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1 IntrodutionDomain wall (DW) solutions of supergravity have reeived a lot of attentionreently whih is largely due to their role in the AdS/CFT orrespondene[1℄. However, apart from this appliation they also have been studied asa lass of supersymmetri ground states alternative to the ommonly on-sidered Minkowski or AdS bakgrounds. In partiular supergravities withnon-trivial bakground �uxes often do not admit a stable, four-dimensionalsupersymmetri ground state but they do have BPS DW solutions. For ex-ample, in type IIB supergravity ompati�ed on Calabi-Yau threefolds withnon-trivial three-form �uxes it is neessary to inlude D-branes and orien-tifold planes in order to anel the tadpoles indued by the �uxes and toobtain an N = 1 supersymmetri Minkowski bakground [2℄. On the otherhand without orientifold planes no four-dimensional Minkowski bakgroundis allowed. However, in this ase three-dimensional N = 1 DW solutions doexist [3, 4℄.In this paper we ontinue the study of suh DW solutions of type IIB andgeneralize the previous results [3, 4℄ in various respets. More spei�ally westart from type IIB supergravity ompati�ed on Calabi-Yau threefolds witheletri and magneti bakground three-form �ux for both the NS three-formH3 and the RR three-form F3 [5℄�[10℄. In the presene of the magneti �uxesthe four dimensional antisymmetri tensors �elds B�� and C�� beome mas-sive [10℄. For this ase the orresponding supergravity has only reently beenonstruted in refs. [11℄�[14℄. Using these four-dimensional N = 2 super-gravities we study their N = 1 DW solutions inluding non-trivial magneti�uxes. We �nd that the resulting DW neessarily is �at and furthermorethat the bakground pro�le of the salar �elds is governed by a set of gradi-ent �ow equations expressed in terms of a single superpotential W , whih isrelated to the superpotential suggested in [6℄.The DW solutions of type IIB have their mirror analogous in type IIA.Without �uxes mirror symmetry identi�es type IIB ompati�ations on aCalabi-Yau manifold ~Y with type IIA ompati�ed on the mirror Calabi-Yau Y [15℄. In the presene of RR �uxes mirror symmetry is straightfor-wardly extended by also exhanging the respetive �ux parameters [6, 10℄.For NS �uxes the situation is slightly more involved in that mirror symme-try an relate Calabi-Yau ompati�ation with �uxes to purely geometrialompati�ation on a manifold Ŷ without �ux [16℄�[19℄ or possible also to1



non-geometrial bakgrounds [20℄. For the ase of geometrial bakgroundsŶ is no longer a Calabi-Yau manifold but rather a manifold with SU(3)struture or more generally with SU(3)�SU(3)-struture [21℄�[30℄. In suhompati�ations the (intrinsi) torsion of Ŷ plays the `mirror-role' of the�uxes.This generalized mirror symmetry is also re�eted in the DW solutions.For eletri �uxes it was shown in [4℄ that the mirror symmetri DW an beinterpreted as a solution of type IIA supergravity in a warped bakgroundM1;2 �w X7. As a onsequene of the N = 1 supersymmetry of the DWX7 has G2 holonomy and furthermore onsists of a six-dimensional manifoldŶ �bered over the real line. The G2 holonomy onstrains Ŷ to be withina speial lass of manifolds with SU(3) struture termed `half-�at' [21, 22℄.From a mathematially point of view suh �bration were studied in [21℄ andthe DW solution preisely orresponds to the Hithin �ow equations.For magneti �uxes mirror symmetry is more involved. In [29, 31℄ it isshown that in this ase Ŷ has to be within a speial lass of manifolds withSU(3)� SU(3) struture. In this paper we generalize the analysis of ref. [4℄and show that the mirror symmetri DW solution of type IIB with magnetiNS-�ux also is of the form M1;2 �w X7. However, in this ase Ŷ has to bea manifold with SU(3)�SU(3) struture whih satis�es a set of generalizedHithin �ow equations given in ref. [28℄. X7 in turn has an integrable G2�G2struture and is Rii-�at as demanded by string theory.This paper is organized as follows. In setion 2 we set the stage forour analysis and reall the N = 2 supergravity arising as the low energylimit of type IIB string theory ompati�ed on Calabi-Yau threefolds withbakground �ux. In setion 3.1 we study the N = 1 DW solutions and showthat the salar �elds vary aording to gradient �ow equations. In setion 3.2we expliitly solve these equations and rewrite the solution in terms of mirrorsymmetri type IIA variables. This sets the stage for setion 4 where we showthat the DW solutions orrespond to generalized Hithin �ow equations ofa geometrial SU(3) � SU(3) bakground. Further details are found in twoappendies. 2



2 N = 2 Supergravity with Abelian eletri andmagneti hargesIn order to set the stage for the disussion of the DW solutions let us brie�yreall the struture of N = 2 supergravity with massive tensor multiplets asit arises from type IIB string theory ompati�ed on Calabi-Yau threefoldswith both eletri and magneti three-form �uxes. The N = 2 supergravityinluding massive tensor multiplets has been onstruted in referenes [11,12, 13, 14℄ where further details an be found. Here (and in appendix A) weonly summarize the results needed in the following.An N = 2 tensor multiplet ontains nT � 3 antisymmetri tensor, 4�nTreal salars and two Weyl fermions as its omponents. If the tensors aremassless they an be dualized into salars and hene a massless tensor mul-tiplet is dual to a hypermultiplet whih ontains four real salars and twoWeyl fermions [32, 33℄. In this dual formulation the remnant of the tensorsare translational isometries ating on the dual salars. In the standard (un-gauged) N = 2 supergravity [34℄ one dualizes all tensor multiplet suh thatthe theory ontains only one gravitational multiplet, vetor multiplets andhypermultiplets.On the other hand a massive tensor is dual to a massive vetor and it isoften more onvenient to keep the tensor multiplet in the spetrum. Suha theory an be viewed as a N = 2 supergravity with tensor multipletswhih is deformed by Abelian eletri and magneti harges [11, 12, 13℄.These harges are not related to any gauging of isometries on the residualsalar manifold. Instead the eletri harges appear in Green�Shwarz typeinteration of the tensors with the gauge �elds while the magneti hargeappear in the Stükelberg mass terms of the tensors.In this paper we do not disuss the general ase [13℄ but instead fous ontype IIB theories ompati�ed on Calabi-Yau threefolds ~Y in the presene ofeletri and magneti three-form �uxes [12, 9, 10℄. In this ase the spetrumfeatures a gravitational multiplet(g�� ;  A�;  A� ; A0�) (2.1)where g�� is the metri,  A�; A = 1; 2 are the two hiral gravitinos while A0�is the graviphoton. In addition there are nV = h(1;2) vetor multiplets(Ai�; �iA; �iA; ti) ; i = 1; : : : ; nV ; (2.2)3



where Ai� are the gauge bosons, �iA are the doublets of hiral gaugini whileti are omplex salars.1 Finally there are nH = h(1;1) hypermultiplets andone double tensor multiplet. Sine they ouple non-trivially it is onvenientto ombine them as(��; ��; qu; BI��) ; � = 1; : : : ; 2nH + 2 ; (2.3)u = 1; : : : ; 4nH + 2; I = 1; 2 :Eah of these multiplets features two hiral hyperinos whih we olletivelydenote as ��. The bosoni omponents of the hypermultiplets are 4nH realsalars, while the double tensor multiplet ontains two antisymmetri tensorsBI�� (they are the four-dimensional part of the RR and the NSNS two�forms)together with the axion l and the four dimensional dilaton '. We denote thesalars in the hypermultiplets and in the double tensor multiplet olletivelyby qu.The bakground �uxes arise from expanding both the RR three-form F3and the NS three-form H3 along the third ohomology H3 of the Calabi-Yaumanifold F3 + �H3 = m��� � e��� ; � = 0; : : : ; h(1;2) ; (2.4)where e� = e1� + �e2� ; m� = m�1 + �m�2 ; (2.5)are the eletri and magneti bakground �uxes2 and � is the ten-dimensionalomplex type IIB dilaton � = l + ie��. The three-forms (��; ��) denote areal, sympleti basis of H3.In the next setion we will searh for N = 1 DW solutions of the e�etivesupergravity arising from type IIB ompati�ations. For this task we needthe salar part of the supersymmetry transformation of the fermions whih1Here h(1;1) and h(1;2) are the Hodge numbers of the Calabi-Yau manifold ~Y . Through-out the paper we denote by ti the salars of the vetor multiplets irrespetive of theirgeometri origin. In type IIB ompati�ation they orrespond to deformations of theomplex struture while in type IIA ompati�ation they parameterize the Kähler defor-mation (f. appendix A).2The nomenlature eletri�magneti is linked to the de�nition of the eletri versusmagneti gauge bosons whih arise in the expansion of the type IIB four formC4 aordingto C4 = A�1��� ~A1���+ : : :. Here A�1 are the (h(1;2)+1) eletri gauge bosons (inludingthe graviphoton) while ~A1� are the orresponding dual magneti gauge bosons.4



an be non�trivial along the DW. In partiular, in the following we set tozero the �eld strengths of the vetors and the tensors. With this assumptionthe supersymmetry transformation of the two gravitinos  �A has the form[11, 12, 13℄ Æ �A = D�"A + iSAB�"B ; (2.6)where "A are the two supersymmetry parameters and SAB is a hermitianSU(2) matrix whih depends on the bakground �uxes (2.5). For the typeIIB ompati�ations under onsideration one �nds [12℄SAB = i2 �xAB !xI hV;KIi ; I = 1; 2 ; (2.7)where the quaternioni onnetion !xI is given by [35℄!x1 = Æx3e2' ; !12 = �e2'Im� ; !22 = 0 ; !32 = e2'Re� : (2.8)Here e2' = 18e�KHe2� is the four-dimensional real dilaton, � is the ten-dimensional IIB dilaton and 18e�KH is the volume of ~Y whih is de�ned in(A.21). We also assembled the bakground �uxes into (sympleti) vetorsKI = (mI�; eI�) and de�ned the sympleti inner produt h ; i as:hV;KIi = (L�eI� �M�m�I ) ; (2.9)where V = (L�;M�) is de�ned in (A.2). The eletri and magneti hargesare not arbitrary, as supersymmetry in four dimensions [12℄ and the tadpoleanellation ondition in ten dimensions [6℄, imposehK1;K2i = 0 : (2.10)Inserting (2.8) into (2.7) SAB reads expliitlySAB = i2 e2'h�3AB (hV;K1i+ hV;K2iRe� )� hV;K2i Im� �1ABi : (2.11)The supersymmetry transformations of the gaugini are given byÆ�iA = i��ti�"A +W iAB"B ; (2.12)whereW iAB = igi�|�ABx !xI hU|;KIi (2.13)= igi�|e2' ��AB3 (hU�|;K1i+ hU�|;K2iRe� )� hU�|;K2iIm� �AB1 � ;5



and we de�ned Ui = riV � (�i+ 12�iKV )V where KV is the Kähler potentialof the vetor multiplets de�ned in (A.1).Finally the supersymmetry transformations of the hyperinos readÆ�� = iPuA���qu�"A +NA� "A ; (2.14)where N�A = �2U�AI hV;KIi : (2.15)The matrixes PuA� play the r�le of a vielbein on the salar manifold spannedby the qu's, while U�AI are remnants of the vielbein on the quaternionimanifold along the diretions whih have been dualized into salars (see ap-pendix A and in partiular referene [11℄ for more details).3 N = 1 Domain Wall solutions3.1 Gradient Flow EquationsAfter this brief review of theN = 2 low energy supergravity arising in Calabi-Yau ompati�ations of type IIB string theory let us now turn to the maintopi of this paper and study its three-dimensional N = 1 DW solutions.That is we study solutions of the four-dimensional N = 2 supergravity whihpreserve the three-dimensional Lorentz group SO(1; 2) and half of the super-harges. We split the oordinates x�; � = 0; : : : ; 3 of the four-dimensionalspae-time into oordinates (xm; z);m = 0; 1; 2; where xm denote the oor-dinates along the DW while z parameterizes the diretion normal to the DW.Aordingly we split the bakground metri preserving Lorentz invariane asg��(x�) dx�dx� = eU(z)ĝmn(xm) dxmdxn + gzz(z) dzdz : (3.1)where ĝmn(xm) is the metri of a three-dimensional spae-time whih weassume to have onstant urvature. (In the following the `hatted' quantitieswill refer to the three-dimensional un-warped metri.) Furthermore, following[3, 4℄ we hoose to parameterize gzz(z) = �e�2pU(z) where p is an arbitraryreal number. Finally using � = eU(z) instead of z as the oordinate of thetransverse spae we arrive atg��(x�)dx�dx� = �2ĝmn(xm)dxmdxn � d�d��2W2(z) = ���e��e��dx�dx� ; (3.2)6



where W = �epU(z)U 0(z) : (3.3)The non�vanishing omponents of the vierbein de�ned in (3.2) take the formeam = êameU(z) ; e3z = e�pU(z)Æ3z ; a = 0; 1; 2 ; (3.4)while the non-vanishing omponents of the spin onnetion ! are found tobe !abm = !̂abm ; !a3m = e(p+1)U(z)U 0(z)êam : (3.5)Sine we are interested in DW solutions whih preserve four superhargeswe �rst study the supersymmetry transformations of the fermioni �elds.More preisely we solve Æ�fermions = 0 for half of the superharges. This ismost easily done by imposing from the very beginning a relation on the twosupersymmetry parameters "A; A = 1; 2 whih reads [3, 4℄"A = hAAB3"B : (3.6)Here h(z) is a omplex funtion while AAB is a onstant matrix. Consistenyof (3.6) with its hermitian onjugate implies hh = 1 while A BA � AAC �CBmust be a hermitian matrix whih in addition satis�esA BA A CB = ÆCA : (3.7)Thus A has to be a suitable linear ombination of (1; ~�) where ~� are thePauli matries.Finally, the ondition of onstant urvature of ĝmn(xm) an also be ex-pressed as the integrability ondition of [3, 36℄D̂m(h 12 "A) = ì êama3h 12 "A (3.8)where 1̀2 is the three dimensional osmologial onstant.The next step is to look for solutions ofÆ �A = Æ�iA = Æ�� = 0 (3.9)with (3.6) imposed. Furthermore, we only allow the salar �elds to be non-trivial in the DW bakground setting all other �elds to zero. Sine we aremost interested in the values of the salars transverse to the DW we suppose7



in the following that they only depend on the oordinate z and ignore theirxm dependene.Let us �rst onsider Æ Am = 0. Using (3.4)�(3.8) one derivesAABDm"B = �� ì e�U + 12e(p+1)UU 0�hm"A : (3.10)Inserted into Æ Am = 0 one obtains� ì e�U + 12e(p+1)UU 0�hm"A = iAABSBCm"C : (3.11)This implies that AABSBC is proportional to the identity or in other wordsiAABSBC = 12WÆAC ; (3.12)where the proportionality fator de�nes the superpotential W . From (2.11)and (3.12) we infer the struture of A BA to beA BA = 1p2(��1 BA + �3 BA ) ; (3.13)and the onstraint (Im� �Re� )hV;K2i = hV;K1i : (3.14)Inserting (3.12) - (3.14) into (3.11) we �nally arrive atì = 14eU(hW � �h �W ) ; (3.15)U 0 = 12e�pU(hW + �h �W ) ; (3.16)W = 4e'eKH=2hV;K2i : (3.17)We see that the osmologial onstant is determined by the imaginary partof hW while the derivative of the warp fator is determined by the real part.W itself is determined by the �uxes.Before ontinuing let us brie�y disuss the limiting ases of only RR �uxes(K2 = 0) and only NS �uxes (K1 = 0). In the �rst ase we see from (2.11)8



and (3.12) that A is proportional to �3 and no onsisteny ondition needsto be imposed. For only NS �uxes the onsisteny ondition isIm� �Re� = 0 : (3.18)Now we look at to the solution of Æ Az = 0. It turns out that we anfollow preisely the same steps as done in [3℄ with the only di�erene thatwe have to use the onstraint (3.14). Suppressing the intermediate steps wearrive at hDzh = 2ì e�(p+1)U : (3.19)The solution of Æ�iA = 0 proeeds analogously. We insert (3.6) and (2.13)into (2.12) and obtain the onstraint(Im� �Re� )hUi;K2i = hUi;K1i : (3.20)Di�erentiating (3.14) with respet to z and using (3.20) we onludeIm� �Re� = � ; (3.21)where � is a real onstant (� = 0 holds if and only if there are no RR�uxes). For our purposes we do not need to �nd an expliit solution for theonstraints (3.14), (3.20). Note that they are satis�ed, for instane, if thetwo vetors of eletri/magneti harges are parallel K1 = �K2 where � isde�ned in equation (3.21). This is onsistent with the tadpole anellationondition (2.10) and with the two limiting ases K1 = 0 or K2 = 0.Inserting (3.20) into (2.12) we obtain the �ow equations for the salars ti�zti = �gi�|e�pU(z)hr�|W : (3.22)The analysis of Æ�� = 0 proeeds analogously and one inserts (2.15) and(3.6) into (2.14). Using the quaternioni relations (A.13)�(A.16) one �nds�zqu = �guve�pU(z)h�vW ; (3.23)where guv is de�ned in (A.8). In addition one �nds that hW has to be realor in other words �h is determined as the phase of W .�h = WjW j : (3.24)9



This in turn implies that the osmologial onstant on the DW must be zero,as we an see from equation (3.15). Therefore the metri ĝmn on the DW is�at: ds2 = �2�mndxmdxn � d�d��2W2 : (3.25)Note that (3.25) holds for K1 = 0 and in partiular also for K2 = 0, that isin the ase where just RR �uxes are present [4℄.Using (3.24) we an insert (3.16) into (3.3) to arrive atW(z) = �hW = �jW j : (3.26)Using as a transverse oordinate �(z) = eU(z), (3.22) and (3.23) an bewritten as gradient �ow equations�dtid� = �gi|r| lnW ; (3.27)�dqud� = �guv�v lnW : (3.28)3.2 Solutions of the �ow equationsSo far we derived the gradient �ow equations for an N = 1 BPS domainwall in type IIB supergravity ompati�ed on a Calabi-Yau manifold ~Y inthe presene of eletri and magneti RR and NS �uxes. The purpose of thissetion is to study their solutions and to prepare for a geometrial interpreta-tion in a mirror symmetri ompati�ation of type IIA on some generalizedmanifold Ŷ .We will not onsider the most generi solution but instead follow [4℄ andrestrit the spae of salar �elds whih an vary along the DW. More preiselythe salars in the vetor multiplets ti and the four-dimensional dilaton ' anbe non-trivial along the DW. As we disuss in appendix A, half of the salarsin the hypermultiplets are geometrial moduli of the Calabi-Yau manifold.In type IIB ompati�ations they orrespond to deformations of the Kählerform and we denote them by za = �a + i�a. Following [4℄ we only allow the�a to be non-trivial in the DW solution while �a together with the remainingsalar �elds from the RR setor are kept onstant.10



Let us �rst fous on the �ow equations for the hypermultiplet salars.Inserting (3.17) and (3.24) into (3.16) and (3.23) we arrive at�zqu = �2e�pU+'+KH2 guv�v(2' +KH)jhV;K2ij ; (3.29)�zU(z) = 4e�pU+'+KH2 jhV;K2ij ; (3.30)where KH is de�ned in (A.20) and (A.21). Comparing (3.30) and (3.29) oneobtains dqudU = �12guv�v(2'+KH) : (3.31)This equation shows that the U�dependene of the quaternioni �elds isnot modi�ed by the magneti �uxes and thus we expet that the solutionoinides with the solution derived in [4℄.In order to solve equation (3.31) let us �rst note that on the submanifoldspanned by the salars ' and �a the inverse metri guv is blok diagonal withthe omponents g'' = 1 ; gab = �23 �d dab � 3�a�b� ; (3.32)where we have evaluated gab in the large volume limit and de�nedd = dab�a�b� ; da = dab�b� ; dab = dab� ; (3.33)with dab being the inverse of dab. Inserting (3.32) into (3.31) we obtain thesolution e' = C e�U(z) ; za = i�a = iDa e2U(z) ; (3.34)where C and Da are integration onstants. From (A.21) we learne�KH = 43De6U(z) ; (3.35)where we abbreviated D = dabDaDbD. Note that as expeted (3.34) and(3.35) oinide with the result of referene [4℄.Let us now onsider the vetor multiplets salars. Also in this ase it ismore onvenient to onsider (3.22) instead of (3.27) whih, following [3℄, werewrite as follows�z �Y � � Y �F� �F� � = �i4e(1�p)U+'+KH2 �m�e� � (3.36)11



where we have suppressed the label �2� on the NSNS �uxes and de�nedV � h eU(z)V = h eU(z)� L�M�� � �Y �F� � : (3.37)Using the solution (3.35), hoosing D = 12C2 and performing the hange ofoordinates de�ned by e(p+3)U(z)�z = �w (3.38)equation (3.36) beomes�w�Y � � Y �F� �F� � = �i�m�e� � : (3.39)If we set p = �3 and m� = 0 we reover the result of [4℄.In order to derive further useful relations, let us display (3.39) more ex-pliitly. Using (A.4) and the normalization Y 0 = � i2 we inferbi = �2ImY i ; vi = 2ReY i ; (3.40)where we split � = 0; i. Inserted into (3.39) using (A.3) we arrive at0 = m0 (3.41)�wbi = mi (3.42)12ijk�w(vjvk)� 12ijk�w(bjbk) = ei (3.43)�12ijk�w(bivjvk) + 16ijk�w(bibjbk) = e0 (3.44)Solutions of equations (3.42)�(3.44) are disussed in appendix B.Note that equations (3.15) and (3.16) an be rewritten in terms of theresaled setion VhReV;K2i = e(p+2)U�wU ; hImV;K2i = 0 : (3.45)Using (3.40), (B.2), (B.5) and (B.6) one an easily hek the seond equationin (3.45) and ompute the �rst to bee(p+2)U�wU = 12(vie2i + ijkvibjm2k) : (3.46)12



Multiplying (3.43) by vi and making use of (3.42) one an derive by ompar-ison with (3.46) e�KV � 43 ijkvivjvk = 4e2U ; (3.47)where we also used (A.5). Note that the �nal form of KV does not depend onthe presene of the magneti �uxes and therefore oinides with the resultsof [4℄. Let us also observe at this point that the ten-dimensional type IIAdilaton �A de�ned by e2�A = 18e2'�KV is given by the integration onstantintrodued in (3.34) e�A = C, as an be seen from (3.34) and (3.47). Thiswill be important in the next setion.We are now in the position to formulate the DW gradient �ow equationsin a very ompat way, in terms of the quantities (ZA; WA) and (X�; F�)introdued in appendix A. First notie that the relation between (X�; F�)and the setions (Y �; F�) an be dedued from equations (A.2), (3.37) and(3.47). In partiular, setting the irrelevant overall phase to zero, that ish = 1, we obtain �X�F� � = 2� Y �F� � ; (3.48)and as a onsequene (3.39) now reads�w� ImX�ImF� � = ��m�e� � : (3.49)Furthermore, in these variables (3.45) readsImX�e� � ImF�m� = 0 : (3.50)Let us return to the �ow equations for the hypermultiplet salars (3.28)or (3.29) respetively, whose solution we already gave in (3.34). However,in order to ompare the solution with the Hithin �ow equation of the nextsetion it is useful to rewrite them in a form similar to (3.49). This is ahievedin terms of resaled variables (ZA; WA)� given by(ZA; WA) = jj (ZA; WA)� ; jj2 � eKV�KH = D3 e4U ; (3.51)where the last equality used (3.35) and (3.47). The geometrial meaning ofthis resaling will beome more transparent in the next setion.13



Realling the de�nition (A.22), the solution (3.34) and the gradient �owequation (3.45), one an easily hek that�w0� ImZAImWaImW01A� = �jj0� 00ReX�e� � ReF�m�1A : (3.52)4 The geometry of the type IIA bakgroundThe DW solution of type IIB disussed in the previous setion is expeted tohave a mirror symmetri solution in type IIA. For RR �uxes mirror symmetrymerely amounts to exhanging the �ux of the RR three-form F3 de�ned in(2.5) with the �uxes of the even forms F2 and F4 of type IIA [6, 10℄. However,for the NS-form H3 the situation is more involved in that mirror symmetryan relate H3-�ux to the torsion of a geometrial ompati�ation [16, 17℄or possibly to non-geometrial quantities [20℄. For eletri NS �uxes3 e� theIIA mirror symmetri solution orresponds to ompati�ations on half-�atmanifolds Ŷhf [21, 22, 17℄. More preisely, in ref. [4℄ it was shown that theDW solution takes the form of a warped produtM(1;2) �w X7 ; (4.1)where the seven dimensional manifold X7 onsists a six dimensional half-�atmanifold Ŷhf whih is �bered over R. Thus the metri takes the formds2(7) = dy2 + ds2(6)(y) ; (4.2)where ds2(6) is the metri of Ŷhf and y is the oordinate of R.Half-�at manifolds are a speial sub-lass of manifolds with SU(3) stru-ture. They admit a globally de�ned spinor whih is invariant under SU(3).The existene of this spinor implies the existene of a two-form J and a om-plex three-form 
�.4 For half-�at manifolds J and 
� satisfy the additionalonditions [21, 22℄ dJ2 = 0 = dIm
� : (4.3)3Let us reall that we suppress the index �2� for the NSNS �uxes, that is we mean(e�; m�) � (e2�; m2�).4
 is only de�ned up to omplex resaling. Therefore a hoie of normalization isinvolved in the following. By 
� we denote the three-form onstruted from a normalizedspinor or equivalently a three-form whih obeys 
� ^ �
� = 3i4 J3.14



When Ŷhf sits inside X7 the non-trivial �bration is expressed by theHithin �ow equations [21, 22℄12 �yJ2 = �dRe
� ; �yIm
� = dJ : (4.4)They preisely ensure that X7 has G2 holonomy whih orresponds to theN = 1 supersymmetry of the IIB DW solution.In this setion we suggest a generalization of the type IIA geometri om-pati�ation whih also aptures the mirror of non-trivial type IIB magneti�uxes m�. More preisely we hek that ompati�ations of the form (4.1)where X7 ontains a �bered produt of a six-manifold with SU(3) � SU(3)struture times the real line are mirror dual to type IIB DW solutions witheletri and magneti �ux. This generalized mirror symmetry has reentlybeen suggested in ref. [25, 29, 30, 31℄ and here we on�rm that it also holdsfor the ase of the DW solution onstruted in the previous setion.In order to hek this proposal let us brie�y summarize the results of refs.[29, 31℄. It was shown that the most general possible geometrial ompati�-ation of type II string theories involves manifolds with SU(3)�SU(3). Suhmanifolds are de�ned by the existene of two loally inequivalent spinors.Eah of them is left invariant by an SU(3) and thus together they de�newhat is alled an SU(3) � SU(3) struture [27, 28℄. Compati�ations onsuh manifolds lead to an N = 2 low energy e�etive ation in four spae-time dimensions. The spae of salar �elds is most onveniently expressed interms of two pure spinors of SO(6; 6) denoted by ��. Geometrially �+ isa sum of even forms while �� is a sum of odd forms. If one projets out allpossible massive gravitino multiplets both �+ and �� enjoy an expansion ofthe form �+ = X�!� � F� !� ; �� = ZA� �A �W�A �A : (4.5)The (!�; !�) form a (non-degenerate) sympleti basis on the spae of evenforms while (�A; �A) form a sympleti basis on the spae of odd forms.They are normalized aording to:ZY !� ^ !� = Æ�� ; ZY �A ^ �B = ÆBA : (4.6)In addition �� satisfy a ompatibility ondition whih in terms of the ex-pansion (4.5) reads [29, 31℄(X� �F� � �X�F�) = (ZA �WA � �ZAWA)� : (4.7)15



�� are only de�ned up to arbitrary resaling and as shown in [29℄ the lowenergy e�etive ation or more preisely the Kähler potentials depend on theresaled setions (ZA; WA) whih are related to (ZA; WA)� preisely by theresaling (3.51). In terms of (X�; F�) and (ZA; WA) the Kähler potentialsare again given by (A.1) and (A.20), respetively. Furthermore, it is possibleto hoose speial oordinates where X0 = �i; Z0 = 1 holds and in theseoordinates mirror symmetry is realized by imposing [30, 31℄d�0 = m�!� � e�!� ; d�a = d�A = 0 ; d!� = e��0 ; d!� = m��0 :(4.8)One shows that for type IIA ompati�ations on manifolds obeying (4.8)spetrum and e�etive ation oinide with that obtained by ompatifyingtype IIB an Calabi-Yau threefolds with eletri and magneti NS three-form�ux turned on [31℄. For m� = 0 one preisely obtains the half-�at manifoldsdisussed above. In this ase one has �+ = eB+iJ and �� = 
�, where B isthe NS two-form.What is left to study are the SU(3)�SU(3) generalizations of (4.3) and(4.4) and to show that they orrespond to the DW solutions of the previoussetion. From a mathematial point of view the generalized �ow equationshave been derived in ref. [28℄ and (in our notation) they readd Im�� = d Im�+ = 0 ; (4.9)�yIm�+ = �dRe�� ; (4.10)�yIm�� = dRe�+ : (4.11)Let us now show that these �ow equations together with (4.8) oinidewith the DW solution of the previous setion. We start by omputing d��and insert (4.8) into (4.5). This yieldsd�+ = (X�e� � F�m�)�0 ; (4.12)d�� = jj�1(m�!� � e�!�) ; (4.13)where jj is de�ned in (3.51). From the reality of the right hand side of (4.13)we immediately onlude d Im�� = 0. Furthermore d Im�+ = 0 oinideswith the ondition (3.50).The next step is to ompute �yIm��. Using (4.5) we arrive at�yIm�+ = (�yImX�)!� � (�yImF�)!� ; (4.14)�yIm�� = (�yImZA� )�A � (�yImW� A)�A : (4.15)16



Changing oordinates aording tody = jj�1dw ; (4.16)we see that �yIm�+ = �dRe�� preisely orresponds to (3.49) and �yIm�� =dRe�+ orresponds to (3.52). Thus we have ahieved our goal and reov-ered the type IIB �ow equations from the generalized Hithin �ow equations(4.9)�(4.11) on the type IIA side.Our next hore is to ompare the superpotentials. In (3.12) we learnedthat W is related to the matrix SAB de�ned in (2.6). Preisely this quantitywas omputed in [29℄ in terms of the pure spinors �� to beW � e 12 (KV+KH)+' ZY d�+ ^ �� = e 12 (KV+KH)+'(X�e� � F�m�) ; (4.17)where we used (4.5) and (4.8). Again this type IIA quantity preisely o-inides with (3.17) of type IIB if we also use (A.2). Thus the Hithin �owequations an also be viewed as gradient �ow equations of the form (3.27),(3.28) with a superpotential given by (4.17).In summary we just showed that the DW solutions of type IIB an beexpressed as generalized Hithin �ow equations for the two pure spinors ��of a manifold with SU(3) � SU(3) struture as given in (4.9)�(4.11).Our �nal task is to disuss the properties of the seven-dimensional man-ifold X7. As the metri on the DW is �at and the bakground M(1;2) �w X7solves the string equation of motion, we expet X7 to be Rii �at. For half-�at manifolds this was indeed shown in refs. [21, 22, 4℄. In order to disussthe generalization at hand let us introdue the seven dimensional exteriorderivative by d̂ = d + dy �y ; (4.18)where d ats on Ŷ6 and �y is the derivative with respet to the oordinateof R. Furthermore, following [27, 28℄ one an de�ne the generalized forms �and �� on X7 whih are given in terms of �� by� = �Re�+ ^ dy � Im�� ; �� = Re�� ^ dy + Im�+ : (4.19)�� is the Hodge dual of � with respet to the generalized metri. As notedin [27, 28℄ the equations (4.9)�(4.11) then orrespond tod� = �d� � = 0 ; (4.20)and imply that X7 has an integrable G2 �G2 struture and is indeed Rii-�at. 17



5 Conlusions and outlookIn this paper we studied three-dimensional N = 1 DW solutions of four-dimensional N = 2 supergravities whih arise as the low energy limit of typeIIB string theory ompati�ed on Calabi-Yau threefolds in the presene ofRR and NS three-form �uxes. An essential ingredient in our analysis wasthe newly onstruted N = 2 supergravity [11℄�[14℄ whih inludes massiveantisymmetri tensors in the spetrum. The use of this supergravity is ne-essary whenever magneti �uxes are turned on as they render antisymmetritensors in the type IIB spetrum massive. In this respet we generalizedthe previous analysis of refs. [3, 4℄ and onsistently inluded magneti �uxes.We further showed that the N = 2 salar �elds vary aording to a set ofgradient �ow equations and expliitly determined their solution in terms ofthe �uxes.The seond aspet of the paper dealt with the type IIA mirror symmet-ri DW solutions. Here we used the results of [29, 30, 31℄ and showed thatthe �ow equations of type IIB have a mirror dual whih is purely geomet-rial and an be understood as a set of generalized Hithin �ow equationsfor a partiular lass of manifolds with SU(3) � SU(3) struture [28℄. As inrefs. [21, 22, 28℄ these �ow equations do have a seven-dimensional interpre-tation and an be viewed as arising from �bering a six-dimensional manifoldwith SU(3)�SU(3) over the real line and demanding an integrable G2�G2struture of the resulting seven-dimensional manifold.AknowledgmentsThis work is supported by GIF � The German-Israeli-Foundation under Con-trat No. I-787-100.14/2003, DFG � The German Siene Foundation, theEuropean RTN Programs MRTN-CT-2004-005104, MRTN-CT-2004-503369and the DAAD � the German Aademi Exhange Servie.We have greatly bene�ted from onversations and orrespondene withGabriel Lopes Cardoso, Mariana Graña, Thomas Grimm,Peter Mayr, ThomasMohaupt, Daniel Waldram, Frederik Witt and Maro Zagermann.18



AppendixA The salar ��model of N = 2 supergravityIn this appendix we reord some further details of the salar �elds in N = 2supergravity. They an be viewed as the oordinates of some target spaegeometry whih is onstrained by N = 2 supersymmetry. In partiular theomplex salars of the vetor multiplets lead to a speial Kähler geometrywhile the salars in the hypermultiplets span a quaternioni manifold [34℄.Let us disuss both geometries in turn.A.1 Speial Kähler geometry of the vetor multipletsThe omplex salars ti; i = 1; : : : ; nV belonging to the nV vetor multipletsspan a speial Kähler geometry. That is their �-model metri is a Kählermetri with a Kähler potentialKV = � ln ih �X�F� � �F�X�i ; � = 0; : : : ; nV : (A.1)X�(t) and F�(t) depend holomorphially on the salars ti and are related tothe ovariantly holomorphi setion V introdued in (2.9) byV = (L�;M�) = eKV =2(X�; F�) : (A.2)For Calabi-Yau ompati�ations F� = ��F (X) is the derivative of aprepotential F . In the large volume or large omplex struture limit F isgiven by F (X) = � 13!ijkX iXjXkX0 ; i = 1; : : : ; nV ; (A.3)where the ijk are onstants. A partiular set of oordinates, alled speialoordinates, is given by ti � bi + ivi = X iX0 : (A.4)In these oordinates the Kähler potential (A.1) is given byKV = � ln h 43 ijkvivjvki : (A.5)19



A.2 Geometry of tensor- and hypermultipletsThe hypermultiplet geometry is desribed in terms of real salar �elds qû,û = 1; � � � ; 4nH , (here nH is the number of hypermultiplets) whih span aquaternioni manifold. The metri an be expressed in terms of a ovariantlyonstant vielbein UA� � UA�û dqû. More expliitly one hashûv̂ = UA�û UB�v̂ �ABC �� ; A;B = 1; 2 ; (A.6)where �AB = ��BA and C �� = �C �� are the SU(2) and Sp(2nH ;R) invariantmetris respetively. The quaternioni vielbein obeysrUA� � dUA� + !̂AB ^ UB� + �̂�� ^ UA� = 0 ; (A.7)where !̂ABû , �̂��û are the SU(2) and Sp(2nH ;R) valued onnetions.A set of salars whih parameterizes translational and ommuting isome-tries an be dualized into a set of nT antisymmetri rank two tensors [11℄. Inthis ase the remaining salars qu, u = 1; � � � ; 4nH �nT will not parameterizea quaternioni manifold anymore. Instead their �-model metri guv is givenby guv = huv � hIuM IJhJv = PA�u PB�v �ABC �� ; guv = huv ; (A.8)where we deomposed the quaternioni metri ashûv̂ = �huv huJhvI hIJ � ; (A.9)and de�ned M IJ as the inverse of hJKM IJhJK = ÆIK : (A.10)The vielbein PA�u of the metri guv de�ned in (A.8) an be expressed interms of the quaternioni vielbein as followsPA�u � UA�u �AIuUA�I ; P u A� � UuA� ; (A.11)where AJu = hIuM IJ . Similarly the onnetions deompose as!̂ABu � !ABu +AIu!ABI ; !̂ABI � !ABI ;�̂��u � ���u + AIu���I ; �̂��I = ���I : (A.12)20



The new quantities satisfy a ertain number of relations [11, 33℄ and here wereord only the ones needed in order to derive (3.23) and (3.24)(PA�u PB�v + PA�v PB�u )C �� = guv�AB ; (A.13)(PA�u UB�I + UA�I PB�u )C �� = 0 ; (A.14)(UA�I UB�J + UA�J UB�I )C �� =MIJ �AB ; (A.15)U (AI� PB)�u = 12ru!ABI : (A.16)The ovariant derivativeru is de�ned with respet to the redued onnetion!ABu , ���u .The onvention for raising and lowering the sympleti indies is as follows�ABTB = TA ; TB�BA = TA ; (A.17)C ��T � = T� ; T�C �� = T � : (A.18)A.3 Quaternioni geometry in Calabi-Yau ompati�-ationsSo far we only disussed the geometry as it appears in general in N = 2supergravity. In Calabi-Yau ompati�ations of either type IIA or typeIIB string theory only a speial lass of quaternioni geometries, termed`dual quaternioni geometries', arise at the tree level [37℄. This is basially aonsequene of mirror symmetry and states that the quaternioni manifoldof real dimension 4nH neessarily has a speial Kähler submanifold of realdimension 2nH whih is spanned by the geometrial moduli. The remaining2nH salar �elds then arise from the RR setor.Let us be slightly more expliit. A Calabi-Yau manifold has a geomet-rial moduli spae M whih is produt of a omponent Mk spanned bythe deformations of the Kähler form and a omponent Ms spanned by thedeformations of the omplex strutureM =Mk �Ms : (A.19)Eah omponent is a speial Kähler geometry with a Kähler potential of theform (A.1), i.e. a Kähler potential whih an be haraterized by a holomor-phi prepotential. 21



In ompati�ations of type IIA the deformations of the Kähler formreside in vetor multipletswhile the deformations of the omplex struture aremembers of the hypermultiplets. In type IIB the situation is exatly reversedand the Kähler moduli sit in hypermultiplets while the omplex struturemoduli populate the vetor multiplets. In both ases the geometrial moduliin the hypermultiplets ombine with the salar �eld from the RR setor tospan the full quaternioni geometry.Sine we are disussing both type IIA and type IIB ompati�ations inthe main text we hoose to denote the salar �elds in the vetor multipletsby ti irrespetive of their Calabi-Yau origin as Kähler or omplex struturedeformations. Similarly, we denote by za the geometrial moduli whih residein the hypermultiplets and whih span the speial Kähler submanifold insidethe quaternioni manifold. Their Kähler potential we denote asKH = � ln ih �ZAWA � �WAZAi ; A = 0; : : : ; nH ; (A.20)where WA(Z) is the seond holomorphi prepotential. In the large volumeor large omplex struture limit KH redues toKH = � ln h 43 dab�a�b�i ; (A.21)where za = �a + i�a = ZaZ0 (A.22)are the speial oordinates in this setor.Finally let us also reord the relation with the onventions used in ref.[35℄. In this paper the quantities K̂ and ~K are used whih are related to thequantities used in this paper bye�K̂ = 2e�KH ; e� ~K = e�2' ; (A.23)where ' is the four-dimensional dilaton. Finally, the ten-dimensional dilatonan be expressed as Im� = 4e K̂� eK2 : (A.24)B Expliit solution of the �ow equationsIn this appendix we derive the expliit solution of the vetor multiplets �owequation. 22



The formal integration of equation (3.39) is trivial and gives:�Y � � Y �F� �F� � = �i�m�e� �x+�K�K� � : (B.1)Imposing (2.10), (3.45) on (B.1) one obtains the ondition:K�e� �K�m� = 0 (B.2)From the normalization Y 0 = � i2 we infer K0 = 1. Expliit integration of(3.42)�(3.44) yieldsbi = mix+K i (B.3)ijkvjvk = ijkmjmk x2 + 2(ijkmjKk + ei)x+ ijkKjKk + 2Ki (B.4)Reinserting (B.3) and (B.4) bak into (3.43), (3.44) and making use of (B.2)one obtains the following set of onstraints on the parameters:m0 = 0 (B.5)K0 = 1 (B.6)ijkmimjmk = 0 (B.7)ijkmimjKk + eimi = 0 (B.8)ijkmiKjKk + 2Kimi = 0 (B.9)13ijkK iKjKk +KiK i +K0 = 0 (B.10)K iei = K iKi (B.11)Contating (B.4) with mi and using (B.7)-(B.9) we further obtain:ijkmivjvk = 0 (B.12)Referenes[1℄ For a review see, for example, O. Aharony, S. S. Gubser, J. M. Mal-daena, H. Ooguri and Y. Oz, �Large N �eld theories, string theoryand gravity,� Phys. Rept. 323 (2000) 183 [arXiv:hep-th/9905111℄ andreferenes therein. 23
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