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alar-Tensor theories of gravity 
an be formulated in di�erent frames, most notably, the Einsteinand the Jordan one. While some debate still persists in the literature on the physi
al status of thedi�erent frames, a frame transformation in S
alar-Tensor theories amounts to a lo
al rede�nitionof the metri
, and then should not a�e
t physi
al results. We analyze the issue in a 
osmologi
al
ontext. In parti
ular, we de�ne all the relevant observables (redshift, distan
es, 
ross-se
tions, ...)in terms of frame-independent quantities. Then, we give a frame-independent formulation of theBoltzmann equation, and outline its use in relevant examples su
h as parti
le freeze-out and theevolution of the CMB photon distribution fun
tion. Finally, we derive the gravitational equationsfor the frame-independent quantities at �rst order in perturbation theory. From a pra
ti
al point ofview, the present approa
h allows the simultaneous implementation of the good aspe
ts of the twoframes in a 
lear and straightforward way.I. INTRODUCTIONThe eviden
e for Dark Energy has revived the interest in modi�
ations to General Relativity (GR). Among thesetheories, S
alar-Tensor gravity (ST) [1℄ represents a good ben
hmark to a

ommodate new ultra-light degrees offreedom possibly responsible for the a

elerated expansion of the universe.From a phenomenologi
al point of view, it respe
ts lo
al Lorentz invarian
e and the universality of free fall of testbodies. Moreover, the post-Newtonian parameters 
 � 1 and � � 1, parameterizing the deviations from GR, areexpressed in terms of a single fun
tion, thus allowing a straightforward 
onfrontation of the theory with solar systemtests of gravity [2, 3, 4℄.From a theoreti
al point of view, this 
lass of theories is large enough to a

ommodate a vast range of possibleextensions of GR in whi
h new s
alar �elds are present in the gravitational se
tor; from extra-dimensional radions andstring theory moduli, to f(R) theories of gravity. Moreover, in a ST 
ontext, ultralight s
alar �elds are te
hni
allynatural. Indeed, general 
ovarian
e implies that the 
ontribution of radiative 
orre
tions from the (visible and dark)matter se
tor to the s
alar �eld mass is at most of order �4=M2p , � being the 
osmologi
al 
onstant. Thus, thelightness of the s
alar �eld is just a manifestation of the smallness of the 
osmologi
al 
onstant, or of the 
urvatureof the universe [5℄.Finally, in a 
osmologi
al setting, it has been pointed out that an intriguing attra
tion me
hanism towards GR [6℄
ould be operative under very generi
 
onditions, in
luding the 
ase of a runaway potential suitable for DE [7, 8, 9℄.Therefore, these theories may di�er 
onsiderably from GR at high redshifts and at the same time ful�ll the stringentbounds 
oming from solar system tests [4℄ today.ST theories 
an be formulated in di�erent guises. In the so-
alled `Jordan frame', the Einstein-Hilbert a
tion ofGR is modi�ed by the introdu
tion of a s
alar �eld1 with a non-
anoni
al kineti
 term and a potential. This �eldrepla
es the Plan
k mass, whi
h be
omes a dynami
al quantity. On the other hand, the matter part of the a
tion isjust the standard one.By Weyl-res
aling the metri
, one 
an express the ST a
tion in the so 
alled `Einstein Frame'. In these newvariables, the gravitational a
tion is just the Einstein-Hilbert one plus a s
alar �eld with 
anoni
ally normalizedkineti
 terms and an e�e
tive potential. On the other hand, in the matter a
tion the s
alar �eld appears, through theres
aling fa
tor multiplying the metri
 tensor everywhere. As a 
onsequen
e, the matter energy-momentum tensor is1 ST theory 
an be generalized with the introdu
tion of many s
alar �elds [1℄. In order not to overload the notation, in this paper we will
onsider a single �eld, but our results are easily generalizable to the multi-�eld 
ase.
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2not 
ovariantly 
onserved, and parti
le physi
s parameters, like masses and dimensionful 
oupling 
onstants appearingin the lagrangian are spa
e-time dependent.It is a general fa
t that physi
s is invariant under a lo
al rede�nition of �eld variables { in this 
ase, the Weyl-res
aled metri
. Nevertheless, this invarian
e is not fully exploited in the literature, where some 
onfusion also existsabout the physi
al status of the di�erent frames. Most authors prefer to work in the Jordan frame, whi
h is alsoreferred to as the `physi
al' one. The advantage of this frame is that all the parti
le physi
s' properties, i.e masses,
oupling 
onstants, de
ay rates, 
ross se
tions, et
. 
an be 
omputed straightforwardly, sin
e the matter a
tion is justthe standard one. On the other hand, the gravitational equations are more involved than in GR, sin
e the s
alar isnon-trivially mixed to the metri
 tensor.Working in the Einstein frame is easier for what 
on
erns the gravitational equations, but the 
onne
tion withparti
le physi
s is not so dire
t as in the Jordan frame, sin
e, for instan
e, the ele
tron mass appearing in thelagrangian is spa
e-time dependent. So, many authors use the Einstein frame as a mathemati
al tool to solve the �eldequations, and then translate ba
k the results in the Jordan frame to 
ompare with observations. For some re
entappli
ations along these lines, see, for instan
e [8, 10, 11, 12℄. Non-linear approa
hes have also been dis
ussed [13, 14℄.While both these pro
edures are 
orre
t, a general dis
ussion of the frame-invarian
e of physi
s in the ST theoriesin a 
osmologi
al setting is still missing. In parti
ular, while it is quite straightforward to go ba
k and forth fromone frame to the other when the barotropi
 
uid approximation for matter holds, it is not so 
lear how to do itwhen Boltzmann equations have to be employed. For instan
e, the epo
h of de
oupling of some intera
tion in theexpanding universe, expressed in 
onformal time, should be derived independently on the frame. But the standardrule of thumb, that is, � <� H=a ; (1)with � the rea
tion rate and H the Hubble parameter, is not a frame-invariant relation.The purpose of this paper is to formulate a frame-invariant approa
h to dis
uss ST 
osmology. Following Di
ke[15, 24℄, we will start by the observation that the physi
al observables are dimensionless ratios between physi
alquantities and the appropriate units of measure2. These numbers are frame-invariant, and should therefore beexpressible in terms of frame-invariant quantities. We will dis
uss the main observables in 
osmology (redshift,distan
es, CMB temperature perturbations, . . . ) and parti
le physi
s (masses, 
ross se
tions, rates, . . . ) and expressthem in terms of frame-invariant 
ombinations of the theory parameters and variables, and the units. We will dis
ussmetri
 perturbations and de�ne a frame-invariant phase spa
e and distribution fun
tion. This will enable us to writedown a frame-invariant Boltzmann equation to dis
uss pro
esses relevant for 
osmology, like parti
les freeze-out, theSa
hs-Wolfe e�e
t, and matter-radiation de
oupling. Finally, we will derive the equations of motion for the frameinvariant quantities at �rst order in metri
 perturbations.The plan of the paper is as follows. In se
t. II we will introdu
e frame-transformations. In se
t. III we willdis
uss how frame-invariant results 
an be obtained for rates, 
ross se
tions, and so on. The 
osmologi
al ba
kgroundobservables, that is redshift and (angular and luminosity) distan
e will be dis
ussed in se
t. IV. Then, we will 
onsiders
alar perturbations in the Newtonian gauge. We will see that a frame transformation amounts to a 
hange of gauge,and will therefore de�ne frame-invariant s
alar metri
 perturbations. This will enable us to de�ne a frame-invariantphase spa
e and energy-momentum tensor (se
t. V). The Boltzmann equation will be introdu
ed in se
t. VI, whereits appli
ation to parti
les' freeze-out and CMB photons will be outlined. Finally, in se
t. VII, we will dis
uss theST dynami
s. We will write down the ST a
tion in terms of frame-invariant quantities only, and write down the
orresponding equations of motion at �rst order. In the appendix, the 
ase of the syn
hronous gauge and of a generi
gauge will be dis
ussed. II. FRAME TRANSFORMATIONSIn general, a frame transformation is a res
aling of the metri
 g�� , of the form~g�� = e�2fg�� ; (2)with f = f(x�) and real, and the spa
e-time 
oordinates x� (� = 0; : : : ; 3) are kept �xed. The di�eomorphism-invariant spa
e-time interval then gets transformed asd~s2 = ~g��dx�dx� = e�2fg��dx�dx� = e�2fds2 : (3)2 Stri
tly speaking, this argument applies only to lo
al physi
al quantities independent of metri
 derivatives.



3Considering time-like and spa
e-like intervals, we see that proper times, dt0 = jdsj(timelike), and proper lengths,dl0 = jdsj(spa
elike), transform as d~t0 = e�fdt0 d~l0 = e�fdl0 : (4)The above transformations 
an be seen as the relations between the 
lo
ks and rods in two di�erent systems of units[15, 16℄. Noti
e that the above transformation laws are, in general, spa
e-time dependent, sin
e so is the fun
tionf(x�). Su
h transformations are not 
ommon in GR and in standard physi
s in general, where they are of no pra
ti
aluse. However, in ST the situation 
hanges dramati
ally. For instan
e, one 
ould 
onsider two di�erent units of length,say, the size of an atom and the radius of a small S
hwarzs
hild bla
k hole. The ratio between these two physi
allengths, whi
h is 
onstant in GR, is in general spa
e-time dependent in ST. Therefore, in this kind of theories, theoperational de�nition of units implies lo
al transformations.Sin
e ds2 = 0 is a frame-invariant 
ondition, the speed of light is also invariant under the transformation (4).Moreover, we will impose that the Plan
k 
onstant �h is also invariant. This amounts to transforming units of mass(and energy) as ~M = ef M ; (5)and in leaving a
tions invariant (but, in general not 
ovariant!). It should be emphasized that this is by no means aunique 
hoi
e. One 
ould for instan
e 
onsider frame transformations in whi
h �h varies and the Newton 
onstant iskept �xed. However, our pres
ription is the one realized in ST theories, whi
h are the main fo
us of this work.Sin
e { in the parti
ular 
lass of lo
al transformations we are 
onsidering { units of time, length, and inversemasses transform in the same way, we will 
onsider a single dimensionful unit, length. The generi
 unit length willbe indi
ated by lR. It transforms a

ording to the spa
e-time dependent relation of eq. (4)~lR = e�f lR : (6)Then, a generi
 lo
al physi
al quantity, Q, having the dimensions [Mass℄a [Length℄b, and [Time℄
, will transforma

ording to ~Q = ef(a�b�
)Q : (7)The s
aling above holds as long as the quantity Q does not depend on derivatives of the metri
. The 
hoi
e of theunit length is di
tated, as usual, by pra
ti
al 
onvenien
e. For instan
e, one 
ould use a referen
e atomi
 wavelength,the inverse physi
al mass of some parti
le, or the Plan
k length.Physi
s does not depend on whi
h parti
ular 
lo
k or rod one adopts. In the following, we will dis
uss thisindependen
e in the framework of Friedmann-Robertson-Walker 
osmology, but of 
ourse this is a general property[15℄. III. FRAME-INVARIANT PARTICLE PHYSICSThe parti
le physi
s a
tion (the underlying theory being the Standard Model, or any of its extensions) has the formZ d4xp�gL = Z d4x p�gl4R l4R L : (8)Sin
e both the a
tion and the 
ombination p�g=l4R are frame-invariant, so is the produ
t l4R L. It is 
onvenient to
onstru
t a lagrangian ~L su
h that ~l4R ~L = l4R L+ � � � ; (9)where the dots represents terms 
ontaining spa
e-time derivatives of lR and ~lR. This is a
hieved transforming theparameters and �elds in L as follows:lnR �n = ~lnR ~�n ; lR � = ~lR ~� ; l3=2R  = ~l3=2R ~ ;A� = ~A� ; lR 
� = ~lR ~
� ; (10)where �n is a generi
 
oupling of 
anoni
al dimension n (e.g. m2 �2 � �2 �2, h�4 � �4 �4, and so on), �,  , and A�are s
alar, spinor and ve
tor �elds, respe
tively, and 
� are the Dira
 gamma matri
es.



4In parti
ular, the mass parameters appearing in the lagrangian 
an be 
onstant in one frame and spa
e-timedependent in all the other ones, as ~m = lR=~lRm = ef m. In ST gravity masses and 
ouplings are 
onstant in theJordan frame and spa
e-time dependent in the Einstein one.In general, the spa
e and time s
ales of variation of the fun
tion f = log(lR=~lR) depend on the model and 
anbe determined by solving the full set of equations of motion. We will make the assumption that these s
ales are of
osmologi
al {or at least astrophysi
al { size, and in any 
ase mu
h larger than parti
le physi
s intera
tion times ande�e
tive ranges [13, 14℄. So, in 
omputing transition amplitudes, de
ay rates and 
ross se
tions, the parti
le physi
sparameters adiabati
ally adjust their relations in eq. (10) to the lo
al values of the fun
tions f , lR and ~lR, up to
orre
tions of O(�PP =L), �PP being a typi
al parti
le physi
s intera
tion range and L the typi
al s
ale of variationof f . Then, one 
an 
ompute all the relevant observables in a frame-independent way, following the usual rules ofquantum �eld theory and using the frame-invariant 
ombinations of eq. (10). The results are frame-independent de
ayrates, 
ross se
tions, et
., given by lR � = ~lR ~� ; l�2R � = ~l�2R ~� ; � � � : (11)The above quantities are the true observables, that is, in any frame, the dimensionless 
ombinations between the �'s,�'s, ..., and the appropriate powers of the standard rod length.IV. FRAME-INVARIANT FRW COSMOLOGY: BACKGROUND OBSERVABLESWe will 
onsider the ba
kground FRW metri
ds2 = �a2(�)(d�2 � Æijdxidxj) ; (12)where � = x0 is the 
onformal time, Æij is the delta-fun
tion, and latin indi
es run from 1 to 3. We will assume thatthe fun
tion f de�ning the frame transformation (2) 
an be expanded asf(�; xi) = �f(�) + Æf(�; xi) ; (13)where Æf 
an be treated as a perturbation of the same order as the metri
 perturbations. Then, the s
ale fa
tor inthe other frame is given by ~a(�) = e� �f(�)a(�) : (14)A. Redshift and temperatureOne of the basi
 
osmologi
al observables is the redshift of photon wavelengths. Using the metri
 (12) one gets thestandard result that a photon traveling through the 
osmos, whi
h, at time �i had wavelength �(�i), at a later time�f would have a wavelength �(�f ) = �(�i)a(�f )a(�i) : (15)Looking at the transformation (14) we see that the ratio �(�f )=�(�i), whi
h is usually de�ned as the 
osmologi
alredshift, is not a frame-invariant quantity. This should be no surprise, sin
e this ratio is not what is a
tually measured.Instead, the physi
al quantity is the dimensionless ratio between the wavelength of the { emitted or absorbed{ photonand some referen
e length, measured in the laboratory. Then, the frame-invariant redshift 
an be de�ned using aframe-invariant 
ombination su
h as �(�0)�lR(�0) �lR(�)�(�) = a(�0)a(�) �lR(�)�lR(�0) ; (16)where the bar denotes the spatial average. In order to give an operative de�nition of redshift, the unit lR has to bespe
i�ed. In pra
ti
e, a referen
e atomi
 wavelength is 
hosen, whi
h we will indi
ate with lR = lat. In prin
iple,di�erent referen
e wavelengths 
ould have di�erent spa
e-time dependen
es, thus leading ea
h to a di�erent de�nitionof redshift. However, in ST theories this is not the 
ase, as they all have 
onstant ratios one another. Therefore, inthese theories, the redshift 
an be de�ned unambiguously as1 + z(�) � a(�0)a(�) �lat(�)�lat(�0) : (17)



5The standard relation between the redshift and the s
ale fa
tor, i.e. 1 + z = ~a(�0)=~a(�) is re
overed only in thatframe in whi
h the referen
e wavelength ~lat is 
onstant in time and spa
e. In ST theories this is the 
ase of theJordan frame, whereas, in terms of the s
ale fa
tor of any other frame one has 1 + z = a(�0)=a(�) exp( �f(�) � �f(�0)),f being the fun
tion 
onne
ting the frame under 
onsideration with the Jordan one, a

ording to eq. (2). It shouldbe stressed that the reason for the Jordan frame to be singled out from all the possible ones, is a matter of pra
ti
alutility, namely, the 
hoi
e of lat in the de�nition of eq. (17), but has nothing to do with it having a better physi
alstatus than the others. In prin
iple, a physi
ist 
ould de
ide to measure the wavelength of 
osmologi
al photons inPlan
k units. In this 
ase, his de�nition of redshift would have the standard relation to the s
ale fa
tor of the Einsteinframe, not the Jordan one.Sin
e the 
omoving 
oordinate volume is frame-invariant, the total entropy per 
omoving 
oordinate volume is aframe-invariant quantity. In the perfe
t 
uid approximation it is given by the standard expressionS = (ra)3(�+ p)T ; (18)where r is the 
omoving radius, � and p the energy density and the pressure, and T is the temperature. Re
alling thede�nition of the energy-momentum tensor for matter,T�� = � 2p�g ÆSMÆg�� ; (19)with SM the matter a
tion, we get the transformation laws,~T�� = e4fT�� : (20)It should be noted that the above relation is valid as long as the matter a
tion SM does not depend on derivativesof the metri
, as is the 
ase in ST theories. In the 
ase of barotropi
 
uids with ba
kground energy � = �T 00 andpressure p Æij = �T ij , we have ~� = e4 �f� ; ~p = e4 �fp : (21)From the frame-invarian
e of the 
omoving entropy and using eqs. (14) and (21), we get that the dimensionless
ombination T lR is frame invariant, and that, 
hoosing again lR = lat, the temperature-redshift relation isT (�)�lat(�)T (�0)�lat(�0) = 1 + z(�) : (22)Noti
e that T � 1=a, in any frame. B. Distan
esThe basi
 quantity entering the de�nition of the di�erent distan
e indi
ators used in 
osmology is the 
omovingdistan
e traveled by a light ray emitted at redshift z, r(z). This is obtained using the (frame-invariant) 
ondition forphoton geodesi
s, i.e. ds2 = 0, that is, using eqs. (12) and (17),r(z) = Z r0 dr = Z a0a da_a = Z z0 dz1 + z  _aa � _�lat�lat!�1 ; (23)where the overdot indi
ates a derivative with respe
t to the 
onformal time � .The redshift-dependen
e of the frame-invariant 
ombination _a=a � _�lat=�lat appearing at the denominator 
an be
omputed in any frame. In ST gravity, the _�lat=�lat term vanishes in the Jordan Frame and one needs to solve theFriedmann equations for the s
ale fa
tor in that frame. On the other hand, in the Einstein frame, one needs also thetime-dependen
e of the �eld �f relating the two frames, sin
e _�lat=�lat = _�f in this frame. For pra
ti
al purposes it maybe 
onvenient to work in the Einstein frame, sin
e its equations are simpler.The angular distan
e of an obje
t of proper diameter D at 
oordinate r, whi
h emitted light at time � (and redshiftz(�)) is given by dA � DÆ �l0R�lR(z) = a0 r(z)(1 + z)�1 ; (24)



6where Æ is the observed angular diameter today, and we have de�ned �l0R � �lR(�0) and a0 � a(�0). In the de�nitionabove, we had to keep tra
k of the possibility that the length of the standard rod lR evolves in time in the frameunder 
onsideration. Sin
e a0=�l0R, z, and r(z) are all frame invariant, so is also the measure of dA expressed in termsof the present value of the unit length �l0R, that is, the ratio dA=�l0R.Analogously, the luminosity distan
e 
an be de�ned in a frame-invariant way asd2Ll0R2 � L �lR(z)24�F l0R4 ; (25)where L is the luminosity (energy per unit time) of the obje
t at redshift z and F is the energy 
ux measured today.One 
an verify that the angular and luminosity distan
es de�ned above satisfy the standard relationdL(z) = (1 + z)2dA(z) : (26)Finally, the number 
ounts of obje
ts (galaxies, 
lusters, . . . ) as a fun
tion of redshift measure the frame-invariantobservable dNdz = n
(z) r(z)2 _aa � _�lat�lat!�1 dz1 + z d
 ; (27)where n
(z) is the 
omoving number density.V. FRAME-INVARIANT PERTURBATIONSNow we in
lude �rst order perturbations of the metri
 and of the fun
tion f , eq. (13). We will work in Newtoniangauge, leaving to the Appendix the extension to the syn
hronous gauge and to a generi
 gauge.The line element in a generi
 frame is given byds2 = a2(�) ��(1 + 2	)d�2 + (1� 2�)Æijdxidxj� ; (28)with 	 and � two s
alar fun
tions of spa
e-time. Considering also the 
u
tuation of lR, lR = �lR + ÆlR, we 
an writedown the frame-invariant line element asds2=l2R = a2(�)=�l2R ���1 + 2	� 2 ÆlRlR � d�2+�1� 2�� 2 ÆlRlR � Æijdxidxj� ; (29)whi
h still has the form of an invariant line element in a Newtonian gauge, with frame-invariant s
ale fa
tor andpotentials �a � a=�lR ; �	 � 	� ÆlRlR ; �� � �+ ÆlRlR : (30)All the physi
al observables, up to �rst order, must depend on the above quantities. In the previous se
tion we haveseen already how it works at zeroth order. In the following we will extend the program to �rst-order.A. Frame invariant geodesi
sIt is 
onvenient to work with 
omoving 
oordinates, sin
e they are frame-invariant. Then, besides spa
e-time
oordinates x0 = � and xi, we will also 
onsider the 
onjugate momenta. For a parti
le of mass m they are given byP� = mg�� dx�ds ; (31)where ds � p�ds2.As we have seen in se
t. III, the lagrangian mass of a parti
le is not a frame-invariant quantity, ~m = lR=~lR = ef m,independent of whether the parti
le is a s
alar, spinor or a ve
tor.



7Taking into a

ount the frame dependen
e of the mass, one 
an verify that the 
anoni
al momenta (31) with lowindi
es are frame-invariant.The geodesi
 equation for a parti
le with spa
e-time dependent mass isP 0 dP�d� + ���� P � P � = �m��mg�� : (32)Using the metri
 (28) we arrive at the equation for the frame-invariant momentum Pi,dPid� � P0 �i(	 + log m) = 0 ; (33)whi
h is manifestly frame-invariant sin
e �i(	 + log m) = �i( �	 + log �m), where �m = lRm.In some appli
ations, su
h as the Boltzmann equation entering the 
omputation of the CMB spe
tra, see se
t. VI,it is 
onvenient to eliminate the perturbations from the de�nition of the momenta by going to new variables qi and �[17℄, whi
h 
an be de�ned in a frame-invariant way asPi = (1� ��) qi ;P0 = �(1 + �	) � : (34)Writing qi = q ni, with ninjÆij = 1, one 
an verify the relation � = [q2 + �a2 �m2℄1=2. The geodesi
 equation in thesevariables have the standard form _q = q ��� ��� � ni ��xi �	 ; (35)whi
h is valid also in the massless 
ase � = q.Photon traje
tories are given by the frame-invariant equation ds2 = 0. As a 
onsequen
e, the expressions for thede
e
tion angles due to weak lensing depend on the frame-invariant 
ombination 	 + � = �	+ �� [18℄.B. The energy-momentum tensorOne 
an de�ne a frame-invariant distribution fun
tion F (xi; Pj ; �), giving the number of parti
les in a (frame-invariant) di�erential volume in phase spa
e,F (xi; Pj ; �) dx1dx2dx3dP1dP2dP3 = dN : (36)From F one 
an de�ne the 
omoving number density,n
(xi; �) = gs Z d3P(2�)3 F (xi; Pj ; �) ; (37)and the energy-momentum tensor, T�� = gs Z d3P(2�)3 (�g)�1=2 P�P�P 0 F (xi; Pj ; �) ; (38)where d3P = dP1dP2dP3 and gs 
ounts the spin degrees of freedom. One 
an verify that the above de�nition ful�llsthe transformation rule of eq. (20). The distribution fun
tion for bosons (-) and fermions (+) in equilibrium is thestandard one [17℄, F 0(�) = �e�=T0 � 1��1 : (39)Using the variables qi, � de�ned in eq. (34), the 
omponents of the energy momentum tensor are expli
itly given,at �rst order, by �T 00 = l4R T 00 = �gs�a�4 Z d3q(2�)3 �f = ����1 + Æ���� � ;�T 0i = l4R T 0i = gs�a�4 Z d3q(2�)3 qnif = ��(1 + w) vi ;�T ij = l4R T ij = gs�a�4 Z d3q(2�)3 q2� ninjf = ���w + 
2s Æ���� � Æij +�ij ; (40)where f(xi; q; nj ; �) = F (xi; Pj ; �), vi � dxi=d� , w is the equation of state, and 
2s = � �P=���.



8VI. THE BOLTZMANN EQUATIONFrom what we have dis
ussed in the previous session, it is now 
lear that, using the frame-invariant 
oordinates xi,Pj , and � , it is possible to study departures from thermal equilibrium in a frame-invariant way. The tool is, as usual,the Boltzmann equation. The evolution of the phase spa
e density of a parti
le  , F (xi ; P j ; �) is given by�F �� + dxi d� �F �xi + dP jd� �F �P j = �dF d� �C : (41)The frame-invarian
e of the LHS is trivially 
he
ked. One 
an 
ast it in a more useful form by using dxi =d� = P i =P 0 and eq. (33).The 
ollisional term for a generi
 pro
ess  + a+ b+ � � � $ i+ j + � � � reads�dF d� �C (xi ; P j ; �) = 12P 0 Z d�ad�b � � � d�id�j � � ��(2�)4Æ4(P + P a + P b � � � � P i � P j � � �)� �jMj2 +a+b+���!i+j+���F FaFb � � � (1� Fi)(1� Fj) � � ��jMj2i+j+���! +a+b+���FiFj � � � (1� F )(1� Fa)(1� Fb) � � �� ; (42)where the 00+00 applies to bosons and the 00�00 to fermions, and d� is the frame-invariant quantityd� � l2R d4P(2�)3 (�g)�1=2 Æ(P 2 +m2)�(P 0)= l2R d3P(2�)3 (�g)�1=22P 0 = �l2R a�2(2�)3 d3q2� ; (43)with d4P = dP0 d3P . The delta-fun
tion in eq. (42) depends on momenta with low indi
es.A. Freeze outAs a �rst example, we 
onsider the 
ase of a heavy parti
le de
aying into two lighter ones, whi
h are assumed toequilibrate rapidly. Following the standard pro
edure (see for instan
e ref. [19℄) the (
onformal) time dependen
e ofthe 
omoving number density is given by_n 
 = gs Z d3P(2�)3 �dF d� �C= Z d3P	(2�)3 jMj22P 0 d�ad�b(2�)4Æ(4)(P � P a � P b)(F � F 0aF 0b ) ; (44)where we have approximated 1� F ' 1.Using energy 
onservation we 
an write, as usual,F 0aF 0b = F 0 ; (45)and then _n 
 = �(n 
 � n 
 0) Z d�ad�b(2�)4Æ(4)(P � P a � P b) jMj22m a ; (46)where for the non-relativisti
 parti
le 	 we have used P 0 ' �m a. Re
ognizing the integral as the de
ay rate per unit
onformal time, � a, where � is the de
ay probability per unit physi
al time, and turning to the variable x = m =T ,we get the frame-invariant equation d n 
d logx = � � aH(1 +m0 =m ) (n 
 � n 
 0) ; (47)



9where primes denote derivatives with respe
t to log a and we have used the relation _T=T = �H . From the aboveequation one 
an see that the usual rule of thumb for a parti
le intera
tion to be eÆ
ient in the expanding Universe,that is � a >� H , now generalizes to the frame-invariant relation� a >� H(1 +m0 =m ) : (48)We stress again that the frame independen
e of the above equation is a 
onsequen
e of the frame-independen
e ofthe produ
t �a, and then, ultimately, of that of the matrix element jMj2.Analogously, in the 
ase of a 2$ 2 s
attering pro
ess one gets the result1n 
 0 d n 
d logx = � � aH(1 +m0 =m ) 24 n 
n 
 0!2 � 135 ; (49)where � = n 
 0a�3h�vi, with h�vi the thermally averaged 
ross se
tion.From these examples one 
an appre
iate the utility of the frame-invariant Boltzmann equations. In pra
ti
e, itturns out that rates, 
ross se
tions, and all the parti
le physi
s related quantities are more 
onveniently 
omputed ina frame di�erent from that in whi
h the Einstein equations are simpler. For instan
e, in s
alar-tensor theories, parti
lephysi
s is 
onveniently 
omputed in the Jordan frame, whereas gravitational equations are simpler in the Einsteinframe. Sin
e frame-invariant 
ombinations {su
h as �a { appear in the equations above, one 
an �rst 
ompute ratesand 
ross se
tions in the more 
onvenient frame and then translate them in the other one using the relations ofeq. (11). B. Sa
hs-Wolfe e�e
tUsing the 0-0 
omponent of the energy-momentum tensor, eq. (40) one 
an de�ne (spa
e and dire
tion-dependent)temperature 
u
tuations for a gas of photons (� = q, gs = 2) as�(xi; nj ; �) � �TT (xi; nj ; �) = 14�2���a4 Z dqq3f � 1 : (50)From the 
ollisionless Boltzmann equation for the fun
tion f ,�f�� + _xi �f�xi + _q �f�q + _nj �f�nj = 0 ; (51)using the geodesi
 equation (35) and the relation ni = qi=q = _xi(1� ��� �	)�=q, one getsdd� (� + �	) = _�	 + _�� ; (52)where use has been made of the fa
t that potentials and ÆlR do not depend on the angle expli
itly, and _( ) � � =�� . Ifthe potential are stati
, the quantity �+ �	 is 
onserved, whi
h is the frame-invariant expression for the Sa
hs-Wolfee�e
t [20℄. C. Phase spa
e evolution for CMB photonsThe evolution of the CMB photon distribution fun
tion is des
ribed by the Boltzmann equations dis
ussed, forinstan
e, in [17, 21, 22℄. To redu
e the number of variables, one integrates out the q dependen
e and expands theangular dependen
e in Legendre polynomials, Pl. Going to Fourier spa
e, one de�nesF (~k; n̂; �) � R f1(~k; ~q; �)q3dqR f0(q)q3dq �� 1Xl=0(�i)l(2l+ 1)Fl(~k; �)Pl(k̂ � n̂) ;



10G(~k; n̂; �) � R Q1(~k; ~q; �)q3dqR Q0(q)q3dq �� 1Xl=0(�i)l(2l+ 1)Gl(~k; �)Pl(k̂ � n̂) ; (53)(54)where ~k = kk̂ is the waveve
tor and n̂ the dire
tion of the photons 3-momentum ~q. f0 is the zeroth order (equilibrium)distribution fun
tion and f1 the �rst order deviation from it, while Q0 and Q1 are the zeroth and �rst order Stokesparameter, respe
tively.The Boltzmann equations for F and G take the form�F�� + ik�F � 4( _��� ik��	) = ��F�� �C ;�G�� + ik�G = ��G�� �C ; (55)with � � k̂ � n̂. Again, the LHS are manifestly frame-invariant. The 
ollisional terms are given by [17℄��F�� �C = a�2ne
 �T ��F + F0 + 4n̂ � ~ve � 12 (F2 +G0 +G2)P2� ;��G�� �C = a�2ne
 �T ��G+ 12 (F2 +G0 +G2) (1� P2)� ; (56)where ~ve and ne
 are respe
tively the proper velo
ity and 
omoving density of the ele
trons, and �T the Thomson
ross se
tion.Sin
e a�2ne
 �T = �a�2ne
��T is frame-invariant, and so is the proper velo
ity, the frame-invarian
e of the 
ollisionalterms is also manifest.VII. EQUATIONS OF MOTION FOR SCALAR-TENSOR THEORIESIt is 
onvenient to de�ne the frame-invariant metri
h�� � l�2Pl g�� ; (57)where the unit length lPl will be later identi�ed with the Plan
k length. If g�� is a FRW metri
 in Newtonian gauge,so is h�� , with s
ale fa
tor �a and potentials �	, �� as de�ned in eq. (30) with lR = lPl. Noti
e that h�� and �a2 havedimension of (mass)2.S
alar-tensor theories 
an be de�ned in terms of frame-independent quantities by the a
tionS = SG[h�� ; '℄ + SM [h��e�2b['℄; �� ; � ; : : : ; ��n℄ ; (58)where the frame-independent �elds �� ; � ; : : :, and 
oupling 
onstants ��n's, appearing in the matter a
tion SM aregiven by the 
ombinations in eq. (10) with lR = lPl.The gravity a
tion is given bySG = � Z d4xp�h �R(h)� 2h����'��'� 4 �V (')� : (59)The only feature di�erentiating the a
tion in eq. (58) from that of standard GR is the fun
tion b['(x)℄. In theb = 0 limit, the s
alar-tensor theory redu
es to GR with an extra s
alar �eld, ', whi
h in this limit 
an be seen asan extra matter 
omponent minimally 
oupled to gravity. In this 
ase, a 
onstant lPl 
an be univo
ally taken as themost 
onvenient 
hoi
e to measure all the dimensional quantities in the theory. In this units, both the Plan
k massand parti
le masses, as well as atomi
 wavelengths, are 
onstant.On the other hand, when b 6= 0, the s
alar �eld '(x) is non-minimally 
oupled to gravity and one has a genuines
alar-tensor theory. In the literature, these theories are usually dis
ussed in two frames, the Einstein and the Jordanones. In our language, 
hoosing a frame 
orresponds to �xing the fun
tion lPl(x) appropriately.



11The �rst possible 
hoi
e is to take a 
onstant lPl, whi
h 
orresponds to the Einstein frame. The gravity a
tiontakes the usual Einstein-Hilbert formSG = � l�2Pl Z d4xp�g [R(g)� 2 g����'��'� 4V (')℄ ; (60)with V = l�2Pl �V . The 
ombination in front of the integral �xes the Einstein-frame Plan
k mass, � l�2Pl = M2�=2 =(16�G�)�2. In other words, in this frame, dimensional units are set by the Plan
k s
ale. The matter a
tion isobtained from the one of quantum �eld theory by substituting the Minkowsky metri
 ��� with g��e�2b. Sin
e in thisframe the matter energy-momentum tensor is not 
onserved (see eq. (66)), parti
le physi
s quantities, like masses andwavelengths are not 
onstant.The other 
hoi
e 
orresponds to the Jordan frame, whi
h is obtained by making the Plan
k length spa
e-timedependent su
h as to reabsorb b['(x)℄ in SM . This is a

omplished if one 
hoses ~lPl = lPl e�b, where lPl is thepreviously de�ned Plan
k length in the Einstein frame. With this 
hoi
e the matter a
tion takes the standard formof quantum �eld theory (with ��� ! g��), whereas the gravity a
tion isSG = M2�2 Z d4xp�~g e2b hR(~g)� 2 ~g����'��' (1� 3�2)� 4 ~V (')i ; (61)where ~V = ~l�2Pl �V and � � dbd' : (62)Noti
e that, in this frame, the rôle of the Plan
k mass is played by the spa
e-time dependent quantity M�eb. Sin
eb['(x)℄ disappears from the matter a
tion, the energy-momentum tensor is now 
ovariantly 
onserved.Of 
ourse, any other 
hoi
e for lPl is possible in prin
iple and leads to the same physi
al 
onsequen
es. However, forpra
ti
al purposes, only the Einstein and Jordan frames are employed. The dis
ussion of the previous se
tions showshow one 
an exploit the good aspe
ts of the two. One 
an 
ompute 
ross se
tions, de
ay rates, et
., in the Jordan frame,where masses and 
ouplings are 
onstant and the usual rules of quantum �eld theory apply straightforwardly. Then,one 
onstru
ts frame-invariant 
ombinations out of these, su
h as ~�~a, and insert them into the frame-independentBoltzmann equations like eqs. (47, 49). On the other hand, the gravity part, like the 
ombination H(1 + m0=m)
an be 
omputed in the Einstein frame. Equivalently, both the parti
le physi
s part and the gravity part 
an be
omputed frame-invariantly from the beginning, using the parti
le physi
s parameters de�ned in eq. (10) and solvingthe equations of motion obtained from the a
tion in eq. (58), that we are going to write down expli
itly up to �rstorder.Before doing that, we give the expression of the redshift (17) in terms of the frame-invariant s
ale fa
tor �a = a=lPl,that is 1 + z = �a(�0)�a(�) e�b(�)��b(�0) ; (63)where �b(�) � b[ �'(�)℄. A. Ba
kground equationsThe ba
kground equations for the s
ale fa
tor �a are� _�a�a�2 � 23 �12 _'2 + �a2 �V � = 16� ���a2 ; (64)��a�a + 13 � _'2 � 4�a2 �V � = � 112� ���a2(1� 3w) : (65)The energy-momentum tensor �T �� is not 
onserved,�T��;� = ��'� �T�� ; (66)whi
h, at zeroth-order implies _��+ 3 �� (1 + w) _�a=�a = �� _' �� (1� 3w) : (67)



12One 
an verify that, with the Jordan frame 
hoi
e, i.e. ~lPl � e�b, the 
ovariant 
onservation of the energy-momentumtensor is re
overed.The equation of motion for the �eld ' is h�� �D�'� � Æ �VÆ' = �4� �T�� ; (68)whi
h, at zeroth-order, gives �'+ 2 _�a�a _' + �a2 � �V�' = �4k �a2 �� (1� 3w) : (69)B. First-order equationsHere we give the set of �rst order equations:k2 �� + 3 _�a�a � _�� + _�a�a �	�� ( _'Æ _'� _'2 �	) + 2�a2 Æ �VÆ' Æ' = � 14�Æ���a2 ; (70)k2� _�� + _�a�a �	�� _'k2Æ' = 14� ���a2(1 + w)� ; (71)��� + _�a�a ( _�	 + 2 _��) + "2��a�a �� _�a�a�2# �	� 13k2( �	� ��) ++�	 _'2 � _'Æ _'+ Æ �VÆ' Æ' = 14�
2sÆ���a2 ; (72)k2(��� �	) = 34� ���a2(1 + w)� ; (73)where � � ikjvj and ��(1 + w)� � �(k̂ik̂j � Æij=3)�ij , with k̂i = ki=k.At �rst order, the 
ontinuity equation for the matter energy-momentum tensor, eq. (66), yields_�Æ = �(1 + w)(� � 3 _��)� (1� 3w)��Æ _'+ _'���'Æ'��� 3�w��� ���Æ� _�a�a � � _'� ; (74)_� = �(1� 3w)� _�a�a � � _'� � � _w1 + w� + �w + �w� �� ���1 + w k2�Æ+ k2( � � �)� (1� 3w)(1 + w) k2�Æ' ; (75)where �Æ � Æ��=��.The equation of motion for the s
alar �eld 
u
tuation Æ', from eq. (68) isÆ �' + 2 _�a�aÆ _'�r2Æ'� _� _'� 3 _' _�� + 2 � �a2 � �V�' � �2k ���a2(1� 3w) � ++ �a2 �2 �V�'2 Æ' = �a24k ���(1� 3w)���'Æ'+�1� 3w � 3�w��� ����Æ��� : (76)VIII. CONCLUSIONA parti
ular ST theory is identi�ed by two fun
tions: b(') and the e�e
tive potential �V ('), see eqs. (58) and(59). Therefore, the physi
al deviations from GR should be parameterized in terms of these two fun
tions alone,



13irrespe
tively of the frame one 
hoses to solve the equations of motion [2, 3℄. A
tually, as we have shown, �xing aframe is not ne
essary, provided one 
arefully expresses all the observables in terms of frame-invariant quantities.From a pra
ti
al point of view, the formulation of ST gravity presented in this paper allows a straightforwardmodi�
ation of the available 
odes based on Boltzmann equations for the study of Nu
leosynthesis, CMB, or the
al
ulation of the Dark Matter reli
 abundan
es in the 
ontext of GR. It is enough to rede�ne the redshift as ineq. (63) and add the s
alar �eld ' to the GR equations of motion, as in se
ts. VII A and VIIB. Then, the 
ode willwork in the standard way, the only di�eren
e being given by the two extra inputs b and �V . The implementation ofthis pro
edure to the publi
ly available CMBFAST [23℄ 
ode is under way.IX. APPENDIXWe will show how the results obtained in the text in the Newtonian gauge 
an be extended to the syn
hronousgauge and to a generi
 gauge. A. The syn
hronous gaugeThe syn
hronous gauge is de�ned by ds2 = a2 ��d�2 + (Æij + hij) dxidxj� : (77)After a frame transformation ds2 ! d~s2 = e�2fds2 the metri
 of eq. (77) transforms ind~s2 = a2e�2fB ��(1� 2Æf)d�2 + (Æij + hij � 2ÆfÆij) dxidxj� ; (78)Unlike for the Newtonian gauge, a frame transformation doesn't preserve the syn
hronous gauge. However it ispossible to give a frame-independent des
ription of all the physi
al phenomena also when the metri
 perturbations aredes
ribed in the basis (hij ; Æf). In fa
t, as we will see, the geodesi
 motion depends only from the frame-independent
ombination �hij = hij � 2(ÆlR=lR)Æij .To show this in a simple way let's de�ne a syn
hronous gauge as in the followingdh2 = �a2 ��d�2 + �Æij + �hij� dxidxj� : (79)In this way at least the spatial 
omponents of the metri
 are frame-independent.As for the Newtonian gauge we now relate the 4-momentum P� to the frame-independent variables qi and �P0 = �� ;Pi = �Æij + 12�hij� qj : (80)With this de�nitions the relation � =pq2 + �m�a2 is preserved.Using eqs. (80) and the metri
 of eq. (79) the geodesi
s equation at �rst order yields_q = �12qninj _�hij : (81)Also if the metri
 of eq. (79) is not frame-invariant, eq. (81) is not a�e
ted by a frame transformation.B. The 
ase of a generi
 gaugeLet's 
onsider now the metri
ds2 = a2f�(1 + 2 )d�2 + 2�iBd�dxi + [(1� 2�)Æij +DijE℄ dxidxjg (82)



14where Dij = ��i�j � 13Æijr2�.After a frame transformation ds2 ! d~s2 = e�2fds2 eq. (82) transforms ind~s2 = a2e�2fBf�(1 + 2 � 2Æf)d�2 + 2�iBd�dxi ++ [(1� 2�� 2Æf)Æij +DijE℄ dxidxjg (83)The transformation properties of the metri
 in eq. (82) suggest to de�ne the following frame-invariant line elementdh2 = �a2f�(1 + 2 � )d�2 + 2�i �Bd�dxi + �(1� 2��)Æij +Dij �E� dxidxjg ; (84)where the frame-invariant quantities �a, � and �� are given in eq. (30). We also wrote �B = B and �E = E to underlinethat su
h a quantities do not transform under frame transformations.The 4-momentum is now related to the frame invariant variables qi and � by the following relationsP0 = � �qi�i �B + �(1 + � )� ;Pi = �(1� ��)Æij + 12Dij �E� qj ; (85)with � =pq2 + �m�a2.Using now eqs. (85) and the metri
 of eq. (84) at �rst order the geodesi
 equation yields_q = q _��� �ni�i � + 2�ni� _�a�a�i �B + �i _�B�� qninj ��i�j �B + 12Dij _�E� (86)If in eq. (86) we impose �B = �E = 0 we re
over eq. (33). Choosing instead �B = � = 0 and �2��Æij +Dij �E = �hijeq. (86) redu
es to eq. (81). A
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