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DESY 06 { 076Einstein and Jordan frames reoniled: a frame-invariant approah to salar-tensorosmologyRiardo CatenaDeutshes Elektronen-Synrotron DESY, 22603 Hamburg, GermanyMassimo PietroniINFN, Sezione di Padova, via Marzolo 8, I-35131, Padova, ItalyLua SarabelloDipartimento di Fisia Universit�a di Padova and INFN,Sezione di Padova, via Marzolo 8, I-35131, Padova, ItalySalar-Tensor theories of gravity an be formulated in di�erent frames, most notably, the Einsteinand the Jordan one. While some debate still persists in the literature on the physial status of thedi�erent frames, a frame transformation in Salar-Tensor theories amounts to a loal rede�nitionof the metri, and then should not a�et physial results. We analyze the issue in a osmologialontext. In partiular, we de�ne all the relevant observables (redshift, distanes, ross-setions, ...)in terms of frame-independent quantities. Then, we give a frame-independent formulation of theBoltzmann equation, and outline its use in relevant examples suh as partile freeze-out and theevolution of the CMB photon distribution funtion. Finally, we derive the gravitational equationsfor the frame-independent quantities at �rst order in perturbation theory. From a pratial point ofview, the present approah allows the simultaneous implementation of the good aspets of the twoframes in a lear and straightforward way.I. INTRODUCTIONThe evidene for Dark Energy has revived the interest in modi�ations to General Relativity (GR). Among thesetheories, Salar-Tensor gravity (ST) [1℄ represents a good benhmark to aommodate new ultra-light degrees offreedom possibly responsible for the aelerated expansion of the universe.From a phenomenologial point of view, it respets loal Lorentz invariane and the universality of free fall of testbodies. Moreover, the post-Newtonian parameters  � 1 and � � 1, parameterizing the deviations from GR, areexpressed in terms of a single funtion, thus allowing a straightforward onfrontation of the theory with solar systemtests of gravity [2, 3, 4℄.From a theoretial point of view, this lass of theories is large enough to aommodate a vast range of possibleextensions of GR in whih new salar �elds are present in the gravitational setor; from extra-dimensional radions andstring theory moduli, to f(R) theories of gravity. Moreover, in a ST ontext, ultralight salar �elds are tehniallynatural. Indeed, general ovariane implies that the ontribution of radiative orretions from the (visible and dark)matter setor to the salar �eld mass is at most of order �4=M2p , � being the osmologial onstant. Thus, thelightness of the salar �eld is just a manifestation of the smallness of the osmologial onstant, or of the urvatureof the universe [5℄.Finally, in a osmologial setting, it has been pointed out that an intriguing attration mehanism towards GR [6℄ould be operative under very generi onditions, inluding the ase of a runaway potential suitable for DE [7, 8, 9℄.Therefore, these theories may di�er onsiderably from GR at high redshifts and at the same time ful�ll the stringentbounds oming from solar system tests [4℄ today.ST theories an be formulated in di�erent guises. In the so-alled `Jordan frame', the Einstein-Hilbert ation ofGR is modi�ed by the introdution of a salar �eld1 with a non-anonial kineti term and a potential. This �eldreplaes the Plank mass, whih beomes a dynamial quantity. On the other hand, the matter part of the ation isjust the standard one.By Weyl-resaling the metri, one an express the ST ation in the so alled `Einstein Frame'. In these newvariables, the gravitational ation is just the Einstein-Hilbert one plus a salar �eld with anonially normalizedkineti terms and an e�etive potential. On the other hand, in the matter ation the salar �eld appears, through theresaling fator multiplying the metri tensor everywhere. As a onsequene, the matter energy-momentum tensor is1 ST theory an be generalized with the introdution of many salar �elds [1℄. In order not to overload the notation, in this paper we willonsider a single �eld, but our results are easily generalizable to the multi-�eld ase.
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2not ovariantly onserved, and partile physis parameters, like masses and dimensionful oupling onstants appearingin the lagrangian are spae-time dependent.It is a general fat that physis is invariant under a loal rede�nition of �eld variables { in this ase, the Weyl-resaled metri. Nevertheless, this invariane is not fully exploited in the literature, where some onfusion also existsabout the physial status of the di�erent frames. Most authors prefer to work in the Jordan frame, whih is alsoreferred to as the `physial' one. The advantage of this frame is that all the partile physis' properties, i.e masses,oupling onstants, deay rates, ross setions, et. an be omputed straightforwardly, sine the matter ation is justthe standard one. On the other hand, the gravitational equations are more involved than in GR, sine the salar isnon-trivially mixed to the metri tensor.Working in the Einstein frame is easier for what onerns the gravitational equations, but the onnetion withpartile physis is not so diret as in the Jordan frame, sine, for instane, the eletron mass appearing in thelagrangian is spae-time dependent. So, many authors use the Einstein frame as a mathematial tool to solve the �eldequations, and then translate bak the results in the Jordan frame to ompare with observations. For some reentappliations along these lines, see, for instane [8, 10, 11, 12℄. Non-linear approahes have also been disussed [13, 14℄.While both these proedures are orret, a general disussion of the frame-invariane of physis in the ST theoriesin a osmologial setting is still missing. In partiular, while it is quite straightforward to go bak and forth fromone frame to the other when the barotropi uid approximation for matter holds, it is not so lear how to do itwhen Boltzmann equations have to be employed. For instane, the epoh of deoupling of some interation in theexpanding universe, expressed in onformal time, should be derived independently on the frame. But the standardrule of thumb, that is, � <� H=a ; (1)with � the reation rate and H the Hubble parameter, is not a frame-invariant relation.The purpose of this paper is to formulate a frame-invariant approah to disuss ST osmology. Following Dike[15, 24℄, we will start by the observation that the physial observables are dimensionless ratios between physialquantities and the appropriate units of measure2. These numbers are frame-invariant, and should therefore beexpressible in terms of frame-invariant quantities. We will disuss the main observables in osmology (redshift,distanes, CMB temperature perturbations, . . . ) and partile physis (masses, ross setions, rates, . . . ) and expressthem in terms of frame-invariant ombinations of the theory parameters and variables, and the units. We will disussmetri perturbations and de�ne a frame-invariant phase spae and distribution funtion. This will enable us to writedown a frame-invariant Boltzmann equation to disuss proesses relevant for osmology, like partiles freeze-out, theSahs-Wolfe e�et, and matter-radiation deoupling. Finally, we will derive the equations of motion for the frameinvariant quantities at �rst order in metri perturbations.The plan of the paper is as follows. In set. II we will introdue frame-transformations. In set. III we willdisuss how frame-invariant results an be obtained for rates, ross setions, and so on. The osmologial bakgroundobservables, that is redshift and (angular and luminosity) distane will be disussed in set. IV. Then, we will onsidersalar perturbations in the Newtonian gauge. We will see that a frame transformation amounts to a hange of gauge,and will therefore de�ne frame-invariant salar metri perturbations. This will enable us to de�ne a frame-invariantphase spae and energy-momentum tensor (set. V). The Boltzmann equation will be introdued in set. VI, whereits appliation to partiles' freeze-out and CMB photons will be outlined. Finally, in set. VII, we will disuss theST dynamis. We will write down the ST ation in terms of frame-invariant quantities only, and write down theorresponding equations of motion at �rst order. In the appendix, the ase of the synhronous gauge and of a generigauge will be disussed. II. FRAME TRANSFORMATIONSIn general, a frame transformation is a resaling of the metri g�� , of the form~g�� = e�2fg�� ; (2)with f = f(x�) and real, and the spae-time oordinates x� (� = 0; : : : ; 3) are kept �xed. The di�eomorphism-invariant spae-time interval then gets transformed asd~s2 = ~g��dx�dx� = e�2fg��dx�dx� = e�2fds2 : (3)2 Stritly speaking, this argument applies only to loal physial quantities independent of metri derivatives.



3Considering time-like and spae-like intervals, we see that proper times, dt0 = jdsj(timelike), and proper lengths,dl0 = jdsj(spaelike), transform as d~t0 = e�fdt0 d~l0 = e�fdl0 : (4)The above transformations an be seen as the relations between the loks and rods in two di�erent systems of units[15, 16℄. Notie that the above transformation laws are, in general, spae-time dependent, sine so is the funtionf(x�). Suh transformations are not ommon in GR and in standard physis in general, where they are of no pratialuse. However, in ST the situation hanges dramatially. For instane, one ould onsider two di�erent units of length,say, the size of an atom and the radius of a small Shwarzshild blak hole. The ratio between these two physiallengths, whih is onstant in GR, is in general spae-time dependent in ST. Therefore, in this kind of theories, theoperational de�nition of units implies loal transformations.Sine ds2 = 0 is a frame-invariant ondition, the speed of light is also invariant under the transformation (4).Moreover, we will impose that the Plank onstant �h is also invariant. This amounts to transforming units of mass(and energy) as ~M = ef M ; (5)and in leaving ations invariant (but, in general not ovariant!). It should be emphasized that this is by no means aunique hoie. One ould for instane onsider frame transformations in whih �h varies and the Newton onstant iskept �xed. However, our presription is the one realized in ST theories, whih are the main fous of this work.Sine { in the partiular lass of loal transformations we are onsidering { units of time, length, and inversemasses transform in the same way, we will onsider a single dimensionful unit, length. The generi unit length willbe indiated by lR. It transforms aording to the spae-time dependent relation of eq. (4)~lR = e�f lR : (6)Then, a generi loal physial quantity, Q, having the dimensions [Mass℄a [Length℄b, and [Time℄, will transformaording to ~Q = ef(a�b�)Q : (7)The saling above holds as long as the quantity Q does not depend on derivatives of the metri. The hoie of theunit length is ditated, as usual, by pratial onveniene. For instane, one ould use a referene atomi wavelength,the inverse physial mass of some partile, or the Plank length.Physis does not depend on whih partiular lok or rod one adopts. In the following, we will disuss thisindependene in the framework of Friedmann-Robertson-Walker osmology, but of ourse this is a general property[15℄. III. FRAME-INVARIANT PARTICLE PHYSICSThe partile physis ation (the underlying theory being the Standard Model, or any of its extensions) has the formZ d4xp�gL = Z d4x p�gl4R l4R L : (8)Sine both the ation and the ombination p�g=l4R are frame-invariant, so is the produt l4R L. It is onvenient toonstrut a lagrangian ~L suh that ~l4R ~L = l4R L+ � � � ; (9)where the dots represents terms ontaining spae-time derivatives of lR and ~lR. This is ahieved transforming theparameters and �elds in L as follows:lnR �n = ~lnR ~�n ; lR � = ~lR ~� ; l3=2R  = ~l3=2R ~ ;A� = ~A� ; lR � = ~lR ~� ; (10)where �n is a generi oupling of anonial dimension n (e.g. m2 �2 � �2 �2, h�4 � �4 �4, and so on), �,  , and A�are salar, spinor and vetor �elds, respetively, and � are the Dira gamma matries.



4In partiular, the mass parameters appearing in the lagrangian an be onstant in one frame and spae-timedependent in all the other ones, as ~m = lR=~lRm = ef m. In ST gravity masses and ouplings are onstant in theJordan frame and spae-time dependent in the Einstein one.In general, the spae and time sales of variation of the funtion f = log(lR=~lR) depend on the model and anbe determined by solving the full set of equations of motion. We will make the assumption that these sales are ofosmologial {or at least astrophysial { size, and in any ase muh larger than partile physis interation times ande�etive ranges [13, 14℄. So, in omputing transition amplitudes, deay rates and ross setions, the partile physisparameters adiabatially adjust their relations in eq. (10) to the loal values of the funtions f , lR and ~lR, up toorretions of O(�PP =L), �PP being a typial partile physis interation range and L the typial sale of variationof f . Then, one an ompute all the relevant observables in a frame-independent way, following the usual rules ofquantum �eld theory and using the frame-invariant ombinations of eq. (10). The results are frame-independent deayrates, ross setions, et., given by lR � = ~lR ~� ; l�2R � = ~l�2R ~� ; � � � : (11)The above quantities are the true observables, that is, in any frame, the dimensionless ombinations between the �'s,�'s, ..., and the appropriate powers of the standard rod length.IV. FRAME-INVARIANT FRW COSMOLOGY: BACKGROUND OBSERVABLESWe will onsider the bakground FRW metrids2 = �a2(�)(d�2 � Æijdxidxj) ; (12)where � = x0 is the onformal time, Æij is the delta-funtion, and latin indies run from 1 to 3. We will assume thatthe funtion f de�ning the frame transformation (2) an be expanded asf(�; xi) = �f(�) + Æf(�; xi) ; (13)where Æf an be treated as a perturbation of the same order as the metri perturbations. Then, the sale fator inthe other frame is given by ~a(�) = e� �f(�)a(�) : (14)A. Redshift and temperatureOne of the basi osmologial observables is the redshift of photon wavelengths. Using the metri (12) one gets thestandard result that a photon traveling through the osmos, whih, at time �i had wavelength �(�i), at a later time�f would have a wavelength �(�f ) = �(�i)a(�f )a(�i) : (15)Looking at the transformation (14) we see that the ratio �(�f )=�(�i), whih is usually de�ned as the osmologialredshift, is not a frame-invariant quantity. This should be no surprise, sine this ratio is not what is atually measured.Instead, the physial quantity is the dimensionless ratio between the wavelength of the { emitted or absorbed{ photonand some referene length, measured in the laboratory. Then, the frame-invariant redshift an be de�ned using aframe-invariant ombination suh as �(�0)�lR(�0) �lR(�)�(�) = a(�0)a(�) �lR(�)�lR(�0) ; (16)where the bar denotes the spatial average. In order to give an operative de�nition of redshift, the unit lR has to bespei�ed. In pratie, a referene atomi wavelength is hosen, whih we will indiate with lR = lat. In priniple,di�erent referene wavelengths ould have di�erent spae-time dependenes, thus leading eah to a di�erent de�nitionof redshift. However, in ST theories this is not the ase, as they all have onstant ratios one another. Therefore, inthese theories, the redshift an be de�ned unambiguously as1 + z(�) � a(�0)a(�) �lat(�)�lat(�0) : (17)



5The standard relation between the redshift and the sale fator, i.e. 1 + z = ~a(�0)=~a(�) is reovered only in thatframe in whih the referene wavelength ~lat is onstant in time and spae. In ST theories this is the ase of theJordan frame, whereas, in terms of the sale fator of any other frame one has 1 + z = a(�0)=a(�) exp( �f(�) � �f(�0)),f being the funtion onneting the frame under onsideration with the Jordan one, aording to eq. (2). It shouldbe stressed that the reason for the Jordan frame to be singled out from all the possible ones, is a matter of pratialutility, namely, the hoie of lat in the de�nition of eq. (17), but has nothing to do with it having a better physialstatus than the others. In priniple, a physiist ould deide to measure the wavelength of osmologial photons inPlank units. In this ase, his de�nition of redshift would have the standard relation to the sale fator of the Einsteinframe, not the Jordan one.Sine the omoving oordinate volume is frame-invariant, the total entropy per omoving oordinate volume is aframe-invariant quantity. In the perfet uid approximation it is given by the standard expressionS = (ra)3(�+ p)T ; (18)where r is the omoving radius, � and p the energy density and the pressure, and T is the temperature. Realling thede�nition of the energy-momentum tensor for matter,T�� = � 2p�g ÆSMÆg�� ; (19)with SM the matter ation, we get the transformation laws,~T�� = e4fT�� : (20)It should be noted that the above relation is valid as long as the matter ation SM does not depend on derivativesof the metri, as is the ase in ST theories. In the ase of barotropi uids with bakground energy � = �T 00 andpressure p Æij = �T ij , we have ~� = e4 �f� ; ~p = e4 �fp : (21)From the frame-invariane of the omoving entropy and using eqs. (14) and (21), we get that the dimensionlessombination T lR is frame invariant, and that, hoosing again lR = lat, the temperature-redshift relation isT (�)�lat(�)T (�0)�lat(�0) = 1 + z(�) : (22)Notie that T � 1=a, in any frame. B. DistanesThe basi quantity entering the de�nition of the di�erent distane indiators used in osmology is the omovingdistane traveled by a light ray emitted at redshift z, r(z). This is obtained using the (frame-invariant) ondition forphoton geodesis, i.e. ds2 = 0, that is, using eqs. (12) and (17),r(z) = Z r0 dr = Z a0a da_a = Z z0 dz1 + z  _aa � _�lat�lat!�1 ; (23)where the overdot indiates a derivative with respet to the onformal time � .The redshift-dependene of the frame-invariant ombination _a=a � _�lat=�lat appearing at the denominator an beomputed in any frame. In ST gravity, the _�lat=�lat term vanishes in the Jordan Frame and one needs to solve theFriedmann equations for the sale fator in that frame. On the other hand, in the Einstein frame, one needs also thetime-dependene of the �eld �f relating the two frames, sine _�lat=�lat = _�f in this frame. For pratial purposes it maybe onvenient to work in the Einstein frame, sine its equations are simpler.The angular distane of an objet of proper diameter D at oordinate r, whih emitted light at time � (and redshiftz(�)) is given by dA � DÆ �l0R�lR(z) = a0 r(z)(1 + z)�1 ; (24)



6where Æ is the observed angular diameter today, and we have de�ned �l0R � �lR(�0) and a0 � a(�0). In the de�nitionabove, we had to keep trak of the possibility that the length of the standard rod lR evolves in time in the frameunder onsideration. Sine a0=�l0R, z, and r(z) are all frame invariant, so is also the measure of dA expressed in termsof the present value of the unit length �l0R, that is, the ratio dA=�l0R.Analogously, the luminosity distane an be de�ned in a frame-invariant way asd2Ll0R2 � L �lR(z)24�F l0R4 ; (25)where L is the luminosity (energy per unit time) of the objet at redshift z and F is the energy ux measured today.One an verify that the angular and luminosity distanes de�ned above satisfy the standard relationdL(z) = (1 + z)2dA(z) : (26)Finally, the number ounts of objets (galaxies, lusters, . . . ) as a funtion of redshift measure the frame-invariantobservable dNdz = n(z) r(z)2 _aa � _�lat�lat!�1 dz1 + z d
 ; (27)where n(z) is the omoving number density.V. FRAME-INVARIANT PERTURBATIONSNow we inlude �rst order perturbations of the metri and of the funtion f , eq. (13). We will work in Newtoniangauge, leaving to the Appendix the extension to the synhronous gauge and to a generi gauge.The line element in a generi frame is given byds2 = a2(�) ��(1 + 2	)d�2 + (1� 2�)Æijdxidxj� ; (28)with 	 and � two salar funtions of spae-time. Considering also the utuation of lR, lR = �lR + ÆlR, we an writedown the frame-invariant line element asds2=l2R = a2(�)=�l2R ���1 + 2	� 2 ÆlRlR � d�2+�1� 2�� 2 ÆlRlR � Æijdxidxj� ; (29)whih still has the form of an invariant line element in a Newtonian gauge, with frame-invariant sale fator andpotentials �a � a=�lR ; �	 � 	� ÆlRlR ; �� � �+ ÆlRlR : (30)All the physial observables, up to �rst order, must depend on the above quantities. In the previous setion we haveseen already how it works at zeroth order. In the following we will extend the program to �rst-order.A. Frame invariant geodesisIt is onvenient to work with omoving oordinates, sine they are frame-invariant. Then, besides spae-timeoordinates x0 = � and xi, we will also onsider the onjugate momenta. For a partile of mass m they are given byP� = mg�� dx�ds ; (31)where ds � p�ds2.As we have seen in set. III, the lagrangian mass of a partile is not a frame-invariant quantity, ~m = lR=~lR = ef m,independent of whether the partile is a salar, spinor or a vetor.



7Taking into aount the frame dependene of the mass, one an verify that the anonial momenta (31) with lowindies are frame-invariant.The geodesi equation for a partile with spae-time dependent mass isP 0 dP�d� + ���� P � P � = �m��mg�� : (32)Using the metri (28) we arrive at the equation for the frame-invariant momentum Pi,dPid� � P0 �i(	 + log m) = 0 ; (33)whih is manifestly frame-invariant sine �i(	 + log m) = �i( �	 + log �m), where �m = lRm.In some appliations, suh as the Boltzmann equation entering the omputation of the CMB spetra, see set. VI,it is onvenient to eliminate the perturbations from the de�nition of the momenta by going to new variables qi and �[17℄, whih an be de�ned in a frame-invariant way asPi = (1� ��) qi ;P0 = �(1 + �	) � : (34)Writing qi = q ni, with ninjÆij = 1, one an verify the relation � = [q2 + �a2 �m2℄1=2. The geodesi equation in thesevariables have the standard form _q = q ��� ��� � ni ��xi �	 ; (35)whih is valid also in the massless ase � = q.Photon trajetories are given by the frame-invariant equation ds2 = 0. As a onsequene, the expressions for thedeetion angles due to weak lensing depend on the frame-invariant ombination 	 + � = �	+ �� [18℄.B. The energy-momentum tensorOne an de�ne a frame-invariant distribution funtion F (xi; Pj ; �), giving the number of partiles in a (frame-invariant) di�erential volume in phase spae,F (xi; Pj ; �) dx1dx2dx3dP1dP2dP3 = dN : (36)From F one an de�ne the omoving number density,n(xi; �) = gs Z d3P(2�)3 F (xi; Pj ; �) ; (37)and the energy-momentum tensor, T�� = gs Z d3P(2�)3 (�g)�1=2 P�P�P 0 F (xi; Pj ; �) ; (38)where d3P = dP1dP2dP3 and gs ounts the spin degrees of freedom. One an verify that the above de�nition ful�llsthe transformation rule of eq. (20). The distribution funtion for bosons (-) and fermions (+) in equilibrium is thestandard one [17℄, F 0(�) = �e�=T0 � 1��1 : (39)Using the variables qi, � de�ned in eq. (34), the omponents of the energy momentum tensor are expliitly given,at �rst order, by �T 00 = l4R T 00 = �gs�a�4 Z d3q(2�)3 �f = ����1 + Æ���� � ;�T 0i = l4R T 0i = gs�a�4 Z d3q(2�)3 qnif = ��(1 + w) vi ;�T ij = l4R T ij = gs�a�4 Z d3q(2�)3 q2� ninjf = ���w + 2s Æ���� � Æij +�ij ; (40)where f(xi; q; nj ; �) = F (xi; Pj ; �), vi � dxi=d� , w is the equation of state, and 2s = � �P=���.



8VI. THE BOLTZMANN EQUATIONFrom what we have disussed in the previous session, it is now lear that, using the frame-invariant oordinates xi,Pj , and � , it is possible to study departures from thermal equilibrium in a frame-invariant way. The tool is, as usual,the Boltzmann equation. The evolution of the phase spae density of a partile  , F (xi ; P j ; �) is given by�F �� + dxi d� �F �xi + dP jd� �F �P j = �dF d� �C : (41)The frame-invariane of the LHS is trivially heked. One an ast it in a more useful form by using dxi =d� = P i =P 0 and eq. (33).The ollisional term for a generi proess  + a+ b+ � � � $ i+ j + � � � reads�dF d� �C (xi ; P j ; �) = 12P 0 Z d�ad�b � � � d�id�j � � ��(2�)4Æ4(P + P a + P b � � � � P i � P j � � �)� �jMj2 +a+b+���!i+j+���F FaFb � � � (1� Fi)(1� Fj) � � ��jMj2i+j+���! +a+b+���FiFj � � � (1� F )(1� Fa)(1� Fb) � � �� ; (42)where the 00+00 applies to bosons and the 00�00 to fermions, and d� is the frame-invariant quantityd� � l2R d4P(2�)3 (�g)�1=2 Æ(P 2 +m2)�(P 0)= l2R d3P(2�)3 (�g)�1=22P 0 = �l2R a�2(2�)3 d3q2� ; (43)with d4P = dP0 d3P . The delta-funtion in eq. (42) depends on momenta with low indies.A. Freeze outAs a �rst example, we onsider the ase of a heavy partile deaying into two lighter ones, whih are assumed toequilibrate rapidly. Following the standard proedure (see for instane ref. [19℄) the (onformal) time dependene ofthe omoving number density is given by_n  = gs Z d3P(2�)3 �dF d� �C= Z d3P	(2�)3 jMj22P 0 d�ad�b(2�)4Æ(4)(P � P a � P b)(F � F 0aF 0b ) ; (44)where we have approximated 1� F ' 1.Using energy onservation we an write, as usual,F 0aF 0b = F 0 ; (45)and then _n  = �(n  � n  0) Z d�ad�b(2�)4Æ(4)(P � P a � P b) jMj22m a ; (46)where for the non-relativisti partile 	 we have used P 0 ' �m a. Reognizing the integral as the deay rate per unitonformal time, � a, where � is the deay probability per unit physial time, and turning to the variable x = m =T ,we get the frame-invariant equation d n d logx = � � aH(1 +m0 =m ) (n  � n  0) ; (47)



9where primes denote derivatives with respet to log a and we have used the relation _T=T = �H . From the aboveequation one an see that the usual rule of thumb for a partile interation to be eÆient in the expanding Universe,that is � a >� H , now generalizes to the frame-invariant relation� a >� H(1 +m0 =m ) : (48)We stress again that the frame independene of the above equation is a onsequene of the frame-independene ofthe produt �a, and then, ultimately, of that of the matrix element jMj2.Analogously, in the ase of a 2$ 2 sattering proess one gets the result1n  0 d n d logx = � � aH(1 +m0 =m ) 24 n n  0!2 � 135 ; (49)where � = n  0a�3h�vi, with h�vi the thermally averaged ross setion.From these examples one an appreiate the utility of the frame-invariant Boltzmann equations. In pratie, itturns out that rates, ross setions, and all the partile physis related quantities are more onveniently omputed ina frame di�erent from that in whih the Einstein equations are simpler. For instane, in salar-tensor theories, partilephysis is onveniently omputed in the Jordan frame, whereas gravitational equations are simpler in the Einsteinframe. Sine frame-invariant ombinations {suh as �a { appear in the equations above, one an �rst ompute ratesand ross setions in the more onvenient frame and then translate them in the other one using the relations ofeq. (11). B. Sahs-Wolfe e�etUsing the 0-0 omponent of the energy-momentum tensor, eq. (40) one an de�ne (spae and diretion-dependent)temperature utuations for a gas of photons (� = q, gs = 2) as�(xi; nj ; �) � �TT (xi; nj ; �) = 14�2���a4 Z dqq3f � 1 : (50)From the ollisionless Boltzmann equation for the funtion f ,�f�� + _xi �f�xi + _q �f�q + _nj �f�nj = 0 ; (51)using the geodesi equation (35) and the relation ni = qi=q = _xi(1� ��� �	)�=q, one getsdd� (� + �	) = _�	 + _�� ; (52)where use has been made of the fat that potentials and ÆlR do not depend on the angle expliitly, and _( ) � � =�� . Ifthe potential are stati, the quantity �+ �	 is onserved, whih is the frame-invariant expression for the Sahs-Wolfee�et [20℄. C. Phase spae evolution for CMB photonsThe evolution of the CMB photon distribution funtion is desribed by the Boltzmann equations disussed, forinstane, in [17, 21, 22℄. To redue the number of variables, one integrates out the q dependene and expands theangular dependene in Legendre polynomials, Pl. Going to Fourier spae, one de�nesF (~k; n̂; �) � R f1(~k; ~q; �)q3dqR f0(q)q3dq �� 1Xl=0(�i)l(2l+ 1)Fl(~k; �)Pl(k̂ � n̂) ;



10G(~k; n̂; �) � R Q1(~k; ~q; �)q3dqR Q0(q)q3dq �� 1Xl=0(�i)l(2l+ 1)Gl(~k; �)Pl(k̂ � n̂) ; (53)(54)where ~k = kk̂ is the wavevetor and n̂ the diretion of the photons 3-momentum ~q. f0 is the zeroth order (equilibrium)distribution funtion and f1 the �rst order deviation from it, while Q0 and Q1 are the zeroth and �rst order Stokesparameter, respetively.The Boltzmann equations for F and G take the form�F�� + ik�F � 4( _��� ik��	) = ��F�� �C ;�G�� + ik�G = ��G�� �C ; (55)with � � k̂ � n̂. Again, the LHS are manifestly frame-invariant. The ollisional terms are given by [17℄��F�� �C = a�2ne �T ��F + F0 + 4n̂ � ~ve � 12 (F2 +G0 +G2)P2� ;��G�� �C = a�2ne �T ��G+ 12 (F2 +G0 +G2) (1� P2)� ; (56)where ~ve and ne are respetively the proper veloity and omoving density of the eletrons, and �T the Thomsonross setion.Sine a�2ne �T = �a�2ne��T is frame-invariant, and so is the proper veloity, the frame-invariane of the ollisionalterms is also manifest.VII. EQUATIONS OF MOTION FOR SCALAR-TENSOR THEORIESIt is onvenient to de�ne the frame-invariant metrih�� � l�2Pl g�� ; (57)where the unit length lPl will be later identi�ed with the Plank length. If g�� is a FRW metri in Newtonian gauge,so is h�� , with sale fator �a and potentials �	, �� as de�ned in eq. (30) with lR = lPl. Notie that h�� and �a2 havedimension of (mass)2.Salar-tensor theories an be de�ned in terms of frame-independent quantities by the ationS = SG[h�� ; '℄ + SM [h��e�2b['℄; �� ; � ; : : : ; ��n℄ ; (58)where the frame-independent �elds �� ; � ; : : :, and oupling onstants ��n's, appearing in the matter ation SM aregiven by the ombinations in eq. (10) with lR = lPl.The gravity ation is given bySG = � Z d4xp�h �R(h)� 2h����'��'� 4 �V (')� : (59)The only feature di�erentiating the ation in eq. (58) from that of standard GR is the funtion b['(x)℄. In theb = 0 limit, the salar-tensor theory redues to GR with an extra salar �eld, ', whih in this limit an be seen asan extra matter omponent minimally oupled to gravity. In this ase, a onstant lPl an be univoally taken as themost onvenient hoie to measure all the dimensional quantities in the theory. In this units, both the Plank massand partile masses, as well as atomi wavelengths, are onstant.On the other hand, when b 6= 0, the salar �eld '(x) is non-minimally oupled to gravity and one has a genuinesalar-tensor theory. In the literature, these theories are usually disussed in two frames, the Einstein and the Jordanones. In our language, hoosing a frame orresponds to �xing the funtion lPl(x) appropriately.



11The �rst possible hoie is to take a onstant lPl, whih orresponds to the Einstein frame. The gravity ationtakes the usual Einstein-Hilbert formSG = � l�2Pl Z d4xp�g [R(g)� 2 g����'��'� 4V (')℄ ; (60)with V = l�2Pl �V . The ombination in front of the integral �xes the Einstein-frame Plank mass, � l�2Pl = M2�=2 =(16�G�)�2. In other words, in this frame, dimensional units are set by the Plank sale. The matter ation isobtained from the one of quantum �eld theory by substituting the Minkowsky metri ��� with g��e�2b. Sine in thisframe the matter energy-momentum tensor is not onserved (see eq. (66)), partile physis quantities, like masses andwavelengths are not onstant.The other hoie orresponds to the Jordan frame, whih is obtained by making the Plank length spae-timedependent suh as to reabsorb b['(x)℄ in SM . This is aomplished if one hoses ~lPl = lPl e�b, where lPl is thepreviously de�ned Plank length in the Einstein frame. With this hoie the matter ation takes the standard formof quantum �eld theory (with ��� ! g��), whereas the gravity ation isSG = M2�2 Z d4xp�~g e2b hR(~g)� 2 ~g����'��' (1� 3�2)� 4 ~V (')i ; (61)where ~V = ~l�2Pl �V and � � dbd' : (62)Notie that, in this frame, the rôle of the Plank mass is played by the spae-time dependent quantity M�eb. Sineb['(x)℄ disappears from the matter ation, the energy-momentum tensor is now ovariantly onserved.Of ourse, any other hoie for lPl is possible in priniple and leads to the same physial onsequenes. However, forpratial purposes, only the Einstein and Jordan frames are employed. The disussion of the previous setions showshow one an exploit the good aspets of the two. One an ompute ross setions, deay rates, et., in the Jordan frame,where masses and ouplings are onstant and the usual rules of quantum �eld theory apply straightforwardly. Then,one onstruts frame-invariant ombinations out of these, suh as ~�~a, and insert them into the frame-independentBoltzmann equations like eqs. (47, 49). On the other hand, the gravity part, like the ombination H(1 + m0=m)an be omputed in the Einstein frame. Equivalently, both the partile physis part and the gravity part an beomputed frame-invariantly from the beginning, using the partile physis parameters de�ned in eq. (10) and solvingthe equations of motion obtained from the ation in eq. (58), that we are going to write down expliitly up to �rstorder.Before doing that, we give the expression of the redshift (17) in terms of the frame-invariant sale fator �a = a=lPl,that is 1 + z = �a(�0)�a(�) e�b(�)��b(�0) ; (63)where �b(�) � b[ �'(�)℄. A. Bakground equationsThe bakground equations for the sale fator �a are� _�a�a�2 � 23 �12 _'2 + �a2 �V � = 16� ���a2 ; (64)��a�a + 13 � _'2 � 4�a2 �V � = � 112� ���a2(1� 3w) : (65)The energy-momentum tensor �T �� is not onserved,�T��;� = ��'� �T�� ; (66)whih, at zeroth-order implies _��+ 3 �� (1 + w) _�a=�a = �� _' �� (1� 3w) : (67)



12One an verify that, with the Jordan frame hoie, i.e. ~lPl � e�b, the ovariant onservation of the energy-momentumtensor is reovered.The equation of motion for the �eld ' is h�� �D�'� � Æ �VÆ' = �4� �T�� ; (68)whih, at zeroth-order, gives �'+ 2 _�a�a _' + �a2 � �V�' = �4k �a2 �� (1� 3w) : (69)B. First-order equationsHere we give the set of �rst order equations:k2 �� + 3 _�a�a � _�� + _�a�a �	�� ( _'Æ _'� _'2 �	) + 2�a2 Æ �VÆ' Æ' = � 14�Æ���a2 ; (70)k2� _�� + _�a�a �	�� _'k2Æ' = 14� ���a2(1 + w)� ; (71)��� + _�a�a ( _�	 + 2 _��) + "2��a�a �� _�a�a�2# �	� 13k2( �	� ��) ++�	 _'2 � _'Æ _'+ Æ �VÆ' Æ' = 14�2sÆ���a2 ; (72)k2(��� �	) = 34� ���a2(1 + w)� ; (73)where � � ikjvj and ��(1 + w)� � �(k̂ik̂j � Æij=3)�ij , with k̂i = ki=k.At �rst order, the ontinuity equation for the matter energy-momentum tensor, eq. (66), yields_�Æ = �(1 + w)(� � 3 _��)� (1� 3w)��Æ _'+ _'���'Æ'��� 3�w��� ���Æ� _�a�a � � _'� ; (74)_� = �(1� 3w)� _�a�a � � _'� � � _w1 + w� + �w + �w� �� ���1 + w k2�Æ+ k2( � � �)� (1� 3w)(1 + w) k2�Æ' ; (75)where �Æ � Æ��=��.The equation of motion for the salar �eld utuation Æ', from eq. (68) isÆ �' + 2 _�a�aÆ _'�r2Æ'� _� _'� 3 _' _�� + 2 � �a2 � �V�' � �2k ���a2(1� 3w) � ++ �a2 �2 �V�'2 Æ' = �a24k ���(1� 3w)���'Æ'+�1� 3w � 3�w��� ����Æ��� : (76)VIII. CONCLUSIONA partiular ST theory is identi�ed by two funtions: b(') and the e�etive potential �V ('), see eqs. (58) and(59). Therefore, the physial deviations from GR should be parameterized in terms of these two funtions alone,



13irrespetively of the frame one hoses to solve the equations of motion [2, 3℄. Atually, as we have shown, �xing aframe is not neessary, provided one arefully expresses all the observables in terms of frame-invariant quantities.From a pratial point of view, the formulation of ST gravity presented in this paper allows a straightforwardmodi�ation of the available odes based on Boltzmann equations for the study of Nuleosynthesis, CMB, or thealulation of the Dark Matter reli abundanes in the ontext of GR. It is enough to rede�ne the redshift as ineq. (63) and add the salar �eld ' to the GR equations of motion, as in sets. VII A and VIIB. Then, the ode willwork in the standard way, the only di�erene being given by the two extra inputs b and �V . The implementation ofthis proedure to the publily available CMBFAST [23℄ ode is under way.IX. APPENDIXWe will show how the results obtained in the text in the Newtonian gauge an be extended to the synhronousgauge and to a generi gauge. A. The synhronous gaugeThe synhronous gauge is de�ned by ds2 = a2 ��d�2 + (Æij + hij) dxidxj� : (77)After a frame transformation ds2 ! d~s2 = e�2fds2 the metri of eq. (77) transforms ind~s2 = a2e�2fB ��(1� 2Æf)d�2 + (Æij + hij � 2ÆfÆij) dxidxj� ; (78)Unlike for the Newtonian gauge, a frame transformation doesn't preserve the synhronous gauge. However it ispossible to give a frame-independent desription of all the physial phenomena also when the metri perturbations aredesribed in the basis (hij ; Æf). In fat, as we will see, the geodesi motion depends only from the frame-independentombination �hij = hij � 2(ÆlR=lR)Æij .To show this in a simple way let's de�ne a synhronous gauge as in the followingdh2 = �a2 ��d�2 + �Æij + �hij� dxidxj� : (79)In this way at least the spatial omponents of the metri are frame-independent.As for the Newtonian gauge we now relate the 4-momentum P� to the frame-independent variables qi and �P0 = �� ;Pi = �Æij + 12�hij� qj : (80)With this de�nitions the relation � =pq2 + �m�a2 is preserved.Using eqs. (80) and the metri of eq. (79) the geodesis equation at �rst order yields_q = �12qninj _�hij : (81)Also if the metri of eq. (79) is not frame-invariant, eq. (81) is not a�eted by a frame transformation.B. The ase of a generi gaugeLet's onsider now the metrids2 = a2f�(1 + 2 )d�2 + 2�iBd�dxi + [(1� 2�)Æij +DijE℄ dxidxjg (82)
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