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ti�edon a Calabi�Yau manifold in the presen
e of RR and NS ele
tri
 and magneti
�uxes. We show that the dynami
s of the s
alar �elds along the dire
tiontransverse to the domain wall is des
ribed by gradient �ow equations 
on-trolled by a superpotential W . We then provide a geometri
al interpretationof the gradient �ow equations in terms of the mirror symmetri
 
ompa
t-i�
ation of type IIA. They 
orrespond to a set of generalized Hit
hin �owequations of a manifold with SU(3) � SU(3) stru
ture whi
h is �bered overthe dire
tion transverse to the domain wall.May 2006
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1 Introdu
tionDomain wall (DW) solutions of supergravity have re
eived a lot of attentionre
ently whi
h is largely due to their role in the AdS/CFT 
orresponden
e[1℄. However, apart from this appli
ation they also have been studied asa 
lass of supersymmetri
 ground states alternative to the 
ommonly 
on-sidered Minkowski or AdS ba
kgrounds. In parti
ular supergravities withnon-trivial ba
kground �uxes often do not admit a stable, four-dimensionalsupersymmetri
 ground state but they do have BPS DW solutions. For ex-ample, in type IIB supergravity 
ompa
ti�ed on Calabi-Yau threefolds withnon-trivial three-form �uxes it is ne
essary to in
lude D-branes and orien-tifold planes in order to 
an
el the tadpoles indu
ed by the �uxes and toobtain an N = 1 supersymmetri
 Minkowski ba
kground [2℄. On the otherhand without orientifold planes no four-dimensional Minkowski ba
kgroundis allowed. However, in this 
ase three-dimensional N = 1 DW solutions doexist [3, 4℄.In this paper we 
ontinue the study of su
h DW solutions of type IIB andgeneralize the previous results [3, 4℄ in various respe
ts. More spe
i�
ally westart from type IIB supergravity 
ompa
ti�ed on Calabi-Yau threefolds withele
tri
 and magneti
 ba
kground three-form �ux for both the NS three-formH3 and the RR three-form F3 [5℄�[10℄. In the presen
e of the magneti
 �uxesthe four dimensional antisymmetri
 tensors �elds B�� and C�� be
ome mas-sive [10℄. For this 
ase the 
orresponding supergravity has only re
ently been
onstru
ted in refs. [11℄�[14℄. Using these four-dimensional N = 2 super-gravities we study their N = 1 DW solutions in
luding non-trivial magneti
�uxes. We �nd that the resulting DW ne
essarily is �at and furthermorethat the ba
kground pro�le of the s
alar �elds is governed by a set of gradi-ent �ow equations expressed in terms of a single superpotential W , whi
h isrelated to the superpotential suggested in [6℄.The DW solutions of type IIB have their mirror analogous in type IIA.Without �uxes mirror symmetry identi�es type IIB 
ompa
ti�
ations on aCalabi-Yau manifold ~Y with type IIA 
ompa
ti�ed on the mirror Calabi-Yau Y [15℄. In the presen
e of RR �uxes mirror symmetry is straightfor-wardly extended by also ex
hanging the respe
tive �ux parameters [6, 10℄.For NS �uxes the situation is slightly more involved in that mirror symme-try 
an relate Calabi-Yau 
ompa
ti�
ation with �uxes to purely geometri
al
ompa
ti�
ation on a manifold Ŷ without �ux [16℄�[19℄ or possible also to1



non-geometri
al ba
kgrounds [20℄. For the 
ase of geometri
al ba
kgroundsŶ is no longer a Calabi-Yau manifold but rather a manifold with SU(3)stru
ture or more generally with SU(3)�SU(3)-stru
ture [21℄�[30℄. In su
h
ompa
ti�
ations the (intrinsi
) torsion of Ŷ plays the `mirror-role' of the�uxes.This generalized mirror symmetry is also re�e
ted in the DW solutions.For ele
tri
 �uxes it was shown in [4℄ that the mirror symmetri
 DW 
an beinterpreted as a solution of type IIA supergravity in a warped ba
kgroundM1;2 �w X7. As a 
onsequen
e of the N = 1 supersymmetry of the DWX7 has G2 holonomy and furthermore 
onsists of a six-dimensional manifoldŶ �bered over the real line. The G2 holonomy 
onstrains Ŷ to be withina spe
ial 
lass of manifolds with SU(3) stru
ture termed `half-�at' [21, 22℄.From a mathemati
ally point of view su
h �bration were studied in [21℄ andthe DW solution pre
isely 
orresponds to the Hit
hin �ow equations.For magneti
 �uxes mirror symmetry is more involved. In [29, 31℄ it isshown that in this 
ase Ŷ has to be within a spe
ial 
lass of manifolds withSU(3)� SU(3) stru
ture. In this paper we generalize the analysis of ref. [4℄and show that the mirror symmetri
 DW solution of type IIB with magneti
NS-�ux also is of the form M1;2 �w X7. However, in this 
ase Ŷ has to bea manifold with SU(3)�SU(3) stru
ture whi
h satis�es a set of generalizedHit
hin �ow equations given in ref. [28℄. X7 in turn has an integrable G2�G2stru
ture and is Ri

i-�at as demanded by string theory.This paper is organized as follows. In se
tion 2 we set the stage forour analysis and re
all the N = 2 supergravity arising as the low energylimit of type IIB string theory 
ompa
ti�ed on Calabi-Yau threefolds withba
kground �ux. In se
tion 3.1 we study the N = 1 DW solutions and showthat the s
alar �elds vary a

ording to gradient �ow equations. In se
tion 3.2we expli
itly solve these equations and rewrite the solution in terms of mirrorsymmetri
 type IIA variables. This sets the stage for se
tion 4 where we showthat the DW solutions 
orrespond to generalized Hit
hin �ow equations ofa geometri
al SU(3) � SU(3) ba
kground. Further details are found in twoappendi
es. 2



2 N = 2 Supergravity with Abelian ele
tri
 andmagneti
 
hargesIn order to set the stage for the dis
ussion of the DW solutions let us brie�yre
all the stru
ture of N = 2 supergravity with massive tensor multiplets asit arises from type IIB string theory 
ompa
ti�ed on Calabi-Yau threefoldswith both ele
tri
 and magneti
 three-form �uxes. The N = 2 supergravityin
luding massive tensor multiplets has been 
onstru
ted in referen
es [11,12, 13, 14℄ where further details 
an be found. Here (and in appendix A) weonly summarize the results needed in the following.An N = 2 tensor multiplet 
ontains nT � 3 antisymmetri
 tensor, 4�nTreal s
alars and two Weyl fermions as its 
omponents. If the tensors aremassless they 
an be dualized into s
alars and hen
e a massless tensor mul-tiplet is dual to a hypermultiplet whi
h 
ontains four real s
alars and twoWeyl fermions [32, 33℄. In this dual formulation the remnant of the tensorsare translational isometries a
ting on the dual s
alars. In the standard (un-gauged) N = 2 supergravity [34℄ one dualizes all tensor multiplet su
h thatthe theory 
ontains only one gravitational multiplet, ve
tor multiplets andhypermultiplets.On the other hand a massive tensor is dual to a massive ve
tor and it isoften more 
onvenient to keep the tensor multiplet in the spe
trum. Su
ha theory 
an be viewed as a N = 2 supergravity with tensor multipletswhi
h is deformed by Abelian ele
tri
 and magneti
 
harges [11, 12, 13℄.These 
harges are not related to any gauging of isometries on the residuals
alar manifold. Instead the ele
tri
 
harges appear in Green�S
hwarz typeintera
tion of the tensors with the gauge �elds while the magneti
 
hargeappear in the Stü
kelberg mass terms of the tensors.In this paper we do not dis
uss the general 
ase [13℄ but instead fo
us ontype IIB theories 
ompa
ti�ed on Calabi-Yau threefolds ~Y in the presen
e ofele
tri
 and magneti
 three-form �uxes [12, 9, 10℄. In this 
ase the spe
trumfeatures a gravitational multiplet(g�� ;  A�;  A� ; A0�) (2.1)where g�� is the metri
,  A�; A = 1; 2 are the two 
hiral gravitinos while A0�is the graviphoton. In addition there are nV = h(1;2) ve
tor multiplets(Ai�; �iA; �iA; ti) ; i = 1; : : : ; nV ; (2.2)3



where Ai� are the gauge bosons, �iA are the doublets of 
hiral gaugini whileti are 
omplex s
alars.1 Finally there are nH = h(1;1) hypermultiplets andone double tensor multiplet. Sin
e they 
ouple non-trivially it is 
onvenientto 
ombine them as(��; ��; qu; BI��) ; � = 1; : : : ; 2nH + 2 ; (2.3)u = 1; : : : ; 4nH + 2; I = 1; 2 :Ea
h of these multiplets features two 
hiral hyperinos whi
h we 
olle
tivelydenote as ��. The bosoni
 
omponents of the hypermultiplets are 4nH reals
alars, while the double tensor multiplet 
ontains two antisymmetri
 tensorsBI�� (they are the four-dimensional part of the RR and the NSNS two�forms)together with the axion l and the four dimensional dilaton '. We denote thes
alars in the hypermultiplets and in the double tensor multiplet 
olle
tivelyby qu.The ba
kground �uxes arise from expanding both the RR three-form F3and the NS three-form H3 along the third 
ohomology H3 of the Calabi-Yaumanifold F3 + �H3 = m��� � e��� ; � = 0; : : : ; h(1;2) ; (2.4)where e� = e1� + �e2� ; m� = m�1 + �m�2 ; (2.5)are the ele
tri
 and magneti
 ba
kground �uxes2 and � is the ten-dimensional
omplex type IIB dilaton � = l + ie��. The three-forms (��; ��) denote areal, symple
ti
 basis of H3.In the next se
tion we will sear
h for N = 1 DW solutions of the e�e
tivesupergravity arising from type IIB 
ompa
ti�
ations. For this task we needthe s
alar part of the supersymmetry transformation of the fermions whi
h1Here h(1;1) and h(1;2) are the Hodge numbers of the Calabi-Yau manifold ~Y . Through-out the paper we denote by ti the s
alars of the ve
tor multiplets irrespe
tive of theirgeometri
 origin. In type IIB 
ompa
ti�
ation they 
orrespond to deformations of the
omplex stru
ture while in type IIA 
ompa
ti�
ation they parameterize the Kähler defor-mation (
f. appendix A).2The nomen
lature ele
tri
�magneti
 is linked to the de�nition of the ele
tri
 versusmagneti
 gauge bosons whi
h arise in the expansion of the type IIB four formC4 a

ordingto C4 = A�1��� ~A1���+ : : :. Here A�1 are the (h(1;2)+1) ele
tri
 gauge bosons (in
ludingthe graviphoton) while ~A1� are the 
orresponding dual magneti
 gauge bosons.4




an be non�trivial along the DW. In parti
ular, in the following we set tozero the �eld strengths of the ve
tors and the tensors. With this assumptionthe supersymmetry transformation of the two gravitinos  �A has the form[11, 12, 13℄ Æ �A = D�"A + iSAB
�"B ; (2.6)where "A are the two supersymmetry parameters and SAB is a hermitianSU(2) matrix whi
h depends on the ba
kground �uxes (2.5). For the typeIIB 
ompa
ti�
ations under 
onsideration one �nds [12℄SAB = i2 �xAB !xI hV;KIi ; I = 1; 2 ; (2.7)where the quaternioni
 
onne
tion !xI is given by [35℄!x1 = Æx3e2' ; !12 = �e2'Im� ; !22 = 0 ; !32 = e2'Re� : (2.8)Here e2' = 18e�KHe2� is the four-dimensional real dilaton, � is the ten-dimensional IIB dilaton and 18e�KH is the volume of ~Y whi
h is de�ned in(A.21). We also assembled the ba
kground �uxes into (symple
ti
) ve
torsKI = (mI�; eI�) and de�ned the symple
ti
 inner produ
t h ; i as:hV;KIi = (L�eI� �M�m�I ) ; (2.9)where V = (L�;M�) is de�ned in (A.2). The ele
tri
 and magneti
 
hargesare not arbitrary, as supersymmetry in four dimensions [12℄ and the tadpole
an
ellation 
ondition in ten dimensions [6℄, imposehK1;K2i = 0 : (2.10)Inserting (2.8) into (2.7) SAB reads expli
itlySAB = i2 e2'h�3AB (hV;K1i+ hV;K2iRe� )� hV;K2i Im� �1ABi : (2.11)The supersymmetry transformations of the gaugini are given byÆ�iA = i��ti
�"A +W iAB"B ; (2.12)whereW iAB = igi�|�ABx !xI hU|;KIi (2.13)= igi�|e2' ��AB3 (hU�|;K1i+ hU�|;K2iRe� )� hU�|;K2iIm� �AB1 � ;5



and we de�ned Ui = riV � (�i+ 12�iKV )V where KV is the Kähler potentialof the ve
tor multiplets de�ned in (A.1).Finally the supersymmetry transformations of the hyperinos readÆ�� = iPuA���qu
�"A +NA� "A ; (2.14)where N�A = �2U�AI hV;KIi : (2.15)The matrixes PuA� play the r�le of a vielbein on the s
alar manifold spannedby the qu's, while U�AI are remnants of the vielbein on the quaternioni
manifold along the dire
tions whi
h have been dualized into s
alars (see ap-pendix A and in parti
ular referen
e [11℄ for more details).3 N = 1 Domain Wall solutions3.1 Gradient Flow EquationsAfter this brief review of theN = 2 low energy supergravity arising in Calabi-Yau 
ompa
ti�
ations of type IIB string theory let us now turn to the maintopi
 of this paper and study its three-dimensional N = 1 DW solutions.That is we study solutions of the four-dimensional N = 2 supergravity whi
hpreserve the three-dimensional Lorentz group SO(1; 2) and half of the super-
harges. We split the 
oordinates x�; � = 0; : : : ; 3 of the four-dimensionalspa
e-time into 
oordinates (xm; z);m = 0; 1; 2; where xm denote the 
oor-dinates along the DW while z parameterizes the dire
tion normal to the DW.A

ordingly we split the ba
kground metri
 preserving Lorentz invarian
e asg��(x�) dx�dx� = eU(z)ĝmn(xm) dxmdxn + gzz(z) dzdz : (3.1)where ĝmn(xm) is the metri
 of a three-dimensional spa
e-time whi
h weassume to have 
onstant 
urvature. (In the following the `hatted' quantitieswill refer to the three-dimensional un-warped metri
.) Furthermore, following[3, 4℄ we 
hoose to parameterize gzz(z) = �e�2pU(z) where p is an arbitraryreal number. Finally using � = eU(z) instead of z as the 
oordinate of thetransverse spa
e we arrive atg��(x�)dx�dx� = �2ĝmn(xm)dxmdxn � d�d��2W2(z) = ���e��e��dx�dx� ; (3.2)6



where W = �epU(z)U 0(z) : (3.3)The non�vanishing 
omponents of the vierbein de�ned in (3.2) take the formeam = êameU(z) ; e3z = e�pU(z)Æ3z ; a = 0; 1; 2 ; (3.4)while the non-vanishing 
omponents of the spin 
onne
tion ! are found tobe !abm = !̂abm ; !a3m = e(p+1)U(z)U 0(z)êam : (3.5)Sin
e we are interested in DW solutions whi
h preserve four super
hargeswe �rst study the supersymmetry transformations of the fermioni
 �elds.More pre
isely we solve Æ�fermions = 0 for half of the super
harges. This ismost easily done by imposing from the very beginning a relation on the twosupersymmetry parameters "A; A = 1; 2 whi
h reads [3, 4℄"A = hAAB
3"B : (3.6)Here h(z) is a 
omplex fun
tion while AAB is a 
onstant matrix. Consisten
yof (3.6) with its hermitian 
onjugate implies hh = 1 while A BA � AAC �CBmust be a hermitian matrix whi
h in addition satis�esA BA A CB = ÆCA : (3.7)Thus A has to be a suitable linear 
ombination of (1; ~�) where ~� are thePauli matri
es.Finally, the 
ondition of 
onstant 
urvature of ĝmn(xm) 
an also be ex-pressed as the integrability 
ondition of [3, 36℄D̂m(h 12 "A) = ì êam
a
3h 12 "A (3.8)where 1̀2 is the three dimensional 
osmologi
al 
onstant.The next step is to look for solutions ofÆ �A = Æ�iA = Æ�� = 0 (3.9)with (3.6) imposed. Furthermore, we only allow the s
alar �elds to be non-trivial in the DW ba
kground setting all other �elds to zero. Sin
e we aremost interested in the values of the s
alars transverse to the DW we suppose7



in the following that they only depend on the 
oordinate z and ignore theirxm dependen
e.Let us �rst 
onsider Æ Am = 0. Using (3.4)�(3.8) one derivesAABDm"B = �� ì e�U + 12e(p+1)UU 0�h
m"A : (3.10)Inserted into Æ Am = 0 one obtains� ì e�U + 12e(p+1)UU 0�h
m"A = iAABSBC
m"C : (3.11)This implies that AABSBC is proportional to the identity or in other wordsiAABSBC = 12WÆAC ; (3.12)where the proportionality fa
tor de�nes the superpotential W . From (2.11)and (3.12) we infer the stru
ture of A BA to beA BA = 1p2(��1 BA + �3 BA ) ; (3.13)and the 
onstraint (Im� �Re� )hV;K2i = hV;K1i : (3.14)Inserting (3.12) - (3.14) into (3.11) we �nally arrive atì = 14eU(hW � �h �W ) ; (3.15)U 0 = 12e�pU(hW + �h �W ) ; (3.16)W = 4e'eKH=2hV;K2i : (3.17)We see that the 
osmologi
al 
onstant is determined by the imaginary partof hW while the derivative of the warp fa
tor is determined by the real part.W itself is determined by the �uxes.Before 
ontinuing let us brie�y dis
uss the limiting 
ases of only RR �uxes(K2 = 0) and only NS �uxes (K1 = 0). In the �rst 
ase we see from (2.11)8



and (3.12) that A is proportional to �3 and no 
onsisten
y 
ondition needsto be imposed. For only NS �uxes the 
onsisten
y 
ondition isIm� �Re� = 0 : (3.18)Now we look at to the solution of Æ Az = 0. It turns out that we 
anfollow pre
isely the same steps as done in [3℄ with the only di�eren
e thatwe have to use the 
onstraint (3.14). Suppressing the intermediate steps wearrive at hDzh = 2ì e�(p+1)U : (3.19)The solution of Æ�iA = 0 pro
eeds analogously. We insert (3.6) and (2.13)into (2.12) and obtain the 
onstraint(Im� �Re� )hUi;K2i = hUi;K1i : (3.20)Di�erentiating (3.14) with respe
t to z and using (3.20) we 
on
ludeIm� �Re� = � ; (3.21)where � is a real 
onstant (� = 0 holds if and only if there are no RR�uxes). For our purposes we do not need to �nd an expli
it solution for the
onstraints (3.14), (3.20). Note that they are satis�ed, for instan
e, if thetwo ve
tors of ele
tri
/magneti
 
harges are parallel K1 = �K2 where � isde�ned in equation (3.21). This is 
onsistent with the tadpole 
an
ellation
ondition (2.10) and with the two limiting 
ases K1 = 0 or K2 = 0.Inserting (3.20) into (2.12) we obtain the �ow equations for the s
alars ti�zti = �gi�|e�pU(z)hr�|W : (3.22)The analysis of Æ�� = 0 pro
eeds analogously and one inserts (2.15) and(3.6) into (2.14). Using the quaternioni
 relations (A.13)�(A.16) one �nds�zqu = �guve�pU(z)h�vW ; (3.23)where guv is de�ned in (A.8). In addition one �nds that hW has to be realor in other words �h is determined as the phase of W .�h = WjW j : (3.24)9



This in turn implies that the 
osmologi
al 
onstant on the DW must be zero,as we 
an see from equation (3.15). Therefore the metri
 ĝmn on the DW is�at: ds2 = �2�mndxmdxn � d�d��2W2 : (3.25)Note that (3.25) holds for K1 = 0 and in parti
ular also for K2 = 0, that isin the 
ase where just RR �uxes are present [4℄.Using (3.24) we 
an insert (3.16) into (3.3) to arrive atW(z) = �hW = �jW j : (3.26)Using as a transverse 
oordinate �(z) = eU(z), (3.22) and (3.23) 
an bewritten as gradient �ow equations�dtid� = �gi|r| lnW ; (3.27)�dqud� = �guv�v lnW : (3.28)3.2 Solutions of the �ow equationsSo far we derived the gradient �ow equations for an N = 1 BPS domainwall in type IIB supergravity 
ompa
ti�ed on a Calabi-Yau manifold ~Y inthe presen
e of ele
tri
 and magneti
 RR and NS �uxes. The purpose of thisse
tion is to study their solutions and to prepare for a geometri
al interpreta-tion in a mirror symmetri
 
ompa
ti�
ation of type IIA on some generalizedmanifold Ŷ .We will not 
onsider the most generi
 solution but instead follow [4℄ andrestri
t the spa
e of s
alar �elds whi
h 
an vary along the DW. More pre
iselythe s
alars in the ve
tor multiplets ti and the four-dimensional dilaton ' 
anbe non-trivial along the DW. As we dis
uss in appendix A, half of the s
alarsin the hypermultiplets are geometri
al moduli of the Calabi-Yau manifold.In type IIB 
ompa
ti�
ations they 
orrespond to deformations of the Kählerform and we denote them by za = �a + i�a. Following [4℄ we only allow the�a to be non-trivial in the DW solution while �a together with the remainings
alar �elds from the RR se
tor are kept 
onstant.10



Let us �rst fo
us on the �ow equations for the hypermultiplet s
alars.Inserting (3.17) and (3.24) into (3.16) and (3.23) we arrive at�zqu = �2e�pU+'+KH2 guv�v(2' +KH)jhV;K2ij ; (3.29)�zU(z) = 4e�pU+'+KH2 jhV;K2ij ; (3.30)where KH is de�ned in (A.20) and (A.21). Comparing (3.30) and (3.29) oneobtains dqudU = �12guv�v(2'+KH) : (3.31)This equation shows that the U�dependen
e of the quaternioni
 �elds isnot modi�ed by the magneti
 �uxes and thus we expe
t that the solution
oin
ides with the solution derived in [4℄.In order to solve equation (3.31) let us �rst note that on the submanifoldspanned by the s
alars ' and �a the inverse metri
 guv is blo
k diagonal withthe 
omponents g'' = 1 ; gab = �23 �d dab � 3�a�b� ; (3.32)where we have evaluated gab in the large volume limit and de�nedd = dab
�a�b�
 ; da = dab
�b�
 ; dab = dab
�
 ; (3.33)with dab being the inverse of dab. Inserting (3.32) into (3.31) we obtain thesolution e' = C e�U(z) ; za = i�a = iDa e2U(z) ; (3.34)where C and Da are integration 
onstants. From (A.21) we learne�KH = 43De6U(z) ; (3.35)where we abbreviated D = dab
DaDbD
. Note that as expe
ted (3.34) and(3.35) 
oin
ide with the result of referen
e [4℄.Let us now 
onsider the ve
tor multiplets s
alars. Also in this 
ase it ismore 
onvenient to 
onsider (3.22) instead of (3.27) whi
h, following [3℄, werewrite as follows�z �Y � � Y �F� �F� � = �i4e(1�p)U+'+KH2 �m�e� � (3.36)11



where we have suppressed the label �2� on the NSNS �uxes and de�nedV � h eU(z)V = h eU(z)� L�M�� � �Y �F� � : (3.37)Using the solution (3.35), 
hoosing D = 12C2 and performing the 
hange of
oordinates de�ned by e(p+3)U(z)�z = �w (3.38)equation (3.36) be
omes�w�Y � � Y �F� �F� � = �i�m�e� � : (3.39)If we set p = �3 and m� = 0 we re
over the result of [4℄.In order to derive further useful relations, let us display (3.39) more ex-pli
itly. Using (A.4) and the normalization Y 0 = � i2 we inferbi = �2ImY i ; vi = 2ReY i ; (3.40)where we split � = 0; i. Inserted into (3.39) using (A.3) we arrive at0 = m0 (3.41)�wbi = mi (3.42)12
ijk�w(vjvk)� 12
ijk�w(bjbk) = ei (3.43)�12
ijk�w(bivjvk) + 16
ijk�w(bibjbk) = e0 (3.44)Solutions of equations (3.42)�(3.44) are dis
ussed in appendix B.Note that equations (3.15) and (3.16) 
an be rewritten in terms of theres
aled se
tion VhReV;K2i = e(p+2)U�wU ; hImV;K2i = 0 : (3.45)Using (3.40), (B.2), (B.5) and (B.6) one 
an easily 
he
k the se
ond equationin (3.45) and 
ompute the �rst to bee(p+2)U�wU = 12(vie2i + 
ijkvibjm2k) : (3.46)12



Multiplying (3.43) by vi and making use of (3.42) one 
an derive by 
ompar-ison with (3.46) e�KV � 43 
ijkvivjvk = 4e2U ; (3.47)where we also used (A.5). Note that the �nal form of KV does not depend onthe presen
e of the magneti
 �uxes and therefore 
oin
ides with the resultsof [4℄. Let us also observe at this point that the ten-dimensional type IIAdilaton �A de�ned by e2�A = 18e2'�KV is given by the integration 
onstantintrodu
ed in (3.34) e�A = C, as 
an be seen from (3.34) and (3.47). Thiswill be important in the next se
tion.We are now in the position to formulate the DW gradient �ow equationsin a very 
ompa
t way, in terms of the quantities (ZA; WA) and (X�; F�)introdu
ed in appendix A. First noti
e that the relation between (X�; F�)and the se
tions (Y �; F�) 
an be dedu
ed from equations (A.2), (3.37) and(3.47). In parti
ular, setting the irrelevant overall phase to zero, that ish = 1, we obtain �X�F� � = 2� Y �F� � ; (3.48)and as a 
onsequen
e (3.39) now reads�w� ImX�ImF� � = ��m�e� � : (3.49)Furthermore, in these variables (3.45) readsImX�e� � ImF�m� = 0 : (3.50)Let us return to the �ow equations for the hypermultiplet s
alars (3.28)or (3.29) respe
tively, whose solution we already gave in (3.34). However,in order to 
ompare the solution with the Hit
hin �ow equation of the nextse
tion it is useful to rewrite them in a form similar to (3.49). This is a
hievedin terms of res
aled variables (ZA; WA)� given by(ZA; WA) = j
j (ZA; WA)� ; j
j2 � eKV�KH = D3 e4U ; (3.51)where the last equality used (3.35) and (3.47). The geometri
al meaning ofthis res
aling will be
ome more transparent in the next se
tion.13



Re
alling the de�nition (A.22), the solution (3.34) and the gradient �owequation (3.45), one 
an easily 
he
k that�w0� ImZAImWaImW01A� = �j
j0� 00ReX�e� � ReF�m�1A : (3.52)4 The geometry of the type IIA ba
kgroundThe DW solution of type IIB dis
ussed in the previous se
tion is expe
ted tohave a mirror symmetri
 solution in type IIA. For RR �uxes mirror symmetrymerely amounts to ex
hanging the �ux of the RR three-form F3 de�ned in(2.5) with the �uxes of the even forms F2 and F4 of type IIA [6, 10℄. However,for the NS-form H3 the situation is more involved in that mirror symmetry
an relate H3-�ux to the torsion of a geometri
al 
ompa
ti�
ation [16, 17℄or possibly to non-geometri
al quantities [20℄. For ele
tri
 NS �uxes3 e� theIIA mirror symmetri
 solution 
orresponds to 
ompa
ti�
ations on half-�atmanifolds Ŷhf [21, 22, 17℄. More pre
isely, in ref. [4℄ it was shown that theDW solution takes the form of a warped produ
tM(1;2) �w X7 ; (4.1)where the seven dimensional manifold X7 
onsists a six dimensional half-�atmanifold Ŷhf whi
h is �bered over R. Thus the metri
 takes the formds2(7) = dy2 + ds2(6)(y) ; (4.2)where ds2(6) is the metri
 of Ŷhf and y is the 
oordinate of R.Half-�at manifolds are a spe
ial sub-
lass of manifolds with SU(3) stru
-ture. They admit a globally de�ned spinor whi
h is invariant under SU(3).The existen
e of this spinor implies the existen
e of a two-form J and a 
om-plex three-form 
�.4 For half-�at manifolds J and 
� satisfy the additional
onditions [21, 22℄ dJ2 = 0 = dIm
� : (4.3)3Let us re
all that we suppress the index �2� for the NSNS �uxes, that is we mean(e�; m�) � (e2�; m2�).4
 is only de�ned up to 
omplex res
aling. Therefore a 
hoi
e of normalization isinvolved in the following. By 
� we denote the three-form 
onstru
ted from a normalizedspinor or equivalently a three-form whi
h obeys 
� ^ �
� = 3i4 J3.14



When Ŷhf sits inside X7 the non-trivial �bration is expressed by theHit
hin �ow equations [21, 22℄12 �yJ2 = �dRe
� ; �yIm
� = dJ : (4.4)They pre
isely ensure that X7 has G2 holonomy whi
h 
orresponds to theN = 1 supersymmetry of the IIB DW solution.In this se
tion we suggest a generalization of the type IIA geometri
 
om-pa
ti�
ation whi
h also 
aptures the mirror of non-trivial type IIB magneti
�uxes m�. More pre
isely we 
he
k that 
ompa
ti�
ations of the form (4.1)where X7 
ontains a �bered produ
t of a six-manifold with SU(3) � SU(3)stru
ture times the real line are mirror dual to type IIB DW solutions withele
tri
 and magneti
 �ux. This generalized mirror symmetry has re
entlybeen suggested in ref. [25, 29, 30, 31℄ and here we 
on�rm that it also holdsfor the 
ase of the DW solution 
onstru
ted in the previous se
tion.In order to 
he
k this proposal let us brie�y summarize the results of refs.[29, 31℄. It was shown that the most general possible geometri
al 
ompa
ti�-
ation of type II string theories involves manifolds with SU(3)�SU(3). Su
hmanifolds are de�ned by the existen
e of two lo
ally inequivalent spinors.Ea
h of them is left invariant by an SU(3) and thus together they de�newhat is 
alled an SU(3) � SU(3) stru
ture [27, 28℄. Compa
ti�
ations onsu
h manifolds lead to an N = 2 low energy e�e
tive a
tion in four spa
e-time dimensions. The spa
e of s
alar �elds is most 
onveniently expressed interms of two pure spinors of SO(6; 6) denoted by ��. Geometri
ally �+ isa sum of even forms while �� is a sum of odd forms. If one proje
ts out allpossible massive gravitino multiplets both �+ and �� enjoy an expansion ofthe form �+ = X�!� � F� !� ; �� = ZA� �A �W�A �A : (4.5)The (!�; !�) form a (non-degenerate) symple
ti
 basis on the spa
e of evenforms while (�A; �A) form a symple
ti
 basis on the spa
e of odd forms.They are normalized a

ording to:ZY !� ^ !� = Æ�� ; ZY �A ^ �B = ÆBA : (4.6)In addition �� satisfy a 
ompatibility 
ondition whi
h in terms of the ex-pansion (4.5) reads [29, 31℄(X� �F� � �X�F�) = (ZA �WA � �ZAWA)� : (4.7)15



�� are only de�ned up to arbitrary res
aling and as shown in [29℄ the lowenergy e�e
tive a
tion or more pre
isely the Kähler potentials depend on theres
aled se
tions (ZA; WA) whi
h are related to (ZA; WA)� pre
isely by theres
aling (3.51). In terms of (X�; F�) and (ZA; WA) the Kähler potentialsare again given by (A.1) and (A.20), respe
tively. Furthermore, it is possibleto 
hoose spe
ial 
oordinates where X0 = �i; Z0 = 1 holds and in these
oordinates mirror symmetry is realized by imposing [30, 31℄d�0 = m�!� � e�!� ; d�a = d�A = 0 ; d!� = e��0 ; d!� = m��0 :(4.8)One shows that for type IIA 
ompa
ti�
ations on manifolds obeying (4.8)spe
trum and e�e
tive a
tion 
oin
ide with that obtained by 
ompa
tifyingtype IIB an Calabi-Yau threefolds with ele
tri
 and magneti
 NS three-form�ux turned on [31℄. For m� = 0 one pre
isely obtains the half-�at manifoldsdis
ussed above. In this 
ase one has �+ = eB+iJ and �� = 
�, where B isthe NS two-form.What is left to study are the SU(3)�SU(3) generalizations of (4.3) and(4.4) and to show that they 
orrespond to the DW solutions of the previousse
tion. From a mathemati
al point of view the generalized �ow equationshave been derived in ref. [28℄ and (in our notation) they readd Im�� = d Im�+ = 0 ; (4.9)�yIm�+ = �dRe�� ; (4.10)�yIm�� = dRe�+ : (4.11)Let us now show that these �ow equations together with (4.8) 
oin
idewith the DW solution of the previous se
tion. We start by 
omputing d��and insert (4.8) into (4.5). This yieldsd�+ = (X�e� � F�m�)�0 ; (4.12)d�� = j
j�1(m�!� � e�!�) ; (4.13)where j
j is de�ned in (3.51). From the reality of the right hand side of (4.13)we immediately 
on
lude d Im�� = 0. Furthermore d Im�+ = 0 
oin
ideswith the 
ondition (3.50).The next step is to 
ompute �yIm��. Using (4.5) we arrive at�yIm�+ = (�yImX�)!� � (�yImF�)!� ; (4.14)�yIm�� = (�yImZA� )�A � (�yImW� A)�A : (4.15)16



Changing 
oordinates a

ording tody = j
j�1dw ; (4.16)we see that �yIm�+ = �dRe�� pre
isely 
orresponds to (3.49) and �yIm�� =dRe�+ 
orresponds to (3.52). Thus we have a
hieved our goal and re
ov-ered the type IIB �ow equations from the generalized Hit
hin �ow equations(4.9)�(4.11) on the type IIA side.Our next 
hore is to 
ompare the superpotentials. In (3.12) we learnedthat W is related to the matrix SAB de�ned in (2.6). Pre
isely this quantitywas 
omputed in [29℄ in terms of the pure spinors �� to beW � e 12 (KV+KH)+' ZY d�+ ^ �� = e 12 (KV+KH)+'(X�e� � F�m�) ; (4.17)where we used (4.5) and (4.8). Again this type IIA quantity pre
isely 
o-in
ides with (3.17) of type IIB if we also use (A.2). Thus the Hit
hin �owequations 
an also be viewed as gradient �ow equations of the form (3.27),(3.28) with a superpotential given by (4.17).In summary we just showed that the DW solutions of type IIB 
an beexpressed as generalized Hit
hin �ow equations for the two pure spinors ��of a manifold with SU(3) � SU(3) stru
ture as given in (4.9)�(4.11).Our �nal task is to dis
uss the properties of the seven-dimensional man-ifold X7. As the metri
 on the DW is �at and the ba
kground M(1;2) �w X7solves the string equation of motion, we expe
t X7 to be Ri

i �at. For half-�at manifolds this was indeed shown in refs. [21, 22, 4℄. In order to dis
ussthe generalization at hand let us introdu
e the seven dimensional exteriorderivative by d̂ = d + dy �y ; (4.18)where d a
ts on Ŷ6 and �y is the derivative with respe
t to the 
oordinateof R. Furthermore, following [27, 28℄ one 
an de�ne the generalized forms �and �� on X7 whi
h are given in terms of �� by� = �Re�+ ^ dy � Im�� ; �� = Re�� ^ dy + Im�+ : (4.19)�� is the Hodge dual of � with respe
t to the generalized metri
. As notedin [27, 28℄ the equations (4.9)�(4.11) then 
orrespond tod� = �d� � = 0 ; (4.20)and imply that X7 has an integrable G2 �G2 stru
ture and is indeed Ri

i-�at. 17



5 Con
lusions and outlookIn this paper we studied three-dimensional N = 1 DW solutions of four-dimensional N = 2 supergravities whi
h arise as the low energy limit of typeIIB string theory 
ompa
ti�ed on Calabi-Yau threefolds in the presen
e ofRR and NS three-form �uxes. An essential ingredient in our analysis wasthe newly 
onstru
ted N = 2 supergravity [11℄�[14℄ whi
h in
ludes massiveantisymmetri
 tensors in the spe
trum. The use of this supergravity is ne
-essary whenever magneti
 �uxes are turned on as they render antisymmetri
tensors in the type IIB spe
trum massive. In this respe
t we generalizedthe previous analysis of refs. [3, 4℄ and 
onsistently in
luded magneti
 �uxes.We further showed that the N = 2 s
alar �elds vary a

ording to a set ofgradient �ow equations and expli
itly determined their solution in terms ofthe �uxes.The se
ond aspe
t of the paper dealt with the type IIA mirror symmet-ri
 DW solutions. Here we used the results of [29, 30, 31℄ and showed thatthe �ow equations of type IIB have a mirror dual whi
h is purely geomet-ri
al and 
an be understood as a set of generalized Hit
hin �ow equationsfor a parti
ular 
lass of manifolds with SU(3) � SU(3) stru
ture [28℄. As inrefs. [21, 22, 28℄ these �ow equations do have a seven-dimensional interpre-tation and 
an be viewed as arising from �bering a six-dimensional manifoldwith SU(3)�SU(3) over the real line and demanding an integrable G2�G2stru
ture of the resulting seven-dimensional manifold.A
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AppendixA The s
alar ��model of N = 2 supergravityIn this appendix we re
ord some further details of the s
alar �elds in N = 2supergravity. They 
an be viewed as the 
oordinates of some target spa
egeometry whi
h is 
onstrained by N = 2 supersymmetry. In parti
ular the
omplex s
alars of the ve
tor multiplets lead to a spe
ial Kähler geometrywhile the s
alars in the hypermultiplets span a quaternioni
 manifold [34℄.Let us dis
uss both geometries in turn.A.1 Spe
ial Kähler geometry of the ve
tor multipletsThe 
omplex s
alars ti; i = 1; : : : ; nV belonging to the nV ve
tor multipletsspan a spe
ial Kähler geometry. That is their �-model metri
 is a Kählermetri
 with a Kähler potentialKV = � ln ih �X�F� � �F�X�i ; � = 0; : : : ; nV : (A.1)X�(t) and F�(t) depend holomorphi
ally on the s
alars ti and are related tothe 
ovariantly holomorphi
 se
tion V introdu
ed in (2.9) byV = (L�;M�) = eKV =2(X�; F�) : (A.2)For Calabi-Yau 
ompa
ti�
ations F� = ��F (X) is the derivative of aprepotential F . In the large volume or large 
omplex stru
ture limit F isgiven by F (X) = � 13!
ijkX iXjXkX0 ; i = 1; : : : ; nV ; (A.3)where the 
ijk are 
onstants. A parti
ular set of 
oordinates, 
alled spe
ial
oordinates, is given by ti � bi + ivi = X iX0 : (A.4)In these 
oordinates the Kähler potential (A.1) is given byKV = � ln h 43 
ijkvivjvki : (A.5)19



A.2 Geometry of tensor- and hypermultipletsThe hypermultiplet geometry is des
ribed in terms of real s
alar �elds qû,û = 1; � � � ; 4nH , (here nH is the number of hypermultiplets) whi
h span aquaternioni
 manifold. The metri
 
an be expressed in terms of a 
ovariantly
onstant vielbein UA� � UA�û dqû. More expli
itly one hashûv̂ = UA�û UB�v̂ �ABC �� ; A;B = 1; 2 ; (A.6)where �AB = ��BA and C �� = �C �� are the SU(2) and Sp(2nH ;R) invariantmetri
s respe
tively. The quaternioni
 vielbein obeysrUA� � dUA� + !̂AB ^ UB� + �̂�� ^ UA� = 0 ; (A.7)where !̂ABû , �̂��û are the SU(2) and Sp(2nH ;R) valued 
onne
tions.A set of s
alars whi
h parameterizes translational and 
ommuting isome-tries 
an be dualized into a set of nT antisymmetri
 rank two tensors [11℄. Inthis 
ase the remaining s
alars qu, u = 1; � � � ; 4nH �nT will not parameterizea quaternioni
 manifold anymore. Instead their �-model metri
 guv is givenby guv = huv � hIuM IJhJv = PA�u PB�v �ABC �� ; guv = huv ; (A.8)where we de
omposed the quaternioni
 metri
 ashûv̂ = �huv huJhvI hIJ � ; (A.9)and de�ned M IJ as the inverse of hJKM IJhJK = ÆIK : (A.10)The vielbein PA�u of the metri
 guv de�ned in (A.8) 
an be expressed interms of the quaternioni
 vielbein as followsPA�u � UA�u �AIuUA�I ; P u A� � UuA� ; (A.11)where AJu = hIuM IJ . Similarly the 
onne
tions de
ompose as!̂ABu � !ABu +AIu!ABI ; !̂ABI � !ABI ;�̂��u � ���u + AIu���I ; �̂��I = ���I : (A.12)20



The new quantities satisfy a 
ertain number of relations [11, 33℄ and here were
ord only the ones needed in order to derive (3.23) and (3.24)(PA�u PB�v + PA�v PB�u )C �� = guv�AB ; (A.13)(PA�u UB�I + UA�I PB�u )C �� = 0 ; (A.14)(UA�I UB�J + UA�J UB�I )C �� =MIJ �AB ; (A.15)U (AI� PB)�u = 12ru!ABI : (A.16)The 
ovariant derivativeru is de�ned with respe
t to the redu
ed 
onne
tion!ABu , ���u .The 
onvention for raising and lowering the symple
ti
 indi
es is as follows�ABTB = TA ; TB�BA = TA ; (A.17)C ��T � = T� ; T�C �� = T � : (A.18)A.3 Quaternioni
 geometry in Calabi-Yau 
ompa
ti�-
ationsSo far we only dis
ussed the geometry as it appears in general in N = 2supergravity. In Calabi-Yau 
ompa
ti�
ations of either type IIA or typeIIB string theory only a spe
ial 
lass of quaternioni
 geometries, termed`dual quaternioni
 geometries', arise at the tree level [37℄. This is basi
ally a
onsequen
e of mirror symmetry and states that the quaternioni
 manifoldof real dimension 4nH ne
essarily has a spe
ial Kähler submanifold of realdimension 2nH whi
h is spanned by the geometri
al moduli. The remaining2nH s
alar �elds then arise from the RR se
tor.Let us be slightly more expli
it. A Calabi-Yau manifold has a geomet-ri
al moduli spa
e M whi
h is produ
t of a 
omponent Mk spanned bythe deformations of the Kähler form and a 
omponent M
s spanned by thedeformations of the 
omplex stru
tureM =Mk �M
s : (A.19)Ea
h 
omponent is a spe
ial Kähler geometry with a Kähler potential of theform (A.1), i.e. a Kähler potential whi
h 
an be 
hara
terized by a holomor-phi
 prepotential. 21



In 
ompa
ti�
ations of type IIA the deformations of the Kähler formreside in ve
tor multipletswhile the deformations of the 
omplex stru
ture aremembers of the hypermultiplets. In type IIB the situation is exa
tly reversedand the Kähler moduli sit in hypermultiplets while the 
omplex stru
turemoduli populate the ve
tor multiplets. In both 
ases the geometri
al moduliin the hypermultiplets 
ombine with the s
alar �eld from the RR se
tor tospan the full quaternioni
 geometry.Sin
e we are dis
ussing both type IIA and type IIB 
ompa
ti�
ations inthe main text we 
hoose to denote the s
alar �elds in the ve
tor multipletsby ti irrespe
tive of their Calabi-Yau origin as Kähler or 
omplex stru
turedeformations. Similarly, we denote by za the geometri
al moduli whi
h residein the hypermultiplets and whi
h span the spe
ial Kähler submanifold insidethe quaternioni
 manifold. Their Kähler potential we denote asKH = � ln ih �ZAWA � �WAZAi ; A = 0; : : : ; nH ; (A.20)where WA(Z) is the se
ond holomorphi
 prepotential. In the large volumeor large 
omplex stru
ture limit KH redu
es toKH = � ln h 43 dab
�a�b�
i ; (A.21)where za = �a + i�a = ZaZ0 (A.22)are the spe
ial 
oordinates in this se
tor.Finally let us also re
ord the relation with the 
onventions used in ref.[35℄. In this paper the quantities K̂ and ~K are used whi
h are related to thequantities used in this paper bye�K̂ = 2e�KH ; e� ~K = e�2' ; (A.23)where ' is the four-dimensional dilaton. Finally, the ten-dimensional dilaton
an be expressed as Im� = 4e K̂� eK2 : (A.24)B Expli
it solution of the �ow equationsIn this appendix we derive the expli
it solution of the ve
tor multiplets �owequation. 22



The formal integration of equation (3.39) is trivial and gives:�Y � � Y �F� �F� � = �i�m�e� �x+�K�K� � : (B.1)Imposing (2.10), (3.45) on (B.1) one obtains the 
ondition:K�e� �K�m� = 0 (B.2)From the normalization Y 0 = � i2 we infer K0 = 1. Expli
it integration of(3.42)�(3.44) yieldsbi = mix+K i (B.3)
ijkvjvk = 
ijkmjmk x2 + 2(
ijkmjKk + ei)x+ 
ijkKjKk + 2Ki (B.4)Reinserting (B.3) and (B.4) ba
k into (3.43), (3.44) and making use of (B.2)one obtains the following set of 
onstraints on the parameters:m0 = 0 (B.5)K0 = 1 (B.6)
ijkmimjmk = 0 (B.7)
ijkmimjKk + eimi = 0 (B.8)
ijkmiKjKk + 2Kimi = 0 (B.9)13
ijkK iKjKk +KiK i +K0 = 0 (B.10)K iei = K iKi (B.11)Conta
ting (B.4) with mi and using (B.7)-(B.9) we further obtain:
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