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orre
tion to the QCD stati
 inter-quark potential at O(1=m) is investigatednonperturbatively for the �rst time by using latti
e Monte Carlo QCD simulations. The 
orre
-tion is found to be 
omparable with the Coulombi
 term of the stati
 potential when applied to
harmonium, and amounts to one-fourth of the Coulombi
 term for bottomonium.PACS numbers: 11.15.Ha, 12.38.G
, 12.39.PnI. INTRODUCTIONHeavy quarkonia, i.e. bound states of a heavy quarkand antiquark [1, 2, 3, 4℄, o�er a unique opportunityto gain an understanding of nonperturbative QCD. Apossible way of studying su
h systems systemati
ally inQCD is to employ nonrelativisti
 QCD (NRQCD) [5, 6℄,whi
h is obtained by integrating out the s
ale above theheavy quark mass m � �QCD. Further, by integrat-ing out the s
ale mv, where v is quark velo
ity, onearrives at a framework 
alled potential NRQCD (pN-RQCD) [7, 8, 9, 10℄, where the stati
 potential emergesas the leading-order 
ontribution, followed by relativis-ti
 
orre
tions in powers of 1=m. The potential atO(1=m2) 
ontains the leading order spin-dependent 
or-re
tions [11, 12, 13℄ and the velo
ity-dependent poten-tials [14, 15℄. Perturbation theory may be applied to thedetermination of these potentials to some extent. How-ever, sin
e the binding energy is typi
ally of the s
alemv2, whi
h 
an be of the same order as �QCD due tothe nonrelativisti
 nature of the system, v � 1, as wellas the fa
t that perturbation theory 
annot in
orporatequark 
on�nement, it is essential to determine the poten-tial nonperturbatively. The various properties of heavyquarkonium 
an be extra
ted by solving the S
hr�odingerequation with these potentials.Monte Carlo simulations of latti
e QCD o�er a pow-erful tool for the nonperturbative determination of thepotentials, and it is the aim of this Letter to present thesimulation result of the heavy quark potential at O(1=m),whi
h has not been investigated so far on the latti
e. Letus denote the spatial position of the quark and antiquarkas ~r1 and ~r2 with the relative distan
e r = j~r1 � ~r2j andthe masses m1 and m2, respe
tively. The potential isV (r) = V (0)(r) +� 1m1 + 1m2�V (1)(r) + O( 1m2 ) ; (1)where V (0)(r) is the stati
 potential, usually obtained byevaluating the expe
tation value of the Wilson loop. Thestati
 potential is well parameterized by the Coulomb

plus linear term,V (0)(r) = � 
r + �r + � ; (2)where � is the string tension and � a 
onstant [29℄. Onthe other hand, the nonperturbatively expe
ted form ofV (1)(r) is not yet known, but leading-order perturba-tion theory yields V (1)(r) = �CFCA�2s=(4r2) [8, 16,17℄, where CF = 4=3 and CA = 3 are the Casimir
harges of the fundamental and adjoint representations,respe
tively (beyond leading-order perturbation theory,see [18℄). II. PROCEDURESWe work in Eu
lidean spa
e in four dimensions on ahyper
ubi
 latti
e with latti
e volume V = L3T and lat-ti
e spa
ing a, where periodi
 boundary 
onditions areimposed in all dire
tions. Writing the eigenstate of thepNRQCD Hamiltonian at O(m0) in the 3 
 3� repre-sentation of 
olor SU(3), whi
h 
orresponds to the stati
quark-antiquark state, as jni � jn;~r1; ~r2i with the energyEn(r) [e.g., E0(r) = V (0)(r)℄, the spe
tral representationof V (1)(r) is expressed as [8, 9℄V (1)(r) = �12 1Xn=1 h0jgE(~ri)jni�hnjgE(~ri)j0i(�En0)2 ; (3)where g is the gauge 
oupling, E(~ri) denotes the ele
-tri
 �eld atta
hed to the quark (i = 1) or the antiquark(i = 2), and �En0 � En � E0 the energy gap. It is alsopossible to write Eq. (3) as the integral of the ele
tri
�eld strength 
orrelator on the Wilson loop with respe
tto the relative temporal distan
e between two ele
tri
�elds [8, 9℄. This is, in prin
iple, measurable on the lat-ti
e, and the result is redu
ed to Eq. (3) on
e the spe
-tral de
omposition is applied by using the transfer matrixtheory, and the temporal size of the Wilson loop is takento in�nity [30℄.In our approa
h, the Polyakov loop 
orrelation fun
-tion (PLCF, a pair of Polyakov loops P separated by a



2distan
e r) is adopted as the quark-antiquark sour
e in-stead of the Wilson loop for the reason dis
ussed below.Let us 
onsider the �eld strength 
orrelator on the PLCF,C(t) = hhg2E(~ri; t1)�E(~ri; t2)ii
� hhg2E(~ri; t1)�E(~ri; t2)ii�hhgE(~ri)ii�hhgE(~ri)ii ;(4)where the double bra
kets represent the ratio of expe
-tation value hh� � �ii = h� � �iPP�=hPP �i, while h� � �iPP� im-plies that the ele
tri
 �eld is 
onne
ted to either of thePolyakov loop in a gauge invariant way. The relative tem-poral distan
e of two ele
tri
 �eld operators is t = t2�t1.The spe
tral de
omposition of Eq. (4) reads [19℄C(t) = 2 1Xn=1h0jgE(~ri)jni�hnjgE(~ri)j0ie�(�En0)T=2� 
osh[(�En0)(T=2� t)℄+O(e�(�E10)T ) ; (5)where the last term represents terms involving expo-nential fa
tors equal to or smaller than exp[�(�E10)T ℄.Thus, on
e Eq. (4) is evaluated via Monte Carlo simu-lations, we 
an determine the amplitude jh0jgE(~ri)jnij2and the energy gap �En0 in Eq. (5) by a �t and in-sert them into Eq. (3). It is easy to see that in thelimit T ! 1 we 
an write Eq. (4) in the integral formV (1)(r) = �(1=2) lim�!1 R �0 dt tC(t), where � = �Twith arbitrary � 2 (0; T=2℄.The reason for using the PLCF is to 
ompute Eq. (3)with less systemati
 errors. The hyperboli
 
osine inEq. (5) is typi
al for the PLCF and we 
an 
ontrol the ef-fe
t of the �nite temporal latti
e size on the �eld strength
orrelator automati
ally in the �t. Moreover, the errorterm of O(e�(�E10)T ) is already expe
ted to be small fora reasonable size of T . By 
ontrast, if one uses the Wil-son loop at this point, the spe
tral representation is justa multi-exponential fun
tion, and the leading error termis of O(e�(�E10)(�t)), where �t is the relative temporaldistan
e between the spatial part of the Wilson loop andthe �eld strength operator. Here, one 
annot 
hoose �tas large as T , sin
e the temporal extent of the Wilsonloop is limited to T=2 be
ause of the periodi
ity of thelatti
e volume.The only te
hni
al problem that arises when using thePLCF is how to obtain a signal for the �eld strength
orrelator in Eq. (4), sin
e the expe
tation value of thePLCF at zero temperature be
omes exponentially smallwith in
reasing r, and the signal is easily washed out bystatisti
al noise. In fa
t, it is almost impossible to ob-tain the signal of the PLCF at intermediate distan
es,say r � 0:5 fm, with the 
ommonly used simulation al-gorithms. However, we �nd that this problem 
an besolved by applying the multi-level algorithm [20℄ with a
ertain modi�
ation as applied to the determination ofthe spin-dependent potentials [19, 21℄ (see also [22℄ for asimilar appli
ation).The basi
 pro
edure of the multi-level algorithm (re-stri
ted to the lowest level) is as follows. We �rst di-vide the latti
e volume into several sublatti
es along the

E

r1 r2
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Ntsl

E

tFIG. 1: Constru
tion of the ele
tri
 �eld strength 
orrelatoron the PLCF. Arrows at ~r1 and ~r2 represent the Polyakovlines for the stati
 quark and antiquark. [� � � ℄ denotes thesublatti
e average.time dire
tion, where a sublatti
e 
onsists of a 
ertainnumber of time sli
es Ntsl. The number of sublatti
es isNsub = T=Ntsl, whi
h is assumed to be integer. In ea
hsublatti
e we take averages of the 
omponents of the 
or-relation fun
tion [
omponents of the PLCF and of the�eld strength 
orrelators, whi
h are in the 3 
 3� rep-resentation of SU(3)℄, by updating the gauge �eld witha mixture of heatbath (HB) and over-relaxation (OR)steps, while the spatial links on the boundary betweensublatti
es remain inta
t during the update. We referto this pro
edure as the internal update and denote thenumber of internal update as Niupd . Repeating the inter-nal update until we obtain stable signals for these 
om-ponents, we �nally multiply these averaged 
omponentsto 
omplete the 
orrelation fun
tion. Thereby the 
or-relation fun
tion is obtained for one 
on�guration. Fora s
hemati
 understanding, see Fig. 1, whi
h illustratesthe 
omputation of the ele
tri
 �eld strength 
orrelatoron the PLCF. We then update the whole set of linkswithout spe
ifying any layers to obtain another indepen-dent gauge 
on�guration and repeat the above sublat-ti
e averaging. On
e Ntsl and Niupd are optimized for agiven gauge 
oupling � and a maximal quark-antiquarkdistan
e of interest, the statisti
al 
u
tuations of observ-ables turn out to be quite small. Further te
hni
al details
an be found in [19℄.III. RESULTSOur simulations were 
arried out using the standardWilson gauge a
tion in SU(3) latti
e gauge theory at� = 6:0 on the 204 latti
e (the latti
e spa
ing, determinedfrom the Sommer s
ale r0 = 0:5 fm, is a � 0:093 fm [20℄).One Monte Carlo update 
onsisted of 1 HB, followed by5 OR steps. For pra
ti
al reasons (mainly to save 
om-puter memory) we set ~r = (r; 0; 0). We employed thelatti
e �eld strength operator de�ned by ga2F��(s) �[U��(s) � U y��(s)℄=(2i) at the site s, where U��(s) are
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FIG. 2: The ele
tri
 �eld strength 
orrelators on the PLCFat � = 6:0 on the 204 latti
e for r=a = 5. The dotted linesare the �t 
urves with nmax = 3 in Eq. (5).plaquette variables and 
onstru
ted the ele
tri
 �eld byga2Ei(s) = ga2[F4i(s) + F4i(s � î)℄=2. In order to re-move self-energy 
ontributions of the ele
tri
 �eld wemultiplied by the 
onventional Huntley-Mi
hael fa
tor,ZEi (r) [23℄, whi
h, however, only removes self-energy
ontributions at O(g2). This fa
tor, whi
h depends onr and also on the relative orientation of the ele
tri
 �eldoperator to ~r, was 
omputed using the PLCF [19℄. Weobtained the value ZEi (r) � 1:62. For a more pre
isevalue of ZE , see Ref. [19℄. For the 
hosen value ofNtsl = 4we performed Niupd = 7000 internal updates. Our totalstatisti
s was N
onf = 60.In Fig. 2, we show the C(t) for the longitudinal andthe transverse 
omponents, hhg2Ex(~ri; t1)Ex(~ri; t2)ii
 andhhg2Ey(~ri; t1)Ey(~ri; t2)ii
 = hhg2Ez(~ri; t1)Ez(~ri; t2)ii
, re-spe
tively, where r=a = 5 is sele
ted as an example.Note that the 
orrelators are negative. Here, the se
-ond term of Eq. (4) 
an be non-zero as the ele
tri
�eld is even under CP transformations. We 
omputedhhgEiii independently and found hhgEyii = hhgEzii = 0,while hhgExii 6= 0, whi
h was then subtra
ted to ob-tain C(t). As it is impossible to determine the ampli-tudes and the energy gaps for all n � 1 with the lim-ited data points, we trun
ated the expansion in Eq. (5)at a 
ertain n = nmax. The validity of the trun
a-tion was monitored by looking at �2 and the stabilityof the resulting potential as a fun
tion of nmax, where�2 was always de�ned with the full 
ovarian
e matrix.We found that nmax = 3 was optimal with the �t ranget=a 2 [1; 8℄ (equivalent to t=a 2 [12; 19℄). The system-ati
 e�e
t 
aused by the trun
ation 
an be 
he
ked bysimulating volumes with larger values of T and by in-
reasing nmax in the �t. However, from the experien
eof evaluating similar �eld strength 
orrelators for thespin-dependent potentials [19℄, we expe
t that su
h ane�e
t is already negligible 
ompared to statisti
al errors,on
e three terms are in
luded for T = 20 at � = 6:0.
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urves 
orresponding to Eq. (6) and Eq. (7),respe
tively.Here, we employed two ways of the �t pro
edure; we�tted hhg2ExExii
 and hhg2EyEyii
 separately, and �ttedhhg2E �Eii
 = hhg2ExExii
+2hhg2EyEyii
 simultaneously.The latter is based on the expe
tation that the energygaps are the same for both 
orrelators. We obtained�2min=Ndf = 1:1 for hhg2ExExii
 and 3:0 for hhg2EyEyii
,respe
tively, and the 
orresponding �t 
urves are plottedin Fig. 2. Ndf is the number of degrees of freedom. Thesimultaneous �t yielded �2min=Ndf = 2:2. In any 
ase,the resulting potential was found to be the same withinerrors, whi
h were estimated from the distribution of theja
kknife sample of the �t parameters. For other dis-tan
es �2min=Ndf was smaller than in this example, andthe results of the two �t pro
edures were 
onsistent.We present the potential V (1)(r) in Fig. 3, where theresult of the simultaneous �t is plotted. We see an in-
reasing behavior as a fun
tion of r. We �rst testedwhether this in
reasing behavior mat
hes the expe
ta-tion from perturbation theory. Negle
ting logarithmi

orre
tions we �tted the data at r=a 2 [2; 5℄ toV (1)�t-1(r) = � 
0r2 + �0 ; (6)and found 
0 = 0:099(5) and a2�0 = 0:401(1) with�2min=Ndf = 6:6, where the �t 
urve is plotted in Fig. 3(dashed line). Note that if we in
lude the data atr=a = 6, �2 be
omes twi
e as large, while the �t pa-rameters are little a�e
ted. In order to 
he
k if this is aremnant of the perturbative behavior, we need data atsmaller distan
es and perform a s
aling test. At the mo-ment, what we 
an say is that the data at r=a & 5 arein
onsistent with a pure 1=r2 behavior.In trying to establish empiri
ally the fun
tional formof the r dependen
e, we employed several alternative �t



4fun
tions, and among them, we found thatV (1)�t-2(r) = �
00r + �00 ; (7)
an des
ribe the behavior of V (1)(r) reasonably well,where the 
oeÆ
ient 
00 has a dimension of mass. Wetook into a

ount the data at r=a 2 [2; 6℄ and obtaineda
00 = 0:081(4) and a2�00 = 0:417(1) with �2min=Ndf =2:3, where the �t 
urve is plotted in Fig. 3 (solid line).As the potential V (1)(r) requires no mat
hing 
oef-�
ient [24, 25℄, in 
ontrast to the spin-dependent po-tentials at O(1=m2), we 
an dire
tly insert V (1)(r) intoEq. (1) and 
ompare its relative magnitude with thestati
 potential V (0)(r) for given quark and antiquarkmasses. For this purpose we may use the �t result ofEq. (7). By dividing V (1)�t-2(r) by the quark mass, wherewe set m1 = m2 = m for simpli
ity, we have a 1=r termwith a dimensionless 
oeÆ
ient 2
00=m. For 
harmonium,m
 = 1:3 GeV, we then �nd 2
00=m
 = 0:26(1), whi
h is93(5) % of the Coulombi
 
oeÆ
ient of the stati
 poten-tial, 
 = 0:281(5), in Eq. (2) [19℄. For bottomonium,mb = 4:7 GeV, we �nd 2
00=mb = 0:073(4), whi
h is still26(2) % of 
. It is 
ertainly interesting to investigate thee�e
t on heavy quarkonium spe
tros
opy.IV. SUMMARYWe have investigated the relativisti
 
orre
tion to thestati
 potential at O(1=m) nonperturbatively by using

latti
e QCD Monte Carlo simulations for the �rst time.The key strategy here is to employ the multi-level algo-rithm for measuring the �eld strength 
orrelator on thePLCF and to extra
t the potential by exploiting the spe
-tral representation of the �eld strength 
orrelators. Thismethod allows us to obtain the potential with less statis-ti
al and systemati
 errors. The 
orre
tion is found to be
omparable to the Coulombi
 term of the stati
 potentialwhen applied to 
harmonium and to be one-fourth of theCoulombi
 term for bottomonium.Finally, we note that the �eld strength 
orrelatorobtained here 
an be used to 
ompute one of thevelo
ity-dependent potentials at O(1=m2), Vd(r), in theparametrization of Refs. [14, 15℄, sin
e the spe
tral rep-resentation of Vd(r) 
onsists of the same amplitudes andthe energy gaps. We plan to present this result as well asthe other velo
ity-dependent potentials at O(1=m2) in aseparate publi
ation. The �rst latti
e result 
an be foundin Ref. [26℄. A
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