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DESY 06-060ZMP-HH/06-07Dispersion relations in the nonommutative �3and Wess-Zumino model in the Yang-FeldmanformalismClaus D�osher and Johen ZahnII. Institut f�ur Theoretishe Physik, Universit�at HamburgLuruper Chaussee 149, 22761 Hamburg, Germanylaus.doesher, johen.zahn�desy.deOtober 13, 2007AbstratWe study dispersion relations in the nonommutative �3 and Wess{Zuminomodel in the Yang{Feldman formalism at one{loop order. Nonplanar graphslead to a distortion of the dispersion relation. We �nd that the strength of thise�et is moderate if the sale of nonommutativity is identi�ed with the Planksale and parameters typial for a Higgs �eld are employed. The ontribution ofthe nonplanar graphs is alulated rigorously using the framework of osillatoryintegrals.1 IntrodutionWe disuss dispersion relations for quantum �eld theories on the nonommu-tative Minkowski spae, whih is generated by oordinates q� subjet to theommutation relations [q�; q� ℄ = i��� :Here � is an antisymmetri matrix. Suh ommutation relations are motivatedfrom Gedanken experiments on limitations of the loalization of experiments [1℄.They are also obtained as a limit of open string theory in the presene of a on-stant bakground B{�eld [2℄. We emphasize that for the spae{time unertaintyrelations derived in [1℄ it is ruial that � is nondegenerate, in partiular �0i 6= 0,i.e., one has spae/time nonommutativity. Thus, we fous on this ase. Weremark that suh a � an not be obtained as a limit of string theory [3℄.There are several inequivalent approahes to quantum �eld theory on thenonommutative Minkowski spae (NCQFT). In the modi�ed Feynman rulesoriginally proposed in [4℄ for both the nonommutative Eulidean and the Min-kowski spae, one simply attahes a phase fator depending on the momenta,1
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the so{alled twisting, to eah vertex. In ases where the twistings do not an-el, one speaks of a non-planar diagram. Then an osillating phase remains inthe loop integral. It is part of the folklore of NCQFT that this makes the loopintegral onvergent. However, to the best of our knowledge, the preise mean-ing of these integrals has never been stated. They are not absolutely onvergentand are, with the exeption of the tadpole, no Fourier transformations. It isone of the goals of this paper to give a preise de�nition for suh integrals. Fur-thermore, to the best of our knowledge, all alulations in this approah weredone in the Eulidean setting. However, sine there is no Osterwalder{Shradertheorem for �eld theories on the nonommutative Minkowski spae, the relationbetween alulations in the Eulidean and the Lorentzian metri is obsure inthe ase of spae/time nonommutativity. In fat there are hints that if suh arelation exists at all, it must be quite ompliated [5, p.84f℄.If one aepts the formal nature of the loop alulations and the transition tothe Eulidean signature, the piture is as follows: If k is the outer momentum ofa nonplanar loop, one an argue heuristially that an original f(�){divergene,where � is the UV uto�, beomes regularized to f(��(k�)2��� 12 ). Thus, a UV{divergene beomes an IR{divergene. This is the so{alled UV{IR mixing �rstdisussed in [6℄. In the ase of spae/time nonommutativity this approah leadsto a violation of unitarity [7℄.The Hamiltonian approah [1, 8℄ leads to a unitary theory also in the ase ofspae/time nonommutativity. In some ases these theories are UV{�nite [9, 10℄.However, in the ase of spae/time nonommutativity, the interating �eld does,at tree level, not ful�ll the lassial equations of motion [5, 11℄. In the ase ofeletrodynamis, this leads to a violation of the Ward identity [12℄1.Another proposal is to onsider Eulidean self-dual theories in the senseof [13℄ by adding a on�ning potential. In this approah the renormalizability ofthe �4{model has been shown to all orders [14℄. However, there is no indiationthat these models are related to NCQFT on Minkowski spaetime.Thus, the most promising approah to NCQFT in the ase of spae/timenonommutativity is the Yang{Feldman approah [15℄. It an also be employedin situations where a Hamiltonian quantization is problemati. In partiular, itwas used in the ontext of nonloal �eld theories, see, e.g., [16, 17℄. In the ontextof NCQFT, it was �rst proposed in [18℄. Here the UV-IR mixing manifestsitself as a distortion of the dispersion relation in the infrared. In the ase ofthe �4{model, this e�et has been shown to be very strong [19℄. This is to beexpeted, sine the underlying UV{divergene is quadrati. Thus, it is naturalto ask wether the e�ets are weaker in theories that are only logarithmiallydivergent2. This is the aim of the present paper where we onsider the �3 andthe Wess{Zumino model at the one-loop level. It turns out that the e�et is1In [11℄, a di�erent time{ordering, with respet to light{one oordinates was proposed.While Feynman rules an be formulated quite elegantly in this setting, atual omputationsseem to be rather involved.2One has to bear in mind that it is not lear if the usual power ounting arguments anbe applied in the Yang{Feldman approah, in partiular in the presene of twisting fators.This will beome learer in Setion 3. 2



indeed quite weak if one uses the Plank sale as the sale of nonommutativityand uses parameters typial for a Higgs �eld. The ontributions of the nonplanargraphs, whih are made �nite by an osillating fator, are treated in a rigorousway by the use of the theory of osillatory integrals [20℄. To our knowledge thishas not been done before.A remark on the issue of Lorentz invariane is in order here. We will seethat the self{energy for an outer momentum k is of the form �(k2; (k�)2). Itis thus invariant under Lorentz transformations if � transforms as a tensor, ashas been proposed in [1℄. The group veloity, however, should be omputed for�xed �. Thus, the dispersion relation an be distorted even though the theory isinvariant under a boost of the referene frame3. In the same ontext, one shouldremark that we do not use the onept of twisted Poinar�e invariane [22℄ here.The nonommutative �3-model has already been treated in [6, 23℄ in theontext of the modi�ed Feynman rules, in [10℄ in a Hamiltonian setting, andin [24℄ in the Eulidean self{dual setting.The nonommutative Wess{Zumino model was �rst disussed in [25℄ forspae/spae nonommutativity in the setting of the modi�ed Feynman rules. Itwas shown that the UV{IR mixing is muh weaker as in the �4{theory, so thatthe the theory is renormalizable to all orders.The paper is organized as follows: In Setion 2 we disuss how to omputemomentum-dependent mass and �eld strength renormalization in the Yang{Feldman approah and to extrat the orresponding group veloity. In Setion 3we apply this mahinery to the nonommutative �3{model at seond order, i.e.,for one loop. In partiular, we ompute the distortion of the group veloity forparameters typial for a Higgs �eld. In Setion 4 we treat the nonommutativeWess{Zumino model, also at one{loop order. We show and disuss the fatthat the loal SUSY urrent is not onserved in the interating ase. We alsoompute the momentum dependent mass and �eld strength normalization andshow that the distortion of the group veloity is simply twie that of the �3{ase.The osillating integrals so far have only been alulated formally. A rigorousalulation in the sense of osillatory integrals is presented in Setion 5. It turnsout that the formal results are indeed orret. We onlude with a summaryand an outlook.2 Dispersion Relations in the Yang{Feldman for-malismWe want to disuss how to ompute (possibly momentum dependent) massand �eld strength renormalizations in the Yang-Feldman formalism. In thisformalism, the interating �eld is reursively de�ned as a formal power series inthe oupling onstant. As an example, we onsider a ommutative salar theory3See also the disussion in [21℄, in partiular the distintion between observer and partileLorentz transformations. 3



and a loalized mass term as interation, i.e., we have the equation of motion(�+m2)�(x) = � �m2g(x)�(x);where g is a test funtion. Making the ansatz� = 1Xn=0 �m2n�nfor the interating �eld, this leads to the equations(�+m2)�0 = 0;(�+m2)�n = �g�n�1; n � 1:Obviously, �0 is a free �eld. We identify it with the inoming �eld. Then thehigher order terms are given reursively by�n = �R � (g�n�1); n � 1;where � denotes the onvolution and �R the retarded propagator at mass m.We de�ne the observable�(f) = Z d4x f(x)�(x) = Z d4k f̂(�k)�̂(k); (1)where the hat denotes the Fourier transform. We are now interested in theWightman two{point funtion h�(f)�(h)i (2)of the interating �eld. The vauum state here is the vauum state for the free�eld �0, i.e., in order to ompute the above, one has to express � solely in termsof �0 and then determine the vauum expetation value. At zeroth order in �m2,we obtain the usual free two{point funtionh�0(f)�0(h)i = (2�)2 Z d4k f̂(�k)ĥ(k)�̂+(k): (3)At �rst order in �m2, we geth�1(f)�0(h)i+ h�0(f)�1(h)i =�(2�)2 Z 1Yi=0 d4ki f̂(�k0)ĥ(k1)ĝ(k0�k1)n�̂R(k0)�̂+(k1) + �̂+(k0)�̂A(k1)o :Here �A is the advaned propagator. It has been shown in [26℄ that, underquite general assumptions, in the adiabati limit g ! 1, i.e., ĝ ! (2�)2Æ, thisbeomes � 2� Z d4k f̂(�k)ĥ(k)�(k0)Æ0(k2 �m2): (4)4



Obviously, this an be interpreted as the �rst order term in an expansion of�+(m2 + �m2; �) around m2.When onsidering nonommutative �eld theories, the following hanges haveto be made: Fields and test funtions are now funtions of the nonommutingoordinates q�, so that produts are given byf(q)h(q) = (2�)�4 Z d4kd4l f̂(k)ĥ(l)e�ikqe�ilq= Z d4k e�ikq Z d4l f̂(k � l)ĥ(l)e i2k�l: (5)Here f̂ denotes the Fourier transform of the Weyl symbol of f(q). Alternatively,one ould use funtions of x and the Weyl{Moyal ?{produt. The integral (trae)is de�ned as usual as Z d4q f(q) = (2�)2f̂(0):Then, analogously to (1), we have�(f) = Z d4q f(q)�(q) = Z d4k f̂(�k)�̂(k):The Yang{Feldman series an be set up exatly as before, i.e., �0 is the free�eld and for n � 1, we have4�n(q) = Z d4x �R(x)g(q � x)�n�1(q � x)= (2�)�2 Z d4k �̂R(k)e�ikq Z d4l ĝ(k � l)�̂n�1(l)e i2k�l:It was shown in [26℄ that also in this ase one obtains (4) as the �rst orderontribution to the two{point funtion in the adiabati limit ĝ(k)! (2�)2Æ(k).2.1 InterationsNow we onsider truly interating models. For simpliity we start with a salar�eld theory on the ordinary Minkowski spae. The oupling onstant is denotedby �. When omputing the two{point funtion (2), one �nds again (3) as thezeroth order ontribution. In the models disussed in this paper, there is noO(�) ontribution. At seond order, one �nds the three termsh�2(f)�0(h)i+ h�0(f)�2(h)i+ h�1(f)�1(h)i: (6)As we will see later, the third term is a ontribution to the ontinuous spetrumand thus not interesting at the moment. In order to treat the �rst two terms,we notie that in the models disussed here, �2 is formally of the form�2 = (2�)�2�R � (g(��� (g�0))) + n.o.; (7)4Here the infrared uto� was implemented by multiplying the \interation term" �m2�(q)in the equation of motion with a \test funtion" g(q) from the left. One an also use moresymmetri produts, for details see [26℄. 5



where n.o. stands for a term that is normal ordered and whose spetrum hasno overlap with the positive or negative mass shell if the support of ĝ is hosensmall enough. Thus, this term drops out in the �rst two terms in (6). The �in the �rst term will in general be divergent and has to be renormalized, whihwe assume in the following. Then the �rst term in (7) is quite similar to �1 inthe ase of a mass term as interation. It is thus not very surprising that, usingthe same tehniques as in [26℄, one an show (for details see [40, 39℄) that in theadiabati limit g ! 1, one obtains� (2�)2 Z d4k f̂(�k)ĥ(k)�(k) ��m2 �̂+(k); (8)for the �rst two terms in (6) under the ondition that �(k) = �(�k) in aneighborhood of the mass shell. Here � is the Fourier transform of �� and anbe identi�ed with the self{energy. In the ommutative ase, �(k) is only afuntion of k2, and (8) orresponds to a mass and �eld strength renormalizationÆm2 = ��2�(m2);ÆZ = ��2 ��k2�(m2):In the nonommutative ase, a rigorous adiabati limit is not possible be-ause of UV-IR mixing e�ets (for details, see [40, 39℄). We thus take a prag-mati point of view and work formally, i.e., without infrared uto�. In analogyto (7), we write �2 in the form�̂2(k) = (2�)2�̂R(k)�(k)�̂0(k) + n.o.and take this as an impliit de�nition of � (again, we assume � to be renor-malized). If then �(k) = �(�k) in a neighborhood of the mass shell, we use(8) as the sum of the �rst two terms in (6). Now �(k) is in general not only afuntion of k2, but also of (k�)2. Thus, we obtain momentum-dependent massand �eld strength renormalizations:Æm2((k�)2) = ��2�(m2; (k�)2); (9)ÆZ((k�)2) = ��2 ��k2�(k2; (k�)2)jk2=m2 : (10)Remark 2.1. Although the naming might suggest that these terms should besubtrated, we do not do so, sine they are neither loal, nor, in general, diver-gent. We remark, however, that suh a subtration has been proposed in [27℄.2.2 The group veloityThe sum of the zeroth order term (3) and the seond order ontribution (8) anbe interpreted as the expansion (in �) of2� Z d4k f̂(�k)ĥ(k)�(k0)Æ(k2 �m2 + �2�(k2; (k�)2)) +O(�4): (11)This an be interpreted as a hange of the dispersion relation.6



Remark 2.2. This modi�ation of the dispersion relation is a manifestation ofthe breaking of partile Lorentz invariane, f. the disussion in the introdu-tion. However, partile Lorentz invariane of the asymptoti �elds is a ruialingredient of sattering theory and the LSZ relations, whih are part of thefoundations of quantum �eld theory. In this sense, the oneptual basis of thepresent approah is rather shaky. In the following, we will take a phenomenolog-ial standpoint and ompute the distortion of the dispersion relation for di�erentmodels in order to hek if they are realisti.We now disuss how to extrat the group veloity in the above setting.From (11), and allowing for a �nite loal mass and �eld strength renormalization,we get the dispersion relationF (k) = k2 �m2 + �2 ��(k2; (k�)2)� �+ �k2�+O(�4) = 0: (12)For a given spatial momentum k we want to ompute the orresponding k0 thatsolves (12) as a formal power series in �. We �ndk0 = !k � �2 12!k ��(m2; (k+�)2)� �+ �m2�+O(�4): (13)Note that in !k = qjkj2 +m2 and k+ = (!k;k) the bare mass m enters. Thegroup veloity is then given byrk0 = k!k + �2 k2!3k ��(m2; (k+�)2)� �+ �m2�� �2 12!kr(k+�)2 ��(k�)2�(m2; (k+�)2) +O(�4):By omparison with (13), we getrk0 = kk0 � �2r(k+�)22k0 ��(k�)2�(m2; (k+�)2) +O(�4):In order to make things more onrete, we hoose a partiular �, namely,� = �0 = �2n�0 �11 0 � : (14)Then we have (k�0)2 = ��4n �k2 + 2 jk?j2� (15)with k? = (k1; 0; k3). We also de�ne kjj = (0; k2; 0). Thus, in the ase � = �0,we �ndrk0 = kjjk0 + k?k0 �1 + 2�2�4n ��(k�)2�(m2; (k+�0)2)�+O(�4): (16)7



Remark 2.3. This treatment di�ers slightly from the one given in [19℄. There, �is not Taylor expanded in �. Then the argument of � in (16) is not restrited tothe mass m shell. It follows that by tuning � and � one an make the deviationarbitrarily small, whih is not possible here.Remark 2.4. The modi�ation of the dispersion relation an be interpretedas an e�et of the momentum{dependent mass renormalization (9), sine �2�in (16) an be replaed by �Æm2. The momentum{dependent �eld strengthrenormalization (10), on the other hand, multiplies, in momentum spae, thefree propagators, in partiular the retarded propagator. In position spae, thisan be interpreted as a smearing of the soure, and thus as a non{loal e�et.In [39℄, this is explained in more detail, and the e�et is omputed for the aseof nonommutative supersymmetri eletrodynamis. In partiular, it is shownthat, surprisingly, the range of this nonloality is independent from the sale ofnonommutativity.3 The �3{modelWe now apply the above tools to the nonommutative �3{model and omputethe momentum{dependent mass and �eld strength renormalization and the dis-tortion of the group veloity at seond order. We start from the equation ofmotion (�+m2)� = ��2:The Yang{Feldman ansatz � =Pn �n�n, and the identi�ation of �0 with theinoming �eld then leads to�1 = �R � (�0�0);�2 = �R � (�1�0 + �0�1):We substrat the tadpole from the start, i.e., we use normal ordering and rede-�ne �1 = �R � ( :�0�0:):Now we want to ompute the two{point funtion of the interating �eld. Atzeroth order, we �nd the usual result (3). At �rst order, there is no ontribution.At seond order, there are the three terms (6). We �rst fous on the sum of the�rst two terms. As disussed in the previous setion, we treat it by omputingthe self{energy �(k). Performing the ontrations in �2, we obtain�̂2(k) =(2�)2�̂R(k)�̂0(k)� Z d4l �̂R(k � l)n�̂+(�l) �1 + e�ik�l�+ �̂+(l) �1 + eik�l�o+ n.o.Thus, � is given by�(k) = Z d4l �̂R(k � l)n�̂+(�l) �1 + e�ik�l�+ �̂+(l) �1 + eik�l�o :8



This an be split into a planar part not involving the phase fators and a nonpla-nar part. The planar part is preisely half of the self{energy of the ommutative�3 model.For the following onsideration, it is important that we are only interested in�(k) in a small neighborhood of the mass shell. But also the loop momentuml is on�ned to the mass shell, so if (m � �)2 < k2 < (m + �)2, then either(k � l)2 < �2 or (k � l)2 > (2m� �)2. Thus, the singularity of �̂R(k � l) is notmet and the i�{presription does not matter: One may simply write�̂R(k � l) = (2�)�2 �1(k � l)2 �m2 = (2�)�2 �1k2 � 2k � l :We begin by disussing the planar part�pl(k) = Z d4l �̂R(k � l)n�̂+(�l) + �̂+(l)o : (17)As usual, this expression is not well{de�ned. Beause of the preeding remark,it is straightforward to show that at least formally �pl(k) = �pl(�k) in a neigh-borhood of the mass shell. It has been shown in [18℄ that�R � (�+ +��) = �2F ��2�holds. Here �2� is well{de�ned, while �2F has the usual logarithmi divergene.Alternatively, one may argue with the following formal alulation: Beause ofLorentz invariane, we may hoose k = (k0;0). Then�pl(k) =� (2�)�3 Z d3l2!l � 1k20 � 2k0!l + 1k20 + 2k0!l�=� 2(2�)�2 Z 10 dl l2!l(k20 � 4!2l ) ; (18)whih diverges logarithmially. We note that it is neessary to onsider thesum of the two terms in (17). The individual terms are linearly divergent.It is a priori not lear if the same anellation takes plae in the presene ofthe twisting fators, i.e., in the nonplanar part. Hene, the validity of powerounting arguments for nonommutative �eld theories in the Yang{Feldmanformalism is doubtful.Finally, we remark that the �eld strength renormalization is �nite. Using(10), one omputes ÆZ = (2�)�2 3� 2�p312m2 : (19)3.1 The nonplanar partWe now want to disuss the nonplanar part of �(k), i.e.,�np(k) = Z d4l �̂+(l)eik�l ��̂R(k � l) + �̂R(k + l)� ; (20)9



for k in a neighborhood of the mass shell. In partiular, we want to show thatit is �nite and that �np(k) = �np(�k) there. Note that the above integral isneither absolutely onvergent nor a Fourier transformation (sine k does notonly appear in the phase fator). In the following, we ompute this integral ina formal way. In Setion 5 we show that (20) an be de�ned as an osillatoryintegral and that a alulation in this framework gives the same result as ourformal alulation.First of all we note that if �np(k) is well de�ned, then it is invariant underthe Lorentz transformationk ! k�; � ! ��1��T�1:Thus, instead of omputing the above at k; � we may ompute it at k0 = k�; �0 =��1��T�1. Sine at the one-loop level we are only interested in �np(k) ina neighborhood of the mass shell, we may hoose k0 = (pk2;0). Sine �0is antisymmetri, k0�0 has vanishing time omponent. We denote its spatialomponent by k0�0. Then we have�np(k) =� (2�)�3 Z d3l2!l  e�ik0�0�lk2 � 2pk2!l + e�ik0�0�lk2 + 2pk2!l!=� 2(2�)�3 Z d3l2!l 1k2 � 4!2l os(k0�0 � l)=� 2(2�)�2 Z 10 dl l2!l(k2 � 4!2l ) sin lp�(k�)2lp�(k�)2 : (21)In the �rst step we used the the symmetry properties of the integrand. In thenext step we used (k�)2 = (k0�0)2 = � j(k0�0)j2. Obviously, the integral is �niteand only a funtion of k2 and (k�)2. Furthermore, �np(k) = �np(�k).In order to estimate the strength of the distortion of the dispersion relation,we alulate Æm2((k�)2) and ÆZ((k�)2) numerially. We use the parameters� = �0 (f. (14)), m = 10�17��1n and � = m. If �n is identi�ed with thePlank length, this orresponds to a mass of about 100GeV, i.e., the estimatedorder of magnitude of the Higgs mass. The hosen value of � is slightly above theexpetation for the ubi term in the Higgs potential (� 0:6m). Figure 1 showsthe relative mass orretion m�2Æm2((k�)2) as a funtion of the perpendiularmomentum k?, obtained with the numerial integration method of mathemat-ia (for the de�nition of k?, see Setion 2.2). We see that the relative mass shiftis of order 1 for small perpendiular momenta. This might look like a stronge�et. However, we have the freedom to apply a �nite mass renormalization inorder to restore the rest mass. The important question is rather how strong themomentum dependene of the mass renormalization is. As an be estimatedfrom Figure 1, it is at the %-level for perpendiular momenta of the order ofthe mass. As a onsequene, also the distortion of the group veloity is of thisorder, as we will show below.The plot for ÆZ((k�)2) for the same parameters is not very interesting, sineÆZ is onstant, �1:32477 � 10�3, within mahine preision. This oinides with10
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Figure 1: The relative mass orretion m�2Æm2((k�)2) as a funtion of theperpendiular momentum k?.the planar ontribution (19). The reason for this is easily understood: If onedi�erentiates the integrand in (21) with respet to k2, one obtains a funtionthat, even without the fator sin lp�(k�)2lp�(k�)2 ;is integrable. Without this fator, it would oinide with the orrespondingplanar expression obtained by di�erentiating (18). But the above fator deviatesfrom 1 appreiably only for l � (�(k�)2)� 12 , i.e., for very high energies, wherethe rest of the integrand is negligible.Aording to equation (16), the deviation of the group veloity from thephase veloity in the perpendiular diretion is, to lowest order in �, givenby 2�2�4n ��(k�)2�np. Figure 2 shows this quantity for the same parameters asabove. The deviation is biggest for small perpendiular momenta and at the%-level.We see that in the �3 model the distortion of the dispersion relation ismoderate for realisti masses and ouplings. This is in sharp ontrast to thesituation in the �4 model, where realisti dispersion relations ould only beobtained for masses lose to the nonommutativity sale [5℄.3.2 The 2{partile spetrumWe now disuss the third term in (6). We obtain(2�)4 Z d4kf̂(�k)ĥ(k)�̂R(k)�̂A(k) ((�+ ��+)̂(k) + (�+ ?2� �+)̂(k)) :11
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Figure 2: The distortion of the group veloity in perpendiular diretion as afuntion of the perpendiular momentum k?.Here ?2� is the ?-produt at 2�, i.e., the produt orresponding to the twistingfator eik�l. Like �+ ��+, �+ ?2� �+ is a well{de�ned distribution, as an beseen in momentum spae. It has its support above the 2m mass shell, thus thisterm orresponds to the multi{partile spetrum. Using Lorentz invariane asabove, one an ompute(�+ ?2� �+ )̂(k) = �(k2 � 4m2)(2�)�3 sin�p�(k�)2q 14k2 �m2�2pk2p�(k�)2 :In the limit (k�)2 ! 0, this gives bak the ommutative result. Note thatdeviations from the ommutative ase beome appreiable for �(k�)2 � k�2,i.e. ifpk2 or the transversal momentum k? is of the order �2npk2 . This is obviouslyno threat to phenomenology.4 The Wess{Zumino modelIn this setion we onsider the Wess{Zumino model on the nonommutativeMinkowski spae. We use the standard supersymmetri nonommutative Min-kowski spae, in whih the (anti-) ommutators involving the fermioni variables�; �� are unhanged [28℄. In order to arrive at the equations of motion for theomponent �elds, we start from the Lagrangean in super�eld form, taking par-tiular are for the order of the �elds in the di�erent terms5.5This is important, sine for example the tadpole orresponding to the interation term������ does not have a twisting fator, in ontrast to the interation term ������, as hasalready been noted in [29℄. 12



In super�eld form the Wess{Zumino model is given by the following La-grangean6: L = ���j�2��2 +��m2 �� + �3���� j�2 + h..� :Here � is the hiral super�eld� = �+p2��+ �2F � i��������+ ip2�2������� � 14�2��2��;where � and F are omplex salar �elds and � is a Weyl spinor. In omponent�elds the ation is then, up to surfae terms,S = Z d4q �� i�� ������� ����+ F �F+ ��m ��F � 12���+ � (��F � ���)�+ h..	�:This leads to the equations of motionF +m�� + ����� = 0���+mF � + �(��F � + F ���)� ����� = 0i�������m��� �(�� ��+ ����) = 0:We eliminate F using its equation of motion. Furthermore, we introdue theMajorana spinor  = 1p2 ����� _�� ; � =  y0 = 1p2(��; �� _�)and the projetors P� = 1� i52 :Using 2 � P+ = �� we get(�+m2)� = �2� � P� �m�(�� + ���+ ���)� �2(����+ ����)(i=� �m) = �P+(� +  �) + �P�(�� +  ��):4.1 The SUSY urrentWe �rst want to disuss the hanges that nonommutativity brings in at thelassial level. The equations of motion are the same, we only have to replae theusual produt by the nonommutative one. But there are some hanges for theurrents. It is an interesting feature of nonommutative interating theories that6In the following, we use the onventions of [30℄, exept for the metri, whih we hooseto have signature (+���). Aordingly, we also hanged the sign of �0, and thus also of 0and 5. 13



the loal7 urrents assoiated to symmetries are in general not onserved [31,32℄. Examples are the energy{momentum tensor in the �4-model [33℄ and ineletrodynamis [36℄. Here we show that the loal urrent assoiated to thesupersymmetry transformation is not onserved in the interating ase, i.e., for� 6= 0. We disuss this in terms of the super�eld �. The equation of motion is�14 �D2 �� +m�+ ��� = 0:The loal superurrent is given byV� _� = 12[D��; �D _� ��℄ + if=�� _��; ��g � if�; =�� _� ��g:Here we used a symmetrized version of the usual urrent, sine this is usuallyadvantageous in the nonommutative ase. By standard methods (see, e.g., [38℄)one an show that �D _�V� _� = 12fD��; �D2 ��g � 14f�; D� �D2 ��gholds. Using the equation of motion, we get�D _�V� _� = 2 fD��; (m� + ���)g � f�; D� (m�+ ���)g= mD��2 + �[[D��;�℄;�℄:The �rst term is already present in the ommutative ase. It does not a�etthe harge orresponding to the supersymmetry transformation, but simply ex-presses the fat that the theory is not onformal. The seond term, however,is a genuinely nonommutative one. It also a�ets the SUSY harge. Sine itis given by a ommutator, the non{onservation of the harge is relevant onlyat the nonommutativity sale8. Like the non-onservation of the loal energy{momentum tensor, this e�et does not show up in a perturbative treatment ofthe orresponding quantum theory, at least not at seond order.4.2 The self energyNow we ompute the self energy at the one-loop level. Using the equations ofmotion, the �rst terms in the Yang-Feldman series are�1 = ��R � �2 � 0P� 0 +m(��0�0 + �0��0 + �0�0)� ; (22) 1 = SR � (P+(�0 0 +  0�0) + P�(��0 0 +  0��0)) ; (23)7By loal we mean expressions that are polynomials of (derivatives) of �elds, where theprodut is the appropriate algebra produt, i.e., (5) in the present ase. Using di�erentproduts (nonloal in our sense), it is possible to onstrut onserved urrents, see, e.g.,[34, 35℄.8Suh an e�et is to be expeted by heuristi onsiderations [37℄: Charge onservationrequires that the prodution of a partile with positive harge is always aompanied bythe prodution of a partile with opposite harge at the same plae. But beause of thenonommutativity, it is not possible to loalize two partiles at the same plae, see, e.g., thedisussion in [9℄. 14



and the analogous formulas for the onjugate �elds. The seond order ompo-nent of � is�2 = ��R�n2 � 1P� 0 + 2 � 0P� 1 (24)+m(��1�0 + ��0�1 + �1��0 + �0��1 + �1�0 + �0�1) (25)+ (�0�0��0 + ��0�0�0)o (26)Inserting (22) and (23) in (24) and (25) and ontrating the free �elds, one anwrite �2 in the form�̂2(k) = (2�)2�̂R(k)��(k)�̂0(k) + �0(k)�̂�0(k)�+ n.o.;f. (7).For the omputation of the graphs involving fermions, we need the formulae9ŜR(k) = (�=k �m)�̂R(k);�̂SR(k) = (=k �m)�̂R(k);h �̂ �(k) ̂�(p)i =12(2�)2Æ(k + p)(�=k +m)���̂+(k):The �4 tadpole is obtained from the term (26) of �2. We �nd the quadrati-ally divergent ontribution��4�tp(k) = �2(2�)�2�2 Z d4l �̂+(l) �1 + eik�l� :The �3 tadpole is obtained from the term (25) by ontrating the �0s in �1or ��1 among themselves. Due to the retarded propagator with zero mo-mentum onneting the loop with the line, the mass appearing in theinteration term anels and we get��3�tp(k) = 8(2�)�2�2 Z d4l �̂+(l):Note that no twisting fator appears.The �3 �sh graph is obtained from the term (25) by ontrating a �0 in �1or ��1 with the outer ��0(f). We get��3��sh(k) = 3m2�2 Z d4l �̂+(l) �1 + eik�l� ��̂R(k � l) + �̂R(k + l)� :The Yukawa tadpole is obtained from (25) by ontrating the fermions in�1 or ��1. Sine the trae of a single -matrix vanishes we only get asupplementary fator 4m and thus�Yuk(k) = �8(2�)�2�2 Z d4l �̂+(l):9The fator 1=2 in the last line is due to the Majorana nature of the fermions.15



The fermion �sh graph is obtained from the term (24). The relevant partof �2, i.e., the part involving �0, is�̂2(k) = �4�̂R(k) Z d4ld4l0 os l�l02� n �̂ 0(k � l)P�ŜR(l)P+ ̂0(l � l0)�̂0(l0)e� i2k�l+ �̂ 0(l � l0)P+ �̂SR(l)P� ̂0(k � l)�̂0(l0)e� i2 l�ko :Contration of the fermion �elds now yields� 2(2�)2�̂R(k)�̂0(k) Z d4l os l�k2� ntr �P�(�=l �m)P+(=k � =l �m)� �̂R(l)�̂+(k � l)e� i2 k�l+tr �P+(=l �m)P�(�=k + =l �m)� �̂R(l)�̂+(�k + l)e� i2 l�ko=� 2(2�)2�̂R(k)�̂0(k) Z d4l os l�k2� ntr �P�(=l � =k �m)P+(=l �m)� �̂R(k � l)�̂+(l)e� i2 l�k+tr �P+(=k + =l �m)P�(=l �m)� �̂R(k + l)�̂+(l)e� i2 l�ko :With the usual  matrix algebra, we get� ��sh(k) = 2�2 Z d4l �̂+(l) �1 + eik�l�� �(k � l) � l�̂R(k � l)� (k + l) � l�̂R(k + l)� :Now we ollet all our terms. The Yukawa tadpole and the �3 tadpole anel(this has to be so in order to have a vanishing VEV of �1). Using(l2 �m2)�̂+(l) = 0; (l2 �m2)�̂A(l) = �(2�)�2;the ombination of the other terms gives�(k) = �2 �k2 +m2� Z d4l �̂+(l) �1 + eik�l� ��̂R(k � l) + �̂R(k + l)� :Apart from the prefator (k2 +m2), this is exatly the expression we alreadyfound for the �3-model. We remark that for the self{energy of the fermion, oneobtains the same result.The prefator is to be expeted: Assuming that the non-renormalizationtheorem still holds, we know that only the ���j�2 ��2-term gets renormalized.From the free equations of motion(1 + ÆZ)F �m�� = 0; (1 + ÆZ)��+mF � = 016



we get, at �rst order in ÆZ,(�+m2)� = �ÆZ(��m2)�:Note that in our terminology, this orresponds to both a �eld strength and amass renormalization. Expliitly, we have, after subtrating the planar part,Æm2(s) =� 2m2�np(m2; s); (27)ÆZ(s) =� �np(m2; s)� 2m2 ��k2�np(m2; s): (28)Here we used the �np from the previous setion, f. equation (21). From (27)we onlude that for � = �0;m = 10�17��1n ; � = 1 the distortion of the groupveloity is twie as strong as in the �3{model. Identifying � with the Higgs�eld, an e�et of this magnitude might be measurable at the next generation ofpartile olliders.As was already disussed in the previous setion, the seond term in (28)is e�etively onstant for realisti momenta. The �rst term has already beenplotted in Fig. 1, apart from the sign. As disussed in Remark 2.4, a momentum{dependent �eld strength renormalization leads to a nonloal smearing. In orderto estimate its strength, one has to ompute the Fourier transform of �np.In [39℄, suh a alulation is performed in the setting of nonommutative super-symmetri eletrodynamis.Note that the mass and �eld strength renormalizations for the fermion om-ponent are exatly the same.5 Calulation in the sense of osillatory inte-gralsThe aim of this setion is to show that (20) is well{de�ned in the sense ofosillatory integrals, and that a alulation is this sense yields the same resultas the formal alulation done in Setion 3.1. We use the theory of osillatoryintegrals as given in [20℄. We �rst state the main de�nitions and results.Let 
 be an open set in Rs .De�nition 5.1. A phase funtion on 
� Rt is a ontinuous funtion � : 
�Rt ! R with1. 8� � 0; (k; l) 2 
� Rt : �(k; �l) = ��(k; l),2. � is C1 on 
� (Rtnf0g),3. (rk�;rl�) 6= (0; 0) on 
� (Rtnf0g).De�nition 5.2. A C1 funtion a : 
�Rt ! C is alled symbol of order r 2 Ron 
� Rt if 8K � 
 ompat and for all multiindies �; � the seminormskakK;�;� = supk2K;l2Rt(1 + jlj)j�j�rjD�kD�l a(k; l)j17



are �nite. The set of all suh symbols with topology given by the seminormswill be denoted by Sym(
; t; r).A funtion a : 
� Rt ! C is alled asymptoti symbol, if it an be writtenas a = a1 + a2 with a1 2 Sym(
; t; r) and a2 having ompat support in l andthe map k ! a2(k; �) is C1 as a map from 
 to L1(Rt ).If r < r0 then Sym(
; t; r) � Sym(
; t; r0) and the C1 funtions of ompatsupport are dense in Sym(
; t; r) in the topology of Sym(
; t; r0).For a1 2 Sym(
; t; r1) and a2 2 Sym(
; t; r2) the produt a1 � a2 is inSym(
; t; r1 + r2) and similar for asymptoti symbols.Now we want to give a natural extension to expressions like R dtl a(k; l)ei�(k;l)if the integral is not absolutely onvergent:Theorem 5.3. Let � be a phase funtion. We an assoiate with � a linear mapfrom the asymptoti symbols to D0(
) denoted by T�(a) and uniquely determinedby:1. If a has ompat support in l then T�(a)(k) = R dtl a(k; l)ei�(k;l) and is aC1 funtion of k.2. The restrition of T� to Sym(
; t; r) is a ontinuous funtion from Sym(
; t; r)to D0(
).Furthermore, one an show that the singular support of T�(a) is ontainedin the set fkj9l 2 Rtnf0g with rl�(k; l) = 0g: (29)Remark 5.4. It is easy to see that the notion of asymptoti symbols an begeneralized further. The funtion a ould be split even further into a = a1 +a2 + a3 + : : :. For the additional terms, k ! ai(k; �) should again be a C1map, having ompat support in l, into some suitable spae of funtions ordistributions. Example for suh spaes would be L1(Rt ), whih was alreadyused for the asymptoti symbols, or the elements of E 0(Rt ) whih are C1 aroundl = 0.10 The important point is that the integrals R dsk f(k)ai(k; l)ei�(k;l)should eah be well de�ned for f 2 D(
), one of these in the sense of osillatoryintegrals, and their sum independent of the splitting. So one ould even allowfor some k ! ai(k; �) to be distributions instead of C1 maps. This ould, ofourse, inrease the singular support beyond (29).In our onrete ase (20), we hoose 
 to be an open neighbourhood ofthe mass shell m suh that for k 2 
 we have (k � l+)2 6= m2. For example
 = fkjm2 < pk2 < 3m2 g. Furthermore, we have t = 3, � = �k����(jlj ; l)� anda(k; l) = 1(2�)3 12!l � �1(k � l+)2 �m2 + �1(k + l+)2 �m2� e�i(k�)0(pl2+m2�jlj):10As the phase funtion does not have to be smooth in l = 0, ai(k:�) should, e.g., not ontainderivatives of the Æ funtion at that point. 18



a is an asymptoti symbol11 on 
� R3 of order -3.From Theorem 5.3 we an see that the osillatory integral is a well de�neddistribution but do not know what it looks like. When trying to transformthe integral, diÆulties arise from the fat that the usual tehniques of variabletransformations are in general not allowed. Also the methods used in [20℄ forthe proof of Theorem 5.3 are not really suitable to make exat or numerialalulations. Programs for numerial integration an only takle absolutelyonvergent or osillating improper Riemann12 integrals. At the end we are goingto redue the osillatory integral enountered here to an absolutely onvergentintegral.First, the strategy will be to onstrut an asymptoti symbol with ompatsupport in l whih approahes a in the topology of symbols13 of some higherorder, say, -2. The ontinuity of T� ensures that the result is independent fromthe way a is approahed.What we already an dedue is that T�(a)(k) is a C1-funtion of k sinerl�(k; l) is only zero for k���� lightlike and this an never happen on 
.For k 2 
 let �k be the unique pure boost whih takes the vetor k to�kk = (pk2;0). It is easy to see that �k is a C1 funtion of k.Let g 2 D(R) have the propertyg(x) = (1 if jxj � 1;0 if jxj � 2:De�ne Gn(k; l) := g �(�kl+=n)2� ;where �k is only the vetor part of the transformation, i.e., a 3� 4 matrix andthe square is the Eulidean square of a 3-vetor. Gn is a C1-funtion of k andl and for given k; n it has ompat support in l and 8n lies in Sym(
; 3; 0).Lemma 5.5. Gn ! 1 in Sym(
; 3; 1) for n!1.Proof. We have to show that 8K � 
 ompat and 8�; �supk2K;l(1 + jlj)j�j�1 ���D�kD�l �g �(�kl+=n)2�� 1���� ����!n!1 0: (30)It is easy to see that 8� kD�k�kksup =: �kis a ontinuous funtion of k on 
 and that one an �nd positive onstants d�suh that 8� D�l l+Eulid � d�(1 + jlj)1�j�j:11It is only asymptoti, sine jlj is not di�erentiable at l = 0, and one has to use pl2 +m2�jlj � C(1 + jlj)�1, f. [20℄.12An osillating improper Riemann integral is, e.g., lima!1 R a0 dx 1=x sinx.13We are a little bit sloppy here. To be preise, we would have to write a = a1 + a2 likeabove, using a C1 uto� funtion around l = 0, and only approximate a1 by symbols ofompat support. It is easy to see that this gives the same result.19



With these one an onstrut C�;�k , whih are positive ontinuous funtions ofk, suh that ���D�kD�l (�kl+)2��� � C�;�k (1 + jlj)2�j�j: (31)First we show (30) for j�j = j�j = 0: ��g �(�kl+=n)2�� 1�� is only unequal tozero if (�kl+n )2 � 1. With C0;0K := supk2K C0;0k we then get1 + jlj � n 1qC0;0Kand with thissupk2K;l2Rt(1 + jlj)�1 ��g �(�kl+=n)2�� 1�� � supx2R jg(x)� 1jqC0;0K 1n ����!n!1 0:Now let � or � be unequal to zero: With (31) one an easily see that���D�kD�l g �(�kl+=n)2���� � j�j+j�jX=1 ��(�g) �(�kl+=n)2��� 1n2 ~Ck (1 + jlj)2�j�j;where ~Ck are again positive ontinuous funtions of k (and are also dependingon � and �). For eah  the funtion �g(x) is only unequal to 0 if jxj < 2. Itis not hard to prove that one an estimate(�kl+)2 � ak � (1 + jlj)2 � bk;where ak and bk are again positive ontinuous funtions of k. If the argumentof g is smaller than 2 it follows1 + jljn �s2 + bkn2ak :Now we an deduesupk2K;l2Rt(1 + jlj)j�j�1 ���D�kD�l �g �(�kl+=n)2�� 1����� supk2K;l2Rt j�+j�jjX=1 ���g �(�kl+=n)2��� ~Ck (1 + jlj)2�1n2� j�j+j�jX=1 supx2R j�g(x)j ~CK  2 + bKn2aK !� 12 1n ����!n!1 0;with aK = supk2K ak. This ompletes the proof.20



With the above result it follows that Gn � a has ompat support in l forgiven k and approahes a in the topology of Sym(
; 3;�2). Calulating theintegral (20), with f 2 D(
), we get1(2�)3 Z d4k d3l2!l f(k)g �(�kl+=n)2�� �1(k � l+)2 �m2 + �1(k + l+)2 �m2� e�ik�l+ :(32)This integral is absolutely onvergent, so the usual tehniques for manipulatingintegrals are allowed. We perform a k-dependent nonlinear transformation on l:l0 = �kl+. The integration measure does not hange and, of ourse, l+ = ��1k l0+.The prime will be dropped again and we get:1(2�)3 Z d4kf(k) Z d3l2!l � �1(k � ��1k l+)2 �m2 + �1(k +��1k l+)2 �m2�� g �(l=n)2� e�ik���1k l+ : (33)It holds (k � ��1k l+)2 = (��1k ((pk2;0)� l+))2 = k2 +m2 � 2!lpk2:Thus, the sum of the two frations in (33) is �2k2�4!2l . De�ne �0 = ��1k T���1k .�0 is again antisymmetri, so (pk2;0)��0�� has vanishing time omponent. Let(pk2;0)�0 be its spatial part. Its length isr��(pk2;0)�0�2 =p�(k�)2:The expression in the exponent in (33) now beomesk���1k l+ = (pk2;0)�0l+ = �(pk2;0)�0 � l:We use spherial oordinates for l where the z�axis is along (pk2;0)�0. Theexponent equalsp�(k�)2l os(�), and after performing the � and � integrationwe get (dropping the k-integration)�2(2�)�2 Z 10 dl g �(l=n)2� l2!l(k2 � 4!2l ) sin(lp�(k�)2)lp�(k�)2 :For n!1 this gives the value of T�(a)(k), whih is the absolutely onvergentintegral �2(2�)�2 Z 10 dl l2!l(k2 � 4!2l ) sin(lp�(k�)2)lp�(k�)2 ;whih is the same result as (21).We emphasize again that in order to alulate the dispersion relation at theone-loop level, it is suÆient to know�np(k) = Z d4l �̂+(l)eik�l ��̂R(k � l) + �̂R(k + l)� ; (opy of 20)21



for k in the viinity of the mass shell. However, when it omes to treat higherorders, the �sh-graphs, whih give the ontributions (20), may appear as sub-graphs and have to be integrated over arbitrary k. Then the problem appearsthat �̂R(k�l+) an beome singular, so that (20) is no osillatory integral in thestandard sense. Let us examine this more losely: For k2 > 4m2, the singularsupport of l! �̂R(k� l+) is ompat and does not ontain the origin. We maythen proeed as indiated in Remark 5.4. Let k0 > 0. Then only �̂R(k � l+)an beome singular and at the singularity we have k0 � !l > 0. Thus, we maysimply add �i� to the denominator of the �rst fration in (32). Of ourse onethen has to assume that f has ompat support in fk 2 R4 jk2 > 4m2; k0 > 0g.One an then proeed as above and obtains (21), but with (k2 � 4!2l � i�) inthe denominator. Using 1x�i� = P 1x � i�Æ(x), this an be split into real andimaginary part. The imaginary part resembles the usual imaginary parts forforward/bakward sattering.For spaelike k, the singular support of l ! �̂R(k � l+) is not ompat.Consider, e.g., k = (0; 0; 0; kz). Then �̂R(k � l+) is singular on the hyperplanel3 = 2kz. Thus, it is not possible to use the framework indiated in Remark 5.4.One has to extend the framework further in order to aommodate for symbolswhose singularities are not ompatly supported. There are two natural Ans�atzefor suh an extension:1. The distributions a ould be approximated by a sequene of symbols(an)n2N. For eah an the osillatory integral is well de�ned. The osilla-tory integral for a an then be ahieved if one alulates the limit n!1after integrating, if this is well de�ned and to a large extent independentof the hoie of the sequene.2. One ould see the relationZ dskdtl f(k)a(k; l)ei�(k;l) = limn!1 Z dskdtl f(k)gn(l)a(k; l)ei�(k;l) (34)for a sequene gn of symbols with ompat support and approahing 1,as a de�nition. The right hand side of (34), with �nite n, is even de�nedfor a being some distribution. If the limit exists and is independent of thehoie of the sequene gn out of some large lass of sequenes, this wouldbe a reasonable extension.We would also like to mention the approah followed in [39℄: There, thenonplanar loop integral is interpreted as a funtion F (k; y) of two independentvariables k and y, where the twisting fator is written as e�iyl+ . One an showthat the integral is a well{de�ned tempered distribution in R8 . The question isthen if it is possible to restrit y to k�. Whether the loop integral is well-de�nedis then a question that an be answered by omputing F (k; y). The problem isthat it is rather diÆult to perform suh a alulation analytially.Remark 5.6. The nonplanar loop integrals that appear in the setting of themodi�ed Feynman rules an also be treated rigorously in the sense of osillatory22
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