advantage of this radial 
oordinate is that it is dire
tly related to the s
alar�eld � via (4.2) and so we only need to determine the domain wall metri
. This 
an bedone by solving the 
ow equations (1.7), whi
h now be
ome_X = �2�8� k2k �X2�XW;�XA = �� k8� k� WX2�XW : (A.1)Inserting the fake superpotential (4.13) and integrating these equations to �rst order in(� � �o) we �nddrl = � 8(8� k) X k(8�k)�1dX(X 8(8�k) � 1) �1� 3(�� �o)2k(8� k)X k(8�k)�3(X 8(8�k) � 1)(kX 8(8�k) + 8� k)+O((�� �o)2)� ;eA = 8(8� k) X(X 8(8�k) � 1) �1 + (�� �o)2k(8 � k) �kX 4(k�2)(8�k) + 2k(8 � k)(k � 4) �X 4(k�4)(8�k) � 1��(8� k)X 4(k�6)(8�k) � 2(k � 4)�+O((� � �o)2)� : (A.2)Note that for � = �o one re
overs the supersymmetri
 solutions of [14, 5℄.B. Uplifting the MTZ bla
k hole to eleven dimensionsThe gravity-s
alar system (1.2) in four dimensions with a single s
alar �eld and the potential(4.24) was also 
onsidered in [19℄, where a topologi
al bla
k hole with non-trivial s
alarhair was found. It was also pointed out in [19℄ that this s
alar potential a
quires a verysimple form in the 
onformal frame de�ned by~ =3 = tanh( =3); ~g�� = 
osh2( =3)g�� ; (B.1)where ~ =q3�22 ~�. In this frame the a
tion takes the formS = ZM d4xp�~g� 12�2 ~R� 12~g���� ~��� ~�� 112 ~R~�2 � ~V (~�)� ; (B.2)where ~V (~�) = � 3�2l2 �1� (�2=6)2 ~�4� : (B.3)The s
alar �eld is now 
onformally 
oupled to gravity and the ~�4 potential ensures thatthe s
alar �eld equations are 
onformally invariant. Quite remarkably this system admitsan exa
t instanton solution [56℄. { 39 {



The four-dimensional bla
k hole found in [19℄, whi
h we will refer to as the MTZ bla
khole, reads23ds24 = r(r + 2G�)(r +G�)2 8<:� r2l2 ��1 + G�r �2! dt2 + r2l2 ��1 + G�r �2!�1 dr2 + r2d�29=; ;� = r 34�G tanh�1� G�G�+ r� ; (B.4)where d�2 is the metri
 on a two-dimensional 
ompa
t manifold, �2, of 
onstant negative
urvature. This means that �2 �= H 2=�, where H 2 is the hyperboli
 plane and � is a freelya
ting dis
rete subgroup of the isometry group O(2; 1). This bla
k hole has 
urvaturesingularities at r = 0 and r = �2G�. The range of the radial 
oordinate is taken r > 0 for� > 0 and r > �2G� for � < 0. In either 
ase the 
urvature singularity is hidden behinda horizon lo
ated at r+ = l2(1 +p1 + 4G�=l), provided� > � 14G: (B.5)Note also that � � 0 for � > 0 and � � 0 for � < 0. The mass of the bla
k hole is given byM = �4��; (B.6)where � is the area of �2, and its Hawking temperature isTH = 12�l �2r+l � 1� : (B.7)As in Se
tion 5, we 
an uplift this bla
k hole to eleven dimensions using the redu
edansatz (5.5). In terms of the s
alar �eldX = e =3 = e��=p3 = �2G�+ rr �1=8 ; (B.8)and the quantity ~� = X 
os2 � +X�3 sin2 �; (B.9)the eleven-dimensional metri
 isdŝ211 = ~�2=3ds24 + 4l2 ~��1=3 �X3 �(
os2 � +X�4 sin2 �)d�2 + sin2 �d�24�+X�1 
os2 �d
25	 ;(B.10)and the four-form �eld strength readsF̂ (4) = �r4(r + 2G�)2l(r +G�)4 �2X2 
os2 � +X�2(1 + 2 sin2 �)� dr+2G�lX "1� r2l2 �1 + G�r ��2# 
os � sin �d�) ^ dt ^ ��(2); (B.11)where ��(2) is the volume form on �2.23We have kept the notation of [19℄ here, hoping this will 
ause no 
onfusion. Note, in parti
ular, thatthe radial 
oordinate, r, here is not related to the radial 
oordinate in the domain wall metri
 (1.1), and,as usual, �2 = 8�G. { 40 {



C. Computation of the holographi
 two-point fun
tions
In this appendix we give the details of the 
omputation of the holographi
 two-point fun
-tions for the domain walls de�ned by the fake superpotential (4.13), whi
h have been
onstru
ted expli
itly in Appendix A.We start with the supersymmetri
 solutions 
orresponding to � = �o. For this 
asethe �rst two equations in (7.8) read respe
tively X2�2X + (16 � 5k)X 8(8�k) + (5k � 32)(8� k)(X 8(8�k) � 1) X�X � q2X 4(k�4)(8�k) ! eij = 0; X2�2X + k(16 � 5k)X 8(8�k) + (8� k)(5k � 32)(8� k)(kX 8(8�k) + 8� k) X�X � q2X 4(k�4)(8�k) !! = 0; (C.1)
where q2 = p2l2(8�k)2=64. We have managed to solve these equations analyti
ally only forthe 
ase k = 4, and so we will fo
us on this 
ase. Having solved the supersymmetri
 
ase,we 
an then obtain the solution for the non-supersymmetri
 fake superpotential W (�;�)perturbatively in � � �o. Sin
e for k = 4 we have �o = 0, the expansion is a
tually in �.For k = 4 then, to �rst order in �, the �rst two equations in (7.8) take the form��X2�2X � (X + 3X�1)(X �X�1) X�X � q2� (C.2)+3�4 �(X2 �X�2)(X2�2X +X�X) + q23 (X2 �X�2 + 8 lnX)�+O(�2)� eij = 0;(�X2�2X � (X � 3X�1)(X +X�1) X�X � q2� (C.3)+3�4  (X2 �X�2)X2�2X + "X2 �X�2 + 43 �(X +X�1)2 + 2X +X�1 �2#X�X+q23 (X2 �X�2 + 8 lnX)!+O(�2))! = 0:

{ 41 {



The solutions of these equations, whi
h are non-singular as X !1, are respe
tivelyeij = e(0)ijX�a �(1 + a)X + (1� a)X�1� (C.4)�1 + �8a2 �a2 �(2a� 1)X2 + (2a+ 1)X�2�� 8(a2 + 1)(a+ 1)X[(1 + a)X + (1� a)X�1℄�4 lnX �(2a2 � 2a+ 1)(1 + a)X + (2a2 + 2a+ 1)(1 � a)X�1(1 + a)X + (1� a)X�1 � (a2 � 1)a lnX��+O(�2)� ;! = !(0)X�a �(1 + a)X � (1� a)X�1� (C.5)�1 + �8a2 �a2 �(2a� 3)X2 + (2a+ 3)X�2�� 8[(a2 + 1)� (a2 � 1)(a2 � 2)℄(a+ 1)X[(1 + a)X � (1� a)X�1℄�4 lnX �(2a2 � 2a+ 1)(1 + a)X � (2a2 + 2a+ 1)(1 � a)X�1(1 + a)X � (1� a)X�1 � (a2 � 1)a lnX��+O(�2)� ;where a =p1 + q2 and e(0)ij and !(0) are arbitrary fun
tions of q.It is now straightforward to evaluate E and 
 using these exa
t solutions. To isolatethe desired 
oeÆ
ients E(3) and 
(1) we �rst need to determine the terms E(1); E(2) aswell as 
(0) and subtra
t them from the exa
t solutions for E and 
. This 
an be doneusing the �rst order equations (7.11) and the dilatation operator as des
ribed in Se
tion 7.One easily �ndsE(1) = 
(0) = 0; (C.6)E(2) = 4l (a2 � 1)e�2A = 14l (a2 � 1)(X �X�1)2 h1� �4 (X2 �X�2 + 8 lnX) +O(�2)i :Subtra
ting these from the exa
t solutions for E and 
 we �nally determineE(3) = �1l � �p2�3 �3Ba(a2 � 1)�1 + � (3a2 � 1)2a3(a2 � 1) +O(�2)� ;
(1) = 1l �p2�Ba�1(a2 � 1)�1 + �(3a2 � 1)(2a2 � 1)2a3(a2 � 1) +O(�2)� ; (C.7)whi
h allow one to evaluate the exa
t one-point fun
tions with linear sour
es (7.17) andhen
e the two-point fun
tions.D. Multi-tra
e deformations in the large-N limit and the AdS/CFT 
or-responden
eMulti-tra
e operators in the AdS/CFT 
orresponden
e have been studied extensively [43,44, 45, 46, 47, 48, 49, 50℄. Before we dis
uss su
h operators in the 
ontext of the AdS/CFT
orresponden
e, however, it is useful to review some generi
 �eld theoreti
 properties of{ 42 {



multi-tra
e operators in quantum �eld theories that admit a large-N limit. These propertiesare independent of the AdS/CFT 
orresponden
e and will allow us to in
orporate multi-tra
e operators in the AdS/CFT 
orresponden
e in a very elegant way.We will �rst for 
ompleteness repeat the �eld theory argument given in [50℄, appli-
able to any quantum �eld theory that admits a large-N limit. Let O(x) be a lo
algauge-invariant single-tra
e operator, with the tra
e taken in the adjoint for 
on
reteness,normalized su
h that hOi = O(N0) as N ! 1. The generating fun
tional of 
onne
ted
orrelators, W [J ℄ is O(N2) and so it is 
onvenient to write W [J ℄ = N2w[J ℄. In terms ofthe �eld theory a
tion, S[�℄, thene�N2w[J℄ = Z [d�℄e�S[�℄�N2 R ddxJ(x)O(x): (D.1)Now de�ne �(x) � hOiJ = Æw[J ℄ÆJ : (D.2)The e�e
tive a
tion �[�℄ = N2��[�℄ is given bye�N2��[�℄ = Z [dJ ℄e�N2w[J℄+N2 R ddxJ(x)�(x); (D.3)and J = �Æ��[�℄Æ� : (D.4)Consider now the deformed a
tion Sf [�℄ = S[�℄ +N2 R ddxf(O). Then,e�N2wf [Jf ℄ = Z [d�℄e�S[�℄�N2 R ddx(JfO+f(O))= Z [d�℄e�S[�℄�N2 R ddx(JO+f(O)�f 0(�)O)N!1� e�N2w[J℄e�N2 R ddx(f(�)��f 0(�)); (D.5)where we introdu
ed J � Jf + f 0(�); (D.6)in the se
ond line in order to remove the linear term from f(O) so that large-N fa
torization
an be used in the last step. It follows that in the large-N limit, the generating fun
tionalof 
onne
ted 
orrelators in the deformed theory is given bywf [Jf ℄ = ��f [�℄ + Z ddxJf�= w[J ℄ + Z ddx �f(�)� �f 0(�)�����=Æw[J℄=ÆJ : (D.7)Moreover, e�N2��f [�℄ = Z [dJf ℄e�N2wf [Jf ℄+N2 R ddxJf�= Z [dJ ℄e�N2wf [J℄e�N2 R ddx(f(�)��f 0(�))eN2 R ddx(J�f 0(�))�= e�N2��[�℄�N2 R ddxf(�); (D.8){ 43 {



where we have used [dJf ℄ = [dJ ℄. Therefore,��f [�℄ = ��[�℄ + Z ddxf(�); (D.9)or equivalently V fe�(�) = Ve�(�) +N2f(�): (D.10)These results rely only on the existen
e of a large-N limit and are independent of theAdS/CFT 
orresponden
e. However, they allow for an elegant reformulation of Witten's[43℄ pres
ription for in
orporating multi-tra
e operators in the AdS/CFT 
orresponden
e.Re
all, that in the supergravity approximation, one 
omputes the renormalized on-shellsupergravity a
tion I[�℄, whi
h is a fun
tional of �� only sin
e �+ is expressed in termsof �� by requiring regularity in the interior. Equipped with the renormalized on-shellsupergravity a
tion, the AdS/CFT pres
ription for multi-tra
e operators 
an be stated asfollows, depending on the �� quantization:For the � = �+ quantization, one identi�es the generating fun
tional of the unde-formed theory as W [J ℄ � I[��℄j��=J : (D.11)For the deformed theory, Witten's pres
ription amounts to settingWf [Jf ℄ � I[��℄j��=���(Jf )= I[��℄j��=J + Z ddx �f(�)� �f 0(�)�����=ÆI[��℄=Æ��j��=J ; (D.12)where ���(Jf ) is the solution to �� = Jf + f 0�ÆI[��℄Æ�� � : (D.13)Noting that �� = J and ÆI[��℄Æ�� = �, this equation is pre
isely equation (D.6), thus jus-tifying this pres
ription for the in
orporation of multi-tra
e operators in the AdS/CFT
orresponden
e.For the � = �� quantization, one merely needs to repla
e I[��℄ with the Legen-dre transform �I [ ���℄ de�ned in (6.21,6.22,6.23). Namely, the generating fun
tional of theundeformed theory is now given byW [ �J ℄ � �I[ ���℄j���= �J ; (D.14)while the e�e
tive a
tion is given by the on-shell a
tion�[��℄ = I[��℄: (D.15)For the deformed theory then W �f [ �J �f ℄ � �I[ ���℄j���=����( �J �f ); (D.16)
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where ����( �J �f ) is the solution to ��� = �J �f + �f 0�Æ �I [ ���℄Æ ��� � : (D.17)The e�e
tive a
tion is then given by�f [��℄ = W [ �J �f ℄�N2 Z ddx �J �f ��= I[��℄ +N2 Z ddx �f(��): (D.18)Referen
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