
*H
EP
-T
H/
06
05
06
2*

Revised Version  DESY 06-060
 ZMP-HH/06-07

ar
X

iv
:h

ep
-t

h/
06

05
06

2v
2 

 1
3 

O
ct

 2
00

7

DESY 06-060ZMP-HH/06-07Dispersion relations in the non
ommutative �3and Wess-Zumino model in the Yang-FeldmanformalismClaus D�os
her and Jo
hen ZahnII. Institut f�ur Theoretis
he Physik, Universit�at HamburgLuruper Chaussee 149, 22761 Hamburg, Germany
laus.does
her, jo
hen.zahn�desy.deO
tober 13, 2007Abstra
tWe study dispersion relations in the non
ommutative �3 and Wess{Zuminomodel in the Yang{Feldman formalism at one{loop order. Nonplanar graphslead to a distortion of the dispersion relation. We �nd that the strength of thise�e
t is moderate if the s
ale of non
ommutativity is identi�ed with the Plan
ks
ale and parameters typi
al for a Higgs �eld are employed. The 
ontribution ofthe nonplanar graphs is 
al
ulated rigorously using the framework of os
illatoryintegrals.1 Introdu
tionWe dis
uss dispersion relations for quantum �eld theories on the non
ommu-tative Minkowski spa
e, whi
h is generated by 
oordinates q� subje
t to the
ommutation relations [q�; q� ℄ = i��� :Here � is an antisymmetri
 matrix. Su
h 
ommutation relations are motivatedfrom Gedanken experiments on limitations of the lo
alization of experiments [1℄.They are also obtained as a limit of open string theory in the presen
e of a 
on-stant ba
kground B{�eld [2℄. We emphasize that for the spa
e{time un
ertaintyrelations derived in [1℄ it is 
ru
ial that � is nondegenerate, in parti
ular �0i 6= 0,i.e., one has spa
e/time non
ommutativity. Thus, we fo
us on this 
ase. Weremark that su
h a � 
an not be obtained as a limit of string theory [3℄.There are several inequivalent approa
hes to quantum �eld theory on thenon
ommutative Minkowski spa
e (NCQFT). In the modi�ed Feynman rulesoriginally proposed in [4℄ for both the non
ommutative Eu
lidean and the Min-kowski spa
e, one simply atta
hes a phase fa
tor depending on the momenta,1
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the so{
alled twisting, to ea
h vertex. In 
ases where the twistings do not 
an-
el, one speaks of a non-planar diagram. Then an os
illating phase remains inthe loop integral. It is part of the folklore of NCQFT that this makes the loopintegral 
onvergent. However, to the best of our knowledge, the pre
ise mean-ing of these integrals has never been stated. They are not absolutely 
onvergentand are, with the ex
eption of the tadpole, no Fourier transformations. It isone of the goals of this paper to give a pre
ise de�nition for su
h integrals. Fur-thermore, to the best of our knowledge, all 
al
ulations in this approa
h weredone in the Eu
lidean setting. However, sin
e there is no Osterwalder{S
hradertheorem for �eld theories on the non
ommutative Minkowski spa
e, the relationbetween 
al
ulations in the Eu
lidean and the Lorentzian metri
 is obs
ure inthe 
ase of spa
e/time non
ommutativity. In fa
t there are hints that if su
h arelation exists at all, it must be quite 
ompli
ated [5, p.84f℄.If one a

epts the formal nature of the loop 
al
ulations and the transition tothe Eu
lidean signature, the pi
ture is as follows: If k is the outer momentum ofa nonplanar loop, one 
an argue heuristi
ally that an original f(�){divergen
e,where � is the UV 
uto�, be
omes regularized to f(��(k�)2��� 12 ). Thus, a UV{divergen
e be
omes an IR{divergen
e. This is the so{
alled UV{IR mixing �rstdis
ussed in [6℄. In the 
ase of spa
e/time non
ommutativity this approa
h leadsto a violation of unitarity [7℄.The Hamiltonian approa
h [1, 8℄ leads to a unitary theory also in the 
ase ofspa
e/time non
ommutativity. In some 
ases these theories are UV{�nite [9, 10℄.However, in the 
ase of spa
e/time non
ommutativity, the intera
ting �eld does,at tree level, not ful�ll the 
lassi
al equations of motion [5, 11℄. In the 
ase ofele
trodynami
s, this leads to a violation of the Ward identity [12℄1.Another proposal is to 
onsider Eu
lidean self-dual theories in the senseof [13℄ by adding a 
on�ning potential. In this approa
h the renormalizability ofthe �4{model has been shown to all orders [14℄. However, there is no indi
ationthat these models are related to NCQFT on Minkowski spa
etime.Thus, the most promising approa
h to NCQFT in the 
ase of spa
e/timenon
ommutativity is the Yang{Feldman approa
h [15℄. It 
an also be employedin situations where a Hamiltonian quantization is problemati
. In parti
ular, itwas used in the 
ontext of nonlo
al �eld theories, see, e.g., [16, 17℄. In the 
ontextof NCQFT, it was �rst proposed in [18℄. Here the UV-IR mixing manifestsitself as a distortion of the dispersion relation in the infrared. In the 
ase ofthe �4{model, this e�e
t has been shown to be very strong [19℄. This is to beexpe
ted, sin
e the underlying UV{divergen
e is quadrati
. Thus, it is naturalto ask wether the e�e
ts are weaker in theories that are only logarithmi
allydivergent2. This is the aim of the present paper where we 
onsider the �3 andthe Wess{Zumino model at the one-loop level. It turns out that the e�e
t is1In [11℄, a di�erent time{ordering, with respe
t to light{
one 
oordinates was proposed.While Feynman rules 
an be formulated quite elegantly in this setting, a
tual 
omputationsseem to be rather involved.2One has to bear in mind that it is not 
lear if the usual power 
ounting arguments 
anbe applied in the Yang{Feldman approa
h, in parti
ular in the presen
e of twisting fa
tors.This will be
ome 
learer in Se
tion 3. 2



indeed quite weak if one uses the Plan
k s
ale as the s
ale of non
ommutativityand uses parameters typi
al for a Higgs �eld. The 
ontributions of the nonplanargraphs, whi
h are made �nite by an os
illating fa
tor, are treated in a rigorousway by the use of the theory of os
illatory integrals [20℄. To our knowledge thishas not been done before.A remark on the issue of Lorentz invarian
e is in order here. We will seethat the self{energy for an outer momentum k is of the form �(k2; (k�)2). Itis thus invariant under Lorentz transformations if � transforms as a tensor, ashas been proposed in [1℄. The group velo
ity, however, should be 
omputed for�xed �. Thus, the dispersion relation 
an be distorted even though the theory isinvariant under a boost of the referen
e frame3. In the same 
ontext, one shouldremark that we do not use the 
on
ept of twisted Poin
ar�e invarian
e [22℄ here.The non
ommutative �3-model has already been treated in [6, 23℄ in the
ontext of the modi�ed Feynman rules, in [10℄ in a Hamiltonian setting, andin [24℄ in the Eu
lidean self{dual setting.The non
ommutative Wess{Zumino model was �rst dis
ussed in [25℄ forspa
e/spa
e non
ommutativity in the setting of the modi�ed Feynman rules. Itwas shown that the UV{IR mixing is mu
h weaker as in the �4{theory, so thatthe the theory is renormalizable to all orders.The paper is organized as follows: In Se
tion 2 we dis
uss how to 
omputemomentum-dependent mass and �eld strength renormalization in the Yang{Feldman approa
h and to extra
t the 
orresponding group velo
ity. In Se
tion 3we apply this ma
hinery to the non
ommutative �3{model at se
ond order, i.e.,for one loop. In parti
ular, we 
ompute the distortion of the group velo
ity forparameters typi
al for a Higgs �eld. In Se
tion 4 we treat the non
ommutativeWess{Zumino model, also at one{loop order. We show and dis
uss the fa
tthat the lo
al SUSY 
urrent is not 
onserved in the intera
ting 
ase. We also
ompute the momentum dependent mass and �eld strength normalization andshow that the distortion of the group velo
ity is simply twi
e that of the �3{
ase.The os
illating integrals so far have only been 
al
ulated formally. A rigorous
al
ulation in the sense of os
illatory integrals is presented in Se
tion 5. It turnsout that the formal results are indeed 
orre
t. We 
on
lude with a summaryand an outlook.2 Dispersion Relations in the Yang{Feldman for-malismWe want to dis
uss how to 
ompute (possibly momentum dependent) massand �eld strength renormalizations in the Yang-Feldman formalism. In thisformalism, the intera
ting �eld is re
ursively de�ned as a formal power series inthe 
oupling 
onstant. As an example, we 
onsider a 
ommutative s
alar theory3See also the dis
ussion in [21℄, in parti
ular the distin
tion between observer and parti
leLorentz transformations. 3



and a lo
alized mass term as intera
tion, i.e., we have the equation of motion(�+m2)�(x) = � �m2g(x)�(x);where g is a test fun
tion. Making the ansatz� = 1Xn=0 �m2n�nfor the intera
ting �eld, this leads to the equations(�+m2)�0 = 0;(�+m2)�n = �g�n�1; n � 1:Obviously, �0 is a free �eld. We identify it with the in
oming �eld. Then thehigher order terms are given re
ursively by�n = �R � (g�n�1); n � 1;where � denotes the 
onvolution and �R the retarded propagator at mass m.We de�ne the observable�(f) = Z d4x f(x)�(x) = Z d4k f̂(�k)�̂(k); (1)where the hat denotes the Fourier transform. We are now interested in theWightman two{point fun
tion h�(f)�(h)i (2)of the intera
ting �eld. The va
uum state here is the va
uum state for the free�eld �0, i.e., in order to 
ompute the above, one has to express � solely in termsof �0 and then determine the va
uum expe
tation value. At zeroth order in �m2,we obtain the usual free two{point fun
tionh�0(f)�0(h)i = (2�)2 Z d4k f̂(�k)ĥ(k)�̂+(k): (3)At �rst order in �m2, we geth�1(f)�0(h)i+ h�0(f)�1(h)i =�(2�)2 Z 1Yi=0 d4ki f̂(�k0)ĥ(k1)ĝ(k0�k1)n�̂R(k0)�̂+(k1) + �̂+(k0)�̂A(k1)o :Here �A is the advan
ed propagator. It has been shown in [26℄ that, underquite general assumptions, in the adiabati
 limit g ! 1, i.e., ĝ ! (2�)2Æ, thisbe
omes � 2� Z d4k f̂(�k)ĥ(k)�(k0)Æ0(k2 �m2): (4)4



Obviously, this 
an be interpreted as the �rst order term in an expansion of�+(m2 + �m2; �) around m2.When 
onsidering non
ommutative �eld theories, the following 
hanges haveto be made: Fields and test fun
tions are now fun
tions of the non
ommuting
oordinates q�, so that produ
ts are given byf(q)h(q) = (2�)�4 Z d4kd4l f̂(k)ĥ(l)e�ikqe�ilq= Z d4k e�ikq Z d4l f̂(k � l)ĥ(l)e i2k�l: (5)Here f̂ denotes the Fourier transform of the Weyl symbol of f(q). Alternatively,one 
ould use fun
tions of x and the Weyl{Moyal ?{produ
t. The integral (tra
e)is de�ned as usual as Z d4q f(q) = (2�)2f̂(0):Then, analogously to (1), we have�(f) = Z d4q f(q)�(q) = Z d4k f̂(�k)�̂(k):The Yang{Feldman series 
an be set up exa
tly as before, i.e., �0 is the free�eld and for n � 1, we have4�n(q) = Z d4x �R(x)g(q � x)�n�1(q � x)= (2�)�2 Z d4k �̂R(k)e�ikq Z d4l ĝ(k � l)�̂n�1(l)e i2k�l:It was shown in [26℄ that also in this 
ase one obtains (4) as the �rst order
ontribution to the two{point fun
tion in the adiabati
 limit ĝ(k)! (2�)2Æ(k).2.1 Intera
tionsNow we 
onsider truly intera
ting models. For simpli
ity we start with a s
alar�eld theory on the ordinary Minkowski spa
e. The 
oupling 
onstant is denotedby �. When 
omputing the two{point fun
tion (2), one �nds again (3) as thezeroth order 
ontribution. In the models dis
ussed in this paper, there is noO(�) 
ontribution. At se
ond order, one �nds the three termsh�2(f)�0(h)i+ h�0(f)�2(h)i+ h�1(f)�1(h)i: (6)As we will see later, the third term is a 
ontribution to the 
ontinuous spe
trumand thus not interesting at the moment. In order to treat the �rst two terms,we noti
e that in the models dis
ussed here, �2 is formally of the form�2 = (2�)�2�R � (g(��� (g�0))) + n.o.; (7)4Here the infrared 
uto� was implemented by multiplying the \intera
tion term" �m2�(q)in the equation of motion with a \test fun
tion" g(q) from the left. One 
an also use moresymmetri
 produ
ts, for details see [26℄. 5



where n.o. stands for a term that is normal ordered and whose spe
trum hasno overlap with the positive or negative mass shell if the support of ĝ is 
hosensmall enough. Thus, this term drops out in the �rst two terms in (6). The �in the �rst term will in general be divergent and has to be renormalized, whi
hwe assume in the following. Then the �rst term in (7) is quite similar to �1 inthe 
ase of a mass term as intera
tion. It is thus not very surprising that, usingthe same te
hniques as in [26℄, one 
an show (for details see [40, 39℄) that in theadiabati
 limit g ! 1, one obtains� (2�)2 Z d4k f̂(�k)ĥ(k)�(k) ��m2 �̂+(k); (8)for the �rst two terms in (6) under the 
ondition that �(k) = �(�k) in aneighborhood of the mass shell. Here � is the Fourier transform of �� and 
anbe identi�ed with the self{energy. In the 
ommutative 
ase, �(k) is only afun
tion of k2, and (8) 
orresponds to a mass and �eld strength renormalizationÆm2 = ��2�(m2);ÆZ = ��2 ��k2�(m2):In the non
ommutative 
ase, a rigorous adiabati
 limit is not possible be-
ause of UV-IR mixing e�e
ts (for details, see [40, 39℄). We thus take a prag-mati
 point of view and work formally, i.e., without infrared 
uto�. In analogyto (7), we write �2 in the form�̂2(k) = (2�)2�̂R(k)�(k)�̂0(k) + n.o.and take this as an impli
it de�nition of � (again, we assume � to be renor-malized). If then �(k) = �(�k) in a neighborhood of the mass shell, we use(8) as the sum of the �rst two terms in (6). Now �(k) is in general not only afun
tion of k2, but also of (k�)2. Thus, we obtain momentum-dependent massand �eld strength renormalizations:Æm2((k�)2) = ��2�(m2; (k�)2); (9)ÆZ((k�)2) = ��2 ��k2�(k2; (k�)2)jk2=m2 : (10)Remark 2.1. Although the naming might suggest that these terms should besubtra
ted, we do not do so, sin
e they are neither lo
al, nor, in general, diver-gent. We remark, however, that su
h a subtra
tion has been proposed in [27℄.2.2 The group velo
ityThe sum of the zeroth order term (3) and the se
ond order 
ontribution (8) 
anbe interpreted as the expansion (in �) of2� Z d4k f̂(�k)ĥ(k)�(k0)Æ(k2 �m2 + �2�(k2; (k�)2)) +O(�4): (11)This 
an be interpreted as a 
hange of the dispersion relation.6



Remark 2.2. This modi�
ation of the dispersion relation is a manifestation ofthe breaking of parti
le Lorentz invarian
e, 
f. the dis
ussion in the introdu
-tion. However, parti
le Lorentz invarian
e of the asymptoti
 �elds is a 
ru
ialingredient of s
attering theory and the LSZ relations, whi
h are part of thefoundations of quantum �eld theory. In this sense, the 
on
eptual basis of thepresent approa
h is rather shaky. In the following, we will take a phenomenolog-i
al standpoint and 
ompute the distortion of the dispersion relation for di�erentmodels in order to 
he
k if they are realisti
.We now dis
uss how to extra
t the group velo
ity in the above setting.From (11), and allowing for a �nite lo
al mass and �eld strength renormalization,we get the dispersion relationF (k) = k2 �m2 + �2 ��(k2; (k�)2)� �+ �k2�+O(�4) = 0: (12)For a given spatial momentum k we want to 
ompute the 
orresponding k0 thatsolves (12) as a formal power series in �. We �ndk0 = !k � �2 12!k ��(m2; (k+�)2)� �+ �m2�+O(�4): (13)Note that in !k = qjkj2 +m2 and k+ = (!k;k) the bare mass m enters. Thegroup velo
ity is then given byrk0 = k!k + �2 k2!3k ��(m2; (k+�)2)� �+ �m2�� �2 12!kr(k+�)2 ��(k�)2�(m2; (k+�)2) +O(�4):By 
omparison with (13), we getrk0 = kk0 � �2r(k+�)22k0 ��(k�)2�(m2; (k+�)2) +O(�4):In order to make things more 
on
rete, we 
hoose a parti
ular �, namely,� = �0 = �2n
�0 �11 0 � : (14)Then we have (k�0)2 = ��4n
 �k2 + 2 jk?j2� (15)with k? = (k1; 0; k3). We also de�ne kjj = (0; k2; 0). Thus, in the 
ase � = �0,we �ndrk0 = kjjk0 + k?k0 �1 + 2�2�4n
 ��(k�)2�(m2; (k+�0)2)�+O(�4): (16)7



Remark 2.3. This treatment di�ers slightly from the one given in [19℄. There, �is not Taylor expanded in �. Then the argument of � in (16) is not restri
ted tothe mass m shell. It follows that by tuning � and � one 
an make the deviationarbitrarily small, whi
h is not possible here.Remark 2.4. The modi�
ation of the dispersion relation 
an be interpretedas an e�e
t of the momentum{dependent mass renormalization (9), sin
e �2�in (16) 
an be repla
ed by �Æm2. The momentum{dependent �eld strengthrenormalization (10), on the other hand, multiplies, in momentum spa
e, thefree propagators, in parti
ular the retarded propagator. In position spa
e, this
an be interpreted as a smearing of the sour
e, and thus as a non{lo
al e�e
t.In [39℄, this is explained in more detail, and the e�e
t is 
omputed for the 
aseof non
ommutative supersymmetri
 ele
trodynami
s. In parti
ular, it is shownthat, surprisingly, the range of this nonlo
ality is independent from the s
ale ofnon
ommutativity.3 The �3{modelWe now apply the above tools to the non
ommutative �3{model and 
omputethe momentum{dependent mass and �eld strength renormalization and the dis-tortion of the group velo
ity at se
ond order. We start from the equation ofmotion (�+m2)� = ��2:The Yang{Feldman ansatz � =Pn �n�n, and the identi�
ation of �0 with thein
oming �eld then leads to�1 = �R � (�0�0);�2 = �R � (�1�0 + �0�1):We substra
t the tadpole from the start, i.e., we use normal ordering and rede-�ne �1 = �R � ( :�0�0:):Now we want to 
ompute the two{point fun
tion of the intera
ting �eld. Atzeroth order, we �nd the usual result (3). At �rst order, there is no 
ontribution.At se
ond order, there are the three terms (6). We �rst fo
us on the sum of the�rst two terms. As dis
ussed in the previous se
tion, we treat it by 
omputingthe self{energy �(k). Performing the 
ontra
tions in �2, we obtain�̂2(k) =(2�)2�̂R(k)�̂0(k)� Z d4l �̂R(k � l)n�̂+(�l) �1 + e�ik�l�+ �̂+(l) �1 + eik�l�o+ n.o.Thus, � is given by�(k) = Z d4l �̂R(k � l)n�̂+(�l) �1 + e�ik�l�+ �̂+(l) �1 + eik�l�o :8



This 
an be split into a planar part not involving the phase fa
tors and a nonpla-nar part. The planar part is pre
isely half of the self{energy of the 
ommutative�3 model.For the following 
onsideration, it is important that we are only interested in�(k) in a small neighborhood of the mass shell. But also the loop momentuml is 
on�ned to the mass shell, so if (m � �)2 < k2 < (m + �)2, then either(k � l)2 < �2 or (k � l)2 > (2m� �)2. Thus, the singularity of �̂R(k � l) is notmet and the i�{pres
ription does not matter: One may simply write�̂R(k � l) = (2�)�2 �1(k � l)2 �m2 = (2�)�2 �1k2 � 2k � l :We begin by dis
ussing the planar part�pl(k) = Z d4l �̂R(k � l)n�̂+(�l) + �̂+(l)o : (17)As usual, this expression is not well{de�ned. Be
ause of the pre
eding remark,it is straightforward to show that at least formally �pl(k) = �pl(�k) in a neigh-borhood of the mass shell. It has been shown in [18℄ that�R � (�+ +��) = �2F ��2�holds. Here �2� is well{de�ned, while �2F has the usual logarithmi
 divergen
e.Alternatively, one may argue with the following formal 
al
ulation: Be
ause ofLorentz invarian
e, we may 
hoose k = (k0;0). Then�pl(k) =� (2�)�3 Z d3l2!l � 1k20 � 2k0!l + 1k20 + 2k0!l�=� 2(2�)�2 Z 10 dl l2!l(k20 � 4!2l ) ; (18)whi
h diverges logarithmi
ally. We note that it is ne
essary to 
onsider thesum of the two terms in (17). The individual terms are linearly divergent.It is a priori not 
lear if the same 
an
ellation takes pla
e in the presen
e ofthe twisting fa
tors, i.e., in the nonplanar part. Hen
e, the validity of power
ounting arguments for non
ommutative �eld theories in the Yang{Feldmanformalism is doubtful.Finally, we remark that the �eld strength renormalization is �nite. Using(10), one 
omputes ÆZ = (2�)�2 3� 2�p312m2 : (19)3.1 The nonplanar partWe now want to dis
uss the nonplanar part of �(k), i.e.,�np(k) = Z d4l �̂+(l)eik�l ��̂R(k � l) + �̂R(k + l)� ; (20)9



for k in a neighborhood of the mass shell. In parti
ular, we want to show thatit is �nite and that �np(k) = �np(�k) there. Note that the above integral isneither absolutely 
onvergent nor a Fourier transformation (sin
e k does notonly appear in the phase fa
tor). In the following, we 
ompute this integral ina formal way. In Se
tion 5 we show that (20) 
an be de�ned as an os
illatoryintegral and that a 
al
ulation in this framework gives the same result as ourformal 
al
ulation.First of all we note that if �np(k) is well de�ned, then it is invariant underthe Lorentz transformationk ! k�; � ! ��1��T�1:Thus, instead of 
omputing the above at k; � we may 
ompute it at k0 = k�; �0 =��1��T�1. Sin
e at the one-loop level we are only interested in �np(k) ina neighborhood of the mass shell, we may 
hoose k0 = (pk2;0). Sin
e �0is antisymmetri
, k0�0 has vanishing time 
omponent. We denote its spatial
omponent by k0�0. Then we have�np(k) =� (2�)�3 Z d3l2!l  e�ik0�0�lk2 � 2pk2!l + e�ik0�0�lk2 + 2pk2!l!=� 2(2�)�3 Z d3l2!l 1k2 � 4!2l 
os(k0�0 � l)=� 2(2�)�2 Z 10 dl l2!l(k2 � 4!2l ) sin lp�(k�)2lp�(k�)2 : (21)In the �rst step we used the the symmetry properties of the integrand. In thenext step we used (k�)2 = (k0�0)2 = � j(k0�0)j2. Obviously, the integral is �niteand only a fun
tion of k2 and (k�)2. Furthermore, �np(k) = �np(�k).In order to estimate the strength of the distortion of the dispersion relation,we 
al
ulate Æm2((k�)2) and ÆZ((k�)2) numeri
ally. We use the parameters� = �0 (
f. (14)), m = 10�17��1n
 and � = m. If �n
 is identi�ed with thePlan
k length, this 
orresponds to a mass of about 100GeV, i.e., the estimatedorder of magnitude of the Higgs mass. The 
hosen value of � is slightly above theexpe
tation for the 
ubi
 term in the Higgs potential (� 0:6m). Figure 1 showsthe relative mass 
orre
tion m�2Æm2((k�)2) as a fun
tion of the perpendi
ularmomentum k?, obtained with the numeri
al integration method of mathemat-i
a (for the de�nition of k?, see Se
tion 2.2). We see that the relative mass shiftis of order 1 for small perpendi
ular momenta. This might look like a stronge�e
t. However, we have the freedom to apply a �nite mass renormalization inorder to restore the rest mass. The important question is rather how strong themomentum dependen
e of the mass renormalization is. As 
an be estimatedfrom Figure 1, it is at the %-level for perpendi
ular momenta of the order ofthe mass. As a 
onsequen
e, also the distortion of the group velo
ity is of thisorder, as we will show below.The plot for ÆZ((k�)2) for the same parameters is not very interesting, sin
eÆZ is 
onstant, �1:32477 � 10�3, within ma
hine pre
ision. This 
oin
ides with10
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Figure 1: The relative mass 
orre
tion m�2Æm2((k�)2) as a fun
tion of theperpendi
ular momentum k?.the planar 
ontribution (19). The reason for this is easily understood: If onedi�erentiates the integrand in (21) with respe
t to k2, one obtains a fun
tionthat, even without the fa
tor sin lp�(k�)2lp�(k�)2 ;is integrable. Without this fa
tor, it would 
oin
ide with the 
orrespondingplanar expression obtained by di�erentiating (18). But the above fa
tor deviatesfrom 1 appre
iably only for l � (�(k�)2)� 12 , i.e., for very high energies, wherethe rest of the integrand is negligible.A

ording to equation (16), the deviation of the group velo
ity from thephase velo
ity in the perpendi
ular dire
tion is, to lowest order in �, givenby 2�2�4n
 ��(k�)2�np. Figure 2 shows this quantity for the same parameters asabove. The deviation is biggest for small perpendi
ular momenta and at the%-level.We see that in the �3 model the distortion of the dispersion relation ismoderate for realisti
 masses and 
ouplings. This is in sharp 
ontrast to thesituation in the �4 model, where realisti
 dispersion relations 
ould only beobtained for masses 
lose to the non
ommutativity s
ale [5℄.3.2 The 2{parti
le spe
trumWe now dis
uss the third term in (6). We obtain(2�)4 Z d4kf̂(�k)ĥ(k)�̂R(k)�̂A(k) ((�+ ��+)̂(k) + (�+ ?2� �+)̂(k)) :11
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Figure 2: The distortion of the group velo
ity in perpendi
ular dire
tion as afun
tion of the perpendi
ular momentum k?.Here ?2� is the ?-produ
t at 2�, i.e., the produ
t 
orresponding to the twistingfa
tor eik�l. Like �+ ��+, �+ ?2� �+ is a well{de�ned distribution, as 
an beseen in momentum spa
e. It has its support above the 2m mass shell, thus thisterm 
orresponds to the multi{parti
le spe
trum. Using Lorentz invarian
e asabove, one 
an 
ompute(�+ ?2� �+ )̂(k) = �(k2 � 4m2)(2�)�3 sin�p�(k�)2q 14k2 �m2�2pk2p�(k�)2 :In the limit (k�)2 ! 0, this gives ba
k the 
ommutative result. Note thatdeviations from the 
ommutative 
ase be
ome appre
iable for �(k�)2 � k�2,i.e. ifpk2 or the transversal momentum k? is of the order �2n
pk2 . This is obviouslyno threat to phenomenology.4 The Wess{Zumino modelIn this se
tion we 
onsider the Wess{Zumino model on the non
ommutativeMinkowski spa
e. We use the standard supersymmetri
 non
ommutative Min-kowski spa
e, in whi
h the (anti-) 
ommutators involving the fermioni
 variables�; �� are un
hanged [28℄. In order to arrive at the equations of motion for the
omponent �elds, we start from the Lagrangean in super�eld form, taking par-ti
ular 
are for the order of the �elds in the di�erent terms5.5This is important, sin
e for example the tadpole 
orresponding to the intera
tion term������ does not have a twisting fa
tor, in 
ontrast to the intera
tion term ������, as hasalready been noted in [29℄. 12



In super�eld form the Wess{Zumino model is given by the following La-grangean6: L = ���j�2��2 +��m2 �� + �3���� j�2 + h.
.� :Here � is the 
hiral super�eld� = �+p2��+ �2F � i��������+ ip2�2������� � 14�2��2��;where � and F are 
omplex s
alar �elds and � is a Weyl spinor. In 
omponent�elds the a
tion is then, up to surfa
e terms,S = Z d4q �� i�� ������� ����+ F �F+ ��m ��F � 12���+ � (��F � ���)�+ h.
.	�:This leads to the equations of motionF +m�� + ����� = 0���+mF � + �(��F � + F ���)� ����� = 0i�������m��� �(�� ��+ ����) = 0:We eliminate F using its equation of motion. Furthermore, we introdu
e theMajorana spinor  = 1p2 ����� _�� ; � =  y
0 = 1p2(��; �� _�)and the proje
tors P� = 1� i
52 :Using 2 � P+ = �� we get(�+m2)� = �2� � P� �m�(�� + ���+ ���)� �2(����+ ����)(i=� �m) = �P+(� +  �) + �P�(�� +  ��):4.1 The SUSY 
urrentWe �rst want to dis
uss the 
hanges that non
ommutativity brings in at the
lassi
al level. The equations of motion are the same, we only have to repla
e theusual produ
t by the non
ommutative one. But there are some 
hanges for the
urrents. It is an interesting feature of non
ommutative intera
ting theories that6In the following, we use the 
onventions of [30℄, ex
ept for the metri
, whi
h we 
hooseto have signature (+���). A

ordingly, we also 
hanged the sign of �0, and thus also of 
0and 
5. 13



the lo
al7 
urrents asso
iated to symmetries are in general not 
onserved [31,32℄. Examples are the energy{momentum tensor in the �4-model [33℄ and inele
trodynami
s [36℄. Here we show that the lo
al 
urrent asso
iated to thesupersymmetry transformation is not 
onserved in the intera
ting 
ase, i.e., for� 6= 0. We dis
uss this in terms of the super�eld �. The equation of motion is�14 �D2 �� +m�+ ��� = 0:The lo
al super
urrent is given byV� _� = 12[D��; �D _� ��℄ + if=�� _��; ��g � if�; =�� _� ��g:Here we used a symmetrized version of the usual 
urrent, sin
e this is usuallyadvantageous in the non
ommutative 
ase. By standard methods (see, e.g., [38℄)one 
an show that �D _�V� _� = 12fD��; �D2 ��g � 14f�; D� �D2 ��gholds. Using the equation of motion, we get�D _�V� _� = 2 fD��; (m� + ���)g � f�; D� (m�+ ���)g= mD��2 + �[[D��;�℄;�℄:The �rst term is already present in the 
ommutative 
ase. It does not a�e
tthe 
harge 
orresponding to the supersymmetry transformation, but simply ex-presses the fa
t that the theory is not 
onformal. The se
ond term, however,is a genuinely non
ommutative one. It also a�e
ts the SUSY 
harge. Sin
e itis given by a 
ommutator, the non{
onservation of the 
harge is relevant onlyat the non
ommutativity s
ale8. Like the non-
onservation of the lo
al energy{momentum tensor, this e�e
t does not show up in a perturbative treatment ofthe 
orresponding quantum theory, at least not at se
ond order.4.2 The self energyNow we 
ompute the self energy at the one-loop level. Using the equations ofmotion, the �rst terms in the Yang-Feldman series are�1 = ��R � �2 � 0P� 0 +m(��0�0 + �0��0 + �0�0)� ; (22) 1 = SR � (P+(�0 0 +  0�0) + P�(��0 0 +  0��0)) ; (23)7By lo
al we mean expressions that are polynomials of (derivatives) of �elds, where theprodu
t is the appropriate algebra produ
t, i.e., (5) in the present 
ase. Using di�erentprodu
ts (nonlo
al in our sense), it is possible to 
onstru
t 
onserved 
urrents, see, e.g.,[34, 35℄.8Su
h an e�e
t is to be expe
ted by heuristi
 
onsiderations [37℄: Charge 
onservationrequires that the produ
tion of a parti
le with positive 
harge is always a

ompanied bythe produ
tion of a parti
le with opposite 
harge at the same pla
e. But be
ause of thenon
ommutativity, it is not possible to lo
alize two parti
les at the same pla
e, see, e.g., thedis
ussion in [9℄. 14



and the analogous formulas for the 
onjugate �elds. The se
ond order 
ompo-nent of � is�2 = ��R�n2 � 1P� 0 + 2 � 0P� 1 (24)+m(��1�0 + ��0�1 + �1��0 + �0��1 + �1�0 + �0�1) (25)+ (�0�0��0 + ��0�0�0)o (26)Inserting (22) and (23) in (24) and (25) and 
ontra
ting the free �elds, one 
anwrite �2 in the form�̂2(k) = (2�)2�̂R(k)��(k)�̂0(k) + �0(k)�̂�0(k)�+ n.o.;
f. (7).For the 
omputation of the graphs involving fermions, we need the formulae9ŜR(k) = (�=k �m)�̂R(k);�̂SR(k) = (=k �m)�̂R(k);h �̂ �(k) ̂�(p)i =12(2�)2Æ(k + p)(�=k +m)���̂+(k):The �4 tadpole is obtained from the term (26) of �2. We �nd the quadrati-
ally divergent 
ontribution��4�tp(k) = �2(2�)�2�2 Z d4l �̂+(l) �1 + eik�l� :The �3 tadpole is obtained from the term (25) by 
ontra
ting the �0s in �1or ��1 among themselves. Due to the retarded propagator with zero mo-mentum 
onne
ting the loop with the line, the mass appearing in theintera
tion term 
an
els and we get��3�tp(k) = 8(2�)�2�2 Z d4l �̂+(l):Note that no twisting fa
tor appears.The �3 �sh graph is obtained from the term (25) by 
ontra
ting a �0 in �1or ��1 with the outer ��0(f). We get��3��sh(k) = 3m2�2 Z d4l �̂+(l) �1 + eik�l� ��̂R(k � l) + �̂R(k + l)� :The Yukawa tadpole is obtained from (25) by 
ontra
ting the fermions in�1 or ��1. Sin
e the tra
e of a single 
-matrix vanishes we only get asupplementary fa
tor 4m and thus�Yuk(k) = �8(2�)�2�2 Z d4l �̂+(l):9The fa
tor 1=2 in the last line is due to the Majorana nature of the fermions.15



The fermion �sh graph is obtained from the term (24). The relevant partof �2, i.e., the part involving �0, is�̂2(k) = �4�̂R(k) Z d4ld4l0 
os l�l02� n �̂ 0(k � l)P�ŜR(l)P+ ̂0(l � l0)�̂0(l0)e� i2k�l+ �̂ 0(l � l0)P+ �̂SR(l)P� ̂0(k � l)�̂0(l0)e� i2 l�ko :Contra
tion of the fermion �elds now yields� 2(2�)2�̂R(k)�̂0(k) Z d4l 
os l�k2� ntr �P�(�=l �m)P+(=k � =l �m)� �̂R(l)�̂+(k � l)e� i2 k�l+tr �P+(=l �m)P�(�=k + =l �m)� �̂R(l)�̂+(�k + l)e� i2 l�ko=� 2(2�)2�̂R(k)�̂0(k) Z d4l 
os l�k2� ntr �P�(=l � =k �m)P+(=l �m)� �̂R(k � l)�̂+(l)e� i2 l�k+tr �P+(=k + =l �m)P�(=l �m)� �̂R(k + l)�̂+(l)e� i2 l�ko :With the usual 
 matrix algebra, we get� ��sh(k) = 2�2 Z d4l �̂+(l) �1 + eik�l�� �(k � l) � l�̂R(k � l)� (k + l) � l�̂R(k + l)� :Now we 
olle
t all our terms. The Yukawa tadpole and the �3 tadpole 
an
el(this has to be so in order to have a vanishing VEV of �1). Using(l2 �m2)�̂+(l) = 0; (l2 �m2)�̂A(l) = �(2�)�2;the 
ombination of the other terms gives�(k) = �2 �k2 +m2� Z d4l �̂+(l) �1 + eik�l� ��̂R(k � l) + �̂R(k + l)� :Apart from the prefa
tor (k2 +m2), this is exa
tly the expression we alreadyfound for the �3-model. We remark that for the self{energy of the fermion, oneobtains the same result.The prefa
tor is to be expe
ted: Assuming that the non-renormalizationtheorem still holds, we know that only the ���j�2 ��2-term gets renormalized.From the free equations of motion(1 + ÆZ)F �m�� = 0; (1 + ÆZ)��+mF � = 016



we get, at �rst order in ÆZ,(�+m2)� = �ÆZ(��m2)�:Note that in our terminology, this 
orresponds to both a �eld strength and amass renormalization. Expli
itly, we have, after subtra
ting the planar part,Æm2(s) =� 2m2�np(m2; s); (27)ÆZ(s) =� �np(m2; s)� 2m2 ��k2�np(m2; s): (28)Here we used the �np from the previous se
tion, 
f. equation (21). From (27)we 
on
lude that for � = �0;m = 10�17��1n
 ; � = 1 the distortion of the groupvelo
ity is twi
e as strong as in the �3{model. Identifying � with the Higgs�eld, an e�e
t of this magnitude might be measurable at the next generation ofparti
le 
olliders.As was already dis
ussed in the previous se
tion, the se
ond term in (28)is e�e
tively 
onstant for realisti
 momenta. The �rst term has already beenplotted in Fig. 1, apart from the sign. As dis
ussed in Remark 2.4, a momentum{dependent �eld strength renormalization leads to a nonlo
al smearing. In orderto estimate its strength, one has to 
ompute the Fourier transform of �np.In [39℄, su
h a 
al
ulation is performed in the setting of non
ommutative super-symmetri
 ele
trodynami
s.Note that the mass and �eld strength renormalizations for the fermion 
om-ponent are exa
tly the same.5 Cal
ulation in the sense of os
illatory inte-gralsThe aim of this se
tion is to show that (20) is well{de�ned in the sense ofos
illatory integrals, and that a 
al
ulation is this sense yields the same resultas the formal 
al
ulation done in Se
tion 3.1. We use the theory of os
illatoryintegrals as given in [20℄. We �rst state the main de�nitions and results.Let 
 be an open set in Rs .De�nition 5.1. A phase fun
tion on 
� Rt is a 
ontinuous fun
tion � : 
�Rt ! R with1. 8� � 0; (k; l) 2 
� Rt : �(k; �l) = ��(k; l),2. � is C1 on 
� (Rtnf0g),3. (rk�;rl�) 6= (0; 0) on 
� (Rtnf0g).De�nition 5.2. A C1 fun
tion a : 
�Rt ! C is 
alled symbol of order r 2 Ron 
� Rt if 8K � 
 
ompa
t and for all multiindi
es �; � the seminormskakK;�;� = supk2K;l2Rt(1 + jlj)j�j�rjD�kD�l a(k; l)j17



are �nite. The set of all su
h symbols with topology given by the seminormswill be denoted by Sym(
; t; r).A fun
tion a : 
� Rt ! C is 
alled asymptoti
 symbol, if it 
an be writtenas a = a1 + a2 with a1 2 Sym(
; t; r) and a2 having 
ompa
t support in l andthe map k ! a2(k; �) is C1 as a map from 
 to L1(Rt ).If r < r0 then Sym(
; t; r) � Sym(
; t; r0) and the C1 fun
tions of 
ompa
tsupport are dense in Sym(
; t; r) in the topology of Sym(
; t; r0).For a1 2 Sym(
; t; r1) and a2 2 Sym(
; t; r2) the produ
t a1 � a2 is inSym(
; t; r1 + r2) and similar for asymptoti
 symbols.Now we want to give a natural extension to expressions like R dtl a(k; l)ei�(k;l)if the integral is not absolutely 
onvergent:Theorem 5.3. Let � be a phase fun
tion. We 
an asso
iate with � a linear mapfrom the asymptoti
 symbols to D0(
) denoted by T�(a) and uniquely determinedby:1. If a has 
ompa
t support in l then T�(a)(k) = R dtl a(k; l)ei�(k;l) and is aC1 fun
tion of k.2. The restri
tion of T� to Sym(
; t; r) is a 
ontinuous fun
tion from Sym(
; t; r)to D0(
).Furthermore, one 
an show that the singular support of T�(a) is 
ontainedin the set fkj9l 2 Rtnf0g with rl�(k; l) = 0g: (29)Remark 5.4. It is easy to see that the notion of asymptoti
 symbols 
an begeneralized further. The fun
tion a 
ould be split even further into a = a1 +a2 + a3 + : : :. For the additional terms, k ! ai(k; �) should again be a C1map, having 
ompa
t support in l, into some suitable spa
e of fun
tions ordistributions. Example for su
h spa
es would be L1(Rt ), whi
h was alreadyused for the asymptoti
 symbols, or the elements of E 0(Rt ) whi
h are C1 aroundl = 0.10 The important point is that the integrals R dsk f(k)ai(k; l)ei�(k;l)should ea
h be well de�ned for f 2 D(
), one of these in the sense of os
illatoryintegrals, and their sum independent of the splitting. So one 
ould even allowfor some k ! ai(k; �) to be distributions instead of C1 maps. This 
ould, of
ourse, in
rease the singular support beyond (29).In our 
on
rete 
ase (20), we 
hoose 
 to be an open neighbourhood ofthe mass shell m su
h that for k 2 
 we have (k � l+)2 6= m2. For example
 = fkjm2 < pk2 < 3m2 g. Furthermore, we have t = 3, � = �k����(jlj ; l)� anda(k; l) = 1(2�)3 12!l � �1(k � l+)2 �m2 + �1(k + l+)2 �m2� e�i(k�)0(pl2+m2�jlj):10As the phase fun
tion does not have to be smooth in l = 0, ai(k:�) should, e.g., not 
ontainderivatives of the Æ fun
tion at that point. 18



a is an asymptoti
 symbol11 on 
� R3 of order -3.From Theorem 5.3 we 
an see that the os
illatory integral is a well de�neddistribution but do not know what it looks like. When trying to transformthe integral, diÆ
ulties arise from the fa
t that the usual te
hniques of variabletransformations are in general not allowed. Also the methods used in [20℄ forthe proof of Theorem 5.3 are not really suitable to make exa
t or numeri
al
al
ulations. Programs for numeri
al integration 
an only ta
kle absolutely
onvergent or os
illating improper Riemann12 integrals. At the end we are goingto redu
e the os
illatory integral en
ountered here to an absolutely 
onvergentintegral.First, the strategy will be to 
onstru
t an asymptoti
 symbol with 
ompa
tsupport in l whi
h approa
hes a in the topology of symbols13 of some higherorder, say, -2. The 
ontinuity of T� ensures that the result is independent fromthe way a is approa
hed.What we already 
an dedu
e is that T�(a)(k) is a C1-fun
tion of k sin
erl�(k; l) is only zero for k���� lightlike and this 
an never happen on 
.For k 2 
 let �k be the unique pure boost whi
h takes the ve
tor k to�kk = (pk2;0). It is easy to see that �k is a C1 fun
tion of k.Let g 2 D(R) have the propertyg(x) = (1 if jxj � 1;0 if jxj � 2:De�ne Gn(k; l) := g �(�kl+=n)2� ;where �k is only the ve
tor part of the transformation, i.e., a 3� 4 matrix andthe square is the Eu
lidean square of a 3-ve
tor. Gn is a C1-fun
tion of k andl and for given k; n it has 
ompa
t support in l and 8n lies in Sym(
; 3; 0).Lemma 5.5. Gn ! 1 in Sym(
; 3; 1) for n!1.Proof. We have to show that 8K � 
 
ompa
t and 8�; �supk2K;l(1 + jlj)j�j�1 ���D�kD�l �g �(�kl+=n)2�� 1���� ����!n!1 0: (30)It is easy to see that 8� kD�k�kksup =: 
�kis a 
ontinuous fun
tion of k on 
 and that one 
an �nd positive 
onstants d�su
h that 8� 


D�l l+


Eu
lid � d�(1 + jlj)1�j�j:11It is only asymptoti
, sin
e jlj is not di�erentiable at l = 0, and one has to use pl2 +m2�jlj � C(1 + jlj)�1, 
f. [20℄.12An os
illating improper Riemann integral is, e.g., lima!1 R a0 dx 1=x sinx.13We are a little bit sloppy here. To be pre
ise, we would have to write a = a1 + a2 likeabove, using a C1 
uto� fun
tion around l = 0, and only approximate a1 by symbols of
ompa
t support. It is easy to see that this gives the same result.19



With these one 
an 
onstru
t C�;�k , whi
h are positive 
ontinuous fun
tions ofk, su
h that ���D�kD�l (�kl+)2��� � C�;�k (1 + jlj)2�j�j: (31)First we show (30) for j�j = j�j = 0: ��g �(�kl+=n)2�� 1�� is only unequal tozero if (�kl+n )2 � 1. With C0;0K := supk2K C0;0k we then get1 + jlj � n 1qC0;0Kand with thissupk2K;l2Rt(1 + jlj)�1 ��g �(�kl+=n)2�� 1�� � supx2R jg(x)� 1jqC0;0K 1n ����!n!1 0:Now let � or � be unequal to zero: With (31) one 
an easily see that���D�kD�l g �(�kl+=n)2���� � j�j+j�jX
=1 ��(�
g) �(�kl+=n)2��� 1n2
 ~C
k (1 + jlj)2
�j�j;where ~C
k are again positive 
ontinuous fun
tions of k (and are also dependingon � and �). For ea
h 
 the fun
tion �
g(x) is only unequal to 0 if jxj < 2. Itis not hard to prove that one 
an estimate(�kl+)2 � ak � (1 + jlj)2 � bk;where ak and bk are again positive 
ontinuous fun
tions of k. If the argumentof g is smaller than 2 it follows1 + jljn �s2 + bkn2ak :Now we 
an dedu
esupk2K;l2Rt(1 + jlj)j�j�1 ���D�kD�l �g �(�kl+=n)2�� 1����� supk2K;l2Rt j�+j�jjX
=1 ���
g �(�kl+=n)2��� ~C
k (1 + jlj)2
�1n2
� j�j+j�jX
=1 supx2R j�
g(x)j ~C
K  2 + bKn2aK !
� 12 1n ����!n!1 0;with aK = supk2K ak. This 
ompletes the proof.20



With the above result it follows that Gn � a has 
ompa
t support in l forgiven k and approa
hes a in the topology of Sym(
; 3;�2). Cal
ulating theintegral (20), with f 2 D(
), we get1(2�)3 Z d4k d3l2!l f(k)g �(�kl+=n)2�� �1(k � l+)2 �m2 + �1(k + l+)2 �m2� e�ik�l+ :(32)This integral is absolutely 
onvergent, so the usual te
hniques for manipulatingintegrals are allowed. We perform a k-dependent nonlinear transformation on l:l0 = �kl+. The integration measure does not 
hange and, of 
ourse, l+ = ��1k l0+.The prime will be dropped again and we get:1(2�)3 Z d4kf(k) Z d3l2!l � �1(k � ��1k l+)2 �m2 + �1(k +��1k l+)2 �m2�� g �(l=n)2� e�ik���1k l+ : (33)It holds (k � ��1k l+)2 = (��1k ((pk2;0)� l+))2 = k2 +m2 � 2!lpk2:Thus, the sum of the two fra
tions in (33) is �2k2�4!2l . De�ne �0 = ��1k T���1k .�0 is again antisymmetri
, so (pk2;0)��0�� has vanishing time 
omponent. Let(pk2;0)�0 be its spatial part. Its length isr��(pk2;0)�0�2 =p�(k�)2:The expression in the exponent in (33) now be
omesk���1k l+ = (pk2;0)�0l+ = �(pk2;0)�0 � l:We use spheri
al 
oordinates for l where the z�axis is along (pk2;0)�0. Theexponent equalsp�(k�)2l 
os(�), and after performing the � and � integrationwe get (dropping the k-integration)�2(2�)�2 Z 10 dl g �(l=n)2� l2!l(k2 � 4!2l ) sin(lp�(k�)2)lp�(k�)2 :For n!1 this gives the value of T�(a)(k), whi
h is the absolutely 
onvergentintegral �2(2�)�2 Z 10 dl l2!l(k2 � 4!2l ) sin(lp�(k�)2)lp�(k�)2 ;whi
h is the same result as (21).We emphasize again that in order to 
al
ulate the dispersion relation at theone-loop level, it is suÆ
ient to know�np(k) = Z d4l �̂+(l)eik�l ��̂R(k � l) + �̂R(k + l)� ; (
opy of 20)21



for k in the vi
inity of the mass shell. However, when it 
omes to treat higherorders, the �sh-graphs, whi
h give the 
ontributions (20), may appear as sub-graphs and have to be integrated over arbitrary k. Then the problem appearsthat �̂R(k�l+) 
an be
ome singular, so that (20) is no os
illatory integral in thestandard sense. Let us examine this more 
losely: For k2 > 4m2, the singularsupport of l! �̂R(k� l+) is 
ompa
t and does not 
ontain the origin. We maythen pro
eed as indi
ated in Remark 5.4. Let k0 > 0. Then only �̂R(k � l+)
an be
ome singular and at the singularity we have k0 � !l > 0. Thus, we maysimply add �i� to the denominator of the �rst fra
tion in (32). Of 
ourse onethen has to assume that f has 
ompa
t support in fk 2 R4 jk2 > 4m2; k0 > 0g.One 
an then pro
eed as above and obtains (21), but with (k2 � 4!2l � i�) inthe denominator. Using 1x�i� = P 1x � i�Æ(x), this 
an be split into real andimaginary part. The imaginary part resembles the usual imaginary parts forforward/ba
kward s
attering.For spa
elike k, the singular support of l ! �̂R(k � l+) is not 
ompa
t.Consider, e.g., k = (0; 0; 0; kz). Then �̂R(k � l+) is singular on the hyperplanel3 = 2kz. Thus, it is not possible to use the framework indi
ated in Remark 5.4.One has to extend the framework further in order to a

ommodate for symbolswhose singularities are not 
ompa
tly supported. There are two natural Ans�atzefor su
h an extension:1. The distributions a 
ould be approximated by a sequen
e of symbols(an)n2N. For ea
h an the os
illatory integral is well de�ned. The os
illa-tory integral for a 
an then be a
hieved if one 
al
ulates the limit n!1after integrating, if this is well de�ned and to a large extent independentof the 
hoi
e of the sequen
e.2. One 
ould see the relationZ dskdtl f(k)a(k; l)ei�(k;l) = limn!1 Z dskdtl f(k)gn(l)a(k; l)ei�(k;l) (34)for a sequen
e gn of symbols with 
ompa
t support and approa
hing 1,as a de�nition. The right hand side of (34), with �nite n, is even de�nedfor a being some distribution. If the limit exists and is independent of the
hoi
e of the sequen
e gn out of some large 
lass of sequen
es, this wouldbe a reasonable extension.We would also like to mention the approa
h followed in [39℄: There, thenonplanar loop integral is interpreted as a fun
tion F (k; y) of two independentvariables k and y, where the twisting fa
tor is written as e�iyl+ . One 
an showthat the integral is a well{de�ned tempered distribution in R8 . The question isthen if it is possible to restri
t y to k�. Whether the loop integral is well-de�nedis then a question that 
an be answered by 
omputing F (k; y). The problem isthat it is rather diÆ
ult to perform su
h a 
al
ulation analyti
ally.Remark 5.6. The nonplanar loop integrals that appear in the setting of themodi�ed Feynman rules 
an also be treated rigorously in the sense of os
illatory22



integrals. Sin
e one is working in the Eu
lidean metri
 there, the symbols
an not be
ome singular, so that there are no problems for spa
elike externalmomenta. However, as already mentioned in the introdu
tion, it is not 
learwhether there is any relation between the results for Eu
lidean and Minkowskimetri
.6 Summary and OutlookWe dis
ussed dispersion relations in the Yang{Feldman formalism at the one-loop level and 
omputed them in the non
ommutative �3 and Wess{Zuminomodel. It turned out that the distortions of the dispersion relation were moder-ate for parameters typi
ally expe
ted for the Higgs �eld. We also showed thatthe lo
al SUSY 
urrent is not 
onserved in the non
ommutative Wess-Zuminomodel.A short
oming of the present work is of 
ourse the la
k of a systemati
 treat-ment of renormalizability. In the 
ase of the non
ommutative Eu
lidean spa
e,it is usually argued that the IR-divergen
e indu
ed by the UV{IR mixing 
an atmost be of the same degree as the underlying UV{divergen
e, i.e., logarithmi
in the two 
ases studied here. Then the integration over a non{planar subgraphposes no problem. However, in the present situation of the non
ommutativeMinkowski spa
e we have the diÆ
ulties mentioned at the end of Se
tion 5. Tosolve these, an extension of the mathemati
al framework of os
illatory integralsis needed. A
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