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AbstratMotivated by grand uni�ed theories and string theories we analyze the general struture of theneutralino setor in the USSM, an extension of the Minimal Supersymmetri Standard Model thatinvolves a broken extra U(1) gauge symmetry. This supersymmetri U(1)-extended model inludesan Abelian gauge super�eld and a Higgs singlet super�eld in addition to the standard gauge andHiggs super�elds of the MSSM. The interations between the MSSM �elds and the new �elds arein general weak and the mixing is small, so that the oupling of the two subsystems an be treatedperturbatively. As a result, the mass spetrum and mixing matrix in the neutralino setor an beanalyzed analytially and the struture of this 6-state system is under good theoretial ontrol. Wedesribe the deay modes of the new states and the impat of this extension on deays of the originalMSSM neutralinos, inluding radiative transitions in ross-over zones. Prodution hannels in asadedeays at the LHC and pair prodution at e+e� olliders are also disussed.
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1 IntrodutionAdding an extra U(1)X broken gauge symmetry to the gauge symmetries of the Standard Model is wellmotivated by grand uni�ed theories [1℄. The orresponding supersymmetri extension that generalizesthe minimal supersymmetri Standard Model (MSSM) often appears as the low energy e�etive theoryof superstring theories [2℄. This U(1)X extended supersymmetri gauge theory shall heneforth bedenoted as the USSM.The Higgs setor assoiated with the broken U(1)X gauge symmetry provides an elegant solution tothe � problem in supersymmetri theories [3, 4℄. An e�etive � parameter is generated by the vauumexpetation value of the new singlet Higgs �eld S, whih breaks the U(1)X gauge symmetry. This isthe same mehanism employed by the next-to-minimal supersymmetri standard model (NMSSM) [5℄.However, the USSM possesses an additional advantage by avoiding the extra disrete symmetries of theNMSSM that, in the anonial version, result in the existene of domain-walls that are inompatiblewith the observed energy density of the universe. Moreover, the upper bound on the mass of the lightestHiggs boson of the MSSM is relaxed in the USSM due to ontributions from the new singlet-doubletHiggs interations and the U(1)X D-terms [6℄. Various senarios of this type have been disussed in theliterature, see e.g. Refs. [7,8℄, in whih the U(1)X gauge symmetry is embedded in the grand uni�ationgroup E6 (or one of its rank-�ve subgroups).Inluding the extra symmetry, the gauge group is extended to G = SU(3)C�SU(2)L�U(1)Y �U(1)Xwith the ouplings g3; g2; gY ; gX , respetively. The matter partile ontent in the supersymmetri theoryinludes, potentially among others, the left-handed hiral super�elds L̂i; Êi ; Q̂i; Û i ; D̂i , where thesubsript i denotes the generation index, and the Higgs super�elds Ĥd; Ĥu; Ŝ. The usual MSSM Yukawaterms ŴY of the MSSM superpotential (i.e. without the � term) are augmented by an additional termthat ouples the iso-singlet to the two iso-doublet Higgs �elds:Ŵ = ŴY + �Ŝ (ĤuĤd) : (1.1)The oupling � is dimensionless. Gauge invariane of the superpotential Ŵ under U(1)X requires theU(1)X harges to satisfy QHd+QHu+QS = 0 and orresponding relations between the U(1)X harges ofHiggs and matter �elds. [In the following, we use Q1 = QHd and Q2 = QHu for notational onveniene.℄The e�etive � parameter is generated by the vauum expetation value hSi of the salar S-�eld.Compared with the MSSM, the USSM Higgs setor is extended by a single salar state. The neu-tralino setor inludes an additional pair of higgsino and gaugino states, while the hargino setorremains unaltered. The omplexity of phenomena inreases dramatially by this extension but thestruture remains transparent if the original and the new degrees of freedom are oupled weakly asnaturally demanded [see below℄.The supersymmetri partile spetrum of the USSM has reeived limited attention so far in the1



literature [3,8{11℄. In this report we attempt a systemati analytial analysis of the neutralino system,based on the well-motivated assumption of weak oupling between the original MSSM and the newadditional gaugino/higgsino subsystem. In ontrast to the MSSM where exat solutions of the massspetrum and mixing parameters an be onstruted mathematially in losed form (see e.g. Ref. [12℄),this is not possible anymore for the supersymmetri U(1)X model in whih the eigenvalue equationfor the masses is a 6th order polynomial equation. However, analogously to the NMSSM [13℄, if themass sales of the supersymmetri partiles are set by higgsino and gaugino parameters of the orderthe supersymmetry (SUSY)-breaking sale, MSUSY � O(103 GeV), while the interation between thenew singlet and the MSSM �elds is of the order of the eletroweak sale, v � O(102 GeV), then theperturbative expansion of the solution in v=MSUSY provides an exellent approximation to the massspetrum and yields a good understanding of the main features of the mixing matrix.One the masses and mixings are determined, the ouplings of the neutralinos to the eletroweakgauge bosons and to the salar/fermioni matter partiles are �xed. Deay widths and produtionrates an subsequently be predited for squark asades at the LHC [14℄ and pair prodution in e+e�ollisions at linear olliders [15℄. Of partiular interest are the radiative transitions between neutralinosin ross-over zones, where the masses of two neutralinos are nearly degenerate.The report is organized as follows. In Set. 2 we �rst desribe the general basis of the neutralinosetor in the USSM. Subsequently, for the naturally expeted weak oupling between the MSSM andthe new subsystem, the properties of the new higgsino and gaugino are derived in Set. 3. It is shownto what extent the properties of the standard neutralinos are modi�ed. The spetrum and the mixingsare determined analytially in a weak-oupling perturbative expansion. The neutralino masses aredetermined to seond-order, whereas the mixing matrix elements are determined to �rst-order in theweak oupling. The auray of the perturbative results will beome apparent by omparing the analytiapproximations with the numerial solutions, thereby demonstrating that a satisfatory understandingof the system an be ahieved. As an illustration we will study the limit in whih the gaugino massparameters are signi�antly larger than the higgsino mass parameters, where both sets of parameters areassumed to be muh larger than the eletroweak sale. A general desription of the neutralino ouplingsand deay widths is given in Set. 4, inluding photon transitions. We also disuss prodution rosssetions in e+e� ollisions and asade deay hains of squarks at the LHC that involve neutralinos.Setion 5 summarizes and onludes this report. Tehnial details of the analytial diagonalizationproedures for the 6 � 6 neutralino mass matrix for non-degenerate and degenerate levels are given inthree appendies.
2



2 The USSM Neutralino Setor2.1 Supersymmetri kineti mixingIn a theory with two U(1) gauge symmetries, the two setors an mix, onsistently with all gaugesymmetries, through the oupling of the kineti parts of the two gauge bosons [16℄. In the basis inwhih the ouplings between matter and gauge �elds have the anonial minimal-interation form, thepure gauge part of the Lagrangian for the U(1)Y�U(1)X theory an be writtenLgauge = �14Y ��Y�� � 14X��X�� � sin�2 Y ��X�� ; (2.1)where the parameter sin� is introdued to haraterize the gauge kineti mixing [17℄. This Lagrangiangeneralizes to Lgauge = 132 Z d2�nŴY ŴY + ŴXŴX + 2 sin� ŴY ŴXo ; (2.2)in a supersymmetri theory, where ŴY and ŴX are the hiral super�elds assoiated with the two gaugesymmetries.1The gauge/gaugino part of the Lagrangian an be onverted bak to the anonial form by thefollowing GL(2,R) transformation of the super�elds [16, 17, 19℄: ŴYŴX ! =  1 � tan�0 1= os� ! ŴBŴB0 ! ; (2.3)whih ats on the gauge boson and gaugino omponents of the hiral super�elds in the same form. Thetransformation alters the U(1)Y�U(1)X part of the ovariant derivative toD� = �� + igY Y B� + i��gY Y tan�+ gXos�QX�B0� (2.4)= �� + igY Y B� + igXQ0XB0� : (2.5)The hoie of the kineti mixing matrix in the form given by Eq. (2.3) is motivated by the fat that thehyperharge setor of the Standard Model is left unaltered by this transformation, and the new e�etsare separated in the X setor (see, e.g., Ref. [20℄ for an alternative hoie). Consequently, the e�etiveU(1)X harge is shifted from its original value QX toQ0X = QXos� � gYgX Y tan� : (2.6)Spei�ally, the U(1)X harge of any �eld is shifted by an amount proportional to their hyperharge Yand the mixing parameter sin�. Thus, as a result of the kineti mixing, new interations among the1The normalization of the super�eld Ŵ = D2DV̂ follows the onventions of Ref. [18℄, where V̂ is the orrespondingvetor super�eld. 3



gauge bosons and matter �elds are generated even for matter �elds with zero U(1)X harge originally.In grand uni�ation theories the two U(1) groups are orthogonal at the uni�ation sale but smallmixing [16℄ an be indued through loop e�ets when the theory evolves down to the eletroweak sale.In string theories, kineti mixing an be indued at the tree level [19℄; however, suh mixing e�ets mustremain small in order to guarantee the general agreement between SM analyses and preision data in anatural way [21℄.2.2 The USSM neutralino mass matrixThe Lagrangian of the neutralino system follows from the superpotential in Eq. (1.1), omplementedby the gaugino SU(2)L, U(1)Y and U(1)X mass terms of the soft-supersymmetry breaking eletroweakLagrangian: Lgauginomass = �12M2fW afW a � 12MY ~Y ~Y � 12MX ~X ~X �MY X ~Y ~X + h::= �12M2fW afW a � 12M1 ~B ~B � 12M 01 ~B0 ~B0 �MK ~B ~B0 + h:: ; (2.7)where the fW a (a = 1; 2; 3), ~Y and ~X are the (two-omponent) SU(2)L, U(1)Y and U(1)X gaugino �elds,and M1 �MY ; M 01 � MXos2 � � 2 sin�os2 �MY X +MY tan2 � ; MK � MY Xos� �MY tan� : (2.8)In parallel to the gauge kineti mixing disussed in Set. 2.1, the Abelian gaugino mixing mass parameterMY X is assumed small ompared with the mass sales of the gaugino and higgsino �elds.After breaking the eletroweak and U(1)X symmetries spontaneously due to non-zero vauum ex-petation values of the iso-doublet and the iso-singlet Higgs �elds,hHui = sin�p2  0v ! ; hHdi = os �p2  v0 ! ; hSi = 1p2vs ; (2.9)the doublet higgsino mass and the doublet higgsino-singlet higgsino mixing parameters,� � � vsp2 and �� � � vp2 ; (2.10)are generated. The USSM neutral gaugino-higgsino mass matrix an be written in the following blokmatrix form2, M6 =  M4 XXT M2 ! ; (2.11)2Although our initial exploratory analysis is arried out at tree-level, loop orretions an easily be inluded followingthe proedures of Ref. [22℄. 4



whereM4 is the neutral gaugino-higgsino mass matrix of the MSSM,M2 orresponds to the new setorontaining the singlet higgsino (singlino) and the new U(1)-gaugino ~B0 that is orthogonal to the bino ~B,and X desribes the oupling of the two setors via the neutralino mass matrix. More expliitly, ina basis of two-omponent spinor �elds � � ( ~B; ~W 3; ~H0d ; ~H0u; ~S; ~B0)T , the full neutralino mass matrix isgiven by [10℄:
M6 = 0BBBBBBBBBBB�

M1 0 �mZ � sW mZ s� sW 0 MK0 M2 mZ � W �mZ s� W 0 0�mZ � sW mZ � W 0 �� ��� s� Q01mv �mZ s� sW �mZ s� W �� 0 ��� � Q02mv s�0 0 ��� s� ��� � 0 Q0SmsMK 0 Q01mv � Q02mv s� Q0Sms M 01
1CCCCCCCCCCCA ; (2.12)

where the various gaugino mass parameters M1, M2, M 01 and MK have been de�ned in Eqs. (2.7) and(2.8). Notie the absene of a diagonal mass parameter of the new singlino in ontrast to the NMSSMwhere the ubi self-interation generates this singlet mass term [13℄. Two additional mass mixingparameters, mv � gXv and ms � gXvs ; (2.13)are generated after gauge symmetry breaking and the e�etive harges Q01, Q02 and Q0S are de�ned byQ01 � Q1os� + 12 gYgX tan�; Q02 � Q2os� � 12 gYgX tan�; Q0S � QSos� ; (2.14)in terms of the Qi de�ned below Eq. (1.1). As usual, tan � � v2=v1 is the ratio of the vauum expetationvalues of the two neutral SU(2) Higgs doublet �elds, s� � sin�, � � os �, and sW ; W are the sineand osine of the eletroweak mixing angle �W .In general, the neutralino mass matrix M6 is a omplex symmetri matrix. To diagonalize thismatrix, we introdue a unitary matrix N6 suh that~�0k = N6k` ( ~B; ~W 3; ~Hd; ~Hu; ~S; ~B0)` ; (2.15)where the physial neutralino states are ordered by some onvention. A typial hoie, motivated byexperimental analyses, is the ordering of ~�0k [k = 1; ::; 6℄ aording to asending mass values. As anintermediate step, we shall often refer to an auxiliary onvention, in whih the ordering of states ~�0k0 ,denoted by primed subsripts, follows the order of the original ( ~B; ~W 3; ~H0d ; ~H0u; ~S; ~B0) basis.Given the neutralino mass matrix M6, the physial neutralino masses mphk , whih are real non-negative numbers, and the neutralino mixing matrix elements N6k` an be alulated. The mass term inthe Lagrangian is given by:�Lmass = 12 �TM6 � + h:: = 12 6Xk=1mphk ~�0ke�0k + h:: ; (2.16)5



The transformation of the two-omponent �elds generates the diagonalized mass matrix for the physialneutralino states, (N6)�M6 (N6)y = diag(mph1 ; mph2 ; : : : ; mph6 ) ; mphk � 0 : (2.17)Mathematially, this transformation is the Takagi diagonalization [23{27℄ of a general omplex sym-metri matrix; see Appendix A for further details. Physially, the unitary matrix N6 determines theouplings of the mass-eigenstates ~�0k to other partiles.IfM6 is omplex, then CP is violated in the neutralino setor of the theory if no diagonal matrix ofphases P exists suh that P TM6P is real. If P exists, then the neutralino interation-eigenstates anbe rephased to produe a real neutralino mass matrix, and the neutralino setor is CP-onserving.3 IfM6 is real, then the Takagi diagonalization of Eq. (2.17) still applies but an easily be arried out intwo steps. First the real symmetri matrixM6 an be diagonalized by an orthogonal matrix V 6:V 6M6 (V 6)T = diag(m1 ; m2 ; : : : ; m6) ; (2.18)where the eigenvalues mk are real but not neessarily positive. The Takagi diagonalization of M6,whih yields real non-negative diagonal mass elements, an then be ahieved in a seond step by takingmphk = jmkj and de�ning the unitary matrix N6 in Eq. (2.17) by N6 = (P 6V 6)�, where P 6 is a diagonalphase matrix with elements P 6k` = "1=2k Æk`. Here, "k � mk=mphk = �1 is the sign of mk, whih isalso proportional to the CP-quantum number [28℄ of the neutralino ~�0k. More preisely, the relativeCP-quantum numbers of ~�0k and ~�0̀, whih is the physial quantity of interest, is given by "k"`.Although the ordering of states ~�0k in asending mass values is onvenient, it is often useful toadopt an intermediate auxiliary onvention. Note that the neutralino mass matrix is easily diagonalizedin the limit of MK = v = 0 (i.e., before the oupling of the MSSM with the new gaugino/singlinoblok is introdued). In this limit, M6 is real after rephasing the neutralino interation-eigenstates (ifneessary). That is, without loss of generality, we an hoose M1, M 01, M2 and � to be real in this limit,in whih ase Eq. (2.18) yields the following mass eigenvalues: mk0 = fM1;M2; �;��;m50 ;m60g, wherem50;60 = 12M 01 �1�p1 + (2Q0Sms=M 01)2 � (with m50 < m60). Away from this limit, the mass-eigenstates~�0k0 will be de�ned suh that their masses are ontinuously onneted to the masses of the orrespondingstates in the MK = v = 0 limit. This de�nes an alternative ordering of the states ~�0k0 whih will beindiated with primed subsripts.We shall present a set of tehniques for omputing analyti approximations of the physial neutralinomasses, mphk0 and the orresponding neutralino mixing matrix elements N6k0`0 . As previously indiated,3In this ontext, the neutralino setor refers to the neutralino kineti energy and mass terms, plus terms that ouplethe neutralinos to the gauge bosons. In this restrited setor, the neutralinos would be states of de�nite CP quantumnumber. Of ourse, it is possible to introdue CP-violating interations through the neutralino ouplings to other partiles,e.g. matter partiles of the USSM. In this ase, radiative orretions ould transmit these e�ets into the neutralino massmatrix. 6



the primed subsripts denote that these quantities refer to the physial neutralino states ~�0k0 , whoseordering is spei�ed above. Of ourse, at the end of the omputation, one an onvert to an asendingmass ordering onvention by an appropriate relabeling of the states, masses and mixing matrix elements.3 Small Mixing Senarios3.1 General analysisIt is well known that the MSSM neutralino mass matrixM4 an be diagonalized analytially (see, e.g.,Ref. [13℄). In ontrast, the diagonalization of the new USSM 6� 6 neutralino mass matrix M6 annotbe performed analytially in losed form. However, the ase of physial interest is one in whih boththe ouplings of the MSSM higgsino doublets to the singlet higgsino and to the U(1)X gaugino, and theoupling of the U(1)Y and U(1)X gaugino singlets are weak, i.e. the elements of the 4� 2 submatrix Xin Eq. (2.11) are small. Then, an approximate analytial solution an be found following the proeduregiven in Appendix B.As an initial step, the 4�4 MSSM submatrixM4 and the new 2�2 singlino-U(1)X gaugino submatrixM2 are separately diagonalized:MD4 = N4 �M4N4 y = diag(m10 ;m20 ;m30 ;m40) ; (3.1)MD2 = N2 �M2N2 y = diag(m50 ;m60) ; (3.2)where the mk0 are real and non-negative. Here we use primed subsripts to indiate that the neutralinostates are ontinuously onneted to the orresponding states in the MK = v = 0 limit, as disussed atthe end of Set. 2. The above proedure results in a partial Takagi diagonalization of the full neutralinomass matrix, M6:M6 �  N4 � O

OT N2 � !  M4 XXT M2 !  N4 y O

OT N2 y ! =  MD4 N4 �XN2 yN2 �XTN4 y MD2 ! : (3.3)where O is a 4� 2 matrix of zeros. The upper left and lower right bloks of M6 are diagonal with realnon-negative entries, but the upper right and lower left o�-diagonal bloks are non-zero.Performing a blok-diagonalization ofM6 will remove the non-zero o�-diagonal bloks while leavingthe diagonal bloks approximately diagonal up to seond order, due to the weak oupling of the twosubsystems. That is, MD6 = N6�B M6N6yB = diag(mph10 ;mph20 ;mph30 ;mph40 ;mph50 ;mph60 ) ; (3.4)where N6B ' 0� 14�4 � 12

y 
�
y 12�2 � 12
y
 1A� diag(e�i�10 ; : : : ; e�i�60 ) : (3.5)7



A detailed derivation will be presented in Appendix B. The elements of the 4� 2 mixing matrix 
 aregiven by: Re
i0j0 � Re (N4 �XN2 y)i0j0mi0 �mj0 ; Im
i0j0 � Im (N4 �XN2 y)i0j0mi0 +mj0 ; (3.6)with i0 = 10; : : : ; 40 and j0 = 50; 60. After the blok-diagonalization, the upper left 4 � 4 and the lowerright 2 � 2 bloks need not be re-diagonalized up to seond order in the small mixing X between thebloks, but the orresponding eigenvalues are shifted mk0 ! mphk0 to seond order in the small mixing.The physial neutralino masses mphk0 are given by:mphi0 ' mi0 + 6Xj0=5� [ Re (N4 �XN2 y)i0j0 ℄2mi0 �mj0 + [ Im (N4 �XN2 y)i0j0 ℄2mi0 +mj0 � ; [i0 = 10; : : : ; 40℄ ; (3.7)mphj0 ' mj0 � 4Xi0=1� [ Re (N4 �XN2 y)i0j0 ℄2mi0 �mj0 � [ Im (N4 �XN2 y)i0j0 ℄2mi0 +mj0 � ; [j0 = 50 ; 60℄ ; (3.8)The diagonal matrix of phases is hosen suh that the mphk0 are real and non-negative, with the phases�k0 given by:�i0 ' � 6Xj0=5 mj0mi0(m2i0 �m2j0) Re (N4 �XN2 y)i0j0 Im (N4 �XN2 y)i0j0 ; [i0 = 10; : : : ; 40℄ ; (3.9)�j0 ' 4Xi0=1 mi0mj0(m2i0 �m2j0) Re (N4 �XN2 y)i0j0 Im (N4 �XN2 y)i0j0 ; [j0 = 50; 60℄ : (3.10)The (perturbative) Takagi diagonalization of the neutralino mass matrixM6 has now been ahieved,with the (real and non-negative) neutralino masses given by Eqs. (3.7) and (3.8), and the neutralinomixing matrix given by: N6 = N6B  N4 O

OT N2 ! : (3.11)The validity of the perturbative expansion relies on the assumption that4���� Re (N4 �XN2 y)i0j0mi0 �mj0 ����� 1 ; (3.12)for all hoies of i0 = 10; : : : ; 40 and j0 = 50; 60. That is, only degeneraies between the 4�4 blokMD4 andthe 2�2 blokMD2 are potentially problemati. In partiular, in the so-alled ross-over zones in whihthe masses mi0 ' mj0 exhibit a near degeneray and the orresponding residue Re (N4 �XN2 y)i0j0 6= 0,mixing e�ets are enhaned and the analytial formalism in Appendix C must be applied.4Sine themk0 are non-negative, and by de�nition of orderMSUSY, the onditions j Im (N4 �XN2 y)i0j0=(mi0 +mj0 )j � 1are automatially satis�ed. 8



3.2 The ase of a real neutralino mass matrixWe shall present numerial ase studies under the assumption that the parameters of the neutralino massmatrix are real. The general analysis then simpli�es, sine a real symmetri mass matrix an always bediagonalized by a similarity transformation, VMV T , where V is real and orthogonal. Sine some of themass eigenvalues of a real symmetri matrix may be negative, we omplete the Takagi diagonalization,N�MN y, by introduing a suitable diagonal matrix of phases P and identifying the unitary neutralinomixing matrix by N = (PV )�, as indiated below Eq. (2.18). In this ase, the (perturbative) neutralinomass matrix diagonalization an be performed using the three-step proedure of Ref. [13℄:[1℄ Diagonalization of the submatries M4 and M2In the �rst step, we diagonalize the (real symmetri) MSSM matrix M4:fMD4 = V 4M4(V 4)T = diag( ~m10 ; ~m20 ; ~m30 ; ~m40) : (3.13)The mass eigenvalues, whih are real but need not be non-negative, are denoted by ~mi0 for i0 = 10; ::; 40.The orthogonal diagonalization matrix V 4 is given expliitly in Ref. [12℄ for the most general hoieof gaugino and higgsino mass parameters. Simple analyti forms for the neutralino mass and mixingmatrix elements an be found in limits where either the gaugino parameters are muh larger than thehiggsino parameter or vie versa [29℄.The exat analyti diagonalization of the new 2 � 2 submatrixM2 singlet higgsino-U(1)X gauginosubmatrixM2 is straightforward. The matrix:M2 =  0 Q0SmsQ0Sms M 01 ! (3.14)is diagonalized by an orthogonal rotation V 2 asfMD2 = V 2M(V 2)T = diag ( ~m50 ; ~m60) : (3.15)The eigenvalues ~m50;60 are given by~m50;60 = M 012 �1�q1 + (2Q0Sms=M 01)2� : (3.16)The orthogonal diagonalization matrix V 2 is given by:V 2 =  os �s � sin �ssin �s os �s ! ; (3.17)where the angle �s satis�es the relations:os �s = �p1 + x2 + 1�1=2p2 (1 + x2)1=4 and sin �s = sign(x)�p1 + x2 � 1�1=2p2 (1 + x2)1=4 ; (3.18)9



with x � 2Q0Sms=M 01.Two limits are of partiular interest:(i) If ms � jM 01j, then the masses and the mixing parameters are approximately given by~m50 ' �jQ0S jms ; ~m60 ' jQ0S jms ; and sin �s ' sign(x)=p2 ; (3.19)orresponding to maximal mixing due to the large o�-diagonal entries in the mass matrix M2.(ii) In the opposite limit, jM 01j � ms, and the mass eigenvalues and mixing angle are approximatelygiven by ~m50 ' �Q02Sm2s=M 01 ; ~m60 'M 01 +Q02Sm2s=M 01 ; and sin �s ' Q0Sms=M 01 : (3.20)This is a typial see-saw type mixing phenomenon. The heavy 6th state is a U(1)X gaugino-dominatedstate, whereas the 5th neutralino state is a singlet-higgsino dominated state.[2℄ Blok-diagonalization of M6We an now perform a blok-diagonalization of M6:V 6M6(V 6)T = eV 6B  M0D4 V 4XV 2TV 2XTV 4T M0D2 ! eV 6TB = diag(m10 ; : : : ; m40 ; m50 ; m60) ; (3.21)where eV 6B ' 0� 14�4 � 12

T 
�
T 12�2 � 12
T
 1A ; (3.22)and the elements of the real matrix 
 are given by [f. Eq. (3.6)℄:
i0j0 � (V 4XV 2T )i0j0~mi0 � ~mj0 ; (3.23)with i0 = 10; ::; 40 and j0 = 50; 60. That is, the orthogonal matrix V 6 is onveniently split into the matriesV 4 and V 2 that diagonalize the 4 � 4 and 2 � 2 submatries M4 and M2 respetively, and into thematrix eV 6B that performs the subsequent blok-diagonalization [13℄:V 6 ' eV 6B 0� V 4 O

OT V 2 1A : (3.24)After the blok-diagonalization, the mass eigenvalues are shifted to seond order in the perturbation X.The shifts are given by [f. Eq. (3.7) and (3.8)℄:mi0 = ~mi0 + 60Xj0=50 [(V 4XV 2T )i0j0 ℄2~mi0 � ~mj0 ; [ i0 = 10; ::; 40℄ ; (3.25)mj0 = ~mj0 � 40Xi0=10 [(V 4XV 2T )i0j0 ℄2~mi0 � ~mj0 ; [ j0 = 50; 60℄ : (3.26)10



As expeted, the eigenvalues ful�ll the trae formula60Xk0=10mk0 =M1 +M2 +M 01 ; (3.27)whih is independent of the higgsino mass and the mixing parameters.The perturbative results obtained above are valid if j(V 4XV 2T )i0j0=( ~mi0 � ~mj0)j � 1 for all possiblehoies of i0 and j0. In the regime of near-degeneray, ~mi0 ' ~mj0, the perturbation theory breaks down,and the analyti approah of Appendix C must be employed. Note that ~mi0 = � ~mj0 is not a ase of mass-eigenvalue degeneray, so that the perturbative results obtained above should be reliable. This may seemto be in onit with results of the previous subsetion, sine the latter orresponds to the degeneratease of mi0 = mj0 , where we identify the positive masses mk0 = j ~mk0 j in the notation of Set. 3.1.However, a more areful analysis reveals that the ondition given by Eq. (3.12) does not apply, sine inthe ase of opposite sign mass eigenvalues, the residue Re (N4 �XN2 y)i0j0 = Re (iV 4XV 2T )i0j0 = 0.5The higgsino doublet-singlet and the higgsino doublet-U(1)X gaugino mixings generate additionalsinglino and U(1)X gaugino omponents in the wave funtions of the original MSSM neutralinos ~�0i0[ i0 = 10; ::; 40 ℄ of the size V 6i0j0 � 60Xk0=50 
i0k0V 2k0j0 [i0 = 10; ::; 40; j0 = 50; 60℄ (3.28)whih is linear in the mixing parameter to �rst approximation as expeted for o�-diagonal elements.Reiproally, the MSSM gaugino/higgsino omponents and the singlino and U(1)X gaugino omponentsin the wave funtions of ~�050 and ~�060 are redued toV 6j0i0 � � 40Xl0=10 
l0j0V 4l0i0 [i0 = 10; ::; 40; j0 = 50; 60℄V 6j0k0 � V 2j0k0 � 12 �
T
V 2�j0k0 [j0; k0 = 50; 60℄ (3.29)with V 6j0k0 di�ering from V 2j0k0 only to seond order in the mixing, as expeted for diagonal elements.[3℄ Ensuring that the physial neutralino masses are non-negativeThe diagonalization of a real symmetri matrix by an orthogonal similarity transformation produes adiagonal matrix with real but not neessarily non-negative elements. Hene, some of the eigenvaluesmk0will typially be negative. De�ning the unitary matrix N6 = (P 6V 6)�, where P 6 is a diagonal matrixwhose k0k0 element is 1 [i℄ if mk0 is non-negative [negative℄, the Takagi diagonalization of the neutralinomass matrix is ahieved with non-negative neutralino masses. In partiular, the unitary neutralinomixing matrix N6 � appears (instead of the real orthogonal matrix V 6) in the orresponding Feynmanrules involving the neutralino mass-eigenstates.5As in step [3℄ below, we identify NM = (PMVM )� forM = 2 and 4, respetively, and (P 4)�1i0i0 (P 2)�1j0j0 = �i for oppositesign mass eigenvalues ~mi0 and ~mj0 . 11



3.3 Large gaugino mass parametersTo illustrate the previous general disussion we shall �rst give a detailed parametri analysis in the limitin whih all gaugino masses are muh larger than the higgsino masses, and both sets muh larger thanthe eletroweak and the kineti mixing sales, i.e. M1;M2;M 01 � �; vs � v;MK . All neutralino massmatrix parameters will be taken real.[1℄ Starting again with the diagonalization of the MSSM submatrixM4, the diagonalization matrix V 4de�ned in Eq. (3.24) an be parameterized up to seond order aording to standard MSSM proedure(see, e.g., Ref. [12℄), asV 4 ' 0� VG O

OT VH 1A0� 12�2 Vx�V Tx 12�2 1A0� 12�2 O

OT R�=4 1A : (3.30)The e�et of the 2�2 rotation R�=4 � (1� i�2)=p2 [where ~� � (�1 ; �2 ; �3) are the 2�2 Pauli matries℄is to shift the f34g o�-diagonal elements [��;��℄ onto the diagonal axis [�;��℄. The matrix, Vx,Vx = 0B� �+ sW mZ=M1 �� sW mZ=M1+ W mZ=M2 � W mZ=M2 1CA ; (3.31)with the abbreviations � � (� � s�)=p2, removes the mixing between the bloks of the two gauginoand the two higgsino states. VG and VH resale the gaugino and higgsino bloks themselves:VG � 12�2 � 12 0� s2W m2Z=M21 00 2W m2Z=M22 1A ;VH � 12�2 � 12 0� (1 + s2�)M 00212m2Z=2M21M22 00 (1� s2�)M 00212m2Z=2M21M22 1A ; (3.32)with M 00 212 � M21 2W + M22 s2W . VG and VH relate to a diagonal form of the gaugino-higgsino massmatrix for large M1;2 and �. Their o�-diagonal matrix elements are of seond order and an be omittedonsistently as they would only a�et the eigenvalues at fourth order.The 2� 2 diagonalization matrix de�ned in Eq. (3.24) an be parameterized up to seond order asV 2 �  1�Q02Sm2s=2M 021 �Q0Sms=M 01Q0Sms=M 01 1�Q02Sm2s=2M 021 ! : (3.33)The 2�2 matrix V 2 generates a diagonal form of the singlino-U(1)X gaugino mass matrix forM 01 � ms.After these steps are performed, the 4�4 and 2�2 mass submatries are diagonal and the omplete12



symmetri mass matrix M6 takes the intermediate form
 V 4 O

OT V 2 !M6  V 4T O

OT V 2T ! '
0BBBBBBBBBBBBBB�

~m10 0 MK~m20 0 0~m30 +��� Q0�mv~m40 ���+ Q0+mv0 0 +��� ���+ ~m50MK 0 Q0�mv Q0+mv ~m60
1CCCCCCCCCCCCCCA ; (3.34)

where, in obvious notation, zero elements of the diagonal bloks are suppressed for easier reading, andQ0� � (Q01� �Q02s�)=p2. The diagonal elements ~mk0 are given by~m10 =M1 + m2ZM1 s2W ; ~m30 = �� m2ZM12M1M2 2+ ; ~m50 = �� ;~m20 =M2 + m2ZM2 2W ; ~m40 = ��� m2ZM12M1M2 2� ; ~m60 =M 01 � �� ; (3.35)where � is de�ned below Eq. (3.31) andM12 �M12W +M2s2W ; �� � �Q02Sm2s=M 01 : (3.36)The parameter �� an be identi�ed with the NMSSM-type singlino mass parameter [13℄. Note that~m50 = �� is small ompared to all the other neutralino masses in the limit of large gaugino massparameters onsidered in this subsetion.[2℄ The blok-diagonalization of the 6-dimensional intermediate matrix [Eq. (3.34)℄ an be performed byhoosing the proper form of 
 in V 6. In the limit of large gaugino mass parameters and small singlinomass �� � ��M1;M2;M 01, the 4� 2 mixing matrix 
 is redued to the simple expression
 � 0BBBBB� 0 MK=(M1 �M 01)0 0���=� �Q0�mv=M 01��+=� �Q0+mv=M 01
1CCCCCA : (3.37)As a result of the blok diagonalization of Eq. (3.34), the mass eigenvalues are shifted aording toEq. (3.25). The resulting mass eigenvalues to the desired order are given by:m10 �M1 + m2ZM1 s2W + M2KM1 �M 01 ; m40 � ��� m2ZM12M1M2 2� � �2�2+� + Q0 2+m2vM 01 ;m20 �M2 + m2ZM2 2W ; m50 � �� + �2�� s2� ;m30 � �� m2ZM12M1M2 2+ + �2�2�� + Q0 2+m2vM 01 ; m60 �M 01 � �� + m2v(Q02+ +Q02�)M 01 � M2KM1 �M 01 : (3.38)13



Note that the sum rule given by Eq. (3.27) is satis�ed.As expeted, while the large SU(2) gaugino mass m20 is not a�eted by the singlino and the U(1)Xgaugino, the MSSM U(1) mass m10 is a�eted by the U(1) kineti mixing. All the higgsino states aremodi�ed by the interations between the MSSM and the new subsystem. The value of m50 is raised bythe interation with the MSSM higgsinos, but remains small nevertheless.The mixing in the wave-funtions is desribed by the omponents of 
 alone sine the 4� 4 matrixV 4 and the 2 � 2 matrix V 2 deviate from unity only to seond order in the small parameters of theorder of the SUSY sales [i = 10; ::; 40℄:V 6i050 � ��� (0; 0; �; +)i0 ; V 65050 � 1� Q02Sm2s2M 021 � �2�2�2 ;V 650i0 � ���� (0; 0; � ; s�)i0 ; V 65060 � �Q0SmsM 01 ;V 6i060 � � MKM1 �M 01 ; 0; �Q0�mvM 01 ; �Q0+mvM 01 �i0 ; V 66050 � Q0SmsM 01 ;V 660i0 � � �MKM1 �M 01 ; 0; Q01mv�M 01 ; Q02mvs�M 01 �i0 ; V 66060 � 1� Q02Sm2s2M 021 � m2v(Q0 2+ +Q0 2� )2M 021 � M2K2(M1 �M 01)2 :(3.39)The non-trivial mixing between two U(1) gaugino states, elements f1060g and f6010g, is generated bythe non-zero Abelian gauge kineti and mass mixing with non-zero MK . The analysis above fails whenM1 �M 01; this region of near degeneray an be handled analytially using the results of Appendix C.In Eqs. (3.38) and (3.39), perturbative orretions up to seond order have been inluded for themasses and diagonal mixing matrix elements, whereas only the �rst order orretions have been given forthe o�-diagonal mixing matrix elements. This follows the usual proedure of stationary perturbationtheory in quantum mehanis, whih assoiates seond-order orretions to the eigenvalues with the�rst-order orretions to the wave funtion. Consequently, the zeros that appear in some of the matrixelements of V 6k0`0 , should be interpreted as approximate. For example, V 62060 and V 66020 are expeted toreeive higher order perturbative orretions and hene be shifted away from zero. Nevertheless, the fatthat the magnitude of these matrix elements are so suppressed will have some dramati onsequenesfor the behavior of the ~�020 and ~�060 masses in regions of near-degeneray.[3℄ The �nal step is to identify N6 = (P 6V 6)�, where P 6 is a diagonal matrix whose k0k0 element is 1 (i)if mk0 is non-negative (negative). The physial masses mphk are given by the absolute values of the mkgiven above. The neutralino states an then be reordered in asending (non-negative) mass if desired.The results of this subsetion are easily generalized for the ase of M1, M2, M 01, �, vs � v, MK . Aslong as the MSSM gaugino and higgsino parameters, M1;2 and � remain signi�antly larger than theeletroweak sale v, the ouplings between the MSSM and the new �elds, generated by X, remain weak14



and the diagonalization of the mass matrix an still be performed analytially. However, instead of theapproximate values ~m50;60 in Eqs. (3.34) and (3.35) the exat solutions (3.16) must be used, and for V 2the general rotation matrix (3.17) must be inserted. The approximation eases to be valid at isolatedpoints where X=( ~mi0� ~mj0) is no longer a small perturbation, due to the degeneray of mass eigenvalues~mi0 � ~mj0 . In these ross-over zones the analysis desribed in Appendix C must be applied.3.4 An illustrative exampleTo illustrate the properties of the two new neutralinos and the impat of the oupling of the twosubsystems on the original MSSM neutralinos, we study, numerially and analytially, the evolutionof the neutralino mass spetrum and representative examples for the mixing of the partiles from avery light new U(1)X gaugino aross typial MSSM mass sales up to very high sales. Gauge kinetimixing has only a small impat on the spetrum and it will therefore be negleted in the illustrativeexample. Throughout the evolution, inluding all intermediate regions, the oupling between the newstates and the MSSM states remains weak, apart from regions of mass degeneray. The evolution a�etsprimarily the spetrum of the two new neutralino states. In the initial limit, M 01 small, two medium-heavy degenerate states, m50;60 � O(vs), are realized in the spetrum. At the end of the hain, M 01 large,the spetrum is of a see-saw type, inluding one heavy and one nearly zero-mass state.As an illustrative example, we take M2 = 1:5 TeV, ms = 1:2 TeV, � = 0:3 TeV and MK = 0, andwe assume the gaugino uni�ation relation M1 = (5=3) tan2 �WM2 � 0:5M2. Also, for the numerialanalysis in this paper, we set tan� = 5. We adopt the N -model harge assignments [8℄,Q1 = � 32p10 ; Q2 = � 22p10 ; QS = 52p10 : (3.40)For de�niteness we �x the gauge oupling at gX ' 0:46, evolved from its E6 uni�ation value ofp5=3 gYdown to the eletroweak sale; however the results are not very sensitive to this assumption. We ouldalso hoose to �x MX at its gaugino uni�ation value under the assumption that all gaugino massesunify at the grand uni�ation sale. This would orrespond to a value of M 01 � MX = M1 = 750 GeV(negleting kineti mixing e�ets). However, to illustrate the struture of the system in various senarios,we shall be slightly more general by allowingM 01 to vary over a large range of values (0 �M 01 � 5 TeV).To be spei�, we hoose the evolution with M 01from : M 01 � v � � � M1; M2; vsto : v � � � M1; M2; vs � M 01 :The evolution of the six (positive) neutralino masses6 and the values of two typial V 6 mixing elements,6The eigenvalues 40 and 50 of the mass matrix [Eq. (3.34)℄ are negative, while all the other eigenvalues are positive.Level rossing will therefore our only between 20-60 and 40-50 when M 01 is inreased. The physial neutralino masses aregiven by the absolute values of the orresponding mass eigenvalues.15



0 1000 2000 3000 4000 5000

M
’

1 [GeV]

10
2

10
3

10
4

  M
as

s [
G

eV
]

 Neutralino Masses

6’

6’

2’ 2’

5’

5’
1’1’

4’4’
3’ 3’

Figure 1: The evolution of the six neutralino masses when varying the U(1)X gaugino mass parameterM 01. The values used for the parameters are given in the text. The numbers with primes haraterizethe nature of the neutralino states onneted with the ordering of the states when evolving from M 01 = 0.Note that the 20 and 60 urves and the 40 and 50 urves, respetively, do not atually touh. This an beseen more learly in Fig. 9, where these near intersetion regions are expanded. The 10 and 50 urves,orresponding to opposite-sign mass eigenvalues, interset for small M 01 but a�et eah other only weakly.f5040g and f5060g, are shown in Figs. 1 and 2. The neutralino state mixings are exempli�ed by the V 6matrix elements f5040g and f5060g as representative for gaugino and higgsino mixings of the MSSM andthe new states, as well as the mixing among the new gaugino and singlino states themselves.When the new U(1)X gaugino mass parameter M 01 is varied from small to very large values, thepattern of neutralino masses evolves in an interesting way, as shown in Fig. 1. For small M 01 the set ofparameters hosen in the previous paragraph, leads to a heavy SU(2) MSSM gaugino ~�020 . It is followedby the two new states, mixed maximally in the U(1)X gaugino and singlino setor, ~�050 and ~�060 . Thefourth heaviest state is the U(1) MSSM gaugino ~�010 . The lightest states are the two MSSM higgsinos ~�040and ~�030 . IfM 01 is shifted to higher values, the mass eigenvalues in the new setor move apart, generatingstrong ross-over patterns whenever a mass from the new blok omes lose to one of the MSSM masses.This is realized at smallM 01 � ~m20 �Q02Sm2s= ~m20 � 0:91 TeV for the neutralino ~�060 in the new blok andthe SU(2) MSSM neutralino ~�020 ; later between the new-blok state ~�050 and the MSSM higgsino ~�040 for16
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Table 1: Comparison between the exat and approximate neutralino masses m~�0i [in GeV℄ for threevalues of M 01. The values of the other parameters are de�ned in the text.~�0i M 01 = 400 GeV M 01 = 2000 GeV M 01 = 4000 GeVm [GeV℄ Exat Appr. �m=m Exat Appr. �m=m Exat Appr. �m=m1 294.0 295.8 0.6% 294.1 295.9 0.6% 211.6 211.4 -0.1%2 302.7 303.2 0.1% 301.0 301.4 0.1% 294.2 296.0 0.6%3 756.5 755.6 -0.1% 380.3 380.3 0.0% 304.7 305.3 0.2%4 770.1 770.1 0.0% 756.5 755.6 -0.1% 756.5 755.6 -0.1%5 1170.6 1170.6 0.0% 1504.8 1504.3 0.0% 1504.8 1504.3 0.0%6 1504.8 1504.3 0.0% 2379.0 2379.0 0.0% 4213.9 4213.9 0.0%4 Neutralino Prodution and DeaysNeutralino prodution rates in various hannels and deay properties in various modes are a�eted bythe mixing of the neutralino states and by the mass and kineti mixings of the gauge bosons assoiatedwith the broken U(1)X and SU(2)�U(1)Y gauge symmetries.The Z and Z 0 bosons an mix through kineti oupling, as analyzed before, and mass mixing induedby the exhange of the Higgs �elds, for example, harged under both U(1)0s. The resulting Z and Z 0mixing is desribed by the mass-squared matrixM2ZZ0 =  m2Z �2Z�2Z m2Z0 ! ; (4.1)where the matrix elements are given bym2Z = 14g2Zv2 ;m2Z0 = g2Xv2 �Q021 2� +Q022 s2��+ g2Xv2SQ02S ;�2Z = 12gZgXv2 �Q012� �Q02s2�� ; (4.2)and where g2Z � g22 + g2Y . The eigenvalues of M2ZZ0 and the Z and Z 0 mixing angle follow fromm2Z1;Z2 = 12 �m2Z +m2Z0 �q(m2Z �m2Z0)2 + 4�4Z� ;tan 2�ZZ0 = �2�2Z=(m2Z0 �m2Z) : (4.3)The phenomenologial onstraints typially require this mixing angle to be less than a few times10�3 [21℄, although values as muh as ten times larger may be possible in some models with a light Z 018



and redued ouplings [30℄.For the neutralino prodution proesses in e+e� annihilation it is suÆient to onsider the neutralino-neutralino-Z1;2 verties h~�0iLjZ1j~�0jLi = �gZZij os �ZZ0 � gXZ 0ij sin �ZZ0 ;h~�0iLjZ2j~�0jLi = +gZZij sin �ZZ0 � gXZ 0ij os �ZZ0 ; (4.4)with i; j = 1; ::; 6 and gZ = g2=W ; L! R an be swithed by substituting Zij ! �Z�ij and Z 0ij ! �Z 0 �ij .Expliitly, the ouplings Zij and Z 0ij are given in terms of the USSM neutralino mixing matrix N by7Zij = 12 �Ni3N�j3 �Ni4N�j4� ;Z 0ij = Q01Ni3N�j3 +Q02Ni4N�j4 +Q0SNi5N�j5 : (4.5)Sfermion t=u-hannel exhanges require the fermion-sfermion-neutralino verties (with the fermionmasses negleted): h~�0iRj ~fLjfLi = �p2 hg2(If3N�i2 + (ef � If3 )N�i1tW ) + gXQ0fLN�i6i ;h~�0iLj ~fRjfRi = +p2 �g2 ef tWNi1 + gX Q0fRNi6� : (4.6)In Eq. (4.6) the oupling to the higgsino omponent, whih is proportional to the fermion mass, hasbeen negleted. These would have to be inluded if one were to study, e.g., the neutralino interationwith the top quark and squark.For ompleteness, we also provide the fermion-fermion-Z1;2 verties:hfLjZ1jfLi = �gZ(If3 � efs2W ) os �ZZ0 � gXQ0fL sin �ZZ0 ;hfLjZ2jfLi = +gZ(If3 � efs2W ) sin �ZZ0 � gXQ0fL os �ZZ0 : (4.7)When swithing from L ! R in Eq. (4.7), the orresponding SU(2)�U(1) and U(1)X harges must behanged aordingly. If3 � If3L is the SU(2) isospin omponent (note that If3R = 0), ef is the eletriharge of the fermion f and Q0fL;R are the e�etive U(1)X harges of the left/right-handed fermions.The neutralino prodution and deay properties in the USSM model with the additional gauginoand singlino states depend ruially on their masses with respet to the MSSM neutralino masses.If they are muh heavier than the other states, they will rarely be produed and so are pratiallyunobservable. In ontrast, if the singlino is lighter than the other states, a singlino-dominated state willbe the lightest supersymmetri partile (LSP) into whih the other neutralino states will deay, possiblythrough asades.In the following subsetions, we present a brief desription of the general formalism of neutralinoprodution and the subsequent asade deays of the neutralinos. One harges and mixing matries7For simpliity of notation, the USSM neutralino mixing matrix N6 will be denoted by N in this setion.19



are generalized to the present U(1)X theory, the phenomenologial infrastruture for ross setions anddeay widths an be opied from the MSSM.4.1 Singlino Prodution in e+e� AnnihilationThe prodution proesses of a neutralino pair in e+e� annihilation,8e+e� ! ~�0i ~�0j [i; j = 1{6℄ ; (4.8)are generated by s-hannel Z1 and Z2 exhanges, and t- and u-hannel ~eL;R exhanges. The transitionamplitudes, T �e+e� ! ~�0i ~�0j� = e2s Q�� ��v(e+)�P�u(e�)� ��u(~�0i )�P�v(~�0j )� ; (4.9)are built up by produts of hiral neutralino urrents and hiral fermion urrents, oupled by bilinear\harges" QLL, QLR et. The four generalized bilinear harges orrespond to independent heliityamplitudes, desribing the neutralino prodution proesses for polarized eletrons/positrons [12℄. Theyan be parameterized by the fermion and neutralino urrents and the propagators of the exhanged(s)partiles as follows: QLL = + DZ1s2W 2W F1LZ1ij + DZ2s2W 2W F2LZ2ij � DuLs2W LiL�j ;QLR = � DZ1s2W 2W F1LZ�1ij � DZ2s2W 2W F2LZ�2ij + DtLs2W L�iLj ;QRL = + DZ1s2W 2W F1RZ1ij + DZ2s2W 2W F2RZ2ij + DtRs2W RiR�j ;QRR = � DZ1s2W 2W F1RZ�1ij � DZ2s2W 2W F2RZ�2ij � DuRs2W R�iRj : (4.10)The �rst two terms in eah bilinear harge are generated by Z1 and Z2 exhanges and the third termby seletron exhange; DZ1;2 , DtL;R and DuL;R denote the saled s-hannel Z1;2 propagators and the t-and u-hannel left/right-type seletron propagatorsDZ1;2 = ss�m2Z1;2 + imZ1;2�Z1;2 and D(t;u)L;R = s(t; u)�m2~fL;R ; (4.11)with s = (pe� + pe+)2, t = (pe� � p~�0i )2 and u = (pe� � p~�0j )2 denoting the Mandelstam variables forneutralino pair prodution in e+e� ollisions. The ouplings FiL;R of the gauge bosons Zi (i = 1; 2) toa fermion pair are given byF1L = +�If3 � efs2W� ZZ0+ gXgZ Q0fLsZZ0; F1R = �efs2W ZZ0 + gXgZ Q0fRsZZ0 ;F2L = ��If3 � efs2W� sZZ0+ gXgZ Q0fLZZ0; F2R = +efs2W sZZ0 + gXgZ Q0fRZZ0 ; (4.12)8Reall that the numbering ~�0i [i = 1; : : : ; 6℄ of the neutralinos [without primed subsripts℄ refers to asending massordering. 20



where sZZ0 � sin �ZZ0, ZZ0 � os �ZZ0, If3 = �1=2 and ef = �1 for the eletron harges. Finally, thematries Z1;2ij and the vetors Li and Ri are de�ned by (tW = tan �W )Z1ij = +12 �Ni3N�j3 �Ni4N�j4� ZZ0 + gXgZ �Q01Ni3N�j3 +Q02Ni4N�j4 +Q0SNi5N�j5� sZZ0 ;Z2ij = �12 �Ni3N�j3 �Ni4N�j4� sZZ0 + gXgZ �Q01Ni3N�j3 +Q02Ni4N�j4 +Q0SNi5N�j5� ZZ0 ;Li = +If3Ni2 + (ef � If3 )tWNi1 + gXg2 Q0fLNi6 ;Ri = �ef tWNi1 + gXg2 Q0fRNi6 : (4.13)The e+e� annihilation ross setions follow from the squares of the relevant ouplings,� �e+e� ! ~�0i ~�0j� = Sij ��22s �1=2PS Z 1�1(�1� (�2i � �2j )2 + �PS os2��Q1+4�i�jQ2 + 2�1=2PS Q3 os�) d os� ; (4.14)where Sij = (1+Æij)�1 is a statistial fator whih is equal to 1 for i 6= j and 1=2 for i = j; �i = m~�0i =ps,� is the polar angle of the produed neutralinos; and �PS � �PS(1; �2i ; �2j ) denotes the familiar 2-bodyphase spae funtion. The quarti harges Qi (i = 1; 2; 3) are given by produts of bilinear harges:Q1 = 14 �jQRRj2 + jQLLj2 + jQRLj2 + jQLRj2� ;Q2 = 12 Re [QRRQ�RL +QLLQ�LR℄ ;Q3 = 14 �jQRRj2 + jQLLj2 � jQRLj2 � jQLRj2� : (4.15)The integration over the polar angle � an easily be performed analytially.The prodution ross setions for the three pairings of the two lightest neutralinos, f11g; f12g andf22g, are illustrated in Fig. 3 as funtions of M 01. For the parameter set de�ned in Set. 3.4, the orre-sponding Z 0 mass is MZ2 = 949 GeV and the ZZ 0 mixing angle is �ZZ0 = 3:3� 10�3; these parametersare ompatible with existing limits [21,30℄. The enter-of-mass energy of the e+e� ollider is set to 800GeV. Of ourse, if Z2 is in the reah of the ollider, running on the Z2 resonane would be the mostnatural way to explore all the faets of the new partile setor in an optimal way.For small values of M 01 the ross setion �f~�01 ~�02g is of similar size as the MSSM predition forthe mixed higgsino pairs, ~�030 ~�040 (f. Fig. 1), modi�ed only by the Z 0 ontribution. However, at andbeyond the ross-over points with the new singlino type neutralino ~�050 , dramati hanges set in forpairs involving the lightest neutralino. Sine the ouplings of the mixed pair, ~�050 ~�030 , are suppressed toboth the Z and Z 0 vetor bosons, the ross setion �f~�01 ~�02g drops signi�antly. In ontrast, the rising21
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4.2 Neutralino asade deays and sfermion deaysIf kinematially allowed, the two-body deays of neutralinos into a neutralino and an eletroweak gaugebosons Z1;2 are among the dominant hannels. The widths of the deays, ~�0i ! ~�0jZk (k = 1; 2), aregiven by�[~�0i! ~�0jZk℄ = g2Z�1=2PS16�m~�0i8<:jZ2kijj24(m2~�0i �m2~�0j )2m2Zk +m2~�0i+m2~�0j�2m2Zk35+ 6m~�0im~�0j Re (Z2kij)9=; ; (4.16)where �PS � �PS(1;m2~�0j =m2~�0i ;m2Zk=m2~�0i ), with Z1ij and Z2ij de�ned in Eq. (4.13).Two examples, ~�0i ! ~�01Z1 for i = 6; 3, illustrate the evolution of the widths with M 01 in Fig. 4.The neutralinos ~�06 and ~�01 are identi�ed with the MSSM SU(2) gaugino and the lighter of the MSSMhiggsinos for small M 01, and with the U(1)X gaugino and the singlino for large M 01, respetively [f.Fig. 1℄. Even after ~�06 rosses to the U(1)X gaugino at the 20-60 ross-over zone, the width inreasesdue to an inreasing phase spae fator (due to the inreasing mass di�erene) and the fat that ~�06 hasa signi�ant singlino omponent. However, one the state ~�01 beomes singlino-dominated above the50-40 ross-over zone, the width of the deay ~�06 ! ~�01Z1 drops dramatially as the mixing between the
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U(1)X gaugino and the singlino state is strongly suppressed for large M 01. The state ~�03 is the MSSMU(1) gaugino for smallM 01, the singlino-dominated state for moderateM 01 and the heavier of the MSSMhiggsinos for large M 01. As the ~�03 mass drops, even only slightly, the two-body deay ~�03 ! ~�01Z1 iskinematially forbidden for moderate M 01. However, the mode is kinematially allowed again and itsmagnitude inreases when the mass of the singlino-dominated ~�01 dereases suÆiently.Similarly, the two-body deays of the harginos into a neutralino and the W� gauge boson areexpeted to be among the dominant hannels if kinematially allowed. The widths of the deays,~��i ! ~�0j W�, are given by�[~��i ! ~�0j W�℄ = g22�1=2PS16�m~��i 8<: jWLij j2 + jWRij j22 24(m2~��i �m2~�0j )m2W +m2~��i +m2~�0j � 2m2W35�6m~��i m~�0j Re (WLijW�Rij)o ; (4.17)where �PS � �PS(1;m2~�0j =m2~��i ;m2W =m2~��i ) and the WL;R are de�ned asWLij = U�Li1Nj2 + 1p2U�Li2Nj3; WRij = U�Ri1N�j2 � 1p2U�Ri2N�j4 : (4.18)The unitary matries UL and UR diagonalize the hargino mass matrix via the singular value deomposi-tion [24℄ URMCU yL = diagnm~��1 ;m~��2 o. Expliit formulae for the hargino masses and mixing matriesan be found in Refs. [31, 32℄.At the LHC, sfermion deays, ~f ! f ~�0i an produe omplex asades, as heavier neutralinos areoften produed in the initial deay and subsequently deay through a number of steps before the lightestneutralino (whih is presumably the LSP) is produed to end the hain. Thus, asade deays are ofgreat experimental interest at the LHC. The width of the sfermion 2-body deay into a fermion and aneutralino follows from �[ ~f ! f ~�0i ℄ = g22�1=2PS16�m ~f jg ~fij2 �m2~f �m2~�0i �m2f� ; (4.19)where �PS � �PS(1;m2f=m2~f ;m2~�0i =m2~f ), the ouplings g ~fLi = Li and g ~fRi = Ri are de�ned in terms ofthe neutralino mixing matrix N and the appropriate fermion harges in Eq. (4.13).The rates for the reverse deays, neutralino deays to sfermions plus fermions, ~�0i ! ~f �f , �~ff aregiven by the orresponding partial widths9�[~�0i ! ~ff ℄ = g22�1=2PS NfC32�m~�0i jg ~fij2 �m2~�0i +m2f �m2~f� ; (4.20)9As the deay rates into ~f �f and �~ff are the same, we shall heneforth denote either of the �nal states by ~ff .24
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Table 3: The omparison of deay widths between the USSM and the MSSM. The state ~�0i in the tabledenotes the seond heaviest neutralino, i.e. ~�05 in the USSM and ~�03 in the MSSM. The value of M 01 isset to zero in the USSM. For other values of M 01 see Fig. 5.Deay Width [MeV℄ �[~uR ! ~�0iu℄ �[~�0i ! ~̀R`℄ �[~̀R ! ~�01`℄USSM 130:0 5:5 14:1MSSM 3294:6 18:9 15:0smallM 01 and, after the 20-60 ross-over zone, with the U(1)X gaugino. The width inreases dramatiallybefore the deay is forbidden kinematially for M 01 larger than 1:5 TeV. The seond step ~�06 ! ~�05Z1in this asade hain orresponds to the deay of the MSSM SU(2) gaugino for small M 01, hanging tothe U(1)X gaugino deay thereafter. The dependene of this two-body deay mode on M 01 is mainly ofkinemati nature; the deay is not allowed for M 01 between � 0:8 TeV and � 1:0 TeV. Just beyond the20-60 ross-over zone, it inreases very sharply and keeps inreasing moderately withM 01 thereafter. Thepattern for the third deay ~�05 ! ~̀R` is mainly determined by the size of the U(1)Y and U(1)X gaugeomponents of the state ~�05. Before the 20-60 ross-over zone the state is a U(1)X gaugino so that thewidth is large. But the width is strongly suppressed for moderate and largeM 01 for whih ~�05 is a MSSMSU(2) gaugino with very small mixing with the two MSSM U(1) and U(1)X gauginos. The width forthe �nal deay ~̀R ! ~�01` remains moderate as the U(1) omponents of the ~�01 state are small. Beyondthe ross-over zone, the width dereases with the suppressed U(1)X omponent.Conventional hains like ~q ! q ~�0i ! q[`~̀℄ ! q`[`~�01℄ may also be observed in the U(1)X extendedmodel. However, the partial widths in the USSM an be very di�erent from the MSSM. As an example,we onsider the asade hains, in whih the intermediate neutralino state ~�0i is the seond heaviestneutralino, i.e. ~�05 in the USSM and ~�03 in the MSSM. As demonstrated in Table 3, the width for thedeay of ~uR to the seond heaviest neutralino in the USSM is muh smaller than in the MSSM.These asade hains should only be taken as representative theoretial examples. A systematiphenomenologial survey needs signi�antly more detailed analyses.4.3 Deays to Higgs bosonsThe USSM Higgs setor inludes two Higgs doublets Hu and Hd as well as the SM singlet �eld S [8,33{35℄. Their interations are determined by the gauge interations and the superpotential in Eq. (1.1).Inluding soft SUSY breaking terms and radiative orretions, the resulting e�etive Higgs potentialonsists of four parts: VH = VF + VD + Vsoft +�V ; (4.21)26



where the F , D and soft-breaking terms VF ; VD and Vsoft are given byVF = j�j2jHu �Hdj2 + �2jSj2(jHuj2 + jHdj2) ;VD = g2Z8 �jHdj2 � jHuj2�2 + g222 �jHuj2jHdj2 � jHu �Hdj2�+ g2X2 �Q01jHdj2 +Q02jHuj2 +Q0SjSj2�2 ;Vsoft = m21jHdj2 +m22jHuj2 +m2S jSj2 + (�A�S Hu �Hd + h:) ; (4.22)with Hu � Hd � H+u H�d � H0uH0d . The struture of the F term VF is the same as in the NMSSMwithout the self-interation of the singlet �eld. However the D term VD ontains a new ingredient: theterms proportional to g2X are D-term ontributions due to the extra U(1)X whih are not present in theMSSM or NMSSM. The soft SUSY breaking terms are olleted in Vsoft. The tree-level Higgs potentialis CP-onserving [34℄. That is, one an rephase the Higgs �elds to absorb the phases of the potentiallyomplex oeÆient �A�. Thus, without loss of generality, we will assume that these parameters arereal.The term �V in Eq. (4.21) represents the radiative orretions to the Higgs e�etive potential [36℄.The dominant ontributions at one-loop are generated by top quark and salar top quark (stop) loopsdue to the large Yukawa ouplings; these terms are the same as in the MSSM. All the other model-dependent ontributions do not ontribute signi�antly at one-loop order [33℄. Therefore, we will ignorethese subdominant model-dependent radiative orretions in the following analysis.The set of soft SUSY breaking parameters in the tree-level Higgs potential inludes the soft massesm21;m22 and m2S and the trilinear oupling A�. Radiative orretions are a�eted by many other softSUSY breaking parameters that generate masses of salar tops and their mixings: the SU(2) and U(1)soft SUSY breaking salar top massesmQ;mU , the stop trilinear parameter At, the supersymmetri masssaleMSUSY and, spuriously, the renormalization sale Q. To simplify the analysis of the Higgs spetrumit is useful to express the soft masses m21;m22;m2S in terms of vs; v; tan � and the other parameters. Thetree-level Higgs masses and ouplings depend on four variables only: �; vs; tan � andA�. In the numerialanalysis, we take 1 TeV for the new parameters, mQ;mU ; At; Q;MSUSY and A�.Deays involving Higgs bosons an be quite di�erent for di�erent Higgs boson mass spetra. We�rst deompose the neutral Higgs states into real and imaginary parts as follows:H0d = 1p2 (v os � + h os � �H sin� + iA sin� sin') ;H0u = 1p2 (v sin� + h sin� +H os � + iA os � sin') ;S = 1p2 (vs +N + iA os') ; (4.23)where the CP-odd mixing angle ' is determined by tan' = 2vs=v sin 2� and all the Goldstone states areremoved by adopting the unitary gauge. Subsequently the CP-even states (h;H;N) are rotated onto27



the mass eigenstates Hi (i = 1; 2; 3), labeled in order of asending mass, by applying the orthogonalrotation matrix OH : (H1;H2;H3)k = (h;H;N)a OHak ; (4.24)The resulting Higgs mass spetrum onsists of three CP-even salars, one CP-odd salar, and twoharged Higgs bosons.Generally, the width of a 2-body neutralino or hargino ~�i deay to a neutralino or hargino ~�j anda Higgs boson �k (H1;2;3 or A) is given by�[~�i ! ~�j�k℄ = g22�1=2PS32�m~�i n�m2~�i +m2~�j �m2�k� �jCLijkj2 + jCRijkj2�+ 4m~�im~�j Re �CLijkCR �ijk �o ; (4.25)where �PS � �PS(1;m2~�j=m2~�i ;m2�k=m2~�i) and the left/right ouplings CL=Rijk must be spei�ed in eahindividual ase.(i) For the deay of a neutralino ~�0i to a neutralino ~�0j and a salar Higgs boson Hk, ~�0i ! ~�0jHk,the ouplings are given by,CRijk(~�0i ! ~�0jHk) = �12 �(Ni2�Ni1tW )(Nj3��Nj4s�)�p2 �g2 (Ni3s�+Ni4�)Nj5+2gXg2 Ni6 �Q01Nj3� +Q02s�Nj4�� OH1k+12 �(Ni2�Ni1tW )(Nj3s�+Nj4�)+p2 �g2 (Ni3��Ni4s�)Nj5+2gXg2 Ni6 �Q01Nj3s� �Q02�Nj4�� OH2k+12 �p2 �g2Ni3Nj4 � 2gXg2 Q0SNi6Nj6� OH3k + (i$ j) ; (4.26)CLijk(~�0i ! ~�0jHk) = CR �ijk (~�0i ! ~�0jHk) : (4.27)While the �rst term in eah of the two square brakets of Eq. (4.26) are reminisent of the MSSMouplings ~�0i ~�0jh and ~�0i ~�0jH respetively, the other terms are genuinely new in origin, arising from theextra interation terms in the USSM superpotential and the extra U(1)X gauge interations.The partial widths for the kinematially allowed deays ~�04;5 ! ~�01H1 are shown in the left panel ofFig. 6 as a funtion ofM 01. In the areas in whih ~�04;5 and ~�01 nearly oinide with the MSSM neutralinos,the partial widths do not depend on M 01.(ii) Similarly, a 2-body neutralino deay to a neutralino and a CP-odd Higgs boson, ~�0i ! ~�0jA,28
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oupling removed:CLij(~��i ! ~�0jH�)=�s��N�j3U�Li1� 1p2 �N�j2+N�j1tW �U�Li2��p2gXg2 Q01N�j6U�Li2� �g2 �N�j5U�Li2 ; (4.30)CRij (~��i ! ~�0jH�)=���Nj4U�Ri1+ 1p2 (Nj2+Nj1tW )U�Ri2��p2gXg2 Q02Nj6U�Ri2� �g2 s�Ni5U�Ri2 ; (4.31)The same left/right ouplings determine the deays of neutralinos to harginos and harged Higgs boson~�0j ! ~�+i H� (i = 1; 2; j = 1; 2; : : : ; 6). For the parameters hosen here, the large mass of the hargedHiggs boson allows kinematially only deays of the heavier hargino ~��2 to the lightest neutralino ~�01and H�.(iv) It is also possible for Higgs bosons to deay into neutralino/hargino states, for example thedeays Hi ! ~�01 ~�0j , A ! ~�01 ~�0j and H� ! ~�01 ~��i . Clearly this is kinematially possible only for theheavier Higgs states. The general form of the width for these deays �i ! ~�j ~�k (�i = Hi; A; H�), isgiven by the rossing of Eq. (4.25):�[�i ! ~�j ~�k℄=Sjk g22�1=2PS16�m�i n�m2�i �m2~�j �m2~�k� �jCLijkj2 + jCRijkj2�� 4m~�jm~�k Re�CLijkCR �ijk �o ; (4.32)
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where �PS � �PS(1;m2~�j=m2�i ;m2~�j=m2�i) and Sjk = (1 + Æjk)�1 is the usual statistial fator. Theouplings CL=Rijk are related to their neutralino/hargino deay ounterparts in the obvious way:CL=Rijk (Hi ! ~�0j ~�0k) = CL=Rkji (~�0k ! ~�0jHi) ; (4.33)CL=Rij (A! ~�0i ~�0j ) = CL=Rji (~�0j ! ~�0iA) ; (4.34)CL=Rij (H+ ! ~�0i ~�+j ) = CL=Rji (~��j ! ~�0iH�) : (4.35)As an example, the Higgs boson deays H3; A ! ~�01 ~�01;2 are displayed in Fig. 7. For small M 01 the~�030 ~�040H3=A ouplings in the deays H3; A ! ~�01 ~�02 are suppressed while for large M 01 the ~�050 ~�030H3=Aouplings are no longer suppressed. The rapid hanges in the 50-40 ross-over zone are generated byinterferene e�ets between the Yukawa and the gauge interation terms. Similar interferene e�ets,though less signi�ant, our for the deays H3; A! ~�01 ~�01 near the ross-over zone.4.4 Neutralino radiative deaysIn the ross-over zones of the neutralino mass eigenvalues, the gaps between the neutralino massesbeome very small. As a result, standard deay hannels are almost shut and photon transitions betweenneutralino states [37℄ beome enhaned. These photon transitions are partiularly important in theross-over zone 40-50 at M 01 ' 2:6 TeV [f. Fig. 1℄. The proximity of the two heavier states to the lightestneutralino dramatially redues the rates of all other deay modes so that the radiative deays~�02 ; ~�03 ! ~�01 +  and ~�03 ! ~�02 +  ; (4.36)beome non-negligible modes. Of ourse, also the  transitions are phase-spae suppressed in ross-overzones but less strongly than the ompeting standard hannels due to the vanishing photon mass, evenfor 3-partile deays into a lighter neutralino and lepton- or light-quark pair.The e�etive ouplings g~�0i ~�0j in the partial deay widths�[~�0i ! ~�0j℄ = g2~�0i ~�0j8� (m2~�0i �m2~�0j )3m5~�0i ; (4.37)are of magneti or eletri dipole type depending on the relative CP quantum numbers of ~�0i and~�0j . The ouplings are generated by triangle graphs of sfermion/fermion, hargino/W -boson andhargino/harged Higgs-boson lines. The sum of all two-point graphs assoiated with the photon lineand attahed to the neutralino legs by a Z-boson line vanish in the non-linear R-gauge [37℄. The transition amplitudes are �nally omplex ombinations of mixing matrix elements with redued trianglefuntions.For the  transitions of Eq. (4.36), the partial widths are displayed in Fig. 8 for the set of parametershosen earlier. In this example the three lightest neutralino states are predominantly of higgsino type31
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original four MSSM states and the two new states o�ers an elegant analytial solution of this problemwithin a perturbative expansion. We have worked out this solution in detail for the mass spetrum andthe mixing of the states.The expansion in the parameter v=MSUSY, the ratio of the eletroweak sale v over the generisupersymmetry-breaking sale MSUSY, leads to an exellent approximation of the exat solutions. Evenin the ross-over zones in whih two mass eigenvalues are nearly degenerate, proper adaption of theanalytial formalism provides an aurate desription of the system. Thus, in the limit in whihMSUSYis suÆiently above the eletroweak sale, the neutralino system of the U(1)X -extended supersymmetristandard model is under good analytial ontrol and its features are theoretially well understood.A few examples of mass spetra, widths for asade deays at LHC, deays to Higgs bosons, photontransitions and prodution ross setions in e+e� ollisions illustrate the harateristi features of themodel.AknowledgmentsWe aknowledge useful disussions with D. Jareka and H.S. Lee. The work was supported in part by theKorea Researh Foundation Grant (KRF-2006-013-C00097), by KOSEF through CHEP at KyungpookNational University, in part by U.S. Department of Energy grant number DE-FG02-04ER41268, bythe Deutshe Forshungsgemeinshaft, and by the Polish Ministry of Siene and Higher EduationGrant No 1 P03B 108 30, the EC Grant No Contrat MTKD-CT-2005-029466, and the NATO GrantPST.CLG. 980066. S.Y.C. is grateful for the hospitality during a visit to DESY, and P.M.Z. to theSanta Cruz Institute for Partile Physis (SCIPP) at the University of California, Santa Cruz.Appendix A: Takagi diagonalization of a omplex symmetri matrixIn quantum �eld theory, the most general neutral fermion mass matrix, M , is omplex and symmetri.To identify the physial eigenstates, M must be diagonalized.10 However, the equation that governsthe identi�ation of the physial fermion states is not the standard unitary similarity transformation.Instead it is a di�erent diagonalization equation that was disovered by Takagi [23℄, and redisoveredmany times sine [24℄.11 Despite this illustrious history, the mathematis of the Takagi diagonalization isrelatively unknown among physiists. Thus, in this appendix we present a self-ontained introdution tothe Takagi diagonalization of a omplex symmetri matrix. After presenting some bakground material10An alternative method|the standard diagonalization of the hermitian matrixMyM , whih is ommonly advoated inthe literature, fails to identify the physial states in the ase of mass-degenerate fermions, as noted below Eq. (A.3).11Subsequently, it was reognized in Ref. [38℄ that the Takagi diagonalization was �rst established for nonsingular omplexsymmetri matries by Autonne [39℄. 33



and a onstrutive proof of Takagi's result, we provide, as a pedagogial example, the expliit Takagidiagonalization of an arbitrary 2� 2 matrix. The latter will be partiularly useful for onsidering asesin whih there is a near-degeneray in mass between two of the neutral fermions.A.1 General analysisConsider a system of n two omponent fermion �elds � � (�1 ; �2 ; : : : ; �n)T , whose physial masses aregoverned by the Lagrangian Lmass = 12 �TM � + h:: (A.1)In general, the mass matrix M is an n� n omplex symmetri matrix. In order to identify the physialmasses mi and the orresponding physial fermion �elds �i, one introdues a unitary matrix U suhthat � = U� and demands that �TM � =Pimi�i�i. This orresponds to the Takagi diagonalization ofa omplex symmetri matrix,12 whih is governed by the following theorem [23, 24℄:Theorem: For any omplex symmetri n�n matrixM , there exists a unitary matrix U suh that:13UTM U =MD = diag(m1;m2; : : : ;mn) ; (A.2)where the mk are real and non-negative.The mk are not the eigenvalues of M . Rather, the mk are the so-alled singular values of thesymmetri matrixM , whih are de�ned to be the non-negative square roots of the eigenvalues ofM yM .To ompute the singular values, note that:U yM yMU =M2D = diag(m21;m22; : : : ;m2n) : (A.3)SineM yM is hermitian, it an be diagonalized by a unitary similarity transformation. Although U anbe determined from Eq. (A.3) in ases of non-degenerate singular values, the ase of degenerate singularvalues is less straightforward. For example, if M = � 0 11 0�, the singular value 1 is doubly-degenerate,but Eq. (A.3) yields U yU = 12�2, whih does not speify U . Below, we shall present a onstrutivemethod for determining U that is appliable in both the non-degenerate and the degenerate ases.Eq. (A.2) an be rewritten as MU = U�MD, where the olumns of U are orthonormal. If we denotethe kth olumn of U by vk, then, Mvk = mkv�k ; (A.4)12If U = Ny, we obtain the form of the Takagi diagonalization used in Eqs. (2.17) and (B.2).13In Ref. [24℄, Eq. (A.2) is alled the Takagi fatorization of a omplex symmetri matrix. We hoose to refer to thisas Takagi diagonalization to emphasize and ontrast this with the more standard diagonalization of normal matries bya unitary similarity transformation. In partiular, not all omplex symmetri matries are diagonalizable by a similaritytransformation, whereas omplex symmetri matries are always Takagi-diagonalizable.34



where the mk are the singular values and the vetors vk are normalized to have unit norm. FollowingRef. [25℄, the vk are alled the Takagi vetors of the symmetri omplex n� n matrix M . The Takagivetors orresponding to non-degenerate non-zero [zero℄ singular values are unique up to an overallsign [phase℄. Any orthogonal [unitary℄ linear ombination of Takagi vetors orresponding to a set ofdegenerate non-zero [zero℄ singular values is also a Takagi vetor orresponding to the same singularvalue. Using these results, one an determine the degree of non-uniqueness of the matrix U . Forde�niteness, we �x an ordering of the diagonal elements of MD. If the singular values of M are distint,then the matrix U is uniquely determined up to multipliation by a diagonal matrix whose entriesare either �1. If there are degeneraies orresponding to non-zero singular values, then within thedegenerate subspae, U is unique up to multipliation on the right by an arbitrary orthogonal matrix.Finally, in the subspae orresponding to zero singular values, U is unique up to multipliation on theright by an arbitrary unitary matrix.We shall establish the Takagi diagonalization of a omplex symmetri matrix by formulating analgorithm for onstruting U . A method will be provided for determining the orthonormal Takagivetors vk that make up the olumns of U . This is ahieved by rewriting the n � n omplex matrixequation Eq. (A.4) [with m real and non-negative℄ as a 2n� 2n real matrix equation [40℄:MS  Re vIm v ! �  ReM � ImM� ImM �ReM !  Re vIm v ! = m Re vIm v ! ; where m � 0 : (A.5)SineM =MT , the 2n�2nmatrixMS de�ned by Eq. (A.5) is a real symmetri matrix. In partiular,MSis diagonalizable by a real orthogonal similarity transformation, and its eigenvalues are real. Moreover,if m is an eigenvalue of MS with eigenvetor (Re v ; Im v), then �m is an eigenvalue of MS with(orthogonal) eigenvetor (� Im v ; Re v). This observation proves that MS has an equal number ofpositive and negative eigenvalues and an even number of zero eigenvalues.14 Thus, Eq. (A.4) has beenonverted into an ordinary eigenvalue problem for a real symmetri matrix. Sine m � 0, we solve theeigenvalue problem MSu = mu for the eigenvetors orresponding to the non-negative eigenvalues.15 Itis straightforward to prove that the total number of linearly independent Takagi vetors is equal to n.Simply note that the orthogonality of (Re v1 ; Im v1) and (� Im v1 ; Re v1) with (Re v2 ; Im v2) impliesthat vy1v2 = 0.Thus, we have derived a onstrutive method for obtaining the Takagi vetors vk. If there aredegeneraies, one an always hoose the vk in the degenerate subspae to be orthonormal. The Takagivetors then make up the olumns of the matrix U in Eq. (A.2). A numerial pakage for performing14Note that (� Imv ; Re v) orresponds to replaing vk in Eq. (A.4) by ivk. However, for m < 0 these solutions are notrelevant for Takagi diagonalization (where the mk are by de�nition non-negative). The ase of m = 0 is onsidered infootnote 15.15For m = 0, the orresponding vetors (Re v ; Imv) and (� Imv ; Re v) are two linearly independent eigenvetors ofMS ; but these yield only one independent Takagi vetor v (sine v and iv are linearly dependent). See footnote 14.35



the Takagi diagonalization of a omplex symmetri matrix has reently been presented in Ref. [27℄ (seealso Refs. [25, 26℄ for previous numerial approahes to Takagi diagonalization).A.2 Example: Takagi diagonalization of a 2� 2 omplex symmetri matrixThe Takagi diagonalization of a 2� 2 omplex symmetri matrix an be performed analytially.16 Theresult is somewhat more ompliated than the standard diagonalization of a 2� 2 hermitian matrix bya unitary similarity transformation. Nevertheless, the orresponding analyti formulae for the Takagidiagonalization will prove useful in Appendix C in the treatment of nearly degenerate states. Considerthe omplex symmetri matrix: M =  a  b ! ; (A.6)where  6= 0 and, without loss of generality, jaj � jbj. We parameterize the 2 � 2 unitary matrix U inEq. (A.2) by [41℄: U = V P =  os � ei� sin ��e�i� sin � os � !  e�i� 00 e�i� ! ; (A.7)where 0 � � � �=2 and 0 � � ; � ; � < 2�. However, we may restrit the angular parameter spaefurther. Sine the normalized Takagi vetors are unique up to an overall sign if the orrespondingsingular values are non-degenerate and non-zero,17 one may restrit � and � to the range 0 � � ; � < �without loss of generality. Finally, we may restrit � to the range 0 � � � �=4. This range orrespondsto one of two possible orderings of the singular values in the diagonal matrix MD.Using the transformation (A.7), we an rewrite the Takagi equation (A.2) as follows: a  b !V = V � �1 00 �2 ! ; (A.8)where �1 � m1 e2i� ; and �2 � m2 e2i� ; (A.9)with real and non-negative mk. Multiplying out the matries in Eq. (A.8) yields:�1 = a�  e�i�t� = b e�2i� �  e�i�t�1� ; (A.10)�2 = b+  ei�t� = a e2i� +  ei�t�1� ; (A.11)16The main results of this subsetion have been obtained, e.g., in Ref. [27℄. Nevertheless, we provide some of the detailshere, whih inlude minor improvements over the results previously obtained.17In the ase of a zero singular value or a pair of degenerate of singular values, there is more freedom in de�ning theTakagi vetors as disussed below Eq. (A.4). These ases will be treated separately at the end of this subsetion.36



where t� � tan �. Using either Eq. (A.10) or (A.11), one immediately obtains a simple equation fortan 2� = 2(t�1� � t�)�1: tan 2� = 2b e�i� � a ei� : (A.12)Sine tan 2� is real, it follows that b� e�i�� a� ei� is real and must be equal to its omplex onjugate.The resulting equation an be solved for e2i�:e2i� = b� + a�b�+ a� ; (A.13)or equivalently ei� = b� + a�jb� + a�j : (A.14)The (positive) hoie of sign in Eq. (A.14) follows from the fat that tan 2� � 0 (sine by assumption,0 � � � �=4), whih implies 0 � �(b e�i� � a ei�) = jj2(jbj2 � jaj2) after inserting the results ofEq. (A.14). Sine jbj � jaj by assumption, the asserted inequality holds as required.Inserting the result for ei� bak into Eq. (A.12) yields:tan 2� = 2jb� + a�jjbj2 � jaj2 : (A.15)One an ompute tan � in terms of tan 2� for 0 � � � �=4:tan � = 1tan 2� hp1 + tan2 2� � 1i= jaj2 � jbj2 +p(jbj2 � jaj2)2 + 4jb� + a�j22jb� + a�j ; (A.16)= 2jb� + a�jjbj2 � jaj2 +p(jbj2 � jaj2)2 + 4jb� + a�j2 : (A.17)Starting from Eqs. (A.10) and (A.11), it is now straightforward, using Eqs. (A.14) and (A.16), to omputethe squared magnitudes of �k:m2k = j�kj2 = 12 hjaj2 + jbj2 + 2jj2 �p(jbj2 � jaj2)2 + 4jb� + a�j2i ; (A.18)with j�1j � j�2j. This ordering of the j�kj is governed by the onvention that 0 � � � �=4 (the oppositeordering would our for �=4 � � � �=2). Indeed, one an hek expliitly that the j�kj2 are theeigenvalues of M yM , whih provides the more diret way of omputing the singular values.The �nal step of the omputation is the determination of the angles � and � from Eq. (A.9). InsertingEqs. (A.14) and (A.17) into Eqs. (A.10) and (A.11), we end up with:� = 12 argna(jbj2 � j�1j2)� b�2o ; (A.19)� = 12 argnb(j�2j2 � jaj2) + a�2o : (A.20)37



If detM = ab�2 = 0 (withM 6= 0) , then there is one singular value whih is equal to zero. In thisase, it is easy to verify that �1 = 0 and j�2j2 = Tr (M yM) = jaj2+ jbj2+2jj2. All the results obtainedabove remain valid, exept that � is unde�ned [sine in this ase, the argument of arg in Eq. (A.19)vanishes℄. This orresponds to the fat that for a zero singular value, the orresponding (normalized)Takagi vetor is only unique up to an overall arbitrary phase [f. footnote 17℄.We provide one illuminating example of the above results. Consider the omplex symmetri matrix:M =  1 ii �1 ! : (A.21)The eigenvalues of M are degenerate and equal to zero. However, there is only one linearly independenteigenvetor, whih is proportional to (1 ; i). Thus, M annot be diagonalized by a similarity transfor-mation [24℄. In ontrast, all omplex symmetri matries are Takagi-diagonalizable. The singular valuesof M are 0 and 2 (sine these are the non-negative square roots of the eigenvalues of M yM), whih arenot degenerate. Thus, all the formulae derived above apply in this ase. One quikly determines that� = �=4, � = �=2, � = �=2 and � is indeterminate (so one is free to hoose � = 0). The resultingTakagi diagonalization is UTMU = diag(0 ; 2) with:U = 1p2  1 ii 1 !  1 00 �i ! = 1p2  1 1i �i ! : (A.22)This example learly indiates the distintion between the (absolute values of the) eigenvalues ofM andits singular values. It also exhibits the fat that one annot always perform a Takagi diagonalization byusing the standard tehniques for omputing eigenvalues and eigenvetors.18We end this subsetion by treating the ase of degenerate (non-zero) singular values, whih ariseswhen b� = �a�. Speial onsiderations are required sine not all the formulae derived above areappliable to this ase [f. footnote 17℄. The ondition b� = �a� implies that jaj = jbj, so thatj�1j2 = j�2j2 = jbj2 + jj2. After noting that a= = �b�=�, Eq. (A.12) then yields:tan 2� = [Re (b=) � + Im (b=) s�℄�1 ; (A.23)where � � os� and s� � sin�. The reality of tan 2� imposes no onstraint on �; hene, � isindeterminate [a fat that is suggested by Eq. (A.14)℄. The same onlusion also follows immediatelyfrom Eq. (A.2). Namely, ifMD = m12�2, then (UO)TM(UO) = OTMDO =MD for any real orthogonalmatrix O. In partiular, � simply represents the freedom to hoose O [see, e.g., Eq. (A.28)℄. Sine �is indeterminate, Eq. (A.23) implies that � is indeterminate as well. In pratie, it is often simplest18For real symmetri matries M , one an always �nd a real orthogonal V suh that V TMV is diagonal. In thisase the Takagi diagonalization is ahieved by U = V P , where P is a diagonal matrix whose kk element is 1 [i℄ if theorresponding eigenvalue mk is positive (negative). Of ourse, this proedure fails for omplex symmetri matries [suhas M in Eq. (A.21)℄ that are not diagonalizable. 38



to hoose a onvenient value, say � = 0, whih would then �x � suh that tan 2� = [Re (b=)℄�1. Forpedagogial reasons, we shall keep � as a free parameter below.Naively, it appears that � and � are also indeterminates. After all, the arguments of arg in bothEqs. (A.19) and (A.20) vanish in the degenerate limit. However, this is not a orret onlusion, as thederivation of Eqs. (A.19) and (A.20) involve a division by jb� + a�j, whih vanishes in the degeneratelimit. Thus, to determine � and � in the degenerate ase, one must return to Eqs. (A.10) and (A.11).A straightforward alulation [whih uses Eq. (A.23)℄ yields:�2 = ���1� ; (A.24)whih implies �+ � = arg � �2 : (A.25)Note that separately, � and � depend on the hoie of � (although � drops out in the sum). Expliitly,�1 = � e�i�(r1 + h�Re (b=) + s� Im (b=)i2 + ihs�Re (b=)� � Im (b=)i) ; (A.26)�2 =  ei�(r1 + h�Re (b=) + s� Im (b=)i2 � ihs�Re (b=)� � Im (b=)i) : (A.27)One easily veri�es that Eq. (A.24) is satis�ed. Moreover, using Eq. (A.9), � and � are now separatelydetermined.We illustrate the above results with the lassi ase of M = � 0 11 0�. In this ase M yM = 12�2, soU annot be dedued by diagonalizing M yM . Setting a = b = 0 and  = 1 in the above formulae, itfollows that � = �=4, �1 = �e�i� and �2 = ei�, whih yields � = �(� � �)=2 and � = �=2. Thus,Eq. (A.7) yields:U = 1p2  1 ei��e�i� 1 !  �iei�=2 00 e�i�=2 ! = 1p2  �iei�=2 ei�=2�ie�i�=2 e�i�=2 != 1p2  i 1�i 1 !  � os(�=2) sin(�=2)� sin(�=2) os(�=2) ! ; (A.28)whih illustrates expliitly that in the degenerate ase, U is unique only up to multipliation on theright by an arbitrary orthogonal matrix.Appendix B: The small-mixing approximationThe 6 � 6 USSM neutralino mass matrix of Eq. (2.12) annot be diagonalized analytially in general.However, simple analytial expressions for masses and mixing parameters an be found, similarly as in39



the NMSSM, by making use of approximations based on the natural assumption of small doublet-singlethiggsino, doublet higgsino-U(1)X gaugino mixing and kineti gaugino mixing, i.e. for a large SUSY saleompared to the eletroweak sale.In this appendix, we provide details of the neutralino mass matrix diagonalization in the small mixingapproximation, in whih the weak oupling between two o�-diagonal matrix bloks an be perturbativelytreated. For mathematial larity, we present the solution for a general omplex (N +M) � (N +M)symmetri matrix in whih the N �N and M �M submatries are oupled weakly so that their mixingis small: MN+M = 0� MN XNMXTNM MM 1A (B.1)To obtain the orresponding physial neutralino masses, one must perform a Takagi diagonalization ofMN+M :19 (NN+M )�MN+M (NN+M )y = diag(m10 ; m20 ; : : : ; mN 0+M 0) ; mk0 � 0 ; (B.2)where NN+M is a unitary matrix.20 The Takagi diagonalization of a general omplex symmetri matrixis desribed in Appendix A. The non-negative mk0 are alled the singular values ofM , whih are de�nedas the non-negative square roots of the eigenvalues of M yM .In Eq. (B.1), MN and MM are N �N and M �M omplex symmetri submatries with singularvalues generally of the SUSY sale,MSUSY. XNM is a retangular N�M matrix whose matrix elementsare generally of the eletroweak sale. Assuming that the eletroweak sale is signi�antly smaller thanMSUSY, one an treat XNM as a perturbation as long as there are no aidental near-degeneraiesbetween the singular values of MN and MM , respetively. (The ase of suh a near-degeneray is thesubjet of Appendix C.) The diagonalization of MN+M an be performed using the following steps.[1℄ In the �rst step, we separately perform a Takagi diagonalization of MN and MM :MDN = NN �MNNN y = diag(m10 ; : : : mN 0) ; (B.3)MDM = NM �MMNM y = diag(mN 0+10 ; : : : ;mN 0+M 0) ; (B.4)where the mk0 are real and non-negative. The ordering of the diagonal elements above21 is hosenaording to some onvenient riterion (e.g., see the disussion at the end of Set. 2.) Analytial expres-sions an be obtained for the singular values and the Takagi vetors that omprise the olumns of the19In Eq. (B.2), we use primed subsripts to indiate that the orresponding neutralino states are ontinuously onnetedto the states of the unperturbed blok matrix, diag(MDN ;MDM ), where the diagonal matries MDN and MDM are de�nedin Eqs. (B.3) and (B.4).20When N and M are used in subsripts and supersripts of matries, they refer to the dimension of the orrespondingsquare matries. For retangular matries, two subsripts will be used.21See footnote 19. 40



orresponding unitary matries NN and NM for values of N , M � 4 [12℄.Step [1℄ results in a partial Takagi diagonalization of MN+M :MN+M �  NN � O

OT NM � !  MN XNMXTNM MM !  NN y O

OT NM y !=  MDN NN �XNMNM yNM �XTNMNN y MDM ! : (B.5)where O is an N �M matrix of zeros. The upper left and lower right bloks of MN+M are diagonalwith real non-negative entries, but the upper right and lower left o�-diagonal bloks are non-zero.[2℄ The ensuing (N + M) � (N + M) matrix, MN+M , an be subsequently blok-diagonalized byperforming an (N +M) � (N +M) Takagi diagonalization of MN+M . Sine the elements of the o�-diagonal bloks of MN+M are small ompared to the diagonal elements mk0 , we may treat XNM as aperturbation. More preisely, XNM an be treated as a perturbation if:���� Re (NN �XNMNM y)i0j0mi0 �mj0 ����� 1 ; (B.6)for all hoies of i0 = 10; : : : ; N 0 and j0 = N 0 + 10 : : : ; N 0 +M 0. This ondition will be an output of ouromputation below.The perturbative blok-diagonalization is aomplished by introduing an (N + M) � (N + M)unitary matrix: NB ' 0� 1N�N � 12

y 
�
y 1M�M � 12
y
 1A ; (B.7)where 
 is an N � M omplex matrix that vanishes when XNM vanishes (and hene like XNM isperturbatively small). Note that NBN yB = 1(N+M)�(N+M) + O(
4) whih is suÆiently lose to theidentity matrix for our purposes. Straightforward matrix multipliation then yields:N �B  MDN BBT MDM !N yB =  M0DN +O(B
3) B +
�MDM �MDN
+O(B
2)BT +MDM
y � 
T MDN +O(B
2) M0DM +O(B
3) !;(B.8)where B � NN �XNMNM y ; (B.9)M0DN �MDN + h
�BT + 12
�MDM
y � 12MDN

y + transpi ; (B.10)M0DM �MDM � h
TB � 12
T MDN
 + 12MDM
y
+ transpi ; (B.11)41



and \transp" is an instrution to take the transpose of the preeding terms inside the braket. For aonsistent perturbative expansion, we may neglet all terms above that are hidden inside the variousorder symbols in Eq. (B.8). Hene, a suessful blok-diagonalization is ahieved by demanding thatB =MDN
� 
�MDM : (B.12)Inserting this result in Eqs. (B.10) and (B.11) and eliminating B, we obtain:M0DN =MDN � 12 h
�MDM
y �MDN

y + transpi ; (B.13)M0DM =MDM � 12 h
T MDN
�MDM
y
+ transpi : (B.14)The results above simplify somewhat when we reall that MDN and MDM are diagonal matries [seeEq. (B.3) and (B.4)℄. Taking the real and imaginary parts of the matrix elements of Eq. (B.12) yieldstwo equations for the real and imaginary parts of 
ij :Re
i0j0 � ReBi0j0mi0 �mj0 ; Im
i0j0 � ImBi0j0mi0 +mj0 ; (B.15)with i0 = 10; : : : ; N 0 and j0 = N 0 + 10 : : : ; N 0 +M 0. Sine the 
i0j0 are the small parameters of theperturbation expansion, it follows that jReBi0j0=(mi0 �mj0)j � 1, whih is the perturbativity onditionpreviously given in Eq. (B.6).At this stage, the result of the perturbative blok diagonalization is:N �B  MDN BBT MDM !N yB =  M0DN O(
3)O(
3) M0DM ! : (B.16)We an neglet the O(
3) terms above. Thus, the remaining task is to re-diagonalize the two diagonalbloks above. However, as long as we work self-onsistently up to seond order in perturbation theory,no further re-diagonalization is neessary. Indeed, the o�-diagonal elements of M0DN and M0DM are ofO(
2). However, in the Takagi diagonalization, the o�-diagonal terms of the diagonal bloks only e�etthe orresponding diagonal elements at O(
4) whih we neglet in this analysis. The diagonal elementsof M0DN and M0DM also ontain terms of O(
2), whih generate seond-order shifts of the diagonalelements relative to the mk0 obtained at step [1℄. These are easily obtained from the diagonal matrixelements of Eqs. (B.13) and (B.14) after making use of Eq. (B.15):mi0 ' mi0 + N 0+M 0Xj0=N 0+10( [ ReBi0j0 ℄2mi0 �mj0 + [ ImBi0j0 ℄2mi0 +mj0 + 2imj0 ReBi0j0 ImBi0j0m2i0 �m2j0 ) ; (B.17)mj0 ' mj0 � N 0Xi0=10( [ ReBij℄2mi0 �mj0 � [ ImBi0j0 ℄2mi0 +mj0 + 2imi0 ReBi0j0 ImBi0j0m2i0 �m2j0 ) ; (B.18)42



with i0 = 10; ::; N 0 and j0 = N 0 + 10; ::; N 0 + M 0. Although the mk0 are real and non-negative byonstrution, we see that the shifted mass parameters mk0 are in general omplex. Thus, to ompletethe perturbative Takagi diagonalization, we perform one �nal step.[3℄ The diagonal neutralino mass matrix is given by:MDN+M = P�N �B  MDN BBT MDM !N yBPy = diag(mph10 ; : : : ;mphN 0+M 0) ; (B.19)where P is a suitably hosen diagonal matrix of phasesP = diag(e�i�10 ; : : : ; e�i�N0+M0 ) ; (B.20)suh that the elements of the diagonal mass matrixMDN+M (denoted by mphk0 ) are real and non-negative.We identify the mphk0 with the physial neutralino masses. The unitary neutralino mixing matrix is thenidenti�ed as: NN+M = PNB  NN O

OT NM ! : (B.21)Starting from Eqs. (B.17) and (B.18), one an evaluate P to seond order in the perturbation 
. Inpartiular, for �1;2 � a, we have a + �1 + i�2 ' (a + �1)ei�2=a. From this result, we easily derive theseond-order expressions for the physial neutralino masses mphk0 :mphi0 ' mi0 + N 0+M 0Xj0=N 0+10� [ ReBi0j0 ℄2mi0 �mj0 + [ ImBi0j0 ℄2mi0 +mj0 � ; [i0 = 10 ; : : : ; N 0℄ ; (B.22)mphj0 ' mj0 � N 0Xi0=10� [ ReBi0j0 ℄2mi0 �mj0 � [ ImBi0j0 ℄2mi0 +mj0 � ; [j0 = N 0 + 10 ; : : : ; N 0 +M 0℄ : (B.23)and the phases �k0 :�i0 ' � N 0+M 0Xj0=N 0+10 mj0mi0(m2i0 �m2j0) ReBi0j0 ImBi0j0 ; [i0 = 10; : : : ; N 0℄ ; (B.24)�j0 ' N 0Xi0=10 mi0mj0(m2i0 �m2j0) ReBi0j0 ImBi0j0 ; [j0 = N 0 + 10 ; : : : ; N 0 +M 0℄ ; (B.25)This ompletes the perturbative Takagi diagonalization of the mass matrix forN -dimensional andM -dimensional subsystems of Majorana fermions weakly oupled by an o�-diagonal perturbation. As notedin Eq. (B.6), the perturbation theory breaks down if any mass mi0 from the N -dimensional subsystemis nearly degenerate with a orresponding mass mj0 from the M -dimensional subsystem (assuming thatthe orresponding residue, ReBi0j0 , does not vanish). We provide an analyti approah to this ase ofnear-degeneray in Appendix C. 43



Appendix C: Degenerate mass eigenvaluesIf the value of one of the diagonal MDN elements, mk0 , is nearly equal to one of the diagonal MDMelements, say m`0 , and the orresponding residue ReBk0`0 does not vanish [f. Eqs. (B.22) and (B.23)℄,then the tehniques for degenerate states must be applied to diagonalize the full (N +M)� (N +M)matrix. We begin with the matrix MN+M given in Eq. (B.5), whih ontains o�-diagonal bloks ofO(X), whih haraterizes the small ouplings between the original MSSM matrix and the new USSMsinglino/gaugino submatrix.We �rst interhange the �rst row and the k0th row of MN+M followed by an interhange of the�rst olumn and the k0th olumn, in order that mk0 oupy the 100100 element of the matrix.22 Next, weinterhange the seond row and the `0th row followed by an interhange of the seond olumn and the`0th olumn, in order that m`0 oupy the 200200 element of the matrix. This sequene of interhangeshas the e�et of grouping the two nearly degenerate diagonal elements next to eah other, resulting ina new matrix M0N+M with the following struture:M0N+M = 0BB� m100 ÆÆ m200 ��T MN+M�2 1CCA ; (C.1)where the parameter Æ and the submatrix � are of O(X). The submatrix MN+M�2 is no longerdiagonal, although its new o�-diagonal elements are all of O(X). Thus, we may perform a perturbativeTakagi diagonalization using the blok diagonal unitary matrix, diag(12�2 ; NN+M�2), withMN+M�2 = (NN+M�2)�MN+M�2 (NN+M�2)y = diag(m0300 ;m0400 : : : ;m0N 00+M 00) ; (C.2)where the m0j00 [j00 = 300; 400; : : : ; N 00 +M 00℄ are slightly shifted from the original non-degenerate fmi00g,fmj00g by the perturbation of O(X).23As a result of this proedure, the matrixM 0N+M in Eq. (C.1) is modi�ed by replaing the submatrixMN+M�2 by a diagonal matrix with perturbatively shifted diagonal elements, MN+M�2. The o�-diagonal bloks � and �T , are perturbatively shifted as well, but these shifts an be negleted as thesee�ets are of higher order in the perturbation X. We denote the resulting matrix by M00N+M .The omplex parameter Æ ouples the two near-degenerate states with mass parameters m100 andm200 . By de�nition of near-degeneray, jm100 � m200 j � Æ, so one annot use perturbation theory inÆ � O(X). Instead, we shall perform an exat Takagi diagonalization of the 2� 2 blok �m100 ÆÆ m200 � of22To distinguish the ordering of the physial neutralino states that arises from the manipulations performed in thisappendix from the ordering of states based on Eqs. (B.3) and (B.4), we employ double-primed subsripts here.23For onsisteny with the seond-order perturbative results of Appendix B, this diagonalization should be arried outinluding all ontributions quadrati in X. 44



M00N+M , using the results of Appendix A.2: W � O

OT 1

!M00N+M  W y O

OT 1

! = 0BB� m0100 00 m0200 W ���TW y MN+M�2 1CCA ; (C.3)where the elements of the 2 � 2 unitary matrix W (whih is denoted by U y in Appendix A) an bedetermined in terms ofm100 ,m200 and Æ using the formulae of Appendix A.2. The (non-negative) diagonalmasses m0100 and m0200 are obtained from Eq. (A.18):m0100;200 = 1p2 �m2100 +m2200 + 2jÆj2 �q(m2200 �m2100)2 + 4jm100Æ +m200Æ�j2�1=2 : (C.4)Note that if Æ is real, the quantity under the square root is a perfet square, in whih ase Eq. (C.4)redues to the well-known expression:m0100;200 = 12 hm100 +m200 �p(m200 �m100)2 + 4Æ2i ; for real Æ : (C.5)If Æ is very small, the trajetories of the two eigenvalues nearly touh eah other when the parameterM 01 moves through the ross-over zone. A non-zero Æ value prevents the trajetories from rossing,keeping them at a distane � Æ. In the 40-50 zone, Æ is of �rst order in the ratio v=MSUSY. In ontrast,in the 20-60 zone, Æ vanishes at �rst order due to the fat that V 62060 � V 66020 � 0. However, as disussedbelow Eq. (3.39), these matrix elements aquire small non-zero orretions at higher order in v=MSUSY.Thus, we have two very di�erent behaviors for Æ, leading to the harateristially di�erent evolution ofthe trajetories. These two ases are illustrated by the dashed lines in the two panels of Fig. 9; on theleft for Æ ! 0 and on the right for moderately non-zero Æ values.We may now apply the perturbative blok diagonalization tehnique of Appendix B to omplete theTakagi diagonalization of Eq. (C.3). The e�et of this step is to shift the diagonal masses at seondorder as indiated in Eqs. (B.22) and (B.23). We �nally arrive at the physial neutralino masses:mphi00 ' m0i00 + N 00+M 00Xj00=300 ( [ Re (W ��)i"j"℄2m0i00 �m0j00 + [ Im (W ��)i00j00 ℄2m0i00 +m0j00 ) ; [i00 = 100 ; 200℄ ; (C.6)mphj00 ' m0j00 � N 00Xi00=100( [ Re (W ��)i00j00 ℄2m0i00 �m0j00 � [ Im (W ��)i00j00 ℄2m0i00 +m0j00 ) ; [j00 = 300 ; 400 ; : : : ; N 00 +M 00℄ : (C.7)Sine the appearane of m0100 and m0200 [given by Eq. (C.4)℄ takes are of the near-degeneray via an exatdiagonalization (within the near-degenerate subspae), the results for the physial masses given aboveprovide a reliable analyti desription.The sizes of the seond-order perturbative shifts in Eqs. (C.6) and (C.7) vary with the parameterM 01 as the m0j00 [j00 = 300; ::; (N 00 +M 00)℄ depend on M 01. The e�et of these shifts an be diserned in the45
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Figure 9: The evolution of the neutralino masses near the ross-over zone 1 (left) and near the rossoverzone 2 (right) when varying the U(1)X gaugino mass parameter M 01. The red dashed lines represent themasses of the diagonalized 2 � 2 matrix and the blak solid lines after the subsequent approximatediagonalization of the full 6� 6 matrix [Eq. (C.3)℄.two ases onsidered above|in the ross-over zone 20-60 with very small Æ, and in the ross-over zone40-50 with moderately small Æ, as shown by the solid line trajetories of Fig. 9.Thus, we have demonstrated that an analyti perturbative treatment of the neutralino mass matrixan be arried out, and all of its features understood, even in the ase of a pair of near-degenerate states.Referenes[1℄ For a review, see M. Cveti� and P. Langaker, in Perspetives on Supersymmetry, edited byG.L. Kane (World Sienti�, Singapore, 1998), pp. 312-331 [hep-ph/9707451℄.[2℄ J.L. Hewett and T.G. Rizzo, Phys. Rept. 183 (1989) 193; M. Cveti� and P. Langaker, Phys. Rev.D 54 (1996) 3570 [hep-ph/9511378℄; Mod. Phys. Lett. A 11 (1996) 1247 [hep-ph/9602424℄.[3℄ M. Cveti�, D.A. Demir, J.R. Espinosa, L.L. Everett and P. Langaker, Phys. Rev. D 56 (1997)2861 [hep-ph/9703317℄; 58 (1997) 119905(E).
46

http://arxiv.org/abs/hep-ph/9707451
http://arxiv.org/abs/hep-ph/9511378
http://arxiv.org/abs/hep-ph/9602424
http://arxiv.org/abs/hep-ph/9703317


[4℄ D. Suematsu and Y. Yamagishi, Int. J. Mod. Phys. A 10 (1995) 4521 [hep-ph/9411239℄. For thease of gauge mediated symmetry breaking, see P. Langaker, N. Polonsky and J. Wang, Phys.Rev. D 60 (1999) 115005 [hep-ph/9905252℄.[5℄ H.P. Nilles, M. Sredniki and D. Wyler, Phys. Lett. B 120 (1983) 346; J.M. Frere, D.R.T. Jonesand S. Raby, Nul. Phys. B 222 (1983) 11; J.P. Derendinger and C.A. Savoy, Nul. Phys. B 237(1984) 307; M.I. Vysotsky, K.A. Ter-Martirosian, Sov. Phys. JETP 63 (1984) 307; J.R. Ellis,J.F. Gunion, H.E. Haber, L. Roszkowski, F. Zwirner, Phys. Rev. D 39 (1989) 844; U. Ellwanger,M. Raush de Traubenberg and C.A. Savoy, Phys. Lett. B 315 (1993) 331 [hep-ph/9307322℄; Nul.Phys. B 492 (1997) 21 [hep-ph/9611251℄; F. Franke and H. Fraas, Int. J. Mod. Phys. A 12 (1997)479 [hep-ph/9512366℄. For a reent summary see D.J. Miller, R. Nevzorov and P.M. Zerwas, Nul.Phys. B 681 (2004) 3 [hep-ph/0304049℄.[6℄ H.E. Haber and M. Sher, Phys. Rev. D 35 (1987) 2206; L. Durand and J.L. Lopez, Phys. Lett. B217 (1989) 463; M. Drees, Int. J. Mod. Phys. A 4 (1989) 3635.[7℄ J. Erler, Nul. Phys. B 586 (2000) 73 [hep-ph/0006051℄.[8℄ S. King, S. Moretti, R. Nevzorov, Phys. Lett. B 634 (2006) 278 [hep-ph/0511256℄; Phys. Rev. D73 (2006) 035009 [hep-ph/0510419℄.[9℄ J. Erler, P. Langaker and T. Li, Phys. Rev. D 66 (2002) 015002 [hep-ph/0205001℄.[10℄ D. Suematsu, Phys. Rev. D 57 (1998) 1738 [hep-ph/9708413℄; S. Hesselbah, F. Franke and H. Fraas,Eur. Phys. J. C. 23 (2002) 149 [hep-ph/0107080℄; F. Franke and S. Hesselbah, Phys. Lett. B 526(2002) 370 [hep-ph/0111285℄; V. Barger, P. Langaker and H.S. Lee, Phys. Lett. B 630 (2005) 85(2005) [hep-ph/0508027℄; V. Barger, P. Langaker and G. Shaughnessy, arXiv:hep-ph/0609068.[11℄ D. Suematsu, Mod. Phys. Lett. A 12 (1997) 1709 [hep-ph/9705412℄; Phys. Lett. B 416(1998) 108 [hep-ph/9705405℄; G.A. Moortgat-Pik, S. Hesselbah, F. Franke and H. Fraas,arXiv:hep-ph/9909549; S. Hesselbah, F. Franke and H. Fraas, arXiv:hep-ph/0003272; V. Barger,C. Kao, P. Langaker and H.S. Lee, Phys. Lett. B 600 (2004) 104 [hep-ph/0408120℄; 614 (2005)67 [hep-ph/0412136℄.[12℄ S.Y. Choi, J. Kalinowski, G.A. Moortgat-Pik and P.M. Zerwas, Eur. Phys. J. C 22 (2001) 563[hep-ph/0108117℄; 23 (2002) 769 [hep-ph/0202039℄.[13℄ S.Y. Choi, D.J. Miller and P.M. Zerwas, Nul. Phys. B 711 (2005) 83 [hep-ph/0407209℄.[14℄ ATLAS Tehnial Proposal, CERN/LHCC/94-43, LHCC/P2 (1994); CMS Physis, Tehnial De-sign Report, CERN/LHCC/2006/021. 47

http://arxiv.org/abs/hep-ph/9411239
http://arxiv.org/abs/hep-ph/9905252
http://arxiv.org/abs/hep-ph/9307322
http://arxiv.org/abs/hep-ph/9611251
http://arxiv.org/abs/hep-ph/9512366
http://arxiv.org/abs/hep-ph/0304049
http://arxiv.org/abs/hep-ph/0006051
http://arxiv.org/abs/hep-ph/0511256
http://arxiv.org/abs/hep-ph/0510419
http://arxiv.org/abs/hep-ph/0205001
http://arxiv.org/abs/hep-ph/9708413
http://arxiv.org/abs/hep-ph/0107080
http://arxiv.org/abs/hep-ph/0111285
http://arxiv.org/abs/hep-ph/0508027
http://arxiv.org/abs/hep-ph/0609068
http://arxiv.org/abs/hep-ph/9705412
http://arxiv.org/abs/hep-ph/9705405
http://arxiv.org/abs/hep-ph/9909549
http://arxiv.org/abs/hep-ph/0003272
http://arxiv.org/abs/hep-ph/0408120
http://arxiv.org/abs/hep-ph/0412136
http://arxiv.org/abs/hep-ph/0108117
http://arxiv.org/abs/hep-ph/0202039
http://arxiv.org/abs/hep-ph/0407209


[15℄ E. Aomando et al., Phys. Rept. 299 (1998) 1, hep-ph/9705442 J.A. Aguilar-Saavedra et al.[ECFA/DESY LC Physis Working Group Collaboration℄, hep-ph/0106315; T. Abe et al. [AmerianLCWorking Group℄, hep-ex/0106055-58; K. Abe et al. [ACFA LCWorking Group℄, hep-ex/0109166;E. Aomando et al. [CLIC Physis Working Group Collaboration℄, hep-ph/9412251; W. Kilian andP.M. Zerwas, Pro. 2005 Snowmass ILC Workshop, hep-ph/0601217.[16℄ B. Holdom, Phys. Lett. B 166 (1986) 196.[17℄ F. del Aguila, Ata. Phys. Pol. B 25 (1994) 1317 [hep-ph/9404323℄; F. del Aguila, M. Cveti� andP. Langaker, Phys. Rev. D 52 (1995) 37 [hep-ph/9501390℄; K.S. Babu, C. Kolda and J. Marh-Russell, Phys. Rev. D 54 (1996) 4635 [hep-ph/9603212℄; D. Suematsu, Phys. Rev. D 59 (1999)055017 [hep-ph/9808409℄.[18℄ D. Bailin and A. Love, Supersymmetri Gauge Field Theory and String Theory (Institute of PhysisPublishing, Bristol, UK, 1994).[19℄ K.R. Dienes, C. Kolda, J. Marh-Russell, Nul. Phys. B 492 (1997) 104 [hep-ph/9610479℄.[20℄ S.A. Abel, J. Jaekel, V.V. Khoze and A. Ringwald, arXiv:hep-ph/0608248.[21℄ P. Abreu et al. [DELPHI Collaboration℄, Phys. Lett. B 485 (2000) 45; R. Barate et al. [ALEPHCollaboration℄, Eur. Phys. J. C 12 (2000) 183; A. Abulenia et al. [CDF Collaboration℄,hep-ph/0602045.[22℄ J.A. Aguilar-Saavedra et al., Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344℄.[23℄ T. Takagi, Japan J. Math. 1 (1925) 83.[24℄ R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, England,1990).[25℄ A. Bunse-Gerstner and W.B. Gragg, J. Comp. Appl. Math. 21 (1988) 41; W. Xu and S. Qiao, \ADivide-and-Conquer Method for the Takagi Fatorization," Tehnial Report No. CAS 05-01-SQ,(February 2005).[26℄ X. Wang and S. Qiao, in the Proeedings of the International Conferene on Parallel and DistributedProessing Tehniques and Appliations, Vol. I, edited by H.R. Arabnia, pp. 206-212, Las Vegas,Nevada, USA, June 2002, pp. 206-212; F.T. Luk and S. Qiao, in Advaned Signal ProessingAlgorithms, Arhitetures, and Implementations XI, edited by F.T. Luk, Pro. SPIE 4474 (2001)254.[27℄ T. Hahn, arXiv:physis/0607103. 48

http://arxiv.org/abs/hep-ph/9705442
http://arxiv.org/abs/hep-ph/0106315
http://arxiv.org/abs/hep-ex/0106055
http://arxiv.org/abs/hep-ex/0109166
http://arxiv.org/abs/hep-ph/9412251
http://arxiv.org/abs/hep-ph/0601217
http://arxiv.org/abs/hep-ph/9404323
http://arxiv.org/abs/hep-ph/9501390
http://arxiv.org/abs/hep-ph/9603212
http://arxiv.org/abs/hep-ph/9808409
http://arxiv.org/abs/hep-ph/9610479
http://arxiv.org/abs/hep-ph/0608248
http://arxiv.org/abs/hep-ph/0602045
http://arxiv.org/abs/hep-ph/0511344
http://arxiv.org/abs/physics/0607103


[28℄ P.A. Carruthers, J. Math. Phys. 9 (1968) 1835; Spin and Isospin in Partile Physis (Gordon andBreah, New York, NY, 1971); B. Kayser, Phys. Rev. D 30 (1984) 1023; B. Kayser, F. Gibrat-Debuand F. Perrier, World Si. Let. Notes Phys. 25 (1989) 1.[29℄ J.F. Gunion and H.E. Haber, Phys. Rev. D 37 (1988) 2515; S.Y. Choi, M. Drees and B. Gaissmaier,Phys. Rev. D 70 (2004) 014010 10,2004 [hep-ph/0403054℄.[30℄ A. Leike, Phys. Rept. 317 (1999) 143 [hep-ph/9805494℄; W.M. Yao et al. [Partile Data Group℄, J.Phys. G 33 (2006) 1.[31℄ H.E. Haber and G.L. Kane, Phys. Rept. 117 (1985) 75.[32℄ S.Y. Choi, A. Djouadi, M. Guhait, J. Kalinowski, H.S. Song and P.M. Zerwas, Eur. Phys. J. C14, 535 (2000) [hep-ph/0002033℄.[33℄ T. Han, P. Langaker and B. MElrath, Phys. Rev. D 70 (2004) 115006 [hep-ph/0405244℄;V. Barger, P. Langaker, H.S. Lee and G. Shaughnessy, Phys. Rev. D 73 (2006) 115010[hep-ph/0603247℄.[34℄ D.A. Demir and L.L. Everett, Phys. Rev. D 69 (2004) 015008 [hep-ph/0306240℄.[35℄ V. Barger, P. Langaker and G. Shaughnessy, arXiv:hep-ph/0611112; arXiv:hep-ph/0611239.[36℄ For a reent review and referenes to the original literature, see e.g., M. Carena and H.E. Haber,Prog. Part. Nul. Phys. 50 (2003) 63 [hep-ph/0208209℄.[37℄ H.E. Haber and D. Wyler, Nul. Phys. B 323 (1989) 267.[38℄ R.A. Horn and C.R. Johnson, Topis in Matrix Analysis (Cambridge University Press, Cambridge,England, 1991).[39℄ L. Autonne, Sur les matries hypohermitiennes et sur les matries unitaire, Annales de l'Universit�ede Lyon, Nouvelle S�erie I, Fas. 38 (1915) 1-77.[40℄ S.Y. Choi and M. Drees, unpublished. This proof was inspired by the diagonalization algorithmof hermitian matries in W.H. Williams, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Nu-merial Reipes in Fortran 77 (Cambridge University Press, Cambridge, England, 1999), setion11.4. A similar method of proof is outlined in Ref. [24℄, setion 4.4, problem 2 (on pp. 212-213) andsetion 4.6, problem 15 (on p. 254).[41℄ F.D. Murnaghan, The Unitary and Rotation Groups (Spartan Books, Washington, DC, 1962).
49

http://arxiv.org/abs/hep-ph/0403054
http://arxiv.org/abs/hep-ph/9805494
http://arxiv.org/abs/hep-ph/0002033
http://arxiv.org/abs/hep-ph/0405244
http://arxiv.org/abs/hep-ph/0603247
http://arxiv.org/abs/hep-ph/0306240
http://arxiv.org/abs/hep-ph/0611112
http://arxiv.org/abs/hep-ph/0611239
http://arxiv.org/abs/hep-ph/0208209

	Introduction
	The USSM Neutralino Sector
	Supersymmetric kinetic mixing
	The USSM neutralino mass matrix

	Small Mixing Scenarios
	General analysis
	The case of a real neutralino mass matrix
	Large gaugino mass parameters
	An illustrative example

	Neutralino Production and Decays
	Singlino Production in e+e- Annihilation
	Neutralino cascade decays and sfermion decays
	Decays to Higgs bosons
	Neutralino radiative decays

	Summary and Conclusions

