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DESY 06-062, RCNP-Th 06004, MKPH-T-06-12Nonperturbative determination of the QCD potential at O(1=m)Yoshiaki Komaa, Miho Komaa;b, Hartmut WittigaDeutshes Elektronen-Synhrotron DESY, Theory Group, D-22607 Hamburg, GermanybResearh Center for Nulear Physis (RCNP), Osaka University, Osaka 576-0047, JapanInstitut f�ur Kernphysik, Johannes Gutenberg-Universit�at Mainz, D-55099 Mainz, GermanyThe relativisti orretion to the QCD stati inter-quark potential at O(1=m) is investigatednonperturbatively for the �rst time by using lattie Monte Carlo QCD simulations. The orre-tion is found to be omparable with the Coulombi term of the stati potential when applied toharmonium, and amounts to one-fourth of the Coulombi term for bottomonium.PACS numbers: 11.15.Ha, 12.38.G, 12.39.PnI. INTRODUCTIONHeavy quarkonia, i.e. bound states of a heavy quarkand antiquark [1, 2, 3, 4℄, o�er a unique opportunityto gain an understanding of nonperturbative QCD. Apossible way of studying suh systems systematially inQCD is to employ nonrelativisti QCD (NRQCD) [5, 6℄,whih is obtained by integrating out the sale above theheavy quark mass m � �QCD. Further, by integrat-ing out the sale mv, where v is quark veloity, onearrives at a framework alled potential NRQCD (pN-RQCD) [7, 8, 9, 10℄, where the stati potential emergesas the leading-order ontribution, followed by relativis-ti orretions in powers of 1=m. The potential atO(1=m2) ontains the leading order spin-dependent or-retions [11, 12, 13℄ and the veloity-dependent poten-tials [14, 15℄. Perturbation theory may be applied to thedetermination of these potentials to some extent. How-ever, sine the binding energy is typially of the salemv2, whih an be of the same order as �QCD due tothe nonrelativisti nature of the system, v � 1, as wellas the fat that perturbation theory annot inorporatequark on�nement, it is essential to determine the poten-tial nonperturbatively. The various properties of heavyquarkonium an be extrated by solving the Shr�odingerequation with these potentials.Monte Carlo simulations of lattie QCD o�er a pow-erful tool for the nonperturbative determination of thepotentials, and it is the aim of this Letter to present thesimulation result of the heavy quark potential at O(1=m),whih has not been investigated so far on the lattie. Letus denote the spatial position of the quark and antiquarkas ~r1 and ~r2 with the relative distane r = j~r1 � ~r2j andthe masses m1 and m2, respetively. The potential isV (r) = V (0)(r) +� 1m1 + 1m2�V (1)(r) + O( 1m2 ) ; (1)where V (0)(r) is the stati potential, usually obtained byevaluating the expetation value of the Wilson loop. Thestati potential is well parameterized by the Coulomb

plus linear term,V (0)(r) = � r + �r + � ; (2)where � is the string tension and � a onstant [29℄. Onthe other hand, the nonperturbatively expeted form ofV (1)(r) is not yet known, but leading-order perturba-tion theory yields V (1)(r) = �CFCA�2s=(4r2) [8, 16,17℄, where CF = 4=3 and CA = 3 are the Casimirharges of the fundamental and adjoint representations,respetively (beyond leading-order perturbation theory,see [18℄). II. PROCEDURESWe work in Eulidean spae in four dimensions on ahyperubi lattie with lattie volume V = L3T and lat-tie spaing a, where periodi boundary onditions areimposed in all diretions. Writing the eigenstate of thepNRQCD Hamiltonian at O(m0) in the 3 
 3� repre-sentation of olor SU(3), whih orresponds to the statiquark-antiquark state, as jni � jn;~r1; ~r2i with the energyEn(r) [e.g., E0(r) = V (0)(r)℄, the spetral representationof V (1)(r) is expressed as [8, 9℄V (1)(r) = �12 1Xn=1 h0jgE(~ri)jni�hnjgE(~ri)j0i(�En0)2 ; (3)where g is the gauge oupling, E(~ri) denotes the ele-tri �eld attahed to the quark (i = 1) or the antiquark(i = 2), and �En0 � En � E0 the energy gap. It is alsopossible to write Eq. (3) as the integral of the eletri�eld strength orrelator on the Wilson loop with respetto the relative temporal distane between two eletri�elds [8, 9℄. This is, in priniple, measurable on the lat-tie, and the result is redued to Eq. (3) one the spe-tral deomposition is applied by using the transfer matrixtheory, and the temporal size of the Wilson loop is takento in�nity [30℄.In our approah, the Polyakov loop orrelation fun-tion (PLCF, a pair of Polyakov loops P separated by a



2distane r) is adopted as the quark-antiquark soure in-stead of the Wilson loop for the reason disussed below.Let us onsider the �eld strength orrelator on the PLCF,C(t) = hhg2E(~ri; t1)�E(~ri; t2)ii� hhg2E(~ri; t1)�E(~ri; t2)ii�hhgE(~ri)ii�hhgE(~ri)ii ;(4)where the double brakets represent the ratio of expe-tation value hh� � �ii = h� � �iPP�=hPP �i, while h� � �iPP� im-plies that the eletri �eld is onneted to either of thePolyakov loop in a gauge invariant way. The relative tem-poral distane of two eletri �eld operators is t = t2�t1.The spetral deomposition of Eq. (4) reads [19℄C(t) = 2 1Xn=1h0jgE(~ri)jni�hnjgE(~ri)j0ie�(�En0)T=2� osh[(�En0)(T=2� t)℄+O(e�(�E10)T ) ; (5)where the last term represents terms involving expo-nential fators equal to or smaller than exp[�(�E10)T ℄.Thus, one Eq. (4) is evaluated via Monte Carlo simu-lations, we an determine the amplitude jh0jgE(~ri)jnij2and the energy gap �En0 in Eq. (5) by a �t and in-sert them into Eq. (3). It is easy to see that in thelimit T ! 1 we an write Eq. (4) in the integral formV (1)(r) = �(1=2) lim�!1 R �0 dt tC(t), where � = �Twith arbitrary � 2 (0; T=2℄.The reason for using the PLCF is to ompute Eq. (3)with less systemati errors. The hyperboli osine inEq. (5) is typial for the PLCF and we an ontrol the ef-fet of the �nite temporal lattie size on the �eld strengthorrelator automatially in the �t. Moreover, the errorterm of O(e�(�E10)T ) is already expeted to be small fora reasonable size of T . By ontrast, if one uses the Wil-son loop at this point, the spetral representation is justa multi-exponential funtion, and the leading error termis of O(e�(�E10)(�t)), where �t is the relative temporaldistane between the spatial part of the Wilson loop andthe �eld strength operator. Here, one annot hoose �tas large as T , sine the temporal extent of the Wilsonloop is limited to T=2 beause of the periodiity of thelattie volume.The only tehnial problem that arises when using thePLCF is how to obtain a signal for the �eld strengthorrelator in Eq. (4), sine the expetation value of thePLCF at zero temperature beomes exponentially smallwith inreasing r, and the signal is easily washed out bystatistial noise. In fat, it is almost impossible to ob-tain the signal of the PLCF at intermediate distanes,say r � 0:5 fm, with the ommonly used simulation al-gorithms. However, we �nd that this problem an besolved by applying the multi-level algorithm [20℄ with aertain modi�ation as applied to the determination ofthe spin-dependent potentials [19, 21℄ (see also [22℄ for asimilar appliation).The basi proedure of the multi-level algorithm (re-strited to the lowest level) is as follows. We �rst di-vide the lattie volume into several sublatties along the
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tFIG. 1: Constrution of the eletri �eld strength orrelatoron the PLCF. Arrows at ~r1 and ~r2 represent the Polyakovlines for the stati quark and antiquark. [� � � ℄ denotes thesublattie average.time diretion, where a sublattie onsists of a ertainnumber of time slies Ntsl. The number of sublatties isNsub = T=Ntsl, whih is assumed to be integer. In eahsublattie we take averages of the omponents of the or-relation funtion [omponents of the PLCF and of the�eld strength orrelators, whih are in the 3 
 3� rep-resentation of SU(3)℄, by updating the gauge �eld witha mixture of heatbath (HB) and over-relaxation (OR)steps, while the spatial links on the boundary betweensublatties remain intat during the update. We referto this proedure as the internal update and denote thenumber of internal update as Niupd . Repeating the inter-nal update until we obtain stable signals for these om-ponents, we �nally multiply these averaged omponentsto omplete the orrelation funtion. Thereby the or-relation funtion is obtained for one on�guration. Fora shemati understanding, see Fig. 1, whih illustratesthe omputation of the eletri �eld strength orrelatoron the PLCF. We then update the whole set of linkswithout speifying any layers to obtain another indepen-dent gauge on�guration and repeat the above sublat-tie averaging. One Ntsl and Niupd are optimized for agiven gauge oupling � and a maximal quark-antiquarkdistane of interest, the statistial utuations of observ-ables turn out to be quite small. Further tehnial detailsan be found in [19℄.III. RESULTSOur simulations were arried out using the standardWilson gauge ation in SU(3) lattie gauge theory at� = 6:0 on the 204 lattie (the lattie spaing, determinedfrom the Sommer sale r0 = 0:5 fm, is a � 0:093 fm [20℄).One Monte Carlo update onsisted of 1 HB, followed by5 OR steps. For pratial reasons (mainly to save om-puter memory) we set ~r = (r; 0; 0). We employed thelattie �eld strength operator de�ned by ga2F��(s) �[U��(s) � U y��(s)℄=(2i) at the site s, where U��(s) are
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FIG. 2: The eletri �eld strength orrelators on the PLCFat � = 6:0 on the 204 lattie for r=a = 5. The dotted linesare the �t urves with nmax = 3 in Eq. (5).plaquette variables and onstruted the eletri �eld byga2Ei(s) = ga2[F4i(s) + F4i(s � î)℄=2. In order to re-move self-energy ontributions of the eletri �eld wemultiplied by the onventional Huntley-Mihael fator,ZEi (r) [23℄, whih, however, only removes self-energyontributions at O(g2). This fator, whih depends onr and also on the relative orientation of the eletri �eldoperator to ~r, was omputed using the PLCF [19℄. Weobtained the value ZEi (r) � 1:62. For a more preisevalue of ZE , see Ref. [19℄. For the hosen value ofNtsl = 4we performed Niupd = 7000 internal updates. Our totalstatistis was Nonf = 60.In Fig. 2, we show the C(t) for the longitudinal andthe transverse omponents, hhg2Ex(~ri; t1)Ex(~ri; t2)ii andhhg2Ey(~ri; t1)Ey(~ri; t2)ii = hhg2Ez(~ri; t1)Ez(~ri; t2)ii, re-spetively, where r=a = 5 is seleted as an example.Note that the orrelators are negative. Here, the se-ond term of Eq. (4) an be non-zero as the eletri�eld is even under CP transformations. We omputedhhgEiii independently and found hhgEyii = hhgEzii = 0,while hhgExii 6= 0, whih was then subtrated to ob-tain C(t). As it is impossible to determine the ampli-tudes and the energy gaps for all n � 1 with the lim-ited data points, we trunated the expansion in Eq. (5)at a ertain n = nmax. The validity of the truna-tion was monitored by looking at �2 and the stabilityof the resulting potential as a funtion of nmax, where�2 was always de�ned with the full ovariane matrix.We found that nmax = 3 was optimal with the �t ranget=a 2 [1; 8℄ (equivalent to t=a 2 [12; 19℄). The system-ati e�et aused by the trunation an be heked bysimulating volumes with larger values of T and by in-reasing nmax in the �t. However, from the experieneof evaluating similar �eld strength orrelators for thespin-dependent potentials [19℄, we expet that suh ane�et is already negligible ompared to statistial errors,one three terms are inluded for T = 20 at � = 6:0.
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4funtions, and among them, we found thatV (1)�t-2(r) = �00r + �00 ; (7)an desribe the behavior of V (1)(r) reasonably well,where the oeÆient 00 has a dimension of mass. Wetook into aount the data at r=a 2 [2; 6℄ and obtaineda00 = 0:081(4) and a2�00 = 0:417(1) with �2min=Ndf =2:3, where the �t urve is plotted in Fig. 3 (solid line).As the potential V (1)(r) requires no mathing oef-�ient [24, 25℄, in ontrast to the spin-dependent po-tentials at O(1=m2), we an diretly insert V (1)(r) intoEq. (1) and ompare its relative magnitude with thestati potential V (0)(r) for given quark and antiquarkmasses. For this purpose we may use the �t result ofEq. (7). By dividing V (1)�t-2(r) by the quark mass, wherewe set m1 = m2 = m for simpliity, we have a 1=r termwith a dimensionless oeÆient 200=m. For harmonium,m = 1:3 GeV, we then �nd 200=m = 0:26(1), whih is93(5) % of the Coulombi oeÆient of the stati poten-tial,  = 0:281(5), in Eq. (2) [19℄. For bottomonium,mb = 4:7 GeV, we �nd 200=mb = 0:073(4), whih is still26(2) % of . It is ertainly interesting to investigate thee�et on heavy quarkonium spetrosopy.IV. SUMMARYWe have investigated the relativisti orretion to thestati potential at O(1=m) nonperturbatively by using
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