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s (RCNP), Osaka University, Osaka576-0047, JapanAbstra
tThe spin-dependent 
orre
tions to the stati
 inter-quark potential are phenomeno-logi
ally relevant to des
ribing the �ne and hyper�ne spin splitting of the heavyquarkonium spe
tra. We investigate these 
orre
tions, whi
h are represented as the�eld strength 
orrelators on the quark-antiquark sour
e, in SU(3) latti
e gauge the-ory. We use the Polyakov loop 
orrelation fun
tion as the quark-antiquark sour
e,and by employing the multi-level algorithm, we obtain remarkably 
lean signals forthese 
orre
tions up to intermediate distan
es of around 0.6 fm. Our observationsuggests several new features of the 
orre
tions.1 Introdu
tionThe spin-dependent potentials are parts of relativisti
 
orre
tions to thestati
 quark-antiquark potential, whi
h depend on quark spin, and are phe-nomenologi
ally relevant to des
ribing the �ne and hyper�ne splitting of heavyquarkonium spe
tra [1,2,3,4℄. Thus it is interesting to address these 
orre
tionsfrom QCD and to 
ompare with the observed spe
tra.The relativisti
 
orre
tions are usually 
lassi�ed in powers of the inverse ofheavy quark massm (or quark velo
ity v) and it is well-known that in QCD theleading spin-dependent 
orre
tions show up at O(1=m2) [5,6,7,8,9,10℄. Thesespin-dependent 
orre
tions were also derived systemati
ally within an e�e
tive�eld theory framework 
alled potential nonrelativisti
 QCD (pNRQCD) [11℄.pNRQCD is obtained by integrating out the s
ales abovem� �QCD in QCD 1�rst, whi
h leads to NRQCD [12,13℄, and then mv, leaving a typi
al s
ale ofthe binding energy of heavy quarkonium mv2 [14,15,16℄.The spin-dependent potential is summarized in the form1 �QCD is assumed to be a few hundred of MeVPreprint submitted to Elsevier 23 January 2007
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VSD(r)=0�~l1 � ~s1m21 � ~l2 � ~s2m22 1A0�(2
(+)F � 1)V 00(r) + 2
(+)F V 01(r)2r 1A+0�~l1 � ~s2m1m2 � ~l2 � ~s1m1m21A 
(+)F V 02(r)r+0�~l1 � ~s1m21 + ~l2 � ~s2m22 1A0�
(�)F (V 00(r) + V 01(r))r 1A+0�~l1 � ~s2m1m2 + ~l2 � ~s1m1m21A 
(�)F V 02(r)r+ 1m1m2  (~s1 � ~r)(~s2 � ~r)r2 � ~s1 � ~s23 ! 
(1)F 
(2)F V3(r)+ ~s1 � ~s23m1m2 �
(1)F 
(2)F V4(r)� 48�CF�sdvÆ(3)(r)� ; (1.1)where ~r1 and ~r2 (r � j~r1 � ~r2j) denote the positions of quark and anti-quark, m1 and m2 the masses, ~s1 and ~s2 the spins (~s = ~�=2 with ~� beingthe Pauli matri
es), and ~l1 = �~l2 = ~l the orbital angular momenta. V0(r)is the spin-independent stati
 potential at O(m0) and the prime denotes thederivative with respe
t to r. V 01(r), V 02(r), V3(r) and V4(r) are the fun
tionswhi
h depend only on r. In what follows we 
all these fun
tions loosely thespin-dependent potentials. 
(i)F (�;mi) (i = 1; 2) is the mat
hing 
oeÆ
ient inthe (p)NRQCD Lagrangian whi
h multiplies the term ~� � ~B=(2mi) and this
oeÆ
ient plays an important role when 
onne
ting QCD at a s
ale � with(p)NRQCD at s
ales mi. We have de�ned as 
(�)F = (
(1)F � 
(2)F )=2. For equalquark and antiquark masses (m1 = m2), 
(�)F vanishes as 
(1)F = 
(2)F . Whenthe mat
hing is performed at tree-level of perturbation theory, the 
oeÆ-
ient is 
(i)F = 1 [17℄ and then Eq. (1.1) is redu
ed to the expression givenin Refs. [5,6,8℄. �s = g2=(4�) is the strong 
oupling and CF = 4=3 the Casimir
harge of the fundamental representation, and dv the mixing 
oeÆ
ient of thefour-quark operator in the (p)NRQCD Lagrangian (see e.g. the Appendix Eof Ref. [3℄).Given the �eld strength F�� , where the 
olor-ele
tri
 and the 
olor-magneti
 �elds are de�ned by Ei = F4i and Bi = �ijkFjk=2, respe
tively, 2the spin-dependent potentials in Eq. (1.1) are expressed asrkr V 01(r) = �ijk lim�!1 Z �0 dt thhg2Bi(~r1; t1)Ej(~r1; t2)ii ; (1.2)rkr V 02(r) = �ijk lim�!1 Z �0 dt thhg2Bi(~r1; t1)Ej(~r2; t2)ii ; (1.3)2 Throughout this paper we work in Eu
lidean spa
e and assume that the repeatedspinor (Latin) and 
olor (Greek) indi
es are summed over from 1 to 4 and from 1to 3, respe
tively, unless expli
itly stated.2



(rirjr2 � Æij3 )V3(r) + Æij3 V4(r) = 2 lim�!1 Z �0 dt hhg2Bi(~r1; t1)Bj(~r2; t2)ii :(1.4)Here t � t2 � t1 denotes the relative temporal distan
e between two �eldstrength operators. The double bra
ket hh� � �ii represents the expe
tation valueof the �eld strength 
orrelator, where the �eld strength operators are atta
hedto the quark-antiquark sour
e in a gauge invariant way. In Refs. [5,6,8℄, theseexpressions were given in the double-integral form with the Wilson loop, whi
h
an be redu
ed to the single-integral form through the spe
tral representationof the �eld strength 
orrelators derived from the transfer matrix theory. How-ever, it should be noted that the authors of Ref. [11℄ pointed out that one ofthe spin-orbit potentials V 02(r) in Refs. [5,6,8℄ was underestimated by a fa
tortwo. The expressions in Eqs. (1.2)-(1.4) are 
onsistent with Ref. [11℄ apartfrom the spa
e-time metri
; here we employ the Eu
lidean metri
, while theMinkowski metri
 is used in Ref. [11℄. 3As the expressions of the spin-dependent potentials in Eqs. (1.2)-(1.4)are essentially nonperturbative, these potentials 
an be studied in a frame-work beyond perturbation theory, for instan
e, by using latti
e QCD MonteCarlo simulations. Rather, as the typi
al s
ale of the momentum mv 
an be ofthe order as �QCD due to nonrelativisti
 nature of the system v � 1, it is not
lear a priori that the perturbative determination of the potential is justi�ed,and indeed, nonperturbative 
ontributions are expe
ted in the spin-orbit po-tentials V 01(r) and V 02(r); they are related to the stati
 potential through theGromes relation [18,19℄, i.e. V 00(r) = V 02(r) � V 01(r), where V0(r) is known to
ontain a nonperturbative long-ranged 
omponent 
hara
terized by the stringtension. This relation was derived by exploiting the Lorentz invarian
e of the�eld strength 
orrelators, whi
h does not depend on the order of perturbationtheory.The determination of the spin-dependent potentials using latti
e QCDsimulations goes ba
k to the 1980s [20,21,22,23,24,25,26,27℄ and to the1990s [28,29,30℄. The qualitative �ndings (quantitative to some extent) inthese earlier studies indi
ated that the spin-orbit potential V 01(r) 
ontains thelong-ranged nonperturbative 
omponent, while all other potentials are relevantonly to short-range physi
s as expe
ted from the one-gluon ex
hange intera
-tion. However, one observes that the spin-dependent potentials (in parti
ular,the spin-orbit potential V 01) of even the latest studies [29,30℄ su�er from largenumeri
al errors, whi
h 
an obs
ure their behavior already at intermediatedistan
es. For phenomenologi
al appli
ations of these potentials, it is 
learlyimportant to determine their fun
tional form as a

urately as possible.In the present paper we thus revisit the determination of the spin-dependent potentials with latti
e QCD within the quen
hed approximation,aiming at redu
ing the numeri
al errors with a new approa
h. There are mainly3 The 
hange of metri
 from Minkowski to Eu
lidean spa
e-time is a
hieved byt(M) ! �it(E), E(M) ! iE(E), B(M) ! B(E).3



two possible sour
es of numeri
al errors apart from the systemati
 error dueto dis
retization of spa
e-time. One is the statisti
al error for the expe
tationvalue of the �eld strength 
orrelator, and the other is the systemati
 errorasso
iated with the integration over � and the extrapolation of � ! 1 inEqs. (1.2)-(1.4). In order to 
ontrol the total error, �rst of all, one needs toevaluate the �eld strength 
orrelator pre
isely, as otherwise its un
ertainty isenhan
ed in the following pro
edures.Our idea is then to employ the multi-level algorithm [31,32℄ for measuringthe �eld strength 
orrelators [33,34℄, as we expe
t 
lean signals even at larger rand t. This algorithm also allows us to use the Polyakov loop 
orrelationfun
tion (PLCF), a pair of Polyakov loops P separated by a distan
e r, as thequark-antiquark sour
e instead of the Wilson loop. In fa
t, if one relies on the
ommonly employed simulation algorithms, it is almost impossible to evaluatethe �eld strength 
orrelators on the PLCF, or the PLCF itself, at intermediatedistan
es with reasonable 
omputational e�ort, sin
e the expe
tation value ofthe PLCF at zero temperature is smaller by several orders of magnitude thanthat of the Wilson loops and is easily hidden in the statisti
al noise. However,as we will show in the next se
tion, if one manages to obtain a

urate datafor the �eld strength 
orrelators on the PLCF, the systemati
 errors from theintegration and the extrapolation 
an be avoided. The key idea is to employ thespe
tral representation of the �eld strength 
orrelators on the PLCF, whi
his plugged into Eqs. (1.2)-(1.4).This paper is organized as follows. In se
t. 2, we des
ribe our pro
eduresto obtain the spin-dependent potentials, whi
h 
ontain the derivation of thespe
tral representation of the �eld strength 
orrelators on the PLCF and ofthe spin-dependent potentials, the de�nition of the �eld strength operators onthe latti
e, and the implementation of the multi-level algorithm. In se
t. 3, weshow numeri
al results, followed by analyses and dis
ussions. The summaryis given in se
t. 4. In this paper, we will not dis
uss the mat
hing 
oeÆ
ientbut the interested reader 
an refer to the dis
ussion in Ref. [3℄. We also planto revisit this issue in our future studies.
2 Numeri
al pro
eduresIn this se
tion, we des
ribe the spe
tral representation of the �eld strength
orrelators on the PLCF and of the spin-dependent potentials. We providethe de�nition of the �eld strength operators on the latti
e, and explain theimplementation of the multi-level algorithm. The standard Wilson a
tion ismost preferable for this algorithm be
ause its a
tion density is lo
ally de�nedby plaquette and thus we shall use this a
tion in our present simulation. Thelatti
e volume is L3T and periodi
 boundary 
onditions are imposed in alldire
tions. 4



2.1 Spe
tral representation of the �eld strength 
orrelators and of the spin-dependent potentialsLet us derive the spe
tral representation of the �eld strength 
orrelatorson the PLCF using the transfer matrix formalism.We follow the notation usedin Ref. [32℄, in whi
h the spe
tral representation of the PLCF is dis
ussed. We
onsider the transfer matrix in the temporal gauge T � e�Ha whi
h a
ts onthe states on the spa
e of all spatial latti
e gauge �elds U� at a given time,where a denotes the latti
e spa
ing. We also introdu
e the proje
tors P ontothe subspa
e of gauge-invariant states and P3
3�(~r1; ~r2) to the subspa
e of thestates in the 3 
 3� representation of SU(3). Then the partition fun
tions inthe se
tor 
orresponding to P and P3
3�(~r1; ~r2) are given by Z = TrfP e�HT gand Z3
3�(~r1; ~r2) � 19TrfP3
3�(~r1; ~r2)e�HT g, respe
tively.Firstly, we 
onsider the spe
tral representation of a double-bra
ket 
orre-lator for operators O1(t1) and O2(t2), whi
h are atta
hed to either side of thePLCF (the same side or the opposite side),hhO1(t1)O2(t2)ii� hO1(t1)O2(t2)iP (~r1)P �(~r2)hP (~r1)P �(~r2)i= 19Tr hP3
3�(~r1; ~r2)e�H(T�t)O1e�H tO2iZ ZZ3
3�(~r1; ~r2)= 19Tr hP3
3�(~r1; ~r2)e�H(T�t)O1e�H tO2iZ3
3�(~r1; ~r2) ; (2.1)where we have used the identity hP (~r1)P �(~r2)i = Z3
3�(~r1; ~r2)=Z. Insertingthe 
omplete set of eigenstates in the 3 
 3� representation jni � jn;~r1; ~r2i,whi
h satisfy Tjni = e�En(r)ajni with energies En(r) > 0, we obtainhhO1(t1)O2(t2)ii = P1n=0;m=0hnjO1jmihmjO2jnie�Emte�En(T�t)P1n=0 e�EnT : (2.2)We denote the energy gap between two eigenstates as �Emn(r) = Em(r) �En(r). Then, up to terms involving exponential fa
tors equal to or smallerthan e�(�E10)T , Eq. (2.2) is redu
ed tohhO1(t1)O2(t2)ii = h0jO1j0ih0jO2j0i+ 1Xm=1 h0jO1jmihmjO2j0ie�(�Em0)t + hmjO1j0ih0jO2jmie�(�Em0)(T�t)!+O(e�(�E10)T ) : (2.3)In the 
ase of the �eld strength 
orrelators, we 
an further simplifyEq. (2.3) by using the properties of the 
olor-magneti
 and 
olor-ele
tri
 �eldoperators under the time reversal; we have relations5



hhg2Bi(t1)Ej(t2)ii = �hhg2Bi(t2)Ej(t1)ii ; (2.4)hhg2Bi(t1)Bj(t2)ii = hhg2Bi(t2)Bj(t1)ii ; (2.5)whi
h, for the matrix elements, readhmjgBij0ih0jgEjjmi = �h0jgBijmihmjgEjj0i ; (2.6)hmjgBij0ih0jgBjjmi = h0jgBijmihmjgBjj0i ; (2.7)for m � 1. Moreover, h0jgBij0i = 0 sin
e Bi is odd under CP transformations.The �eld strength 
orrelators in Eqs. (1.2)-(1.4) are thus expressed ashhg2Bi(~r1; t1)Ej(~r1; t2)ii=2 1Xm=1h0jgBi(~r1)jmihmjgEj(~r1)j0i�e�(�Em0)T=2 sinh((�Em0)(T=2� t))+O(e�(�E10)T ) ; (2.8)hhg2Bi(~r1; t1)Ej(~r2; t2)ii=2 1Xm=1h0jgBi(~r1)jmihmjgEj(~r2)j0i�e�(�Em0)T=2 sinh((�Em0)(T=2� t))+O(e�(�E10)T ) ; (2.9)hhg2Bi(~r1; t1)Bj(~r2; t2)ii=2 1Xm=1h0jgBi(~r1)jmihmjgBj(~r2)j0i�e�(�Em0)T=2 
osh((�Em0)(T=2� t))+O(e�(�E10)T ) : (2.10)After inserting these expressions into Eqs. (1.2)-(1.4), we 
an 
arry out theintegration and extrapolation, whi
h imply thatlim�!1 Z �0 dt � � � = limT!1 Z �T0 dt � � � (2.11)with an arbitrary � 2 (0; 1=2℄. Thereby we obtain the spe
tral representationof the spin-dependent potentials, whi
h 
onsists of the matrix elements andthe energy gaps.For the simplest parametrization ~r1 = ~0 = (0; 0; 0) with t1 = 0 and~r2 = ~r = (r; 0; 0) with t2 = t, whi
h is the a
tual setting of our simulation, wehave expli
itlyV 01(r) = 2 1Xm=1 h0jgBy(~0)jmihmjgEz(~0)j0i(�Em0)2 ; (2.12)V 02(r) = 2 1Xm=1 h0jgBy(~0)jmihmjgEz(~r)j0i(�Em0)2 ; (2.13)6



V3(r) = 2 1Xm=1"h0jgBx(~0)jmihmjgBx(~r)j0i�Em0 � h0jgBy(~0)jmihmjgBy(~r)j0i�Em0 # ;(2.14)V4(r) = 2 1Xm=1"h0jgBx(~0)jmihmjgBx(~r)j0i�Em0 + 2h0jgBy(~0)jmihmjgBy(~r)j0i�Em0 # ;(2.15)where we have used the relationshhg2By(~0; 0)Ez(~0; t)ii = �hhg2Bz(~0; 0)Ey(~0; t)ii ; (2.16)hhg2By(~0; 0)Ez(~r; t)ii = �hhg2Bz(~0; 0)Ey(~r; t)ii ; (2.17)hhg2By(~0; 0)By(~r; t)ii = hhg2Bz(~0; 0)Bz(~r; t)ii : (2.18)We note that the error term in the �eld strength 
orrelator of O(e�(�E10)T ) inEqs. (2.8)-(2.10) is assumed to be negligible, whi
h is the 
ase for large T .Now our pro
edure to 
ompute the spin-dependent potentials is as follows;we evaluate the �eld strength 
orrelators for various r and t, �t them to thespe
tral representation in Eqs. (2.8)-(2.10), thereby determining the matrixelements and the energy gaps, and insert them into Eqs. (2.12)-(2.15). Here,the hyperboli
 sine or 
osine fun
tion in Eqs. (2.8)-(2.10) is typi
al for thePLCF, whi
h automati
ally takes into a

ount the e�e
t of the �nite temporallatti
e size in the �t.Note that if one uses the Wilson loop at this point, the spe
tral repre-sentation is just a multi-exponential fun
tion and the leading error term is ofO(e�(�E10)(�t)), where �t is the relative temporal distan
e between the spatialpart of the Wilson loop and the �eld strength operator [29,30℄. Denoting thetemporal extent of the Wilson loop by Tw, one 
an �t the data in the ranget 2 [0; Tw � 2�t℄, where Tw is at most T=2 be
ause of the periodi
ity of thelatti
e volume. Clearly the available �t range is more restri
ted than in thePLCF 
ase, even if �t=a is 
hosen as small as possible, say one or two. It maybe possible to suppress the error term by applying smearing te
hniques to thespatial links. However, it is not immediately 
lear if this pro
edure really 
uresthe error term. At least, one needs �ne tuning of the smearing parameters andfurther systemati
 
he
ks.2.2 Field strength operator on the latti
eOn the latti
e, we use the �eld strength operator de�ned by ga2F��(s) �(U��(s) � U y��(s))=(2i), where U��(s) = U�(s)U�(s + �̂)U y�(s + �̂)U y�(s) is theplaquette variable at a site s = (ss; st) with a spatial site ss and a temporalsite st. We also de�ne U��(s) = U y�(s � �̂). Pra
ti
ally, we 
onstru
t the
olor-ele
tri
 and 
olor-magneti
 �eld operators by averaging the �eld strengthoperator as 7



ga2Ei(s) = 12ga2 (F4 i(s)+F�i 4(s)) ; (2.19)ga2Bi(s) = 18ga2�ijk (Fj k(s) + Fk�j(s) + F�j�k(s) + F�k j(s)) ; (2.20)where we assume that Ei(s) is de�ned on (ss; st + 1=2), and Bi(s) on (ss; st),respe
tively.Now, as seen from Eqs. (2.12)-(2.15), the spin-dependent potentials 
on-sist not only of the energy gap but also of the matrix element of the �eldstrength operator, and thus one needs to take into a

ount the renormaliza-tion of the latter. This is due to the fa
t that the �eld strength operatorsdepend expli
itly on the latti
e 
uto� a. In the absen
e of a viable nonper-turbative renormalization pres
ription for the �eld strength operators in thepresen
e of the quark-antiquark sour
e, we follow here the Huntley-Mi
hael(HM) pro
edure [23℄, whi
h was also used in Refs. [29,30℄. This pro
edure isinspired by the weak 
oupling expansion of the Wilson loop and is aimed atremoving the self-energy 
ontribution, at least, at O(g2). We de�ne �Ei and �Bifrom �F��(s) � (U��(s) + U y��(s))=2, and, by taking the average a

ording toEqs. (2.19) and (2.20), we 
omputeZEi(r) = 1=hh �Eiii ; ZBi(r) = 1=hh �Biii ; (2.21)where �E or �B are atta
hed to either side of the PLCF. These fa
tors are thenmultiplied to the �eld strength operators in Eqs. (2.19) and (2.20) a

ordingly.Note that ZEi and ZBi determined in this way 
an depend on r and also onthe relative orientation of the �eld strength operator to the quark-antiquarkaxis.One may �nd that the HM pro
edure is quite similar to tadpole improve-ment [35℄, where the 
orresponding renormalization fa
tor is de�ned by theinverse of the expe
tation value of the plaquette variables, Ztad = 1=hU2i,whereU2 = 16(L=a)3(T=a) Xs;�>� 13Re Tr U��(s) ; (2.22)whi
h was used e.g. in Refs. [20,28℄. Indeed, if the fa
torization of the 
orrelatorh �F��iPP � = h �F��ihPP �i holds, 4 ZBi and ZEi are redu
ed to Ztad. However,as was pointed out in [23℄, the tadpole fa
tor does not remove the self energyeven to O(g2) if the 
orrelator involves the ele
tri
 �eld operator.2.3 Multi-level algorithm for the �eld strength 
orrelatorWe now des
ribe the multi-level algorithm [31,32℄ for 
omputing the �eldstrength 
orrelators, restri
ting the dis
ussion to the lowest level. The essen
e4 Numeri
ally, this fa
torization is approximately satis�ed.8



Table 1A minimal set of sublatti
e 
orrelators for the stati
 potential and the spin-dependent potentials.Potential Sublatti
e 
orrelatorsV0 TPPV 01 TPP , TPBy , TPEz , TP (ByEz)V 02 TPP , TByP , TPEz , TByEzV3; V4 TPP , TPBx , TPBy , TBxP , TByP , TBxBx , TByByof the multi-level algorithm is to 
onstru
t the desired 
orrelation fun
tion,whi
h may have a very small expe
tation value, from the produ
t of the rela-tively large \sublatti
e average" of its 
omponents. We will also refer to su
ha 
omponent as the sublatti
e 
orrelator.The sublatti
e is de�ned by dividing the latti
e volume into several layersalong the time dire
tion, and thus a sublatti
e 
onsists of a 
ertain number oftime sli
es Ntsl (the number of sublatti
es is then Nsub = (T=a)=Ntsl, whi
his assumed to be an integer). The sublatti
e 
orrelators are evaluated in ea
hsublatti
e after updating the gauge �eld with a mixture of heatbath (HB)and over-relaxation (OR) steps, while the spa
e-like links on the boundarybetween sublatti
es remain inta
t during the update. We refer to this pro-
edure as the \internal update". We repeat the internal update Niupd timesuntil we obtain a stable signal for the sublatti
e 
orrelators. Next, we multi-ply these sublatti
e 
orrelators in a suitable way to 
omplete the 
orrelationfun
tion, as des
ribed below. Thereby the 
orrelation fun
tion is obtained forone 
on�guration. We then update the whole set of links without spe
ifyingany layer to obtain another independent gauge 
on�guration and repeat theabove sublatti
e averaging. The 
omputational 
ost for one 
on�guration israther large, but one 
an observe a signal already from a few 
on�gurationson
e Ntsl and Niupd are appropriately 
hosen.In the 
urrent simulation, the building blo
ks of the �eld strength 
orre-lators are the sublatti
e 
orrelators listed in Table 1. T represents the 
omplex9� 9 matri
es that a
t on 
olor tensors in the 3
 3� representation of SU(3).The subs
ripts of T in Table 1 denote the type of the sublatti
e 
orrelators.The way of 
ompleting a sublatti
e 
orrelator is as follows. Denoting the tem-poral sites as st = (itsl; isub), where itsl 2 [1; Ntsl℄ runs within the extent ofone sublatti
e labeled by isub 2 [1; Nsub℄, a 
omponent of the Polyakov loop(timelike Wilson line P), the 
omplex 3 � 3 matri
es, in ea
h sublatti
e isexpressed asP(ss; isub)�� = 0� NtslYjtsl=1Ut(ss; isub; jtsl)1A�� ; (2.23)where we expli
itly write the 
olor labels in Greek letters. The dire
t produ
t of9



two timelike Wilson lines P separated by a distan
e r is the simplest sublatti
e
orrelator, i.e.TPP (ss; isub; r)��
Æ = P(ss; isub)�� 
 P�(ss + rx̂; isub)
Æ ; (2.24)whi
h is relevant to both the PLCF and the �eld strength 
orrelators.Other sublatti
e 
orrelators are 
onstru
ted by inserting one or two �eldstrength operators into the timelike Wilson line P. For instan
e, in order toobtain TPBy , TPEz et
., we 
ompute in ea
h sublatti
e the timelike Wilsonline with a single insertion of the �eld strength operator and then its dire
tprodu
t with P. The argument of this type of 
orrelators is (ss; isub; r; itsl),where itsl labels the timesli
e where the �eld strength operator is inserted,itsl 2 [1; Ntsl℄. The quantities TP (ByEz), TByEz , TBxBx and TByBy represent thedouble-�eld-strength-operator-inserted sublatti
e 
orrelators. The argumentof these 
orrelators is (ss; isub; r; ired), where ired 2 [�Ntsl + 1; Ntsl � 1℄ is therelative temporal distan
e between two �eld strength operators. For TP (ByEz),two �eld strength operators are inserted into one of two timelike Wilson lines,while for TByEz , TBxBx and TByBy , they are inserted into both ones.The multipli
ation law of TPP is then de�ned byfTPP (ss; isub; r)TPP (ss; isub + 1; r)g��
Æ= TPP (ss; isub; r)��
�TPP (ss; isub + 1; r)���Æ (2.25)and this multipli
ation law of 
olor 
omponents is 
ommon to all other sub-latti
e 
orrelators.After taking the sublatti
e averages, we 
ompute the PLCF for various rby P (~0)P �(~r)= 19(L=a)3 Xss Ref[TPP (ss; 1; r)℄[TPP (ss; 2; r)℄� � � ��[TPP (ss; Nsub � 1; r)℄[TPP (ss; Nsub; r)℄g��

 ; (2.26)and the �eld strength 
orrelators for various r and t by 
ombining other sub-latti
e 
orrelators, where the translationally equivalent setting for spa
e andtime dire
tions are averaged a

ordingly. Figure 1 illustrates the 
omputa-tion of the �eld strength 
orrelator hhg2By(~r1; t1)Ez(~r1; t2)ii for V 01(r) (see alsoref. [36℄ for a similar appli
ation of the multi-level algorithm, in whi
h theele
tri
-
ux pro�le between stati
 
harges was measured with the PLCF).In order to bene�t from the multi-level algorithm, we need to optimizeNtsland Niupd. They depend on the 
oupling � and on the distan
es to be investi-gated, whi
h 
an be determined by looking at the behavior of the 
orrelationfun
tion as a fun
tion of Niupd for several Ntsl. As an empiri
al observation wenote that aNtsl = 0:3 � 0:4 fm is optimal in order to suppress the statisti
al
u
tuation of the 
orrelation fun
tions.In prin
iple, one 
an apply the above 
omputation to any dire
tion of10
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Fig. 1. How to 
omplete hhg2By(~r1; t1)Ez(~r1; t2)ii on the PLCF for V 01(r). Arrowsat ~r1 and ~r2 represent the Polyakov lines for the stati
 quark and antiquark. [� � � ℄implies the sublatti
e average. Other �eld strength 
orrelators are obtained in asimilar way.the quark-antiquark axis, ~r = (rx; ry; rz) with r = qr2x + r2y + r2z . How-ever, one needs to take into a

ount the fa
t that even with the simplestparametrization, ~r = (r; 0; 0), this algorithm requires a lot of memory to keepall T listed in Table 1 during the internal update. For a �xed distan
e and a�xed quark-antiquark axis using single pre
ision, TPP requires memory spa
e(L=a)3 �Nsub � 162� 4 bytes (� 1 work spa
e unit wsu). Therefore, to 
om-pute all spin-dependent potentials in the same setting, one needs additionally5Ntsl wsu for the single- and 4(2Ntsl � 1) wsu for the double-�eld-strength-inserted sublatti
e 
orrelators. For instan
e, on the 20340 latti
e with Ntsl = 4(Nsub = 8), about 49 wsu = 2 GB memory is needed as 1 wsu = 42 MB.The way of obtaining the HM fa
tors ZEz , ZBy and ZBz using the multi-level algorithm is the same as above; we evaluate the sublatti
e average ofTP �Bx , TP �By and TP �Ez and 
omplete the 
orrelators in Eq. (2.21). The addi-tional memory requirement is 3Ntsl wsu in the above setting.3 Numeri
al resultsIn this se
tion, we present our numeri
al results. Simulation parametersare summarized in Table 2. We investigated the bare gauge 
ouplings � = 6:0(a � 0:093 fm) on several latti
e volumes and � = 6:3 (a � 0:059 fm) ona 244 latti
e. The physi
al latti
e spa
ing a was �xed in terms of the Sommers
ale by setting r0 = 0:5 fm [37℄. One Monte Carlo update 
onsisted of a
ombination of 1 HB and 5 OR steps. The number of internal updates Niupdfor ea
h � value was optimized empiri
ally to obtain signals up to intermediatedistan
es. We note that Ntsl and Niupd 
ould further be tuned so that even11



Table 2Simulation parameters used in this study. The fourth 
olumn denotes the availablequark-antiquark distan
es for the stati
 potential V0 (before tree-level improve-ment), while [� � � ℄ applies to the spin-dependent potentials V 01 , V 02 , V3 and V4.� = 6=g2 a [fm℄ (L=a)3(T=a) r=a Ntsl Niupd N
onf6.0 0.093 164 2� 7 [2� 6℄ 4 10000 906.0 0.093 204 2� 9 [2� 6℄ 4 7000 826.0 0.093 20340 2� 9 [2� 7℄ 4 7000 336.3 0.059 244 2� 8 [2� 6℄ 6 6000 39larger distan
es be
ome a

essible. The statisti
al errors were estimated byapplying the single elimination ja
kknife analysis. The various �t parameterswere determined by minimizing �2 de�ned with the full 
ovarian
e matrix,and their errors were estimated from the distribution of the ja
kknife samples.For a 
onsisten
y 
he
k we also evaluated the errors of the �t parametersfrom the minimum value of the �2 through ��2min = 1. In general, the errorsfrom the ja
kknife analysis were the same or slightly larger 
ompared to thoseestimated from ��2min = 1.3.1 Stati
 potential and its derivativesWe �rst present the basi
 quantities extra
ted from the PLCF, i.e. thestati
 potential and its derivatives with respe
t to the distan
e, in Figs. 2-4,whi
h are de�ned byV0(rI)=� 1T lnhP (~0)P �(~r)i+O(e�(�E10)T ) ; (3.1)V 00(�r)= 1a fV0(r)� V0(r � a)g ; (3.2)12~r3V 000 (~r)= 12~r3 1a2 fV0(r + a) + V0(r � a)� 2V0(r)g � �
(~r) : (3.3)We have applied tree-level improvement to the quark-antiquark distan
es inorder to avoid an enhan
ement of latti
e dis
retization e�e
ts espe
ially atsmall distan
es [38,37,32℄, so that the distan
es, rI , �r and ~r are de�ned throughthe relationsr�1I = 4�G(r) ; (3.4)�r�2 = 4�a fG(r � a)�G(r)g ; (3.5)~r�3 = 2�a2 fG(r + a) +G(r � a)� 2G(r)g ; (3.6)where G(r) � G(r; 0; 0) is the Green fun
tion of the latti
e Lapla
ian in threedimensions. For 
onvenien
e we summarize these distan
es in Table A.1 in theAppendix. 12
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Fig. 2. Stati
 potential V0(rI) at � = 6:0 on the 20340 latti
e and at � = 6:3 onthe 244 latti
e. The 
onstant term is subtra
ted. The dotted line is the �t 
urveEq. (3.7), applied to the data at � = 6:0.
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Fig. 3. The for
e V 00(�r). The dotted line is the �t 
urve Eq. (3.8), applied to thedata at � = 6:0.We then �t the potential and the for
e (�rst derivative of the potential)to the fun
tionsV�t(r) = �r � 
r + � ; (3.7)V 0�t(r) = � + 
r2 ; (3.8)and estimate the string tension �, the Coulombi
 
oeÆ
ient 
, and a 
on-stant �. The �t results at � = 6:0 are summarized in Table 3. We �nd thatthe string tensions determined from either the potential or the for
e are 
on-13
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Fig. 4. 
(~r) = �~r3V 000 (~r)=2.Table 3Fit results of the stati
 potential and the for
e at � = 6:0 on the 20340 latti
e withthe �t fun
tions in Eqs. (3.7) and (3.8). The 
orresponding �t 
urves are plotted inFigs. 2 and 3. Fit range (r=a) �a2 
 �a �2min=NdfV0(r) 1:855 � 8:971 0.0466(2) 0.281(5) 0.7169(5) 3.8V 00(r) 3:312 � 8:438 0.0468(2) 0.297(1) | 5.6sistent with ea
h other. There is a small di�eren
e in 
. However, this may bea

eptable, sin
e we see that 
(~r), whi
h is extra
ted from the se
ond deriva-tive of the stati
 potential, is not stri
tly 
onstant as a fun
tion of r as shownin Fig. 4. Thus 
 
an be a�e
ted by the additional �t terms. Also, given thatthe estimates for 
 have not stabilized in the 
onsidered range of distan
es, itis not too surprising that a �t ansatz based on Eqs. (3.7) and (3.8) produ
esa large value of �2. Nevertheless, it is interesting to �nd that the �t 
urves
hara
terize the global feature of the potential and the for
e. In these �ts,we found no strong dependen
e on the �t range. We also examined the for
eobtained by the 
entral derivative V 00(�r
) = fV0(r+a)�V0(r�a)g=(2a), where�r
 is de�ned via �r�2
 = 4�fG(r � a) � G(r + a)g=(2a), and found the same
urve as in Fig. 3. Later, we shall 
ompare the values of � and 
 with thoseextra
ted from the spin-dependent potentials.At large enough distan
es, one may expe
t the value 
 = �=12 � 0:262from the bosoni
 string theory in four dimensions [39,40℄. However, as is 
learfrom the plot of 
(~r) in Fig. 4, we �nd 
(~r) � 0:3 at r & 0:3 fm, whi
h di�ersfrom this expe
tation by about 13 %. To a

ommodate a value of �=12 forthe 
oeÆ
ient of the 1=r term, one would need higher order 
orre
tions atthese distan
es. Note that the results for 
(~r) obtained here are 
onsistent14
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Fig. 5. The HM fa
tors at � = 6:0 (left) and � = 6:3 (right) as a fun
tion of r.The dashed lines 
orrespond to the tadpole estimate from the inverse of the expe
-tation value of the plaquette: Ztad = 1:684 (hU2i = 0:59373(4)) at � = 6:0 andZtad = 1:607 (hU2i = 0:62241(2)) at � = 6:3.with Refs. [32,41℄.3.2 HM renormalization fa
torsIn Fig. 5, we show the HM renormalization fa
tors de�ned in Eq. (2.21),together with the tadpole renormalization fa
tor (see Table A.2 in the Ap-pendix for the numeri
al values). ZBi are almost 
onstant as a fun
tion of r,while ZEi exhibit some dependen
es on r and on the relative orientation ofthe operator to the quark-antiquark axis at smaller distan
es. The HM fa
-tors are generally smaller than the tadpole fa
tor by less than 1 % for ZBiand at most 6 % for ZEi. Sin
e the statisti
al 
u
tuations of these fa
tors aremu
h smaller than that of the �eld strength 
orrelators, we ignore their errorswhen we multiply them to the �eld strength 
orrelators, but take into a

ounttheir r-dependen
es. Note that the observed tenden
ies are in agreement withRef. [30℄, where the Wilson loop was used.3.3 Field strength 
orrelatorsIn Figs. 6 and 7, we show the various �eld strength 
orrelators as a fun
-tion of t at � = 6:0 on the 204 and 20340 latti
es, respe
tively, where r=a = 5is sele
ted as an example. At smaller distan
es, the quality of the data is evenbetter. Owing to the multi-level algorithm, the statisti
al a

ura
y of the datais unpre
edented, whi
h allows us see the typi
al behavior of 
orrelators.We also in
lude the �t 
urves in these �gures, whi
h are supplied bythe spe
tral representation of the �eld strength 
orrelators on the PLCF insubse
tion 2.1. We �nd that Eqs. (2.8)-(2.10) provide an ex
ellent des
riptionof the behavior of the latti
e data. Our �t pro
edure was as follows. We �rstfolded the data of C(t) = hhg2By(~0; 0)Ez(~0; t)ii and hhg2By(~0; 0)Ez(~r; t)ii asfC(t)�C(T � t)g=2! C(t) with t 2 [0:5a; (T �a)=2℄, and the data of C(t) =15
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<< g 2 By(0,0) By(r,t) >>Fig. 6. Field strength 
orrelators at � = 6:0 on the 204 latti
e for r=a = 5 as afun
tion of t=a. The solid lines are the �t 
urves 
orresponding to Eqs. (2.8)-(2.10).hhg2Bx(~0; 0)Bx(~r; t)ii and hhg2By(~0; 0)By(~r; t)ii as fC(t)+C(T � t)g=2! C(t)with t 2 [0; T=2℄. Then, we �tted all available data points for ea
h 
orrelatorin order to take into a

ount as many ex
ited states as possible in the spe
tralrepresentations, ex
ept for t=a = 0:5 in hhg2By(~0; 0)Ez(~0; t)ii, whi
h was toavoid unwanted latti
e e�e
ts due to the sharing of the same link variable in thetwo �eld strength operators. Here, sin
e it is impossible to �x the parameters,matrix elements and the energy gaps, for all ex
ited states,m � 1, with a �nitenumber of data points, we trun
ated the expansion at a 
ertain m = mmax.The validity of this trun
ation was veri�ed by monitoring the values of �2 andthe integration results. We generally 
hose mmax su
h that �2min=Ndf was oforder 1, where Ndf is the number of degrees of freedom. All �t details and the�t results (i.e. the values of the integral) are tabulated in Tables A.3 and A.4in the Appendix.An important observation is that the integrals obtained for T = 20a andT = 40a are the same within errors, despite the fa
t that the behavior ofthe 
orrelators around t = T=2 in Figs. 6 and 7 is obviously di�erent. Whilethe 
orrelator 
omputed for T = 20a is 
learly distorted due to periodi
ity,this is not the 
ase for T = 40a (note that the verti
al axis is the same inboth �gures). This indi
ates that the hyperboli
 sine or 
osine fun
tion in thespe
tral representation provides a good des
ription of the �nite-T e�e
t. In16
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<< g 2 By(0,0) By(r,t) >>Fig. 7. The same as Fig. 6 but on the 20340 latti
e.other words, it is possible to extra
t the asymptoti
 value of the integral fromthe latti
e with a relatively small value of T within this approa
h. At thesame time, this 
on�rms that the error term of O(e�(�E10)T ) is negligible inthis setting. We also examined a smaller latti
e volume, 164, at � = 6:0 andobtained the same result at r=a � 6. 5 In this sense the spatial �nite volumee�e
t at r=a � 6 on the 204 and 20340 latti
es is also negligible.The �t result at � = 6:3 on the 244 latti
e is listed in Table A.5 in theAppendix. The �nite volume e�e
t at this � value is expe
ted to be small,though we did not investigate this expli
itly, sin
e the physi
al size of thelatti
e volume is almost the same as for 164 at � = 6:0.Finally, we point out several 
aveats. i) Although the �t works beautifully,one may not be able to assign a quantitative meaning to the resulting matrixelements and the energy gaps. This is be
ause we trun
ated the spe
tral rep-resentation when performing the �t, and as a result, the latti
e data, whi
h inprin
iple 
ontains the 
ontribution from all modes, are for
ed to be des
ribedby only a few modes. In this 
ase, it is reasonable to regard only the value forthe integral to be of quantitative signi�
an
e. ii) As the energy gaps of thevarious �eld strength 
orrelators in Eqs. (2.8)-(2.10) are the same, one mayexpe
t that the �t of ea
h 
orrelator provides the same energy gap, or one may5 These data are not presented in this paper but available on request.17



attempt a simultaneous �t of all 
orrelators with su
h a 
onstraint. However,as the e�e
tive trun
ation level is not always 
ommon to all 
orrelators, evenat a �xed distan
e, whi
h is also related to the fa
t that the matrix elementsare not positive de�nite, this was not always the 
ase. iii) The sensitivity of the�t result, namely the integration value, is mostly governed by the lowest en-ergy gap sele
ted by the �t, whi
h gives the dominant 
ontribution at � !1.This is why we examined two latti
e volumes with the same spatial size butdi�erent temporal extent and 
on�rmed that su
h a systemati
 e�e
t is neg-ligible. This fa
t supports our 
laim that the spe
tral representation of the�eld strength 
orrelator is useful even though a trun
ation must ne
essarilybe performed.3.4 Spin-dependent potentialsThe spin-dependent potentials, V 01(r), V 02(r), V3(r) and V4(r) at � = 6:0 onthe 20340 latti
e and at � = 6:3 on the 244 latti
e are presented in Figs. 8, 9, 12and 13, respe
tively, expressed in physi
al units. These are the main resultsof this paper. Though we expe
t a s
aling behavior for VSD(r) in Eq. (1.1),both data at � = 6:0 and � = 6:3 for ea
h potential seem to fall into one
urve, whi
h in turn may indi
ate that the mat
hing 
oeÆ
ients should dependweakly on �. The qualitative behavior of these potentials is not obs
ured bynumeri
al errors. However, there is still room for improvement for the datawith r > 0:3 fm at � = 6:3. The raw data in the latti
e unit are summarizedin Tables A.6-A.8 in the Appendix. 6 The rest of this subse
tion is devoted tothe interpretation of our data. In parti
ular, we shall dis
uss the fun
tionalform of the dependen
e of the potentials on the distan
e r.We start by brie
y summarizing the theoreti
al expe
tation for thespin-dependent potentials. As mentioned in the introdu
tion, Gromes de-rived a relation between the stati
 potential and the spin-orbit potentials,V 00(r) = V 02(r) � V 01(r), using the Lorentz (Poin
ar�e) invarian
e of the �eldstrength 
orrelators [18,19℄. He also derived several inequalities for the spin-spin potentials based on re
e
tion positivity, su
h as V3(r) � V4(r) and2V3(r) + V4(r) � 0 [42℄. These relations are nonperturbative, and 
an thusbe 
he
ked dire
tly on the latti
e. 7 Moreover, these relation do not dependon the mat
hing s
ale.Another sour
e of information 
omes from the systemati
 non-relativisti
redu
tion of the Bethe-Salpeter (BS) equations within the instantaneous ap-proximation [1℄. Starting from the intera
tion kernel, whi
h is assumed to be6 In these data, the HM fa
tors are already multiplied, but the bare latti
e data
an be extra
ted by dividing the 
orresponding fa
tors in Table A.2. Starting fromthe bare data one 
an also test other renormalization pro
edures.7 One may of 
ourse expe
t a 
ertain deviation from this relation on the latti
ewith a �nite latti
e 
uto� a, sin
e the stri
t Lorentz invarian
e is restored only inthe 
ontinuum limit, a! 0. 18



Table 4The relation between the Lorentz stru
ture of the e�e
tive kernel in the Bethe-Salpeter equation and the spin-dependent potentials [1℄. S(r), V (r) and P (r) aresome s
alar fun
tions. If the intera
tion kernel has several 
omponents, the expe
tedforms of the potentials are given by the sum of the 
orresponding terms.Kernel V0(r) V1(r) V2(r) V3(r) V4(r)S
alar S(r) �S(r) 0 0 0Ve
tor V (r) 0 V (r) �V 00(r) + V 0(r)=r 2�V (r)Pseudo-s
alar 0 0 0 P 00(r)� P 0(r)=r �P (r)a fun
tion of the norm squared of the relative momentum between a quarkand an antiquark with various Lorentz stru
tures, one arrives at a Breit-Fermitype e�e
tive Hamiltonian up to O(1=m2) [43,44℄. By 
omparing this e�e
tiveHamiltonian with Eq. (1.1) (where C(i)F = 1 is assumed), one obtains the rela-tion between the Lorentz stru
ture of the kernel and the spin-dependent poten-tials as summarized in Table 4. This indi
ates that the Lorentz stru
ture of the
on�ning stati
 potential 
an also be inferred from the stru
ture of the spin-dependent potentials. For the spe
ial 
ase of the one-gluon-ex
hange intera
-tion, the kernel only 
onsists of the Lorentz ve
tor, and the spin-dependentpotentials are expli
itly given byV 01(r) = 0 ; V 02(r) = 
r2 ; V3(r) = 3
r3 ; V4(r) = 8�
Æ(3)(r) ; (3.9)where 
 = CF�s.We shall now investigate the r-dependen
e of our latti
e data in more de-tail. We emphasize that, apart from the Gromes relation, no exa
t predi
tionsexist for the behavior of the potentials beyond the short-distan
e regime. Wehave thus investigated the r-dependen
e of the potential by �tting the data toa parti
ular model fun
tion, mostly guided by the short-distan
e predi
tionsof Eq. (3.9). In 
ases where the latter 
learly failed to des
ribe the data, wehave also resorted to e�e
tive parametrizations. The quality of a parti
ular �tansatz was judged by monitoring the value of �2min=Ndf as 
omputed using thefull 
ovarian
e matrix. Clearly, the underlying me
hanism responsible for theobserved behavior 
annot be established rigorously in this manner. However,the main aim of this analysis is to provide nonperturbative input and guidan
efor future 
on
eptual studies in this area.In the following we 
on
entrate mostly on the dataset at � = 6:0, sin
eit extends to larger distan
es 
ompared with the data 
olle
ted at � = 6:3.On the other hand, at smaller distan
es the results may be a�e
ted moreby latti
e artefa
ts. Indeed, around r � 0:2 fm we o

asionally observe smalldis
repan
ies for some potentials. Therefore, in the �ts to the � = 6:0 datasetdes
ribed below, we have mostly omitted the data point 
orresponding to thesmallest separation r=a = 2. 19
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Fig. 9. Spin-orbit potential V 02(r) at � = 6:0 and � = 6:3. The dotted line is the �t
urve Eq. (3.8), applied to the data of � = 6:0.We start our dis
ussion with the spin-orbit potentials V 01(r) and V 02(r).For V 01(r), we �nd that the potential is negative and almost 
onstant at r &0:25 fm (see Fig. 8). This behavior 
learly 
ontradi
ts Eq. (3.9) and suggeststhe existen
e of the Lorentz-s
alar pie
e in the intera
tion kernel in termsof the BS equation. Our data at � = 6:3 suggest that one 
annot ex
lude adeviation from a 
onstant at small distan
es, an observation whi
h was alsomade by Bali et al. [29,30℄. For V 02(r), we see a de
reasing behavior with r (seeFig. 9), whi
h is not restri
ted to the short range, but rather seems to have a�nite tail up to intermediate distan
es.Before dis
ussing the fun
tional form of V 01(r) and V 02(r) quantitatively, we20



1.2

1.0

0.8

0.6

0.4

0.2

0.0

[G
eV

2 ]

0.80.60.40.20.0

r  [fm]

V0'(r)
 β = 6.0
 β = 6.3 

 

V2'(r) - V1'(r) 
 β = 6.0
 β = 6.3 

Fig. 10. Comparison between the for
e V 00(r) and the di�eren
e of the spin-orbitpotentials V 02(r) � V 01(r) at � = 6:0 on the 20340 latti
e and � = 6:3 on the 244latti
e with the physi
al s
ale. The Gromes relation is V 00(r) = V 02(r)� V 01(r). Thedotted line is the �t 
urve for the for
e V 00 , while the dashed line is for V 02 � V 01 ,where Eq. (3.8) is used in both 
ases.
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tions are the same as in Fig. 10 and the dotted lines denotethe 1� error band.may ask if these spin-orbit potentials satisfy the Gromes relation, sin
e other-wise it is un
lear whether any quantitative arguments make sense. In Fig. 10,we 
ompare the stati
 for
e, V 00(r), with the di�eren
e of the spin-orbit po-tentials, V 02(r) � V 01(r). We �nd quite a good agreement, indi
ating that theGromes relation is apparently satis�ed. We 
an examine this relation in moredetail by �tting the di�eren
e V 02(r)�V 01(r) at � = 6:0 to the same fun
tional21



form as the for
e in Eq. (3.8). Thereby we obtain �v21a2 = 0:0426(9) and
 = 0:293(9) with �2min=Ndf = 0:26. 8 The string tension extra
ted in this wayis about 8 % smaller than that in V 00(r), while the Coulombi
 
oeÆ
ients arein agreement within errors. We also plot the quantity 1� (V 02 � V 01)�t=V 00;�t inFig. 11. From this we 
on
lude that the Gromes relation is satis�ed within(8 � 1) % a

ura
y at r � 0:5 fm. Note that without the renormalizationfa
tor for the �eld strength operator, one would observe a strong deviationfrom the Gromes relation by a fa
tor � 2:7 at � = 6:0. In this sense, therenormalization of the operator is 
ru
ial for satisfying the Gromes relationwithin a few per
ent level, espe
ially when the latti
e spa
ing is �nite. It is
ertainly interesting to investigate if the Gromes relation is exa
tly satis�edin the 
ontinuum limit. Although we have investigated the gauge 
oupling at� = 6:3, we need further a

ura
y of the data at intermediate distan
es toa
hieve this.For V 01(r), if we only take into a

ount the data for r & 0:25 fm at � = 6:0and, assuming that they are 
onstant, we 
an �t them to a fun
tionV 01;�t = ��v1 : (3.10)Due to the Gromes relation, we may identify this 
onstant as a part of thestring tension in V 00(r). We then �nd �v1a2 = 0:0362(4) with �2min=Ndf = 0:13,whi
h is (77� 1) % of the string tension in V 00(r). The 
orresponding �t 
urveis plotted in Fig. 8.While the Gromes relation is approximately satis�ed, we �nd that thestring tension �v1 is not yet suÆ
ient to reprodu
e the string tension �v21. Inother words there is still a missing amount of the string tension. We then noti
ethat this must be supplied by V 02(r). A �t of V 02(r) to Eq. (3.8) indeed leadsto �v2a2 = 0:0070(7) and 
 = 0:288(7) with �2min=Ndf = 0:22. The �t 
urve isplotted in Fig. 9. Now the sum of �v1 and �v2 reprodu
es �v21. These �ndingssuggest the existen
e of a long-ranged 
ontribution in V 02(r) whose magnitudeis about one-�fth of �v1, whi
h is (15 � 2) % of the string tension in V 00(r).We also attempted a �t with the expe
tation from perturbation theory, bysimply �xing the string tension to be zero in the above �t. In this 
ase the �t
learly fails, sin
e �2min=Ndf = 44. From the phenomenologi
al point of view,one might prefer a simple parametrization like � = �v1 and �v2 = 0 [45℄,but the results obtained here slightly di�er from this expe
tation. We wish topoint out, though, that V 02(r) should further be investigated at distan
es largerthan 0.7 fm, in order to 
orroborate a non-vanishing value of V 02(r) for r !1.We may note that Eq. (3.8) is not the only fun
tional form for V 02(r). Forinstan
e, the fun
tion V 02;�t(r) = 
0=rp with p = 1:51(4) and 
0ap�2 = 0:205(9)also reprodu
es the data quite well, with �2min=Ndf = 0:34.Next, we dis
uss the spin-spin potentials V3(r) and V4(r). We �rst examine8 Here and in the following, we atta
h a subs
ript to � so as to distinguish thetarget fun
tion in the �t. 22
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urve Eq. (3.12), applied to the data of � = 6:0.V3(r) (see Fig. 12) if the ansatz motivated by one-gluon-ex
hange in Eq. (3.9)is appropriate. The �t to this fun
tion yields the 
oeÆ
ient 
 = 0:214(2) with�2min=Ndf = 3:7. This value of �2min=Ndf is relatively large and the result for 
is 28 % smaller than the Coulombi
 
oeÆ
ient in V 00(r). A better �t 
an bea
hieved using an ansatz in whi
h the power of 1=r is left as a free parameter,i.e. V3;�t(r) = 3
0rp : (3.11)23



This yields 
0ap�3 = 0:171(10) and p = 2:80(6), where �2min=Ndf = 0:79. The
orresponding �t 
urve is plotted in Fig 12. The value of p is smaller than 3within 3 standard deviations. If one takes this result as fa
e value, it indi
atesa deviation from the one-gluon-ex
hange potential. A deviation might a
tuallybe expe
ted from the existen
e of the long-ranged 
ontribution in V 02(r) andthe relations in Table 4; if we insert a fun
tion V (r) = �
=r + �v2r into�V 00(r) + V 0(r)=r, we obtain 3
=r3 + �v2=r at r 6= 0. We have then examinedif this fun
tion des
ribes the data for given 
 and �v2, whi
h are suppliedfrom the V 02(r) �t. However, we have found that the resulting 
urve is notappropriate to des
ribe the behavior of the data at all, sin
e it lies above thedata points at small distan
es. This tenden
y is pra
ti
ally due to the term1=r3, but this additional term 1=r also helps to lift the 
urve. It suggests thatwe need to add a negative 
ontribution to su
h an ansatz.A possible 
andidate would then be a pseudo-s
alar 
ontribution, whi
his also 
losely related to the behavior of V4(r) (see Fig. 13). In fa
t, ifonly the one-gluon-ex
hange intera
tion is 
onsidered in the ve
tor kernel,2�V (r) = 2(V 00(r) + 2V 0(r)=r) leads to a Æ-fun
tion as in Eq. (3.9), whileif we insert the empiri
al behavior of V 02(r), an additional term of 4�v2=ris generated for V4(r). Thus we expe
t a positive behavior at non-zero dis-tan
es. By 
ontrast, the data is negative at small distan
es and almost zerofor r > 0:2 fm. Let us now assume the presen
e of a pseudo-s
alar intera
-tion, P (r) = �g0e�mgr=r, where mg is the mass of the lightest pseudo-s
alarparti
le, and g0 is the 
orresponding e�e
tive 
oupling to quarks. This 
er-tainly generates a negative 
ontribution, �P (r) = �g0m2ge�mgr=r, to V4(r).Note that the pseudo-s
alar intera
tion P (r) is often used in the one-boson-ex
hange model for des
ribing the nu
leon-nu
leon system, where pions playa relevant role [46℄. In our simulation, however, sin
e the e�e
ts of dynami-
al fermions are negle
ted due to our use of the quen
hed approximation, thelowest mass in the pseudo-s
alar 
hannel 
annot be identi�ed with the pionmass but rather with the lightest glueball mass.We have then performed a �t toV4;�t(r) = �g0m2g e�mgrr + 4�v4r ; (3.12)where we have assumed mg = 2:47 GeV, whi
h is taken from the re
ent latti
estudies of the glueball masses [47℄, and treated g0 and �v4 as free parameters.The result was g0 = 0:292(12) and �v4a2 = 0:0015(3) with �2min=Ndf = 5:1,and the 
orresponding 
urve is put in Fig. 13 (if mg is relaxed to be a freeparameter, �2min=Ndf is signi�
antly redu
ed). We �nd that �v4 (noti
e thatthis value is not zero) is not exa
tly �v2, but as the relation among intera
tionkernels is not exa
t but derived within the instantaneous approximation, su
ha deviation may o

ur, espe
ially for the nonperturbative pie
es. On the otherhand, the value of g0 is very 
lose to 
 = 0:297(1) determined from the for
e(see Table 3). If we impose �v4 = �v2, we obtain here �2min=Ndf � 100. However24
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ome ba
k to V3(r) and examine if the sum of the (positive) ve
torand the (negative) pseudo-s
alar 
ontributions, with parameters estimated bythe V4(r) �t, 
an des
ribe the behavior of V3(r). Here, we 
onsider the sum oftwo fun
tions,V (V)3 (r) = 3
r3 + �v4r ; (3.13)25



Table 5Fit results of the spin-dependent potentials at � = 6:0 on the 20340 latti
e. (*) ifwe relax mg to be a free parameter, �2min=Ndf is signi�
antly redu
ed.Potential Fit range (r=a) Fit fun
tion and parameters �2min=NdfV 01(r) V 0�t = ��3� 7 �a2 = 0:0362(4) 0.13V 02(r) V 0�t(r) = � + 
=r23� 6 �a2 = 0:0070(7), 
 = 0:288(7) 0.22V 0�t(r) = 
0=rp3� 6 
0ap�2 = 0:205(9), p = 1:51(4) 0.34V 02(r)� V 01(r) V 0�t(r) = � + 
=r23� 7 �a2 = 0:0426(9), 
 = 0:293(9) 0.26V3(r) V�t(r) = 3
=r33� 7 
 = 0:214(2) 3.7V�t(r) = 3
0=rp3� 7 
0ap�3 = 0:171(10), p = 2:80(6) 0.79V4(r) V�t(r) = �g0m2ge�mgr=r + 4�=r2� 7 g0 = 0:292(12), �a2 = 0:0015(3),mga = 1:16 (�xed) 5.1�V (PS)3 (r) = P 00(r)� P 0(r)r = �g0( 3r3 + 3mgr2 + m2gr )e�mgr ; (3.14)where 
 is taken from V 00(r). It is interesting to see Fig. 14 that the 
urveV (V)3 (r) + V (PS)3 (r), whi
h is plotted with the solid line, 
an go through thedata at � = 6:0.In most of previous works, it was 
on
luded that V4(r) is 
onsistent witha Æ-fun
tion, whi
h may only be true at very small distan
es. However, aswe demonstrated, the behavior of V3(r) and V4(r) at distan
es r & 0:2 fm
an be 
onsistently explained by assuming the existen
e of the pseudo-s
alar
ontribution as well as the ve
tor 
ontribution. Note furthermore that the
ombination of the potentials r(2V3 + V4) � 6V 02 should be zero at non-zerodistan
es, if the intera
tion kernel 
ontains only the pure ve
tor 
omponentwithout a linear term and no pseudo-s
alar 
ontribution (see Table 4) [23℄.However, as shown in Fig. 15, we �nd that this 
ombination is non-vanishingwithin our a

ura
y, so that some of these assumptions are probably not ap-pli
able. Of 
ourse, our dis
ussion on the pseudo-s
alar 
ontribution is as yetspe
ulation, whi
h needs to be 
he
ked in future works. A possible way ofdoing this is to investigate V4(r) in the presen
e of dynami
al quarks (pions)in full QCD simulations, and to examine whether one 
an indeed observe abehavior like / �e�m�r=r for suÆ
iently small quark masses. Some of previ-ous works in Refs. [27,28℄ have been 
arried out in full QCD, but the dataquality is not suÆ
ient to draw any 
on
lusion. In any 
ase, we expe
t to raise26



further dis
ussions on the stru
ture of the spin-spin potentials.To 
lose the dis
ussion on the fun
tional form, we note that the Gromesinequalities V3(r) � V4(r) and 2V3(r) + V4(r) � 0 are 
ertainly satis�ed. Forinstan
e, the latter inequality is immediately 
he
ked through 2V3(r)+V4(r) =6 R10 dthhg2Bx(~0; 0)Bx(~r; t)ii, whi
h is positive at all available r as 
an be seenfrom Tables A.3-A.5 in the Appendix. We summarize all �t results of thefun
tional form in Table 5.4 SummaryWe have investigated the spin-dependent 
orre
tions to the stati
 po-tential at O(1=m2) in SU(3) latti
e gauge theory. These 
orre
tions, usually
alled the spin-dependent potentials, are represented as the integral of the�eld strength 
orrelators on the quark-antiquark sour
e with respe
t to therelative temporal distan
e between two �eld strength operators. We have usedthe Polyakov loop 
orrelation fun
tion as the quark-antiquark sour
e, and byemploying the multi-level algorithm, we have obtained remarkably 
lean datafor the expe
tation values of the �eld strength 
orrelators and, in turn, for thespin-dependent potentials up to intermediate distan
es of around r ' 0:6 fm.The spe
tral representation of the �eld strength 
orrelator in a �nite peri-odi
 volume has been exploited in order to extra
t the potential with lesssystemati
 error.The observation we have made for the spin-dependent potentials inEq. (1.1) is as follows. The spin-orbit potential V 01(r) is 
learly long-ranged, isnegative at all distan
es and 
onstant at r & 0:25 fm. The other spin-orbit po-tential V 02(r) is positive at all distan
es and shows a behavior de
reasing with r.However, it has a �nite tail up to intermediate distan
es, whi
h 
annot be ex-plained at least by the one-gluon-ex
hange intera
tion. The Gromes relationV 00(r) = V 02(r) � V 01(r) is satis�ed within (8 � 1) % a

ura
y at intermediatedistan
es in the present simulation. Within this relation, the 
onstant valuein V 01(r) reprodu
es (77� 1) % of the string tension in V 00(r) and (15� 2) %of the string tension are found to be supplied by V 02(r). The spin-spin (ten-sor) potential V3(r) is positive at all distan
es and is de
reasing as a fun
tionof r. The behavior is slightly more moderate than the expe
tation of the one-gluon-ex
hange pi
ture / 1=r3. The other spin-spin potential V4(r) exhibitsa negative short-ranged behavior. This short-ranged behavior, as well as thebehavior of V3(r), 
ould be explained if the ex
hange of the pseudo-s
alarglueball is assumed in addition to the one-gluon-ex
hange type intera
tion.In this paper we have not 
arried out a detailed 
omparison of the latti
eresult of the spin-dependent potentials with perturbation theory, e.g. alongthe lines of Ne

o and Sommer for the stati
 potential [37,48℄. In this sense,although we have observed a 
ertain deviation from the expe
tation of leadingorder perturbation theory at intermediate distan
es, it is not yet 
lear thatfrom whi
h distan
e a perturbative des
ription be
omes inadequate. Clearly,27



it requires further systemati
 studies, where the renormalization of the �eldstrength operator and also the mat
hing 
oeÆ
ients are worth to be re
onsid-ered. However, we expe
t that the numeri
al pro
edures we have demonstratedin this paper is quite useful for su
h a work. Then, it is interesting to use theresult as inputs of phenomenologi
al models [49,50,51℄ or to 
ompare with thevarious QCD va
uum models [52,53,54℄. It may be interesting to note thatthe existen
e of a long-ranged 
ontribution in V 02(r) is suggested in Ref. [54℄,independently of the present work.Finally we note that our numeri
al pro
edures are also appli
able to theevaluation of other relativisti
 
orre
tions like the velo
ity-dependent poten-tials [55,56,11℄ and the potential at O(1=m) [14,15,11,57,58,59,60,61℄, whi
hare also represented as the �eld strength 
orrelators on the quark-antiquarksour
e with di�erent 
ombination of the �eld strength operators from the spin-dependent potentials. The �rst latti
e result on the potential at O(1=m) waspublished in Ref. [34℄.A
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al dis
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A Colle
tion of numeri
al valuesA.1 Tree-level improvement of the quark-antiquark distan
esTable A.1The quark-antiquark distan
es for the stati
 potential V0(rI), the for
e V 00(�r) (orV 00(�r
)) and the se
ond derivative V 000 (~r) with the tree-level improvement [38,37,32℄.r=a rI=a �r=a �r
=a ~r=a1 0.9252 1.855 1.358 1.649 1.7883 2.889 2.277 2.654 2.7004 3.922 3.312 3.729 3.7295 4.942 4.359 4.794 4.7866 5.954 5.393 5.837 5.8337 6.962 6.414 6.865 6.8648 7.967 7.428 7.885 7.8869 8.971 8.438 8.899 8.901A.2 HM fa
torsTable A.2The HM renormalization fa
tors at � = 6:0 on the 204 latti
e (upper) and � = 6:3on the 244 latti
e (lower), where the quark-antiquark system is set along the x axis.Thus, one should observe ZEy = ZEz , ZBy = ZBz .r=a ZEx ZEy ZEz ZBx ZBy ZBz2 1.59446(4) 1.63031(6) 1.63038(5) 1.67833(16) 1.67614(12) 1.67600(15)3 1.61170(4) 1.62498(6) 1.62503(5) 1.67764(16) 1.67661(12) 1.67651(15)4 1.61620(4) 1.62338(6) 1.62339(6) 1.67735(16) 1.67676 (12) 1.67669(14)5 1.61777(6) 1.62282(6) 1.62282(7) 1.67726(16) 1.67687(13) 1.67678(15)6 1.61846(6) 1.62250(7) 1.62262(6) 1.67721(16) 1.67695(13) 1.67683(16)7 1.61877(10) 1.62246(8) 1.62233(8) 1.67726(16) 1.67684(13) 1.67680(15)8 1.61879(15) 1.62225(17) 1.62232(16) 1.67708(18) 1.67682(19) 1.67674(19)2 1.54232(3) 1.56529(3) 1.56526(3) 1.60307(7) 1.60179(9) 1.60185(7)3 1.55417(5) 1.56151(4) 1.56154(4) 1.60271(7) 1.60217(10) 1.60226(7)4 1.55717(6) 1.56048(4) 1.56049(6) 1.60266(7) 1.60225(10) 1.60235(7)5 1.55810(9) 1.56013(6) 1.56004(7) 1.60260(9) 1.60231(11) 1.60231(10)6 1.55853(10) 1.55974(11) 1.55986(13) 1.60247(11) 1.60229(12) 1.60253(11)7 1.55829(18) 1.55921(23) 1.55980(14) 1.60238(18) 1.60216(17) 1.60223(16)8 1.55855(40) 1.55974(37) 1.55975(32) 1.60260(29) 1.60249(28) 1.60217(23)9 1.55961(43) 1.55954(64) 1.56021(48) 1.60324(36) 1.60324(39) 1.60331(44)
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A.3 Fit results of the �eld strength 
orrelatorsTable A.3Fit results of the �eld strength 
orrelators with Eqs. (2.8)-(2.10) at � = 6:0 on the204 latti
e. mmax is the maximum trun
ation level of the spe
tral representation.C(t) r=a Fit range (t=a) mmax a2 R10 dt tC(t) �2min=Ndfhhg2By(0; 0)Ez(0; t)ii 2 2� 10 2 �0.01801(4) 0.433 2� 10 2 �0.01808(6) 0.994 2� 10 2 �0.01805(10) 0.305 2� 10 2 �0.01800(19) 0.456 2� 10 2 �0.01795(32) 1.9hhg2By(0; 0)Ez(r; t)ii 2 1� 10 3 0.03618(3) 2.03 1� 10 3 0.01948(4) 2.74 1� 10 3 0.01265(10) 0.815 1� 10 2 0.00917(14) 2.06 1� 10 2 0.00795(42) 0.88C(t) r=a Fit range (t=a) mmax a3 R10 dt C(t) �2min=Ndfhhg2Bx(0; 0)Bx(r; t)ii 2 1� 10 3 0.01648(3) 2.23 1� 10 3 0.00743(3) 0.974 1� 10 3 0.00381(3) 0.855 1� 10 2 0.00217(3) 2.06 1� 10 2 0.00128(5) 1.8hhg2By(0; 0)By(r; t)ii 2 1� 10 3 �0.01226(3) 0.773 1� 10 3 �0.00443(3) 0.404 1� 10 3 �0.00155(3) 0.375 1� 10 3 �0.00067(3) 0.466 1� 10 3 �0.00033(4) 0.48
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Table A.4Fit results of the �eld strength 
orrelators at � = 6:0 on the 20340 latti
e.C(t) r=a Fit range (t=a) mmax a2 R10 dt tC(t) �2min=Ndfhhg2By(0; 0)Ez(0; t)ii 2 2� 20 2 �0.01798(13) 2.73 2� 20 2 �0.01809(20) 2.54 2� 20 2 �0.01800(27) 2.95 2� 20 2 �0.01809(25) 1.46 2� 20 2 �0.01831(40) 1.87 2� 20 2 �0.01853(137) 2.6hhg2By(0; 0)Ez(r; t)ii 2 1� 20 3 0.03618(5) 1.43 1� 20 3 0.01950(12) 5.04 1� 20 2 0.01253(18) 1.95 1� 20 2 0.00920(31) 2.46 1� 20 2 0.00703(80) 5.77 1� 20 2 0.00457(68) 2.6C(t) r=a Fit range (t=a) mmax a3 R10 dt C(t) �2min=Ndfhhg2Bx(0; 0)Bx(r; t)ii 2 1� 20 3 0.01642(7) 1.53 1� 20 3 0.00742(5) 2.24 1� 20 3 0.00372(7) 1.55 1� 20 3 0.00206(6) 1.56 1� 20 2 0.00133(16) 5.57 1� 20 2 0.00071(18) 4.5hhg2By(0; 0)By(r; t)ii 2 1� 20 3 �0.01226(6) 3.13 1� 20 3 �0.00442(7) 2.34 1� 20 3 �0.00166(7) 2.85 1� 20 3 �0.00069(6) 2.66 1� 20 3 �0.00029(9) 1.87 1� 20 3 �0.00030(39) 1.9
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Table A.5Fit results of the �eld strength 
orrelators at � = 6:3 on the 244 latti
e. (�)one ofthe ex
itation energies in the expansion was �xed so as to make the �t stable.C(t) r=a Fit range (t=a) mmax a2 R10 dt tC(t) �2min=Ndfhhg2By(0; 0)Ez(0; t)ii 2 2� 12 2 �0.00980(10) 1.13 2� 12 2 �0.00872(29) 1.24 2� 12 2 �0.00768(30) 1.45 2� 12 2 �0.00727(28) 4.4�6 2� 12 2 �0.00664(110) 0.94hhg2By(0; 0)Ez(r; t)ii 2 1� 12 3 0.03145(7) 0.283 1� 12 2 0.01620(16) 3.04 1� 12 2 0.01008(37) 2.05 1� 12 2 0.00632(43) 0.856 1� 12 2 0.00446(109) 2.3C(t) r=a Fit range (t=a) mmax a3 R10 dt C(t) �2min=Ndfhhg2Bx(0; 0)Bx(r; t)ii 2 1� 12 3 0.01452(3) 0.493 1� 12 3 0.00653(3) 4.44 1� 12 2 0.00332(6) 1.25 1� 12 2 0.00188(8) 0.876 1� 12 1 0.00123(12) 0.49hhg2By(0; 0)By(r; t)ii 2 1� 12 3 �0.01203(3) 0.953 1� 12 3 �0.00436(3) 1.44 1� 12 3 �0.00168(7) 1.55 1� 12 2 �0.00084(18) 4.86 1� 12 1 �0.00046(12) 1.8
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A.4 Spin-dependent potentialsTable A.6The spin-dependent potentials at � = 6:0 on the 204 latti
e.r/a a2V 01 a2V 02 a3V3 a3V42 �0.03603(8) 0.07235(6) 0.05749(8) �0.01607(13)3 �0.03616(12) 0.03896(9) 0.02373(8) �0.00286(14)4 �0.03609(20) 0.02531(19) 0.01072(8) 0.00143(17)5 �0.03600(39) 0.01836(28) 0.00568(9) 0.00165(14)6 �0.03591(65) 0.01590(84) 0.00322(13) 0.00123(20)Table A.7The spin-dependent potentials at � = 6:0 on the 20340 latti
e.r/a a2V 01 a2V 02 a3V3 a3V42 �0.03596(25) 0.07235(11) 0.05736(19) �0.01620(27)3 �0.03618(41) 0.03900(25) 0.02368(20) �0.00284(29)4 �0.03600(54) 0.02507(36) 0.01075(21) 0.00081(30)5 �0.03619(50) 0.01840(61) 0.00549(18) 0.00138(27)6 �0.03662(81) 0.01405(160) 0.00323(37) 0.00152(47)7 �0.03706(274) 0.00914(136) 0.00203(103) 0.00021(137)Table A.8The spin-dependent potentials at � = 6:3 on the 244 latti
e.r/a a2V 01 a2V 02 a3V3 a3V42 �0.01960(19) 0.06290(15) 0.05310(9) �0.01910(15)3 �0.01744(58) 0.03240(31) 0.02178(9) �0.00439(14)4 �0.01539(61) 0.02017(74) 0.01000(16) �0.00009(31)5 �0.01443(79) 0.01265(87) 0.00546(41) 0.00038(70)6 �0.01329(221) 0.00893(217) 0.00339(37) 0.00057(52)

33



Referen
es[1℄ W. Lu
ha, F.F. S
h�oberl and D. Gromes, Phys. Rept. 200 (1991) 127.[2℄ W. Bu
hm�uller (Ed.), Quarkonia, Current physi
s-sour
es and 
omments,vol. 9, (North-Holland, 1992).[3℄ G.S. Bali, Phys. Rept. 343 (2001) 1, hep-ph/0001312.[4℄ N. Brambilla et al., Heavy quarkonium physi
s, CERN Yellow Report (2005),hep-ph/0412158.[5℄ E. Ei
hten and F. Feinberg, Phys. Rev. Lett. 43 (1979) 1205.[6℄ E. Ei
hten and F. Feinberg, Phys. Rev. D23 (1981) 2724.[7℄ M.E. Peskin, Aspe
ts of the dynami
s of heavy quark systems, 11th Int. SLACSummer Inst. on Parti
le Physi
s, Stanford, CA, Jul 18-26, 1983, SLAC-PUB-3273.[8℄ D. Gromes, Z. Phys. C22 (1984) 265.[9℄ Y.J. Ng, J.T. Pantaleone and S.H.H. Tye, Phys. Rev. Lett. 55 (1985) 916.[10℄ J.T. Pantaleone, S.H.H. Tye and Y.J. Ng, Phys. Rev. D33 (1986) 777.[11℄ A. Pineda and A. Vairo, Phys. Rev. D63 (2001) 054007, hep-ph/0009145,Erratum-ibid D64 (2001) 039902.[12℄ W.E. Caswell and G.P. Lepage, Phys. Lett. B167 (1986) 437.[13℄ G.T. Bodwin, E. Braaten and G.P. Lepage, Phys. Rev. D51 (1995) 1125,hep-ph/9407339, Erratum-ibid D55 (1997) 5853.[14℄ N. Brambilla, A. Pineda, J. Soto and A. Vairo, Nu
l. Phys. B566 (2000) 275,hep-ph/9907240.[15℄ N. Brambilla, A. Pineda, J. Soto and A. Vairo, Phys. Rev. D63 (2001) 014023,hep-ph/0002250.[16℄ N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77 (2005)1423, hep-ph/0410047.[17℄ A.V. Manohar, Phys. Rev. D56 (1997) 230, hep-ph/9701294.[18℄ D. Gromes, Z. Phys. C26 (1984) 401.[19℄ N. Brambilla, D. Gromes and A. Vairo, Phys. Rev. D64 (2001) 076010,hep-ph/0104068.[20℄ Ph. de For
rand and J.D. Sta
k, Phys. Rev. Lett. 55 (1985) 1254.[21℄ C. Mi
hael and P.E.L. Rakow, Nu
l. Phys. B256 (1985) 640.[22℄ C. Mi
hael, Phys. Rev. Lett. 56 (1986) 1219.34

http://arxiv.org/abs/hep-ph/0001312
http://arxiv.org/abs/hep-ph/0412158
http://arxiv.org/abs/hep-ph/0009145
http://arxiv.org/abs/hep-ph/9407339
http://arxiv.org/abs/hep-ph/9907240
http://arxiv.org/abs/hep-ph/0002250
http://arxiv.org/abs/hep-ph/0410047
http://arxiv.org/abs/hep-ph/9701294
http://arxiv.org/abs/hep-ph/0104068


[23℄ A. Huntley and C. Mi
hael, Nu
l. Phys. B286 (1987) 211.[24℄ M. Campostrini, K. Moriarty and C. Rebbi, Phys. Rev. Lett. 57 (1986) 44.[25℄ M. Campostrini, K. Moriarty and C. Rebbi, Phys. Rev. D36 (1987) 3450.[26℄ I.J. Ford, J. Phys. G15 (1989) 1571.[27℄ Y. Koike, Phys. Lett. B216 (1989) 184.[28℄ K.D. Born, E. Laermann, T.F. Walsh and P.M. Zerwas, Phys. Lett. B329 (1994)332.[29℄ G.S. Bali, K. S
hilling and A. Wa
hter, Phys. Rev. D55 (1997) 5309,hep-lat/9611025.[30℄ G.S. Bali, K. S
hilling and A. Wa
hter, Phys. Rev. D56 (1997) 2566,hep-lat/9703019.[31℄ M. L�us
her and P. Weisz, JHEP 09 (2001) 010, hep-lat/0108014.[32℄ M. L�us
her and P. Weisz, JHEP 07 (2002) 049, hep-lat/0207003.[33℄ M. Koma, Y. Koma and H. Wittig, PoS LAT2005 (2005) 216, hep-lat/0510059.[34℄ Y. Koma, M. Koma and H. Wittig, Phys. Rev. Lett. 97 (2006) 122003,hep-lat/0607009.[35℄ G.P. Lepage and P.B. Ma
kenzie, Phys. Rev. D48 (1993) 2250, hep-lat/9209022.[36℄ Y. Koma, M. Koma and P. Majumdar, Nu
l. Phys. B692 (2004) 209,hep-lat/0311016.[37℄ S. Ne

o and R. Sommer, Nu
l. Phys. B622 (2002) 328, hep-lat/0108008.[38℄ R. Sommer, Nu
l. Phys. B411 (1994) 839, hep-lat/9310022.[39℄ M. L�us
her, K. Symanzik and P. Weisz, Nu
l. Phys. B173 (1980) 365.[40℄ M. L�us
her, Nu
l. Phys. B180 (1981) 317.[41℄ N.D. Hari Dass and P. Majumdar, JHEP 10 (2006) 020, hep-lat/0608024.[42℄ D. Gromes, Phys. Lett. B202 (1988) 262.[43℄ D. Gromes, Nu
l. Phys. B131 (1977) 80.[44℄ F. Gesztesy, H. Grosse and B. Thaller, Phys. Rev. D30 (1984) 2189.[45℄ W. Bu
hm�uller, Phys. Lett. B112 (1982) 479.[46℄ F. Gross, J.W. Van Orden and K. Holinde, Phys. Rev. C45 (1992) 2094.[47℄ Y. Chen et al., Phys. Rev. D73 (2006) 014516, hep-lat/0510074.[48℄ S. Ne

o and R. Sommer, Phys. Lett. B523 (2001) 135, hep-ph/0109093.35

http://arxiv.org/abs/hep-lat/9611025
http://arxiv.org/abs/hep-lat/9703019
http://arxiv.org/abs/hep-lat/0108014
http://arxiv.org/abs/hep-lat/0207003
http://arxiv.org/abs/hep-lat/0510059
http://arxiv.org/abs/hep-lat/0607009
http://arxiv.org/abs/hep-lat/9209022
http://arxiv.org/abs/hep-lat/0311016
http://arxiv.org/abs/hep-lat/0108008
http://arxiv.org/abs/hep-lat/9310022
http://arxiv.org/abs/hep-lat/0608024
http://arxiv.org/abs/hep-lat/0510074
http://arxiv.org/abs/hep-ph/0109093


[49℄ D. Ebert, V.O. Galkin and R.N. Faustov, Phys. Rev. D57 (1998) 5663,hep-ph/9712318.[50℄ D. Ebert, R.N. Faustov and V.O. Galkin, Phys. Rev. D62 (2000) 034014,hep-ph/9911283.[51℄ D. Ebert, R.N. Faustov and V.O. Galkin, Phys. Rev. D67 (2003) 014027,hep-ph/0210381.[52℄ Y.A. Simonov, Nu
l. Phys. B324 (1989) 67.[53℄ N. Brambilla and A. Vairo, Phys. Rev. D55 (1997) 3974, hep-ph/9606344.[54℄ F. Jugeau and H. Sazdjian, Nu
l. Phys. B670 (2003) 221, hep-ph/0305021.[55℄ A. Bar
hielli, E. Montaldi and G.M. Prosperi, Nu
l. Phys. B296 (1988) 625,Erratum-ibid B303 (1988) 752.[56℄ A. Bar
hielli, N. Brambilla and G.M. Prosperi, Nuovo Cim. A103 (1990) 59.[57℄ K. Melnikov and A. Yelkhovsky, Nu
l. Phys. B528 (1998) 59, hep-ph/9802379.[58℄ A. H. Hoang, Phys. Rev. D59 (1999) 014039, hep-ph/9803454.[59℄ N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Phys. Lett. B470 (1999) 215,hep-ph/9910238.[60℄ B.A. Kniehl, A.A. Penin, M. Steinhauser and V.A. Smirnov, Phys. Rev. D65(2002) 091503, hep-ph/0106135.[61℄ B.A. Kniehl, A.A. Penin, V.A. Smirnov and M. Steinhauser, Nu
l. Phys. B635(2002) 357, hep-ph/0203166.

36

http://arxiv.org/abs/hep-ph/9712318
http://arxiv.org/abs/hep-ph/9911283
http://arxiv.org/abs/hep-ph/0210381
http://arxiv.org/abs/hep-ph/9606344
http://arxiv.org/abs/hep-ph/0305021
http://arxiv.org/abs/hep-ph/9802379
http://arxiv.org/abs/hep-ph/9803454
http://arxiv.org/abs/hep-ph/9910238
http://arxiv.org/abs/hep-ph/0106135
http://arxiv.org/abs/hep-ph/0203166

	Introduction
	Numerical procedures
	Spectral representation of the field strength correlators and of the spin-dependent potentials
	Field strength operator on the lattice
	Multi-level algorithm for the field strength correlator

	Numerical results
	Static potential and its derivatives
	HM renormalization factors
	Field strength correlators
	Spin-dependent potentials

	Summary
	Collection of numerical values
	Tree-level improvement of the quark-antiquark distances
	HM factors
	Fit results of the field strength correlators
	Spin-dependent potentials

	References

