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1 Introdution and SummaryThe standard model is a remarkably suessful theory of the struture of matter.It is a hiral gauge theory with the gauge group GSM = SU(3) � SU(2)L � U(1)Yand three generations of quarks and leptons. All masses are generated by the Higgsmehanism whih involves an SU(2) doublet of salar �elds. Its unequivoal preditionis the existene of the Higgs boson whih still remains to be disovered. From atheoretial perspetive, the minimal supersymmetri extension of the standard model,the MSSM, is partiularly attrative. Apart from stabilizing the hierarhy between theeletroweak and Plank sales and providing a natural explanation of the observeddark matter, it predits uni�ation of the gauge ouplings at the uni�ation saleMGUT ' 2 � 1016GeV.Even more than the uni�ation of gauge ouplings, the symmetries and the partileontent of the standard model point towards grand uni�ed theories (GUTs) [1, 2℄.Remarkably, one generation of matter, inluding the right-handed neutrino, forms asingle spinor representation of SO(10) [3, 4℄. It therefore appears natural to assumean underlying SO(10) struture of the theory. The route of uni�ation, ontinuing viaexeptional groups, terminates at E8, whih is beautifully realized in the heterotistring [5, 6℄.An obstale on the path towards uni�ation are the Higgs �elds, whih are SU(2)Ldoublets, while the smallest SO(10) representation ontaining the Higgs doublets, the10�plet, predits additional SU(3) triplets. The fat that Higgs �elds form inom-plete `split' GUT representations is partiularly puzzling in supersymmetri theorieswhere both matter and Higgs �elds are hiral multiplets. The triplets annot havemasses below MGUT sine otherwise proton deay would be too rapid. This thenraises the question why SU(2)L doublets are so muh lighter than SU(3) triplets.This is the notorious doublet-triplet splitting problem of ordinary 4D GUTs.Higher-dimensional theories o�er new possibilities for gauge symmetry breakingonneted with ompati�ation to four dimensions. A simple and elegant sheme,leading to hiral fermions in four dimensions, is the ompati�ation on orbifolds,�rst onsidered for the heteroti string [7�13℄, and more reently applied to GUT �eldtheories [14�19℄. Suh orbifold GUTs appear as intermediate e�etive �eld theories inompati�ations of the heteroti string when some of the ompat dimensions are oforder 1=MGUT and therefore large ompared to the string length [20�23℄.In orbifold ompati�ations, gauge symmetry of the 4D e�etive theory is anintersetion of larger symmetries at orbifold �xed points. Massless modes loated atthese �xed points all appear in the 4D theory and form representations of the largerloal symmetry groups. Zero modes of bulk �elds, on the ontrary, are only repre-sentations of the smaller 4D gauge symmetry and form in general `split multiplets'.When the loal symmetry at some orbifold �xed points is a GUT symmetry, oneobtains the piture of `loal grand uni�ation'. The SM gauge group an be thought3



of as an intersetion of di�erent loal GUT groups. Matter �elds appear as ompleteGUT representations loalized at the �xed points, whereas the Higgs doublets areassoiated with bulk �elds, and therefore split multiplets. In this way the strutureof the standard model is naturally reprodued [23�25℄.Reently, we have obtained the gauge group and matter ontent of the supersym-metri standard model from the heteroti string by using the piture of loal granduni�ation as the guiding priniple [26℄. Quarks and leptons appear as three 16�pletsof SO(10), two of whih are loalized at orbifold �xed points with loal SO(10) sym-metry. For generi vaua, no exoti states appear at low energies and the model isonsistent with gauge oupling uni�ation. In this paper we desribe our onstrutionin detail.It is well-known that the number of possible string vaua is huge. Early esti-mates of the total number of di�erent vaua of the heteroti string gave numbers like101500 [27℄, whih ame as a omplete surprise. More reent studies, based on �uxompati�ations, give similarly large numbers [28℄. Searhes for standard model�like vaua have been based on orbifold ompati�ations [29, 30℄, the free fermioniformulation [31�33℄, interseting D�brane models [34℄ and Gepner orientifolds [35℄.Despite the huge number of vaua, it turned out to be extremely di�ult to onstruta onsistent ultraviolet ompletion of the (supersymmetri) standard model, and onlyreently several examples have been obtained [26, 36, 37℄1. This suggests that not all�eld theories an be embedded into string theory and that a onsistent ultravioletompletion of the standard model may eventually lead to some testable low energypreditions.In this paper, the model presented in [26℄ is desribed in detail. We hope thatthis will be useful for further phenomenologial studies of the model and also forthe searh for other embeddings of the standard model into the heteroti string. Inorder to keep the paper self-ontained, we reall the basis of strings on orbifoldsin Ses. 2�4. In Se. 2, the boundary onditions for untwisted and twisted strings,the mode expansion and the massless spetrum are disussed; furthermore, a simplederivation of the projetion onditions for physial states is given. Our orbifold modelis based on the 6D torus de�ned by the G2 � SU(3) � SO(4) root lattie, whih hasa Z6�II = Z3 � Z2 disrete symmetry. The geometry is desribed in Se. 3 withemphasis on the loalization of twisted states. In Se. 4, the string seletion rules forsuperpotential ouplings of the Z6�II orbifold are reviewed and somewhat extended.The main results of this paper are ontained in Ses. 5�8 and in the appendiesA�D. After desribing our searh strategy for ompati�ations with loal SO(10)symmetry, we study the unbroken gauge group G and the massless spetrum of themodel in Se. 5. We also list the GUT representations at various �xed points and the1 In interseting brane onstrutions, a model ontaining the spetrum of the MSSM plus vetor�likeexotis and additional U(1) fators was obtained in [38℄.4



6D orbifold GUTs whih one obtains for two ompat dimensions of size 1=MGUT.The Fayet-Iliopoulos (FI) D-term of an anomalous U(1) triggers further symmetrybreaking [39℄. In partiular,G �! SU(3) � SU(2)L �U(1)Y �Ghidden ; (1.1)with Ghidden = SU(4) � SU(2)0 is possible, in whih ase the model has a truly hid-den setor admitting spontaneous SUSY breaking. We further show that, for generivaua, unwanted exoti states attain large masses and deouple. This is one of theentral results of our paper.The deoupling of exoti states an be ahieved without breaking supersymmetry.In Se. 6, we disussD- and F -�at diretions in the �eld spae as well as general super-symmetri �eld on�gurations, negleting supergravity orretions. The model natu-rally aommodates spontaneous supersymmetry breaking via hidden setor gauginoondensation, whih is desribed in Se. 7.In generi F� and D��at on�gurations, our model yields the MSSM spetrum,however the analysis of proton deay and �avour beomes intratable. In Se. 8, wetherefore identify a simple and phenomenologially attrative D��at �eld on�gura-tion, without proving F��atness, whih preservesGSM �U(1)B�L � [SU(4)℄ : (1.2)Here we keep the hidden setor SU(4) unbroken whih is needed for gaugino on-densation. We show that unwanted exotis an be deoupled in this ase as well.Further, we identify two Higgs doublets and disuss the pattern of Yukawa ouplings.The top quark Yukawa oupling arises from gauge interations and is of the order ofthe gauge ouplings. Other Yukawa ouplings are suppressed by powers of standardmodel singlet �elds, similarly to the Froggatt�Nielsen mehanism [40℄.Finally, in Se. 9, we onlude with a brief outlook on open questions and furtherhallenges for realisti ompati�ations of the heteroti string.
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2 Strings on orbifoldsIn the following subsetions we ollet the basi notions and formulae whih areneeded to desribe propagation of the E8 � E8 heteroti string on orbifolds T6=ZN[7, 8℄. We follow the de�nitions of Katsuki et al. [41℄.2.1 Latties and twistsThe torus is obtained as the quotient T6 = R6=2��, where � is the lattie of asemi�simple Lie algebra of rank 6 with a ZN disrete symmetry. The 6 ompatoordinates of the torus xi, i = 4 : : : 9, are onveniently ombined into 3 omplexoordinates zi = 1p2 �x2i+2 + ix2i+3�, i = 1 : : : 3. Points in R6 di�ering by a lattievetor,z � z + 2�` ; (2.1)with ` = maea, ma 2 Z (a = 1 : : : 6), are identi�ed. Here ea denote the basis vetorsin the three planes of the lattie.The lattie has a ZN disrete symmetry whih ats rystallographially, i.e., itmaps the lattie onto itself,z ! �z ; �ij = e2�iviN Æij ; i; j = 1 : : : 3 ; (2.2)with �N = 1 ; NviN = 0 mod 1 : (2.3)Here we assume the fatorization T6 = T2 
T2 
T2. N = 1 supersymmetry in 4Drequires that the ZN twist be ontained in the SU(3) subgroup of SO(6), i.e.,Xi viN = 0 mod 1 : (2.4)Lattie translations and twists �k (k = 0; : : : ; N � 1) form the spae group Swhose elements are denoted by (�k; `). The orbifold T6=ZN an also be de�ned asthe quotient R6=S, wherez � (�k; `) z � �k z + 2� ` : (2.5)The multipliation rule in the spae group is given by(�k1 ; `1)(�k2 ; `2) = (�k1�k2 ; �k1`2 + `1) : (2.6)An orbifold has �xed points f , whih are invariant under the ation of a spaegroup element (�k; `),f = (�k; `) f = �k f + 2� ` ; ` = ma ea ; ma 2 Z : (2.7)6



Here k and ` depend on the �xed point f . Sine the position of the �xed point isde�ned only up to a lattie vetor, ` is de�ned up to a translation in the sublattie�k � (1� �k) � = n� 2 �j � = (1� �k)�; � 2 �o : (2.8)Eah �xed point (�k; `) is assoiated with a sublattie � = ` + �k, and there areas many sublatties as �xed points. The dimension of a sublattie �k an be smallerthan dim� = 6 if (1��k) has eigenvetors with eigenvalue 0. In this ase the element(�k; `) desribes �xed planes.2.2 Untwisted and twisted stringsIn the light-one gauge the heteroti string an be desribed by the following world-sheet �elds [42℄: 8 string oordinates and 8 right-moving Neveu-Shwarz-Ramondfermions (�� = � � �),Xi(�; �) = XiL(�+) +XiR(��) ;  i(��) ; i = 2 : : : 9 ; (2.9)and 32 left-moving fermions �I ,�I(�+) ; I = 1 : : : 32 : (2.10)Here i is the spae�time index, while index I is assoiated with E8 � E8 gauge de-grees of freedom. It is onvenient to ombine the string oordinates in the ompatdimensions into 3 omplex variables Zi and, similarly, the right moving fermions into3 omplex NSR fermions e i,Zi = 1p2 �X2i+2 + iX2i+3� ; e i = 1p2 � 2i+2 + i 2i+3� ; (2.11)where i = 1 : : : 3 . The ZN twist ats on these �elds asZ ! � Z ; e ! � e : (2.12)Closed strings on ZN orbifolds an be untwisted or twisted. In the former ase thestring is losed already on the torus and has the boundary onditions,Z(� + 2�) = Z(�) + 2�maea ; ma 2 Z ; (2.13)e (� + 2�) = � e (�) ; (2.14)whereas in the latter ase the string is losed on the orbifold but not on the torusand has the boundary onditions (k = 1 : : : N � 1),Z(� + 2�) = �k Z(�) + 2�ma ea ; (2.15)e (� + 2�) = � �k e (�) ; (2.16)where k and ma depend on the �xed point f . The lattie translation in Eq. (2.15)enters the spae group element assoiated with the �xed point, Eq. (2.7). The plus7
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Figure 1: Twisted and untwisted strings. The dots denote orbifold �xedpoints.and minus signs in Eqs. (2.14) and (2.16) orrespond to the Ramond and the Neveu-Shwarz setors, respetively. Twisted strings are loalized at the orbifold �xed points,whereas untwisted strings an propagate freely on the orbifold (Fig. 1).Modular invariane usually requires that the ZN � SO(6) twist of the spae�timedegrees of freedom be aompanied by a ZN � E8 � E8 twist of the fermions �I ,representing the internal symmetry group. On the omplex fermionse�I = 1p2 ��2I�1 + i�2I� ; I = 1 : : : 16 ; (2.17)the ZN twist ats ase� ! � e� ; �IJ = e2�iV IN ÆIJ ; (2.18)where�N = 1 ; N 8XI=1 V IN = N 16XI=9 V IN = 0 mod 2 ; (2.19)with integer NV IN . The fermions e�I an have untwisted (k = 0) or twisted (k =1 : : : N � 1) boundary onditions,e�(� + 2�) = ��k e�(�) : (2.20)This makes the parallel between � and � transparent. Extending vN by a zero entryating on the unompati�ed dimensions, vN ! (v1N ; v2N ; v3N ; 0), we note that vetorsNvN and NVN lie on the root latties �SO(8) and �SO(16)�SO(16), respetively. Inan orthonormal basis, �SO(2N) is de�ned by vetors (n1; : : : ; nN ) with integer ni andPNi=1 ni = 0 mod 2. One an show that the gauge symmetry of this theory is E8�E8whih ontains SO(16) � SO(16) as a subgroup [6℄.A onvenient formulation of the heteroti string is obtained by representingfermioni degrees of freedom in terms of bosons. In this ase one replaes the 8right�moving and 32 left�moving fermions with 4 right�moving and 16 left�movingbosons,e i(��) = e�2iHi(��) ; i = 1 : : : 4 ; (2.21)e�I(�+) = e2iXI(�+) ; I = 1 : : : 16 : (2.22)8



The �elds XI are ompati�ed on a 16�dimensional torus represented by the E8�E8root lattie,�E8 : p = (n1; :::; n8) or �n1 + 12 ; :::; n8 + 12� ; (2.23)where ni integer with P8i=1 ni = 0 mod 2, and similarly for the seond E8. Thisgives rise to gauge multiplets of the E8 � E8 group in 10 dimensions, oupled tosupergravity.Compatifying the extra 6 dimensions on an orbifold amounts to modding thestring oordinates by the spae group and its gauge ounterpart. The latter is obtainedby embedding the twists and lattie shifts into gauge degrees of freedom XI as(�k;maea) �! (1; k V IN +maW Ina) ; (2.24)where W Ina denotes a Wilson line of order n. Here NVN and nWn (n � N) arerequired to lie on the E8�E8 root lattie.2 Thus, a twist of the spae�time degrees offreedom is aompanied by a shift kVN of the gauge oordinates, while a torus lattietranslation is aompanied by a gauge oordinate shift maWna. This orresponds togeneralizing the boundary ondition (2.20) for the left�moving fermions toe�I(� + 2�) = � e2�i (kV IN+maW Ina) e�I(�) : (2.25)The bosoni �eld boundary onditions then read (k = 0 : : : N � 1)Hi(� + 2�) = Hi(�)� � k viN mod ���SO(8) ; (2.26a)XI(� + 2�) = XI(�) + � �k V IN +maW Ina� mod ��E8�E8 : (2.26b)Here ��SO(8) denotes the weight lattie of SO(8) given in the orthonormal basis by��SO(8) : q = (n1; n2; n3; n4) ; (2.27)where ni integer with Pi ni odd or ni half-integer with Pi ni even.To summarize, the heteroti string an be desribed by the left moving bosoni�elds ZiL(�+), Zi�L (�+), XI(�+) and the right moving bosoni �elds ZiR(��), Zi�R (��),Hi(��). They fall into untwisted or twisted ategories depending on whether theyrepresent strings losed on a torus or on an orbifold only.2.3 Modular invariane and loal twistsThe gauge shift VN and the Wilson lines Wn are subjet to onsisteny onditions.First of all, NVN and nWn are vetors of the E8 � E8 root lattie,N VN 2 �E8�E8 ; nWn 2 �E8�E8 : (2.28)2This generalizes VN of Eq. (2.18) in whih ase NVN lies on the SO(16)� SO(16) root lattie.9



Seond, modular invariane of the theory requires that they satisfy additional on-straints (see e.g., [21℄):N �V 2N � v2N� = 0 mod 2 ; (2.29a)N VN �Wn = 0 mod 1 ; (2.29b)N Wn �Wm = 0 mod 1 ; (Wn 6=Wm) (2.29)N W 2n = 0 mod 2 : (2.29d)By adding E8�E8 root lattie vetors to VN and Wn satisfying these onditions, onean bring VN ,Wn to the form whih obeys a stronger onstraint3,12 �V 2N � v2N� = 0 mod 1 ; (2.30a)VN �Wn = 0 mod 1 ; (2.30b)Wn �Wm = 0 mod 1 ; (Wn 6=Wm) (2.30)12W 2n = 0 mod 1 : (2.30d)This form has the advantage that the analysis of physial states of the theory simpli�essigni�antly. These equations an also be written as12 h(rVN +maWna)2 � r2v2Ni = 0 mod 1 ; r = 0; 1 ; (2.31)where 0 � ma � n� 1 for a Wilson line Wn of order n.The twist an be thought of as a loal quantity, that is, depending on the �xedpoint and the twisted setor. Indeed, Eqs. (2.25) and (2.26b) show that what mattersat a partiular �xed point f is the ombinationV If = k V IN +maW Ina ; (2.32)whih plays the role of the �loal� gauge twist, as well as its right�moving ounterpartk vN . Eah loal twist Vf an be expressed as the sum of the twist k VN for vanishingWilson lines and a linear ombination of Wilson lines determined by the loation ofthe �xed point f . The loal twists satisfy modular invariane onditions (2.31) andan be treated on the same footing as VN . This observation will be important for theonept of loal GUTs.2.4 Mode expansion and massless spetrumThe boundary onditions disussed in Se. 2.2 lead to the following mode expansionfor the untwisted string (i = 1 : : : 3),Zi(�; �) = zi + 12pi� +maeia�+ i2Xn 1n�ine�in�� + i2Xn 1n e�ine�in�+ ; (2.33a)3There are exeptions to this statement, for instane, when V = 0.10



Z�i(�; �) = z�i + 12p�i� +ma e�ia �+ i2Xn 1n��in e�in�� + i2Xn 1n e��in e�in�+ : (2.33b)Twisted strings have the expansion (f. Eq. (2.15))Zi(�; �) = f i + i2 Xn2Z+kviN 1n�ifne�in�� + i2 Xn2Z�kviN 1n e�ifne�in�+ ; (2.34)Z�i(�; �) = f�i + i2 Xn2Z�kviN 1n��ifne�in�� + i2 Xn2Z+kviN 1n e��ifne�in�+ : (2.35)In this ase, there is no enter�of�mass string motion, i.e., pi = ma = 0. If there is a�xed plane, the boundary onditions for strings in the �xed plane are untwisted andthe expansion is given by Eqs. (2.33).The bosonized NSR fermions have the expansion (i = 1 : : : 4)Hi(�; �) = hi + 12 �qi + kviN��� + i2Xn 6=0 1n e�ine�in�� ; (2.36)while the gauge oordinates are given by (I = 1 : : : 16)XI(�; �) = xI + 12 �pI + �kV IN +maW Ina���+ + i2Xn 6=0 1n e�Ifne�in�+ : (2.37)The momentum vetors qi and pI speify the Lorentz and gauge quantum numbersof the string states. Note that the reation and annihilation operators of the twistedstring (2.34), (2.35) and the left-moving string (2.37) depend on the �xed point f .States of the heteroti string are given by a diret produt of the right�moving andleft�moving parts. A basis in the Hilbert spae of the quantised string is obtained byating with the reation operators �ifn, e�ifn, e�ifn, e�Ifn (n < 0) on the ground states ofthe untwisted setor U (k = 0) and the twisted setors Tk (k = 1 : : : N � 1). Masslessstates in the untwisted setor as well as twisted states living on �xed planes havepi = ma = 0. The ground states of the di�erent setors depend on the momentumvetors qi, pI and, for the twisted setors, also on the �xed point f (f. (2.32)),jq; pi � jqi 
 jpi ; jf ; q; pi � jq + kvN i 
 jp+ Vf i : (2.38)It turns out that for the model disussed below only osillator modes of the left-moving strings ZiL(�+), Z�iL (�+) and XI(�+) are relevant. The orresponding twistedsetor states are (ni;mi < 0)e�i1fn1 e�i2fn2 : : : e��j1fm1 e��j2fm2 : : : e��I1fl1 e��I2fl2 : : : jf ; q; pi : (2.39)Massless states of the untwisted setor satisfy the following mass equations:18m2R = 12q2 � 12 +N +N� = 0 ; (2.40a)11



18m2L = 12p2 � 1 + eN + eN� = 0 ; (2.40b)where N;N�; eN; eN� are the integer osillator numbers. Twisted massless states obey18m2R = 12(q + k vN )2 � 12 + Æ(k) + !(k)i Nfi + �!(k)i N�fi = 0 ; (2.41a)18m2L = 12(p+ Vf )2 � 1 + Æ(k) + !(k)i eNfi + �!(k)i eN�fi = 0 ; (2.41b)where Æ(k) = 12Xi !(k)i (1� !(k)i ) ; (2.42)with !(k)i = (k vN )i mod 1, so that 0 < !(k)i � 1, and �!(k)i = (�k vN )i mod 1 sothat 0 < �!(k)i � 1. This implies that !(k)i = �!(k)i = 1 for (k vN )i integer. In Eq. (2.41),Nfi, N�fi, eNfi and eN�fi 2 N represent the osillator numbers of the right- and left-movers in zi and �zi diretions, respetively. Note that Nfi and N�fi, as well as eNfi andeN�fi, denote independent quantities. They are the eigenvalues of the orrespondingnumber operators N̂fi,N̂fi = 1!(k)i Xn>0�if�n�ifn ; (2.43)and analogously for N�fi, eNfi, eN�fi. The sum Pi(!(k)ki eNfi+ �!(k)ki eN�fi) is often referredto as eN in the literature.2.5 Projetion onditions for physial statesAs disussed in Se. 2.2, an orbifold is obtained by identifying points in �at spaewhih transform into eah other under the ation of the spae group,x � gx ; x 2 R6 ; g 2 S : (2.44)Quantized strings whose boundary onditions are related by a symmetry transforma-tion must lead to the same Hilbert spae of physial states. In partiular, strings withthe boundary onditions�(� + 2�) � g�(�) and �(� + 2�) � hgh�1�(�) (2.45)produe the same Hilbert spae for any h 2 S [8℄. Here � stands for Zi, Z�i, Hiand XI . For eah onjugay lass onsisting of elements h g h�1 one therefore has aseparate Hilbert spae.Spae group elements �h whih ommute with g, i.e. �h g �h�1 = g, leave the stringboundary onditions invariant. Hene, their representation in the Hilbert spae mustat as the identity on physial states,�h jphysi = jphysi : (2.46)12



This is the invariane or `projetion' ondition for physial states.A spae group element �h = (��k; �̀) ats as a translation on the enter�of�massoordinates of the bosoni �elds Hi and XI (f. (2.26)),hi ! hi � � �k viN ; xI ! xI + � ��k V IN + �maW Ina� : (2.47)Hene, the momentum eigenstates in twisted setors transform asjf ; q; pi ! e2�i (��k vN �(q+kvN )+(�k VN+ �maWna)�(p+Vf )) jf ; q; pi ; (2.48)and similarly for untwisted states. From Eqs. (2.34) and (2.35) one reads o� thetransformation properties of the reation operators,e�ifn ! e2�i �k viN e�ifn ; e��ifn ! e�2�i �k viN e��ifn : (2.49)A state with non�vanishing osillator numbers then transforms ase�ifn : : : e��ifm : : : jf ; q; pi !e2�i (�k vN �( eN� eN�)��k vN �(q+kvN )+(�k VN+�maWna)�(p+Vf )) e�ifn : : : e��ifm : : : jf ; q; pi :(2.50)Physial states have to satisfy Eq. (2.46), whih yields the projetion onditions�kvN � � eNf � eN�f�� �kvN � (q + kvN )+ (�kVN + �maWna) � (p+ Vf ) = 0 mod 1 ; (2.51)for values of �k and �ma whih depend on the onjugay lass. As we will disuss inSe. 2.5.2, in non�prime orbifolds Eq. (2.51) gets modi�ed for higher twisted setorstates. Below we analyze in detail the projetion onditions for the untwisted andtwisted setors.2.5.1 Untwisted setorThe untwisted setor (k = 0) is assoiated with the spae group element g = (1; 0),and Eq. (2.51) has to be satis�ed for the full spae group, i.e., for all values �k and�ma. This yields the projetion onditionsvN � q � VN � p = 0 mod 1 ; Wn � p = 0 mod 1 ; (2.52)where p is the E8 � E8 root lattie momentum (p2 = 2) and q is the SO(8) weightlattie momentum (q2 = 1). The E8 momenta lie on the same lattie as the E8oordinates beause of self-duality.The untwisted setor ontains gauge and matter supermultiplets of the 4D e�etivetheory. For the former vN � q = 0 mod 1 yielding gauge bosons with q = (03;�1) andgauginos with q = � �12 ; 12 ; 12 ; 12�. For the matter multiplets, vN � q = n=N mod 1with n = 1; ::; N � 1 leading to the bosoni SO(8) momenta (�1; 0; 0; 0) where theunderline denotes permutations, and their fermioni partners.13



Sine gauge multiplets satisfy vN � q = 0 mod 1, the onditionsVN � p = 0 mod 1 ; Wn � p = 0 mod 1 ; (2.53)determine the roots p of the unbroken 4D gauge group. It is instrutive to rewritethis set of equations asVf � p = 0 mod 1 ; for all �xed points f ; (2.54)where Vf is the loal shift (2.32) assoiated with the �xed point. At eah �xed pointthe gauge group is broken loally to a subgroup of E8 � E8. The states surviving allloal projetion onditions, i.e., those orresponding to the intersetion of all loalgauge groups, yield the gauge �elds of the low-energy gauge group.Matter multiplets (vN �q 6= 0 mod 1) originate from the 10D gauge �elds polarizedin the ompat diretions and their fermioni partners. They form hiral super�eldstransforming as the oset of E8�E8 and the unbroken 4D gauge group. All untwistedstates are bulk �elds in the ompati�ed dimensions.2.5.2 Twisted setorsFor the twisted setors Tk (k = 1 : : : N � 1), the projetion onditions depend onk. Consider k = 1 and a �xed point f with the spae group element g = (�; `).The spae group elements ommuting with g are �h = (��k; �̀) = (�; `)n, n 2 N. Theresulting projetion ondition isvN � � eNf � eN�f�� vN � (q + vN ) + Vf � (p+ Vf ) = 0 mod 1 ; (2.55)where Vf = VN+maWna. Using `strong' modular invariane (2.30), one an show thatall massless states (f. (2.41)) satisfy this ondition. Therefore all massless modes inthe �rst twisted setor orrespond to physial states. In the ase of prime orbifolds,Eq. (2.55) also holds for higher twisted setors with Vf = k VN +maWna.For non�prime orbifolds the situation is more ompliated. Some of the highertwisted setors Tk, k > 1, are related to lower order twists ZN=k whih leave one ofthe T2 tori invariant. This results in additional projetion onditions. Furthermore,�xed points of the lower order twists are not neessarily �xed points of the originaltwist ZN. The ZN twist transforms these �xed points into eah other suh that theyare mapped into the same singular point in the fundamental domain of the orbifold.Physial states orrespond to linear ombinations of the states appearing at the �xedpoints of the ZN=k twist.The onjugay lasses of higher twisted setors Tk are given by h g h�1 where bothg and h have the form (�k; `). The number of the onjugay lasses is the number ofthe �xed points of the lower order twist ZN=k. In general, twists of other orders ZN=k0transform these lasses into eah other. In partiular, the ZN twist ats on the ZN=konjugay lasses gi as�h g1 �h�1 = g2 ; �h g2 �h�1 = g3 ; : : : �h gn �h�1 = g1 ; (2.56)14



with �h of the form (�; `) and n � 1. In this ase, the higher twisted states transformas �h j1i = j2i ; �h j2i = j3i ; : : : �h jni = j1i : (2.57)From linear ombinations of these loalized states one obtains a basis of physialstates whih are ZN twist and �h�eigenstates [8, 43, 44℄,jphys; qi = 1pn nXs=1 e�2�i s q jsi ; (2.58)where q = 0; 1=n; 2=n; : : : ; 1. As a onsequene,�h jphys; qi = e2�i q e2�i(�kvN �( eNf� eN�f )��kvN �(q+kvN )+(�kVN+�maWa)�(p+Vf ))� jphys; qi ; (2.59)where we have used Eq. (2.50) and �h = (��k; �ma ea) is assumed to mix the onju-gay lasses of Tk as above. This leads to the modi�ed projetion onditions for thesuperpositions (2.58):�kvN � � eNf � eN�f�� �kvN � (q + kvN )+ (�kVN + �maWna) � (p+ Vf ) + q = 0 mod 1 : (2.60)In this paper we are espeially interested in a Z6�II orbifold whih has Z3and Z2 subtwists with invariant tori. The orresponding twist vetor is v6 =(�1=6;�1=3; 1=2). As we shall disuss in detail in Se. 3, two di�erent �xed pointsin the T2;4 twisted setors are related by Eq. (2.56) with �h = (�3; 0). The eigenstatesof (�3; 0) arejphys;�i = 1p2 (j1i � j2i) ; (2.61)where the states j1i; j2i orrespond to the two �xed points of �2 away from the origin.The projetion ondition (2.60) beomes3v6 � � eNf � eN�f�� 3v6 � (q + k v6) + 3V6 � (p+ Vf ) + q = 0 mod 1 ; (2.62)with q = 1=2; 1 for k = 2; 4. Here Vf = k V6 +m3W3 is the loal Z3 gauge shift.Physial states of T2;4 must also satisfy additional projetion onditions whih stemfrom invariane of the third T2 torus (`the SO(4) torus') under �2. Clearly, translations`3 in this torus ommute with �2. Thus invariane under spae group transformations(1; `3) requiresW2 � (p+ Vf ) = 0 mod 1 ; (2.63a)W 02 � (p+ Vf ) = 0 mod 1 ; (2.63b)where W2 and W 02 are two disrete Wilson lines in the SO(4) torus.15



The Z6�II orbifold also has a Z2 subtwist. The �xed points of the T3 twisted setorare mapped into eah other by the spae group element �h = (�2; 0). Invariane under�2 leads to the projetion ondition2v6 � � eNf � eN�f�� 2v6 � (q + 3v6) + 2V6 � (p+ Vf ) + q = 0 mod 1 ; (2.64)with q = 1=3; 2=3; 1 and the loal Z2 gauge shift Vf = 3V6 + n2W2 + n02W 02. The Z2twist leaves the seond torus (`the SU(3) torus') invariant. Invariane of the T3 statesunder translations in this torus requiresW3 � (p+ Vf ) = 0 mod 1 : (2.65)Here W3 is a disrete Wilson line in the SU(3) torus.T5 twisted setor ontains anti�partiles of the T1 setor, and will not be treatedseparately in the following.The above projetion onditions are relevant to our model. A sample alulationof the physial spetrum is given in App. A.2.6 Loal GUTsConsider a �xed point f whih is assoiated with the loal gauge shift V If = k V IN +maW Ina. A loal GUT an be de�ned by the E8 � E8 roots p (p2 = 2) satisfyingp � Vf = 0 mod 1 : (2.66)These roots represent a loal gauge symmetry supported at the �xed point. Twistedmatter appears in a representation of the loal GUT. Eah representation is har-aterized by the square of the shifted momentum, (ep + Vf )2, whih is the same formembers of the same multiplet.The onept of loal GUTs is important for onstrution of realisti models. Inpartiular, all massless states of the T1 setor survive the ZN projetion and repre-sent physial states. They form omplete multiplets of the orresponding loal GUT,although this GUT does not appear in 4D. As disussed in Se. 1, this may naturallyexplain why the SM gauge (and Higgs) bosons do not form omplete GUT multiplets,while the matter �elds do.Let us illustrate how a loal SO(10) struture arises. Consider a Z6�II heterotiorbifold based on the Lie lattie G2 � SU(3)� SO(4) with v6 = (�1=6;�1=3; 1=2; 0),the gauge shiftV6 = �12 ; 12 ; 13 ; 0; 0; 0; 0; 0� �13 ; 0; 0; 0; 0; 0; 0; 0� ; (2.67)and arbitrary Wilson lines.The loal gauge shift at the origin in the T1 setor is Vf = V6. The loal GUTroots are found fromp � V6 = 0 mod 1 : (2.68)16



This orresponds to SO(10)�SU(2)2 symmetry in the observable setor. The SO(10)roots are given byp = (0; 0; 0;�1;�1; 0; 0; 0) ; (2.69)where the underline denotes all possible permutations of the orresponding entries.Relevant twisted matter �elds of the T1 setor satisfy the masslessness ondition4(p+ V6)2obs = 2318 (2.70)for the p+ V6 omponents in the �rst E8. The solution is(p+ V6)obs = �0; 0;�16 ; odd (�12)5� ; (2.71)where �odd (�1=2)5� denotes all ombinations ontaining an odd number of minussigns. This is a 16�plet of SO(10). The Z6 invariant states have the right�movershifted momentum q + v6 = (�1=6;�1=3;�1=2; 0) for spae�time bosons and analo-gously for spae�time fermions. All of these states appear in the physial spetrumof the model.The Wilson lines an be hosen suh that the gauge group in 4D is that of thestandard model (times extra fators). This does not a�et the above onsiderationsand the loal SO(10) GUT struture remains intat.3 Geometry of the Z6�II orbifoldIn this setion we desribe geometrial features of the Z6�II = Z3�Z2 orbifold basedon the G2 � SU(3) � SO(4) Lie algebra lattie, whih is required for onstrution ofour model.3.1 Fixed points and fundamental regionThe Z6�II orbifold with the G2�SU(3)�SO(4) lattie is based on the twist vetor5v6 = 16(�1;�2; 3; 0) : (3.1)This orbifold allows for one disrete Wilson line of degree 3 in the SU(3) plane and twoWilson lines of degree 2 in the SO(4) plane. The Z6 ation on the torus oordinateszi, zi ! e2�iv6izi ; (3.2)4The invariane onditions (2.55) are satis�ed automatially one V6 is brought to the `strong' modularinvariant form (5.3).5The overall sign of v6 is hosen suh that one obtains left�hiral states (q4 = �1=2 for fermions) inthe �rst twisted setor. This onvention di�ers from that of our earlier work [26℄.17



is illustrated in Fig. 2. This orbifold has Z6, Z3 and Z2 �xed points de�ned byf i � e2�i 6�v6if i 2 �G2�SU(3)�SO(4) ; � = 6; 3; 2 ; (3.3)where �G2�SU(3)�SO(4) is the torus lattie. The 12 Z6 �xed points are shown inFig. 2, the 9 Z3 �xed points � in Fig. 3 and the 16 Z2 �xed points � in Fig. 4. It isa harateristi feature of non-prime orbifolds that the Z3 and Z2 �xed points aregenerally di�erent from the Z6 �xed points. The Z3 subtwist leaves the SO(4) planeinvariant, whereas under the Z2 subtwist the SU(3) plane is �xed.
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Figure 2: G2�SU(3)�SO(4) torus lattie of the Z6�II orbifold. PossibleWilson lines are denoted by W3, W2 and W 02.
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Figure 4: Z2 �xed points.The orbifold is �at apart from the singular points (`onial singularities') orre-sponding to the Z6, Z3 and Z2 �xed points. Twisted states are loalized at thesesingularities. In what follows, we detail their loalization properties in eah T2 torus.3.2 Twisted states loation3.2.1 G2 planeIn the G2 plane, there is one point �xed under Z6 loated at the origin, 3 pointsx,y,z �xed under Z3, and 4 points a,b,,d �xed under Z2 (Fig. 5). Some of them18
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(a) Modding out to the Z6 `pillow'. ¶

·

¸(b) Z6 `pillow'.Figure 5: The G2 plane. The two simple roots of G2 are given by thearrows in (a) with the shaded area spanned by them being the funda-mental region of the torus. The fundamental region of the orbifold is onesixth of this region (darker area) and an be represented by the `pillow' in(b). The latter orresponds to folding the fundamental region along thedashed edge and gluing the other edges together (f. [45, 46℄).transform into eah other under Z6 twisting and orrespond to the same points inthe fundamental domain of the orbifold. For the three Z3 �xed pointsx � ❶ ; y � ❷ ; z ; (3.4)one hasx! x ; y! z ; z! y ; (3.5)under the Z2 twist �3, and the four Z2 �xed pointsa � ❶ ; b ;  � ❸ ; d ; (3.6)transform under the Z3 twist �2 asa! a ; b!  ; ! d ; d! b : (3.7)Thus we have the following mapping from the fundamental domain of the torus tothe fundamental domain of the orbifold:xa )! ❶ ; yz )! ❷ ; bd 9>=>;! ❸ : (3.8)Consequently, T2;4 twisted matter lives at ❶ or ❷ points of the orbifold `pillow',whereas T3 twisted matter lives at ❶ or ❸.As explained in Se. 2.5.2, the fat that the Z3 and Z2 �xed points are not �xedunder Z6 introdues a new quantum number for physial states, a phase  = e2�iqwith frational q . Consider the T2;4 twisted setors. Among the states loalized at
❷, there are two linear ombinationsj❷; +1i = 1p2 (jyi+ jzi) ; j❷;�1i = 1p2 (jyi � jzi) ; (3.9)19



whih are Z2 (and Z6) eigenstates with eigenvalues  = �1,�3 j❷; +1i = j❷; +1i ; �3 j❷;�1i = � j❷;�1i : (3.10)These eigenstates an be labelled by the order of the twist k = 2; 4 and the parameterq , j❷; +1i = jk = 2; 4; q = 1i ; j❷;�1i = jk = 2; 4; q = 1=2i : (3.11)The state at the origin has  = 1 and an be labelled asjxi = j❶; +1i = jk = 2; 4; q = 0i : (3.12)To distinguish  = 1 states at ❶ from those at ❷, we assign q = 0 to the former andq = 1 to the latter.The T3 states are treated analogously. There are three linear ombinations ofstates loated at ❸, with Z3 eigenvalues 1, ! � e2�i=3, and !�1,j❸; 1i = 1p3 (jbi+ ji+ jdi) ; (3.13a)j❸;!i = 1p3 �jbi+ !�1ji+ !�2jdi� ; (3.13b)j❸;!�1i = 1p3 �jbi+ ! ji+ !2 jdi� : (3.13)The Z3 (and Z6) eigenstates an again be haraterized by the order of the twist andq , j❸; 1i = jk = 3; q = 1i ; j❸;!�1i = jk = 3; q = �1=3i : (3.14)The state at the origin is now labelled asjai = j❶; 1i = jk = 3; q = 0i : (3.15)The T1;5 twisted setor states are loalized at the origin, whih orresponds to aZ6 eigenstate with eigenvalue  = 1, i.e.,j❶; 1i = jk = 1; 5; q = 0i : (3.16)The loation of all Tk twisted states is illustrated in Fig. 6.
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(b) SO(4) plane.Figure 7: Loalization quantum numbers n3, n2 and n02.3.2.2 SU(3) planeStates twisted by �k with k = 1; 2; 4; 5 are loalized at the three �xed points in theSU(3) plane, whereas T3 and untwisted states live in the bulk. The loalization isspei�ed by the quantum number n3 (f. Fig. 7(a)). Tab. 3.1 lists the oordinates ofthe �xed points in the SU(3) torus as well as the orresponding spae group elements.The oordinates are de�ned up to translations in the sublattie 2�[n e3+(�n�3m) e4℄with n;m 2 Z. loation spae group elementn3 (in 2� units) k = 1 m3 k = 2 m3 k = 4 m30 0 (�; 0) 0 (�2; 0) 0 (�4; 0) 01 13e3 + 23e4 (�; e3) 1 (�2;�e3) 2 (�4; e3) 12 23e3 + 13e4 (�;�e3) 2 (�2; e3) 1 (�4;�e3) 2Table 3.1: Loalization quantum numbers and spae group elements.As disussed in Se. 2, a �xed point or plane with the spae group element(�k; a e3 + b e4) orresponds to the loal gauge shiftVf = k V6 +m3W3 ; m3 = a+ b mod 3 ; (3.17)up to terms involving W2 and W 02. Note that m3 depends not only on the loation(n3) but also on the order of the twist k (Tab. 3.1). The above loal shift is equivalentto Vf = k(V6 + n3W3) : (3.18)3.2.3 SO(4) planeTwisted states from T1;5 and T3 are loalized at the four �xed points in the SO(4)plane whereas T2, T4 and untwisted states orrespond to bulk �elds. The �xed points21



are labelled by n2 and n02 (Fig. 7(b)). Tab. 3.2 lists the oordinates of the �xedpoints and the orresponding spae group elements. The oordinates are de�ned upto translations in the sublattie 2�[2n e5+2me6℄ where n;m 2 Z. The loal shift forthe �k setors (k = 1; 3; 5) readsVf = k (V6 + n2W2 + n02W 02) (3.19)up to terms involving W3. loation spae group element(n2; n02) (in 2� units) k = 1 k = 3(0; 0) 0 (�; 0) (�3; 0)(0; 1) 12e6 (�; e6) (�3; e6)(1; 0) 12e5 (�; e5) (�3; e5)(1; 1) 12(e5 + e6) (�; e5 + e6) (�3; e5 + e6)Table 3.2: Loalization quantum numbers and spae group elements.4 SuperpotentialIn this setion, we disuss the superpotential ouplings in heteroti orbifolds. Intera-tions on orbifolds are alulated using superonformal �eld theories [43,47℄. This leadsto a set of seletion rules ditating whih ouplings are allowed. For our purposes, itsu�es to identify the allowed ouplings without knowing their preise strength. Thefollowing disussion is losely related to the analysis of Kobayashi et al. [22℄, withsome extensions.64.1 Vertex operators and orrelation funtionsIn orbifold onformal �eld theory, ouplings are obtained from orrelation funtionsof vertex operators for the orresponding physial states. The vertex operators forbosons in the (�1)�ghost piture read (f. [22℄):V (f)�1 = e�� e2i(q+kvN )�H e2i(p+Vf )�X 3Yi=1 ��Zi� eNfi ��Z� i� eN�fi �f : (4.1)Here q, k, p, f and eNfi, eN�fi are the quantum numbers desribed in Se. 2, and �fis the twist �eld whih reates the vauum of the twisted setor at the �xed pointf from the untwisted vauum (f. [43, 47, 49�51℄); � is the bosonized superonformalghost (f. [52℄). Vertex operators for untwisted states orrespond to k = Vf = 0,�f = 1.6Certain orretions to the seletion rules of [22℄ will be disussed in detail in Ref. [48℄.22



In the 0�ghost piture, (4.1) is replaed withV (f)0 = e2i(q+kvN )�H e2i(p+Vf )�X 3Yi=1 ��Zi� eNfi ��Z� i� eN�fi� 3Xj=1 �e2iHj�Zj + e�2iHj�Z� j� �f : (4.2)The vertex operator for fermions is given byV (f)�1=2 = e��2 e2i(q+kvN )�H e2i(p+Vf )�X 3Yi=1 ��Zi� eNfi ��Z� i� eN�fi �f : (4.3)In what follows, we will mainly be interested in the superpotential ouplings. Theseare extrated from ouplings between 2 fermions and n � 2 bosons given by theorrelation funtionsDV (f1)�1=2 V (f2)�1=2 V (f3)�1 V (f4)0 : : :V (fn)0 E : (4.4)The orrelation funtion (4.4) fatorizes into orrelators involving separately the �elds�, H, XI , Zi and the twist �elds [43,47,49�51℄. Z6 invariane of eah orrelator leadsto various seletion rules whih we disuss in the following.4.2 Seletion rules4.2.1 Gauge invarianeConsider a oupling of n massless physial states labelled by index r. As expeted,the oupling has to obey gauge invariane. The gauge quantum numbers are spei�edby the shifted momenta p + Vf whih play the role of the weight vetors w.r.t. theunbroken subgroup of E8�E8. For the orrelation funtion to be non�zero, the stateshave to form a gauge singlet,nXr=1(p+ Vf )(r) = 0 : (4.5)It is instrutive to interpret a oupling among twisted �elds in terms of loal gaugegroups. Suppose that the twisted states form representations R, R0, et. under theloal non�Abelian gauge groups Gloal, G0loal, et. Then the oupling among thesestates is invariant under the intersetion of these groups,Gintersetion = Gloal \G0loal \G00loal \ : : : � E8 � E8 ; (4.6)whih is given by the E8�E8 roots ommon to all of the loal groups. The remaininggauge invariane onditions onern U(1) harges. R, R0, et. an be deomposedinto representations of Gintersetion suh that the invariant ouplings involve the latter.This implies, for instane, that a oupling between loalized 16�plets of SO(10) andother twisted states need not be invariant under the full SO(10). As a result, a massterm for the SM singlet in the 16�plet an be written without invoking large SO(10)representations suh as 126�plets, whih are neessary in 4D GUTs.23



k H�momentum1 16(�1;�2;�3)2 13(�1;�2; 0)3 12(�3; 0;�3)4 13(�2;�1; 0)5 16 (�5;�4;�3)Table 4.1: Z6�II orbifold: H�momenta for bosons ontaining no osilla-tors.4.2.2 H�momentum rulesTwist invariane of the ompat 6D spae requires that the superpotential be a salarwith respet to disrete rotations in the ompat spae. In other words, the H�momenta must add up to zero (up to a disrete ambiguity). TheH�momenta invariantunder the ghost piture hanging are de�ned by [22℄Ri(r) = (qi + kvi6)(r) � ( eNfi � eN�fi)(r) (4.7)and an be thought of as disrete R�harges [49, 53℄. They lie on the SO(8) weightlattie.For an allowed oupling between 2 fermions and n� 2 bosons, the sum of the H�momenta must vanish. This rule an be reformulated in terms of bosoni H�momentaonly. Spei�ally,nXr=1R1(r) = �1 mod 6 ; (4.8a)nXr=1R2(r) = �1 mod 3 ; (4.8b)nXr=1R3(r) = �1 mod 2 ; (4.8)where Ri(r) are the H�momenta of the bosoni omponents of hiral super�elds. Forthe Z6�II orbifold these are listed in Tab. 4.1.7 We note that gauge invariane requiresstrit vanishing of the sum of E8 � E8 momenta, whereas the sum of H�momentamust vanish up to a disrete shift as given above. The di�erene between the tworules stems from the fat that the gauge 16D torus possesses ontinuous symmetries,while in the ase of the 6D orbifold they are only disrete.4.2.3 Spae group seletion rulesThe spae group seletion rule [43,47℄ states that the string boundary onditions haveto math in order for the oupling to be allowed. Consider twisted states living at7Our sign onvention is opposite to that of [22℄.24



the �xed points f1, f2,. . . fn orresponding to the spae group elements (�k(1) ; `(1)),(�k(2) ; `(2)), . . . , (�k(n) ; `(n)). A oupling of these states is allowed if (f. [49℄)(�k(1) ; `(1)) (�k(2) ; `(2)) : : : (�k(n) ; `(n)) = (1; 0) (4.9)up to a torus lattie vetor Pnr=1 �k(r), where �k(r) = (1 � �k(r))�. The untwistedsetor orresponds to the spae group element (1; 0). The above ondition is equivalentto (f. App. B)nXr=1 k(r) = 0 mod 6 ; (4.10a)nXr=1 `(r) = 0 mod nXr=1 �k(r) : (4.10b)The �rst equation restrits the twisted setors that an ouple and states that thetotal twist of the oupling must be 0 mod 6. The seond ondition puts a restritionon the �xed points. In terms of the loalization quantum numbers, it readsSU(3) plane : nXr=1 k(r) n3(r) = 0 mod 3 ; (4.11a)SO(4) plane : nXr=1 n2(r) = 0 mod 2 ; (4.11b)nXr=1 n02(r) = 0 mod 2 ; (4.11)plus an additional ondition to be disussed below. The quantum numbers n3(r), n2(r)and n02(r) have been de�ned in Se. 3.8 The spae group seletion rule for the SU(3)plane is illustrated in Fig. 8.
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For the G2 plane, there is a non�trivial seletion rule if only T2 and T4, or only T3states are involved in the oupling. As we show in App. B, the oupling must satisfyfq(1); : : : q(n)g 62 permutationsfx; 0; : : : 0g (4.12)for x 6= 0.To summarize, we have presented the string seletion rules whih determinewhether a given superpotential oupling is allowed. Apart from gauge invariane,suh ouplings enjoy ertain disrete symmetries related to the loalization proper-ties of the states involved.5 The MSSM from the heteroti stringIn this setion, we present an orbifold ompati�ation of the E8�E8 heteroti stringwhih yields the MSSM spetrum and gauge group at low energies. Apart from theMSSM setor, the model ontains a hidden setor whih an aount for low�energysupersymmetry breakdown. In this setion we present basi features of the model,whereas other important aspets suh as vauum on�gurations, SUSY breaking,and phenomenology will be disussed in Ses. 6�8.5.1 Searh StrategyIt is well known that with an appropriate hoie of the gauge shift V and Wilson lines,it is not di�ult to get the standard model gauge group times extra group fators.The real hallenge however is to get three generations of the SM matter.We base our searh on the onept of loal GUTs. Sine one omplete mattergeneration (plus a right�handed neutrino) is a 16�plet of SO(10), we use the gaugeshifts whih admit loal SO(10) symmetry and 16�plets at the �xed points. Thereare only two suh shifts in a Z6�II orbifold [54, 55℄,V6 = �12 ; 12 ; 13 ; 0; 0; 0; 0; 0� �13 ; 0; 0; 0; 0; 0; 0; 0� ;V 06 = �13 ; 13 ; 13 ; 0; 0; 0; 0; 0� �16 ; 16 ; 0; 0; 0; 0; 0; 0� : (5.1)Eah of them ensures that there are 16�plets in the T1 setor, whih remain in themassless spetrum regardless of the Wilson lines. Further, one adjusts the Wilsonlines suh that the gauge group in 4D is that of the standard model times additionalfators.To obtain three matter generations, the simplest option is to use three equivalent�xed points with loal SO(10) symmetry [23℄, Fig. 9(a). This would provide an in-tuitive explanation for tripliation of fermion families. However, our san over suhmodels shows that in this ase there are always hiral exoti states in the spetrum26
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(b)Figure 9: 3 vs. 2 equivalent families.(f. App. C).9 Suh states get masses due to eletroweak symmetry breaking andgenerally are inonsistent with experiment. A similar statement applies to other Znorbifolds with n � 6.This result implies that the three families of 16�plets are not all equivalent, atleast in the ontext of Z�6 orbifold models. We are thus led to onsider the next�to�simplest possibility: 2 equivalent families and one di�erent family, Fig. 9(b). Theequivalent 16�plets an appear due to 2 equivalent �xed points in the SO(4) planewith one Wilson line W2. The remaining family then has to ome from other setorsof the model. We �nd that this proedure is suessful and, in many ases, the exotimatter is vetor�like with respet to the standard model. Furthermore, we �nd thatthe vetor�like matter an be onsistently deoupled at least in one ase.5.2 The modelOur model is a Z6�II heteroti orbifold based on the Lie lattie G2 � SU(3)� SO(4).It involves two Wilson lines: one of order 2, W2, and another of order 3, W3, and hasthe gauge shift V6 onsistent with the loal SO(10) struture. Spei�ally, the gaugeshift and the Wilson lines are given by [26℄V6 = �12 ; 12 ; 13 ; 0; 0; 0; 0; 0� �13 ; 0; 0; 0; 0; 0; 0; 0� ;W2 = �12 ; 0; 12 ; 12 ; 12 ; 0; 0; 0� ��34 ; 14 ; 14 ;�14 ; 14 ; 14 ; 14 ;�14� ;W3 = �13 ; 0; 0; 13 ; 13 ; 13 ; 13 ; 13� �1; 13 ; 13 ; 13 ; 0; 0; 0; 0� : (5.2)By adding elements of the root lattie �E8�E8 to the shift and Wilson lines, one antransform this set toV 06 = ��12 ;�12 ; 13 ; 0; 0; 0; 0; 0� �176 ;�52 ;�52 ;�52 ;�52 ;�52 ;�52 ; 52� ;9We �nd that some models have exoti matter whih is vetor�like with respet to SU(3) � SU(2)Lbut hiral with respet to orretly normalized U(1)Y . In partiular, our earlier model [23℄ su�ers fromthis problem. 27



W 02 = ��12 ; 0;�12 ; 12 ; 12 ; 0; 0; 0� �234 ;�254 ;�214 ;�194 ;�254 ;�214 ;�174 ; 174 � ;W 03 = ��16 ; 12 ; 12 ;�16 ;�16 ;�16 ;�16 ;�16� �0;�23 ; 13 ; 43 ;�1; 0; 0; 0� ; (5.3)whih ful�lls the `strong' modular invariane onditions (2.30).The gauge group after ompati�ation isG = SU(3)� SU(2)� [SU(4) � SU(2)0℄�U(1)9 : (5.4)Here the brakets [: : : ℄ indiate a subgroup of the seond E8 fator. The generatorsof the U(1) fators an be hosen ast1 = tY = �0; 0; 0; 12 ; 12 ;�13 ;�13 ;�13� (0; 0; 0; 0; 0; 0; 0; 0) ;t2 = (1; 0; 0; 0; 0; 0; 0; 0) (0; 0; 0; 0; 0; 0; 0; 0) ;t3 = (0; 1; 0; 0; 0; 0; 0; 0) (0; 0; 0; 0; 0; 0; 0; 0) ;t4 = (0; 0; 1; 0; 0; 0; 0; 0) (0; 0; 0; 0; 0; 0; 0; 0) ;t5 = (0; 0; 0; 1; 1; 1; 1; 1) (0; 0; 0; 0; 0; 0; 0; 0) ;t6 = (0; 0; 0; 0; 0; 0; 0; 0) (1; 0; 0; 0; 0; 0; 0; 0) ;t7 = (0; 0; 0; 0; 0; 0; 0; 0) (0; 1; 1; 0; 0; 0; 0; 0) ;t8 = (0; 0; 0; 0; 0; 0; 0; 0) (0; 0; 0; 1; 0; 0; 0; 0) ;t9 = (0; 0; 0; 0; 0; 0; 0; 0) (0; 0; 0; 0;�1;�1;�1; 1) : (5.5)One of the U(1) fators is `anomalous'. It is generated bytanom = 8Xi=1 i ti with i = �0; 116 ; 12 ;�32 ;�16 ; 1; 13 ; 13 ; 0� : (5.6)The sum of the anomalous U(1) harges istr tanom = 88 ; (5.7)whih is relevant to the alulation of the Fayet�Iliopoulos term.The fators SU(3) and SU(2) in G are identi�ed with the olor SU(3) and theweak SU(2)L of the standard model. The hyperharge generator is given by tY . It isembedded in SO(10) just like in usual 4D GUTs,SU(3) � SU(2)L �U(1)Y � SO(10) : (5.8)Thus it automatially has the orret normalization and is onsistent with gaugeoupling uni�ation. It is also important that this hyperharge is non�anomalous,tY � tanom = 0.The massless matter states are listed in Tab. 5.1. They appear in both the un-twisted and twisted setors, apart from T5 whih has no left�hiral super�elds. Thespetrum an be summarized as follows:matter: 3� 16 + vetor-like : (5.9)28



name irrep ount name irrep ountqi (3; 2; 1; 1)1=6 3 �ui (3; 1; 1; 1)�2=3 3�di (3; 1; 1; 1)1=3 7 di (3; 1; 1; 1)�1=3 4�̀i (1; 2; 1; 1)1=2 5 `i (1; 2; 1; 1)�1=2 8mi (1; 2; 1; 1)0 8 �ei (1; 1; 1; 1)1 3s�i (1; 1; 1; 1)�1=2 16 s+i (1; 1; 1; 1)1=2 16si (1; 1; 1; 1)0 69 hi (1; 1; 1; 2)0 14fi (1; 1; 4; 1)0 4 �fi (1; 1; 4; 1)0 4wi (1; 1; 6; 1)0 5Table 5.1: Quantum numbers of the massless states w.r.t. GSM� [SU(4)�SU(2)℄ and a �eld naming onvention.Two generations are loalized in the ompati�ed spae and ome from the �rsttwisted setor T1, whereas the third generation is partially twisted and partiallyuntwisted:2� 16 2 T1 ; 16 2 U; T2; T4 : (5.10)In partiular, the up�quark and the quark doublet of the third generation are un-twisted, whih results in a large Yukawa oupling, whereas the down�quark is twistedand its Yukawa oupling is suppressed. The 16�plet quantum numbers of the thirdgeneration are not enfored by loal GUTs, but are related to the standard modelanomaly anellation.Apart from the 3 matter families, the model ontains extra states whih are vetor�like with respet to the standard model gauge group. These inlude a pair of Higgsdoublets and additional exoti matter whih, as we show in the subsequent setions,an be onsistently deoupled. A omplete list of quantum numbers of the masslessstates is given in Tabs. D.2 and D.3.5.3 Loal GUT representationsThe matter states of the model an be viewed as originating from representations ofloal GUTs supported at ertain �xed points or planes. States from the �rst twistedsetor orrespond to `brane' �elds living at the orbifold �xed points. As disussed inSe. 2, suh states are invariant under the orbifold ation. Thus they all survive in 4Dand furnish omplete representations of the loal GUTs. On the other hand, statesfrom higher twisted (as well as untwisted) setors are not automatially invariantunder the orbifold ation. Part of the GUT multiplet is projeted out suh that thesurviving states produe inomplete (`split') multiplets in 4D. In partiular, the gaugemultiplets of E8 redue to those of the standard model (and extra group fators). The29



latter an be viewed as an intersetion of loal GUTs at various orbifold �xed points(see e.g. [25℄). We survey the loal GUTs and their representations in Tab. D.1.5.4 Spontaneous gauge symmetry breakingThe e�etive low energy theory of our orbifold model has, in general, smaller gaugesymmetry and fewer massless states than those in Eq. (5.4) and Tab. 5.1. One of thereasons is that there is an anomalous U(1) whih indues a FI D�term,Danom = X q(i)anom j�ij2 + gM2P192�2 tr tanom ; (5.11)where the sum runs over all salars �i with anomalous harges q(i)anom. This D�termmust be zero in a supersymmetri vauum, so at least some of the salars are foredto attain large vauum expetation values, typially not far below the string sale. Asa result, the anomalous U(1) gets broken. Generially, this also triggers breakdown ofother gauge symmetries, under whih the above mentioned salars are harged. Theresulting gauge group and matter �elds at low energies are therefore a subset of thosein Eq. (5.4) and Tab. 5.1.More generally, some of the salars an attain VEVs as long as it is onsistentwith supersymmetry, Fi = Da = 0. In the simplest ase, suh salars are assoiatedwith �at diretions in the �eld spae. In general, supersymmetri on�gurations aredesribed by non�trivial solutions of Fi = Da = 0, whih orrespond to points orlow�dimensional manifolds in the �eld spae. In either ase, this breaks part of thegauge symmetry,G VEVs���! Glow�energy : (5.12)Furthermore, suh VEVs provide mass terms for some of the matter states. In par-tiular, if the superpotential oupling�W = xi �xj � hs�1 :::s�ni (5.13)exists, with xi and �xj being vetor-like states w.r.t. Glow�energy and s�k being thesalars attaining VEVs, then xi and �xj beome massive and deouple from the lowenergy theory.It is ommon that orbifold models ontain states whih are harged under bothGSM and other gauge fators originating from the seond E8. As long as suh gaugefators are unbroken, there is no hidden setor in the model, whih is usually re-quired for spontaneous SUSY breaking. The separation between the �visible� and the�hidden� omes about when some of the salars attain VEVs thereby breaking theunwanted gauge fators. In our model, this ours, in partiular, when some of the69 si states break U(1)8.An interesting property of the model is that none of the osillator states is hargedunder GSM (f. Tabs. D.2, D.3). If all the osillators develop VEVs, the unbroken30



gauge group is GSM � [SU(4) � U(1)℄, while the SM matter is neutral under theadditional U(1). This might be important as it has been argued that giving VEVsto osillator modes orresponds to resolving the onial singularities assoiated withthe �xed points [49℄. This means that the phenomenologially relevant gauge groupsurvives the naive `blowing�up' proedure.Orbifold models with the same gauge shifts and Wilson lines but di�erent salarVEVs lead to distint low�energy theories. For example, in some of them, the standardmodel gauge group is broken. To obtain realisti models, one has to make sure that,�rst of all,� GSM is unbroken,� exoti matter is heavy.There are also further phenomenologial onstraints whih we disuss in the subse-quent setions.5.5 Deoupling the exoti statesA neessary ondition for the deoupling of vetor�like exoti states, without breakingthe standard model gauge group, is the existene of the superpotential ouplingsxi �xj � (SM singlets) : (5.14)Furthermore, the rank of the xi; �xj mass matrix must be maximal suh that nomassless vetor�like states survive. We �nd that in our model the required massterms are allowed and the exoti states an be deoupled.The exoti states harged under GSM are pairs of di and �di, `i and �̀i, s�i and s+i ,and mi. The mass terms for these states have the formWmass = diMijd (s) �dj + �̀iMij̀(s) `j +miMijm(s)mj + s+i Mijs (s) s�j ; (5.15)where s denotes some SM singlets. Taking s = fsig, we �ndMijd (s) = 0BBBB� s5 s5 s5 s5 s5 s3 s3s1 s1 s3 s3 s3 s3 s3s1 s1 s3 s3 s3 s3 s3s6 s6 s6 s3 s3 s6 s6 1CCCCA ; (5.16)
Mij̀(s) = 0BBBBBB� s3 s4 s4 s1 s1 s1 s1 s1s1 s2 s2 s5 s5 s3 s3 s3s1 s2 s2 s5 s5 s3 s3 s3s1 s2 s2 s5 s5 s6 s3 s3s1 s6 s6 s3 s3 s6 s3 s3

1CCCCCCA : (5.17)
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Mijm(s) andMijs (s) are given in Eqs. (D.1) and (D.2) in App. D, respetively. Here, anentry sN indiates the existene of a oupling whih involves N singlets. For instane,the (1; 1) entry of the d- �d mass term inludesWd1 �d1 = d1 �d1(s3s20s39s44s65 + s7s34s35s40s41 + � � � ) ; (5.18)where the oe�ients are omitted. Di�erent entries generally involve di�erent ombi-nations of the singlets as well as di�erent ouplings, suh that the rank of eah massmatrix is maximal. We note that higher N does not neessarily imply signi�antsuppression of the oupling [56℄: s an be lose to the string sale and, furthermore,the oe�ient in front of the oupling grows with N . We �nd that all mass matrieshave maximal rank at order 8. A zero in the mass matries (D.1)�(D.3) of App. D.4indiates that up to order 8 no oupling appears.This result implies that all of the exoti states an be deoupled below the GUTsale or so. In partiular, the rank of Md is 4 suh that only 3 down�type quarkssurvive. M` has, in general, rank 5 resulting in 3 massless doublets of hyperharge�1=2. In order to get an extra pair of (�Higgs�) doublets with hyperharge �1=2and 1=2, one has to adjust the singlet VEVs suh that the rank redues to 4. Thislarge �netuning onstitutes the well known supersymmetri ��problem and will bedisussed in subsequent setions. A further onstraint on the above texture omesfrom the top Yukawa oupling: it is order one if the up�type Higgs doublet has asigni�ant omponent of �̀1.In the above mass matries, s are hosen to be singlets under SU(4)�SU(2)0 suhthat their VEVs breakG �! SU(3) � SU(2)L �U(1)Y �Ghidden ; (5.19)with Ghidden = SU(4) � SU(2)0. Now the model has a truly hidden setor whih anbe responsible for spontaneous SUSY breaking.In the next setion we show that the required on�gurations of the singlet VEVsare in general onsistent with supersymmetry, e.g. Fi = Da = 0. The D��atness isensured by onstruting gauge invariant monomials out of the singlets [57,58℄ involvedin the mass terms for the exoti states. We further show that generally there existnon�trivial solutions to Fi = Da = 0 in the form of low�dimensional manifolds in the�eld spae.Not all vauum on�gurations onsistent with supersymmetry and the deouplingare phenomenologially viable. Further important onstraints are due to� absene of rapid proton deay,� realisti �avour strutures,� small ��term. 32



This strongly restrits allowed VEVs for the singlets. As we show in Se. 8, theseonstraints motivate ertain patterns of the VEVs, in partiular those whih preserveB�L symmetry at the GUT sale.Finally, let us remark on gauge invariane of the ouplings in the framework ofloal GUTs. As stated in Eq. (4.6), a oupling among twisted states is invariant underthe intersetion of loal gauge groups supported at the orresponding �xed points,but not neessarily under eah of the groups. To give an example, onsider an allowedoupling s4 s26 s57. Eah of these singlets originates from a larger representation ofthe loal group. The above oupling arises from the oupling of states ontained in(16;1;1;1) of SO(10)�SU(2)�SU(2)�SO(14), (1;1;4) of SU(7)� [SO(8) � SU(4)℄,and (14;1) of SO(14)� [SO(14)℄. Clearly, it is not SO(10) invariant. This is a speialfeature of loal GUTs.To summarize, we have shown that our model reprodues the exat MSSM spe-trum and the gauge group at low energies. The matter multiplets appear as 3 16�pletsof SO(10). Sine Md is a 4 � 7 matrix and M` is a 5 � 8 matrix, there exists onepair of SU(2) `Higgs' doublets whih do not form omplete GUT representations. Themodel also has a hidden setor.5.6 Orbifold GUT limitsOne of the motivations for revisiting orbifold ompati�ations of the heteroti stringis the phenomenologial suess of orbifold GUTs [14�19℄. In our model, the hyper-harge is orretly normalized and the spetrum is that of the MSSM, whih leads togauge oupling uni�ation at about 2� 1016 GeV. It is therefore interesting to studyorbifold GUT limits of the model, whih orrespond to anisotropi ompati�ationswhere some radii are signi�antly larger than the others. Suh anisotropy may mit-igate the disrepany between the GUT and the string sales and an be onsistentwith perturbativity for one or two large radii of order (2 � 1016 GeV)�1 [59, 60℄. Inthe energy range between the ompati�ation sale and the string sale one obtainsan e�etive higher-dimensional �eld theory.In Z6�II orbifolds, there are four independent radii: two are assoiated with theG2 and SU(3) planes, respetively, and the other two are assoiated with the twoindependent diretions in the SO(4)-plane. Any of these radii an in priniple belarge leading to a distint GUT model.The bulk gauge group and the amount of supersymmetry are found via a subsetof the invariane onditions (2.53) with N < 6. Consider a subspae S of the 6Dompat spae with large ompati�ation radii. This subspae is left invariant underthe ation of some elements of the orbifold spae group, i.e. a subset of twists andtranslations G. The bulk gauge multiplet in S is part of the N = 4 E8 � E8 gaugemultiplet whih is invariant under the ation of G, i.e. a subset of onditions (2.46)restrited to G [25℄. 33
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this is really the ase, logarithmi orretions from loalized �elds, ontributions fromvetor�like heavy �elds and string thresholds have to be taken into aount.The 6D orbifold GUT limits of the model are displayed in Fig. 10. We note thatthe standard model gauge group is obtained as an intersetion of the loal gaugegroups at the orbifold �xed points. For ompleteness, in Tab. D.13 we survey allpossible orbifold GUT limits. For D � 6, we �nd that they are all onsistent withgauge oupling uni�ation in the bulk. The di�erent geometries di�er, however, in thevalues of the gauge ouplings at the uni�ation sale as well as the Yukawa ouplings.6 Supersymmetri vauum on�gurationsIn this setion we disuss supersymmetri vauum on�gurations of our model. Inglobally supersymmetri theories, these require vanishing of the D- and F�terms. Westart with the disussion of the D�terms.6.1 D��atnessIn a supersymmetri gauge theory with an anomalous U(1), vanishing of the D�termsrequires Da = Xi ��iTa�i = 0 ;Danom = Xi q(i)anom j�ij2 + gM2P192�2 tr tanom = 0 ; (6.1)where Ta are generators of the gauge group and tanom is the generator of an anomalousU(1). In partiular, to have a vanishing FI D�term, there must exist at least one �eldwhose anomalous harge is opposite in sign to that of tr tanom.In theories without an anomalous U(1), these onditions are satis�ed if there existsa gauge invariant monomial I(�i) [57℄. The D��at �eld on�gurations are found from� �I��i� =  h��i i ; (6.2)where  is a onstant and hxi denotes the VEV of x. On solutions of this equation,gauge invariane of I simply means Da = 0 [57℄. If an anomalous U(1) is present,D��atness requires the existene of I(�i) whih is gauge invariant with respet toall symmetries apart from U(1)anom and whih arries a net anomalous harge whosesign is opposite to that of tr tanom (see, e.g., [12, 61, 62℄).Therefore, searhing for a D��at on�guration amounts to �nding gauge invariantmonomials with the above properties. Clearly, suh monomials an be multipliedtogether while preserving the required properties. We are partiularly interested in35



the U(1)N gauge theory whih is relevant when the non�Abelian singlets si get VEVs.In this ase, the gauge invariant monomial(s1)n1 (s2)n2 : : : (sk)nk ; ni 2 N ; (6.3)represents the D��at diretionjs1j=pn1 = js2j=pn2 = : : : = jskj=pnk (6.4)in the �eld spae. The overall sale of these VEVs is �xed by the FI D�term.Starting with the anomalous U(1) D�term, an example of a gauge invariant mono-mial with a negative anomalous harge is given byI1 = (s12)2 s39 s55 s56 : (6.5)Clearly, it is not unique (f. Tab. D.6). In partiular, it an be multiplied by a mono-mial with zero anomalous harge. We �nd that every si that enters the mass matriesfor the exoti states also enters a gauge invariant monomial (see Tab. D.5). Thisshows that si an be given large VEVs while having vanishing D�terms.There is also another algorithm to hek the D��atness for the required singleton�guration. Mass terms for vetor�like exoti matter xi are generated byW = Xij xi�xjMij(s) (6.6)with Mij(s) = Xn Xk1;:::;kn ij(k1; : : : ; kn) sk1 : : : skn ; (6.7)where ska are the singlets and ij(k1; : : : ; kn) are some oe�ients. Any monomial of�elds in the superpotential is gauge invariant and represents a D��at diretion. Thusmultiplying all of the monomials together, we again get a �at diretion. However, wedo not want to give VEVs to the exoti matter �elds xi sine this would break thestandard model gauge group. So, one needs to replae those with some SM�singletswhih have the same total U(1)�harges:U(1)-harges0� YMij 6=0 xi�xj1A = U(1)-harges �sl1 : : : sln� : (6.8)This is just one equation. In our ase, there are many singlet monomials satisfyingthis equation and one of them iss7(s19)4s26s36s39(s40)5(s48)18s55(s56)3(s57)7(s64)2(s68)42(s69)27 : (6.9)To anel the FI term, one has to multiply it with the monomial I1 whih has anegative anomalous harge. This shows that one an give VEVs to all singlets involvedin the deoupling of extra matter onsistently with the D��atness.36



6.2 Some of the F��at diretionsThe requirement Fi = 0 for a singlet si is most easily satis�ed if si is an F��atdiretion, i.e.,�W�si = 0 (6.10)for arbitrary values of si. (When si is not a �at diretion, Fi = 0 is satis�ed only atspeial values of si.) The existene of suh �at diretions usually requires that theVEVs of some other singlets appearing in the superpotential be zero.Many exatly F��at diretions an be obtained from the seletion rule (4.8) forthe superpotential ouplings,XR3 = � 1 mod 2 : (6.11)As seen from Tabs. D.2 and D.3, all of the non�Abelian singlets in U , T2, T4 setorshave R3 = 0. Thus they annot ouple among themselves onsistently with the rule(6.11). Furthermore, they annot ouple to a single state in T1;3 sine the latter haveR3 = �1=2 and at least two of suh states are needed to have an allowed oupling.That means that the F�terms are proportional to a VEV of some state in T1;3:Fi � �W�si � hsinglet from T1;3i = 0 ; (6.12)as long as all singlets in T1;3 have zero VEVs. Thus one immediately gets 39 exatlyF��at diretions assoiated with si from theU; T2; T4 (6.13)setors. By this we mean that the 39 �elds are allowed to attain non�zero VEVssimultaneously, without referring to the number of real variables parametrizing suhVEVs.One an also show that these diretions are D��at10. In partiular, eah non�Abelian singlet from U; T2; T4 enters a gauge invariant monomial whih involves onlyU; T2; T4 singlet states. Furthermore, it is possible to onstrut a monomial with anegative net anomalous harge. An example is (see also Tab. D.7)I = s34 s35 s40 s39 s67 : (6.14)That means one an give non�zero VEVs to the U; T2; T4 singlets while preserving su-persymmetry. Some of suh states presumably orrespond to the �blowing�up� modesof the orbifold whih allow one to interpolate between a smooth Calabi�Yau manifoldand an orbifold.These �at diretions allow us to deouple many exoti states but not all. One anperhaps inrease the dimensionality of the F� and D��at spae by inluding non�Abelian �at diretions or by other onsiderations. We also note that, for pratial10 The requirement of the D�terms anellation �xes some of the �eld VEVs.37



purposes, �atness is only required up to a ertain order in superpotential ouplingsand one may exploit approximately �at diretions.In any ase, �at diretions are not neessary for the deoupling. As we disussbelow, supersymmetri �eld on�gurations are in general more ompliated and allowfor the deoupling of the exoti states.6.3 General supersymmetri �eld on�gurationsGiven a set of 69 states si, supersymmetri �eld on�gurations are given by the setsof VEVs hsii whih satisfy Fi = Da = 0. Naively, it appears that the number ofonstraints, that is 69 plus the number of the gauge group generators, is larger thanthe number of variables, 69. The system seems to be overonstrained. However, this isnot the ase. As well known, omplexi�ed gauge transformations allow us to eliminatethe D�term onstraints ( [63℄, [64, Chapter VIII℄), suh that the number of variablesequals the number of equations. In what follows, we demonstrate this for Abelian andnon�Abelian ases.6.3.1 Abelian aseConsider a supersymmetri U(1)N gauge theory with n harged �elds zi. The super-potential an be written asW = X(a) I(a)(z1; : : : ; zn) : (6.15)Here I(a) are gauge invariant monomials (some of whih may be reduible, i.e. aprodut of lower order monomials),I (z1; : : : ; zn) =  zk11 : : : zknn (6.16)with  being a onstant andk1Q1 + � � �+ knQn = 0 ; (6.17)where Qi = (q1i ; : : : ; qNi ) is an N�vetor of U(1) harges of the �elds zi.Supersymmetry is preserved in the vauum ifFi = 0 ; Da = 0 ; i = 1; : : : ; n ; a = 1; : : : ; N : (6.18)Start with the F�terms. Fi = 0 an be written as11Fi(z) � �W�zi = 0 (6.19)11Here we de�ne the F omponent suh that it has the quantum numbers of z�.
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for all i. Sine there are n suh equations and n variables, there are solutions. Ingeneral, there are solutions with zi 6= 0 (for example, when W is a non�trivial poly-nomial).12Consider a solution with zi 6= 0. Note that Fi(z) is not gauge invariant, buttransforms as z�1i . As a onsequene, if fz0kg is a solution to Fi(z) = 0, then thetransformationz0k ! z0k = z0k (�1)q1k(�2)q2k � � � (�N )qNk ; (6.20)leaves the F�terms vanishing,Fi(z0) ! Fi(z0) = Fi(z0) (�1)�q1i (�2)�q2i � � � (�N )�qNi = 0 ; (6.21)where �i are arbitrary omplex numbers and qai is the a-th U(1) harge of zi. There-fore, given a solution z0i to the F�term equations, it an be resaled as above to givea family of solutions. In fat, it an be resaled in suh a way that all the D�termsvanish:Da(z0) = Xi qai jz0ij2 = Xi qai jz0i j2j�1j2q1i j�2j2q2i : : : j�N j2qNi = 0 (6.22)for a = 1; : : : ; N . The N resaling parameters j�ij are found from the above Nequations. In terms of the resaled variables z0i, these solutions are enoded in thegauge invariant monomials z0 k11 : : : z0 knn suh thatjz01j=pk1 = jz02j=pk2 = : : : = jz03j=pkn (6.23)is a D��at diretion. This latter equation allows to �nd �i most easily and also showsthat sensible solutions to Eq. (6.22) exist, i.e. j�ij2 > 0. 13Let us now turn to the D�term of an anomalous U(1). The omplexi�ed gaugetransformation whih leaves Fi = 0 intat isz0i ! z0i = �q(i)anomz0i ;Danom(z0) = Xi q(i)anom jz0i j2j�j2q(i)anom + gM2P192�2 tr tanom : (6.24)As long as there is a �eld whose anomalous harge is opposite in sign to that of tr tanom,the D-term an be anelled. Suppose tr tanom < 0, then Danom < 0 for �q(i)anom ! 0and Danom > 0 for �q(i)anom !1. Therefore, there is a solution to Danom = 0 for �nite�q(i)anom .12In partiular, this is generally the ase in string orbifold models. The reason is that if a superpotentialW0 is allowed by string seletion rules, WN0 is also allowed for some integers N . For example, in the Z6ase, one has W � W0 +W 70 + : : : . Suh superpotentials allow for non�trivial solutions to the F�termequations (onsider, e.g., W0 = z1z2z3).13Note that if 2 �elds z1;2 with idential harges are present, one has to be autious. As far as the D�termequations go, these two �elds an be treated as one, i.e. zk11 zk22 ! zk1+k22 and qa1 jz1j2 + qa2 jz2j2 ! qa2 jz2j2.39



It is now lear that the D�term onstraints an be satis�ed by an appropriatehoie of omplexi�ed gauge transformations. This means that the number of SUSYonditions Fi = 0 equals the number of variables zi, suh that (non�trivial) solutionsgenerally exist. Suh solutions an be points (up to gauge transformations) or lowdimensional manifolds in the �eld spae.6.3.2 Non�Abelian aseLet us now onsider the ase of a non�Abelian gauge theory following Ref. [64, Chap-ter VIII℄. This situation arises in our onstrution when one assigns VEVs to thedoublets of the hidden setor SU(2). As in the Abelian ase, if fz0kg is a solution tothe F�term equations Fi(z) = 0, thenz0 = exp iXa �aTa! z0 (6.25)is also a solution, where Ta are the group generators and �a are omplex parameters.This is beause Fi transforms as z�1i , i.e., F (z0) = exp(�iP�aTa)F (z0).The D�terms, Da(z) =Pi zyi Tazi, transform in the adjoint representation underthis transformation. There is always a group element whih transforms vetor Dainto (x; 0; ::; 0) orresponding to the diretion of one of the Cartan generators Tâ, i.e.Da ! Dâ = Pi zyi Tâzi. Writing (Tâ)ij = �iÆij with real �i, the only non�vanishingD�term isDâ(z0) = Xi �ijz0ij2 : (6.26)The omplexi�ed gauge transformation along this diretion,z0i ! z�i = exp(�i�) z0i ; (6.27)with real �, leaves Fi(z�) = 0 and transforms the D�term intoDâ(z�) = Xi �ie2�i�jz0ij2 : (6.28)In the non�degenerate ase, Dâ(z�) ! �1 for � ! �1.14 Therefore, there is asolution to Da = 0 for �nite � and hene �nite z�i .6.3.3 Summary and appliationsEmploying omplexi�ed gauge symmetry, we have shown that the system of equa-tions Fi = Da = 0 in globally supersymmetri models is not overonstraining. Inpartiular, solutions to Fi = 0 exist sine the number of equations equals the number14An example of the degenerate ase is an SU(2) theory with 2 fundamental multiplets h1;2 and W =(h1h2)n. The solution to the F�term equations is h2 = h1 suh that all gauge invariant monomials vanish.The D�terms vanish only for h1;2 = 0 orresponding to j�j ! 1.40



of omplex variables and in general some of these solutions are non-trivial. One anon�trivial solution to Fi = 0 is found, it an be transformed using omplexi�edgauge symmetry to satisfy Da = 0. This onlusion is based on the observation thatthe F�term equations onstrain gauge invariant monomials, while suh monomialsare also assoiated with D��at diretions.Consequently, supersymmetri �eld on�gurations in orbifold models form lowdimensional manifolds or points (up to gauge transformations). In suh on�gurations,SM singlets generally attain non�zero VEVs, typially not far below the string sale.As a result, when suh VEVs play a role of the mass terms for vetor�like exotistates, the deoupling of the latter an be made onsistently with supersymmetry.The above onsiderations apply to globally supersymmetri models at the pertur-bative level. In pratie, we expet supergravity as well as non�perturbative e�etsto play a role in seleting vaua. However, it would be very di�ult to quantify suhe�ets at this stage. We note that, in existing literature, it is rather ommon to amendthe global SUSY onditions Fi = Da = 0 by hW i = 0 (see e.g. [50℄), whih implies avanishing osmologial onstant in supergravity. Suh a ondition should however beimposed on the total superpotential whih inludes, in partiular, non�perturbativepotentials for moduli. Thus, requiring hW i = 0 does not set any immediate onstrainton the harged matter VEVs. At this stage, we inlude only the most important su-pergravity e�et, that is gaugino ondensation in the hidden setor, whih we disussin the next setion.7 Spontaneous supersymmetry breaking7.1 Hidden setor gaugino ondensationAs supersymmetry is broken in nature, realisti models should admit spontaneoussupersymmetry breakdown. An attrative sheme for that is hidden setor gauginoondensation [65�68℄. In this ase, a hierarhially small supersymmetry breakingsale, whih is favoured by phenomenology, is explained by dimensional transmuta-tion.The basi idea is that one or more gauge groups in the hidden setor beomestrongly oupled at an intermediate sale. This leads to on�nement and gauginoondensation. Under ertain irumstanes, that is if the dilaton is stabilized, gauginoondensation translates into supersymmetry breaking. In partiular,h��i1=3 � 1013GeV ; (7.1)leads to the gravitino mass in the TeV range, m3=2 � h��i=M2P. The ondensationsale � � h��i1=3 is given by the Landau pole of the ondensing gauge group,� = MGUT exp�� 12� 1g2(MGUT)� : (7.2)41



For ertain gauge groups and matter ontent, � an be in the right range.Gaugino ondensation leads to supersymmetry breaking only if the dilaton isstabilized at a realisti value. Models with a single gaugino ondensate and a las-sial Kähler potential su�er from the notorious dilaton run�away problem. Thatis, gaugino ondensation reates a non�perturbative superpotential for the dilatonW � exp(�aS) � h��i (where a = 3=2�) whih leads to S ! 1 at the minimumof the salar potential. There are two ommon options to avoid this problem: employmultiple gaugino ondensates or use non�perturbative orretions to the Kähler po-tential. The �rst option is not available in our model as the hidden setor SU(2) eitherdoes not ondense or its ondensation sale is too low, and we are left with a singleSU(4). Thus, we use the seond option. In this ase, the lassial Kähler potential forthe dilaton is amended by non�perturbative orretions,K = � ln(S + S) +�Knp : (7.3)The funtional form of �Knp has been studied in the literature [69�74℄. For afavourable hoie of the parameters, this orretion allows one to stabilize the dilatonat a realisti value, ReS ' 2, while breaking supersymmetry [71, 73�76℄. Supersym-metry is broken spontaneously by the dilaton F�term,FS � h��iMP ; FT � 0 ; (7.4)where T is the heteroti T�modulus. In what follows, we will estimate the gauginoondensation sale in our model without going into details of the dilaton stabilizationmehanism.The ondensing gauge group in our ase is SU(4). The ondensation sale dependson the matter ontent. If all the singlets have zero VEVs, there are 5 6�plets and 4pairs of 4+ 4. The orresponding beta funtion is�SU(4) = 116�2 �12�#(6)�#(4+ 4)	 ; (7.5)where #(R) ounts the number of representations R. With the above matter ontent,SU(4) is asymptotially free but the ondensation sale is too low. In a general �eldon�guration, the 6�plets and the pairs 4 + 4 reeive large masses (see Eqs. (D.3)and (D.4)) and are all deoupled. In this ase, the beta funtion beomes�SU(4) = 34�2 : (7.6)The ondensation sale is then 1010 � 1011 GeV. There are many fators that ana�et it. In partiular, there are string threshold orretions [77�81℄ whih lead todi�erent gauge ouplings in the visible and hidden E8. The orresponding gaugekineti funtions are given by [77, 80, 81℄fvis=hid = S � � T ; (7.7)42



where � is a small parameter and, for simpliity, we have taken a large T limit. Thegauge ouplings are found fromRe f = g�2 : (7.8)In the visible setor, the apparent gauge oupling uni�ation requires g�2GUT ' 2,whereas the hidden setor gauge oupling isg�2hid(MGUT) = Re fhid ' 2 (1 ��) ; (7.9)where � parametrizes string threshold orretions. The orresponding ondensationsale is� ' MGUT exp �� 1� (1��)� : (7.10)For� between 0 and 0.3, the ondensation sale ranges between 5�1010 and 1013GeV(f. Fig. 11). Thus a TeV sale gravitino mass an in priniple be obtained.
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Figure 11: Sale dependene of the hidden setor SU(4) gauge ouplingfor di�erent threshold orretions �.There are of ourse other fators that an a�et the above estimate. For example,the SUSY breaking sale depends on oe�ients entering a partiular dilaton sta-bilization mehanism. Also the identi�ation of the Landau pole with h��i1=3 is notpreise. The main point, however, is that the model ontains the neessary ingredientsfor gaugino ondensation and SUSY breaking in the phenomenologially interestingrange.7.2 Soft SUSY breaking termsThe Kähler stabilization mehanism leads to a spei� pattern of the soft terms, theso alled �dilaton dominated senario� [82℄. The resulting soft terms are universal and43



given byLsoft = 12(M�a�a + h..)�m2����� ��16A Y������� + h::� ; (7.11)where �a are the gauginos, �� are the salars and Y�� are the Yukawa ouplings.Dilaton dominated SUSY breaking implies the following relations among the softbreaking parameters (see e.g. [83℄):M = �p3m3=2 ; m = m3=2 ; A = �M : (7.12)This is a restrited version of mSUGRA with the only independent parameter beingthe gravitino mass m3=2. Here we do not disuss the � and B� terms whih dependon further details of the model.The dilaton dominated senario has a number of phenomenologially attrativefeatures. In partiular, due to �avour universality in the soft breaking setor, it avoidsthe SUSY FCNC problem. Also, most of the physial CP phases, e.g. arg(A�M),vanish whih ameliorates the SUSY CP problem. Other phenomenologial aspetshave been disussed in Ref. [84℄.The above onsiderations are based on the assumption that the dilaton is stabilizedvia non�perturbative orretions to the Kähler potential. Dilaton and other modulistabilization is a di�ult issue and there may exist other possibilities whih ouldlead to other patterns of the soft terms.8 B�L symmetry and phenomenologyRealisti string vaua must satisfy a number of phenomenologial onstraints, inaddition to those imposed by the spetrum and the gauge group of the MSSM. Inpartiular, the proton should be su�iently stable as well as �avour strutures shouldbe realisti. This onstrains vauum on�gurations for the SM singlets. In generivaua, there are baryon number violating operators already at the renormalizablelevel, so in order to avoid rapid proton deay one must be able to tune the VEVsand suppress suh operators. This appears rather arti�ial and one may ask whetherthere is a deeper reason behind it.In this setion, we explore vaua preserving the B�L symmetry at the high energy(GUT) sale, whih appear phenomenology attrative. In this ase, the renormalizableR�parity violating ouplingsW�R = �i `i �u + �ijk`i `j ek + �0ijk`i qj dk + �00ijkui dj dk (8.1)are prohibited, leading to suppression of proton deay. The B�L symmetry �tsnaturally into the onept of loal GUTs: it is related to the SO(10) B�L generator,although there are di�erenes. Finally, B�L an be broken at an intermediate sale44



whih might indue small R�parity violating ouplings and ould be related to thesmallness of the neutrino masses.Having suppressed B�L violation, we further study whether the required singletVEV on�gurations allow for the deoupling of the exoti matter, realisti �avourstrutures and a small ��term.In this setion, we study a partiular singlet VEV on�guration for whih we areable to prove the D��atness, but not the F��atness. Sine the phenomenologialanalysis is intratable for the general ase, we hope that the onsiderations below willprovide some guidane to the further searh for realisti vaua.8.1 Vauum on�gurations with unbroken B�LThe �rst step is to obtain singlet VEV on�gurations whih preserveGSM �U(1)B�L � [SU(4)℄ :Here we keep the hidden setor SU(4) unbroken whih is needed for gaugino onden-sation.Let us now identify a B�L generator. An obvious option would be to use the B�Lof SO(10). This however leads to anomalous B�L symmetry, tSO(10)B�L � tanom 6= 0. It ispossible to modify this generator suh that the resulting B�L is non�anomalous andthe B�L harges for the members of the 16�plets are the standard ones. Requiringfurther that the hidden setor SU(2) doublets hi be neutral under U(1)B�L, �xes15tB�L = �0; 1; 1; 0; 0;�23 ;�23 ;�23� �12 ; 12 ; 12 ;�12 ; 0; 0; 0; 0� : (8.2)The B�L harges of matter �elds are shown in Tabs. 8.1, D.10-D.12. The qi and uistates have the standard harges, while only four out of seven di have the right harge(�1=3) to be identi�ed with the down type anti�quarks. The di states with exotiB�L harges as well as one linear ombination of the di's with harge �1=3 pairup with four di's and deouple from the low energy spetrum. Similar onsiderationsapply to the lepton setor. The lepton doublets arry harge �1, while the Higgsdoublets are neutral. One pair of `i and `i with qB�L = 0 must remain in the masslessspetrum and is identi�ed with the physial Higgs bosons.Among the 69 SM singlets si, 30 are neutral under B�L , 21 have harge +1 and18 have harge �1 (f. Tab. D.10). This exess of positively harged si leads to a netnumber of three `right�handed' neutrinos.Let us now onsider on�gurations in whih only states neutral under GSM �U(1)B�L� [SU(4)℄ are allowed to develop VEVs. Suh states inlude si with zero qB�L15This is the only phenomenologially viable U(1)B�L generator, up to an irrelevant omponent in thet9 diretion. 45



�eld B�L hargesqi �13 ; 13 ; 13	�ui ��13 ;�13 ;�13	�di ��13 ;�13 ; 23 ;�13 ;�13 ; 23 ; 23	di ��23 ;�23 ;�23 ; 13	`i f0;�1;�1; 0; 0; 0;�1;�1g�̀i f0; 0; 0; 1; 0g�ei f1; 1; 1gTable 8.1: B�L harges of the relevant matter �elds.and the SU(2)0 doublets hi. For our purposes, it su�es to restrit ourselves to aertain subset of these �elds. In partiular, we assume thaths2; s5; s7; s9; s20; s23; s34; s41; s48; s58; s59; s62; s65; s66;h1; h3; h6; h8; h9; h10; h11; h12; h13i = 0 ; (8.3)while fesig = fs1; s3; s12; s14; s16; s18; s19; s22; s24; s39; s40; s53; s54; s57; s60; s61;h2; h4; h5; h7; h14g (8.4)develop non�zero VEVs. We �nd that suh a on�guration is D��at sine every �eldfrom fesig enters a gauge invariant monomial onsisting exlusively of fesig states(Tab. D.8). Also, it is possible to onstrut a monomial out of these states whihhas a negative net anomalous harge (Tab. D.9). The set fesig does not represent anF -�at diretion. To preserve supersymmetry, we assume that there exist non�trivial�eld on�gurations in fesig with vanishing F�terms. Then, as desribed in Se. 6,omplexi�ed gauge transformations allow us to satisfy Da = 0 at the same time. Theset fesig breaks all extra U(1)'s but U(1)B�L.8.2 Deoupling the exoti statesThe �rst question is whether it is possible to deouple all of the exoti states by givingVEVs to the set fesig only. To answer this question, we realulate the mass matriesfor the exoti matter. The relevant superpotential ouplings are of the formW = xi �xjMijx (es) with Mijx (es) = Xesi1 � � � esin ; (8.5)and xi; �xj being the vetor�like pairs. Inluding the ouplings up to order 10, theresulting mass matries areMijd (es) = 0BBBB� 0 0 es6 0 0 es6 es60 0 es6 0 0 es7 es70 0 es6 0 0 es7 es7es8 0 0 es6 es6 0 0 1CCCCA ; (8.6)46



Mij̀(es) = 0BBBBBB� es3 0 0 0 0 es8 0 0es 0 0 0 0 es6 0 0es 0 0 0 0 es6 0 00 es8 es8 0 0 0 es6 es6es 0 0 es6 es6 0 0 0
1CCCCCCA : (8.7)Here the olumns in Mijd orrespond to �dj and the rows to di; in Mij̀ , the olumnsorrespond to `j and the rows to �̀i. Mijm(es), Mijs (es), Mijf (es), and Mijw(es) are givenby Eqs. (D.5)�(D.8) in App. D.4. As before, an entry esN implies that there is anallowed oupling involving N states esi. For instane, the d1; �d3 mass term inludesWd1 �d3 = d1 �d3(s16 s40 h4 h14 h5 h14 + � � � ) : (8.8)Although the form of the mass matries is quite restrited, all of them have themaximal rank, apart from the �̀i; `j matrix whose rank is 4. This means that all ofthe exoti states are deoupled and one Higgs pair �̀; ` is massless, as required.Clearly, some of the zeros of the mass matries are ditated by the B�L symmetry(see Tabs. 8.1, D.11, D.12). The massless down type anti�quarks are 3 linear ombi-nations of the 4 �di states with qB�L = �1=3, namely �d1, �d2, �d4 and �d5. The remaininglinear ombination ouples to d4 and beomes heavy. Likewise, the physial leptondoublets are the 3 linear ombinations of `2, `3, `7 and `8 whih do not ouple to�̀4. Interestingly, this type of struture has reently been explored in the ontext oforbifold GUTs [24℄. It was shown that a mixing between hiral and vetor�like statesan lead to realisti �avour patterns.Not all texture zeros an be understood from the B�L symmetry. For instane,B�L does not forbid the �̀1; `j>1 ouplings suh that additional input is needed. Aswe shall see, these zeros are ruial for identi�ation of the Higgs doublets.8.3 Higgs doublets and �avour strutureIn our model, the only renormalizable B�L onserving Yukawa oupling whih in-volves SM matter isW = g q1 �u1 �̀1 : (8.9)This is a superpotential of the typeU1 U2 U3 (8.10)with the untwisted super�elds Ui formed out of the ompati�ed omponents of theE8 gauge multiplets in 10D. For example, for the salar omponents we have ~U1 /A4 + iA5, et., where Ai are the gauge �eld omponents in the ompat diretions.This an be understood by realling that the gauge supermultiplet in 10D deomposesinto 1 vetor and 3 hiral N = 1 multiplets in 4D. The above superpotential results47



from the kineti term of the gauge supermultiplet in 10D with the orrespondingYukawa oupling being the gauge oupling at the string sale.As long as �̀1 has a signi�ant omponent in the physial up�type Higgs dou-blet, the superpotential (8.9) naturally leads to a heavy top quark. The top Yukawaoupling is then of the order of the gauge oupling at the string sale,Yt � g : (8.11)This remarkable top Yukawa�gauge uni�ation (Fig. 12) stems from the fat thatthe top quark is a gaugino in 10D. The other quark Yukawa ouplings vanish atthe renormalizable level. We note that a large top Yukawa oupling has also beenobtained in earlier analyses of the fermion masses [85℄ - [87℄, [22℄.
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Figure 12: An idealized piture of gauge�top Yukawa uni�ation. Here�i = g2i =(4�), �t = Y 2t =(4�) and we have assumed that Yt = gi at theGUT sale.This attrative mehanism is at work when �̀1 ' �u. Inspetion of the `i �̀j massmatrix (8.7) shows that the �rst 3 rows are linearly dependent and the �̀1 `1 ouplingappears only at order 5 while the �̀i `1 ouplings with i = 2; 3 our already at order3. Thus, if the relevant ~si VEVs are below the string sale, one expets at least mildsuppression of the (1; 1) entry. Then, the massless up-type Higgs is dominated by �̀1,�u ' �̀1 + Xi=2;3 "i �̀i ; j"ij � 1 ; (8.12)whereas the down-type Higgs is a linear ombination of `4 and `5,�d = `4 a+ `5 b ; (8.13)with jaj; jbj of order one. Our hoie of the vauum on�guration esi (Eq. (8.4)) wasin part motivated by these onsiderations.At this stage, the Higgs doublets �u;d are massless. In ontrast to the onventional4D GUTs, no �netuning is required to keep the doublets light while deoupling the48



olor triplets. If the B�L symmetry gets broken at an intermediate sale, a small�-term will be generated.Having identi�ed the Higgs doublets and the top quark, we turn to the disussionof the remaining Yukawa ouplings. The relevant superpotential isWYukawa = Y iju (es)�u qi �uj + Y iad (es)�d qi �da + Y ibe (es)�d �ei `b ; (8.14)where a 2 f1; 2; 4; 5g and b 2 f2; 3; 7; 8g. The Yukawa matries at order 10 areY iju (es) = 0B� g es6 es4es3 0 es7es7 es7 0 1CA ; (8.15)Y iad (es) = 0B� 0 es6 es2 es2es5 0 es5 es50 es5 es es 1CA ; (8.16)Y ibe (es) = 0B� 0 es6 0 0es5 0 0 00 es5 0 0 1CA : (8.17)The low-energy 3 � 3 Yd and Ye Yukawa matries16 are obtained by integrating outone linear ombination of �da (a = 1; 2; 4; 5) whih pairs up with d4 and one linearombination of `b (b = 2; 3; 7; 8) whih pairs up with �̀4. Their preise form dependson various oe�ients, so let us only disuss their main features.The quark Yukawa matries have the full rank suh that, in general, there are nomassless eigenstates. The lepton Yukawa matrix has rank 2 implying that the eletronis massless to order 8 in the superpotential. Also, there appears one massless pair off�plets in the hidden setor, whih somewhat lowers the gaugino ondensation sale.Assuming that the relevant esi have VEVs below the string sale, the Yukawaouplings are hierarhial and resemble the Froggatt�Nielsen struture [40℄. However,the hierarhy appears due to the string seletion rules rather than the U(1) hargeassignment only as in the original Froggatt�Nielsen mehanism.It is remarkable that the up�type quarks tend to be heavier than the down�typequarks, whih in turn are heavier than the leptons. We also note that the Yukawamatries generally ontain non�trivial CP phases due to omplex ~si VEVs.8.4 Proton stability and B�L breakdownThe B�L symmetry enfores absene of renormalizable operators leading to protondeay. However, non�renormalizable B�L onserving operators suh asW = �(1)ijkl qi qj qk `l + �(2)ijkl �ui �uj �dk �el (8.18)16Here we neglet orretions to the Kähler potential.49



also indue proton deay. The resulting onstraint on �(1)ijkl and �(2)ijkl involving the�rst two generations is very tight [88, 89℄,�(1;2)ijkl . 10�8MP : (8.19)The operators (8.18) are indued both diretly and by integrating out the vetor�like matter. For example, integrating out a heavy pair d2 �d6 from the superpotentialW = q2q2d2 + q3`3 �d6 yields W � q2q2q3`3. These operators an be suppressed eitherby tuning the ~si VEVs or by an additional, perhaps disrete, symmetry [90,91℄. Thisissue will be disussed elsewhere.Breaking B�L is a di�ult issue. It has to our at an energy saleMB�L well belowMstring. In the following, we assume that the sale MB�L is generated dynamially,without breaking SUSY.B�L breaking VEVs �ll in the zeros of the mass matries, in partiular, (8.7).This generates the ��term, W = � �u�d. Assuming that apart from ~si, only statesharged under B�L get non�zero VEVs, its magnitude is (n � 1)� � Mn+1B�LMnstring : (8.20)For an intermediate sale MB�L, this an give a phenomenologially viable ��term.B�L breakdown generates masses for the right�handed neutrinos. Our onstru-tion has the neessary ingredients for the seesaw, i.e., neutrino Yukawa ouplings andlarge Majorana neutrino masses. A detailed analysis of this issue will be presentedelsewhere.Finally, small R�parity violating ouplings are generated. Their magnitude is givenby (MB�L=Mstring)m with m depending on the type of the oupling. For m � 2, anintermediate sale MB�L suppresses proton deay su�iently [92℄.To onlude, in this setion we have studied a vauum on�guration with on-served B�L at the string sale. This suppresses renormalizable R�parity violatingouplings as well as the ��term. Furthermore, �avour strutures à la Froggatt�Nielsenarise as a onsequene of the string seletion rules.9 OutlookGuided by the idea of loal grand uni�ation we have onstruted an orbifold om-pati�ation of the heteroti string whih leads to the supersymmetri standard modelgauge group and partile ontent. The model has large vauum degeneray. For er-tain vaua with unbroken B�L symmetry, the resulting phenomenology is partiularlyattrative. In this ase, one pair of Higgs doublets is massless automatially, with thesubsequently generated ��term being due to B�L breaking. The top quark Yukawaoupling is of the order of the gauge oupling and the arising pattern of Yukawaouplings is reminisent of the Froggatt-Nielsen textures.50



These results an be the �rst steps towards a fully realisti theory. They immedi-ately lead, however, to further questions whih onern detailed properties of SUSYvaua, B�L breakdown, inorporation of the seesaw mehanism, identi�ation ofR�parity and proton deay. Furthermore, e�ets of string threshold orretions andother ontributions on gauge oupling uni�ation have to be studied. Eventually, onewould like to determine quantitatively the Yukawa ouplings for spei� supersym-metri vaua.On the oneptual side, a deeper understanding of the deoupling of exoti statesis partiularly desirable. Orbifolds often represent speial points in the moduli spaeof more general Calabi�Yau ompati�ations. Non�zero vauum expetation valuesof spei� standard model singlets orrespond to other points in the moduli spaewhere the orbifold singularities have been blown up. Sine these vauum expetationvalues also generate mass terms, at least some of the unwanted exoti states shouldbe absent in ompati�ations on smooth manifolds. The orbifold limit of Calabi-Yauompati�ations is well understood for the standard embedding [93℄ but remains tobe studied in detail for non�standard embeddings whih are relevant to the modelspresented in this paper.Finally, it is important to searh for other models in the framework of the E8�E8and the SO(32) heteroti string with loalized 16�plets of SO(10) [94, 95℄. It wouldalso be very interesting to understand the onnetion between orbifold ompati�-ations and ompati�ations on Calabi�Yau manifolds endowed with vetor bun-dles [36, 37, 96�98℄, whih have many phenomenologially appealing features.AknowledgmentsWe would like to thank R. Blumenhagen, M. Cveti�, A. Hebeker, T. Kobayashi,W. Lerhe, M. Lindner, J. Louis, F. Plöger, S. Raby, S. Ramos-Sánhez, S. Stieberger,S. Theisen, P. K. S. Vaudrevange and in partiular H. P. Nilles for valuable disussions.We are indebted to P. K. S. Vaudrevange for pointing out an error in the stringseletion rules presented in an earlier version of this paper.This work was partially supported by the EU 6th Framework Program MRTN-CT-2004-503369 �Quest for Uni�ation� and MRTN-CT-2004-005104 �ForesUniverse� aswell as the virtual institute VIPAC of the Helmholtz soiety.
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A Sample alulationsIn this appendix, we present details of the spetrum alulation for our model. Thesealulations are straightforward but tedious. For pratial purposes, it is onvenientto automatize them by means of a omputer algebra system.A.1 Gauge groupThe 4D gauge group is obtained by subjeting the E8 roots p (p2 = 2) to the projetiononditionsp � V6 2 Z ; (A.1a)p �W2 2 Z ; (A.1b)p �W3 2 Z : (A.1)Consider ondition (A.1a). The roots of the �rst E8 surviving the twist arep 2 ��(1; 1; 06);�(1;�1; 06);�(03; 1; 1; 0; 0; 0); (03; 1;�1; 0; 0; 0)	 ; (A.2)where the underline denotes permutations and the supersripts indiate repeatedentries. The simple roots are by de�nition the smallest linearly independent positiveroots (f. [99℄). For a suitable hoie of positivity, they readfpsrg = �(1; 1; 06); (1;�1; 06);(03; 1;�1; 03); (04; 1;�1; 02); (05; 1;�1; 0); (06 ; 1;�1); (06; 1; 1)	 : (A.3)Calulating the Cartan matrix Aij = pisr � pjsr, one �nds that the simple roots inthe �rst line orrespond to the raising operators of two SU(2) fators whereas thosein the seond line orrespond to SO(10). Thus, the gauge group after twisting isSO(10) � SU(2)2, whih also orresponds to the loal gauge symmetry at the origin(f. Tab. D.1).The Wilson line projetions (A.1b) and (A.1) lead to the simple roots�(05; 1;�1; 0); (06 ; 1;�1); (03; 1;�1; 03)	 ; (A.4)whih orrespond to the gauge groups SU(3) and SU(2) in 4D. All E8 Cartan gen-erators survive the projetion. They give rise to the Cartan generators of SU(3) andSU(2) and to �ve U(1) generators. The latter an be represented by vetors perpen-diular to the simple roots (Eq. (5.5)). The surviving subgroup of the seond E8 isobtained analogously.A.2 Untwisted setorThe untwisted setor states are obtained from the projetionp � V6 � q � v6 2 Z ; p � V6 62 Z ; (A.5a)52



k !(k) !(k) Æ(k)1 16(5; 4; 3) 16(1; 2; 3) 11=362 13(2; 1; 3) 13(1; 2; 3) 2=93 12(1; 2; 1) 12(1; 2; 1) 1=44 13(1; 2; 3) 13(2; 1; 3) 2=9Table A.1: !(k), !(k) and Æ(k) in Z6�II orbifolds with v6 = 16(�1;�2; 3; 0).p �W2 2 Z ; (A.5b)p �W3 2 Z ; (A.5)with p2 = 2. There are 118 weights transforming in the �rst E8 whih survive the�rst projetion (A.5a). They inlude��12 ;�12 ; 12 ; odd (�12)5� ; ��12 ; 12 ; 12 ; odd (�12)5�	 ; (A.6)where �odd(�12 )5� denotes 5 entries �12 with an odd number of `�' signs. The Dynkinlabels of these representations are obtained by multiplying the above weights by thesimple roots (A.3). One �nds that (A.6) is (16;1;2) of SO(10)� SU(2)2 (f. [100℄).The Wilson line projetions eliminate some of the states suh that the 4D re-sult is (3;1) of SU(3) � SU(2) plus non�Abelian singlets. The seond E8 states aredetermined analogously.A.3 T1The �rst step is to solve the mass equations (2.41). For onveniene, the quantities!(k), !(k) and Æ(k) appearing in (2.41) are listed in Tab. A.1. Consider now the (�; 0)setor, i.e. V(�;0) = V6. For eN = 0, the shifted E8 � E8 momenta psh � p + V6 withp 2 �E8�E8 are17fpshg = ��0; 0;�16 ; odd (�12)5� (13 ; 07)g : (A.7)Using the Dynkin labels, it is straightforward to show that these weights transform as16 of the loal SO(10). The orresponding SO(8) lattie shifted momenta are givenby qsh = f(13 ; 16 ; 0;�12 ); (�16 ;�13 ;�12 ; 0)g : (A.8)They desribe the fermion and the boson of an N = 1 left�hiral super�eld. As statedin Se. 2, solutions to the mass equation in the T1 setor are twist invariant and allappear in the 4D spetrum. The above 16�plet thus produes one omplete generationof the SM matter.17An e�ient way to solve automatially the mass equations is presented in [101℄.53



Apart from the 16�plet, the massless spetrum ontains one (2;1) and two (1;2)representations under the loal SU(2)2. Other T1 states are obtained by solving themass equations for Vf = V6 + n2W2 + n3W3 with 0 � n2 � 1 and 0 � n3 � 2.A.4 T2Consider the (�2; 0) setor. The loal gauge group is given by the E8 roots satisfy-ing V(�2;0) � p = 0 mod 1, where V(�2;0) = 2V6. This yields SO(14) � [SO(14)℄. Theorresponding massless matter at the origin is(14;1)� (1;14)� (1;1)� (1;1) ; (A.9)where the non�Abelian singlets have non�zero osillator numbers. On the right�moving side, one has 4 solutions to the mass equations with v3 = 2v6 whih ombineinto an N = 2 multiplet. As explained in Ses. 2 and 3, the next step is to form linearombinations of the massless states whih produe Z6 eigenstates. These are thensubjet to the onditions (2.62) with q 2 f0; 12 ; 1g and psh �W2 2 Z. The resultingspetrum is hiral.A.5 T3The loal gauge shifts are Vf = 3(V6 + n2W2) with 0 � n2 � 1. The orrespond-ing loal gauge groups and matter are shown in Tab. D.1. Again, one must imposeprojetion onditions (2.64), now with q 2 f0;�13 ; 1g and psh �W3 2 Z.A.6 T4The T4 states are obtained analogously to the T2 states, with the only di�erene beingthe loal shift Vf = 4(V6 + n3W3) and v = 4v6.A.7 T5The fermioni omponent of the massless right mover has q4 = +1=2. The masslessstates are CP�onjugates of the T1 setor and no left�hiral super�elds arise in T5.B Additional material for the seletion rulesThis appendix ontains additional information on the string seletion rules of Se. 4and outlines of proofs of some statements.
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B.1 SublattiesThe spae group rule states that `i of the spae group elements have to add up tozero up to shifts in the orresponding sublatties. For onreteness, these sublattiesare listed in Tab. B.1.sublattie G2 plane SU(3) plane SO(4) plane(1� �1) � n e1 +me2 n e3 + (�n� 3m) e4 2n e5 + 2me6(1� �2) � 3n e1 +me2 n e3 + (�n� 3m) e4 �(1� �3) � 2n e1 + 2me2 � 2n e5 + 2me6Table B.1: Sublatties (1� �k)�. The integers n, m are varied indepen-dently in eah plane. Note that (1� �6�k)� = (1� �k)�.B.2 On Eq. (4.10)The oupling among n states must satisfy Eq. (4.9). Using the multipliation law forthe spae group, one has(�k1 ; `1) (�k2 ; `2) : : : (�kn ; `n) = (�k1 �k2 � � � �kn ; `1 + �k1`2 + � � �+ �k1 � � � �kn�1 `n):The rule nPr=1 kr = 0 mod 6 is then obvious. Further, by shifting the `i,`i ! `i + (1� �ki)�i ; (B.1)one an always ahieve`1 + �k1`2 + � � �+ �k1 � � � �kn�1 `n ! `1 + `2 + � � �+ `n : (B.2)Thus, P `i = 0 up to the sublattie P�ki .B.3 On the seletion rules in the G2 planeConsider the G2 plane seletion rule for a oupling of string states. If T1 states areinvolved, the sublattie P�ki =P(1� �ki)� is the entire lattie and all �xed pointsan ouple. Similarly, there is no restrition when T3 and T2 (or T4) setors are presentsimultaneously.Suppose now that the oupling involves only the T2 states. The orresponding�xed points are x,y,z (Se. 3). x is at the origin and is Z6 invariant, while y andz are interhanged under ��twisting. The ouplings onsistent with the spae groupseletion rule for the G2 plane are xn, x y z, y3, z3 and higher ouplings built out ofthese bloks. In terms of �eigenstates, this means that the oupling of any numberof q = 0 states to a single q 6= 0 state is prohibited, while the others are allowed,i.e. fq(1); : : : q(n)g 62 permutationsfx; 0; : : : 0g with x 6= 0. Similar onsiderationsapply to ouplings of the type T4 : : : T4, T2T2 : : : T4 T4 and T3 : : : T3.55



C Models with 3 loal 16�pletsIn this appendix, we disuss the obstales to obtaining 3 equivalent families of 16�plets in ZN orbifold models with N � 6. Tripliation of families ould in priniplebe a result of the presene of 3 equivalent �xed points, whih support SM matter inthe �rst twisted setor T1.18 We however �nd that this simple possibility annot berealized, at least in ZN�6.First of all, in the Z3 orbifold one does not have a loal 16�plet beause one annotbreak E8 to SO(10) by a Z3 twist. Then, in Z4 orbifolds there is no tripliation dueto geometry, i.e. the number of equivalent �xed points is under no irumstanesdivisible by 3. The next simplest possibility is the Z6 whih we examine in detailbelow.For Z6 orbifolds, all possible loal shifts V6 are listed in [55℄, together with theorresponding loal groups and loal T1 states. Among them, there are only 5 loalshifts V6 whih have a loal SO(10) and a 16�plet. There are 3 of them in Z6�I models[v6 = 16 (�1;�1; 2)℄,V6 = 16(2; 2; 2; 05) (2; 1; 1; 05) ; 16(3; 3; 2; 05) (2; 2; 06) ; 16(4; 1; 1; 05) (08) ; (C.1)and 2 in Z6�II models [v6 = 16 (�1;�2; 3)℄,V6 = 16(2; 2; 2; 05) (1; 1; 06) ; 16(3; 3; 2; 05) (2; 07) : (C.2)These loal shifts an be aompanied by Wilson lines W2, W 02, and W3, dependingon the geometry of the orbifold [102℄.We demand that the SO(10) be broken to SU(3)� SU(2)�U(1)2 by the orbifoldation. This requires at least two di�erent Wilson lines. The Z6�I models allow foronly one Wilson line W3, whih destroys the tripliation, and hene we disard them.The Z6�II models allow for ombinations of (W2;W 02), (W2;W3), and (W2;W 02;W3).Among them, only the �rst one an produe three equivalent �xed points with lo-al SO(10) symmetry and a 16�plet (f. Fig. 9). We therefore onentrate on thesemodels, namely,V6 = 16(2; 2; 2; 05)(1; 1; 06) ; W2 = any ; W 02 = any ; (C.3)V6 = 16(3; 3; 2; 05)(2; 07) ; W2 = any ; W 02 = any : (C.4)Naively, one may think that the number of models to be studied is enormous.However, employing symmetry transformations of the loal shifts and Wilson lineswhih produe equivalent models, one an show that most of the models are redun-dant. These symmetries, whih inlude lattie translations and Weyl re�etions, have18One ould also entertain the possibility of obtaining 3 equivalent families from higher twisted setors.However, suh states are subjet to additional projetion onditions whih usually destroy either theequivalene of families or their GUT struture. 56



been used in Ref. [103℄ for a systemati lassi�ation of inequivalent models in Z3orbifolds. We have performed a similar lassi�ation of the Z6 models and found thatthere are at most 69 inequivalent models of type (C.3) and at most 129 inequivalentmodels of type (C.4). At this stage, we have only required modular invariane andSO(10) breakdown to SU(3)� SU(2)�U(1)2.As the next step, we have studied the massless spetrum of these models and iden-ti�ed quantum numbers of exoti states. Remarkably, we found that all of these mod-els ontain exoti states whih are hiral with respet to SU(3)�SU(2)L�U(1)Y .19Suh states annot be deoupled and, therefore, the low energy spetrum ontainsexoti partiles beyond the MSSM. We thus onlude that geometri tripliation of16�plets is not possible in ZN�6 orbifolds.

19In SO(10), there are two distint hoies of U(1)Y whih exhange the de�nitions of up�type anddown�type right�handed quarks. We have heked both possibilities.57



D TablesD.1 States of the model of Se. 5D.1.1 Survey of loal GUTsk n3 n2 = 0 n2 = 11 0 SO(10)� SO(4) � [SO(14)℄ SO(8) � SU(4) � [SU(7)℄(16;1;1;1)� 2� (1;2;1;1)� (1;1;2;1) (1;4;1)1 1 SO(12)� [SO(8)� SU(4)℄ SO(8) � SU(4) � [SU(7)℄�1;8;1�� �1;1;4� (1;4;1)1 2 SU(7)� [SO(8)� SU(4)℄ SO(8) � SU(4) � [SO(10) � SO(4)℄�1;1;4� �1;4;1;1;2�2 0 SO(14) � [SO(14)℄(14;1)� (1;14)2 1 SO(14) � [SO(14)℄(14;1)� (1;14)2 2 SO(14) � [SO(14)℄(14;1)� (1;14)3 0 : : : 2 E7 � SU(2) � [SO(16)℄ SO(16) � [E7 � SU(2)℄(1;2;16) (16;1;2)4 0 SO(14) � [SO(14)℄(14;1)� (1;14)4 1 SO(14) � [SO(14)℄(14;1)� (1;14)4 2 SO(14) � [SO(14)℄(14;1)� (1;14)Table D.1: Loal GUT groups and representations. Non�Abelian singlets and U(1) fators are omitted. The brakets[: : : ℄ indiate subgroups of the seond E8. For di�erent k, n3and n2 the groups are in general embedded di�erently into E8.The loal GUTs an be inferred from the tables of Ref. [55℄.D.1.2 Spetrum of the model of Se. 5k n3 n2 n02 q R1 R2 R3 irrep qY q2 q3 q4 q5 q6 q7 q8 q9�e1 0 � � � 0 �1 0 0 (1;1;1;1) 1 12 �12 12 �12 0 0 0 0�u1 0 � � � 0 �1 0 0 �3;1;1;1� �23 12 �12 12 �12 0 0 0 0q1 0 � � � 0 0 �1 0 (3;2;1;1) 16 12 12 �12 �12 0 0 0 058



k n3 n2 n02 q R1 R2 R3 irrep qY q2 q3 q4 q5 q6 q7 q8 q9`1 0 � � � 0 0 0 �1 (1;2;1;1) �12 1 0 0 �1 0 0 0 0�̀1 0 � � � 0 0 0 �1 (1;2;1;1) 12 �1 0 0 1 0 0 0 0�e2 1 0 0 0 0 �16 �13 �12 (1;1;1;1) 1 0 0 �16 �12 13 0 0 0`2 1 0 0 0 0 �16 �13 �12 (1;2;1;1) �12 0 0 �16 32 13 0 0 0�u2 1 0 0 0 0 �16 �13 �12 �3;1;1;1� �23 0 0 �16 �12 13 0 0 0�d1 1 0 0 0 0 �16 �13 �12 �3;1;1;1� 13 0 0 �16 32 13 0 0 0q2 1 0 0 0 0 �16 �13 �12 (3;2;1;1) 16 0 0 �16 �12 13 0 0 0�e3 1 0 0 1 0 �16 �13 �12 (1;1;1;1) 1 0 0 �16 �12 13 0 0 0`3 1 0 0 1 0 �16 �13 �12 (1;2;1;1) �12 0 0 �16 32 13 0 0 0�u3 1 0 0 1 0 �16 �13 �12 �3;1;1;1� �23 0 0 �16 �12 13 0 0 0�d2 1 0 0 1 0 �16 �13 �12 �3;1;1;1� 13 0 0 �16 32 13 0 0 0q3 1 0 0 1 0 �16 �13 �12 (3;2;1;1) 16 0 0 �16 �12 13 0 0 0s�1 1 0 1 0 0 �16 �13 �12 (1;1;1;1) �12 0 12 �16 �1 � 512 12 �14 �1s+1 1 0 1 0 0 �16 �13 �12 (1;1;1;1) 12 0 12 �16 1 � 512 12 �14 �1m1 1 0 1 0 0 �16 �13 �12 (1;2;1;1) 0 0 �12 �16 0 � 512 12 �14 �1s�2 1 0 1 1 0 �16 �13 �12 (1;1;1;1) �12 0 12 �16 �1 � 512 12 �14 �1s+2 1 0 1 1 0 �16 �13 �12 (1;1;1;1) 12 0 12 �16 1 � 512 12 �14 �1m2 1 0 1 1 0 �16 �13 �12 (1;2;1;1) 0 0 �12 �16 0 � 512 12 �14 �1s�3 1 1 1 0 0 �16 �13 �12 (1;1;1;1) �12 13 12 �16 23 112 16 712 1s+3 1 1 1 0 0 �16 �13 �12 (1;1;1;1) 12 �16 0 �23 16 112 16 712 1m3 1 1 1 0 0 �16 �13 �12 (1;2;1;1) 0 �16 0 13 �56 112 16 712 1s�4 1 1 1 1 0 �16 �13 �12 (1;1;1;1) �12 13 12 �16 23 112 16 712 1s+4 1 1 1 1 0 �16 �13 �12 (1;1;1;1) 12 �16 0 �23 16 112 16 712 1m4 1 1 1 1 0 �16 �13 �12 (1;2;1;1) 0 �16 0 13 �56 112 16 712 1s�5 1 2 1 0 0 �16 �13 �12 (1;1;1;1) �12 16 0 �23 �16 � 512 �16 512 �1s�6 1 2 1 0 0 �16 �13 �12 (1;1;1;1) �12 16 0 �23 �16 112 56 � 112 1s+5 1 2 1 0 0 �16 �13 �12 (1;1;1;1) 12 �13 12 �16 �23 � 512 �16 512 �1s+6 1 2 1 0 0 �16 �13 �12 (1;1;1;1) 12 �13 12 �16 �23 112 56 � 112 1m5 1 2 1 0 0 �16 �13 �12 (1;2;1;1) 0 16 0 13 56 � 512 �16 512 �1m6 1 2 1 0 0 �16 �13 �12 (1;2;1;1) 0 16 0 13 56 112 56 � 112 1s�7 1 2 1 1 0 �16 �13 �12 (1;1;1;1) �12 16 0 �23 �16 � 512 �16 512 �1s�8 1 2 1 1 0 �16 �13 �12 (1;1;1;1) �12 16 0 �23 �16 112 56 � 112 1s+7 1 2 1 1 0 �16 �13 �12 (1;1;1;1) 12 �13 12 �16 �23 � 512 �16 512 �1s+8 1 2 1 1 0 �16 �13 �12 (1;1;1;1) 12 �13 12 �16 �23 112 56 � 112 1m7 1 2 1 1 0 �16 �13 �12 (1;2;1;1) 0 16 0 13 56 � 512 �16 512 �1m8 1 2 1 1 0 �16 �13 �12 (1;2;1;1) 0 16 0 13 56 112 56 � 112 1�d3 2 0 � � 12 �13 �23 0 �3;1;1;1� 13 0 0 �13 �1 23 0 0 0d1 2 0 � � 12 �13 �23 0 (3;1;1;1) �13 0 0 �13 1 23 0 0 0`4 2 1 � � 0 �13 �23 0 (1;2;1;1) �12 16 12 16 �16 �13 �23 �13 059



k n3 n2 n02 q R1 R2 R3 irrep qY q2 q3 q4 q5 q6 q7 q8 q9�̀2 2 1 � � 0 �13 �23 0 (1;2;1;1) 12 �13 0 �13 �23 �13 �23 �13 0`5 2 1 � � 1 �13 �23 0 (1;2;1;1) �12 16 12 16 �16 �13 �23 �13 0�̀3 2 1 � � 1 �13 �23 0 (1;2;1;1) 12 �13 0 �13 �23 �13 �23 �13 0�d4 2 2 � � 0 �13 �23 0 �3;1;1;1� 13 13 0 �13 23 �13 23 13 0�d5 2 2 � � 1 �13 �23 0 �3;1;1;1� 13 13 0 �13 23 �13 23 13 0�̀4 2 2 � � 12 �13 �23 0 (1;2;1;1) 12 �16 12 16 16 �13 23 13 0s�9 3 � 1 0 �13 �12 0 �12 (1;1;1;1) �12 0 12 12 �1 14 12 �14 �1s+9 3 � 1 0 �13 �12 0 �12 (1;1;1;1) 12 0 �12 �12 1 �14 �12 14 1s�10 3 � 1 0 0 �12 0 �12 (1;1;1;1) �12 12 0 0 32 14 12 �14 �1s+10 3 � 1 0 0 �12 0 �12 (1;1;1;1) 12 0 12 12 1 �14 �12 14 1s�11 3 � 1 0 1 �12 0 �12 (1;1;1;1) �12 12 0 0 32 14 12 �14 �1s+11 3 � 1 0 1 �12 0 �12 (1;1;1;1) 12 0 12 12 1 �14 �12 14 1s�12 3 � 1 0 13 �12 0 �12 (1;1;1;1) �12 0 �12 �12 �1 14 12 �14 �1s+12 3 � 1 0 13 �12 0 �12 (1;1;1;1) 12 �12 0 0 �32 �14 �12 14 1s�13 3 � 1 1 �13 �12 0 �12 (1;1;1;1) �12 0 12 12 �1 14 12 �14 �1s+13 3 � 1 1 �13 �12 0 �12 (1;1;1;1) 12 0 �12 �12 1 �14 �12 14 1s�14 3 � 1 1 0 �12 0 �12 (1;1;1;1) �12 12 0 0 32 14 12 �14 �1s+14 3 � 1 1 0 �12 0 �12 (1;1;1;1) 12 0 12 12 1 �14 �12 14 1s�15 3 � 1 1 1 �12 0 �12 (1;1;1;1) �12 12 0 0 32 14 12 �14 �1s+15 3 � 1 1 1 �12 0 �12 (1;1;1;1) 12 0 12 12 1 �14 �12 14 1s�16 3 � 1 1 13 �12 0 �12 (1;1;1;1) �12 0 �12 �12 �1 14 12 �14 �1s+16 3 � 1 1 13 �12 0 �12 (1;1;1;1) 12 �12 0 0 �32 �14 �12 14 1�d6 4 0 � � 0 �23 �13 0 �3;1;1;1� 13 0 0 13 �1 �23 0 0 0d2 4 0 � � 0 �23 �13 0 (3;1;1;1) �13 0 0 13 1 �23 0 0 0�d7 4 0 � � 1 �23 �13 0 �3;1;1;1� 13 0 0 13 �1 �23 0 0 0d3 4 0 � � 1 �23 �13 0 (3;1;1;1) �13 0 0 13 1 �23 0 0 0`6 4 1 � � 12 �23 �13 0 (1;2;1;1) �12 13 0 13 23 13 23 13 0�̀5 4 1 � � 12 �23 �13 0 (1;2;1;1) 12 �16 �12 �16 16 13 23 13 0`7 4 2 � � 0 �23 �13 0 (1;2;1;1) �12 16 �12 �16 �16 13 �23 �13 0`8 4 2 � � 1 �23 �13 0 (1;2;1;1) �12 16 �12 �16 �16 13 �23 �13 0d4 4 2 � � 12 �23 �13 0 (3;1;1;1) �13 �13 0 13 �23 13 �23 �13 0Table D.2: All SM non-singlet representations in terms of left-hiral states. The U(1) harges refer to the basis of generators(5.5). The H�momenta Ri are listed for the bosoni ompo-nents.k n3 n2 n02 q R1 R2 R3 irrep qY q2 q3 q4 q5 q6 q7 q8 q9s1 0 � � � 0 �1 0 0 (1;1;1;1) 0 0 0 0 0 12 �1 �12 �260



k n3 n2 n02 q R1 R2 R3 irrep qY q2 q3 q4 q5 q6 q7 q8 q9s2 0 � � � 0 �1 0 0 (1;1;1;1) 0 0 0 0 0 12 �1 �12 2�f1 0 � � � 0 �1 0 0 �1;1;4;1� 0 0 0 0 0 12 1 12 �1s3 0 � � � 0 0 �1 0 (1;1;1;1) 0 �12 �12 �12 �52 0 0 0 0�f2 0 � � � 0 0 �1 0 �1;1;4;1� 0 0 0 0 0 1 0 0 1s4 1 0 0 0 0 �16 �13 �12 (1;1;1;1) 0 0 0 �16 �52 13 0 0 0s5 1 0 0 0 0 �16 23 �12 (1;1;1;1) 0 �12 �12 13 0 13 0 0 0s6 1 0 0 0 0 �16 23 �12 (1;1;1;1) 0 12 12 13 0 13 0 0 0s7 1 0 0 0 0 56 �13 �12 (1;1;1;1) 0 �12 12 �23 0 13 0 0 0s8 1 0 0 0 0 56 �13 �12 (1;1;1;1) 0 12 �12 �23 0 13 0 0 0s9 1 0 0 0 0 116 �13 �12 (1;1;1;1) 0 �12 �12 13 0 13 0 0 0s10 1 0 0 0 0 116 �13 �12 (1;1;1;1) 0 12 12 13 0 13 0 0 0s11 1 0 0 1 0 �16 �13 �12 (1;1;1;1) 0 0 0 �16 �52 13 0 0 0s12 1 0 0 1 0 �16 23 �12 (1;1;1;1) 0 �12 �12 13 0 13 0 0 0s13 1 0 0 1 0 �16 23 �12 (1;1;1;1) 0 12 12 13 0 13 0 0 0s14 1 0 0 1 0 56 �13 �12 (1;1;1;1) 0 �12 12 �23 0 13 0 0 0s15 1 0 0 1 0 56 �13 �12 (1;1;1;1) 0 12 �12 �23 0 13 0 0 0s16 1 0 0 1 0 116 �13 �12 (1;1;1;1) 0 �12 �12 13 0 13 0 0 0s17 1 0 0 1 0 116 �13 �12 (1;1;1;1) 0 12 12 13 0 13 0 0 0s18 1 1 0 0 0 �16 �13 �12 (1;1;1;1) 0 13 0 �16 �56 �16 �13 �16 �2s19 1 1 0 0 0 �16 �13 �12 (1;1;1;1) 0 13 0 �16 �56 �16 �13 �16 2w1 1 1 0 0 0 �16 �13 �12 (1;1;6;1) 0 13 0 �16 �56 �16 �13 �16 0s20 1 1 0 0 0 56 �13 �12 (1;1;1;1) 0 13 0 �16 �56 �23 23 13 0s21 1 1 0 0 0 56 �13 �12 (1;1;1;1) 0 13 0 �16 �56 13 23 �23 0h1 1 1 0 0 0 56 �13 �12 (1;1;1;2) 0 13 0 �16 �56 13 �13 13 0s22 1 1 0 1 0 �16 �13 �12 (1;1;1;1) 0 13 0 �16 �56 �16 �13 �16 �2s23 1 1 0 1 0 �16 �13 �12 (1;1;1;1) 0 13 0 �16 �56 �16 �13 �16 2w2 1 1 0 1 0 �16 �13 �12 (1;1;6;1) 0 13 0 �16 �56 �16 �13 �16 0s24 1 1 0 1 0 56 �13 �12 (1;1;1;1) 0 13 0 �16 �56 �23 23 13 0s25 1 1 0 1 0 56 �13 �12 (1;1;1;1) 0 13 0 �16 �56 13 23 �23 0h2 1 1 0 1 0 56 �13 �12 (1;1;1;2) 0 13 0 �16 �56 13 �13 13 0s26 1 2 0 0 0 �16 �13 �12 (1;1;1;1) 0 23 0 �16 56 �23 �23 �13 0s27 1 2 0 0 0 �16 �13 �12 (1;1;1;1) 0 23 0 �16 56 13 �23 23 0h3 1 2 0 0 0 �16 �13 �12 (1;1;1;2) 0 23 0 �16 56 13 13 �13 0s28 1 2 0 1 0 �16 �13 �12 (1;1;1;1) 0 23 0 �16 56 �23 �23 �13 0s29 1 2 0 1 0 �16 �13 �12 (1;1;1;1) 0 23 0 �16 56 13 �23 23 061



k n3 n2 n02 q R1 R2 R3 irrep qY q2 q3 q4 q5 q6 q7 q8 q9h4 1 2 0 1 0 �16 �13 �12 (1;1;1;2) 0 23 0 �16 56 13 13 �13 0s30 2 0 � � 0 �13 �23 0 (1;1;1;1) 0 0 �1 �13 0 23 0 0 0s31 2 0 � � 0 �13 �23 0 (1;1;1;1) 0 0 1 �13 0 23 0 0 0s32 2 0 � � 1 �13 �23 0 (1;1;1;1) 0 0 �1 �13 0 23 0 0 0s33 2 0 � � 1 �13 �23 0 (1;1;1;1) 0 0 1 �13 0 23 0 0 0s34 2 0 � � 12 �13 �23 0 (1;1;1;1) 0 0 0 23 0 �13 0 1 0h5 2 0 � � 12 �13 �23 0 (1;1;1;2) 0 0 0 23 0 �13 �1 0 0�f3 2 0 � � 12 �13 �23 0 �1;1;4;1� 0 0 0 23 0 �13 0 0 1s35 2 1 � � 0 �13 �23 0 (1;1;1;1) 0 �13 0 23 �53 �13 �23 �13 0s36 2 1 � � 0 �13 �23 0 (1;1;1;1) 0 16 12 �56 56 �13 �23 �13 0f1 2 1 � � 0 �13 �23 0 (1;1;4;1) 0 16 �12 16 56 16 13 16 1s37 2 1 � � 1 �13 �23 0 (1;1;1;1) 0 �13 0 23 �53 �13 �23 �13 0s38 2 1 � � 1 �13 �23 0 (1;1;1;1) 0 16 12 �56 56 �13 �23 �13 0f2 2 1 � � 1 �13 �23 0 (1;1;4;1) 0 16 �12 16 56 16 13 16 1s39 2 1 � � 12 �13 �23 0 (1;1;1;1) 0 �56 12 16 56 �13 �23 �13 0s40 2 1 � � 12 �13 �23 0 (1;1;1;1) 0 16 �12 16 56 �13 43 �13 0s41 2 1 � � 12 �13 �23 0 (1;1;1;1) 0 23 0 �13 �53 �13 �23 �13 0h6 2 1 � � 12 �13 �23 0 (1;1;1;2) 0 16 �12 16 56 23 13 �13 0s42 2 2 � � 0 �13 �23 0 (1;1;1;1) 0 �16 �12 16 �56 �13 �43 13 0s43 2 2 � � 0 �13 �23 0 (1;1;1;1) 0 �16 �12 16 �56 23 23 �23 0s44 2 2 � � 0 �13 �23 0 (1;1;1;1) 0 56 12 16 �56 �13 23 13 0s45 2 2 � � 1 �13 �23 0 (1;1;1;1) 0 �16 �12 16 �56 �13 �43 13 0s46 2 2 � � 1 �13 �23 0 (1;1;1;1) 0 �16 �12 16 �56 23 23 �23 0s47 2 2 � � 1 �13 �23 0 (1;1;1;1) 0 56 12 16 �56 �13 23 13 0s48 2 2 � � 12 �13 �23 0 (1;1;1;1) 0 �16 12 �56 �56 �13 23 13 0w3 2 2 � � 12 �13 �23 0 (1;1;6;1) 0 �16 �12 16 �56 16 �13 �16 0s49 3 � 0 0 �13 �12 0 �12 (1;1;1;1) 0 �12 12 0 0 0 0 �1 0s50 3 � 0 0 �13 �12 0 �12 (1;1;1;1) 0 12 �12 0 0 0 0 1 0h7 3 � 0 0 �13 �12 0 �12 (1;1;1;2) 0 �12 12 0 0 0 �1 0 0h8 3 � 0 0 �13 �12 0 �12 (1;1;1;2) 0 12 �12 0 0 0 1 0 0s51 3 � 0 1 �13 �12 0 �12 (1;1;1;1) 0 �12 12 0 0 0 0 �1 0s52 3 � 0 1 �13 �12 0 �12 (1;1;1;1) 0 12 �12 0 0 0 0 1 0h9 3 � 0 1 �13 �12 0 �12 (1;1;1;2) 0 �12 12 0 0 0 �1 0 0h10 3 � 0 1 �13 �12 0 �12 (1;1;1;2) 0 12 �12 0 0 0 1 0 0s53 4 0 � � 0 �23 �13 0 (1;1;1;1) 0 0 0 �23 0 13 0 �1 062



k n3 n2 n02 q R1 R2 R3 irrep qY q2 q3 q4 q5 q6 q7 q8 q9h11 4 0 � � 0 �23 �13 0 (1;1;1;2) 0 0 0 �23 0 13 1 0 0f3 4 0 � � 0 �23 �13 0 (1;1;4;1) 0 0 0 �23 0 13 0 0 �1s54 4 0 � � 1 �23 �13 0 (1;1;1;1) 0 0 0 �23 0 13 0 �1 0h12 4 0 � � 1 �23 �13 0 (1;1;1;2) 0 0 0 �23 0 13 1 0 0f4 4 0 � � 1 �23 �13 0 (1;1;4;1) 0 0 0 �23 0 13 0 0 �1s55 4 0 � � 12 �23 �13 0 (1;1;1;1) 0 0 �1 13 0 �23 0 0 0s56 4 0 � � 12 �23 �13 0 (1;1;1;1) 0 0 1 13 0 �23 0 0 0s57 4 1 � � 0 �23 �13 0 (1;1;1;1) 0 �23 0 13 53 13 23 13 0s58 4 1 � � 0 �23 �13 0 (1;1;1;1) 0 �16 12 �16 �56 13 �43 13 0s59 4 1 � � 0 �23 �13 0 (1;1;1;1) 0 56 �12 �16 �56 13 23 13 0h13 4 1 � � 0 �23 �13 0 (1;1;1;2) 0 �16 12 �16 �56 �23 �13 13 0s60 4 1 � � 1 �23 �13 0 (1;1;1;1) 0 �23 0 13 53 13 23 13 0s61 4 1 � � 1 �23 �13 0 (1;1;1;1) 0 �16 12 �16 �56 13 �43 13 0s62 4 1 � � 1 �23 �13 0 (1;1;1;1) 0 56 �12 �16 �56 13 23 13 0h14 4 1 � � 1 �23 �13 0 (1;1;1;2) 0 �16 12 �16 �56 �23 �13 13 0s63 4 1 � � 12 �23 �13 0 (1;1;1;1) 0 �16 �12 56 �56 13 23 13 0s64 4 1 � � 12 �23 �13 0 (1;1;1;1) 0 13 0 �23 53 13 23 13 0�f4 4 1 � � 12 �23 �13 0 �1;1;4;1� 0 �16 12 �16 �56 �16 �13 �16 �1s65 4 2 � � 0 �23 �13 0 (1;1;1;1) 0 16 �12 56 56 13 �23 �13 0w4 4 2 � � 0 �23 �13 0 (1;1;6;1) 0 16 12 �16 56 �16 13 16 0s66 4 2 � � 1 �23 �13 0 (1;1;1;1) 0 16 �12 56 56 13 �23 �13 0w5 4 2 � � 1 �23 �13 0 (1;1;6;1) 0 16 12 �16 56 �16 13 16 0s67 4 2 � � 12 �23 �13 0 (1;1;1;1) 0 �56 �12 �16 56 13 �23 �13 0s68 4 2 � � 12 �23 �13 0 (1;1;1;1) 0 16 12 �16 56 �23 �23 23 0s69 4 2 � � 12 �23 �13 0 (1;1;1;1) 0 16 12 �16 56 13 43 �13 0Table D.3: Same as Tab D.2 for SM singlets.
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�eld harge �eld harge �eld harges1 0 s2 0 s3 0s4 1 s5 �43 s6 1s7 23 s8 2 s9 �43s10 1 s11 1 s12 �43s13 1 s14 23 s15 2s16 �43 s17 1 s18 23s19 23 s20 23 s21 43h1 43 s22 23 s23 23s24 23 s25 43 h2 43s26 13 s27 53 h3 53s28 13 s29 53 h4 53s30 23 s31 53 s32 23s33 53 s34 �1 h5 �53s35 �2 s36 1 s37 �2s38 1 s39 �73 s40 �13s41 43 h6 13 s42 �43s43 0 s44 53 s45 �43s46 0 s47 53 s48 43s49 �1 s50 1 h7 �1h8 1 s51 �1 s52 1h9 �1 h10 1 s53 1h11 53 s54 1 h12 53s55 �53 s56 �23 s57 �43s58 13 s59 73 h13 �13s60 �43 s61 13 s62 73h14 �13 s63 �1 s64 2s65 �43 s66 �43 s67 �53s68 0 s69 43Table D.4: Anomalous harges of the SM singlets si and hi.
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D.2 Monomialss1 s19(23) s20(24) s57(60) s2 s18(22) s20(24) s57(60) s3 s6(10;13;17) s26(28) s57(60)s4(11) s26(28) s57(60) s4(11) s27(29) s39 s40 s5(9;12;16) s8(15) s56s5(9;12;16) s21(25) s68 s6(10;13;17) s7(14) s55 s30(32) s56s31(33) s55 s34 s53(54) s35(37) s64s36(38) s63 s39 s59(62) s40 s58(61)s41 s57(60) s42(45) s69 s43(46) s68s44(47) s67 s48 s65(66) s49(51) s50(52)Table D.5: Examples of gauge invariant monomials.s5(9;12;16) s5(9;12;16) s39 s55 s56 s5(9;12;16) s34 s39 s49(51) s55 s34 s35(37) s39 s40 s67s34 s39 s39 s43(46) s55 s35(37) s39 s40 s42(45) s57(60) s35(37) s55 s56 s57(60) s67s39 s39 s40 s42(45) s63 s39 s55 s56 s63 s67Table D.6: Examples of gauge invariant monomials arryingnegative net anomalous harge.s34 s35(37) s39 s40 s67 s34 s39 s39 s43(46) s55 s35(37) s39 s40 s42(45) s57(60)s35(37) s55 s56 s57(60) s67 s39 s39 s40 s42(45) s63 s39 s55 s56 s63 s67Table D.7: Examples of gauge invariant monomials arryingnegative net anomalous harge for si from U; T2; T4.s12 s40 s40 s61 h2 h4 h7 h14s16 s40 s40 s61 h2 h4 h7 h14s1 s16 s19 s40 s57 h2 h4 h14 h14s1 s16 s19 s40 s60 h2 h4 h14 h14s14 s16 s40 s40 s61 h2 h4 h5 h14s16 s39 s40 s40 s61 h2 h2 h4 h14s40 s40 s53 s60 s61 h2 h2 h5 h14s40 s40 s54 s60 s61 h2 h2 h5 h14s16 s24 s39 s40 s40 s61 h2 h2 h4 h7s3 s24 s40 s60 h2 h4 h4 h5 h7 h7s16 s18 s19 s24 s24 s39 s54 s60 s60 h2 h2 h4 h5s16 s19 s22 s24 s24 s39 s54 s60 s60 h2 h2 h4 h5Table D.8: Examples of gauge invariant monomials involvingonly the singlets of Eq. (8.4).65



s12 s12 s39 s40 h5 h14s12 s16 s39 s40 h5 h14s12 s12 s24 s39 s40 h5 h7s12 s12 s24 s39 s39 s40 h2 h5s12 s12 s39 s40 s40 s61 h5 h14s3 s40 s40 s57 h5 h5 h7 h7s3 s40 s40 s60 h5 h5 h7 h7s12 s12 s14 s40 s40 h5 h5 h7 h14s12 s12 s40 s53 s57 h5 h5 h14 h14s12 s12 s40 s54 s57 h5 h5 h14 h14s3 s12 s39 s40 s57 h4 h5 h5 h14Table D.9: Examples of gauge invariant monomials arryingnegative net anomalous harge and involving only the singletsof Eq. (8.4).
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D.3B�Lharges

Table D.10: B � L harges of the si.i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23qB�L 0 0 0 1 0 1 0 -1 0 1 1 0 1 0 -1 0 1 0 0 0 1 0 0i 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46qB�L 0 1 -1 -1 -1 -1 -1 1 -1 1 0 1 -1 1 -1 0 0 0 -1 1 1 -1 1i 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69qB�L 1 0 1 -1 1 -1 0 0 -1 1 0 0 0 0 0 0 1 -1 0 0 -1 -1 1Table D.11: B � L harges of the s�i .i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16qB�L(s+i ) 12 12 �12 �12 12 32 12 32 �32 12 12 12 �32 12 12 12qB�L(s�i ) 12 12 �12 �12 �32 �12 �32 �12 32 �12 �12 �12 32 �12 �12 �12Table D.12: B � L harges of the mi.i 1 2 3 4 5 6 7 8qB�L(mi) �12 �12 12 12 �12 12 �12 12
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D.4 Mass matriesD.4.1 Mass matries for generi singlet vevs
Mijm(s) =

0BBBBBBBBBBBBBB�
0 s6 s5 s5 s6 s1 s6 s5s6 0 s5 s5 s6 s5 s6 s1s5 s5 0 0 s1 s5 s4 s5s5 s5 0 0 s4 s5 s1 s5s6 s6 s1 s4 0 s5 s5 s5s1 s5 s5 s5 s5 0 s5 s6s6 s6 s4 s1 s5 s5 0 s5s5 s1 s5 s5 s5 s6 s5 0

1CCCCCCCCCCCCCCA ; (D.1)

Mijs (s) =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

s5 s5 s5 s5 s6 s6 s6 s6 s5 s5 s5 s6 s5 s5 s5 s6s5 s5 s5 s5 s6 s6 s6 s6 s5 s5 s5 s6 s5 s5 s5 s6s1 s5 s5 s5 s6 s6 s6 s6 s5 s1 s1 s6 s5 s5 s5 s6s5 s1 s5 s5 s6 s6 s6 s6 s5 s5 s5 s6 s5 s1 s1 s6s6 s6 s5 s5 s6 s1 s6 s5 s5 s5 s5 0 s5 s5 s5 0s5 s5 s6 s6 s1 s6 s5 s6 s5 s1 s1 s6 s5 s5 s5 s6s6 s6 s5 s5 s6 s5 s6 s1 s5 s5 s5 0 s5 s5 s5 0s5 s5 s6 s6 s5 s6 s1 s6 s5 s5 s5 s6 s5 s1 s1 s6s5 s5 s5 s5 s5 s6 s5 s6 s5 s5 s5 s5 s5 s5 s5 s5s1 s5 s5 s5 s1 s5 s5 s5 s5 s1 s5 s5 s5 s5 s5 s5s1 s5 s5 s5 s1 s5 s5 s5 s5 s5 s1 s5 s5 s5 s5 s5s5 s5 s5 s5 s6 0 s6 0 s5 s5 s5 s5 s5 s5 s5 s5s5 s5 s5 s5 s5 s6 s5 s6 s5 s5 s5 s5 s5 s5 s5 s5s5 s1 s5 s5 s5 s5 s1 s5 s5 s5 s5 s5 s5 s1 s5 s5s5 s1 s5 s5 s5 s5 s1 s5 s5 s5 s5 s5 s5 s5 s1 s5s5 s5 s5 s5 s6 0 s6 0 s5 s5 s5 s5 s5 s5 s5 s5

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
;

(D.2)Mf (s) = 0BBBB� s6 s5 s5 s3s6 s5 s5 s30 s5 s3 s60 s5 s3 s6 1CCCCA ; (D.3)
Mw(s) = 0BBBBBB� s1 s5 s5 s5 s5s5 s1 s5 s5 s5s5 s5 s5 s3 s3s5 s5 s3 s3 s3s5 s5 s3 s3 s3

1CCCCCCA : (D.4)
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D.4.2 Mass matries for the B�L preserving vauum of Se. 8
Mijm(es) =

0BBBBBBBBBBBBBB�
0 0 0 es8 0 es 0 es50 0 es8 0 0 es5 0 es0 es8 0 0 es 0 es5 0es8 0 0 0 es5 0 es 00 0 es es5 0 es7 0 es7es es5 0 0 es7 0 es7 00 0 es5 es 0 es7 0 es7es5 es 0 0 es7 0 es7 0

1CCCCCCCCCCCCCCA ; (D.5)

Mijs (es) =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

0 0 0 0 0 es6 0 0 0 es8 es8 0 0 0 0 00 0 0 0 0 0 0 es6 0 0 0 0 0 es8 es8 0es8 es8 0 0 0 0 0 0 0 0 0 0 0 0 0 0es8 es8 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 es6 0 0 es8 0 es8 0 es5 es5 0 0 es8 es8 es80 0 0 0 es8 0 es8 0 0 0 0 0 0 0 0 00 0 0 es6 0 es8 0 es8 0 es8 es8 es8 0 es5 es5 00 0 0 0 es8 0 es8 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 es6 0 0 0 0 0 0 00 0 es8 es8 0 es5 0 es5 0 es es8 es6 0 es5 es5 00 0 es8 es8 0 es5 0 es5 0 es8 es es6 0 es5 es5 00 0 0 0 0 es8 0 es8 0 es6 es6 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 es6 0 0 00 0 es8 es8 0 es5 0 es5 0 es5 es5 0 0 es es8 es60 0 es8 es8 0 es5 0 es5 0 es5 es5 0 0 es8 es es60 0 0 0 0 es8 0 es8 0 0 0 0 0 es6 es6 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
;

(D.6)Mijf (es) = 0BBBB� 0 es5 es8 es60 es5 es8 es60 es6 es6 00 es6 es6 0 1CCCCA ; (D.7)
Mijw(es) = 0BBBBBB� es es5 es8 0 0es5 es es8 es7 es7es8 es8 0 es6 es60 es7 es6 es6 es60 es7 es6 es6 es6

1CCCCCCA : (D.8)
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D.5 Survey of orbifold GUT limitsplanedim. G2 SU(3) SO(4) onditions SUSY, bulk groups10 � N = 4, E89 p �W2 2 Z N = 4, SO(16)9 � N = 4, E88 � � N = 4, E88 � p �W3 2 Z N = 4, E6�SU(3)8 � p �W2 2 Z N = 4, SO(16)7 � p �W2 2 Z N = 4, SO(16)7 � � N = 4, E87 � p �W2; p �W3 2 Z N = 4, SU(6)�SO(4)7 � p �W3 2 Z N = 4, E6�SU(3)6 � � p � 2V6; p �W3 2 Z N = 2, SU(6)6 � � p � 3V6; p �W2 2 Z N = 2, SU(8)6 � � p �W2; p �W3 2 Z N = 4, SU(6)�SO(4)5 � � p � 2V6; p �W2; p �W3 2 Z N = 2, SU(3)�SU(3)5 � � p � 2V6; p �W3 2 Z N = 2, SU(6)4 � � � p � V6; p �W2; p �W3 2 Z N = 1; SU(3)�SU(2)� GSMTable D.13: Survey of the orbifold GUTs in di�erent dimensions. Thebullet indiates small ompat dimensions. U(1) fators and subgroups ofthe seond E8 are omitted.
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List of frequently used symbolsea lattie vetors, see equation (2.1), page 6f �xed point, see equation (2.7), page 7�I left�moving fermions, see equation (2.10), page 7n2 loalization quantum number in the SO(4) plane, page 22n02 loalization quantum number in the SO(4) plane, page 22n3 loalization quantum number in the SU(3) plane, page 21p p 2 �E8�E8 : E8�E8 root lattie vetor (`momentum'), see equation (2.37), page 11 i right�moving fermions, see equation (2.9), page 7e i omplex NSR fermions, see equation (2.11), page 7q q 2 ��SO(8): SO(8) weight (`momentum') , see equation (2.37), page 11q additional quantum number in Tk>1 twisted setors of non�prime orbifolds, seeequation (2.58), page 15Ri invariant H�momenta, see equation (4.7), page 24� twist, see equation (2.3), page 6Vf loal gauge shift, see equation (2.32), page 10VN gauge shift vetor, see equation (2.18), page 8vN twist vetor, see equation (2.4), page 6XiL;R string oordinates, see equation (2.9), page 7Zi omplex string oordinates, see equation (2.11), page 7zi omplex oordinates of the torus, page 6
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