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2(Dated: Deember 21, 2006)The �rst observation of an azimuthal ross{setion asymmetry with respet to the harge ofthe inoming lepton beam is reported from a study of hard exlusive eletroprodution of realphotons. The data have been aumulated by the HERMES experiment at DESY, in whih theHERA 27.6 GeV eletron or positron beam sattered o� an unpolarized hydrogen gas target. Theobserved asymmetry is attributed to the interferene between the Bethe{Heitler proess and theDeeply Virtual Compton Sattering (DVCS) proess. The interferene term is sensitive to DVCSamplitudes, whih provide the most diret aess to Generalized Parton Distributions.PACS numbers: 13.60.-r, 24.85.+p, 13.60.Fz, 14.20.DhThe partoni struture of the nuleon has been tradi-tionally desribed in terms of Parton Distribution Fun-tions (PDFs), whih appear in the interpretation of,e.g., inlusive Deeply Inelasti Sattering (DIS). Morereently, PDFs have been subsumed within GeneralizedParton Distributions (GPDs) [1, 2, 3℄, whih relate di-retly to hard exlusive proesses that involve at leastone additional hard vertex, yet leave the target nuleonintat. The ordinary PDFs and nuleon elasti form fa-tors appear as kinemati limits and moments of GPDs,respetively. Strong interest in the formalism of GPDshas emerged after GPDs were found to o�er the �rst pos-sibility to reveal the total angular momentum arried bythe quarks in the nuleon [2℄. More reent disussionsfous on the potential of GPDs as a three{dimensionalrepresentation of hadrons at the parton level [4, 5, 6, 7, 8℄.Among all pratial probes, the DVCS proess, i.e.,the hard exlusive leptoprodution of a real photon(e p! e p ), appears to provide the theoretially lean-est aess to GPDs. Diret aess to the DVCS ampli-tudes is provided by the interferene between the DVCSand Bethe{Heitler (BH) proesses, in whih the photonis radiated from a parton and from the lepton, respe-tively. Sine these proesses have an idential �nal state,the squared photon prodution amplitude is given byj� j2 = j�BH j2 + j�DV CSj2 + �DVCS ��BH + ��DV CS �BH| {z }I ; (1)where I denotes the interferene term. It introdues adependene on the beam harge, whih is a rare phe-nomenon normally on�ned to proesses involving theweak interation. The BH amplitude (�BH) is preiselyalulable from measured elasti form fators. The rosssetion depends on the Bjorken saling variable xB , thesquared virtual{photon four{momentum �Q2, and thesquared four-momentum transfer t to the target. Thisinterpretation of the virtual{photon kinematis does notapply to the BH proess. In addition, the ross setiondepends on the azimuthal angle � 2 [��; �℄, de�ned asthe angle between the plane ontaining the inoming and�Present address: Thomas Je�erson National Aelerator Faility,Newport News, Virginia 23606, USA

outgoing lepton trajetories and the plane orrespond-ingly de�ned by the virtual and real photon [9℄.For an unpolarized proton target, and �t << Q2, theinterferene term is given by [10℄I / �C [ a os�RefM1;1 � b Pl sin� ImfM1;1 ℄; (2)where the lepton beam has longitudinal polarization Pland harge C = �1, and a and b are funtions of the ra-tio of longitudinal to transverse virtual{photon ux. Apolarization{independent onstant term, higher harmon-is (os 2�, os 3�, sin 2�), as well as a os� dependenein the prefator, have been negleted sine they are sup-pressed by at least O(1=Q) or O(�s). Here �s is thestrong oupling onstant. The squared BH and DVCSamplitudes have their own � dependenes, but do notdepend on the sign of the harge. Hene the measure-ment of a ross setion asymmetry with respet to thebeam harge (d�+ � d��)=(d�+ + d��) is a way to sin-gle out the interferene term [11℄ in the numerator, whilethe denominator is dominated by a �{independent BHontribution. See Ref. [12℄ for details and full equations.The photon{heliity{onserving amplitudefM1;1 = F1H+ xB2� xB (F1 + F2) eH� t4M2p F2 E (3)is given by a linear ombination of the Compton FormFators (CFFs) H, eH and E , together with the Diraand Pauli form fators F1 and F2 [12℄. Here Mp denotesthe proton mass. The CFFs are onvolutions of the or-responding twist{2 GPDs H , eH and E with the hardsattering amplitude.The sin� modulation aessing the imaginary part offM1;1 has already been observed in ross{setion asym-metries with respet to the beam heliity [13, 14℄. ThisLetter reports the �rst measurement of an asymmetrywith respet to the beam harge, aessing the real partof fM1;1 via a os� modulation.Data with an unpolarized hydrogen target were au-mulated using the HERMES spetrometer [15℄ and thelongitudinally polarized 27.6 GeV eletron and positronbeams of the HERA aelerator at DESY. Events wereseleted if they ontained exatly one photon and oneharged trak identi�ed as the sattered lepton. The
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FIG. 1: Distributions in missing{mass squared from data (sta-tistial error bars) and from Monte Carlo simulations (line).The latter inlude elasti BH (�lled area) and assoiated BH(hathed area) proesses as well as semi{inlusive bakground.The vertial lines enlose the seleted exlusive region.hadron ontamination in this lepton sample was kept be-low 1% by ombining the information from a transition{radiation detetor, a preshower sintillator detetor, andan eletromagneti alorimeter. The kinemati require-ments imposed were 1 GeV2 < Q2 < 10 GeV2, 0.03< xB < 0.35,W > 3 GeV, and � < 22 GeV, whereW de-notes the initial photon{nuleon invariant mass and � isthe virtual{photon energy in the target rest frame. Thereal photon was identi�ed by deteting an energy depo-sition above 5 GeV in the alorimeter in addition to asignal in the preshower detetor, without an assoiatedharged trak in the bak region of the spetrometer. Un-like in a preliminary stage of this analysis [16℄, the usefulrange of the polar angle �� between the virtual and realphotons is not limited by the photon position resolution,due to an improved reonstrution algorithm. Now therestrition on �� is relaxed to �� > 5 mrad, limitedmainly by the eletron momentum resolution. In addi-tion, a striter upper limit of �� < 45 mrad is imposedin order to improve the signal{to{bakground ratio [17℄.The reoiling proton was not deteted. Hene exlusiveevents are seleted by requiring the missing mass MX ofthe reation ep ! eX to be lose to the proton mass.Fig. 1 shows the distribution inM2X = (q+p�q0)2, with q,p, and q0 being the four{momenta of the virtual photon,the target nuleon in the initial state, and the real pho-ton, respetively. Mainly due to the resolution in photonenergy, the exlusive peak extends to negative values, inwhih ase MX is de�ned as �p�M2X . The exlusiveregion is de�ned as (�1:5 GeV)2 < M2X < (1:7 GeV)2,based on the result of a Monte Carlo simulation (MC),shown in the same �gure. The Mo and Tsai formalism[21℄ is used to simulate the elasti BH proess leavingthe target nuleon intat, and the assoiated BH pro-ess, where the nuleon is exited to a resonant state.For the latter a ross{setion parametrization for the res-
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FIG. 2: Beam{harge asymmetry AC for the hard eletropro-dution of photons o� protons as a funtion of the azimuthalangle j�j, for the exlusive sample before bakground or-retion. Statistial unertainties are shown. The solid urverepresents the four{parameter �t: (�0:011�0:019)+(0:060�0:027) os � + (0:016 � 0:026) os 2� + (0:034 � 0:027) os 3�.The dashed line shows the pure os � dependene.onane region is used [22℄. Not inluded in the simula-tion is the DVCS ontribution, whih in this kinematiregime is expeted to be muh smaller than that of theBH proess [23℄. The simulation also takes into aountthe semi{inlusive prodution of neutral mesons (mostly�0), where all but one of the deay photons esape de-tetion. For this, the MC generator LEPTO [18℄ in on-juntion with a speial JETSET [19℄ fragmentation tuneis used, the latter being optimized for energies relevant toHERMES [20℄. Not shown in Fig. 1 is the ontribution ofexlusive �0 prodution, whih ontributes less than 2.5%to the exlusive region based on the model in Ref. [26℄.As shown in Fig. 1, data and MC are in good agree-ment taking into aount that they are both absolutelynormalized, and that the MC does not inlude radiativeorretions to the BH ross{setion. The MC yield ex-eeds the data by about 20% in the exlusive region, asmay be expeted [25℄. A simulation inluding seond or-der radiative proesses should give an improved MC{dataomparison in the full missing{mass region, sine a partof the exlusive events experiening seond order radia-tive orretions will not be lost but reonstruted in thenon-exlusive region.The beam{harge asymmetry is evaluated asAC(�) = N+(�)�N�(�)N+(�) +N�(�) ; (4)where N+(�) and N�(�) represent the single{photonyields per � bin, normalized to the number of deteted in-lusive DIS events using the positron and eletron beam,respetively. Sine these beams were polarized, sinu-soidal ontributions appear in numerator and denomina-tor of Eq. 4, with the last term in Eq. 2 giving the biggestontribution. In order to anel these ontributions, the`symmetrized' beam{harge asymmetry is alulated by
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FIG. 3: The os � amplitude of the beam{harge asymmetryas a funtion of the missing mass, before bakground orre-tion. Statistial unertainties are shown.replaing � by j�j in Eq. 4. The result for the exlusiveregion is displayed in Fig. 2. The shown four{parameter�t yields a non-zero os� amplitude of 0:060�0:027. Theresult after the bakground orretion desribed below isgiven in Table I, last row. The onstant term as wellas the os 2� and os 3� terms are ompatible with zero.Fig. 3 shows the os� amplitude in several MX bins. AthigherMX the result is ompatible with zero, on�rmingthe absene of harge{dependent instrumental e�ets.As the reoiling proton remains undeteted, t is in-ferred from the measurement of the other �nal{state par-tiles. For elasti events, kinematis relate the energywith the diretion of the real photon, opening the possi-bility to omit the real{photon energy, whih is the quan-tity subjet to larger unertainty. Thus the value of t inthe exlusive region is alulated ast = �Q2 � 2 � (� �p�2 +Q2 os ��)1 + 1Mp (� �p�2 +Q2 os��) : (5)The error aused by applying this expression to inelastievents (�17% in the exlusive region) is aounted for inthe MC simulation that is used to alulate the frationalontribution of bakground proesses per kinemati binin �t (see Ref. [17℄ for details).Figure 4 shows the os� amplitude derived from thefour{parameter �t in eah of four bins in �t. In eah bin,this result is orreted for the semi{inlusive bakground,whih is treated as a dilution sine the bakground asym-metry an only be non-zero at next-to-leading order inQED. The total bakground ontribution is about 6% asderived from the MC simulation, wherein the elasti andassoiated BH ontributions are saled down by the 20%desribed above. The resulting os� amplitudes are ex-peted to originate from only elasti and assoiated pro-dution. The assoiated BH proesses ontribute about5, 11, 18, and 29% to the yields in the four �t bins, or11% in the full t{range, with an estimated frational un-ertainty of 10%. The dominant ontribution to the to-tal systemati unertainty of the os� amplitudes stems

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-t (GeV2)

A
C

   
   

co
sφ

FIG. 4: The os � amplitude of the beam{harge asymmetryas a funtion of �t for the exlusive region (-1.5 GeV < MX <1.7 GeV), after bakground orretion. The error bars (band)represent(s) the statistial (systemati) unertainties. Thealulations based on GPD models [26, 27℄ use either a fator-ized t{dependene with (dashed{dotted) or without (dotted)the D-term ontribution, or a Regge{inspired t{dependenewith (dashed) or without (solid) the D-term ontribution.from e�ets due to possible deviations of the detetorand/or the beam from their nominal positions. Thesee�ets an be as large as 0.02 per bin. Based on themodels in Ref. [23℄, aeptane and smearing e�ets anontribute up to 20% of the os� amplitude, and thusdominate the systemati unertainty in the last �t bin.The other soures of systemati unertainties are due toa possible di�erene in the alorimeter alibration be-tween the two data sets, the unertainties from the semi-inlusive bakground orretion desribed above, and thedilution of the asymmetry due to exlusively produed�0 mesons misidenti�ed as photons. These ontributionsare ombined quadratially in the total systemati uner-tainty per bin in �t, given in Table I1. Not inluded isany ontribution due to additional QED verties, as themost signi�ant of these has been estimated to be negligi-ble, at least in the ase of polarization asymmetries [24℄.The theoretial alulations for the e p ! e p  pro-ess shown in Fig. 4 employ GPD models developed inRefs. [26, 27℄, whih are based on the widely used frame-work of double distributions [28℄. The model parametersof interest are those that hange the GPD H sine theimpat of the GPDs eH and E is suppressed at small val-ues of xB and �t, respetively (f. Eq. 3). The ode ofRef. [29℄ was used to alulate the values for the os�1 Note that a preliminary result of this analysis [16℄ with a t{averaged value of 0:11 � 0:04 (stat.) � 0:03 (sys.) was derivedat a muh larger mean �t value (h�t i = 0.27 GeV2) due todi�erent requirements on �� , as desribed above. It thus an-not be ompared to the t{averaged result given in Table I butapproximately to the result in the third �t bin.



5�t bin h�t i hxB i hQ2 i Aos�C � stat. � sys.(GeV2) (GeV2) (GeV2)< 0.06 0.03 0.08 2.0 0.024 � 0.043 � 0.0220.06 { 0.14 0.09 0.10 2.6 0.020 � 0.054 � 0.0220.14 { 0.30 0.20 0.11 3.0 0.071 � 0.066 � 0.0280.30 { 0.70 0.42 0.12 3.7 0.377 � 0.110 � 0.081< 0.70 0.12 0.10 2.5 0.063 � 0.029 � 0.028TABLE I: The os� amplitude of the beam{harge asymme-try per kinemati bin in �t after bakground orretion andthe respetive average kinemati values.amplitude of the beam{harge asymmetry at the averagekinematis (see Table I) of every �t bin and not at thekinematis of every event sine it is too omputationallyintensive. The di�erene between these two approahesis strongly model dependent: Tests [30℄ show di�erenesof up to 20% using the models in Ref. [23℄, whih areequivalent to the fatorized models in Fig. 4. Four dif-ferent parameter sets are seleted by hoosing either afatorized or a Regge{inspired t{dependene, eah withor without the ontribution of a negative value of the so{alled D-term [31℄, whih is related to the spontaneousbreaking of hiral symmetry in QCD [27℄. It ontributesto the real part of the DVCS amplitude only and there-fore an be investigated with the beam{harge asymme-try for the �rst time. A large positive D-term is ruledout by these data [16℄, sine it leads to a negative valuefor the beam{harge asymmetry. The parameters bvaland bsea in the pro�le funtion [32℄ are �xed at unity,sine the beam-harge asymmetry has been shown to belargely insensitive to them [17℄. In omparing the pre-ditions to the data at large �t, it should be borne inmind that the model alulations do not inlude assoi-ated prodution, whih inreases with �t as mentionedabove. The three data points at small �t exlude themodel based on the Regge{inspired t-dependene withthe D-term ontribution.These data are in agreement with a very reent al-ulation based on a dual parametrization of GPDs andeither of two models for the t-dependene [33℄. Like thealulations shown in Fig. 4, these alulations were per-formed at the average kinematis (see Table I) of every�tbin. Earlier model alulations were mostly done not as afuntion of t but at the average kinematis of the prelimi-nary result [16℄, and thus annot rigorously be omparedto this measurement, see, e.g., Refs. [7, 12, 34, 35℄. How-ever, sine they span a wider or di�erent range for themagnitude of the beam{harge asymmetry when om-pared to the models shown here, it is apparent that thismeasurement an onstrain the GPD H .In onlusion, a beam{harge azimuthal asymmetry ineletroprodution of real photons has been measured for
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