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DESY 06-061, MKPH-T-06-11, RCNP-Th 06003Spin-dependent potentials from lattie QCDYoshiaki Komaa;b and Miho Komaa;b;aDeutshes Elektronen-Synhrotron DESY, Theory Group, 22607 Hamburg,GermanybInstitut f�ur Kernphysik, Johannes Gutenberg-Universit�at Mainz, 55099 Mainz,GermanyResearh Center for Nulear Physis (RCNP), Osaka University, Osaka576-0047, JapanAbstratThe spin-dependent orretions to the stati inter-quark potential are phenomeno-logially relevant to desribing the �ne and hyper�ne spin splitting of the heavyquarkonium spetra. We investigate these orretions, whih are represented as the�eld strength orrelators on the quark-antiquark soure, in SU(3) lattie gauge the-ory. We use the Polyakov loop orrelation funtion as the quark-antiquark soure,and by employing the multi-level algorithm, we obtain remarkably lean signals forthese orretions up to intermediate distanes of around 0.6 fm. Our observationsuggests several new features of the orretions.1 IntrodutionThe spin-dependent potentials are parts of relativisti orretions to thestati quark-antiquark potential, whih depend on quark spin, and are phe-nomenologially relevant to desribing the �ne and hyper�ne splitting of heavyquarkonium spetra [1,2,3,4℄. Thus it is interesting to address these orretionsfrom QCD and to ompare with the observed spetra.The relativisti orretions are usually lassi�ed in powers of the inverse ofheavy quark massm (or quark veloity v) and it is well-known that in QCD theleading spin-dependent orretions show up at O(1=m2) [5,6,7,8,9,10℄. Thesespin-dependent orretions were also derived systematially within an e�etive�eld theory framework alled potential nonrelativisti QCD (pNRQCD) [11℄.pNRQCD is obtained by integrating out the sales abovem� �QCD in QCD 1�rst, whih leads to NRQCD [12,13℄, and then mv, leaving a typial sale ofthe binding energy of heavy quarkonium mv2 [14,15,16℄.The spin-dependent potential is summarized in the form1 �QCD is assumed to be a few hundred of MeVPreprint submitted to Elsevier 23 January 2007
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VSD(r)=0�~l1 � ~s1m21 � ~l2 � ~s2m22 1A0�(2(+)F � 1)V 00(r) + 2(+)F V 01(r)2r 1A+0�~l1 � ~s2m1m2 � ~l2 � ~s1m1m21A (+)F V 02(r)r+0�~l1 � ~s1m21 + ~l2 � ~s2m22 1A0�(�)F (V 00(r) + V 01(r))r 1A+0�~l1 � ~s2m1m2 + ~l2 � ~s1m1m21A (�)F V 02(r)r+ 1m1m2  (~s1 � ~r)(~s2 � ~r)r2 � ~s1 � ~s23 ! (1)F (2)F V3(r)+ ~s1 � ~s23m1m2 �(1)F (2)F V4(r)� 48�CF�sdvÆ(3)(r)� ; (1.1)where ~r1 and ~r2 (r � j~r1 � ~r2j) denote the positions of quark and anti-quark, m1 and m2 the masses, ~s1 and ~s2 the spins (~s = ~�=2 with ~� beingthe Pauli matries), and ~l1 = �~l2 = ~l the orbital angular momenta. V0(r)is the spin-independent stati potential at O(m0) and the prime denotes thederivative with respet to r. V 01(r), V 02(r), V3(r) and V4(r) are the funtionswhih depend only on r. In what follows we all these funtions loosely thespin-dependent potentials. (i)F (�;mi) (i = 1; 2) is the mathing oeÆient inthe (p)NRQCD Lagrangian whih multiplies the term ~� � ~B=(2mi) and thisoeÆient plays an important role when onneting QCD at a sale � with(p)NRQCD at sales mi. We have de�ned as (�)F = ((1)F � (2)F )=2. For equalquark and antiquark masses (m1 = m2), (�)F vanishes as (1)F = (2)F . Whenthe mathing is performed at tree-level of perturbation theory, the oeÆ-ient is (i)F = 1 [17℄ and then Eq. (1.1) is redued to the expression givenin Refs. [5,6,8℄. �s = g2=(4�) is the strong oupling and CF = 4=3 the Casimirharge of the fundamental representation, and dv the mixing oeÆient of thefour-quark operator in the (p)NRQCD Lagrangian (see e.g. the Appendix Eof Ref. [3℄).Given the �eld strength F�� , where the olor-eletri and the olor-magneti �elds are de�ned by Ei = F4i and Bi = �ijkFjk=2, respetively, 2the spin-dependent potentials in Eq. (1.1) are expressed asrkr V 01(r) = �ijk lim�!1 Z �0 dt thhg2Bi(~r1; t1)Ej(~r1; t2)ii ; (1.2)rkr V 02(r) = �ijk lim�!1 Z �0 dt thhg2Bi(~r1; t1)Ej(~r2; t2)ii ; (1.3)2 Throughout this paper we work in Eulidean spae and assume that the repeatedspinor (Latin) and olor (Greek) indies are summed over from 1 to 4 and from 1to 3, respetively, unless expliitly stated.2



(rirjr2 � Æij3 )V3(r) + Æij3 V4(r) = 2 lim�!1 Z �0 dt hhg2Bi(~r1; t1)Bj(~r2; t2)ii :(1.4)Here t � t2 � t1 denotes the relative temporal distane between two �eldstrength operators. The double braket hh� � �ii represents the expetation valueof the �eld strength orrelator, where the �eld strength operators are attahedto the quark-antiquark soure in a gauge invariant way. In Refs. [5,6,8℄, theseexpressions were given in the double-integral form with the Wilson loop, whihan be redued to the single-integral form through the spetral representationof the �eld strength orrelators derived from the transfer matrix theory. How-ever, it should be noted that the authors of Ref. [11℄ pointed out that one ofthe spin-orbit potentials V 02(r) in Refs. [5,6,8℄ was underestimated by a fatortwo. The expressions in Eqs. (1.2)-(1.4) are onsistent with Ref. [11℄ apartfrom the spae-time metri; here we employ the Eulidean metri, while theMinkowski metri is used in Ref. [11℄. 3As the expressions of the spin-dependent potentials in Eqs. (1.2)-(1.4)are essentially nonperturbative, these potentials an be studied in a frame-work beyond perturbation theory, for instane, by using lattie QCD MonteCarlo simulations. Rather, as the typial sale of the momentum mv an be ofthe order as �QCD due to nonrelativisti nature of the system v � 1, it is notlear a priori that the perturbative determination of the potential is justi�ed,and indeed, nonperturbative ontributions are expeted in the spin-orbit po-tentials V 01(r) and V 02(r); they are related to the stati potential through theGromes relation [18,19℄, i.e. V 00(r) = V 02(r) � V 01(r), where V0(r) is known toontain a nonperturbative long-ranged omponent haraterized by the stringtension. This relation was derived by exploiting the Lorentz invariane of the�eld strength orrelators, whih does not depend on the order of perturbationtheory.The determination of the spin-dependent potentials using lattie QCDsimulations goes bak to the 1980s [20,21,22,23,24,25,26,27℄ and to the1990s [28,29,30℄. The qualitative �ndings (quantitative to some extent) inthese earlier studies indiated that the spin-orbit potential V 01(r) ontains thelong-ranged nonperturbative omponent, while all other potentials are relevantonly to short-range physis as expeted from the one-gluon exhange intera-tion. However, one observes that the spin-dependent potentials (in partiular,the spin-orbit potential V 01) of even the latest studies [29,30℄ su�er from largenumerial errors, whih an obsure their behavior already at intermediatedistanes. For phenomenologial appliations of these potentials, it is learlyimportant to determine their funtional form as aurately as possible.In the present paper we thus revisit the determination of the spin-dependent potentials with lattie QCD within the quenhed approximation,aiming at reduing the numerial errors with a new approah. There are mainly3 The hange of metri from Minkowski to Eulidean spae-time is ahieved byt(M) ! �it(E), E(M) ! iE(E), B(M) ! B(E).3



two possible soures of numerial errors apart from the systemati error dueto disretization of spae-time. One is the statistial error for the expetationvalue of the �eld strength orrelator, and the other is the systemati errorassoiated with the integration over � and the extrapolation of � ! 1 inEqs. (1.2)-(1.4). In order to ontrol the total error, �rst of all, one needs toevaluate the �eld strength orrelator preisely, as otherwise its unertainty isenhaned in the following proedures.Our idea is then to employ the multi-level algorithm [31,32℄ for measuringthe �eld strength orrelators [33,34℄, as we expet lean signals even at larger rand t. This algorithm also allows us to use the Polyakov loop orrelationfuntion (PLCF), a pair of Polyakov loops P separated by a distane r, as thequark-antiquark soure instead of the Wilson loop. In fat, if one relies on theommonly employed simulation algorithms, it is almost impossible to evaluatethe �eld strength orrelators on the PLCF, or the PLCF itself, at intermediatedistanes with reasonable omputational e�ort, sine the expetation value ofthe PLCF at zero temperature is smaller by several orders of magnitude thanthat of the Wilson loops and is easily hidden in the statistial noise. However,as we will show in the next setion, if one manages to obtain aurate datafor the �eld strength orrelators on the PLCF, the systemati errors from theintegration and the extrapolation an be avoided. The key idea is to employ thespetral representation of the �eld strength orrelators on the PLCF, whihis plugged into Eqs. (1.2)-(1.4).This paper is organized as follows. In set. 2, we desribe our proeduresto obtain the spin-dependent potentials, whih ontain the derivation of thespetral representation of the �eld strength orrelators on the PLCF and ofthe spin-dependent potentials, the de�nition of the �eld strength operators onthe lattie, and the implementation of the multi-level algorithm. In set. 3, weshow numerial results, followed by analyses and disussions. The summaryis given in set. 4. In this paper, we will not disuss the mathing oeÆientbut the interested reader an refer to the disussion in Ref. [3℄. We also planto revisit this issue in our future studies.
2 Numerial proeduresIn this setion, we desribe the spetral representation of the �eld strengthorrelators on the PLCF and of the spin-dependent potentials. We providethe de�nition of the �eld strength operators on the lattie, and explain theimplementation of the multi-level algorithm. The standard Wilson ation ismost preferable for this algorithm beause its ation density is loally de�nedby plaquette and thus we shall use this ation in our present simulation. Thelattie volume is L3T and periodi boundary onditions are imposed in alldiretions. 4



2.1 Spetral representation of the �eld strength orrelators and of the spin-dependent potentialsLet us derive the spetral representation of the �eld strength orrelatorson the PLCF using the transfer matrix formalism.We follow the notation usedin Ref. [32℄, in whih the spetral representation of the PLCF is disussed. Weonsider the transfer matrix in the temporal gauge T � e�Ha whih ats onthe states on the spae of all spatial lattie gauge �elds U� at a given time,where a denotes the lattie spaing. We also introdue the projetors P ontothe subspae of gauge-invariant states and P3
3�(~r1; ~r2) to the subspae of thestates in the 3 
 3� representation of SU(3). Then the partition funtions inthe setor orresponding to P and P3
3�(~r1; ~r2) are given by Z = TrfP e�HT gand Z3
3�(~r1; ~r2) � 19TrfP3
3�(~r1; ~r2)e�HT g, respetively.Firstly, we onsider the spetral representation of a double-braket orre-lator for operators O1(t1) and O2(t2), whih are attahed to either side of thePLCF (the same side or the opposite side),hhO1(t1)O2(t2)ii� hO1(t1)O2(t2)iP (~r1)P �(~r2)hP (~r1)P �(~r2)i= 19Tr hP3
3�(~r1; ~r2)e�H(T�t)O1e�H tO2iZ ZZ3
3�(~r1; ~r2)= 19Tr hP3
3�(~r1; ~r2)e�H(T�t)O1e�H tO2iZ3
3�(~r1; ~r2) ; (2.1)where we have used the identity hP (~r1)P �(~r2)i = Z3
3�(~r1; ~r2)=Z. Insertingthe omplete set of eigenstates in the 3 
 3� representation jni � jn;~r1; ~r2i,whih satisfy Tjni = e�En(r)ajni with energies En(r) > 0, we obtainhhO1(t1)O2(t2)ii = P1n=0;m=0hnjO1jmihmjO2jnie�Emte�En(T�t)P1n=0 e�EnT : (2.2)We denote the energy gap between two eigenstates as �Emn(r) = Em(r) �En(r). Then, up to terms involving exponential fators equal to or smallerthan e�(�E10)T , Eq. (2.2) is redued tohhO1(t1)O2(t2)ii = h0jO1j0ih0jO2j0i+ 1Xm=1 h0jO1jmihmjO2j0ie�(�Em0)t + hmjO1j0ih0jO2jmie�(�Em0)(T�t)!+O(e�(�E10)T ) : (2.3)In the ase of the �eld strength orrelators, we an further simplifyEq. (2.3) by using the properties of the olor-magneti and olor-eletri �eldoperators under the time reversal; we have relations5



hhg2Bi(t1)Ej(t2)ii = �hhg2Bi(t2)Ej(t1)ii ; (2.4)hhg2Bi(t1)Bj(t2)ii = hhg2Bi(t2)Bj(t1)ii ; (2.5)whih, for the matrix elements, readhmjgBij0ih0jgEjjmi = �h0jgBijmihmjgEjj0i ; (2.6)hmjgBij0ih0jgBjjmi = h0jgBijmihmjgBjj0i ; (2.7)for m � 1. Moreover, h0jgBij0i = 0 sine Bi is odd under CP transformations.The �eld strength orrelators in Eqs. (1.2)-(1.4) are thus expressed ashhg2Bi(~r1; t1)Ej(~r1; t2)ii=2 1Xm=1h0jgBi(~r1)jmihmjgEj(~r1)j0i�e�(�Em0)T=2 sinh((�Em0)(T=2� t))+O(e�(�E10)T ) ; (2.8)hhg2Bi(~r1; t1)Ej(~r2; t2)ii=2 1Xm=1h0jgBi(~r1)jmihmjgEj(~r2)j0i�e�(�Em0)T=2 sinh((�Em0)(T=2� t))+O(e�(�E10)T ) ; (2.9)hhg2Bi(~r1; t1)Bj(~r2; t2)ii=2 1Xm=1h0jgBi(~r1)jmihmjgBj(~r2)j0i�e�(�Em0)T=2 osh((�Em0)(T=2� t))+O(e�(�E10)T ) : (2.10)After inserting these expressions into Eqs. (1.2)-(1.4), we an arry out theintegration and extrapolation, whih imply thatlim�!1 Z �0 dt � � � = limT!1 Z �T0 dt � � � (2.11)with an arbitrary � 2 (0; 1=2℄. Thereby we obtain the spetral representationof the spin-dependent potentials, whih onsists of the matrix elements andthe energy gaps.For the simplest parametrization ~r1 = ~0 = (0; 0; 0) with t1 = 0 and~r2 = ~r = (r; 0; 0) with t2 = t, whih is the atual setting of our simulation, wehave expliitlyV 01(r) = 2 1Xm=1 h0jgBy(~0)jmihmjgEz(~0)j0i(�Em0)2 ; (2.12)V 02(r) = 2 1Xm=1 h0jgBy(~0)jmihmjgEz(~r)j0i(�Em0)2 ; (2.13)6



V3(r) = 2 1Xm=1"h0jgBx(~0)jmihmjgBx(~r)j0i�Em0 � h0jgBy(~0)jmihmjgBy(~r)j0i�Em0 # ;(2.14)V4(r) = 2 1Xm=1"h0jgBx(~0)jmihmjgBx(~r)j0i�Em0 + 2h0jgBy(~0)jmihmjgBy(~r)j0i�Em0 # ;(2.15)where we have used the relationshhg2By(~0; 0)Ez(~0; t)ii = �hhg2Bz(~0; 0)Ey(~0; t)ii ; (2.16)hhg2By(~0; 0)Ez(~r; t)ii = �hhg2Bz(~0; 0)Ey(~r; t)ii ; (2.17)hhg2By(~0; 0)By(~r; t)ii = hhg2Bz(~0; 0)Bz(~r; t)ii : (2.18)We note that the error term in the �eld strength orrelator of O(e�(�E10)T ) inEqs. (2.8)-(2.10) is assumed to be negligible, whih is the ase for large T .Now our proedure to ompute the spin-dependent potentials is as follows;we evaluate the �eld strength orrelators for various r and t, �t them to thespetral representation in Eqs. (2.8)-(2.10), thereby determining the matrixelements and the energy gaps, and insert them into Eqs. (2.12)-(2.15). Here,the hyperboli sine or osine funtion in Eqs. (2.8)-(2.10) is typial for thePLCF, whih automatially takes into aount the e�et of the �nite temporallattie size in the �t.Note that if one uses the Wilson loop at this point, the spetral repre-sentation is just a multi-exponential funtion and the leading error term is ofO(e�(�E10)(�t)), where �t is the relative temporal distane between the spatialpart of the Wilson loop and the �eld strength operator [29,30℄. Denoting thetemporal extent of the Wilson loop by Tw, one an �t the data in the ranget 2 [0; Tw � 2�t℄, where Tw is at most T=2 beause of the periodiity of thelattie volume. Clearly the available �t range is more restrited than in thePLCF ase, even if �t=a is hosen as small as possible, say one or two. It maybe possible to suppress the error term by applying smearing tehniques to thespatial links. However, it is not immediately lear if this proedure really uresthe error term. At least, one needs �ne tuning of the smearing parameters andfurther systemati heks.2.2 Field strength operator on the lattieOn the lattie, we use the �eld strength operator de�ned by ga2F��(s) �(U��(s) � U y��(s))=(2i), where U��(s) = U�(s)U�(s + �̂)U y�(s + �̂)U y�(s) is theplaquette variable at a site s = (ss; st) with a spatial site ss and a temporalsite st. We also de�ne U��(s) = U y�(s � �̂). Pratially, we onstrut theolor-eletri and olor-magneti �eld operators by averaging the �eld strengthoperator as 7



ga2Ei(s) = 12ga2 (F4 i(s)+F�i 4(s)) ; (2.19)ga2Bi(s) = 18ga2�ijk (Fj k(s) + Fk�j(s) + F�j�k(s) + F�k j(s)) ; (2.20)where we assume that Ei(s) is de�ned on (ss; st + 1=2), and Bi(s) on (ss; st),respetively.Now, as seen from Eqs. (2.12)-(2.15), the spin-dependent potentials on-sist not only of the energy gap but also of the matrix element of the �eldstrength operator, and thus one needs to take into aount the renormaliza-tion of the latter. This is due to the fat that the �eld strength operatorsdepend expliitly on the lattie uto� a. In the absene of a viable nonper-turbative renormalization presription for the �eld strength operators in thepresene of the quark-antiquark soure, we follow here the Huntley-Mihael(HM) proedure [23℄, whih was also used in Refs. [29,30℄. This proedure isinspired by the weak oupling expansion of the Wilson loop and is aimed atremoving the self-energy ontribution, at least, at O(g2). We de�ne �Ei and �Bifrom �F��(s) � (U��(s) + U y��(s))=2, and, by taking the average aording toEqs. (2.19) and (2.20), we omputeZEi(r) = 1=hh �Eiii ; ZBi(r) = 1=hh �Biii ; (2.21)where �E or �B are attahed to either side of the PLCF. These fators are thenmultiplied to the �eld strength operators in Eqs. (2.19) and (2.20) aordingly.Note that ZEi and ZBi determined in this way an depend on r and also onthe relative orientation of the �eld strength operator to the quark-antiquarkaxis.One may �nd that the HM proedure is quite similar to tadpole improve-ment [35℄, where the orresponding renormalization fator is de�ned by theinverse of the expetation value of the plaquette variables, Ztad = 1=hU2i,whereU2 = 16(L=a)3(T=a) Xs;�>� 13Re Tr U��(s) ; (2.22)whih was used e.g. in Refs. [20,28℄. Indeed, if the fatorization of the orrelatorh �F��iPP � = h �F��ihPP �i holds, 4 ZBi and ZEi are redued to Ztad. However,as was pointed out in [23℄, the tadpole fator does not remove the self energyeven to O(g2) if the orrelator involves the eletri �eld operator.2.3 Multi-level algorithm for the �eld strength orrelatorWe now desribe the multi-level algorithm [31,32℄ for omputing the �eldstrength orrelators, restriting the disussion to the lowest level. The essene4 Numerially, this fatorization is approximately satis�ed.8



Table 1A minimal set of sublattie orrelators for the stati potential and the spin-dependent potentials.Potential Sublattie orrelatorsV0 TPPV 01 TPP , TPBy , TPEz , TP (ByEz)V 02 TPP , TByP , TPEz , TByEzV3; V4 TPP , TPBx , TPBy , TBxP , TByP , TBxBx , TByByof the multi-level algorithm is to onstrut the desired orrelation funtion,whih may have a very small expetation value, from the produt of the rela-tively large \sublattie average" of its omponents. We will also refer to suha omponent as the sublattie orrelator.The sublattie is de�ned by dividing the lattie volume into several layersalong the time diretion, and thus a sublattie onsists of a ertain number oftime slies Ntsl (the number of sublatties is then Nsub = (T=a)=Ntsl, whihis assumed to be an integer). The sublattie orrelators are evaluated in eahsublattie after updating the gauge �eld with a mixture of heatbath (HB)and over-relaxation (OR) steps, while the spae-like links on the boundarybetween sublatties remain intat during the update. We refer to this pro-edure as the \internal update". We repeat the internal update Niupd timesuntil we obtain a stable signal for the sublattie orrelators. Next, we multi-ply these sublattie orrelators in a suitable way to omplete the orrelationfuntion, as desribed below. Thereby the orrelation funtion is obtained forone on�guration. We then update the whole set of links without speifyingany layer to obtain another independent gauge on�guration and repeat theabove sublattie averaging. The omputational ost for one on�guration israther large, but one an observe a signal already from a few on�gurationsone Ntsl and Niupd are appropriately hosen.In the urrent simulation, the building bloks of the �eld strength orre-lators are the sublattie orrelators listed in Table 1. T represents the omplex9� 9 matries that at on olor tensors in the 3
 3� representation of SU(3).The subsripts of T in Table 1 denote the type of the sublattie orrelators.The way of ompleting a sublattie orrelator is as follows. Denoting the tem-poral sites as st = (itsl; isub), where itsl 2 [1; Ntsl℄ runs within the extent ofone sublattie labeled by isub 2 [1; Nsub℄, a omponent of the Polyakov loop(timelike Wilson line P), the omplex 3 � 3 matries, in eah sublattie isexpressed asP(ss; isub)�� = 0� NtslYjtsl=1Ut(ss; isub; jtsl)1A�� ; (2.23)where we expliitly write the olor labels in Greek letters. The diret produt of9



two timelike Wilson lines P separated by a distane r is the simplest sublattieorrelator, i.e.TPP (ss; isub; r)��Æ = P(ss; isub)�� 
 P�(ss + rx̂; isub)Æ ; (2.24)whih is relevant to both the PLCF and the �eld strength orrelators.Other sublattie orrelators are onstruted by inserting one or two �eldstrength operators into the timelike Wilson line P. For instane, in order toobtain TPBy , TPEz et., we ompute in eah sublattie the timelike Wilsonline with a single insertion of the �eld strength operator and then its diretprodut with P. The argument of this type of orrelators is (ss; isub; r; itsl),where itsl labels the timeslie where the �eld strength operator is inserted,itsl 2 [1; Ntsl℄. The quantities TP (ByEz), TByEz , TBxBx and TByBy represent thedouble-�eld-strength-operator-inserted sublattie orrelators. The argumentof these orrelators is (ss; isub; r; ired), where ired 2 [�Ntsl + 1; Ntsl � 1℄ is therelative temporal distane between two �eld strength operators. For TP (ByEz),two �eld strength operators are inserted into one of two timelike Wilson lines,while for TByEz , TBxBx and TByBy , they are inserted into both ones.The multipliation law of TPP is then de�ned byfTPP (ss; isub; r)TPP (ss; isub + 1; r)g��Æ= TPP (ss; isub; r)���TPP (ss; isub + 1; r)���Æ (2.25)and this multipliation law of olor omponents is ommon to all other sub-lattie orrelators.After taking the sublattie averages, we ompute the PLCF for various rby P (~0)P �(~r)= 19(L=a)3 Xss Ref[TPP (ss; 1; r)℄[TPP (ss; 2; r)℄� � � ��[TPP (ss; Nsub � 1; r)℄[TPP (ss; Nsub; r)℄g�� ; (2.26)and the �eld strength orrelators for various r and t by ombining other sub-lattie orrelators, where the translationally equivalent setting for spae andtime diretions are averaged aordingly. Figure 1 illustrates the omputa-tion of the �eld strength orrelator hhg2By(~r1; t1)Ez(~r1; t2)ii for V 01(r) (see alsoref. [36℄ for a similar appliation of the multi-level algorithm, in whih theeletri-ux pro�le between stati harges was measured with the PLCF).In order to bene�t from the multi-level algorithm, we need to optimizeNtsland Niupd. They depend on the oupling � and on the distanes to be investi-gated, whih an be determined by looking at the behavior of the orrelationfuntion as a funtion of Niupd for several Ntsl. As an empirial observation wenote that aNtsl = 0:3 � 0:4 fm is optimal in order to suppress the statistialutuation of the orrelation funtions.In priniple, one an apply the above omputation to any diretion of10
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Table 2Simulation parameters used in this study. The fourth olumn denotes the availablequark-antiquark distanes for the stati potential V0 (before tree-level improve-ment), while [� � � ℄ applies to the spin-dependent potentials V 01 , V 02 , V3 and V4.� = 6=g2 a [fm℄ (L=a)3(T=a) r=a Ntsl Niupd Nonf6.0 0.093 164 2� 7 [2� 6℄ 4 10000 906.0 0.093 204 2� 9 [2� 6℄ 4 7000 826.0 0.093 20340 2� 9 [2� 7℄ 4 7000 336.3 0.059 244 2� 8 [2� 6℄ 6 6000 39larger distanes beome aessible. The statistial errors were estimated byapplying the single elimination jakknife analysis. The various �t parameterswere determined by minimizing �2 de�ned with the full ovariane matrix,and their errors were estimated from the distribution of the jakknife samples.For a onsisteny hek we also evaluated the errors of the �t parametersfrom the minimum value of the �2 through ��2min = 1. In general, the errorsfrom the jakknife analysis were the same or slightly larger ompared to thoseestimated from ��2min = 1.3.1 Stati potential and its derivativesWe �rst present the basi quantities extrated from the PLCF, i.e. thestati potential and its derivatives with respet to the distane, in Figs. 2-4,whih are de�ned byV0(rI)=� 1T lnhP (~0)P �(~r)i+O(e�(�E10)T ) ; (3.1)V 00(�r)= 1a fV0(r)� V0(r � a)g ; (3.2)12~r3V 000 (~r)= 12~r3 1a2 fV0(r + a) + V0(r � a)� 2V0(r)g � �(~r) : (3.3)We have applied tree-level improvement to the quark-antiquark distanes inorder to avoid an enhanement of lattie disretization e�ets espeially atsmall distanes [38,37,32℄, so that the distanes, rI , �r and ~r are de�ned throughthe relationsr�1I = 4�G(r) ; (3.4)�r�2 = 4�a fG(r � a)�G(r)g ; (3.5)~r�3 = 2�a2 fG(r + a) +G(r � a)� 2G(r)g ; (3.6)where G(r) � G(r; 0; 0) is the Green funtion of the lattie Laplaian in threedimensions. For onveniene we summarize these distanes in Table A.1 in theAppendix. 12
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attempt a simultaneous �t of all orrelators with suh a onstraint. However,as the e�etive trunation level is not always ommon to all orrelators, evenat a �xed distane, whih is also related to the fat that the matrix elementsare not positive de�nite, this was not always the ase. iii) The sensitivity of the�t result, namely the integration value, is mostly governed by the lowest en-ergy gap seleted by the �t, whih gives the dominant ontribution at � !1.This is why we examined two lattie volumes with the same spatial size butdi�erent temporal extent and on�rmed that suh a systemati e�et is neg-ligible. This fat supports our laim that the spetral representation of the�eld strength orrelator is useful even though a trunation must neessarilybe performed.3.4 Spin-dependent potentialsThe spin-dependent potentials, V 01(r), V 02(r), V3(r) and V4(r) at � = 6:0 onthe 20340 lattie and at � = 6:3 on the 244 lattie are presented in Figs. 8, 9, 12and 13, respetively, expressed in physial units. These are the main resultsof this paper. Though we expet a saling behavior for VSD(r) in Eq. (1.1),both data at � = 6:0 and � = 6:3 for eah potential seem to fall into oneurve, whih in turn may indiate that the mathing oeÆients should dependweakly on �. The qualitative behavior of these potentials is not obsured bynumerial errors. However, there is still room for improvement for the datawith r > 0:3 fm at � = 6:3. The raw data in the lattie unit are summarizedin Tables A.6-A.8 in the Appendix. 6 The rest of this subsetion is devoted tothe interpretation of our data. In partiular, we shall disuss the funtionalform of the dependene of the potentials on the distane r.We start by briey summarizing the theoretial expetation for thespin-dependent potentials. As mentioned in the introdution, Gromes de-rived a relation between the stati potential and the spin-orbit potentials,V 00(r) = V 02(r) � V 01(r), using the Lorentz (Poinar�e) invariane of the �eldstrength orrelators [18,19℄. He also derived several inequalities for the spin-spin potentials based on reetion positivity, suh as V3(r) � V4(r) and2V3(r) + V4(r) � 0 [42℄. These relations are nonperturbative, and an thusbe heked diretly on the lattie. 7 Moreover, these relation do not dependon the mathing sale.Another soure of information omes from the systemati non-relativistiredution of the Bethe-Salpeter (BS) equations within the instantaneous ap-proximation [1℄. Starting from the interation kernel, whih is assumed to be6 In these data, the HM fators are already multiplied, but the bare lattie dataan be extrated by dividing the orresponding fators in Table A.2. Starting fromthe bare data one an also test other renormalization proedures.7 One may of ourse expet a ertain deviation from this relation on the lattiewith a �nite lattie uto� a, sine the strit Lorentz invariane is restored only inthe ontinuum limit, a! 0. 18



Table 4The relation between the Lorentz struture of the e�etive kernel in the Bethe-Salpeter equation and the spin-dependent potentials [1℄. S(r), V (r) and P (r) aresome salar funtions. If the interation kernel has several omponents, the expetedforms of the potentials are given by the sum of the orresponding terms.Kernel V0(r) V1(r) V2(r) V3(r) V4(r)Salar S(r) �S(r) 0 0 0Vetor V (r) 0 V (r) �V 00(r) + V 0(r)=r 2�V (r)Pseudo-salar 0 0 0 P 00(r)� P 0(r)=r �P (r)a funtion of the norm squared of the relative momentum between a quarkand an antiquark with various Lorentz strutures, one arrives at a Breit-Fermitype e�etive Hamiltonian up to O(1=m2) [43,44℄. By omparing this e�etiveHamiltonian with Eq. (1.1) (where C(i)F = 1 is assumed), one obtains the rela-tion between the Lorentz struture of the kernel and the spin-dependent poten-tials as summarized in Table 4. This indiates that the Lorentz struture of theon�ning stati potential an also be inferred from the struture of the spin-dependent potentials. For the speial ase of the one-gluon-exhange intera-tion, the kernel only onsists of the Lorentz vetor, and the spin-dependentpotentials are expliitly given byV 01(r) = 0 ; V 02(r) = r2 ; V3(r) = 3r3 ; V4(r) = 8�Æ(3)(r) ; (3.9)where  = CF�s.We shall now investigate the r-dependene of our lattie data in more de-tail. We emphasize that, apart from the Gromes relation, no exat preditionsexist for the behavior of the potentials beyond the short-distane regime. Wehave thus investigated the r-dependene of the potential by �tting the data toa partiular model funtion, mostly guided by the short-distane preditionsof Eq. (3.9). In ases where the latter learly failed to desribe the data, wehave also resorted to e�etive parametrizations. The quality of a partiular �tansatz was judged by monitoring the value of �2min=Ndf as omputed using thefull ovariane matrix. Clearly, the underlying mehanism responsible for theobserved behavior annot be established rigorously in this manner. However,the main aim of this analysis is to provide nonperturbative input and guidanefor future oneptual studies in this area.In the following we onentrate mostly on the dataset at � = 6:0, sineit extends to larger distanes ompared with the data olleted at � = 6:3.On the other hand, at smaller distanes the results may be a�eted moreby lattie artefats. Indeed, around r � 0:2 fm we oasionally observe smalldisrepanies for some potentials. Therefore, in the �ts to the � = 6:0 datasetdesribed below, we have mostly omitted the data point orresponding to thesmallest separation r=a = 2. 19
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form as the fore in Eq. (3.8). Thereby we obtain �v21a2 = 0:0426(9) and = 0:293(9) with �2min=Ndf = 0:26. 8 The string tension extrated in this wayis about 8 % smaller than that in V 00(r), while the Coulombi oeÆients arein agreement within errors. We also plot the quantity 1� (V 02 � V 01)�t=V 00;�t inFig. 11. From this we onlude that the Gromes relation is satis�ed within(8 � 1) % auray at r � 0:5 fm. Note that without the renormalizationfator for the �eld strength operator, one would observe a strong deviationfrom the Gromes relation by a fator � 2:7 at � = 6:0. In this sense, therenormalization of the operator is ruial for satisfying the Gromes relationwithin a few perent level, espeially when the lattie spaing is �nite. It isertainly interesting to investigate if the Gromes relation is exatly satis�edin the ontinuum limit. Although we have investigated the gauge oupling at� = 6:3, we need further auray of the data at intermediate distanes toahieve this.For V 01(r), if we only take into aount the data for r & 0:25 fm at � = 6:0and, assuming that they are onstant, we an �t them to a funtionV 01;�t = ��v1 : (3.10)Due to the Gromes relation, we may identify this onstant as a part of thestring tension in V 00(r). We then �nd �v1a2 = 0:0362(4) with �2min=Ndf = 0:13,whih is (77� 1) % of the string tension in V 00(r). The orresponding �t urveis plotted in Fig. 8.While the Gromes relation is approximately satis�ed, we �nd that thestring tension �v1 is not yet suÆient to reprodue the string tension �v21. Inother words there is still a missing amount of the string tension. We then notiethat this must be supplied by V 02(r). A �t of V 02(r) to Eq. (3.8) indeed leadsto �v2a2 = 0:0070(7) and  = 0:288(7) with �2min=Ndf = 0:22. The �t urve isplotted in Fig. 9. Now the sum of �v1 and �v2 reprodues �v21. These �ndingssuggest the existene of a long-ranged ontribution in V 02(r) whose magnitudeis about one-�fth of �v1, whih is (15 � 2) % of the string tension in V 00(r).We also attempted a �t with the expetation from perturbation theory, bysimply �xing the string tension to be zero in the above �t. In this ase the �tlearly fails, sine �2min=Ndf = 44. From the phenomenologial point of view,one might prefer a simple parametrization like � = �v1 and �v2 = 0 [45℄,but the results obtained here slightly di�er from this expetation. We wish topoint out, though, that V 02(r) should further be investigated at distanes largerthan 0.7 fm, in order to orroborate a non-vanishing value of V 02(r) for r !1.We may note that Eq. (3.8) is not the only funtional form for V 02(r). Forinstane, the funtion V 02;�t(r) = 0=rp with p = 1:51(4) and 0ap�2 = 0:205(9)also reprodues the data quite well, with �2min=Ndf = 0:34.Next, we disuss the spin-spin potentials V3(r) and V4(r). We �rst examine8 Here and in the following, we attah a subsript to � so as to distinguish thetarget funtion in the �t. 22
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This yields 0ap�3 = 0:171(10) and p = 2:80(6), where �2min=Ndf = 0:79. Theorresponding �t urve is plotted in Fig 12. The value of p is smaller than 3within 3 standard deviations. If one takes this result as fae value, it indiatesa deviation from the one-gluon-exhange potential. A deviation might atuallybe expeted from the existene of the long-ranged ontribution in V 02(r) andthe relations in Table 4; if we insert a funtion V (r) = �=r + �v2r into�V 00(r) + V 0(r)=r, we obtain 3=r3 + �v2=r at r 6= 0. We have then examinedif this funtion desribes the data for given  and �v2, whih are suppliedfrom the V 02(r) �t. However, we have found that the resulting urve is notappropriate to desribe the behavior of the data at all, sine it lies above thedata points at small distanes. This tendeny is pratially due to the term1=r3, but this additional term 1=r also helps to lift the urve. It suggests thatwe need to add a negative ontribution to suh an ansatz.A possible andidate would then be a pseudo-salar ontribution, whihis also losely related to the behavior of V4(r) (see Fig. 13). In fat, ifonly the one-gluon-exhange interation is onsidered in the vetor kernel,2�V (r) = 2(V 00(r) + 2V 0(r)=r) leads to a Æ-funtion as in Eq. (3.9), whileif we insert the empirial behavior of V 02(r), an additional term of 4�v2=ris generated for V4(r). Thus we expet a positive behavior at non-zero dis-tanes. By ontrast, the data is negative at small distanes and almost zerofor r > 0:2 fm. Let us now assume the presene of a pseudo-salar intera-tion, P (r) = �g0e�mgr=r, where mg is the mass of the lightest pseudo-salarpartile, and g0 is the orresponding e�etive oupling to quarks. This er-tainly generates a negative ontribution, �P (r) = �g0m2ge�mgr=r, to V4(r).Note that the pseudo-salar interation P (r) is often used in the one-boson-exhange model for desribing the nuleon-nuleon system, where pions playa relevant role [46℄. In our simulation, however, sine the e�ets of dynami-al fermions are negleted due to our use of the quenhed approximation, thelowest mass in the pseudo-salar hannel annot be identi�ed with the pionmass but rather with the lightest glueball mass.We have then performed a �t toV4;�t(r) = �g0m2g e�mgrr + 4�v4r ; (3.12)where we have assumed mg = 2:47 GeV, whih is taken from the reent lattiestudies of the glueball masses [47℄, and treated g0 and �v4 as free parameters.The result was g0 = 0:292(12) and �v4a2 = 0:0015(3) with �2min=Ndf = 5:1,and the orresponding urve is put in Fig. 13 (if mg is relaxed to be a freeparameter, �2min=Ndf is signi�antly redued). We �nd that �v4 (notie thatthis value is not zero) is not exatly �v2, but as the relation among interationkernels is not exat but derived within the instantaneous approximation, suha deviation may our, espeially for the nonperturbative piees. On the otherhand, the value of g0 is very lose to  = 0:297(1) determined from the fore(see Table 3). If we impose �v4 = �v2, we obtain here �2min=Ndf � 100. However24
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Table 5Fit results of the spin-dependent potentials at � = 6:0 on the 20340 lattie. (*) ifwe relax mg to be a free parameter, �2min=Ndf is signi�antly redued.Potential Fit range (r=a) Fit funtion and parameters �2min=NdfV 01(r) V 0�t = ��3� 7 �a2 = 0:0362(4) 0.13V 02(r) V 0�t(r) = � + =r23� 6 �a2 = 0:0070(7),  = 0:288(7) 0.22V 0�t(r) = 0=rp3� 6 0ap�2 = 0:205(9), p = 1:51(4) 0.34V 02(r)� V 01(r) V 0�t(r) = � + =r23� 7 �a2 = 0:0426(9),  = 0:293(9) 0.26V3(r) V�t(r) = 3=r33� 7  = 0:214(2) 3.7V�t(r) = 30=rp3� 7 0ap�3 = 0:171(10), p = 2:80(6) 0.79V4(r) V�t(r) = �g0m2ge�mgr=r + 4�=r2� 7 g0 = 0:292(12), �a2 = 0:0015(3),mga = 1:16 (�xed) 5.1�V (PS)3 (r) = P 00(r)� P 0(r)r = �g0( 3r3 + 3mgr2 + m2gr )e�mgr ; (3.14)where  is taken from V 00(r). It is interesting to see Fig. 14 that the urveV (V)3 (r) + V (PS)3 (r), whih is plotted with the solid line, an go through thedata at � = 6:0.In most of previous works, it was onluded that V4(r) is onsistent witha Æ-funtion, whih may only be true at very small distanes. However, aswe demonstrated, the behavior of V3(r) and V4(r) at distanes r & 0:2 fman be onsistently explained by assuming the existene of the pseudo-salarontribution as well as the vetor ontribution. Note furthermore that theombination of the potentials r(2V3 + V4) � 6V 02 should be zero at non-zerodistanes, if the interation kernel ontains only the pure vetor omponentwithout a linear term and no pseudo-salar ontribution (see Table 4) [23℄.However, as shown in Fig. 15, we �nd that this ombination is non-vanishingwithin our auray, so that some of these assumptions are probably not ap-pliable. Of ourse, our disussion on the pseudo-salar ontribution is as yetspeulation, whih needs to be heked in future works. A possible way ofdoing this is to investigate V4(r) in the presene of dynamial quarks (pions)in full QCD simulations, and to examine whether one an indeed observe abehavior like / �e�m�r=r for suÆiently small quark masses. Some of previ-ous works in Refs. [27,28℄ have been arried out in full QCD, but the dataquality is not suÆient to draw any onlusion. In any ase, we expet to raise26



further disussions on the struture of the spin-spin potentials.To lose the disussion on the funtional form, we note that the Gromesinequalities V3(r) � V4(r) and 2V3(r) + V4(r) � 0 are ertainly satis�ed. Forinstane, the latter inequality is immediately heked through 2V3(r)+V4(r) =6 R10 dthhg2Bx(~0; 0)Bx(~r; t)ii, whih is positive at all available r as an be seenfrom Tables A.3-A.5 in the Appendix. We summarize all �t results of thefuntional form in Table 5.4 SummaryWe have investigated the spin-dependent orretions to the stati po-tential at O(1=m2) in SU(3) lattie gauge theory. These orretions, usuallyalled the spin-dependent potentials, are represented as the integral of the�eld strength orrelators on the quark-antiquark soure with respet to therelative temporal distane between two �eld strength operators. We have usedthe Polyakov loop orrelation funtion as the quark-antiquark soure, and byemploying the multi-level algorithm, we have obtained remarkably lean datafor the expetation values of the �eld strength orrelators and, in turn, for thespin-dependent potentials up to intermediate distanes of around r ' 0:6 fm.The spetral representation of the �eld strength orrelator in a �nite peri-odi volume has been exploited in order to extrat the potential with lesssystemati error.The observation we have made for the spin-dependent potentials inEq. (1.1) is as follows. The spin-orbit potential V 01(r) is learly long-ranged, isnegative at all distanes and onstant at r & 0:25 fm. The other spin-orbit po-tential V 02(r) is positive at all distanes and shows a behavior dereasing with r.However, it has a �nite tail up to intermediate distanes, whih annot be ex-plained at least by the one-gluon-exhange interation. The Gromes relationV 00(r) = V 02(r) � V 01(r) is satis�ed within (8 � 1) % auray at intermediatedistanes in the present simulation. Within this relation, the onstant valuein V 01(r) reprodues (77� 1) % of the string tension in V 00(r) and (15� 2) %of the string tension are found to be supplied by V 02(r). The spin-spin (ten-sor) potential V3(r) is positive at all distanes and is dereasing as a funtionof r. The behavior is slightly more moderate than the expetation of the one-gluon-exhange piture / 1=r3. The other spin-spin potential V4(r) exhibitsa negative short-ranged behavior. This short-ranged behavior, as well as thebehavior of V3(r), ould be explained if the exhange of the pseudo-salarglueball is assumed in addition to the one-gluon-exhange type interation.In this paper we have not arried out a detailed omparison of the lattieresult of the spin-dependent potentials with perturbation theory, e.g. alongthe lines of Neo and Sommer for the stati potential [37,48℄. In this sense,although we have observed a ertain deviation from the expetation of leadingorder perturbation theory at intermediate distanes, it is not yet lear thatfrom whih distane a perturbative desription beomes inadequate. Clearly,27



it requires further systemati studies, where the renormalization of the �eldstrength operator and also the mathing oeÆients are worth to be reonsid-ered. However, we expet that the numerial proedures we have demonstratedin this paper is quite useful for suh a work. Then, it is interesting to use theresult as inputs of phenomenologial models [49,50,51℄ or to ompare with thevarious QCD vauum models [52,53,54℄. It may be interesting to note thatthe existene of a long-ranged ontribution in V 02(r) is suggested in Ref. [54℄,independently of the present work.Finally we note that our numerial proedures are also appliable to theevaluation of other relativisti orretions like the veloity-dependent poten-tials [55,56,11℄ and the potential at O(1=m) [14,15,11,57,58,59,60,61℄, whihare also represented as the �eld strength orrelators on the quark-antiquarksoure with di�erent ombination of the �eld strength operators from the spin-dependent potentials. The �rst lattie result on the potential at O(1=m) waspublished in Ref. [34℄.AknowledgmentsWe are indebted to H. Wittig for many ritial disussions and om-ments on the manusript. We wish to thank R. Sommer, Ph. de Forrand,N. Brambilla, A. Vairo, A. Pineda, S. Sint, D. Ebert, V.O. Galkin, R.N. Faus-tov, P. Weisz for useful disussions, and W. Buhm�uller for introduing to usRef. [2℄. We also thank G. Bali for his orrespondene and fruitful disussions.The main alulation has been performed on the NEC SX5 at Researh Centerfor Nulear Physis (RCNP), Osaka University, Japan. We thank H. Togawaand A. Hosaka for tehnial supports.
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A Colletion of numerial valuesA.1 Tree-level improvement of the quark-antiquark distanesTable A.1The quark-antiquark distanes for the stati potential V0(rI), the fore V 00(�r) (orV 00(�r)) and the seond derivative V 000 (~r) with the tree-level improvement [38,37,32℄.r=a rI=a �r=a �r=a ~r=a1 0.9252 1.855 1.358 1.649 1.7883 2.889 2.277 2.654 2.7004 3.922 3.312 3.729 3.7295 4.942 4.359 4.794 4.7866 5.954 5.393 5.837 5.8337 6.962 6.414 6.865 6.8648 7.967 7.428 7.885 7.8869 8.971 8.438 8.899 8.901A.2 HM fatorsTable A.2The HM renormalization fators at � = 6:0 on the 204 lattie (upper) and � = 6:3on the 244 lattie (lower), where the quark-antiquark system is set along the x axis.Thus, one should observe ZEy = ZEz , ZBy = ZBz .r=a ZEx ZEy ZEz ZBx ZBy ZBz2 1.59446(4) 1.63031(6) 1.63038(5) 1.67833(16) 1.67614(12) 1.67600(15)3 1.61170(4) 1.62498(6) 1.62503(5) 1.67764(16) 1.67661(12) 1.67651(15)4 1.61620(4) 1.62338(6) 1.62339(6) 1.67735(16) 1.67676 (12) 1.67669(14)5 1.61777(6) 1.62282(6) 1.62282(7) 1.67726(16) 1.67687(13) 1.67678(15)6 1.61846(6) 1.62250(7) 1.62262(6) 1.67721(16) 1.67695(13) 1.67683(16)7 1.61877(10) 1.62246(8) 1.62233(8) 1.67726(16) 1.67684(13) 1.67680(15)8 1.61879(15) 1.62225(17) 1.62232(16) 1.67708(18) 1.67682(19) 1.67674(19)2 1.54232(3) 1.56529(3) 1.56526(3) 1.60307(7) 1.60179(9) 1.60185(7)3 1.55417(5) 1.56151(4) 1.56154(4) 1.60271(7) 1.60217(10) 1.60226(7)4 1.55717(6) 1.56048(4) 1.56049(6) 1.60266(7) 1.60225(10) 1.60235(7)5 1.55810(9) 1.56013(6) 1.56004(7) 1.60260(9) 1.60231(11) 1.60231(10)6 1.55853(10) 1.55974(11) 1.55986(13) 1.60247(11) 1.60229(12) 1.60253(11)7 1.55829(18) 1.55921(23) 1.55980(14) 1.60238(18) 1.60216(17) 1.60223(16)8 1.55855(40) 1.55974(37) 1.55975(32) 1.60260(29) 1.60249(28) 1.60217(23)9 1.55961(43) 1.55954(64) 1.56021(48) 1.60324(36) 1.60324(39) 1.60331(44)
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A.3 Fit results of the �eld strength orrelatorsTable A.3Fit results of the �eld strength orrelators with Eqs. (2.8)-(2.10) at � = 6:0 on the204 lattie. mmax is the maximum trunation level of the spetral representation.C(t) r=a Fit range (t=a) mmax a2 R10 dt tC(t) �2min=Ndfhhg2By(0; 0)Ez(0; t)ii 2 2� 10 2 �0.01801(4) 0.433 2� 10 2 �0.01808(6) 0.994 2� 10 2 �0.01805(10) 0.305 2� 10 2 �0.01800(19) 0.456 2� 10 2 �0.01795(32) 1.9hhg2By(0; 0)Ez(r; t)ii 2 1� 10 3 0.03618(3) 2.03 1� 10 3 0.01948(4) 2.74 1� 10 3 0.01265(10) 0.815 1� 10 2 0.00917(14) 2.06 1� 10 2 0.00795(42) 0.88C(t) r=a Fit range (t=a) mmax a3 R10 dt C(t) �2min=Ndfhhg2Bx(0; 0)Bx(r; t)ii 2 1� 10 3 0.01648(3) 2.23 1� 10 3 0.00743(3) 0.974 1� 10 3 0.00381(3) 0.855 1� 10 2 0.00217(3) 2.06 1� 10 2 0.00128(5) 1.8hhg2By(0; 0)By(r; t)ii 2 1� 10 3 �0.01226(3) 0.773 1� 10 3 �0.00443(3) 0.404 1� 10 3 �0.00155(3) 0.375 1� 10 3 �0.00067(3) 0.466 1� 10 3 �0.00033(4) 0.48
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Table A.4Fit results of the �eld strength orrelators at � = 6:0 on the 20340 lattie.C(t) r=a Fit range (t=a) mmax a2 R10 dt tC(t) �2min=Ndfhhg2By(0; 0)Ez(0; t)ii 2 2� 20 2 �0.01798(13) 2.73 2� 20 2 �0.01809(20) 2.54 2� 20 2 �0.01800(27) 2.95 2� 20 2 �0.01809(25) 1.46 2� 20 2 �0.01831(40) 1.87 2� 20 2 �0.01853(137) 2.6hhg2By(0; 0)Ez(r; t)ii 2 1� 20 3 0.03618(5) 1.43 1� 20 3 0.01950(12) 5.04 1� 20 2 0.01253(18) 1.95 1� 20 2 0.00920(31) 2.46 1� 20 2 0.00703(80) 5.77 1� 20 2 0.00457(68) 2.6C(t) r=a Fit range (t=a) mmax a3 R10 dt C(t) �2min=Ndfhhg2Bx(0; 0)Bx(r; t)ii 2 1� 20 3 0.01642(7) 1.53 1� 20 3 0.00742(5) 2.24 1� 20 3 0.00372(7) 1.55 1� 20 3 0.00206(6) 1.56 1� 20 2 0.00133(16) 5.57 1� 20 2 0.00071(18) 4.5hhg2By(0; 0)By(r; t)ii 2 1� 20 3 �0.01226(6) 3.13 1� 20 3 �0.00442(7) 2.34 1� 20 3 �0.00166(7) 2.85 1� 20 3 �0.00069(6) 2.66 1� 20 3 �0.00029(9) 1.87 1� 20 3 �0.00030(39) 1.9
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Table A.5Fit results of the �eld strength orrelators at � = 6:3 on the 244 lattie. (�)one ofthe exitation energies in the expansion was �xed so as to make the �t stable.C(t) r=a Fit range (t=a) mmax a2 R10 dt tC(t) �2min=Ndfhhg2By(0; 0)Ez(0; t)ii 2 2� 12 2 �0.00980(10) 1.13 2� 12 2 �0.00872(29) 1.24 2� 12 2 �0.00768(30) 1.45 2� 12 2 �0.00727(28) 4.4�6 2� 12 2 �0.00664(110) 0.94hhg2By(0; 0)Ez(r; t)ii 2 1� 12 3 0.03145(7) 0.283 1� 12 2 0.01620(16) 3.04 1� 12 2 0.01008(37) 2.05 1� 12 2 0.00632(43) 0.856 1� 12 2 0.00446(109) 2.3C(t) r=a Fit range (t=a) mmax a3 R10 dt C(t) �2min=Ndfhhg2Bx(0; 0)Bx(r; t)ii 2 1� 12 3 0.01452(3) 0.493 1� 12 3 0.00653(3) 4.44 1� 12 2 0.00332(6) 1.25 1� 12 2 0.00188(8) 0.876 1� 12 1 0.00123(12) 0.49hhg2By(0; 0)By(r; t)ii 2 1� 12 3 �0.01203(3) 0.953 1� 12 3 �0.00436(3) 1.44 1� 12 3 �0.00168(7) 1.55 1� 12 2 �0.00084(18) 4.86 1� 12 1 �0.00046(12) 1.8
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A.4 Spin-dependent potentialsTable A.6The spin-dependent potentials at � = 6:0 on the 204 lattie.r/a a2V 01 a2V 02 a3V3 a3V42 �0.03603(8) 0.07235(6) 0.05749(8) �0.01607(13)3 �0.03616(12) 0.03896(9) 0.02373(8) �0.00286(14)4 �0.03609(20) 0.02531(19) 0.01072(8) 0.00143(17)5 �0.03600(39) 0.01836(28) 0.00568(9) 0.00165(14)6 �0.03591(65) 0.01590(84) 0.00322(13) 0.00123(20)Table A.7The spin-dependent potentials at � = 6:0 on the 20340 lattie.r/a a2V 01 a2V 02 a3V3 a3V42 �0.03596(25) 0.07235(11) 0.05736(19) �0.01620(27)3 �0.03618(41) 0.03900(25) 0.02368(20) �0.00284(29)4 �0.03600(54) 0.02507(36) 0.01075(21) 0.00081(30)5 �0.03619(50) 0.01840(61) 0.00549(18) 0.00138(27)6 �0.03662(81) 0.01405(160) 0.00323(37) 0.00152(47)7 �0.03706(274) 0.00914(136) 0.00203(103) 0.00021(137)Table A.8The spin-dependent potentials at � = 6:3 on the 244 lattie.r/a a2V 01 a2V 02 a3V3 a3V42 �0.01960(19) 0.06290(15) 0.05310(9) �0.01910(15)3 �0.01744(58) 0.03240(31) 0.02178(9) �0.00439(14)4 �0.01539(61) 0.02017(74) 0.01000(16) �0.00009(31)5 �0.01443(79) 0.01265(87) 0.00546(41) 0.00038(70)6 �0.01329(221) 0.00893(217) 0.00339(37) 0.00057(52)
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