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COSMOLOGICAL ACCELERATION: DARK ENERGY OR MODIFIED
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The recently observed accelerating cosmological expansion or ”dark energy” may be either a
negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark
Gravity) without any constituent Dark Energy. Low- or high-curvature modifications of Einstein
gravity are distinguished by the spacetime (Ricci) curvature of their vacua. If constituent Dark
Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein
gravity must be modified at low- curvature, becoming asymptotically de Sitter.
The dynamics of either kind of ”dark energy” cannot be derived from the homogeneous expansion
history alone, but requires also observing the growth of inhomogeneities. Present and projected
observations are all consistent with a small fine-tuned cosmological constant, but also allow nearly
static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctua-
tions will potentially distinguish between static and ”dynamic ”dark energy”. But, cosmologically
distinguishing dynamic Dark Energy from Dark Gravity will require a weak lensing shear survey
more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of
Einstein gravity may also be detected in refined observations in the solar system or in isolated
galaxy clusters.
We review local and cosmological tests of General Relativity and modified gravity. Dark Energy is
epicyclic in character, requires fine-tuning to explain why its energy density is just now comparable
to ordinary matter density, and cannot be detected in the laboratory or solar system. This, along
with braneworld theories, now motivate searching for Dark Gravity on solar system, galaxy cluster
and cosmological scales.
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I. INTRODUCTION: COSMOLOGICAL SYMMETRY VS. DYNAMICS

The greatest mystery in cosmology is the “dark energy” source of the late (redshift z . 1/2) cosmological accel-
eration. This “dark energy” may be static or dynamic and either an additional negative-pressure matter constituent
within General Relativity (Dark Energy), or a modification of General Relativity (Dark Gravity (Gu and Hwang,
2002)). This review rests on the observed global homogeneity and isotropy of the universe (Robertson-Walker cos-
mology RW), and will emphasize the difference between Robertson-Walker kinematics and dynamics. We will recall
when RW symmetry could determine the cosmodynamics: To explain the observed present cosmological acceleration
without constituent Dark Energy, Einstein dynamics must be modified at low spacetime (Ricci) curvature.
Because the homogeneous expansion historyH(z) of the global universe measures only kinematic variables, it cannot

fix the underlying dynamics: cosmographic measurements of the late accelerating universe, are consistent with either
a static cosmological constant or a dynamic “dark energy”, which itself may be constituent Dark Energy or modified
gravity (Dark Gravity). The Concordance Model ΛCDM, with a small static Dark Energy or cosmological constant
Λ, gives a good fit to all present observations, but also allows a moderately dynamic “dark energy” (Spergel et al.,
2006). We will review how static and dynamic “dark energy” and how dynamic Dark Energy and Dark Gravity could
be distinguished theoretically and by future cosmological, local or intermediate scale observations.
Whether Dark Energy or Dark Gravity, “dark energy” has two distinct dynamical effects: it alters the homogeneous

expansion history H(z) and it suppresses the growth of density fluctuations δ at large cosmological scale a(t). Because
the growth function g(z) ≡ δ/a depends on both these effects, large angular scale CMB temperature anisotropies,
the late-time growth of large scale structure, and refined weak lensing observations potentially distinguish static from
dynamic ”dark energy” and Dark Energy from Dark Gravity (Section II).
In any metric theory of gravitation, the material stress-energy sources Tµν determines the spacetime (Ricci) cur-

vature tensor Rµν or Einstein curvature tensor Gµν ≡ Rµν − gµνR/2. Before considering dynamical alternatives, we
recall how the asymptotic spacetime curvature, at vanishing matter density, can constrain any RW dynamics, without
assuming Einstein gravity: Birkhoff’s Theorem is a geometric theorem, holding in any spherically symmetric met-
ric geometry whose vacuum has vanishing spacetime (Ricci) scalar curvature (C. Callan and Peebles, 1965; Peebles,
1980). Applied to any spatially homogeneous RW universe, Birkhoff’s Theorem asserts that local Newtonian gravity
fixes the global dynamics of any matter-dominated universe whose vacuum is Ricci-flat (C. Callan and Peebles, 1965;
McCrea and Milne, 1934; Milne, 1934; Weinberg, 1972). The Ricci curvature of the vacuum, or cosmological con-
stant, distinguishes high- from low-curvature alternatives to Einstein’s original gravity theory (Section III.A). High-
curvature modifications (such as (Arkani-Hamad et al., 1998; Randall and Sundrum, 1999; Binutray et al., 2000))
require sub-millimeter corrections to Newton’s inverse-square gravity; low-curvature modifications (such as ΛCDM,
Dvali-Gabadadze-Porrati (DGP) (Dvali et al., 2000; Deffayet, 2001) theories) can preserve Newtonian gravity locally,
but must be asymptotically dominated by a cosmological constant. Without Dark Energy, our accelerating universe
is matter-dominated, and Einstein gravity needs low-curvature modification.
Section III also emphasizes that contrived (epicyclic) dynamic Dark Energy can explain the present acceleration,

but still cannot explain the Cosmic Coincidence (“Why so small now?”), without fine tuning or anthropic reasoning.
This will lead us, in Section V, to consider the Dark Gravity dynamical alternatives to Dark Energy.
Section IV reviews how Dark Energy or Dark Gravity dynamics determines the adiabatic and the effective sound

speeds, which govern the growth of fluctuations. To illustrate how different dynamics and effective sound speeds can
underly the same equation of state, we compare canonical (quintessence) and non-canonical (k-essence) scalar field
descriptions of Chaplygin gas Dark Energy .
For a truly static cosmological constant, we revert to Einstein’s original definition as an intrinsic geometric classical

parameter. By disconnecting the cosmological constant from energy-momentum sources, we side-step the mysteries of
why quantum vacuum fluctuations apparently do not gravitate and why the present matter density is rougly equal to
the present “dark energy” density. We review present local and cosmological constraints on General Relativity, before
proceeding to prospective cosmological, solar system and isolated galaxy cluster tests for modified gravity. We empha-
size the difficulties coming tests of relativistic cosmology face: The next decade may distinguish static from dynamic
”dark energy”, but will still not distinguish constituent Dark Energy from Dark Gravity (Ishak et al., 2005). Besides
cosmological tests, low-curvature modifications of Einstein gravity may yet be tested in the solar system (anomalous
orbital precession, increasing Astronomical unit) or in any isolated rich cluster of galaxies (Lue and Starkman, 2003;
Iorio, 2005a,b) (Section V).
In conclusion, cosmological scale modifications of classical Einstein gravity are less contrived than fine-tuned Dark

Energy and arise naturally in braneworld cosmology. By making intrinsic curvature the source of cosmological
acceleration, Dark Gravity avoids an additional epicyclic matter constituent, may unify early and late inflation,
and may be refuted by laboratory, solar system, or galaxy cluster (Section VI).
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TABLE I Kinematic observables for any RW geometry, in terms of Hubble expansion rate H ≡ ȧ/a.

Description Definition

Hubble horizon 1/H ≡ 1/aH = dη/dN

bulk expansion da3/a3 = 3dN = 3Hdt = 3Hdη

conformal time since big bang η(z) ≡
∫ t

0
dt′/a(t′) =

∫

∞

z
dz′/H(z′)

proper motion distance back to redshift z dM (z) = c
∫ z

0
dz′/H(z′) = c(η0 − η(z))

spacetime curvature R ≡ 6(Ḣ + 2H2) = 6H2(1 + q)

acceleration ä/a = H2 + Ḣ, q ≡ ä/aH2 = 1− dH−1/dt = −d(1/H)/dη ≡ 1− ǫH

”slow-roll” parameter ǫH ≡ dH−1/dt = −d lnH/dN

overall ”equation of state w(z) = d lnH2/(1 + z)3/3d ln (1 + z) = −1 + 2ǫH/3

cosmological jerk
...
a /a = H3 + 3HḢ + Ḧ, j ≡

...
a /aH3 = 1 + 3Ḣ/H2 + Ḧ/H3

II. EXPANSION HISTORY H(Z) IN ROBERTSON-WALKER COSMOLOGIES

Our universe is apparently homogeneous and isotropic (Robertson-Walker) in the large. These Robertson-Walker
cosmologies are four-dimensional conformally-flat generalizations of General Relativity, in which the spacetime (Ricci)
curvature R and the Einstein scalar curvature G = 3(k/a2+H2) are determined by the matter density ρ, according to
the gravitational field equations. The homogeneous expansion of our flat Robertson-Walker universe is described by
the kinematic (geometric) observables in Table I, wherein the cosmological scale a(t) = 1/(1 + z) and the number of
e-folds N ≡ ln a, so that dN = −d ln(1 + z) = Hdt = Hdη. Overhead dots denote derivatives with respect to cosmic
time t, so that the conformal Hubble expansion rate H ≡ ȧ, the Hubble expansion rate H ≡ ȧ/a, and the Hubble
time H−1 = d dM/cdz is the derivative of the conformal time dM (z)/c back to redshift z. Subscripts 0 denote present
values, so that H0 = 73± 3 km/sec/Mpc, H−1

0 = 13.4± 0.6 Gyr, cH−1
0 = 4.11± 0.17 Gpc (Spergel et al., 2006).

By measuring the evolution of the mean curvature of the background, cosmography maps the homogeneously
expanding universe, without reference to dynamics or sources of curvature. However, we will see in Section III.C that
the asymptotic Ricci curvature or vacuum Ricci curvature R∞ ≡ 4κ2ρDE(a = ∞) does constrain the Robertson-
Walker cosmodynamics, distinguishing high- and low-curvature modifications of Einstein gravity. In Einstein gravity,

G = κ
2ρ/3,κ2 ≡ 8πGN ≡ 1/M2

P ,

in terms of Newton’s constant GN and the reduced Planck mass MP . In Einstein’s original field equations, H(t) is
the only degree of freedom, only the tensor components of the metric gµν are propagating, and (absent a cosmological

constant) the asymptotic or empty space scalar curvature R∞ = 0. When Einstein gravity is modified, Ḣ ≡ dH/dt and

Ḧ ≡ d2H/dt2, or the cosmological acceleration q(t) and jerk j(t) become additional degrees of freedom, describable
by scalar or vector gravitational fields.
Conformal flatness means that light propagates in Robertson-Walker cosmologies as in Minkowski space. This

directly implies a Hubble expansion in cosmological scale a(t), an expansion history H(z), different cosmological
distances, and other kinematic quantitities listed in Table I.

A. Kinematics: Distances to Supernovae, Luminous Red Galaxies, Last Scattering Surface

The CMB shift and the first baryon acoustic peak are standard rulers measuring proper motion distances

dM (z) ≡
∫ z

0

dz′/H(z′)

back to the last scattering surface at redshift zr = 1089 and to luminous red galaxies typically at redshift z1 = 0.35, by
observing the CMB shift parameter S ≡

√
Ωm0H0dM (zr) = 1.716± 0.062 (Spergel et al., 2006))and the first baryon

acoustic peak A ≡
√
Ωm0H0[d

2
M (z1)/z

2
1H(z1)]

1/3 = 0.469 (Fairbairn and Goobar, 2005; Eisenstein et al., 2005). Cali-
brated supernovae Ia are standard candles at low redshift z < 1.7, whose observed flux=absolute luminosity/4πdL(z)

2,
measures their luminosity distance dL(z) = (1 + z)dM (z) (Perlmutter et al., 1999; Riess et al., 2004; Astier et al.,
2005).
These cosmological distances then map the evolution history H(z), but only after differentiation with respect to

redshift. Differentiating the Gold Sample (Riess et al., 2004) supernova luminosity distances dL(z), Tegmark et al
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(Wang and Tegmark, 2005) obtained Figure 1, a plot of h(z) ≡ H(z)/100. A second differentiation of the observed
distances gives the overall ”equation of state” w(z) ≡ γ(z) − 1 ≡ d lnH2/(1 + z)3/3d ln (1 + z), decreasing from 0
in the matter-dominated epoch, to −2/3 at present, and apparently tending towards −1 in the far future (Tegmark,
2002; Wang and Tegmark, 2004). Determining the overall effective “equation of state” thus requires two numerical
differentiations of the sparse, noisy primary data on cosmological distances.
As will be discussed in Section III.A below, the late accelerating expansion is conventionally described by an effective

mixture of General Relativity ideal fluids, now consisting of pressure-free matter (baryons+CDM) and ”dark energy”
defined by ρDE ≡ 3M2

PH
2 − ρm and γDE ≡ −d ln ρDE/3dN , so that the overall stiffness and “equation of state”

γ ≡ −d lnH2/3dN = γmΩm + γDEΩDE , ΩDE ≡ 1− Ωm

w = wmΩm + wDEΩDE = wDE(1− Ωm).

If Dark Energy exists as a matter constituent in General Relativity, then wDE is its ”equation of state”. Otherwise,
wDE(1 − Ωm) = d lnH2/(1 + z)3/3d ln (1 + z) measures the Dark Gravity modification to the Einstein-Friedmann
equation.
Because Ωm0 ∼ 1/3, the effective “dark energy equation of state” is now wDE0 ∼ −1, so that the “dark energy”,

whether Dark Energy or Dark Gravity, is now static or quasi-static, nearly a cosmological constant Λ ≡ κ
2ρDE ≈

2H−2
0 . Indeed, the recent three-year WMAP data, with narrowed constraints on Ωmh2 = 0.126 ± 0.009, Ωm =

0.234± 0.035, ns = 0.961± 0.017, expansion age t0 = 13.73+0.13
−0.17 Gyr, large scale structure (Tegmark et al., 2004) and

supernova data, makes wDE0 = −0.926+0.051
−0.075 (Spergel et al., 2006), consistent with the Concordance Model ΛCDM

and severely limiting how dynamic any “dark energy” can now be.

B. Expansion History Does Not Determine Cosmodynamics

The expansion history H(z) constrains but does not determine the cosmodynamics. Most simply, in Einstein’s field
equations

Gµν = κ
2Tµν/3, κ

2 ≡ 8πGN ≡ 1/M2
P ,

whose time-time component is the Einstein-Friedmann equation

k/a2 +H2 = κ
2ρ/3,

the dynamics and expansion history cannot distinguish between a cosmological constant (static Dark Gravity) −Λgµν
added to the left side and a constant vacuum energy density (static Dark Energy) ρvac = Λgµν/κ

2 on the right side.
This familiar Dark Energy/Dark Gravity degeneracy persists when both are dynamic. Thus, Table II presents five
two-parameter fits to the combined Supernova Legacy Survey (Astier et al., 2005), baryon acoustic peak and CMB
observations (Maartens and Majerotto, 2006). The first and best fit is to the Concordance Model

(H/H0)
2 = Ωm0(1 + z)3 +ΩΛ0 +ΩK0, Ωm0 +ΩΛ0 +ΩK0 ≡ 1.

The next two fits are to spatially flat Dark Energy models, in which the Einstein-Friedmann equation is

(H/H0)
2 = Ωm0(1 + z)3 +ΩX0(1 + z)3(1+wDE), Ωm0 +ΩX0 ≡ 1,

and the ”equation of state” is wDE = const or w0+waz/(1+ z), with past-average wDE ≡ (1/N)
∫ N

0 wDE(N
′) dN ′ =

wDE = w0 − waz ln (1 + z)/(1 + z) (Linder, 2005). The last two fits (Astier et al., 2005; Maartens and Majerotto,
2006) are to the original spatially curved Dvali-Gabadadze-Porrati (DGP) Dark Gravity model (Dvali et al., 2000;
Deffayet, 2001; Bento et al., 2006)

(H(z)/H0)
2 = [1/2β +

√

(1/2β)2 +Ωm0(1 + z)3]2 +ΩK0(1 + z)2, Ωm0 +ΩK0 +
√

1− ΩK0/β ≡ 1,

and to a generalized flat DGP model

(H/H0)
2 = Ωm0(1 + z)3 + (1 − Ωm0)(H/H0)

α,

fitted only to SNLS+BAO and assuming the prior Ωm0 = 0.27+0.06
−0.04 (Fairbairn and Goobar, 2005; Alam and Sahni,

2005). The spatial curvature ΩK0 is set equal to zero in the (Fairbairn and Goobar, 2005; Astier et al., 2005; Linder,
2005) models and emerges as practically zero in the (Maartens and Majerotto, 2006) models. The dynamical Dark
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0 0.5 1.0 1.5

z
FIG. 1 The cosmic expansion history (dimensionless Hubble parameter h(z)=H(z)/100) from the Riess et al. (2004) Gold
sample (top panel) and from simulated future data (bottom panel) for the NASA/JDEM mission concepts JEDI (solid points)
and SNAP (dotted points) (Wang and Tegmark, 2005). The existing Gold sample data and the simulated future JEDI are
both consistent with ΛCDM (solid curve) (from (Wang and Tegmark, 2005)).

TABLE II Model Fits to the Observed Expansion History: Two parameter fits to the joint SNLS, BAO and CMB shift data
by the Concordance Model, two different dynamical Dark Energy, and two different Dark Gravity cosmological models.

Model ΩK Ωm0 other parameters fitted

Concordance Model (ΛCDM) (Maartens and Majerotto, 2006) -0.0050 0.265 ΩΛ = 0.740

flat constant wDE (Astier et al., 2005) 0 0.271 ± 0.021 wDE = −1.023 ± 0.087

flat wDE(z) = w0 + waz/(1 + z) (Linder, 2005) 0 0.260 w0 = −0.78, wa = 0.32

original Dvali-Gabadadze-Porrati (Maartens and Majerotto, 2006) -0.0297 0.260 β ≡ H0rc = 1.39

generalized flat DGP (Fairbairn and Goobar, 2005) 0 0.27+0.06
−0.04 α = −0.17+0.87

−0.63
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Energy and Dark Gravity expansion histories are equivalent under the substitution (1+ z)3(1+wDE) ↔ (H/H0)
α, with

an average wDE = −1 + α/2 = −1.08+0.44
−0.32 (Dvali and Turner, 2003). The Gold SN data (Riess et al., 2004) would

have yielded slightly poorer fits than the SNLS data we have used.
Because the supernovae are observed only at low redshifts and the CMB first acoustic peak and the luminous red

galaxies at recombination redshifts zr = 1089 and z1 = 0.35, other smooth parameterizations could fit the past data
equally well. In any case, because the cosmological distances involve two integrations over w(z), they all smear out
information on the ”equation of state” (Moar et al., 2001). This requires smooth parametrization of the ”equation
of state” and binning of the sparse, noisy data (Wang and Tegmark, 2004), and justifies using no more than two
parameters for present and next decade observations (Linder and Huterer, 2005; Caldwell and Linder, 2005). (In
retrospect, because observations constrain the directly observable H2(z) and the ”dark energy” density better than
its derivative, the ”equation of state”, it might have been better to parameterize the past average wDE(z), rather
than wDE(z) (Wang and Freese, 2004) ).
The observed evolutionary history is already somewhat better fitted by the static ΛCDM model

(Maartens and Majerotto, 2006) than by any dynamical Dark Energy or Dark Gravity model in Table II, and the
latest WMAP data wDE0 = −0.926+0.051

−0.075 (Spergel et al., 2006), even more severely limits how dynamic any “dark
energy” can now be. Nevertheless, the uncertainties still allow some late-time evolution of w(z). Our purpose will
now be to discriminate among these nearly static alternatives by observing the fluctuation growth factor on Hubble
horizon scales. Figure 2, from (Tegmark, 2002), shows the ranges of redshift and conformal length scales over which
such spacetime fluctuations are likely to be measured cosmologically, in the next few years.

III. CLASSIFICATION OF ROBERTSON-WALKER COSMOLOGIES BY THEIR VACUUM SYMMETRY

A. Homogeneous Evolution Conventionally Described by General Relativity Perfect Fluids

By General Relativity, we understand Einstein’s original field equations without cosmological constant, before
introducing the cosmological constant on the left (geometric) side of his original field equations, changing the field
equations from Einstein to Einstein-Lemaitre and the asymptotic Ricci curvature from flat to curved. This introduces
into the classical action a very small energy scale Λ ∼ H2

0 ≪ M2
P . By avoiding identifying the cosmological constant

with any right-side matter stress-energy content, this classical approach distinguishes static from dynamic “dark
energy” and avoids considering the two cosmological constant problems, why quantum vacuum energies apparently
do not gravitate and why the present matter density ρm0 ∼ M2

P Λ. (Replacing the Einstein Lagrangian R by R− 2Λ
is equivalent to unimodular gravity (Buchmuller and Dragon, 1988; Unruh, 1989) in which the Einstein-Hilbert action
is varied holding

√
g = −1: Instead of appearing in the Hilbert-Einstein action, Λ then enters as an undetermined

Lagrange multiplier.)
Although Robertson-Walker cosmology does not assume General Relativity, its expansion history may be expressed

in terms of an equivalent perfect fluid defined by ρ ≡ 3M2
PH

2 ≡ ρm + ρDE and

overall equivalent pressure: P/c2 ≡ −M2
P (3H

2 + 2Ḣ) ≡ Pm + PDE

overall ”equation of state”: w ≡ P/ρc2 = −(1 + 2Ḣ/3H2) ≡ −1 + 2ǫH/3 = wmΩm + wDEΩDE

overall equivalent fluid stiffness: γ(z) ≡ 1 + w = −2Ḣ/3H2 ≡ 2ǫH/3 = γmΩm + γDEΩDE

overall equivalent enthalpy density: ρ+ P/c2 ≡ −2M2
P Ḣ = −dρ/3Hdt = ρm + Pm − dρDE/3dN.

So defined, ρDE is either constituent Dark Energy or a Dark Gravity addition to the Einstein-Friedmann equation
that is non-linear in H2. For ordinary non-relataivistic matter ρm ∼ a−3, γm = 1, Pm = 0 = wm. Thus, ever since
matter dominated over radiation, the overall ”equation of state” w = wDE(1 − Ωm0).
Our universe apparently evolved from a high-curvature de Sitter (early inflationary) universe P = −ρ = const.

Assuming the Weak Energy Condition w ≥ −1, so that no phantom matter or cosmic rip intervenes, it will expand
monotonically Ḣ ≤ 0, towards a different (late inflationary) low-curvature de Sitter universe. The deceleration −q(t)
decreased from 1, when radiation dominated, and is still decreasing, along with the Hubble expansion rate and Ricci
curvature.
Deceleration changed over to acceleration when the Hubble horizon changed from expanding to shrinking with

conformal time, when the ”slow-roll” parameter ǫH ≡ dH−1/dt = −d lnH/dN fell below 1, and w fell below −1/3.
The acceleration has already increased to present values q0 ≈ 0.52, w0 ≈ −0.74, but because ǫH0 ≈ 0.4, this recent
inflation is still far from truly slow-rolling. The jerk j(t) increases monotonically from a minimum jmin = −1/8
when w = −1/2, towards j → 1, as the universe asymptotes towards a terminal de Sitter universe, with low constant
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FIG. 2 Shaded regions show ranges of scale and redshift over which various cosmological observations are likely to measure
spacetime fluctuations over the next few years. The lower left region, delimited by the dashed line, is the non-linear regime
where rms density fluctuations exceed unity in the ΛCDM model (from (Tegmark, 2002)).

curvature R∞ = 12H2
∞

∼ 4H2
0 . Such a de Sitter attractor explains the growth of ”dark energy”, but not why it now

approximates the energy density of ordinary matter.
During three long epochs listed in Table III, the universe is dominated by a single barotropic phase with a constant

equation of state w and diminishing Ricci scalar curvature R(t), in which the scale a(t) ∼ t2/3(1+w), H = 2/3(1+w)t
and the acceleration and jerk are fixed at q = −(1+3w)/2, j = 1+9w(1+w)/2. When these perfect fluids are mixed
or when cosmological scalar fields appear, the ”equation of state” w(z) and the jerk j(z) = 1+9w(1+w)/2−3dw/2dN
change, the composite fluid is imperfect and supports entropic perturbations.
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TABLE III Kinematics and Ricci curvature for barotropic phases with power-law growth a ∼ t2/3(1+w), a ∼ exp(Ht).

w a(t) H(t) q(t) j(t) R(t) Model Universe

1/3 t1/2 1/2t -1 3 0 radiation

0 t2/3 2/3t -1/2 1 3H2 non-relativistic matter (Einstein-de Sitter)

-1/3 t 1/t 0 0 6H2 curvature energy (constant conformal expansionH, Milne

-1 expHt const 1 1 12H2 empty de Sitter

B. Dark Energy Requires Fine Tuning to Explain the Cosmic Coincidence

Dark Energy is reviewed in (Padmanabhan, 2003). If it exists, Dark Energy is usually attributed to an additional
ultra-light scalar field φ, so that p = p(ρ, φ) is adiabatic only when the scalar field is frozen or tracks the background.
Defining X ≡ ∂µφ∂

µφ, the scalar field is canonical (quintessence) when its kinetic energy is X/2, non-canonical (k-
essence) when the kinetic energy is non-linear in X . Canonical quintessence is driven by a slow-rolling potential and
can track the background matter, making dw/dz > 0. k-essence is driven by a non-canonical kinetic energy and can
be arranged to switch from tracking during radiation dominance over towards a dominating cosmological constant,
making dw/dz < 0 recently. Of course, this different dynamics gives quintessence and k-essence different clustering
properties.
The present “dark energy” density ρDE0 ∼ 2H2

0M
2
P ≪ M4

P . While ultra-light dynamic Dark Energy can evolve
down to this very small value, it does not explain the Cosmic Coincidence, ”Why so small now?”, why ρDE0 ∼ 2ρm0,
without the extreme fine-tuning it was invoked to avoid. Canonical and non-canonical Dark Energy ultimately require
fine-tuning: quintessence, in order to explain the Cosmic Coincidence; k-essence, in order to initiate the transition
towards a cosmological constant after radiation dominance ends.

C. Without Dark Energy, Our Universe Must Be Asymptotically de Sitter

Birkhoff’s Theorem (C. Callan and Peebles, 1965; Peebles, 1980): In any locally isotropic (spherically symmetric)
system whose vacuum is Ricci-flat (Rµν=0), the vacuum metric must be Schwarzshild:

gtt = g−1
rr = 1− 2GNM(r)/r,

where M(r) is the mass interior to r. For any small spherical shell in empty space, the Newtonian potential must
vanish inside, and decrease as 1/r outside. Birkhoff’s Theorem is a geometric theorem, which generalizes Newton’s
iron sphere theorem (C. Callan and Peebles, 1965; Peebles, 1980) from Newtonian gravity to Einstein gravity or any
high-curvature modification of Einstein gravity.
Application to any Robertson-Walker Cosmology (C. Callan and Peebles, 1965; Weinberg, 1972): Applied to a

homogeneous universe with matter density ρ(a), M(r) = 4πρ(a)r3/3, Birkhoff’s Theorem has remarkable dynamical

consequences. In a homogeneous expanding universe, a small comoving shell lying at r(t) = λ∗a(t), encloses a mass
M(r) = λ3

∗
4πρ(a)a3/3, and has constant Newtonian energy

ṙ2/2−GNM(r)/r = λ2
∗
[ȧ2/2 + κ

2ρ(a)a2/6].

Using Birkhoff’s Theorem, Milne and McCrae (McCrea and Milne, 1934; Milne, 1934) derived the global Friedmann
equation

ȧ2 − κ
2ρa2/3 = const, k/a2 +H2 = κ

2ρ/3

for any pressure-free universe, without assuming Einstein’s field equations. If Dark Energy does not exist and the
vacuum is Ricci flat, Birkhofff’s Theorem would make our presently pressure-free universe decelerate according to this
Friedmann expansion equation.
Classification of Dark Gravity Theories: If there is no Dark Energy, the Ricci curvature of the vacuum distin-

guishes high-curvature from low-curvature modifications of General Relativity: Robertson-Walker universes whose
vacua remain Ricci-flat in four dimensions (e.g. Arkani-Hamed et al (Arkani-Hamad et al., 1998), Randall-Sundrum
(Randall and Sundrum, 1999), Binutray (Binutray et al., 2000)) can only modify Einstein gravity in the ultra-violet.
Robertson-Walker universes which maintain Einstein gravity locally can only modify Einstein gravity cosmologically
(e.g. ΛCDM, self-accelerated DGP). If there is no Dark Energy, our accelerating universe is now dominated by
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pressure-free matter, so that the Friedmann-Robertson-Walker equation must be modified at low Ricci curvature, by
introducing a cosmological constant.
When Einstein gravity is modified: If the universe is asymptotically Ricci-curved, the modified Friedmann equation

k/a2 +H2 = κ
2f(ρ)/3,

maintains Einstein gravity at high density f(ρ) → ρ, but crosses over to de Sitter → const ≡ M2
P Λ at scales rc

approaching the Hubble horizon H(z)−1. About any isolated source of mass M and Schwarzchild radius rS ≡ 2GNM ,
Einstein gravity remains a good approximation only for distances r < r∗ up to the Vainstein scale r⋆ ≡ (rSr

2
c )

1/3 ∼
(H0rS)

1/3H−1
0 ≪ H−1

0 at which 2GNM/r∗ ≡ rS/r∗ = H2(a)r2
∗
= r2

∗
/r2c . These are the promising low-curvature

modification of Einstein gravity that asymptote to de Sitter, to be discussed in Section V.B.

IV. DYNAMICS DETERMINES THE GROWTH OF FLUCTUATIONS

Allowing inhomogeneities breaks translational invariance, leading to Goldstone mode sound waves that lower the
CMB angular power spectrum at large scales (low multipoles l) and leads to growth of large scale structure. In a
mixture of cosmological fluids or dynamic scalar fields, the equation of state is generally not adiabatic: fluctuations
propagate in the conformal Newtonian gauge with an effective sound speed c2s = P,X/ρ,X = w − dw/3(1 + w)dN),

generally different from the adiabatic sound speed c2a = ∂P/∂ρ = Ṗ /ρ̇. For canonical scalar field quintessence, c2s = 1,
but for non-canonical k-essence, cs can vary rapidly, nearly vanishing near the radiation/matter cross-over, where
w(z) is changing.
Because the entropic pressure fluctuations are proportional to (1 +w)(c2s − c2a), they are insensitive to the effective

sound speed in the quasi-static limit w(z) ∼ −1. This minimizes the differences between static and dynamic ”dark
energy” and between any dynamical Dark Energy and Dark Gravity, making their fluctuation growth factors hard to
distinguish, in present and in next-generation experiments (Section V.C).
With the same equation of state and adiabatic sound speed, different dynamics generally leads to different effective

sound speeds. This equation of state degeneracy is illustrated by the toy Chaplygin Gas, whose adiabatic equation
of state P = −A/ρ and sound speed c2a = −w(z) can be derived from adiabatic fluid dynamics, from a non-canonical

Born-Infeld scalar field, or from a canonical tracking scalar field with potential V (φ) = (
√
A/2)[cosh3φ+ 1/ cosh3φ].

If derived from a perfect fluid or from the Born-Infeld Lagrangian Lφ= −V0

√
1 + κ

2X, with non-canonical ρ =

V0/
√
1− κ

2X, P = −V0

√
1− κ

2X, w = −1 + κ
2X , the perturbations are adiabatic, and the effective sound speed

c2s = −w(z) = c2a. But, if derived from the canonical scalar field with potential V (φ), entropic perturbations make the
effective sounds speed c2s = 1. Agreeing in the static limit, these three theories give the same adiabatic sound speed
c2a = −w(z). Differing dynamically, they show different effective sound speeds, c2s = −w(z), − w(z), 1.
This toy model illustrates how the adiabatic sound speed depends only on the equation of state, but the effective

sound speed and growth of fluctuations depend on dynamics. All three Chaplygin models can fit the kinematic
observations of the expansion history, but the Born-Infeld model fails dynamically by providing insufficient power in
the observed large scale mass spectrum (Amendola et al., 2003). This failure can be remedied by generalizing the
equation of state to P = −A/ρα with α ∼ 0, so that this generalized Chaplygin gas is nearly indistinguishable from
a cosmological constant (Amendola et al., 2003; Bento et al., 2005; Zhu, 2004).

V. DARK GRAVITY: DYNAMICAL MODIFICATIONS OF GENERAL RELATIVITY

Because Dark Energy is contrived, requires fine tuning and apparently cannot be tested in the laboratory or solar
system, we now turn to Dark Gravity as the alternative source of cosmological acceleration. This Dark Gravity
alternative arises naturally in braneworld theories, naturally incorporates a classical extremely low spacetime intrinsic
curvature, and may unify ”dark energy” and dark matter, and possibly early and late inflation. We will see how Dark
Gravity, besides being tested cosmologically, can also be tested in the solar system, Galaxy or galaxy clusters.

A. Present Local and Cosmological Tests of General Relativity

General Relativity is a rigid metric structure incorporating general covariance (co-ordinate reparametrization in-
variance), the Equivalence Principle, and the local validity of Newtonian gravity with constant GN , in the weak field
and non-relativistic limits. General covariance implies four local matter conservations laws (Bianchi identities). The
Einstein-Hilbert action is linear in Ricci curvature, so that the Einstein field equations are second order, the two
tensorial (graviton) degrees of freedom are dynamic, but the scalar and vector gµν degrees of freedom are constrained
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to be non-propagating. Quantum gravity has always motivated high-curvature (Planck scale) modifications of General
Relativity. Now, the surprising discovery of the accelerating universe motivates extreme low-curvature (cosmological
scale) modifications of General Relativity.
General Relativity differs from Newtonian cosmology only by pressure or relativistic velocity effects, which are

tested in the solar system, in gravitational lensing of light, in the primordial abundance of light elements, in the
dynamical age, and in the large angular scale CMB and late-time mass power spectrum. Therefore, in order of linear
scale, modifications of General Relativity must be sought in:

• laboratory violations of the Equivalence Principle (Eötvos experiments) and solar system tests (Damour et al.,
1990) (lunar ranging, deflection of light, anomalous orbital precessions of the planets, Moon (Lue and Starkman,
2003; Lue, 2005; Gabadadze and Iglesias, 2005), secular increase in the Astronomical Unit (Iorio, 2005a))

• galaxy and galaxy cluster number counts (Iorio, 2005b)

• gravitational weak lensing

• cosmological variation of Newton’s GN and other ”constants”

• the suppression of fluctuation growth on large scales or at late times.

B. Classification of Modified Gravity Theories by Spacetime Curvature of Their Vacuua

As already noted, in General Relativity only the tensor degrees of freedom in the metric are propagating and
the homogeneous RW evolution depends only on H(z). If the Einstein-Hilbert action is modified, additional scalar

and vector degrees of freedom will appear, and the evolution will also depend on Ḣ, Ḧ, which can be represented
by scalar or vector gravitational fields. The basic distinction between high- and low-curvature modifications of
General Relativity depends on the spacetime (Ricci) curvature of their vacua. It is simplest to begin by considering
four-dimensional metrical deformations of General Relativity, which are often inspired by string-theory or M-theory
(Damour and Polyakov, 1994a,b) or appear as projections of higher-dimensional theories.

1. Extra Degrees of Freedom in Four-Dimensional Gravity

• Scalar-tensor gravity, the simplest and best-motivated extension of General Relativity (Fujii and Maeda, 2003;
Capozziello et al., 2005): In the original Jordon frame, a scalar gravitational field proportional to time-varying
1/GN , is linearly coupled to the Ricci scalar R. After a conformal transformation to the Einstein frame, the
scalar gravitational field is minimally coupled to gravity, non-minimally coupled to matter. In the Einstein frame,
the gravitational field equations look like Einstein’s, but the matter field is coupled to the scalar gravitational
field as strongly as to the tensor gravitational field, so that test particles do not move along geodesics of the
Einstein metric. Test particles move along geodesics of the original Jordon metric, so that the Weak Equivalence
Principle holds.

Scalar-tensor theories modify Einstein gravity at all scales and must be fine-tuned, in order to satisfy obser-
vational constraints. Nucleosynthesis and solar system constraints severely restrict any scalar field compo-
nent, rendering any Dark Gravity effects on the CMB or H(z) evolution imperceptible (Bertotti et al., 2003;
Catena et al., 2004; Capozziello et al., 2006a).

• higher-order metric f(R) theories: Stability of the equations of motion allows the Lagrangian to depend only
on R, and only trivially on other curvature invariants, P ≡ RµνR

µν , Q ≡ RαβγδR
αβγδ (Ostrogradski, 1850)

or derivatives of any curvature scalar (Woodard, 2006). These f(R) theories are equivalent to scalar ten-
sor theories with vanishing Brans-Dicke parameter ωBD = 0 (Teyssandier and Tourrenc, 1983; Olmo, 2005;
Capozziello et al., 2006b).

The simplest low-curvature modification (Carroll et al., 2004, 2005; Nojiri and Odintsov, 2006), replacing the
Einstein Lagrangian density by R−µ4/R, leads to accelerated expansion at low-curvature R ≤ µ2 ∼ H2

0 , but has
negative kinetic energies and is tachyonically unstable. This instability would be tolerable in empty space, but
would be vastly and unacceptably amplified inside matter (Dolgov and Kawasaki, 2003), and phenomenologically
unacceptable outside matter (Soussa and Woodard, 2004). These f(R) theories, like their scalar-tensor gravity
equivalents, can be fine-tuned to avoid these potential instabilities and satisfy supernova and solar system
constraints (Woodard, 2006; Soussa and Woodard, 2004; Nojiri and Odintsov, 2004, 2003), but not cosmological
constraints (Amendola et al., 2006).
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• TeVeS (relativistic MOND theory): Adding an additional vector gravitational field, could explain galactic
rotation curves and the Tully-Fisher relation, without invoking dark matter, and possibly unify dark matter
and “dark energy” (Bekenstein, 2004). Because gravitons and matter have different metric couplings, TeVeS
predicts that gravitons should travel on geodesics different from photon and neutrino geodesics, with hugely
different arrival times from supernova pulses. It also predicts insufficient power in the third CBR acoustic
peak (Skordis et al., 2006). In any case, now that WMAP data requires dark matter (Spergel et al., 2006), the
motivation for TeVeS disappears.

2. Extra Dimensional Modifications of Einstein Gravity

In extra dimensional braneworld theories, scalar fields appear naturally as dilatons and modify Einstein gravity
at high- curvature, by brane warping (Randall and Sundrum, 1999; Binutray et al., 2000), or at low- curvature, by
brane leakage of gravity (Dvali et al., 2000). If quantized, these theories encounter serious theoretical problems
(ghosts, catastrophic ultra-violet instabilities, strong coupling problems). Until these problems can be overcome,
these theories can only be regarded as effective field theories, incorporating an extremely low infra-red scale at
low spacetime curvature. This suggests an infra-red/ultra-violet connection, since effective field theories ordinarily
incorporate ultra-violet parameters.
In the original DGP model (Dvali et al., 2000; Deffayet et al., 2002a,b), the brane’s finite stiffness leads to an

effective modified Friedmann equation,

H2 + k/a2 −H/rc = H2 + k/a2 −HH0/β = κ
2ρ/3

(H(z)/H0)
2 = [1/2β +

√

(1/2β)2 +Ωm0(1 + z)3]2 +ΩK0(1 + z)2, 1 ≡ Ωm0 +ΩK0 +
√

1− ΩK0/β

on the four-dimensional brane by inducing an additional curvature term H/rc at the cosmological scale β ≡ H0rc =
1.39, rc = β/H0 ≡ H−1

∞
∼ 5.7 Gpc. This modified Friedmann equation interpolates between Einstein’s pressure-free

universe at large redshifts, and the empty de Sitter universe with constant Hubble expansion H∞ ≡ 1/rc = H0/β,
in the asymptotic future. The universe began its late acceleration at zacc = (2Ωm0/β

2)1/3 − 1 ∼ 0.58. This is the
original DGP model fit on the fourth line of Table I, which turns out to be spatially practically flat.
In flat 3-space, the modified Friedmann equation has the self-accelerating solution

H =
√

κ
2ρ/3 + (1/2rc)2 + 1/2rc

H(z)/H0 = 1/2β +
√

(1/2β)2 +Ωm0(1 + z)3, 1 ≡ Ωm0 + 1/β,

Because this self-accelerating solution has a Ricci-curved vacuum, Birkhoff’s Theorem does not apply on the 4D brane,
and Einstein gravity still holds at the shortest distances. However, about any isolated condensation of Schwarzchild
radius rS ≡ 2GNM/c2, the self-accelerating metric

gtt = 1− rS/2r +
√

r2Sr/2r
3
⋆, g−1

rr = 1 + rS/2r −
√

r2Sr/8r
3
⋆, r . r⋆,

and Einstein gravity already breaks down at the Vainshtein scale (Dvali et al., 2003) defined by

r⋆ ≡ (rSr
2
c )

1/3 ∼ (H0rS)
1/3H−1

0 ≪ H−1
0 .

This scale, surprisingly intermediate between rS and H−1
0 , is also where the growth of fluctuations changes from

Einstein gravity to linearized DGP or scalar-tensor Brans-Dicke growth, with an effective Newton’s constant slowly
decreasing by no more than a factor two (Lue et al., 2004).
The original flat DGP model can be generalized (Dvali and Turner, 2003) to

H2 −Hαrα−2
c = κ

2ρ/3, 1/β ≡ (1− Ωm0)
1/(2−α), 1 = Ωm0 + βα−2,

which is equivalent to a ”dark energy” ρDE ≡ 3M2
PH

2 − ρ = 3M2
PH

αrα−2
c , wDE = −1 + α/2. This generalization

reduces to the original flat DGP form for α = 1, but otherwise interpolates between the ΛCDM model for α = 0, β =
1.18 and the Einstein-de Sitter model for α = 2, β = ∞. For small α, it describes a slowly varying cosmological
constant. Excluding the CMB shift data, the joint SNLS-BAO data fits this nearly static Dark Gravity model fit with
α = −0.17+0.87

−0.63, β = 1.16 or rc = β/H0 ∼ 8 Gpc (Fairbairn and Goobar, 2005). This is the generalized flat DGP
model on the last line of Table I.
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FIG. 3 The proper motion or conformal distance r(z) = c
∫ z

0
dz′/H(z′) back to redshift z, calculated for flat ΛCDM (dashed)

and DGP Dark Gravity (solid) models with present matter fraction Ωm0 = 0.3. The DGP Dark Gravity model is also mimicked
by a Dark Energy model with w(a) = −0.78 + 0.32z/(1 + z). Between static and dynamic “dark energy”, the differences in
distances and in expansion history H(z) = cdz/r(z) are small, but the differences in growth factor will be larger in FIG. 4.
(from (Koyama and Maartens, 2005)).
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FIG. 4 The linear growth history g(a) ≡ δ/a for flat ΛCDM (long dashed), DGP Dark Gravity (thick solid) and Dark Energy
models in Fig. 3. Because the DGP model Newton’s “constant” weakens with time, it shows a little more growth suppression
than that in the mimicking Dark Energy model. DGP-4D (thin solid) shows the incorrect result obtained by neglecting
perturbations of the DGP 5D Weyl tensor. The 5D Weyl tensor perturbations make dynamical Dark Gravity (DGP) and Dark
Energy hard to resolve, but both dynamical models are distinguishable from static Dark Energy. (from (Koyama and Maartens,
2005))

.
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C. Prospective Tests of Modified Gravity

Prospective cosmological observations: Figure 3 compares the recent expansion histories Koyama and Maartens
(Koyama and Maartens, 2005) calculated in the static flat ΛCDM model with the dynamic flat DGP Dark Gravity
model β = 1.41, chosen to fit Ωm0 = 0.3, and with its Dark Energy mimic. The degeneracy in these three models
is lifted by their different linear growth factors plotted in Figure 4: DGP Dark Gravity always suppresses growth a
little more than Dark Energy does, but substantially more than the Concordance Model. The present normalized
linear growth factors g(a) = δ/a = 0.61, 0.68.0.80 for DGP Dark Gravity, Dark Energy, ΛCDM respectively will lead
to slightly different large-scale CMB and gravitational weak lensing (cosmic shear) convergence effects.
These linear growth factors have been calculated (Koyama and Maartens, 2005) on subhorizon scales and agree with

(Ishak et al., 2005; Lue and Starkman, 2003), but are not yet reliable on superhorizon scales, where gravity leakage is
most important. Unfortunately, the large-scale CMB angular power spectrum is obscured by cosmic variance and by
foreground effects of nearby structures. Nevertheless, the linear growth factors already suggest that next-generation
observations may distinguish static from dynamic ”dark energy”, but will be unable to distinguish Dark Energy from
DGP Dark Gravity. To do so will require a newer, more ambitious weak lensing shear survey (Ishak et al., 2005).
Prospective solar system and galaxy cluster observations: The modifications to Einstein gravity at the Vainstein

intermediate scale r∗ may also be tested in next-generation solar system measurements of anomalous precessions of
planetary or lunar orbits (Lue and Starkman, 2003; Dvali et al., 2003) or of a secular increase in the Astronomical
Unit (Iorio, 2005b). These Vainstein scale modifications may also be observable in precision tests about other isolated
stars (rS ∼ 3 km, r⋆ ∼ 280 pc) or about isolated spherical galaxy clusters rS ∼ 100 pc, r⋆ ∼ 28 Mpc) (Iorio, 2005a).

VI. CONCLUSIONS: ΛCDM, FINE-TUNED DARK ENERGY, OR MODIFIED GRAVITY

We have reviewed present and prospective observations of “dark energy” as the source of the observed late cosmo-
logical acceleration, in order to emphasize the differences between kinematical and dynamical observations, between
static and dynamic “dark energy”, and between Dark Energy and Dark Gravity. We conclude that

• Cosmological acceleration is explicable by either a small fine-tuned cosmological constant or by “dark energy”,
which is now at most moderately dynamic. This “dark energy”, if dynamic, is either an additional, ultra-light
matter constituent within General Relativity, or a low-curvature modification of Einstein’s field equations.

• The best and simplest fit to the expansion history, static ”dark energy” (ΛCDM), interprets the cosmological
constant as a classical intrinsic geometric Ricci curvature, rather than as vacuum energy. This side-steps the
cosmological constant problems, why quantum vacuum fluctuations apparently do not gravitate and why the
current matter density is roughly that of “dark energy”.

• The homogeneous expansion history can also be fitted by moderately dynamical ”dark energy”. Only observing
the large-scale inhomogeneity growth rate will distinguish between dynamic and static ”dark energy”.

• Projected cosmological observations of the growth factor in the large-scale angular power spectrum, mass power
spectrum, or gravitational weak lensing convergence should distinguish static from dynamic ”dark energy”, but
not Dark Energy from Dark Gravity.

Originally invoked to explain late cosmological acceleration within General Relativity, quintessence and k-essence
Dark Energy fail to explain the Cosmological Coincidence “Why Dark Energy appears now?”, without fine-tuning or
anthropic reasoning. Low- curvature modifications of Einstein gravity, such as DGP, are conceptually less contrived
than finely-tuned Dark Energy, and arise naturally in braneworld theories. They explain cosmological acceleration
as a natural consequence of geometry, may unify early and late inflation,, and may even be tested by refined solar
system or galaxy observations.
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