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Abstra
tMotivated by grand uni�ed theories and string theories we analyze the general stru
ture of theneutralino se
tor in the USSM, an extension of the Minimal Supersymmetri
 Standard Model thatinvolves a broken extra U(1) gauge symmetry. This supersymmetri
 U(1)-extended model in
ludesan Abelian gauge super�eld and a Higgs singlet super�eld in addition to the standard gauge andHiggs super�elds of the MSSM. The intera
tions between the MSSM �elds and the new �elds arein general weak and the mixing is small, so that the 
oupling of the two subsystems 
an be treatedperturbatively. As a result, the mass spe
trum and mixing matrix in the neutralino se
tor 
an beanalyzed analyti
ally and the stru
ture of this 6-state system is under good theoreti
al 
ontrol. Wedes
ribe the de
ay modes of the new states and the impa
t of this extension on de
ays of the originalMSSM neutralinos, in
luding radiative transitions in 
ross-over zones. Produ
tion 
hannels in 
as
adede
ays at the LHC and pair produ
tion at e+e� 
olliders are also dis
ussed.
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1 Introdu
tionAdding an extra U(1)X broken gauge symmetry to the gauge symmetries of the Standard Model is wellmotivated by grand uni�ed theories [1℄. The 
orresponding supersymmetri
 extension that generalizesthe minimal supersymmetri
 Standard Model (MSSM) often appears as the low energy e�e
tive theoryof superstring theories [2℄. This U(1)X extended supersymmetri
 gauge theory shall hen
eforth bedenoted as the USSM.The Higgs se
tor asso
iated with the broken U(1)X gauge symmetry provides an elegant solution tothe � problem in supersymmetri
 theories [3, 4℄. An e�e
tive � parameter is generated by the va
uumexpe
tation value of the new singlet Higgs �eld S, whi
h breaks the U(1)X gauge symmetry. This isthe same me
hanism employed by the next-to-minimal supersymmetri
 standard model (NMSSM) [5℄.However, the USSM possesses an additional advantage by avoiding the extra dis
rete symmetries of theNMSSM that, in the 
anoni
al version, result in the existen
e of domain-walls that are in
ompatiblewith the observed energy density of the universe. Moreover, the upper bound on the mass of the lightestHiggs boson of the MSSM is relaxed in the USSM due to 
ontributions from the new singlet-doubletHiggs intera
tions and the U(1)X D-terms [6℄. Various s
enarios of this type have been dis
ussed in theliterature, see e.g. Refs. [7,8℄, in whi
h the U(1)X gauge symmetry is embedded in the grand uni�
ationgroup E6 (or one of its rank-�ve subgroups).In
luding the extra symmetry, the gauge group is extended to G = SU(3)C�SU(2)L�U(1)Y �U(1)Xwith the 
ouplings g3; g2; gY ; gX , respe
tively. The matter parti
le 
ontent in the supersymmetri
 theoryin
ludes, potentially among others, the left-handed 
hiral super�elds L̂i; Ê
i ; Q̂i; Û 
i ; D̂
i , where thesubs
ript i denotes the generation index, and the Higgs super�elds Ĥd; Ĥu; Ŝ. The usual MSSM Yukawaterms ŴY of the MSSM superpotential (i.e. without the � term) are augmented by an additional termthat 
ouples the iso-singlet to the two iso-doublet Higgs �elds:Ŵ = ŴY + �Ŝ (ĤuĤd) : (1.1)The 
oupling � is dimensionless. Gauge invarian
e of the superpotential Ŵ under U(1)X requires theU(1)X 
harges to satisfy QHd+QHu+QS = 0 and 
orresponding relations between the U(1)X 
harges ofHiggs and matter �elds. [In the following, we use Q1 = QHd and Q2 = QHu for notational 
onvenien
e.℄The e�e
tive � parameter is generated by the va
uum expe
tation value hSi of the s
alar S-�eld.Compared with the MSSM, the USSM Higgs se
tor is extended by a single s
alar state. The neu-tralino se
tor in
ludes an additional pair of higgsino and gaugino states, while the 
hargino se
torremains unaltered. The 
omplexity of phenomena in
reases dramati
ally by this extension but thestru
ture remains transparent if the original and the new degrees of freedom are 
oupled weakly asnaturally demanded [see below℄.The supersymmetri
 parti
le spe
trum of the USSM has re
eived limited attention so far in the1



literature [3,8{11℄. In this report we attempt a systemati
 analyti
al analysis of the neutralino system,based on the well-motivated assumption of weak 
oupling between the original MSSM and the newadditional gaugino/higgsino subsystem. In 
ontrast to the MSSM where exa
t solutions of the massspe
trum and mixing parameters 
an be 
onstru
ted mathemati
ally in 
losed form (see e.g. Ref. [12℄),this is not possible anymore for the supersymmetri
 U(1)X model in whi
h the eigenvalue equationfor the masses is a 6th order polynomial equation. However, analogously to the NMSSM [13℄, if themass s
ales of the supersymmetri
 parti
les are set by higgsino and gaugino parameters of the orderthe supersymmetry (SUSY)-breaking s
ale, MSUSY � O(103 GeV), while the intera
tion between thenew singlet and the MSSM �elds is of the order of the ele
troweak s
ale, v � O(102 GeV), then theperturbative expansion of the solution in v=MSUSY provides an ex
ellent approximation to the massspe
trum and yields a good understanding of the main features of the mixing matrix.On
e the masses and mixings are determined, the 
ouplings of the neutralinos to the ele
troweakgauge bosons and to the s
alar/fermioni
 matter parti
les are �xed. De
ay widths and produ
tionrates 
an subsequently be predi
ted for squark 
as
ades at the LHC [14℄ and pair produ
tion in e+e�
ollisions at linear 
olliders [15℄. Of parti
ular interest are the radiative transitions between neutralinosin 
ross-over zones, where the masses of two neutralinos are nearly degenerate.The report is organized as follows. In Se
t. 2 we �rst des
ribe the general basis of the neutralinose
tor in the USSM. Subsequently, for the naturally expe
ted weak 
oupling between the MSSM andthe new subsystem, the properties of the new higgsino and gaugino are derived in Se
t. 3. It is shownto what extent the properties of the standard neutralinos are modi�ed. The spe
trum and the mixingsare determined analyti
ally in a weak-
oupling perturbative expansion. The neutralino masses aredetermined to se
ond-order, whereas the mixing matrix elements are determined to �rst-order in theweak 
oupling. The a

ura
y of the perturbative results will be
ome apparent by 
omparing the analyti
approximations with the numeri
al solutions, thereby demonstrating that a satisfa
tory understandingof the system 
an be a
hieved. As an illustration we will study the limit in whi
h the gaugino massparameters are signi�
antly larger than the higgsino mass parameters, where both sets of parameters areassumed to be mu
h larger than the ele
troweak s
ale. A general des
ription of the neutralino 
ouplingsand de
ay widths is given in Se
t. 4, in
luding photon transitions. We also dis
uss produ
tion 
rossse
tions in e+e� 
ollisions and 
as
ade de
ay 
hains of squarks at the LHC that involve neutralinos.Se
tion 5 summarizes and 
on
ludes this report. Te
hni
al details of the analyti
al diagonalizationpro
edures for the 6 � 6 neutralino mass matrix for non-degenerate and degenerate levels are given inthree appendi
es.
2



2 The USSM Neutralino Se
tor2.1 Supersymmetri
 kineti
 mixingIn a theory with two U(1) gauge symmetries, the two se
tors 
an mix, 
onsistently with all gaugesymmetries, through the 
oupling of the kineti
 parts of the two gauge bosons [16℄. In the basis inwhi
h the 
ouplings between matter and gauge �elds have the 
anoni
al minimal-intera
tion form, thepure gauge part of the Lagrangian for the U(1)Y�U(1)X theory 
an be writtenLgauge = �14Y ��Y�� � 14X��X�� � sin�2 Y ��X�� ; (2.1)where the parameter sin� is introdu
ed to 
hara
terize the gauge kineti
 mixing [17℄. This Lagrangiangeneralizes to Lgauge = 132 Z d2�nŴY ŴY + ŴXŴX + 2 sin� ŴY ŴXo ; (2.2)in a supersymmetri
 theory, where ŴY and ŴX are the 
hiral super�elds asso
iated with the two gaugesymmetries.1The gauge/gaugino part of the Lagrangian 
an be 
onverted ba
k to the 
anoni
al form by thefollowing GL(2,R) transformation of the super�elds [16, 17, 19℄: ŴYŴX ! =  1 � tan�0 1= 
os� ! ŴBŴB0 ! ; (2.3)whi
h a
ts on the gauge boson and gaugino 
omponents of the 
hiral super�elds in the same form. Thetransformation alters the U(1)Y�U(1)X part of the 
ovariant derivative toD� = �� + igY Y B� + i��gY Y tan�+ gX
os�QX�B0� (2.4)= �� + igY Y B� + igXQ0XB0� : (2.5)The 
hoi
e of the kineti
 mixing matrix in the form given by Eq. (2.3) is motivated by the fa
t that thehyper
harge se
tor of the Standard Model is left unaltered by this transformation, and the new e�e
tsare separated in the X se
tor (see, e.g., Ref. [20℄ for an alternative 
hoi
e). Consequently, the e�e
tiveU(1)X 
harge is shifted from its original value QX toQ0X = QX
os� � gYgX Y tan� : (2.6)Spe
i�
ally, the U(1)X 
harge of any �eld is shifted by an amount proportional to their hyper
harge Yand the mixing parameter sin�. Thus, as a result of the kineti
 mixing, new intera
tions among the1The normalization of the super�eld Ŵ = D2DV̂ follows the 
onventions of Ref. [18℄, where V̂ is the 
orrespondingve
tor super�eld. 3



gauge bosons and matter �elds are generated even for matter �elds with zero U(1)X 
harge originally.In grand uni�
ation theories the two U(1) groups are orthogonal at the uni�
ation s
ale but smallmixing [16℄ 
an be indu
ed through loop e�e
ts when the theory evolves down to the ele
troweak s
ale.In string theories, kineti
 mixing 
an be indu
ed at the tree level [19℄; however, su
h mixing e�e
ts mustremain small in order to guarantee the general agreement between SM analyses and pre
ision data in anatural way [21℄.2.2 The USSM neutralino mass matrixThe Lagrangian of the neutralino system follows from the superpotential in Eq. (1.1), 
omplementedby the gaugino SU(2)L, U(1)Y and U(1)X mass terms of the soft-supersymmetry breaking ele
troweakLagrangian: Lgauginomass = �12M2fW afW a � 12MY ~Y ~Y � 12MX ~X ~X �MY X ~Y ~X + h:
:= �12M2fW afW a � 12M1 ~B ~B � 12M 01 ~B0 ~B0 �MK ~B ~B0 + h:
: ; (2.7)where the fW a (a = 1; 2; 3), ~Y and ~X are the (two-
omponent) SU(2)L, U(1)Y and U(1)X gaugino �elds,and M1 �MY ; M 01 � MX
os2 � � 2 sin�
os2 �MY X +MY tan2 � ; MK � MY X
os� �MY tan� : (2.8)In parallel to the gauge kineti
 mixing dis
ussed in Se
t. 2.1, the Abelian gaugino mixing mass parameterMY X is assumed small 
ompared with the mass s
ales of the gaugino and higgsino �elds.After breaking the ele
troweak and U(1)X symmetries spontaneously due to non-zero va
uum ex-pe
tation values of the iso-doublet and the iso-singlet Higgs �elds,hHui = sin�p2  0v ! ; hHdi = 
os �p2  v0 ! ; hSi = 1p2vs ; (2.9)the doublet higgsino mass and the doublet higgsino-singlet higgsino mixing parameters,� � � vsp2 and �� � � vp2 ; (2.10)are generated. The USSM neutral gaugino-higgsino mass matrix 
an be written in the following blo
kmatrix form2, M6 =  M4 XXT M2 ! ; (2.11)2Although our initial exploratory analysis is 
arried out at tree-level, loop 
orre
tions 
an easily be in
luded followingthe pro
edures of Ref. [22℄. 4



whereM4 is the neutral gaugino-higgsino mass matrix of the MSSM,M2 
orresponds to the new se
tor
ontaining the singlet higgsino (singlino) and the new U(1)-gaugino ~B0 that is orthogonal to the bino ~B,and X des
ribes the 
oupling of the two se
tors via the neutralino mass matrix. More expli
itly, ina basis of two-
omponent spinor �elds � � ( ~B; ~W 3; ~H0d ; ~H0u; ~S; ~B0)T , the full neutralino mass matrix isgiven by [10℄:
M6 = 0BBBBBBBBBBB�

M1 0 �mZ 
� sW mZ s� sW 0 MK0 M2 mZ 
� 
W �mZ s� 
W 0 0�mZ 
� sW mZ 
� 
W 0 �� ��� s� Q01mv 
�mZ s� sW �mZ s� 
W �� 0 ��� 
� Q02mv s�0 0 ��� s� ��� 
� 0 Q0SmsMK 0 Q01mv 
� Q02mv s� Q0Sms M 01
1CCCCCCCCCCCA ; (2.12)

where the various gaugino mass parameters M1, M2, M 01 and MK have been de�ned in Eqs. (2.7) and(2.8). Noti
e the absen
e of a diagonal mass parameter of the new singlino in 
ontrast to the NMSSMwhere the 
ubi
 self-intera
tion generates this singlet mass term [13℄. Two additional mass mixingparameters, mv � gXv and ms � gXvs ; (2.13)are generated after gauge symmetry breaking and the e�e
tive 
harges Q01, Q02 and Q0S are de�ned byQ01 � Q1
os� + 12 gYgX tan�; Q02 � Q2
os� � 12 gYgX tan�; Q0S � QS
os� ; (2.14)in terms of the Qi de�ned below Eq. (1.1). As usual, tan � � v2=v1 is the ratio of the va
uum expe
tationvalues of the two neutral SU(2) Higgs doublet �elds, s� � sin�, 
� � 
os �, and sW ; 
W are the sineand 
osine of the ele
troweak mixing angle �W .In general, the neutralino mass matrix M6 is a 
omplex symmetri
 matrix. To diagonalize thismatrix, we introdu
e a unitary matrix N6 su
h that~�0k = N6k` ( ~B; ~W 3; ~Hd; ~Hu; ~S; ~B0)` ; (2.15)where the physi
al neutralino states are ordered by some 
onvention. A typi
al 
hoi
e, motivated byexperimental analyses, is the ordering of ~�0k [k = 1; ::; 6℄ a

ording to as
ending mass values. As anintermediate step, we shall often refer to an auxiliary 
onvention, in whi
h the ordering of states ~�0k0 ,denoted by primed subs
ripts, follows the order of the original ( ~B; ~W 3; ~H0d ; ~H0u; ~S; ~B0) basis.Given the neutralino mass matrix M6, the physi
al neutralino masses mphk , whi
h are real non-negative numbers, and the neutralino mixing matrix elements N6k` 
an be 
al
ulated. The mass term inthe Lagrangian is given by:�Lmass = 12 �TM6 � + h:
: = 12 6Xk=1mphk ~�0ke�0k + h:
: ; (2.16)5



The transformation of the two-
omponent �elds generates the diagonalized mass matrix for the physi
alneutralino states, (N6)�M6 (N6)y = diag(mph1 ; mph2 ; : : : ; mph6 ) ; mphk � 0 : (2.17)Mathemati
ally, this transformation is the Takagi diagonalization [23{27℄ of a general 
omplex sym-metri
 matrix; see Appendix A for further details. Physi
ally, the unitary matrix N6 determines the
ouplings of the mass-eigenstates ~�0k to other parti
les.IfM6 is 
omplex, then CP is violated in the neutralino se
tor of the theory if no diagonal matrix ofphases P exists su
h that P TM6P is real. If P exists, then the neutralino intera
tion-eigenstates 
anbe rephased to produ
e a real neutralino mass matrix, and the neutralino se
tor is CP-
onserving.3 IfM6 is real, then the Takagi diagonalization of Eq. (2.17) still applies but 
an easily be 
arried out intwo steps. First the real symmetri
 matrixM6 
an be diagonalized by an orthogonal matrix V 6:V 6M6 (V 6)T = diag(m1 ; m2 ; : : : ; m6) ; (2.18)where the eigenvalues mk are real but not ne
essarily positive. The Takagi diagonalization of M6,whi
h yields real non-negative diagonal mass elements, 
an then be a
hieved in a se
ond step by takingmphk = jmkj and de�ning the unitary matrix N6 in Eq. (2.17) by N6 = (P 6V 6)�, where P 6 is a diagonalphase matrix with elements P 6k` = "1=2k Æk`. Here, "k � mk=mphk = �1 is the sign of mk, whi
h isalso proportional to the CP-quantum number [28℄ of the neutralino ~�0k. More pre
isely, the relativeCP-quantum numbers of ~�0k and ~�0̀, whi
h is the physi
al quantity of interest, is given by "k"`.Although the ordering of states ~�0k in as
ending mass values is 
onvenient, it is often useful toadopt an intermediate auxiliary 
onvention. Note that the neutralino mass matrix is easily diagonalizedin the limit of MK = v = 0 (i.e., before the 
oupling of the MSSM with the new gaugino/singlinoblo
k is introdu
ed). In this limit, M6 is real after rephasing the neutralino intera
tion-eigenstates (ifne
essary). That is, without loss of generality, we 
an 
hoose M1, M 01, M2 and � to be real in this limit,in whi
h 
ase Eq. (2.18) yields the following mass eigenvalues: mk0 = fM1;M2; �;��;m50 ;m60g, wherem50;60 = 12M 01 �1�p1 + (2Q0Sms=M 01)2 � (with m50 < m60). Away from this limit, the mass-eigenstates~�0k0 will be de�ned su
h that their masses are 
ontinuously 
onne
ted to the masses of the 
orrespondingstates in the MK = v = 0 limit. This de�nes an alternative ordering of the states ~�0k0 whi
h will beindi
ated with primed subs
ripts.We shall present a set of te
hniques for 
omputing analyti
 approximations of the physi
al neutralinomasses, mphk0 and the 
orresponding neutralino mixing matrix elements N6k0`0 . As previously indi
ated,3In this 
ontext, the neutralino se
tor refers to the neutralino kineti
 energy and mass terms, plus terms that 
ouplethe neutralinos to the gauge bosons. In this restri
ted se
tor, the neutralinos would be states of de�nite CP quantumnumber. Of 
ourse, it is possible to introdu
e CP-violating intera
tions through the neutralino 
ouplings to other parti
les,e.g. matter parti
les of the USSM. In this 
ase, radiative 
orre
tions 
ould transmit these e�e
ts into the neutralino massmatrix. 6



the primed subs
ripts denote that these quantities refer to the physi
al neutralino states ~�0k0 , whoseordering is spe
i�ed above. Of 
ourse, at the end of the 
omputation, one 
an 
onvert to an as
endingmass ordering 
onvention by an appropriate relabeling of the states, masses and mixing matrix elements.3 Small Mixing S
enarios3.1 General analysisIt is well known that the MSSM neutralino mass matrixM4 
an be diagonalized analyti
ally (see, e.g.,Ref. [13℄). In 
ontrast, the diagonalization of the new USSM 6� 6 neutralino mass matrix M6 
annotbe performed analyti
ally in 
losed form. However, the 
ase of physi
al interest is one in whi
h boththe 
ouplings of the MSSM higgsino doublets to the singlet higgsino and to the U(1)X gaugino, and the
oupling of the U(1)Y and U(1)X gaugino singlets are weak, i.e. the elements of the 4� 2 submatrix Xin Eq. (2.11) are small. Then, an approximate analyti
al solution 
an be found following the pro
eduregiven in Appendix B.As an initial step, the 4�4 MSSM submatrixM4 and the new 2�2 singlino-U(1)X gaugino submatrixM2 are separately diagonalized:MD4 = N4 �M4N4 y = diag(m10 ;m20 ;m30 ;m40) ; (3.1)MD2 = N2 �M2N2 y = diag(m50 ;m60) ; (3.2)where the mk0 are real and non-negative. Here we use primed subs
ripts to indi
ate that the neutralinostates are 
ontinuously 
onne
ted to the 
orresponding states in the MK = v = 0 limit, as dis
ussed atthe end of Se
t. 2. The above pro
edure results in a partial Takagi diagonalization of the full neutralinomass matrix, M6:M6 �  N4 � O

OT N2 � !  M4 XXT M2 !  N4 y O

OT N2 y ! =  MD4 N4 �XN2 yN2 �XTN4 y MD2 ! : (3.3)where O is a 4� 2 matrix of zeros. The upper left and lower right blo
ks of M6 are diagonal with realnon-negative entries, but the upper right and lower left o�-diagonal blo
ks are non-zero.Performing a blo
k-diagonalization ofM6 will remove the non-zero o�-diagonal blo
ks while leavingthe diagonal blo
ks approximately diagonal up to se
ond order, due to the weak 
oupling of the twosubsystems. That is, MD6 = N6�B M6N6yB = diag(mph10 ;mph20 ;mph30 ;mph40 ;mph50 ;mph60 ) ; (3.4)where N6B ' 0� 14�4 � 12

y 
�
y 12�2 � 12
y
 1A� diag(e�i�10 ; : : : ; e�i�60 ) : (3.5)7



A detailed derivation will be presented in Appendix B. The elements of the 4� 2 mixing matrix 
 aregiven by: Re
i0j0 � Re (N4 �XN2 y)i0j0mi0 �mj0 ; Im
i0j0 � Im (N4 �XN2 y)i0j0mi0 +mj0 ; (3.6)with i0 = 10; : : : ; 40 and j0 = 50; 60. After the blo
k-diagonalization, the upper left 4 � 4 and the lowerright 2 � 2 blo
ks need not be re-diagonalized up to se
ond order in the small mixing X between theblo
ks, but the 
orresponding eigenvalues are shifted mk0 ! mphk0 to se
ond order in the small mixing.The physi
al neutralino masses mphk0 are given by:mphi0 ' mi0 + 6Xj0=5� [ Re (N4 �XN2 y)i0j0 ℄2mi0 �mj0 + [ Im (N4 �XN2 y)i0j0 ℄2mi0 +mj0 � ; [i0 = 10; : : : ; 40℄ ; (3.7)mphj0 ' mj0 � 4Xi0=1� [ Re (N4 �XN2 y)i0j0 ℄2mi0 �mj0 � [ Im (N4 �XN2 y)i0j0 ℄2mi0 +mj0 � ; [j0 = 50 ; 60℄ ; (3.8)The diagonal matrix of phases is 
hosen su
h that the mphk0 are real and non-negative, with the phases�k0 given by:�i0 ' � 6Xj0=5 mj0mi0(m2i0 �m2j0) Re (N4 �XN2 y)i0j0 Im (N4 �XN2 y)i0j0 ; [i0 = 10; : : : ; 40℄ ; (3.9)�j0 ' 4Xi0=1 mi0mj0(m2i0 �m2j0) Re (N4 �XN2 y)i0j0 Im (N4 �XN2 y)i0j0 ; [j0 = 50; 60℄ : (3.10)The (perturbative) Takagi diagonalization of the neutralino mass matrixM6 has now been a
hieved,with the (real and non-negative) neutralino masses given by Eqs. (3.7) and (3.8), and the neutralinomixing matrix given by: N6 = N6B  N4 O

OT N2 ! : (3.11)The validity of the perturbative expansion relies on the assumption that4���� Re (N4 �XN2 y)i0j0mi0 �mj0 ����� 1 ; (3.12)for all 
hoi
es of i0 = 10; : : : ; 40 and j0 = 50; 60. That is, only degenera
ies between the 4�4 blo
kMD4 andthe 2�2 blo
kMD2 are potentially problemati
. In parti
ular, in the so-
alled 
ross-over zones in whi
hthe masses mi0 ' mj0 exhibit a near degenera
y and the 
orresponding residue Re (N4 �XN2 y)i0j0 6= 0,mixing e�e
ts are enhan
ed and the analyti
al formalism in Appendix C must be applied.4Sin
e themk0 are non-negative, and by de�nition of orderMSUSY, the 
onditions j Im (N4 �XN2 y)i0j0=(mi0 +mj0 )j � 1are automati
ally satis�ed. 8



3.2 The 
ase of a real neutralino mass matrixWe shall present numeri
al 
ase studies under the assumption that the parameters of the neutralino massmatrix are real. The general analysis then simpli�es, sin
e a real symmetri
 mass matrix 
an always bediagonalized by a similarity transformation, VMV T , where V is real and orthogonal. Sin
e some of themass eigenvalues of a real symmetri
 matrix may be negative, we 
omplete the Takagi diagonalization,N�MN y, by introdu
ing a suitable diagonal matrix of phases P and identifying the unitary neutralinomixing matrix by N = (PV )�, as indi
ated below Eq. (2.18). In this 
ase, the (perturbative) neutralinomass matrix diagonalization 
an be performed using the three-step pro
edure of Ref. [13℄:[1℄ Diagonalization of the submatri
es M4 and M2In the �rst step, we diagonalize the (real symmetri
) MSSM matrix M4:fMD4 = V 4M4(V 4)T = diag( ~m10 ; ~m20 ; ~m30 ; ~m40) : (3.13)The mass eigenvalues, whi
h are real but need not be non-negative, are denoted by ~mi0 for i0 = 10; ::; 40.The orthogonal diagonalization matrix V 4 is given expli
itly in Ref. [12℄ for the most general 
hoi
eof gaugino and higgsino mass parameters. Simple analyti
 forms for the neutralino mass and mixingmatrix elements 
an be found in limits where either the gaugino parameters are mu
h larger than thehiggsino parameter or vi
e versa [29℄.The exa
t analyti
 diagonalization of the new 2 � 2 submatrixM2 singlet higgsino-U(1)X gauginosubmatrixM2 is straightforward. The matrix:M2 =  0 Q0SmsQ0Sms M 01 ! (3.14)is diagonalized by an orthogonal rotation V 2 asfMD2 = V 2M(V 2)T = diag ( ~m50 ; ~m60) : (3.15)The eigenvalues ~m50;60 are given by~m50;60 = M 012 �1�q1 + (2Q0Sms=M 01)2� : (3.16)The orthogonal diagonalization matrix V 2 is given by:V 2 =  
os �s � sin �ssin �s 
os �s ! ; (3.17)where the angle �s satis�es the relations:
os �s = �p1 + x2 + 1�1=2p2 (1 + x2)1=4 and sin �s = sign(x)�p1 + x2 � 1�1=2p2 (1 + x2)1=4 ; (3.18)9



with x � 2Q0Sms=M 01.Two limits are of parti
ular interest:(i) If ms � jM 01j, then the masses and the mixing parameters are approximately given by~m50 ' �jQ0S jms ; ~m60 ' jQ0S jms ; and sin �s ' sign(x)=p2 ; (3.19)
orresponding to maximal mixing due to the large o�-diagonal entries in the mass matrix M2.(ii) In the opposite limit, jM 01j � ms, and the mass eigenvalues and mixing angle are approximatelygiven by ~m50 ' �Q02Sm2s=M 01 ; ~m60 'M 01 +Q02Sm2s=M 01 ; and sin �s ' Q0Sms=M 01 : (3.20)This is a typi
al see-saw type mixing phenomenon. The heavy 6th state is a U(1)X gaugino-dominatedstate, whereas the 5th neutralino state is a singlet-higgsino dominated state.[2℄ Blo
k-diagonalization of M6We 
an now perform a blo
k-diagonalization of M6:V 6M6(V 6)T = eV 6B  M0D4 V 4XV 2TV 2XTV 4T M0D2 ! eV 6TB = diag(m10 ; : : : ; m40 ; m50 ; m60) ; (3.21)where eV 6B ' 0� 14�4 � 12

T 
�
T 12�2 � 12
T
 1A ; (3.22)and the elements of the real matrix 
 are given by [
f. Eq. (3.6)℄:
i0j0 � (V 4XV 2T )i0j0~mi0 � ~mj0 ; (3.23)with i0 = 10; ::; 40 and j0 = 50; 60. That is, the orthogonal matrix V 6 is 
onveniently split into the matri
esV 4 and V 2 that diagonalize the 4 � 4 and 2 � 2 submatri
es M4 and M2 respe
tively, and into thematrix eV 6B that performs the subsequent blo
k-diagonalization [13℄:V 6 ' eV 6B 0� V 4 O

OT V 2 1A : (3.24)After the blo
k-diagonalization, the mass eigenvalues are shifted to se
ond order in the perturbation X.The shifts are given by [
f. Eq. (3.7) and (3.8)℄:mi0 = ~mi0 + 60Xj0=50 [(V 4XV 2T )i0j0 ℄2~mi0 � ~mj0 ; [ i0 = 10; ::; 40℄ ; (3.25)mj0 = ~mj0 � 40Xi0=10 [(V 4XV 2T )i0j0 ℄2~mi0 � ~mj0 ; [ j0 = 50; 60℄ : (3.26)10



As expe
ted, the eigenvalues ful�ll the tra
e formula60Xk0=10mk0 =M1 +M2 +M 01 ; (3.27)whi
h is independent of the higgsino mass and the mixing parameters.The perturbative results obtained above are valid if j(V 4XV 2T )i0j0=( ~mi0 � ~mj0)j � 1 for all possible
hoi
es of i0 and j0. In the regime of near-degenera
y, ~mi0 ' ~mj0, the perturbation theory breaks down,and the analyti
 approa
h of Appendix C must be employed. Note that ~mi0 = � ~mj0 is not a 
ase of mass-eigenvalue degenera
y, so that the perturbative results obtained above should be reliable. This may seemto be in 
on
i
t with results of the previous subse
tion, sin
e the latter 
orresponds to the degenerate
ase of mi0 = mj0 , where we identify the positive masses mk0 = j ~mk0 j in the notation of Se
t. 3.1.However, a more 
areful analysis reveals that the 
ondition given by Eq. (3.12) does not apply, sin
e inthe 
ase of opposite sign mass eigenvalues, the residue Re (N4 �XN2 y)i0j0 = Re (iV 4XV 2T )i0j0 = 0.5The higgsino doublet-singlet and the higgsino doublet-U(1)X gaugino mixings generate additionalsinglino and U(1)X gaugino 
omponents in the wave fun
tions of the original MSSM neutralinos ~�0i0[ i0 = 10; ::; 40 ℄ of the size V 6i0j0 � 60Xk0=50 
i0k0V 2k0j0 [i0 = 10; ::; 40; j0 = 50; 60℄ (3.28)whi
h is linear in the mixing parameter to �rst approximation as expe
ted for o�-diagonal elements.Re
ipro
ally, the MSSM gaugino/higgsino 
omponents and the singlino and U(1)X gaugino 
omponentsin the wave fun
tions of ~�050 and ~�060 are redu
ed toV 6j0i0 � � 40Xl0=10 
l0j0V 4l0i0 [i0 = 10; ::; 40; j0 = 50; 60℄V 6j0k0 � V 2j0k0 � 12 �
T
V 2�j0k0 [j0; k0 = 50; 60℄ (3.29)with V 6j0k0 di�ering from V 2j0k0 only to se
ond order in the mixing, as expe
ted for diagonal elements.[3℄ Ensuring that the physi
al neutralino masses are non-negativeThe diagonalization of a real symmetri
 matrix by an orthogonal similarity transformation produ
es adiagonal matrix with real but not ne
essarily non-negative elements. Hen
e, some of the eigenvaluesmk0will typi
ally be negative. De�ning the unitary matrix N6 = (P 6V 6)�, where P 6 is a diagonal matrixwhose k0k0 element is 1 [i℄ if mk0 is non-negative [negative℄, the Takagi diagonalization of the neutralinomass matrix is a
hieved with non-negative neutralino masses. In parti
ular, the unitary neutralinomixing matrix N6 � appears (instead of the real orthogonal matrix V 6) in the 
orresponding Feynmanrules involving the neutralino mass-eigenstates.5As in step [3℄ below, we identify NM = (PMVM )� forM = 2 and 4, respe
tively, and (P 4)�1i0i0 (P 2)�1j0j0 = �i for oppositesign mass eigenvalues ~mi0 and ~mj0 . 11



3.3 Large gaugino mass parametersTo illustrate the previous general dis
ussion we shall �rst give a detailed parametri
 analysis in the limitin whi
h all gaugino masses are mu
h larger than the higgsino masses, and both sets mu
h larger thanthe ele
troweak and the kineti
 mixing s
ales, i.e. M1;M2;M 01 � �; vs � v;MK . All neutralino massmatrix parameters will be taken real.[1℄ Starting again with the diagonalization of the MSSM submatrixM4, the diagonalization matrix V 4de�ned in Eq. (3.24) 
an be parameterized up to se
ond order a

ording to standard MSSM pro
edure(see, e.g., Ref. [12℄), asV 4 ' 0� VG O

OT VH 1A0� 12�2 Vx�V Tx 12�2 1A0� 12�2 O

OT R�=4 1A : (3.30)The e�e
t of the 2�2 rotation R�=4 � (1� i�2)=p2 [where ~� � (�1 ; �2 ; �3) are the 2�2 Pauli matri
es℄is to shift the f34g o�-diagonal elements [��;��℄ onto the diagonal axis [�;��℄. The matrix, Vx,Vx = 0B� �
+ sW mZ=M1 �
� sW mZ=M1
+ 
W mZ=M2 
� 
W mZ=M2 1CA ; (3.31)with the abbreviations 
� � (
� � s�)=p2, removes the mixing between the blo
ks of the two gauginoand the two higgsino states. VG and VH res
ale the gaugino and higgsino blo
ks themselves:VG � 12�2 � 12 0� s2W m2Z=M21 00 
2W m2Z=M22 1A ;VH � 12�2 � 12 0� (1 + s2�)M 00212m2Z=2M21M22 00 (1� s2�)M 00212m2Z=2M21M22 1A ; (3.32)with M 00 212 � M21 
2W + M22 s2W . VG and VH relate to a diagonal form of the gaugino-higgsino massmatrix for large M1;2 and �. Their o�-diagonal matrix elements are of se
ond order and 
an be omitted
onsistently as they would only a�e
t the eigenvalues at fourth order.The 2� 2 diagonalization matrix de�ned in Eq. (3.24) 
an be parameterized up to se
ond order asV 2 �  1�Q02Sm2s=2M 021 �Q0Sms=M 01Q0Sms=M 01 1�Q02Sm2s=2M 021 ! : (3.33)The 2�2 matrix V 2 generates a diagonal form of the singlino-U(1)X gaugino mass matrix forM 01 � ms.After these steps are performed, the 4�4 and 2�2 mass submatri
es are diagonal and the 
omplete12



symmetri
 mass matrix M6 takes the intermediate form
 V 4 O

OT V 2 !M6  V 4T O

OT V 2T ! '
0BBBBBBBBBBBBBB�

~m10 0 MK~m20 0 0~m30 +��
� Q0�mv~m40 ���
+ Q0+mv0 0 +��
� ���
+ ~m50MK 0 Q0�mv Q0+mv ~m60
1CCCCCCCCCCCCCCA ; (3.34)

where, in obvious notation, zero elements of the diagonal blo
ks are suppressed for easier reading, andQ0� � (Q01
� �Q02s�)=p2. The diagonal elements ~mk0 are given by~m10 =M1 + m2ZM1 s2W ; ~m30 = �� m2ZM12M1M2 
2+ ; ~m50 = �� ;~m20 =M2 + m2ZM2 
2W ; ~m40 = ��� m2ZM12M1M2 
2� ; ~m60 =M 01 � �� ; (3.35)where 
� is de�ned below Eq. (3.31) andM12 �M1
2W +M2s2W ; �� � �Q02Sm2s=M 01 : (3.36)The parameter �� 
an be identi�ed with the NMSSM-type singlino mass parameter [13℄. Note that~m50 = �� is small 
ompared to all the other neutralino masses in the limit of large gaugino massparameters 
onsidered in this subse
tion.[2℄ The blo
k-diagonalization of the 6-dimensional intermediate matrix [Eq. (3.34)℄ 
an be performed by
hoosing the proper form of 
 in V 6. In the limit of large gaugino mass parameters and small singlinomass �� � ��M1;M2;M 01, the 4� 2 mixing matrix 
 is redu
ed to the simple expression
 � 0BBBBB� 0 MK=(M1 �M 01)0 0��
�=� �Q0�mv=M 01��
+=� �Q0+mv=M 01
1CCCCCA : (3.37)As a result of the blo
k diagonalization of Eq. (3.34), the mass eigenvalues are shifted a

ording toEq. (3.25). The resulting mass eigenvalues to the desired order are given by:m10 �M1 + m2ZM1 s2W + M2KM1 �M 01 ; m40 � ��� m2ZM12M1M2 
2� � �2�
2+� + Q0 2+m2vM 01 ;m20 �M2 + m2ZM2 
2W ; m50 � �� + �2�� s2� ;m30 � �� m2ZM12M1M2 
2+ + �2�
2�� + Q0 2+m2vM 01 ; m60 �M 01 � �� + m2v(Q02+ +Q02�)M 01 � M2KM1 �M 01 : (3.38)13



Note that the sum rule given by Eq. (3.27) is satis�ed.As expe
ted, while the large SU(2) gaugino mass m20 is not a�e
ted by the singlino and the U(1)Xgaugino, the MSSM U(1) mass m10 is a�e
ted by the U(1) kineti
 mixing. All the higgsino states aremodi�ed by the intera
tions between the MSSM and the new subsystem. The value of m50 is raised bythe intera
tion with the MSSM higgsinos, but remains small nevertheless.The mixing in the wave-fun
tions is des
ribed by the 
omponents of 
 alone sin
e the 4� 4 matrixV 4 and the 2 � 2 matrix V 2 deviate from unity only to se
ond order in the small parameters of theorder of the SUSY s
ales [i = 10; ::; 40℄:V 6i050 � ��� (0; 0; 
�; 
+)i0 ; V 65050 � 1� Q02Sm2s2M 021 � �2�2�2 ;V 650i0 � ���� (0; 0; 
� ; s�)i0 ; V 65060 � �Q0SmsM 01 ;V 6i060 � � MKM1 �M 01 ; 0; �Q0�mvM 01 ; �Q0+mvM 01 �i0 ; V 66050 � Q0SmsM 01 ;V 660i0 � � �MKM1 �M 01 ; 0; Q01mv
�M 01 ; Q02mvs�M 01 �i0 ; V 66060 � 1� Q02Sm2s2M 021 � m2v(Q0 2+ +Q0 2� )2M 021 � M2K2(M1 �M 01)2 :(3.39)The non-trivial mixing between two U(1) gaugino states, elements f1060g and f6010g, is generated bythe non-zero Abelian gauge kineti
 and mass mixing with non-zero MK . The analysis above fails whenM1 �M 01; this region of near degenera
y 
an be handled analyti
ally using the results of Appendix C.In Eqs. (3.38) and (3.39), perturbative 
orre
tions up to se
ond order have been in
luded for themasses and diagonal mixing matrix elements, whereas only the �rst order 
orre
tions have been given forthe o�-diagonal mixing matrix elements. This follows the usual pro
edure of stationary perturbationtheory in quantum me
hani
s, whi
h asso
iates se
ond-order 
orre
tions to the eigenvalues with the�rst-order 
orre
tions to the wave fun
tion. Consequently, the zeros that appear in some of the matrixelements of V 6k0`0 , should be interpreted as approximate. For example, V 62060 and V 66020 are expe
ted tore
eive higher order perturbative 
orre
tions and hen
e be shifted away from zero. Nevertheless, the fa
tthat the magnitude of these matrix elements are so suppressed will have some dramati
 
onsequen
esfor the behavior of the ~�020 and ~�060 masses in regions of near-degenera
y.[3℄ The �nal step is to identify N6 = (P 6V 6)�, where P 6 is a diagonal matrix whose k0k0 element is 1 (i)if mk0 is non-negative (negative). The physi
al masses mphk are given by the absolute values of the mkgiven above. The neutralino states 
an then be reordered in as
ending (non-negative) mass if desired.The results of this subse
tion are easily generalized for the 
ase of M1, M2, M 01, �, vs � v, MK . Aslong as the MSSM gaugino and higgsino parameters, M1;2 and � remain signi�
antly larger than theele
troweak s
ale v, the 
ouplings between the MSSM and the new �elds, generated by X, remain weak14



and the diagonalization of the mass matrix 
an still be performed analyti
ally. However, instead of theapproximate values ~m50;60 in Eqs. (3.34) and (3.35) the exa
t solutions (3.16) must be used, and for V 2the general rotation matrix (3.17) must be inserted. The approximation 
eases to be valid at isolatedpoints where X=( ~mi0� ~mj0) is no longer a small perturbation, due to the degenera
y of mass eigenvalues~mi0 � ~mj0 . In these 
ross-over zones the analysis des
ribed in Appendix C must be applied.3.4 An illustrative exampleTo illustrate the properties of the two new neutralinos and the impa
t of the 
oupling of the twosubsystems on the original MSSM neutralinos, we study, numeri
ally and analyti
ally, the evolutionof the neutralino mass spe
trum and representative examples for the mixing of the parti
les from avery light new U(1)X gaugino a
ross typi
al MSSM mass s
ales up to very high s
ales. Gauge kineti
mixing has only a small impa
t on the spe
trum and it will therefore be negle
ted in the illustrativeexample. Throughout the evolution, in
luding all intermediate regions, the 
oupling between the newstates and the MSSM states remains weak, apart from regions of mass degenera
y. The evolution a�e
tsprimarily the spe
trum of the two new neutralino states. In the initial limit, M 01 small, two medium-heavy degenerate states, m50;60 � O(vs), are realized in the spe
trum. At the end of the 
hain, M 01 large,the spe
trum is of a see-saw type, in
luding one heavy and one nearly zero-mass state.As an illustrative example, we take M2 = 1:5 TeV, ms = 1:2 TeV, � = 0:3 TeV and MK = 0, andwe assume the gaugino uni�
ation relation M1 = (5=3) tan2 �WM2 � 0:5M2. Also, for the numeri
alanalysis in this paper, we set tan� = 5. We adopt the N -model 
harge assignments [8℄,Q1 = � 32p10 ; Q2 = � 22p10 ; QS = 52p10 : (3.40)For de�niteness we �x the gauge 
oupling at gX ' 0:46, evolved from its E6 uni�
ation value ofp5=3 gYdown to the ele
troweak s
ale; however the results are not very sensitive to this assumption. We 
ouldalso 
hoose to �x MX at its gaugino uni�
ation value under the assumption that all gaugino massesunify at the grand uni�
ation s
ale. This would 
orrespond to a value of M 01 � MX = M1 = 750 GeV(negle
ting kineti
 mixing e�e
ts). However, to illustrate the stru
ture of the system in various s
enarios,we shall be slightly more general by allowingM 01 to vary over a large range of values (0 �M 01 � 5 TeV).To be spe
i�
, we 
hoose the evolution with M 01from : M 01 � v � � � M1; M2; vsto : v � � � M1; M2; vs � M 01 :The evolution of the six (positive) neutralino masses6 and the values of two typi
al V 6 mixing elements,6The eigenvalues 40 and 50 of the mass matrix [Eq. (3.34)℄ are negative, while all the other eigenvalues are positive.Level 
rossing will therefore o

ur only between 20-60 and 40-50 when M 01 is in
reased. The physi
al neutralino masses aregiven by the absolute values of the 
orresponding mass eigenvalues.15
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Figure 1: The evolution of the six neutralino masses when varying the U(1)X gaugino mass parameterM 01. The values used for the parameters are given in the text. The numbers with primes 
hara
terizethe nature of the neutralino states 
onne
ted with the ordering of the states when evolving from M 01 = 0.Note that the 20 and 60 
urves and the 40 and 50 
urves, respe
tively, do not a
tually tou
h. This 
an beseen more 
learly in Fig. 9, where these near interse
tion regions are expanded. The 10 and 50 
urves,
orresponding to opposite-sign mass eigenvalues, interse
t for small M 01 but a�e
t ea
h other only weakly.f5040g and f5060g, are shown in Figs. 1 and 2. The neutralino state mixings are exempli�ed by the V 6matrix elements f5040g and f5060g as representative for gaugino and higgsino mixings of the MSSM andthe new states, as well as the mixing among the new gaugino and singlino states themselves.When the new U(1)X gaugino mass parameter M 01 is varied from small to very large values, thepattern of neutralino masses evolves in an interesting way, as shown in Fig. 1. For small M 01 the set ofparameters 
hosen in the previous paragraph, leads to a heavy SU(2) MSSM gaugino ~�020 . It is followedby the two new states, mixed maximally in the U(1)X gaugino and singlino se
tor, ~�050 and ~�060 . Thefourth heaviest state is the U(1) MSSM gaugino ~�010 . The lightest states are the two MSSM higgsinos ~�040and ~�030 . IfM 01 is shifted to higher values, the mass eigenvalues in the new se
tor move apart, generatingstrong 
ross-over patterns whenever a mass from the new blo
k 
omes 
lose to one of the MSSM masses.This is realized at smallM 01 � ~m20 �Q02Sm2s= ~m20 � 0:91 TeV for the neutralino ~�060 in the new blo
k andthe SU(2) MSSM neutralino ~�020 ; later between the new-blo
k state ~�050 and the MSSM higgsino ~�040 for16
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ur in the
ross-over zone near M 01 = 2:6 TeV.M 01 � ~m40 �Q02Sm2s= ~m40 � 2:68 TeV. For very large M 01, ~�050 approa
hes the singlino state with a smallmass value j ~m50 j � Q02Sm2s=M 01, and ~�060 the pure U(1)X gaugino state with a very large mass ~m60 �M 01.Outside the 
ross-over regions the approximate analyti
al mass spe
tra nearly 
oin
ide with theexa
t (numeri
ally 
omputed) solutions for the eigenvalues as demonstrated in Table 1 for three M 01values.The mixing pattern is more dire
tly re
e
ted in the elements of the rotation matrix V 6, as shownin Fig. 2. For zero kineti
 mixing, ~�050 and ~�060 do not overlap with the U(1) MSSM gaugino, sin
eV 61050 , V 61060 � 0. Their overlap with the MSSM higgsinos, V 65040 , is small ex
ept in the 
ross-over zone.The mixing V 65060 between the new U(1)X gaugino and singlino states is redu
ed from maximal mixing�1=p2 for vanishing U(1)X gaugino mass parameter M 01 to nearly zero mixing at asymptoti
ally largeM 01. The moderate 
hange in the 50-40 
ross-over zone is a re
e
tion of the 5040 variations by unitarityof the neutralino mixing matrix.
17



Table 1: Comparison between the exa
t and approximate neutralino masses m~�0i [in GeV℄ for threevalues of M 01. The values of the other parameters are de�ned in the text.~�0i M 01 = 400 GeV M 01 = 2000 GeV M 01 = 4000 GeVm [GeV℄ Exa
t Appr. �m=m Exa
t Appr. �m=m Exa
t Appr. �m=m1 294.0 295.8 0.6% 294.1 295.9 0.6% 211.6 211.4 -0.1%2 302.7 303.2 0.1% 301.0 301.4 0.1% 294.2 296.0 0.6%3 756.5 755.6 -0.1% 380.3 380.3 0.0% 304.7 305.3 0.2%4 770.1 770.1 0.0% 756.5 755.6 -0.1% 756.5 755.6 -0.1%5 1170.6 1170.6 0.0% 1504.8 1504.3 0.0% 1504.8 1504.3 0.0%6 1504.8 1504.3 0.0% 2379.0 2379.0 0.0% 4213.9 4213.9 0.0%4 Neutralino Produ
tion and De
aysNeutralino produ
tion rates in various 
hannels and de
ay properties in various modes are a�e
ted bythe mixing of the neutralino states and by the mass and kineti
 mixings of the gauge bosons asso
iatedwith the broken U(1)X and SU(2)�U(1)Y gauge symmetries.The Z and Z 0 bosons 
an mix through kineti
 
oupling, as analyzed before, and mass mixing indu
edby the ex
hange of the Higgs �elds, for example, 
harged under both U(1)0s. The resulting Z and Z 0mixing is des
ribed by the mass-squared matrixM2ZZ0 =  m2Z �2Z�2Z m2Z0 ! ; (4.1)where the matrix elements are given bym2Z = 14g2Zv2 ;m2Z0 = g2Xv2 �Q021 
2� +Q022 s2��+ g2Xv2SQ02S ;�2Z = 12gZgXv2 �Q01
2� �Q02s2�� ; (4.2)and where g2Z � g22 + g2Y . The eigenvalues of M2ZZ0 and the Z and Z 0 mixing angle follow fromm2Z1;Z2 = 12 �m2Z +m2Z0 �q(m2Z �m2Z0)2 + 4�4Z� ;tan 2�ZZ0 = �2�2Z=(m2Z0 �m2Z) : (4.3)The phenomenologi
al 
onstraints typi
ally require this mixing angle to be less than a few times10�3 [21℄, although values as mu
h as ten times larger may be possible in some models with a light Z 018



and redu
ed 
ouplings [30℄.For the neutralino produ
tion pro
esses in e+e� annihilation it is suÆ
ient to 
onsider the neutralino-neutralino-Z1;2 verti
es h~�0iLjZ1j~�0jLi = �gZZij 
os �ZZ0 � gXZ 0ij sin �ZZ0 ;h~�0iLjZ2j~�0jLi = +gZZij sin �ZZ0 � gXZ 0ij 
os �ZZ0 ; (4.4)with i; j = 1; ::; 6 and gZ = g2=
W ; L! R 
an be swit
hed by substituting Zij ! �Z�ij and Z 0ij ! �Z 0 �ij .Expli
itly, the 
ouplings Zij and Z 0ij are given in terms of the USSM neutralino mixing matrix N by7Zij = 12 �Ni3N�j3 �Ni4N�j4� ;Z 0ij = Q01Ni3N�j3 +Q02Ni4N�j4 +Q0SNi5N�j5 : (4.5)Sfermion t=u-
hannel ex
hanges require the fermion-sfermion-neutralino verti
es (with the fermionmasses negle
ted): h~�0iRj ~fLjfLi = �p2 hg2(If3N�i2 + (ef � If3 )N�i1tW ) + gXQ0fLN�i6i ;h~�0iLj ~fRjfRi = +p2 �g2 ef tWNi1 + gX Q0fRNi6� : (4.6)In Eq. (4.6) the 
oupling to the higgsino 
omponent, whi
h is proportional to the fermion mass, hasbeen negle
ted. These would have to be in
luded if one were to study, e.g., the neutralino intera
tionwith the top quark and squark.For 
ompleteness, we also provide the fermion-fermion-Z1;2 verti
es:hfLjZ1jfLi = �gZ(If3 � efs2W ) 
os �ZZ0 � gXQ0fL sin �ZZ0 ;hfLjZ2jfLi = +gZ(If3 � efs2W ) sin �ZZ0 � gXQ0fL 
os �ZZ0 : (4.7)When swit
hing from L ! R in Eq. (4.7), the 
orresponding SU(2)�U(1) and U(1)X 
harges must be
hanged a

ordingly. If3 � If3L is the SU(2) isospin 
omponent (note that If3R = 0), ef is the ele
tri

harge of the fermion f and Q0fL;R are the e�e
tive U(1)X 
harges of the left/right-handed fermions.The neutralino produ
tion and de
ay properties in the USSM model with the additional gauginoand singlino states depend 
ru
ially on their masses with respe
t to the MSSM neutralino masses.If they are mu
h heavier than the other states, they will rarely be produ
ed and so are pra
ti
allyunobservable. In 
ontrast, if the singlino is lighter than the other states, a singlino-dominated state willbe the lightest supersymmetri
 parti
le (LSP) into whi
h the other neutralino states will de
ay, possiblythrough 
as
ades.In the following subse
tions, we present a brief des
ription of the general formalism of neutralinoprodu
tion and the subsequent 
as
ade de
ays of the neutralinos. On
e 
harges and mixing matri
es7For simpli
ity of notation, the USSM neutralino mixing matrix N6 will be denoted by N in this se
tion.19



are generalized to the present U(1)X theory, the phenomenologi
al infrastru
ture for 
ross se
tions andde
ay widths 
an be 
opied from the MSSM.4.1 Singlino Produ
tion in e+e� AnnihilationThe produ
tion pro
esses of a neutralino pair in e+e� annihilation,8e+e� ! ~�0i ~�0j [i; j = 1{6℄ ; (4.8)are generated by s-
hannel Z1 and Z2 ex
hanges, and t- and u-
hannel ~eL;R ex
hanges. The transitionamplitudes, T �e+e� ! ~�0i ~�0j� = e2s Q�� ��v(e+)
�P�u(e�)� ��u(~�0i )
�P�v(~�0j )� ; (4.9)are built up by produ
ts of 
hiral neutralino 
urrents and 
hiral fermion 
urrents, 
oupled by bilinear\
harges" QLL, QLR et
. The four generalized bilinear 
harges 
orrespond to independent heli
ityamplitudes, des
ribing the neutralino produ
tion pro
esses for polarized ele
trons/positrons [12℄. They
an be parameterized by the fermion and neutralino 
urrents and the propagators of the ex
hanged(s)parti
les as follows: QLL = + DZ1s2W 
2W F1LZ1ij + DZ2s2W 
2W F2LZ2ij � DuLs2W LiL�j ;QLR = � DZ1s2W 
2W F1LZ�1ij � DZ2s2W 
2W F2LZ�2ij + DtLs2W L�iLj ;QRL = + DZ1s2W 
2W F1RZ1ij + DZ2s2W 
2W F2RZ2ij + DtRs2W RiR�j ;QRR = � DZ1s2W 
2W F1RZ�1ij � DZ2s2W 
2W F2RZ�2ij � DuRs2W R�iRj : (4.10)The �rst two terms in ea
h bilinear 
harge are generated by Z1 and Z2 ex
hanges and the third termby sele
tron ex
hange; DZ1;2 , DtL;R and DuL;R denote the s
aled s-
hannel Z1;2 propagators and the t-and u-
hannel left/right-type sele
tron propagatorsDZ1;2 = ss�m2Z1;2 + imZ1;2�Z1;2 and D(t;u)L;R = s(t; u)�m2~fL;R ; (4.11)with s = (pe� + pe+)2, t = (pe� � p~�0i )2 and u = (pe� � p~�0j )2 denoting the Mandelstam variables forneutralino pair produ
tion in e+e� 
ollisions. The 
ouplings FiL;R of the gauge bosons Zi (i = 1; 2) toa fermion pair are given byF1L = +�If3 � efs2W� 
ZZ0+ gXgZ Q0fLsZZ0; F1R = �efs2W 
ZZ0 + gXgZ Q0fRsZZ0 ;F2L = ��If3 � efs2W� sZZ0+ gXgZ Q0fL
ZZ0; F2R = +efs2W sZZ0 + gXgZ Q0fR
ZZ0 ; (4.12)8Re
all that the numbering ~�0i [i = 1; : : : ; 6℄ of the neutralinos [without primed subs
ripts℄ refers to as
ending massordering. 20



where sZZ0 � sin �ZZ0, 
ZZ0 � 
os �ZZ0, If3 = �1=2 and ef = �1 for the ele
tron 
harges. Finally, thematri
es Z1;2ij and the ve
tors Li and Ri are de�ned by (tW = tan �W )Z1ij = +12 �Ni3N�j3 �Ni4N�j4� 
ZZ0 + gXgZ �Q01Ni3N�j3 +Q02Ni4N�j4 +Q0SNi5N�j5� sZZ0 ;Z2ij = �12 �Ni3N�j3 �Ni4N�j4� sZZ0 + gXgZ �Q01Ni3N�j3 +Q02Ni4N�j4 +Q0SNi5N�j5� 
ZZ0 ;Li = +If3Ni2 + (ef � If3 )tWNi1 + gXg2 Q0fLNi6 ;Ri = �ef tWNi1 + gXg2 Q0fRNi6 : (4.13)The e+e� annihilation 
ross se
tions follow from the squares of the relevant 
ouplings,� �e+e� ! ~�0i ~�0j� = Sij ��22s �1=2PS Z 1�1(�1� (�2i � �2j )2 + �PS 
os2��Q1+4�i�jQ2 + 2�1=2PS Q3 
os�) d 
os� ; (4.14)where Sij = (1+Æij)�1 is a statisti
al fa
tor whi
h is equal to 1 for i 6= j and 1=2 for i = j; �i = m~�0i =ps,� is the polar angle of the produ
ed neutralinos; and �PS � �PS(1; �2i ; �2j ) denotes the familiar 2-bodyphase spa
e fun
tion. The quarti
 
harges Qi (i = 1; 2; 3) are given by produ
ts of bilinear 
harges:Q1 = 14 �jQRRj2 + jQLLj2 + jQRLj2 + jQLRj2� ;Q2 = 12 Re [QRRQ�RL +QLLQ�LR℄ ;Q3 = 14 �jQRRj2 + jQLLj2 � jQRLj2 � jQLRj2� : (4.15)The integration over the polar angle � 
an easily be performed analyti
ally.The produ
tion 
ross se
tions for the three pairings of the two lightest neutralinos, f11g; f12g andf22g, are illustrated in Fig. 3 as fun
tions of M 01. For the parameter set de�ned in Se
t. 3.4, the 
orre-sponding Z 0 mass is MZ2 = 949 GeV and the ZZ 0 mixing angle is �ZZ0 = 3:3� 10�3; these parametersare 
ompatible with existing limits [21,30℄. The 
enter-of-mass energy of the e+e� 
ollider is set to 800GeV. Of 
ourse, if Z2 is in the rea
h of the 
ollider, running on the Z2 resonan
e would be the mostnatural way to explore all the fa
ets of the new parti
le se
tor in an optimal way.For small values of M 01 the 
ross se
tion �f~�01 ~�02g is of similar size as the MSSM predi
tion forthe mixed higgsino pairs, ~�030 ~�040 (
f. Fig. 1), modi�ed only by the Z 0 
ontribution. However, at andbeyond the 
ross-over points with the new singlino type neutralino ~�050 , dramati
 
hanges set in forpairs involving the lightest neutralino. Sin
e the 
ouplings of the mixed pair, ~�050 ~�030 , are suppressed toboth the Z and Z 0 ve
tor bosons, the 
ross se
tion �f~�01 ~�02g drops signi�
antly. In 
ontrast, the rising21
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Figure 3: The produ
tion 
ross se
tions for ~�01 ~�01, ~�01 ~�02 and ~�02 ~�02 neutralino pairs in e+e� 
ollisionswhen varying the U(1)X gaugino mass parameter M 01. The R and L sele
tron masses are 
hosen asm~eR;L = 701 GeV in this example.~�050 ~�050 
oupling to Z 0 in
reases the 
ross se
tion of the diagonal pair �f~�01 ~�01g with risingM 01. [The 
rossse
tion for the diagonal pair �f~�02 ~�02g does not 
hange as the MSSM higgsino 
hara
ter is modi�ed onlytransiently in the 50-40 
ross-over zone.℄The presen
e of the extra gauge boson Z2 with a mass of � 1 TeV alters the neutralino-pair pro-du
tion 
ross se
tions �f~�01 ~�01g and �f~�02 ~�02g in the USSM signi�
antly 
ompared with the MSSM, asdemonstrated in Table 2. The produ
tion of light neutralino pairs, diagonal pairs in parti
ular, aregreatly enhan
ed although the light neutralino masses are nearly identi
al in the two models.Table 2: Comparison of produ
tion 
ross se
tions between the MSSM and the USSM. The value forM 01 is set to zero in the USSM. For other values of M 01 see Fig. 3.Cross Se
tion [fb℄ �f~�01 ~�01g �f~�01 ~�02g �f~�02 ~�02gUSSM 6:5 48:0 6:1MSSM 1:7 � 10�3 67:1 8:5 � 10�322



4.2 Neutralino 
as
ade de
ays and sfermion de
aysIf kinemati
ally allowed, the two-body de
ays of neutralinos into a neutralino and an ele
troweak gaugebosons Z1;2 are among the dominant 
hannels. The widths of the de
ays, ~�0i ! ~�0jZk (k = 1; 2), aregiven by�[~�0i! ~�0jZk℄ = g2Z�1=2PS16�m~�0i8<:jZ2kijj24(m2~�0i �m2~�0j )2m2Zk +m2~�0i+m2~�0j�2m2Zk35+ 6m~�0im~�0j Re (Z2kij)9=; ; (4.16)where �PS � �PS(1;m2~�0j =m2~�0i ;m2Zk=m2~�0i ), with Z1ij and Z2ij de�ned in Eq. (4.13).Two examples, ~�0i ! ~�01Z1 for i = 6; 3, illustrate the evolution of the widths with M 01 in Fig. 4.The neutralinos ~�06 and ~�01 are identi�ed with the MSSM SU(2) gaugino and the lighter of the MSSMhiggsinos for small M 01, and with the U(1)X gaugino and the singlino for large M 01, respe
tively [
f.Fig. 1℄. Even after ~�06 
rosses to the U(1)X gaugino at the 20-60 
ross-over zone, the width in
reasesdue to an in
reasing phase spa
e fa
tor (due to the in
reasing mass di�eren
e) and the fa
t that ~�06 hasa signi�
ant singlino 
omponent. However, on
e the state ~�01 be
omes singlino-dominated above the50-40 
ross-over zone, the width of the de
ay ~�06 ! ~�01Z1 drops dramati
ally as the mixing between the
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U(1)X gaugino and the singlino state is strongly suppressed for large M 01. The state ~�03 is the MSSMU(1) gaugino for smallM 01, the singlino-dominated state for moderateM 01 and the heavier of the MSSMhiggsinos for large M 01. As the ~�03 mass drops, even only slightly, the two-body de
ay ~�03 ! ~�01Z1 iskinemati
ally forbidden for moderate M 01. However, the mode is kinemati
ally allowed again and itsmagnitude in
reases when the mass of the singlino-dominated ~�01 de
reases suÆ
iently.Similarly, the two-body de
ays of the 
harginos into a neutralino and the W� gauge boson areexpe
ted to be among the dominant 
hannels if kinemati
ally allowed. The widths of the de
ays,~��i ! ~�0j W�, are given by�[~��i ! ~�0j W�℄ = g22�1=2PS16�m~��i 8<: jWLij j2 + jWRij j22 24(m2~��i �m2~�0j )m2W +m2~��i +m2~�0j � 2m2W35�6m~��i m~�0j Re (WLijW�Rij)o ; (4.17)where �PS � �PS(1;m2~�0j =m2~��i ;m2W =m2~��i ) and the WL;R are de�ned asWLij = U�Li1Nj2 + 1p2U�Li2Nj3; WRij = U�Ri1N�j2 � 1p2U�Ri2N�j4 : (4.18)The unitary matri
es UL and UR diagonalize the 
hargino mass matrix via the singular value de
omposi-tion [24℄ URMCU yL = diagnm~��1 ;m~��2 o. Expli
it formulae for the 
hargino masses and mixing matri
es
an be found in Refs. [31, 32℄.At the LHC, sfermion de
ays, ~f ! f ~�0i 
an produ
e 
omplex 
as
ades, as heavier neutralinos areoften produ
ed in the initial de
ay and subsequently de
ay through a number of steps before the lightestneutralino (whi
h is presumably the LSP) is produ
ed to end the 
hain. Thus, 
as
ade de
ays are ofgreat experimental interest at the LHC. The width of the sfermion 2-body de
ay into a fermion and aneutralino follows from �[ ~f ! f ~�0i ℄ = g22�1=2PS16�m ~f jg ~fij2 �m2~f �m2~�0i �m2f� ; (4.19)where �PS � �PS(1;m2f=m2~f ;m2~�0i =m2~f ), the 
ouplings g ~fLi = Li and g ~fRi = Ri are de�ned in terms ofthe neutralino mixing matrix N and the appropriate fermion 
harges in Eq. (4.13).The rates for the reverse de
ays, neutralino de
ays to sfermions plus fermions, ~�0i ! ~f �f , �~ff aregiven by the 
orresponding partial widths9�[~�0i ! ~ff ℄ = g22�1=2PS NfC32�m~�0i jg ~fij2 �m2~�0i +m2f �m2~f� ; (4.20)9As the de
ay rates into ~f �f and �~ff are the same, we shall hen
eforth denote either of the �nal states by ~ff .24
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Figure 5: The evolution of (a) the sfermion de
ays, ~uR ! ~�06u and ~̀R ! ~�01`, and (b) the neutralinode
ays, ~�06 ! ~�05Z and ~�05 ! ~̀R`, when varying the U(1)X gaugino mass parameter M 01. The R-typeslepton and R-type u-squark masses are m~̀R = 701 GeV and m~uR = 2000 GeV, respe
tively.with the same 
ouplings as before, �PS � �PS(1;m2~f=m2~�0i ;m2f=m2~�0i ) and the 
olor fa
tor NfC = 1; 3 forleptons and quarks, respe
tively. [Analogous expressions hold for 
hargino de
ays.℄Supersymmetri
 parti
les will be analyzed at the LHC primarily in 
as
ade de
ays of some initiallyprodu
ed squark or gluino. In the U(1)X extended model, the 
as
ade 
hains may be extended 
omparedwith the MSSM by an additional step due to the presen
e of two new neutralino states, for example,~uR ! u~�06 ! u[Z1 ~�05℄ ! uZ1[`~̀R℄ ! uZ1`[`~�01℄ :At ea
h step in the de
ay 
hain, we have pla
ed the de
ay produ
ts from the previous step withinbra
kets. The end result of the 
as
ade above is the �nal state uZ1``~�01 with visible parti
les/jet u,Z1 ' Z, and two `'s.For the parameter set introdu
ed earlier, the partial widths involved in the 
as
ade steps are shownfor evolving M 01 in Fig. 5. The sfermion de
ays ~uR ! ~�06u and ~̀R ! ~�01` are shown in the left panel andthe neutralino de
ays ~�06 ! ~�05Z1 and ~�05 ! ~̀R` are shown in the right panel. The �rst step ~uR ! ~�06u
orresponds to the de
ay of the R-type u-squark to ~�06, whi
h 
oin
ides with the MSSM SU(2) gaugino for25



Table 3: The 
omparison of de
ay widths between the USSM and the MSSM. The state ~�0i in the tabledenotes the se
ond heaviest neutralino, i.e. ~�05 in the USSM and ~�03 in the MSSM. The value of M 01 isset to zero in the USSM. For other values of M 01 see Fig. 5.De
ay Width [MeV℄ �[~uR ! ~�0iu℄ �[~�0i ! ~̀R`℄ �[~̀R ! ~�01`℄USSM 130:0 5:5 14:1MSSM 3294:6 18:9 15:0smallM 01 and, after the 20-60 
ross-over zone, with the U(1)X gaugino. The width in
reases dramati
allybefore the de
ay is forbidden kinemati
ally for M 01 larger than 1:5 TeV. The se
ond step ~�06 ! ~�05Z1in this 
as
ade 
hain 
orresponds to the de
ay of the MSSM SU(2) gaugino for small M 01, 
hanging tothe U(1)X gaugino de
ay thereafter. The dependen
e of this two-body de
ay mode on M 01 is mainly ofkinemati
 nature; the de
ay is not allowed for M 01 between � 0:8 TeV and � 1:0 TeV. Just beyond the20-60 
ross-over zone, it in
reases very sharply and keeps in
reasing moderately withM 01 thereafter. Thepattern for the third de
ay ~�05 ! ~̀R` is mainly determined by the size of the U(1)Y and U(1)X gauge
omponents of the state ~�05. Before the 20-60 
ross-over zone the state is a U(1)X gaugino so that thewidth is large. But the width is strongly suppressed for moderate and largeM 01 for whi
h ~�05 is a MSSMSU(2) gaugino with very small mixing with the two MSSM U(1) and U(1)X gauginos. The width forthe �nal de
ay ~̀R ! ~�01` remains moderate as the U(1) 
omponents of the ~�01 state are small. Beyondthe 
ross-over zone, the width de
reases with the suppressed U(1)X 
omponent.Conventional 
hains like ~q ! q ~�0i ! q[`~̀℄ ! q`[`~�01℄ may also be observed in the U(1)X extendedmodel. However, the partial widths in the USSM 
an be very di�erent from the MSSM. As an example,we 
onsider the 
as
ade 
hains, in whi
h the intermediate neutralino state ~�0i is the se
ond heaviestneutralino, i.e. ~�05 in the USSM and ~�03 in the MSSM. As demonstrated in Table 3, the width for thede
ay of ~uR to the se
ond heaviest neutralino in the USSM is mu
h smaller than in the MSSM.These 
as
ade 
hains should only be taken as representative theoreti
al examples. A systemati
phenomenologi
al survey needs signi�
antly more detailed analyses.4.3 De
ays to Higgs bosonsThe USSM Higgs se
tor in
ludes two Higgs doublets Hu and Hd as well as the SM singlet �eld S [8,33{35℄. Their intera
tions are determined by the gauge intera
tions and the superpotential in Eq. (1.1).In
luding soft SUSY breaking terms and radiative 
orre
tions, the resulting e�e
tive Higgs potential
onsists of four parts: VH = VF + VD + Vsoft +�V ; (4.21)26



where the F , D and soft-breaking terms VF ; VD and Vsoft are given byVF = j�j2jHu �Hdj2 + �2jSj2(jHuj2 + jHdj2) ;VD = g2Z8 �jHdj2 � jHuj2�2 + g222 �jHuj2jHdj2 � jHu �Hdj2�+ g2X2 �Q01jHdj2 +Q02jHuj2 +Q0SjSj2�2 ;Vsoft = m21jHdj2 +m22jHuj2 +m2S jSj2 + (�A�S Hu �Hd + h:
) ; (4.22)with Hu � Hd � H+u H�d � H0uH0d . The stru
ture of the F term VF is the same as in the NMSSMwithout the self-intera
tion of the singlet �eld. However the D term VD 
ontains a new ingredient: theterms proportional to g2X are D-term 
ontributions due to the extra U(1)X whi
h are not present in theMSSM or NMSSM. The soft SUSY breaking terms are 
olle
ted in Vsoft. The tree-level Higgs potentialis CP-
onserving [34℄. That is, one 
an rephase the Higgs �elds to absorb the phases of the potentially
omplex 
oeÆ
ient �A�. Thus, without loss of generality, we will assume that these parameters arereal.The term �V in Eq. (4.21) represents the radiative 
orre
tions to the Higgs e�e
tive potential [36℄.The dominant 
ontributions at one-loop are generated by top quark and s
alar top quark (stop) loopsdue to the large Yukawa 
ouplings; these terms are the same as in the MSSM. All the other model-dependent 
ontributions do not 
ontribute signi�
antly at one-loop order [33℄. Therefore, we will ignorethese subdominant model-dependent radiative 
orre
tions in the following analysis.The set of soft SUSY breaking parameters in the tree-level Higgs potential in
ludes the soft massesm21;m22 and m2S and the trilinear 
oupling A�. Radiative 
orre
tions are a�e
ted by many other softSUSY breaking parameters that generate masses of s
alar tops and their mixings: the SU(2) and U(1)soft SUSY breaking s
alar top massesmQ;mU , the stop trilinear parameter At, the supersymmetri
 masss
aleMSUSY and, spuriously, the renormalization s
ale Q. To simplify the analysis of the Higgs spe
trumit is useful to express the soft masses m21;m22;m2S in terms of vs; v; tan � and the other parameters. Thetree-level Higgs masses and 
ouplings depend on four variables only: �; vs; tan � andA�. In the numeri
alanalysis, we take 1 TeV for the new parameters, mQ;mU ; At; Q;MSUSY and A�.De
ays involving Higgs bosons 
an be quite di�erent for di�erent Higgs boson mass spe
tra. We�rst de
ompose the neutral Higgs states into real and imaginary parts as follows:H0d = 1p2 (v 
os � + h 
os � �H sin� + iA sin� sin') ;H0u = 1p2 (v sin� + h sin� +H 
os � + iA 
os � sin') ;S = 1p2 (vs +N + iA 
os') ; (4.23)where the CP-odd mixing angle ' is determined by tan' = 2vs=v sin 2� and all the Goldstone states areremoved by adopting the unitary gauge. Subsequently the CP-even states (h;H;N) are rotated onto27



the mass eigenstates Hi (i = 1; 2; 3), labeled in order of as
ending mass, by applying the orthogonalrotation matrix OH : (H1;H2;H3)k = (h;H;N)a OHak ; (4.24)The resulting Higgs mass spe
trum 
onsists of three CP-even s
alars, one CP-odd s
alar, and two
harged Higgs bosons.Generally, the width of a 2-body neutralino or 
hargino ~�i de
ay to a neutralino or 
hargino ~�j anda Higgs boson �k (H1;2;3 or A) is given by�[~�i ! ~�j�k℄ = g22�1=2PS32�m~�i n�m2~�i +m2~�j �m2�k� �jCLijkj2 + jCRijkj2�+ 4m~�im~�j Re �CLijkCR �ijk �o ; (4.25)where �PS � �PS(1;m2~�j=m2~�i ;m2�k=m2~�i) and the left/right 
ouplings CL=Rijk must be spe
i�ed in ea
hindividual 
ase.(i) For the de
ay of a neutralino ~�0i to a neutralino ~�0j and a s
alar Higgs boson Hk, ~�0i ! ~�0jHk,the 
ouplings are given by,CRijk(~�0i ! ~�0jHk) = �12 �(Ni2�Ni1tW )(Nj3
��Nj4s�)�p2 �g2 (Ni3s�+Ni4
�)Nj5+2gXg2 Ni6 �Q01Nj3
� +Q02s�Nj4�� OH1k+12 �(Ni2�Ni1tW )(Nj3s�+Nj4
�)+p2 �g2 (Ni3
��Ni4s�)Nj5+2gXg2 Ni6 �Q01Nj3s� �Q02
�Nj4�� OH2k+12 �p2 �g2Ni3Nj4 � 2gXg2 Q0SNi6Nj6� OH3k + (i$ j) ; (4.26)CLijk(~�0i ! ~�0jHk) = CR �ijk (~�0i ! ~�0jHk) : (4.27)While the �rst term in ea
h of the two square bra
kets of Eq. (4.26) are reminis
ent of the MSSM
ouplings ~�0i ~�0jh and ~�0i ~�0jH respe
tively, the other terms are genuinely new in origin, arising from theextra intera
tion terms in the USSM superpotential and the extra U(1)X gauge intera
tions.The partial widths for the kinemati
ally allowed de
ays ~�04;5 ! ~�01H1 are shown in the left panel ofFig. 6 as a fun
tion ofM 01. In the areas in whi
h ~�04;5 and ~�01 nearly 
oin
ide with the MSSM neutralinos,the partial widths do not depend on M 01.(ii) Similarly, a 2-body neutralino de
ay to a neutralino and a CP-odd Higgs boson, ~�0i ! ~�0jA,28
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Figure 6: The de
ay widths for ~�05;4 ! ~�01H1 (left) and ~�05;6 ! ~�01A1 (right) for the parameter set givenin the text. For the purposes of example, the Higgs mass parameter MA is set to 1:25 TeV.follows Eq. (4.25) with the left/right 
ouplings given byCRij (~�0i ! ~�0jA)=� i2 �(Ni2�Ni1tW )(Nj3s��Nj4
�)+p2 �g2 (Ni3
�+Ni4s�)Nj5+2gXg2 Ni6 �Q01Nj3s� +Q02Nj4
��� sin'� i2 �p2 �g2Ni3Nj4 + 2gXg2 Q0SNi6Nj5� 
os' + (i$ j) ; (4.28)CLij(~�0i ! ~�0jA) = CR �ij (~�0i ! ~�0jA) : (4.29)Again, only the �rst term in the square bra
kets is similar to the MSSM ~�0i ~�0jA 
oupling.The widths for the kinemati
ally allowed de
ays ~�05;6 ! ~�01A are shown in the right panel of Fig. 6as a fun
tion of M 01 in the ben
hmark s
enario. In 
ontrast to the s
alar 
ase, only a few de
ays arekinemati
ally allowed sin
e the CP-odd s
alar A is heavy.(iii) For 
ompleteness, we des
ribe the de
ays of 
harginos to a neutralino and 
harged Higgs boson~��i ! ~�0jH� (i = 1; 2; j = 1; 2; : : : ; 6). These follow a similar pattern, but with the last index of the29




oupling removed:CLij(~��i ! ~�0jH�)=�s��N�j3U�Li1� 1p2 �N�j2+N�j1tW �U�Li2��p2gXg2 Q01N�j6U�Li2� �g2 
�N�j5U�Li2 ; (4.30)CRij (~��i ! ~�0jH�)=�
��Nj4U�Ri1+ 1p2 (Nj2+Nj1tW )U�Ri2��p2gXg2 Q02Nj6U�Ri2� �g2 s�Ni5U�Ri2 ; (4.31)The same left/right 
ouplings determine the de
ays of neutralinos to 
harginos and 
harged Higgs boson~�0j ! ~�+i H� (i = 1; 2; j = 1; 2; : : : ; 6). For the parameters 
hosen here, the large mass of the 
hargedHiggs boson allows kinemati
ally only de
ays of the heavier 
hargino ~��2 to the lightest neutralino ~�01and H�.(iv) It is also possible for Higgs bosons to de
ay into neutralino/
hargino states, for example thede
ays Hi ! ~�01 ~�0j , A ! ~�01 ~�0j and H� ! ~�01 ~��i . Clearly this is kinemati
ally possible only for theheavier Higgs states. The general form of the width for these de
ays �i ! ~�j ~�k (�i = Hi; A; H�), isgiven by the 
rossing of Eq. (4.25):�[�i ! ~�j ~�k℄=Sjk g22�1=2PS16�m�i n�m2�i �m2~�j �m2~�k� �jCLijkj2 + jCRijkj2�� 4m~�jm~�k Re�CLijkCR �ijk �o ; (4.32)
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Figure 7: The de
ay widths for H3 ! ~�01 ~�01;2 (left) and A! ~�01 ~�01;2 (right) for the same parameters asin Fig. 6. 30



where �PS � �PS(1;m2~�j=m2�i ;m2~�j=m2�i) and Sjk = (1 + Æjk)�1 is the usual statisti
al fa
tor. The
ouplings CL=Rijk are related to their neutralino/
hargino de
ay 
ounterparts in the obvious way:CL=Rijk (Hi ! ~�0j ~�0k) = CL=Rkji (~�0k ! ~�0jHi) ; (4.33)CL=Rij (A! ~�0i ~�0j ) = CL=Rji (~�0j ! ~�0iA) ; (4.34)CL=Rij (H+ ! ~�0i ~�+j ) = CL=Rji (~��j ! ~�0iH�) : (4.35)As an example, the Higgs boson de
ays H3; A ! ~�01 ~�01;2 are displayed in Fig. 7. For small M 01 the~�030 ~�040H3=A 
ouplings in the de
ays H3; A ! ~�01 ~�02 are suppressed while for large M 01 the ~�050 ~�030H3=A
ouplings are no longer suppressed. The rapid 
hanges in the 50-40 
ross-over zone are generated byinterferen
e e�e
ts between the Yukawa and the gauge intera
tion terms. Similar interferen
e e�e
ts,though less signi�
ant, o

ur for the de
ays H3; A! ~�01 ~�01 near the 
ross-over zone.4.4 Neutralino radiative de
aysIn the 
ross-over zones of the neutralino mass eigenvalues, the gaps between the neutralino massesbe
ome very small. As a result, standard de
ay 
hannels are almost shut and photon transitions betweenneutralino states [37℄ be
ome enhan
ed. These photon transitions are parti
ularly important in the
ross-over zone 40-50 at M 01 ' 2:6 TeV [
f. Fig. 1℄. The proximity of the two heavier states to the lightestneutralino dramati
ally redu
es the rates of all other de
ay modes so that the radiative de
ays~�02 ; ~�03 ! ~�01 + 
 and ~�03 ! ~�02 + 
 ; (4.36)be
ome non-negligible modes. Of 
ourse, also the 
 transitions are phase-spa
e suppressed in 
ross-overzones but less strongly than the 
ompeting standard 
hannels due to the vanishing photon mass, evenfor 3-parti
le de
ays into a lighter neutralino and lepton- or light-quark pair.The e�e
tive 
ouplings g~�0i ~�0j
 in the partial de
ay widths�[~�0i ! ~�0j
℄ = g2~�0i ~�0j
8� (m2~�0i �m2~�0j )3m5~�0i ; (4.37)are of magneti
 or ele
tri
 dipole type depending on the relative CP quantum numbers of ~�0i and~�0j . The 
ouplings are generated by triangle graphs of sfermion/fermion, 
hargino/W -boson and
hargino/
harged Higgs-boson lines. The sum of all two-point graphs asso
iated with the photon lineand atta
hed to the neutralino legs by a Z-boson line vanish in the non-linear R-gauge [37℄. The 
transition amplitudes are �nally 
omplex 
ombinations of mixing matrix elements with redu
ed trianglefun
tions.For the 
 transitions of Eq. (4.36), the partial widths are displayed in Fig. 8 for the set of parameters
hosen earlier. In this example the three lightest neutralino states are predominantly of higgsino type31
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Figure 8: Comparison between photon transitions [full lines℄ and ordinary lepton-pair de
ays [dashedlines℄ of neutralinos in the 30-40-50 
ross-over zone of the referen
e point. The U(1)X gaugino massparameter M 01 is varied between 2 and 4 TeV for 
omparison with the side-band wings; the 
hargedHiggs mass, a�e
ting the photon loop 
ouplings is 
hosen 1.25 TeV and the trilinear parameters are setto 1 TeV.so that de
ays to lepton pairs are allowed through 
ouplings mediated by virtual Z-bosons whi
h infa
t are the dominant modes. Therefore, for illustrative 
omparison, the partial widths for standardele
tron-pair de
ays ~�0i ! ~�0j e+e� are also shown. Evidently the bran
hing fra
tions for radiativede
ays in general drasti
ally 
hange in the 
omplex 40-50 
ross-over zone near M 01 ' 2:6 TeV 
omparedwith the side-band wings.5 Summary and Con
lusionsIn this report we have investigated the neutralino se
tor in the U(1)X extension of the minimal Super-symmetri
 Standard Model, as suggested by many GUT and superstring models. The extended modelhas attra
tive features whi
h solve several problems of the MSSM. It provides a natural solution of the�-problem without 
reating 
osmologi
al problems. The upper limit of the light Higgs mass is somewhatin
reased and the growing �ne tuning in this se
tor is redu
ed.While the MSSM neutralino se
tor is already quite 
omplex, the 
omplexity in
reases dramati
ally inthe extended model due to two additional degrees of freedom. However, the small 
oupling between the32



original four MSSM states and the two new states o�ers an elegant analyti
al solution of this problemwithin a perturbative expansion. We have worked out this solution in detail for the mass spe
trum andthe mixing of the states.The expansion in the parameter v=MSUSY, the ratio of the ele
troweak s
ale v over the generi
supersymmetry-breaking s
ale MSUSY, leads to an ex
ellent approximation of the exa
t solutions. Evenin the 
ross-over zones in whi
h two mass eigenvalues are nearly degenerate, proper adaption of theanalyti
al formalism provides an a

urate des
ription of the system. Thus, in the limit in whi
hMSUSYis suÆ
iently above the ele
troweak s
ale, the neutralino system of the U(1)X -extended supersymmetri
standard model is under good analyti
al 
ontrol and its features are theoreti
ally well understood.A few examples of mass spe
tra, widths for 
as
ade de
ays at LHC, de
ays to Higgs bosons, photontransitions and produ
tion 
ross se
tions in e+e� 
ollisions illustrate the 
hara
teristi
 features of themodel.A
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omplex symmetri
 matrixIn quantum �eld theory, the most general neutral fermion mass matrix, M , is 
omplex and symmetri
.To identify the physi
al eigenstates, M must be diagonalized.10 However, the equation that governsthe identi�
ation of the physi
al fermion states is not the standard unitary similarity transformation.Instead it is a di�erent diagonalization equation that was dis
overed by Takagi [23℄, and redis
overedmany times sin
e [24℄.11 Despite this illustrious history, the mathemati
s of the Takagi diagonalization isrelatively unknown among physi
ists. Thus, in this appendix we present a self-
ontained introdu
tion tothe Takagi diagonalization of a 
omplex symmetri
 matrix. After presenting some ba
kground material10An alternative method|the standard diagonalization of the hermitian matrixMyM , whi
h is 
ommonly advo
ated inthe literature, fails to identify the physi
al states in the 
ase of mass-degenerate fermions, as noted below Eq. (A.3).11Subsequently, it was re
ognized in Ref. [38℄ that the Takagi diagonalization was �rst established for nonsingular 
omplexsymmetri
 matri
es by Autonne [39℄. 33



and a 
onstru
tive proof of Takagi's result, we provide, as a pedagogi
al example, the expli
it Takagidiagonalization of an arbitrary 2� 2 matrix. The latter will be parti
ularly useful for 
onsidering 
asesin whi
h there is a near-degenera
y in mass between two of the neutral fermions.A.1 General analysisConsider a system of n two 
omponent fermion �elds � � (�1 ; �2 ; : : : ; �n)T , whose physi
al masses aregoverned by the Lagrangian Lmass = 12 �TM � + h:
: (A.1)In general, the mass matrix M is an n� n 
omplex symmetri
 matrix. In order to identify the physi
almasses mi and the 
orresponding physi
al fermion �elds �i, one introdu
es a unitary matrix U su
hthat � = U� and demands that �TM � =Pimi�i�i. This 
orresponds to the Takagi diagonalization ofa 
omplex symmetri
 matrix,12 whi
h is governed by the following theorem [23, 24℄:Theorem: For any 
omplex symmetri
 n�n matrixM , there exists a unitary matrix U su
h that:13UTM U =MD = diag(m1;m2; : : : ;mn) ; (A.2)where the mk are real and non-negative.The mk are not the eigenvalues of M . Rather, the mk are the so-
alled singular values of thesymmetri
 matrixM , whi
h are de�ned to be the non-negative square roots of the eigenvalues ofM yM .To 
ompute the singular values, note that:U yM yMU =M2D = diag(m21;m22; : : : ;m2n) : (A.3)Sin
eM yM is hermitian, it 
an be diagonalized by a unitary similarity transformation. Although U 
anbe determined from Eq. (A.3) in 
ases of non-degenerate singular values, the 
ase of degenerate singularvalues is less straightforward. For example, if M = � 0 11 0�, the singular value 1 is doubly-degenerate,but Eq. (A.3) yields U yU = 12�2, whi
h does not spe
ify U . Below, we shall present a 
onstru
tivemethod for determining U that is appli
able in both the non-degenerate and the degenerate 
ases.Eq. (A.2) 
an be rewritten as MU = U�MD, where the 
olumns of U are orthonormal. If we denotethe kth 
olumn of U by vk, then, Mvk = mkv�k ; (A.4)12If U = Ny, we obtain the form of the Takagi diagonalization used in Eqs. (2.17) and (B.2).13In Ref. [24℄, Eq. (A.2) is 
alled the Takagi fa
torization of a 
omplex symmetri
 matrix. We 
hoose to refer to thisas Takagi diagonalization to emphasize and 
ontrast this with the more standard diagonalization of normal matri
es bya unitary similarity transformation. In parti
ular, not all 
omplex symmetri
 matri
es are diagonalizable by a similaritytransformation, whereas 
omplex symmetri
 matri
es are always Takagi-diagonalizable.34



where the mk are the singular values and the ve
tors vk are normalized to have unit norm. FollowingRef. [25℄, the vk are 
alled the Takagi ve
tors of the symmetri
 
omplex n� n matrix M . The Takagive
tors 
orresponding to non-degenerate non-zero [zero℄ singular values are unique up to an overallsign [phase℄. Any orthogonal [unitary℄ linear 
ombination of Takagi ve
tors 
orresponding to a set ofdegenerate non-zero [zero℄ singular values is also a Takagi ve
tor 
orresponding to the same singularvalue. Using these results, one 
an determine the degree of non-uniqueness of the matrix U . Forde�niteness, we �x an ordering of the diagonal elements of MD. If the singular values of M are distin
t,then the matrix U is uniquely determined up to multipli
ation by a diagonal matrix whose entriesare either �1. If there are degenera
ies 
orresponding to non-zero singular values, then within thedegenerate subspa
e, U is unique up to multipli
ation on the right by an arbitrary orthogonal matrix.Finally, in the subspa
e 
orresponding to zero singular values, U is unique up to multipli
ation on theright by an arbitrary unitary matrix.We shall establish the Takagi diagonalization of a 
omplex symmetri
 matrix by formulating analgorithm for 
onstru
ting U . A method will be provided for determining the orthonormal Takagive
tors vk that make up the 
olumns of U . This is a
hieved by rewriting the n � n 
omplex matrixequation Eq. (A.4) [with m real and non-negative℄ as a 2n� 2n real matrix equation [40℄:MS  Re vIm v ! �  ReM � ImM� ImM �ReM !  Re vIm v ! = m Re vIm v ! ; where m � 0 : (A.5)Sin
eM =MT , the 2n�2nmatrixMS de�ned by Eq. (A.5) is a real symmetri
 matrix. In parti
ular,MSis diagonalizable by a real orthogonal similarity transformation, and its eigenvalues are real. Moreover,if m is an eigenvalue of MS with eigenve
tor (Re v ; Im v), then �m is an eigenvalue of MS with(orthogonal) eigenve
tor (� Im v ; Re v). This observation proves that MS has an equal number ofpositive and negative eigenvalues and an even number of zero eigenvalues.14 Thus, Eq. (A.4) has been
onverted into an ordinary eigenvalue problem for a real symmetri
 matrix. Sin
e m � 0, we solve theeigenvalue problem MSu = mu for the eigenve
tors 
orresponding to the non-negative eigenvalues.15 Itis straightforward to prove that the total number of linearly independent Takagi ve
tors is equal to n.Simply note that the orthogonality of (Re v1 ; Im v1) and (� Im v1 ; Re v1) with (Re v2 ; Im v2) impliesthat vy1v2 = 0.Thus, we have derived a 
onstru
tive method for obtaining the Takagi ve
tors vk. If there aredegenera
ies, one 
an always 
hoose the vk in the degenerate subspa
e to be orthonormal. The Takagive
tors then make up the 
olumns of the matrix U in Eq. (A.2). A numeri
al pa
kage for performing14Note that (� Imv ; Re v) 
orresponds to repla
ing vk in Eq. (A.4) by ivk. However, for m < 0 these solutions are notrelevant for Takagi diagonalization (where the mk are by de�nition non-negative). The 
ase of m = 0 is 
onsidered infootnote 15.15For m = 0, the 
orresponding ve
tors (Re v ; Imv) and (� Imv ; Re v) are two linearly independent eigenve
tors ofMS ; but these yield only one independent Takagi ve
tor v (sin
e v and iv are linearly dependent). See footnote 14.35



the Takagi diagonalization of a 
omplex symmetri
 matrix has re
ently been presented in Ref. [27℄ (seealso Refs. [25, 26℄ for previous numeri
al approa
hes to Takagi diagonalization).A.2 Example: Takagi diagonalization of a 2� 2 
omplex symmetri
 matrixThe Takagi diagonalization of a 2� 2 
omplex symmetri
 matrix 
an be performed analyti
ally.16 Theresult is somewhat more 
ompli
ated than the standard diagonalization of a 2� 2 hermitian matrix bya unitary similarity transformation. Nevertheless, the 
orresponding analyti
 formulae for the Takagidiagonalization will prove useful in Appendix C in the treatment of nearly degenerate states. Considerthe 
omplex symmetri
 matrix: M =  a 

 b ! ; (A.6)where 
 6= 0 and, without loss of generality, jaj � jbj. We parameterize the 2 � 2 unitary matrix U inEq. (A.2) by [41℄: U = V P =  
os � ei� sin ��e�i� sin � 
os � !  e�i� 00 e�i� ! ; (A.7)where 0 � � � �=2 and 0 � � ; � ; � < 2�. However, we may restri
t the angular parameter spa
efurther. Sin
e the normalized Takagi ve
tors are unique up to an overall sign if the 
orrespondingsingular values are non-degenerate and non-zero,17 one may restri
t � and � to the range 0 � � ; � < �without loss of generality. Finally, we may restri
t � to the range 0 � � � �=4. This range 
orrespondsto one of two possible orderings of the singular values in the diagonal matrix MD.Using the transformation (A.7), we 
an rewrite the Takagi equation (A.2) as follows: a 

 b !V = V � �1 00 �2 ! ; (A.8)where �1 � m1 e2i� ; and �2 � m2 e2i� ; (A.9)with real and non-negative mk. Multiplying out the matri
es in Eq. (A.8) yields:�1 = a� 
 e�i�t� = b e�2i� � 
 e�i�t�1� ; (A.10)�2 = b+ 
 ei�t� = a e2i� + 
 ei�t�1� ; (A.11)16The main results of this subse
tion have been obtained, e.g., in Ref. [27℄. Nevertheless, we provide some of the detailshere, whi
h in
lude minor improvements over the results previously obtained.17In the 
ase of a zero singular value or a pair of degenerate of singular values, there is more freedom in de�ning theTakagi ve
tors as dis
ussed below Eq. (A.4). These 
ases will be treated separately at the end of this subse
tion.36



where t� � tan �. Using either Eq. (A.10) or (A.11), one immediately obtains a simple equation fortan 2� = 2(t�1� � t�)�1: tan 2� = 2
b e�i� � a ei� : (A.12)Sin
e tan 2� is real, it follows that b
� e�i�� a
� ei� is real and must be equal to its 
omplex 
onjugate.The resulting equation 
an be solved for e2i�:e2i� = b
� + a�
b�
+ a
� ; (A.13)or equivalently ei� = b
� + a�
jb
� + a�
j : (A.14)The (positive) 
hoi
e of sign in Eq. (A.14) follows from the fa
t that tan 2� � 0 (sin
e by assumption,0 � � � �=4), whi
h implies 0 � 
�(b e�i� � a ei�) = j
j2(jbj2 � jaj2) after inserting the results ofEq. (A.14). Sin
e jbj � jaj by assumption, the asserted inequality holds as required.Inserting the result for ei� ba
k into Eq. (A.12) yields:tan 2� = 2jb
� + a�
jjbj2 � jaj2 : (A.15)One 
an 
ompute tan � in terms of tan 2� for 0 � � � �=4:tan � = 1tan 2� hp1 + tan2 2� � 1i= jaj2 � jbj2 +p(jbj2 � jaj2)2 + 4jb
� + a�
j22jb
� + a�
j ; (A.16)= 2jb
� + a�
jjbj2 � jaj2 +p(jbj2 � jaj2)2 + 4jb
� + a�
j2 : (A.17)Starting from Eqs. (A.10) and (A.11), it is now straightforward, using Eqs. (A.14) and (A.16), to 
omputethe squared magnitudes of �k:m2k = j�kj2 = 12 hjaj2 + jbj2 + 2j
j2 �p(jbj2 � jaj2)2 + 4jb
� + a�
j2i ; (A.18)with j�1j � j�2j. This ordering of the j�kj is governed by the 
onvention that 0 � � � �=4 (the oppositeordering would o

ur for �=4 � � � �=2). Indeed, one 
an 
he
k expli
itly that the j�kj2 are theeigenvalues of M yM , whi
h provides the more dire
t way of 
omputing the singular values.The �nal step of the 
omputation is the determination of the angles � and � from Eq. (A.9). InsertingEqs. (A.14) and (A.17) into Eqs. (A.10) and (A.11), we end up with:� = 12 argna(jbj2 � j�1j2)� b�
2o ; (A.19)� = 12 argnb(j�2j2 � jaj2) + a�
2o : (A.20)37



If detM = ab�
2 = 0 (withM 6= 0) , then there is one singular value whi
h is equal to zero. In this
ase, it is easy to verify that �1 = 0 and j�2j2 = Tr (M yM) = jaj2+ jbj2+2j
j2. All the results obtainedabove remain valid, ex
ept that � is unde�ned [sin
e in this 
ase, the argument of arg in Eq. (A.19)vanishes℄. This 
orresponds to the fa
t that for a zero singular value, the 
orresponding (normalized)Takagi ve
tor is only unique up to an overall arbitrary phase [
f. footnote 17℄.We provide one illuminating example of the above results. Consider the 
omplex symmetri
 matrix:M =  1 ii �1 ! : (A.21)The eigenvalues of M are degenerate and equal to zero. However, there is only one linearly independenteigenve
tor, whi
h is proportional to (1 ; i). Thus, M 
annot be diagonalized by a similarity transfor-mation [24℄. In 
ontrast, all 
omplex symmetri
 matri
es are Takagi-diagonalizable. The singular valuesof M are 0 and 2 (sin
e these are the non-negative square roots of the eigenvalues of M yM), whi
h arenot degenerate. Thus, all the formulae derived above apply in this 
ase. One qui
kly determines that� = �=4, � = �=2, � = �=2 and � is indeterminate (so one is free to 
hoose � = 0). The resultingTakagi diagonalization is UTMU = diag(0 ; 2) with:U = 1p2  1 ii 1 !  1 00 �i ! = 1p2  1 1i �i ! : (A.22)This example 
learly indi
ates the distin
tion between the (absolute values of the) eigenvalues ofM andits singular values. It also exhibits the fa
t that one 
annot always perform a Takagi diagonalization byusing the standard te
hniques for 
omputing eigenvalues and eigenve
tors.18We end this subse
tion by treating the 
ase of degenerate (non-zero) singular values, whi
h ariseswhen b
� = �a�
. Spe
ial 
onsiderations are required sin
e not all the formulae derived above areappli
able to this 
ase [
f. footnote 17℄. The 
ondition b
� = �a�
 implies that jaj = jbj, so thatj�1j2 = j�2j2 = jbj2 + j
j2. After noting that a=
 = �b�=
�, Eq. (A.12) then yields:tan 2� = [Re (b=
) 
� + Im (b=
) s�℄�1 ; (A.23)where 
� � 
os� and s� � sin�. The reality of tan 2� imposes no 
onstraint on �; hen
e, � isindeterminate [a fa
t that is suggested by Eq. (A.14)℄. The same 
on
lusion also follows immediatelyfrom Eq. (A.2). Namely, ifMD = m12�2, then (UO)TM(UO) = OTMDO =MD for any real orthogonalmatrix O. In parti
ular, � simply represents the freedom to 
hoose O [see, e.g., Eq. (A.28)℄. Sin
e �is indeterminate, Eq. (A.23) implies that � is indeterminate as well. In pra
ti
e, it is often simplest18For real symmetri
 matri
es M , one 
an always �nd a real orthogonal V su
h that V TMV is diagonal. In this
ase the Takagi diagonalization is a
hieved by U = V P , where P is a diagonal matrix whose kk element is 1 [i℄ if the
orresponding eigenvalue mk is positive (negative). Of 
ourse, this pro
edure fails for 
omplex symmetri
 matri
es [su
has M in Eq. (A.21)℄ that are not diagonalizable. 38



to 
hoose a 
onvenient value, say � = 0, whi
h would then �x � su
h that tan 2� = [Re (b=
)℄�1. Forpedagogi
al reasons, we shall keep � as a free parameter below.Naively, it appears that � and � are also indeterminates. After all, the arguments of arg in bothEqs. (A.19) and (A.20) vanish in the degenerate limit. However, this is not a 
orre
t 
on
lusion, as thederivation of Eqs. (A.19) and (A.20) involve a division by jb
� + a�
j, whi
h vanishes in the degeneratelimit. Thus, to determine � and � in the degenerate 
ase, one must return to Eqs. (A.10) and (A.11).A straightforward 
al
ulation [whi
h uses Eq. (A.23)℄ yields:�2
 = ���1
� ; (A.24)whi
h implies �+ � = arg 
� �2 : (A.25)Note that separately, � and � depend on the 
hoi
e of � (although � drops out in the sum). Expli
itly,�1 = �
 e�i�(r1 + h
�Re (b=
) + s� Im (b=
)i2 + ihs�Re (b=
)� 
� Im (b=
)i) ; (A.26)�2 = 
 ei�(r1 + h
�Re (b=
) + s� Im (b=
)i2 � ihs�Re (b=
)� 
� Im (b=
)i) : (A.27)One easily veri�es that Eq. (A.24) is satis�ed. Moreover, using Eq. (A.9), � and � are now separatelydetermined.We illustrate the above results with the 
lassi
 
ase of M = � 0 11 0�. In this 
ase M yM = 12�2, soU 
annot be dedu
ed by diagonalizing M yM . Setting a = b = 0 and 
 = 1 in the above formulae, itfollows that � = �=4, �1 = �e�i� and �2 = ei�, whi
h yields � = �(� � �)=2 and � = �=2. Thus,Eq. (A.7) yields:U = 1p2  1 ei��e�i� 1 !  �iei�=2 00 e�i�=2 ! = 1p2  �iei�=2 ei�=2�ie�i�=2 e�i�=2 != 1p2  i 1�i 1 !  � 
os(�=2) sin(�=2)� sin(�=2) 
os(�=2) ! ; (A.28)whi
h illustrates expli
itly that in the degenerate 
ase, U is unique only up to multipli
ation on theright by an arbitrary orthogonal matrix.Appendix B: The small-mixing approximationThe 6 � 6 USSM neutralino mass matrix of Eq. (2.12) 
annot be diagonalized analyti
ally in general.However, simple analyti
al expressions for masses and mixing parameters 
an be found, similarly as in39



the NMSSM, by making use of approximations based on the natural assumption of small doublet-singlethiggsino, doublet higgsino-U(1)X gaugino mixing and kineti
 gaugino mixing, i.e. for a large SUSY s
ale
ompared to the ele
troweak s
ale.In this appendix, we provide details of the neutralino mass matrix diagonalization in the small mixingapproximation, in whi
h the weak 
oupling between two o�-diagonal matrix blo
ks 
an be perturbativelytreated. For mathemati
al 
larity, we present the solution for a general 
omplex (N +M) � (N +M)symmetri
 matrix in whi
h the N �N and M �M submatri
es are 
oupled weakly so that their mixingis small: MN+M = 0� MN XNMXTNM MM 1A (B.1)To obtain the 
orresponding physi
al neutralino masses, one must perform a Takagi diagonalization ofMN+M :19 (NN+M )�MN+M (NN+M )y = diag(m10 ; m20 ; : : : ; mN 0+M 0) ; mk0 � 0 ; (B.2)where NN+M is a unitary matrix.20 The Takagi diagonalization of a general 
omplex symmetri
 matrixis des
ribed in Appendix A. The non-negative mk0 are 
alled the singular values ofM , whi
h are de�nedas the non-negative square roots of the eigenvalues of M yM .In Eq. (B.1), MN and MM are N �N and M �M 
omplex symmetri
 submatri
es with singularvalues generally of the SUSY s
ale,MSUSY. XNM is a re
tangular N�M matrix whose matrix elementsare generally of the ele
troweak s
ale. Assuming that the ele
troweak s
ale is signi�
antly smaller thanMSUSY, one 
an treat XNM as a perturbation as long as there are no a

idental near-degenera
iesbetween the singular values of MN and MM , respe
tively. (The 
ase of su
h a near-degenera
y is thesubje
t of Appendix C.) The diagonalization of MN+M 
an be performed using the following steps.[1℄ In the �rst step, we separately perform a Takagi diagonalization of MN and MM :MDN = NN �MNNN y = diag(m10 ; : : : mN 0) ; (B.3)MDM = NM �MMNM y = diag(mN 0+10 ; : : : ;mN 0+M 0) ; (B.4)where the mk0 are real and non-negative. The ordering of the diagonal elements above21 is 
hosena

ording to some 
onvenient 
riterion (e.g., see the dis
ussion at the end of Se
t. 2.) Analyti
al expres-sions 
an be obtained for the singular values and the Takagi ve
tors that 
omprise the 
olumns of the19In Eq. (B.2), we use primed subs
ripts to indi
ate that the 
orresponding neutralino states are 
ontinuously 
onne
tedto the states of the unperturbed blo
k matrix, diag(MDN ;MDM ), where the diagonal matri
es MDN and MDM are de�nedin Eqs. (B.3) and (B.4).20When N and M are used in subs
ripts and supers
ripts of matri
es, they refer to the dimension of the 
orrespondingsquare matri
es. For re
tangular matri
es, two subs
ripts will be used.21See footnote 19. 40




orresponding unitary matri
es NN and NM for values of N , M � 4 [12℄.Step [1℄ results in a partial Takagi diagonalization of MN+M :MN+M �  NN � O

OT NM � !  MN XNMXTNM MM !  NN y O

OT NM y !=  MDN NN �XNMNM yNM �XTNMNN y MDM ! : (B.5)where O is an N �M matrix of zeros. The upper left and lower right blo
ks of MN+M are diagonalwith real non-negative entries, but the upper right and lower left o�-diagonal blo
ks are non-zero.[2℄ The ensuing (N + M) � (N + M) matrix, MN+M , 
an be subsequently blo
k-diagonalized byperforming an (N +M) � (N +M) Takagi diagonalization of MN+M . Sin
e the elements of the o�-diagonal blo
ks of MN+M are small 
ompared to the diagonal elements mk0 , we may treat XNM as aperturbation. More pre
isely, XNM 
an be treated as a perturbation if:���� Re (NN �XNMNM y)i0j0mi0 �mj0 ����� 1 ; (B.6)for all 
hoi
es of i0 = 10; : : : ; N 0 and j0 = N 0 + 10 : : : ; N 0 +M 0. This 
ondition will be an output of our
omputation below.The perturbative blo
k-diagonalization is a

omplished by introdu
ing an (N + M) � (N + M)unitary matrix: NB ' 0� 1N�N � 12

y 
�
y 1M�M � 12
y
 1A ; (B.7)where 
 is an N � M 
omplex matrix that vanishes when XNM vanishes (and hen
e like XNM isperturbatively small). Note that NBN yB = 1(N+M)�(N+M) + O(
4) whi
h is suÆ
iently 
lose to theidentity matrix for our purposes. Straightforward matrix multipli
ation then yields:N �B  MDN BBT MDM !N yB =  M0DN +O(B
3) B +
�MDM �MDN
+O(B
2)BT +MDM
y � 
T MDN +O(B
2) M0DM +O(B
3) !;(B.8)where B � NN �XNMNM y ; (B.9)M0DN �MDN + h
�BT + 12
�MDM
y � 12MDN

y + transpi ; (B.10)M0DM �MDM � h
TB � 12
T MDN
 + 12MDM
y
+ transpi ; (B.11)41



and \transp" is an instru
tion to take the transpose of the pre
eding terms inside the bra
ket. For a
onsistent perturbative expansion, we may negle
t all terms above that are hidden inside the variousorder symbols in Eq. (B.8). Hen
e, a su

essful blo
k-diagonalization is a
hieved by demanding thatB =MDN
� 
�MDM : (B.12)Inserting this result in Eqs. (B.10) and (B.11) and eliminating B, we obtain:M0DN =MDN � 12 h
�MDM
y �MDN

y + transpi ; (B.13)M0DM =MDM � 12 h
T MDN
�MDM
y
+ transpi : (B.14)The results above simplify somewhat when we re
all that MDN and MDM are diagonal matri
es [seeEq. (B.3) and (B.4)℄. Taking the real and imaginary parts of the matrix elements of Eq. (B.12) yieldstwo equations for the real and imaginary parts of 
ij :Re
i0j0 � ReBi0j0mi0 �mj0 ; Im
i0j0 � ImBi0j0mi0 +mj0 ; (B.15)with i0 = 10; : : : ; N 0 and j0 = N 0 + 10 : : : ; N 0 +M 0. Sin
e the 
i0j0 are the small parameters of theperturbation expansion, it follows that jReBi0j0=(mi0 �mj0)j � 1, whi
h is the perturbativity 
onditionpreviously given in Eq. (B.6).At this stage, the result of the perturbative blo
k diagonalization is:N �B  MDN BBT MDM !N yB =  M0DN O(
3)O(
3) M0DM ! : (B.16)We 
an negle
t the O(
3) terms above. Thus, the remaining task is to re-diagonalize the two diagonalblo
ks above. However, as long as we work self-
onsistently up to se
ond order in perturbation theory,no further re-diagonalization is ne
essary. Indeed, the o�-diagonal elements of M0DN and M0DM are ofO(
2). However, in the Takagi diagonalization, the o�-diagonal terms of the diagonal blo
ks only e�e
tthe 
orresponding diagonal elements at O(
4) whi
h we negle
t in this analysis. The diagonal elementsof M0DN and M0DM also 
ontain terms of O(
2), whi
h generate se
ond-order shifts of the diagonalelements relative to the mk0 obtained at step [1℄. These are easily obtained from the diagonal matrixelements of Eqs. (B.13) and (B.14) after making use of Eq. (B.15):mi0 ' mi0 + N 0+M 0Xj0=N 0+10( [ ReBi0j0 ℄2mi0 �mj0 + [ ImBi0j0 ℄2mi0 +mj0 + 2imj0 ReBi0j0 ImBi0j0m2i0 �m2j0 ) ; (B.17)mj0 ' mj0 � N 0Xi0=10( [ ReBij℄2mi0 �mj0 � [ ImBi0j0 ℄2mi0 +mj0 + 2imi0 ReBi0j0 ImBi0j0m2i0 �m2j0 ) ; (B.18)42



with i0 = 10; ::; N 0 and j0 = N 0 + 10; ::; N 0 + M 0. Although the mk0 are real and non-negative by
onstru
tion, we see that the shifted mass parameters mk0 are in general 
omplex. Thus, to 
ompletethe perturbative Takagi diagonalization, we perform one �nal step.[3℄ The diagonal neutralino mass matrix is given by:MDN+M = P�N �B  MDN BBT MDM !N yBPy = diag(mph10 ; : : : ;mphN 0+M 0) ; (B.19)where P is a suitably 
hosen diagonal matrix of phasesP = diag(e�i�10 ; : : : ; e�i�N0+M0 ) ; (B.20)su
h that the elements of the diagonal mass matrixMDN+M (denoted by mphk0 ) are real and non-negative.We identify the mphk0 with the physi
al neutralino masses. The unitary neutralino mixing matrix is thenidenti�ed as: NN+M = PNB  NN O

OT NM ! : (B.21)Starting from Eqs. (B.17) and (B.18), one 
an evaluate P to se
ond order in the perturbation 
. Inparti
ular, for �1;2 � a, we have a + �1 + i�2 ' (a + �1)ei�2=a. From this result, we easily derive these
ond-order expressions for the physi
al neutralino masses mphk0 :mphi0 ' mi0 + N 0+M 0Xj0=N 0+10� [ ReBi0j0 ℄2mi0 �mj0 + [ ImBi0j0 ℄2mi0 +mj0 � ; [i0 = 10 ; : : : ; N 0℄ ; (B.22)mphj0 ' mj0 � N 0Xi0=10� [ ReBi0j0 ℄2mi0 �mj0 � [ ImBi0j0 ℄2mi0 +mj0 � ; [j0 = N 0 + 10 ; : : : ; N 0 +M 0℄ : (B.23)and the phases �k0 :�i0 ' � N 0+M 0Xj0=N 0+10 mj0mi0(m2i0 �m2j0) ReBi0j0 ImBi0j0 ; [i0 = 10; : : : ; N 0℄ ; (B.24)�j0 ' N 0Xi0=10 mi0mj0(m2i0 �m2j0) ReBi0j0 ImBi0j0 ; [j0 = N 0 + 10 ; : : : ; N 0 +M 0℄ ; (B.25)This 
ompletes the perturbative Takagi diagonalization of the mass matrix forN -dimensional andM -dimensional subsystems of Majorana fermions weakly 
oupled by an o�-diagonal perturbation. As notedin Eq. (B.6), the perturbation theory breaks down if any mass mi0 from the N -dimensional subsystemis nearly degenerate with a 
orresponding mass mj0 from the M -dimensional subsystem (assuming thatthe 
orresponding residue, ReBi0j0 , does not vanish). We provide an analyti
 approa
h to this 
ase ofnear-degenera
y in Appendix C. 43



Appendix C: Degenerate mass eigenvaluesIf the value of one of the diagonal MDN elements, mk0 , is nearly equal to one of the diagonal MDMelements, say m`0 , and the 
orresponding residue ReBk0`0 does not vanish [
f. Eqs. (B.22) and (B.23)℄,then the te
hniques for degenerate states must be applied to diagonalize the full (N +M)� (N +M)matrix. We begin with the matrix MN+M given in Eq. (B.5), whi
h 
ontains o�-diagonal blo
ks ofO(X), whi
h 
hara
terizes the small 
ouplings between the original MSSM matrix and the new USSMsinglino/gaugino submatrix.We �rst inter
hange the �rst row and the k0th row of MN+M followed by an inter
hange of the�rst 
olumn and the k0th 
olumn, in order that mk0 o

upy the 100100 element of the matrix.22 Next, weinter
hange the se
ond row and the `0th row followed by an inter
hange of the se
ond 
olumn and the`0th 
olumn, in order that m`0 o

upy the 200200 element of the matrix. This sequen
e of inter
hangeshas the e�e
t of grouping the two nearly degenerate diagonal elements next to ea
h other, resulting ina new matrix M0N+M with the following stru
ture:M0N+M = 0BB� m100 ÆÆ m200 ��T MN+M�2 1CCA ; (C.1)where the parameter Æ and the submatrix � are of O(X). The submatrix MN+M�2 is no longerdiagonal, although its new o�-diagonal elements are all of O(X). Thus, we may perform a perturbativeTakagi diagonalization using the blo
k diagonal unitary matrix, diag(12�2 ; NN+M�2), withMN+M�2 = (NN+M�2)�MN+M�2 (NN+M�2)y = diag(m0300 ;m0400 : : : ;m0N 00+M 00) ; (C.2)where the m0j00 [j00 = 300; 400; : : : ; N 00 +M 00℄ are slightly shifted from the original non-degenerate fmi00g,fmj00g by the perturbation of O(X).23As a result of this pro
edure, the matrixM 0N+M in Eq. (C.1) is modi�ed by repla
ing the submatrixMN+M�2 by a diagonal matrix with perturbatively shifted diagonal elements, MN+M�2. The o�-diagonal blo
ks � and �T , are perturbatively shifted as well, but these shifts 
an be negle
ted as thesee�e
ts are of higher order in the perturbation X. We denote the resulting matrix by M00N+M .The 
omplex parameter Æ 
ouples the two near-degenerate states with mass parameters m100 andm200 . By de�nition of near-degenera
y, jm100 � m200 j � Æ, so one 
annot use perturbation theory inÆ � O(X). Instead, we shall perform an exa
t Takagi diagonalization of the 2� 2 blo
k �m100 ÆÆ m200 � of22To distinguish the ordering of the physi
al neutralino states that arises from the manipulations performed in thisappendix from the ordering of states based on Eqs. (B.3) and (B.4), we employ double-primed subs
ripts here.23For 
onsisten
y with the se
ond-order perturbative results of Appendix B, this diagonalization should be 
arried outin
luding all 
ontributions quadrati
 in X. 44



M00N+M , using the results of Appendix A.2: W � O

OT 1

!M00N+M  W y O

OT 1

! = 0BB� m0100 00 m0200 W ���TW y MN+M�2 1CCA ; (C.3)where the elements of the 2 � 2 unitary matrix W (whi
h is denoted by U y in Appendix A) 
an bedetermined in terms ofm100 ,m200 and Æ using the formulae of Appendix A.2. The (non-negative) diagonalmasses m0100 and m0200 are obtained from Eq. (A.18):m0100;200 = 1p2 �m2100 +m2200 + 2jÆj2 �q(m2200 �m2100)2 + 4jm100Æ +m200Æ�j2�1=2 : (C.4)Note that if Æ is real, the quantity under the square root is a perfe
t square, in whi
h 
ase Eq. (C.4)redu
es to the well-known expression:m0100;200 = 12 hm100 +m200 �p(m200 �m100)2 + 4Æ2i ; for real Æ : (C.5)If Æ is very small, the traje
tories of the two eigenvalues nearly tou
h ea
h other when the parameterM 01 moves through the 
ross-over zone. A non-zero Æ value prevents the traje
tories from 
rossing,keeping them at a distan
e � Æ. In the 40-50 zone, Æ is of �rst order in the ratio v=MSUSY. In 
ontrast,in the 20-60 zone, Æ vanishes at �rst order due to the fa
t that V 62060 � V 66020 � 0. However, as dis
ussedbelow Eq. (3.39), these matrix elements a
quire small non-zero 
orre
tions at higher order in v=MSUSY.Thus, we have two very di�erent behaviors for Æ, leading to the 
hara
teristi
ally di�erent evolution ofthe traje
tories. These two 
ases are illustrated by the dashed lines in the two panels of Fig. 9; on theleft for Æ ! 0 and on the right for moderately non-zero Æ values.We may now apply the perturbative blo
k diagonalization te
hnique of Appendix B to 
omplete theTakagi diagonalization of Eq. (C.3). The e�e
t of this step is to shift the diagonal masses at se
ondorder as indi
ated in Eqs. (B.22) and (B.23). We �nally arrive at the physi
al neutralino masses:mphi00 ' m0i00 + N 00+M 00Xj00=300 ( [ Re (W ��)i"j"℄2m0i00 �m0j00 + [ Im (W ��)i00j00 ℄2m0i00 +m0j00 ) ; [i00 = 100 ; 200℄ ; (C.6)mphj00 ' m0j00 � N 00Xi00=100( [ Re (W ��)i00j00 ℄2m0i00 �m0j00 � [ Im (W ��)i00j00 ℄2m0i00 +m0j00 ) ; [j00 = 300 ; 400 ; : : : ; N 00 +M 00℄ : (C.7)Sin
e the appearan
e of m0100 and m0200 [given by Eq. (C.4)℄ takes 
are of the near-degenera
y via an exa
tdiagonalization (within the near-degenerate subspa
e), the results for the physi
al masses given aboveprovide a reliable analyti
 des
ription.The sizes of the se
ond-order perturbative shifts in Eqs. (C.6) and (C.7) vary with the parameterM 01 as the m0j00 [j00 = 300; ::; (N 00 +M 00)℄ depend on M 01. The e�e
t of these shifts 
an be dis
erned in the45
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Figure 9: The evolution of the neutralino masses near the 
ross-over zone 1 (left) and near the 
rossoverzone 2 (right) when varying the U(1)X gaugino mass parameter M 01. The red dashed lines represent themasses of the diagonalized 2 � 2 matrix and the bla
k solid lines after the subsequent approximatediagonalization of the full 6� 6 matrix [Eq. (C.3)℄.two 
ases 
onsidered above|in the 
ross-over zone 20-60 with very small Æ, and in the 
ross-over zone40-50 with moderately small Æ, as shown by the solid line traje
tories of Fig. 9.Thus, we have demonstrated that an analyti
 perturbative treatment of the neutralino mass matrix
an be 
arried out, and all of its features understood, even in the 
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