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The strong-oupling onstant �(nf )s (�) = g2s=(4�), where gs is the gauge oupling ofquantum hromo-dynamis (QCD), is a fundamental parameter of the standard model ofelementary partile physis; its value �(5)s (MZ) is listed among the onstants of nature in theReview of Partile Physis [1℄. Here, � is the renormalization sale, and nf is the numberof ative quark avors q, with mass mq � �. The � dependene of �(nf )s (�) is ontrolled bythe Callan-Symanzik beta funtion of QCD,�2 dd�2 �(nf )s (�)� = �(nf) �(nf )s (�)� != � 1XN=0�(nf)N  �(nf )s (�)� !N+2 : (1)The alulation of the one-loop oeÆient �(nf)0 about 33 years ago [2℄ has led to the disoveryof asymptoti freedom and to the establishment of QCD as the theory of strong interations,an ahievement that was awarded by the 2004 Nobel Prize in Physis. In the lass of shemeswhere the beta funtion is mass independent, whih inludes the minimal-subtration (MS)shemes of dimensional regularization [3℄, �(nf)0 and �(nf)1 [4℄ are universal. The results for�(nf)2 [5℄ and �(nf)3 [6℄ are available in the modi�ed MS (MS) sheme [7℄. As for �(nf )4 , theterm proportional to n4f ,�(nf)4 = � 12052985984 � 1910368 �(3)� n4f +O �n3f� ; (2)where � is Riemann's zeta funtion, was found in the large-nf expansion [8℄, while the residualterms, of O(n3f ) and below, are presently unknown. However, the latter were estimated byan eduated guess, through weighted asymptoti Pad�e approximant preditions (WAPAP's),whih are improved by inluding asymptoti orretions with respet to the usual Pad�eapproximants and performing a weighted average over negative values of nf [9℄. In the aseof �(nf )3 , leaving aside the quarti Casimir terms, whih appear there for the �rst time, theWAPAP's approximate the exat oeÆients of nnf with n = 0; 1; 2 amazingly well, at theone-perent level. One may thus expet that the WAPAP's for �(nf)4 work similarly well,exept for the quarti Casimir terms, whih annot be predited quite as reliably. For thereader's onveniene, �(nf )N (N = 0; : : : ; 4) are listed for the nf values of pratial interest inTable I.In MS-like renormalization shemes, the Appelquist-Carazzone deoupling theorem [10℄does not in general apply to quantities that do not represent physial observables, suh as2



TABLE I: MS values of �(nf )N for variable nf . �(nf )4 is estimated by WAPAP's with quarti Casimirterms omitted [9℄.nf �(nf )0 �(nf )1 �(nf )2 �(nf )3 �(nf )43 94 4 3863384 44532 �(3) + 1405994608 1624 2512 7724 219433456 785355184 �(3) + 4918247373248 1195 2312 2912 97693456 11027648 �(3)� 598391373248 1076 74 138 � 65128 11237576 �(3)� 635594608 124beta funtions or oupling onstants, i.e., quarks with mass mq � � do not automatiallydeouple. The standard proedure to irumvent this problem is to render deoupling expliitby using the language of e�etive �eld theory. As an idealized situation, onsider QCD withnl = nf � 1 massless quark avors and one heavy avor h, with mass mh � �. Then, oneonstruts an e�etive nl-avor theory by requiring onsisteny with the full nf -avor theoryat the heavy-quark threshold �� = O(mh). This leads to a nontrivial mathing onditionbetween the ouplings of the two theories. Although, �(nl)s (mh) = �(nf )s (mh) at leading andnext-to-leading orders, this relationship does not generally hold at higher orders in the MSsheme, i.e., �(nf )s (�) starts to exhibit �nite disontinuities at the avor thresholds. If the �evolution of �(nf )s (�) is to be performed at N + 1 loops, i.e., with the highest oeÆient inEq. (1) being �(nf)N , then onsisteny requires that the mathing onditions be implementedin terms of N -loop formulae. Then, the residual � dependene of physial observables willbe of order N + 2. The QCD mathing onditions at the avor thresholds to two [11℄ andthree [12℄ loops are known in analytial form; they are routinely used in the literature andeven opied to the Review of Partile Physis [1℄. Reently, the four-loop result was found,in semi-analytial form [13℄. In fat, the most intriate four-loop tadpole master integralsinvolving one non-vanishing mass among the basi set that enters any suh alulation ouldso far only be omputed numerially, with limited preision [13, 14, 15℄. It is the purpose ofthis Letter, to overome this bottle-nek by presenting the four-loop mathing ondition for�(nf )s (�) entirely in terms of elementary transendental numbers. This requires the analytievaluation of the massive four-loop tadpole diagram that is alled X0 or T91 in the reentliterature [13℄. Together with the results of Ref. [16℄, we thus enhane the knowledge of the3



basi set of massive four-loop tadpole master integrals in analyti form.Prior to explaining the ore of this analysis and presenting our analyti result for thefour-loop mathing ondition for �(nf )s (�), we derive the �ve-loop formula for this ouplingfor �xed value of nf . In order to simplify the notation, we introdue the ouplant a(nf )(�) =�(nf )s (�)=� and omit the labels � and nf wherever onfusion is impossible. IntegratingEq. (1) leads to ln �2�2 = Z da�(a) = 1�0 �1a + b1 ln a+ a ��b21 + b2�+ a2�b312 � b1b2 + b32 �+ a3��b413 + b21b2 � b223� 23b1b3 + b43 �+O(a4)�+ C; (3)where bN = �N=�0 (N = 1; : : : ; 4), � is the so-alled asymptoti sale parameter, andC is an arbitrary onstant. The seond equality in Eq. (3) is obtained by expanding theintegrand. The onventional MS de�nition of �, whih we adopt, orresponds to hoosingC = (b1=�0) ln�0 [7, 17℄. Iteratively solving Eq. (3) yields, with L = ln(�2=�2),a = 1�0L � b1 lnL(�0L)2 + 1(�0L)3 �b21(ln2 L� lnL� 1) + b2�+ 1(�0L)4 �b31�� ln3 L+ 52 ln2 L + 2 lnL � 12�� 3b1b2 lnL + b32 � + 1(�0L)5 �b41�ln4 L � 133 ln3 L� 32 ln2 L + 4 lnL + 76�+ 3b21b2(2 ln2 L � lnL � 1)� b1b3�2 lnL + 16�+ 53b22 + b43 �+O� 1L6� : (4)The partiular hoie of C [7, 17℄ in Eq. (3) is prediated on the grounds that it suppressesthe appearane of a term proportional to (onst:=L2) in Eq. (4).We now turn to the analyti evaluation of the four-loop mathing ondition for �(nf )s (�) atthe avor thresholds. The underlying formalism was omprehensively explained in Refs. [11,12℄, and most of the tehnial issues related to its appliation at four loops were alreadydisussed in Ref. [13℄. For lak of spae, we thus onentrate here on the missing link ofthis analysis beyond the sope of Ref. [13℄, namely the analyti evaluation of the massivefour-loop tadpole diagram X0, whih is depited in Fig. 1(a). This task may be simpli�edby notiing that X0 does not represent a master integral, but may be redued to simpler4



(b)(a)FIG. 1: Four-loop tadpole diagrams (a) X0 and (b) J0. Dashed and solid lines represent masslessand massive propagators; a dot on a line dupliates that propagator.integrals with less lines, all of whih are analytially known [14℄, some for a short time only[16℄, exept for the one (J0) shown in Fig. 1(b). The integral J0 is �nite, and the oeÆientsof its expansion in �, where D = 4 � 2� is the dimensionality of spae-time, have only onelevel of tranendentality [18℄, i.e., they ontain poly-logarithms Lik and zeta funtions �(k)with the same value of k. These properties redue the number of terms and thus simplifythe alulation. In order to evaluate J0, we temporarily introdue an arti�ial mass splittingamong the four massive lines in Fig. 1(b), by assigning the mass m to any two of themand the mass M to the other two. We then perform an expansion in the ratio x = m2=M2using the large-mass expansion tehnique and reover the omplete series in x as explainedin Ref. [18℄. Through O(�2), we have(1� �)(m2M2)2�m2J0 = 1Xn=1 xn�� 8(2n� 1)3+ 16�"��(3)� ~S32n� 1 + 2 ~S2(2n � 1)2 + 4~S1(2n � 1)3#+ 16�2 "9�(4) + 8�(3) ~S1 � 4 ~S22 � 8 ~S1 ~S3 � 3 ~S42n � 1+ 4�(3) � 16 ~S1 ~S2 � 4 ~S3(2n � 1)2 � �(2) + 16 ~S21 + 4 ~S2(2n � 1)3� 2(2n � 1)5�+O(�3)� ; (5)where we introdued the short-hand notation ~Sa = 2a�2Sa(2n�1)�Sa(n�1), with Sa(n) =Pnj=1 j�a being harmoni sums, and omitted irrelevant terms involving lnx. We then put5



x = 1 and exploit the identities1Xn=1 ~Sa(2n � 1) = �2a8 1Xl=1 1 � (�1)ll [Sa(l) + 2S�a(l)℄;1Xn=1 ~Sa ~Sb(2n � 1) = 2a+b32 1Xl=1 1 � (�1)ll [Sa(l) + 2S�a(l)℄� [Sb(l) + 2S�b(l)℄; (6)at tranendentality levels k = a+  and k = a+ b + , respetively. The sums with k < 5may be found in Ref. [18℄, while those with k = 5 may be obtained from there throughintegration, 1Xl=1 f(l)xll+1 = Z x0 dyy 1Xl=1 f(l)yll ; (7)where f(l) = S�a(l); : : :. After some algebra, we �nd an analyti expression for J0 and henealso for X0, X0 = �318�(4) ln 2 + 8732 �(5)� 48b5 +O(�): (8)Here and in the following, we use the onstantsa4 = ��2�(2) + ln2 23 � ln2 2 + 8Li4�12� ;a5 = 13 �2�(2) � ln2 25 � ln3 2 + 8Li5�12� : (9)If we measure the mathing sale �� in units of the MS mass mh (��), our result for theratio of a0 = a(nl) (��) to a = a(nf ) (��) readsa0a = 1� a 6̀ + a2� `236 � 1124`+ 2�+ a3 �� `3216+ `2� 53576 � nl36�+ `��955576 + 67576nl�+ 3�+ a4� `41296 + `3�� 188310368 � 1275184nl + n2l324�+ `2�21773456 � 148310368nl � 7720736n2l�+ ` �7391699746496� 2529743165888 �(3) + nl��110341373248 + 11077982944 �(3)�+ 6865186624n2l �+ 4�+O(a5); (10)6
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FIG. 2: �� dependene of �(5)s (MZ) from N -loop evolution and (N � 1)-loop mathing, with N = 1(dotted), 2 (short-dashed), 3 (dot-dashed), 4 (long-dashed), and 5 (solid).where ` = ln [��2=m2h (��)℄ and2 = 1172 ; 3 = 564731124416 � 8204327648 �(3)� 263331104nl;4 = 2917168936123600 � 236258198387091200 �(3) � 769402192177280 �(4)+ 9318467362880 �(4) ln 2 � 12057583483840 �(5) + 3031309435456 a4+ 34085390720 a5 + nl��47709412239488 + 3645913995328 �(3)� 541549165888 �(4) + 115576�(5) + 68541472a4�+ n2l �� 2718834478976 + 1675184 �(3)� : (11)The ounterpart of Eq. (10) in the on-shell sheme of mass renormalization may be obtainedby substituting the three-loop relationship between mh(�) and the pole mass Mh [19℄.Going to higher orders, one expets, on general grounds, that the relationship between�(nl)s (�0) and �(nf )s (�), where �0 � �� � �, beomes insensitive to the hoie of �� as longas �� = O(mh). This has been heked in Ref. [12℄ for four-loop evolution in onnetionwith three-loop mathing. Armed with our new results, we are in a position to explorethe situation at the next order. As an example, we onsider the rossing of the bottom-quark threshold. In partiular, we wish to study how the �� dependene of the relationshipbetween �(4)s (M� ) and �(5)s (MZ) is redued as we implement �ve-loop evolution with four-loop mathing. Our proedure is as follows. We �rst alulate �(4)s (��) with Eq. (4) byimposing the ondition �(4)s (M� ) = 0:34 [1℄, then obtain �(5)s (��) from the on-shell version7



of Eq. (10) with Mb = 4:85 GeV [1℄, and �nally ompute �(5)s (MZ) with Eq. (4). Foronsisteny, N -loop evolution must be aompanied by (N � 1)-loop mathing, i.e., if weomit terms of O(1=LN+1) in Eq. (4), we need to disard those of O(aN) in Eq. (10) at thesame time. In Fig. 2, the variation of �(5)s (MZ) with ��=Mb is displayed for the various levelsof auray, ranging from one-loop to �ve-loop evolution. For illustration, �� is varied ratherextremely, by almost two orders of magnitude. While the leading-order result exhibits astrong logarithmi behavior, the analysis is gradually getting more stable as we go to higherorders. The �ve-loop urve is almost at. Besides the �� dependene of �(5)s (MZ), also itsabsolute normalization is signi�antly a�eted by the higher orders. At the entral sale�� = Mb, we enounter an alternating onvergene behavior.As we have learned from Fig. 2, in higher orders, the atual value of �� does not matteras long as it is omparable to the heavy-quark mass. In the ontext of Eq. (10), the hoie�� = �h, where �h = mh(�h) is the renormalization-group (RG) invariant MS mass, ispartiularly onvenient, sine it eliminates the RG logarithm `. With this onvention, weobtain from Eqs. (3), (4), and (10) a simple relationship between �0 = �(nl) and � = �(nf ),viz � 00 ln �02�2 = (� 00 � �0) l + (b01 � b1) ln l� b01 ln � 00�0 (12)+ 1�0l �b1 (b01 � b1) ln l+ b021 � b21 � b02 + b2 + 2�+ 1(�0l)2 �b312 (ln2 l � 1)� b01b21�12 ln2 l � ln l� 1�� b1 �b021 � b02 + b2 + 2� ln l � b0312 + b01 (b02 � b2 � 2)� 12 (b03 � b3) + 3�+ 1(�0l)3 ��b41�13 ln3 l � 12 ln2 l� ln l� 16�+ b01b31�13 ln3 l� 32 ln2 l � ln l+ 12�+ b21� �b021 � b02 + b2 + 2� (ln2 l � ln l� 1) + b1 �b031 � 2b01� (b02 � b2 � 2) + b03 � b3 � 23℄ ln l+ b0413 � b021 (b02� b2 � 2) + (b02 � b2)�b023 � 23b2 � 2�� 22 + b01�23� b03 � b32 � 3�� b1b36 � 13 (b04 � b4) + 4�+O�1l4�;where l = ln(�2h=�2). The O(1=l3) term of Eq. (12) is new. Equation (12) represents a8
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