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DESY 06-047ZMP-HH/06-05Remarks on twisted nonommutative quantum �eldtheoryJohen ZahnII. Institut f�ur Theoretishe Physik, Universit�at HamburgLuruper Chaussee 149, 22761 Hamburg, Germanyjohen.zahn�desy.deMarh 29, 2006AbstratWe review reent results on twisted nonommutative quantum �eldtheory by embedding it into a general framework for the quantizationof systems with a twisted symmetry. We disuss ommutation relationsin this setting and show that the twisted struture is so rigid that it ishard to derive any preditions, unless one gives up general priniplesof quantum theory. It is also shown that the twisted struture is notresponsible for the presene or absene of UV/IR-mixing, as laimedin the literature.1 IntrodutionNonommutative quantum �eld theory (NCQFT) is quantum �eld theoryon the nonommutative Minkowski spae, whih is generated by oordinatesq� subjet to the ommutation relations[q�; q� ℄ = i��� :Alternatively, it an be formulated via the ?-produt of ordinary funtions,see setion 2. The main motivations for the study of suh models omefrom Gedankenexperiments on the possible loalization of events [1℄ andthe theory of open strings in the presene of a bakground B-�eld [2℄. Forreviews see, e.g., [3, 4℄.Reently, it has been proposed to reonsider the question of violation ofLorentz invariane in NCQFTs. This was triggered by the realization thatit is possible to twist the oprodut of the universal envelope UP of thePoinar�e algebra suh that it is ompatible with the ?-produt. Already in[5℄ it was shown that the ?-produt naturally arises from a quasitriangularstruture in the Hopf algebra orresponding to the translation group. Soonafterwards, it was shown that this quasitriangular struture is generated by1



a twist [6℄. Also the embedding into the (eulidean) Poinar�e group wasdisussed there. In [7, 8℄ this was reformulated in dual language for theproper Poinar�e algebra. Subsequently, there have been laims about theviolation of the Pauli priniple [9℄ and the absene of UV/IR-mixing [10℄ inthis twisted setting. Also an axiomati haraterization of twisted NCQFTwas attempted [11℄.One aim of the present paper is to reah a more general understandingof QFT in the presene of a twisted symmetry. In this sense, it is related tothe �eld of q-deformed quantum mehanis (see, e.g., [12, Chapter 2℄ for anoverview) and the study of quantum systems with quantum symmetry (see,e.g., [13, 14, 15℄). We follow the philosophy outlined in [16℄: Eah time weenounter a bilinear map involving two spaes arrying a representation ofthe symmetry group we deform this map with the twist. The general setupis presented in setion 2 and applied to NCQFT in setion 3. In setion 4we onsider two di�erent ommutators that appear naturally in the twistedsetting. Unfortunately, both are laking some ruial properties of the usualommutator. Thus, we are leaving the safe grounds of established quantummehanis. This beomes even more evident in setion 5. There it is shownthat it is in general not possible to add a loalized interation (a soure,for example) to the Hamiltonian without getting in serious trouble with theorrespondene priniple. We argue that this makes it extremely diÆultto derive any preditions in the twisted setting (at least none that are notalready present in onventional NCQFT). In setion 6 we make some remarkson the e�et of the twist in the interating ase and in partiular on the laimthat the UV/IR-mixing is absent in the twisted setting [10℄. We onludewith a summary.Added NoteWhile the present paper was written up, the preprint [25℄, appeared. It hassome overlap with the present paper, in partiular it is in agreement withthe results presented in setion 6.2 SetupLet � : S(R4) 
 S(R4) ! S(R4) be the point-wise produt of Shwartzfuntions. Then the ?-produt an be de�ned as1 �? = � Æ F withF = e� i2���P�
P� :In [16℄ the twist was interpreted as a formal power series in some deformationparameter. We will not do so in the present paper. Instead, we give it arigorous meaning by going to momentum spae.1Note that we use a di�erent notation than in [16℄. Our F orresponds to F�1 there.2



The Poinar�e algebra an be embedded into the Lie algebra � of vetor�elds and this in turn into the algebra U� that is obtained from the universalenveloping algebra by dividing out the ideal generated by the ommutationrelations in �. Following [16℄, one an equip U� with the struture of aHopf algebra by de�ning the oprodut, ounit and antipode through�(u) =u
 1 + 1
 u; �(1) =1
 1;"(u) =0; "(1) =1;S(u) =� u; S(1) =1;where u 2 �. This de�nition an be extended to U� by requiring � and "to be algebra homomorphisms and S to be an antialgebra homomorphism.Furthermore, one an give U� a �-struture by de�ningu�(f) = (S(u)(f�))� (1)for f 2 S(R4) and u 2 � and extending this as an antialgebra homomor-phism. Furthermore, we note that F ful�lls(id
�)F(1
F) =(�
 id)F(F 
 1) (2)("
 id)F =1 (3)(S 
 S)(F�
�) =F21 (4)where F21 is the transposed F (in our ase F21 = F�1). Thus, F�1 isa real (4), ounital (3) 2-olyle (2), see, e.g., [17℄. From (2) it followsthat the ?-produt is assoiative and due to (4) it respets the �-struture2:(f ? g)� = g� ? f�.Now we onsider the ompatibility of the ?-produt with Poinar�e trans-formations. Let � 2 UP . The point-wise produt ful�lls� Æ � = � Æ�(�): (5)Here we identi�ed � with its ation on S(R4). Now we want to �nd adeformed oprodut �? that ful�lls � Æ �? = �? Æ�?(�). Using (5), we �nd� Æ �? = � Æ�(�) Æ F = �? Æ F�1 Æ�(�) Æ F :Thus, one de�nes �?(�) = F�1 Æ�(�) Æ F :Sine F 2 UP
UP , it is lear that �?(�) 2 UP
UP . In fat one expliitly�nds [7, 8℄�?(P�) =P� 
 1 + 1
 P� (6)�?(M��) =M�� 
 1 + 1
M���12��� (g�� (P� 
 P� � P� 
 P�)� g�� (P� 
 P� � P� 
 P�)) :2Note that the notations ? and �? are interhangeable in the present paper.3



There is a general theorem (see, e.g., [17℄, Thm 2.3.4) stating that �?,together with �? = � and S?(�) = ��1S(�)� with � = S(F(1))F(2) againde�ne a Hopf algebra. Note that in our partiular ase � = 1, i.e., S? = S.From this and (4) it follows that we still have a Hopf �-algebra with the old�-struture ([17℄, Prop 2.3.7). Furthermore, one an show [16℄ that there isa triangular struture (or R-matrix) R = F�121 F . In our partiular ase wehave R = ei���P�
P� : (7)Now suppose we are given vetor spaes A;B;C that arry a represen-tation of the Poinar�e algebra and a map � : A
B ! C that is ompatiblewith this ation. Then it is in the spirit of [16℄ to deform this map to�? = � Æ F . As above, one then has a Æ �? = �? Æ�?(a). Now onsider somespeial ases:� Let A be an algebra arrying a representation of the Poinar�e algebraand � the produt A
A! A. Applying the above priniple, one getsa new algebra A?, being idential to A as a vetor spae, but withprodut ? = � Æ F . Due to (2) this produt is assoiative. Note thatif A is a �-algebra, then due to (4), the new ?-produt is ompatiblewith the old �-struture: (a ? b)� = b� ? a�.� Let A be an algebra with a representation on a vetor spae V and� : A 
 V ! V be the orresponding left ation. Applying the abovepriniple, one �rst deforms A to A?. Then one de�nes the ation? : A?
V ! V by ? = �ÆF . That this ation de�nes a representation,i.e. (a ? b) ? v = a ? (b ? v), follows again from (2).� If V is even a Hilbert spae, one should also de�ne a new salar produtthat is ompatible with the adjoint in A?. The salar produt an beviewed as a bilinear map �V 
V ! C, where �V is the onjugate vetorspae. The new salar produt (�; �)? an then be de�ned in the obviousway. It remains to be shown that it is positive de�nite and ompatiblewith the �-struture ofA?. Note that in order to be onsistent with (1),one de�nes the ation of U� on �V by ��v = S(��)v. Also note thatto the above left ation of A on V there orresponds the right ation�v � a = a� � v on �V . This ation an of ourse also be deformed in theobvious way. Due to (4), we have �v ? a = a� ? v. The ompatibilitywith the �-struture of A?, i.e. (v; a?w)? = (a� ?v; w)?, is now again aonsequene of (2). Unfortunately, there seems to be no general proofthat (�; �)? is positive de�nite3. Thus, this has to be heked expliitlyin eah example.3If one interprets F as a formal power series, one has positive de�niteness in the senseof formal power series, sine the zeroth order omponent is the old one.4



3 The appliation to NCQFTIt is now fairly obvious how to apply the above to NCQFT. Identifying Awith the free �eld algebra and V with the Fok spae, we get a new produtof quantum �elds and a new ation on the Fok spae4. It only remains tobe heked that the new salar produt is positive de�nite. This is indeedthe ase, in fat it is the old one: Let f 2 L2(R3m); g 2 L2(R3n). Then(f; g)? = Æmn 1m! X�2Sm Z mYi=1 d3ki2!i �f(k1; : : : ;km)g(k�(1); : : : ;k�(m))� e� i2 (�Pi k+i )�(Pj k+j )Here we used the notation k+ = (!k;k). Obviously, the twisting drops out.This is analogous to the property R d4x f ? g(x) = R d4x f � g(x) for testfuntions f and g.Obviously, the same onstrution an be done for a fermioni Fok spae.Remark 3.1. We remark that the new produt of quantum �eld followsnaturally from the smeared �eld operators introdued in [18℄:�f (q) = Z d4x �(q + x)f(x) = Z d4k f̂(k)��(k)
 eikq :We then have�f (q)�g(q) = Z d4k1d4k2 e� i2k1�k2 f̂(k1)ĝ(k2)��(k1)��(k2)
 ei(k1+k2)q=�2Ff
g(q):Here we used the notation�nf (q) = Z nYi=1 d4ki f̂(k1; : : : ; kn)Yi ��(ki)
 ei(k1+���+kn)q:Note that this notation deviates from the one used in [18℄. In our notationone has the generalized formula�nf (q)�mg (q) = �m+nFf
g(q):Note that in [18℄ (and already in [1℄) quantum �elds are elements of (orrather aÆliated to) F
E , where F is the �eld algebra and E the C�-algebragenerated by the quantum oordinates q�. An element of F is then obtainedby applying id 
 !, where ! is a state on E . Thus, the ation of the �eldalgebra on the Fok spae is di�erent than in the approah followed here.4Note that the ation of the twist on tensor produts of L2-funtions is well-de�nedin momentum spae. Thus, we do not have to restrit to Shwartz funtions, sine nopoint-wise produts are involved. 5



Remark 3.2. In [9℄ the twisted produt was realized by a new de�nition ofthe reation and annihilation operators:~a(k) = a(k)e i2k+�P ; ~a(k)� = a(k)�e� i2k+�P :Obviously, one then has ~a(f)	 = a(f) ?	 for any Fok spae vetor 	 (andanalogously for a(f)�).4 The twisted ommutatorsWe turn to a question that is very important for �nding a onsistent in-terpretation of the new �eld algebra. Of ourse one is inlined to keep theinterpretation of �(f) as a �eld operator and of a(f)�; a(f) as reation andannihilation operators. But then they should ful�ll some ommutation rela-tion that is ompatible with the lassial Poisson braket. Sine this lassialbraket is not a�eted by the twist (at least if one uses Peierls de�nition,see [19℄), we would want the ?-ommutator to give the usual result. This,however, is not the ase for[�(f)?;�(g)℄ =�(f) ? �(g)� �(g) ? �(f)= Z d4k1d4k2 f̂ (k1)ĝ(k2)� ���(k1)��(k2)e� i2k1�k2 � ��(k2)��(k1)e i2k1�k2� ;as has already been noted in [4, p.73f℄. It is not even a -number. But ofourse it ful�lls the usual algebrai requirements antisymmetry, Leibniz ruleand Jaobi identity.Remark 4.1. This is the form of the ommutator onsidered in [11℄ and de-noted by [�(f); �(g)℄?. Thus, our twisted NCQFT does not ful�ll the loalityaxiom posed in there, even in the ase of spae-like nonommutativity.One an of ourse also onsider the ommutator as a map[�; �℄ : A
 A! A[�; �℄ : a
 b 7! ab� ba:Then it is natural to deform it to the twisted ommutator[�; �℄? = [�; �℄ Æ F = �? � �? ÆR Æ �:Here � is the transposition and R is the triangular struture (7). Note thatthis ommutator was also used for a deformed Lie braket of vetor �elds in[16℄. In the ontext of NCQFT, it has already been proposed in [4℄ in thelanguage of [18℄ (f. remark 3.1). There, it simply amounts to postulatingthe ommutator [�
 f;  
 g℄ = [�;  ℄
 fg6



for elements of F
 E . It has already been remarked in [4℄ that it is neitherantisymmetri nor ful�lling the Jaobi identity. However, it is possible toprove a Jaobi identity that involves the R-matrix [16℄:[a; [b; ℄?℄? = [[a; b℄?; ℄? + [R(1)b; [R(2)a; ℄?℄?:There is an obvious similar formula expressing a twisted antisymmetry.While these formulae are general, there seems to be no analogous generalformula for the Leibniz rule. In the onrete example of NCQFT, however,we have [a; b ? ℄? = [a; b℄? ? + F�2(1)b ? [F�2(2)a; ℄?:This an most elegantly be seen in the notation of [18℄.We an now ompute the twisted ommutator of two �elds:[�(f); �(g)℄? = Z d4k1d4k2 e� i2 k1�k2 f̂ (k1)ĝ(k2)[ ��(k1); ��(k2)℄=i Z d4k1 f̂(k1)ĝ(�k1) ��(k1):We see that the twisting drops out and we obtain the usual result. In parti-ular, we have twisted ommutativity if the supports of f and g are spae-likeseparated. This seems to indiate that in the ase of a twisted symmetryone should demand the orrespondene priniple between the lassial Pois-son braket and the twisted ommutator of the basi variables. We remarkthat Pusz and Woronowiz [13℄ found ompletely analogous twisted anon-ial ommutation relations involving the R-matrix in a seond quantizationof a �nite system with SUq(N)-symmetry. This may be seen as a hint thatthis is a general struture (see also [12, Chapter 2℄ and referenes therein).However, it should be noted that the vanishing of the ommutator has aphysial meaning, the possibility of simultaneous measurement. It is notlear wether the vanishing of the twisted ommutator an be given a similarmeaning.It should also be noted that, as has already been remarked in [4℄, thetwisted ommutator of produts of �elds does not oinide with the usualone, and does in partiular not vanish for spae-like separated supports.This is illustrated in the following example:[�2(f1 
 f2); �(f3)℄? = Z  3Yi=1 d4kif̂i(ki)! e� i2 (k1+k2)�k3 [ ��(k1)��(k2); ��(k3)℄=i Z d4k f̂1(k)��(k) Z d4p e i2k�pf̂2(p)f̂3(�p) ��(p)+i Z d4k f̂2(k)��(k) Z d4p e i2k�pf̂1(p)f̂3(�p) ��(p):We emphasize one more that this is also in onit with the orrespondenepriniple. Note that it does not help to use �(f1) ? �(f2) instead.7



Remark 4.2. If one interprets the twisting as a formal power series, then the[�; �℄?-ommutator is loal at every order (this is not the ase for [�?;�℄). If oneidenti�es the sale of nonommutativity with the Plank sale, then � ouldbe interpreted to be of O(~). In this sense the twisting would yield higherpowers of ~. It may be interesting to investigate this further. However, wewill not do so in the present work.Thus, the upshot of this setion is that we have two natural ommutatorsin the twisted setting. The �rst one ful�lls the usual algebrai requirementsbut deviates from the lassial Poisson braket. The other one does not havevery nie algebrai properties, but at least reprodues the lassial Poissonbraket for simple �elds (but not for produts of �elds). In any ase theorrespondene priniple has to be modi�ed onsiderably, so one is leavingthe safe grounds of established quantum mehanis.5 Time evolutionIn ordinary quantum theory, the time evolution of observables is given bythe ommutator with the Hamiltonian H . If we want to keep this in thetwisted setting, we have to deide whih ommutator to use. Due to (6)one expets that the time-evolution ful�lls the Leibniz rule, at least if H istime-independent. Thus, one should use the [�?;�℄-ommutator. The lassialequations of motion, however, do not hange. Thus, the requirement thatthe time-evolution is, to zeroth order in ~, idential to the lassial evolutionleads to the ondition [H?;a℄ = [H; a℄+O(~2) for all observables a. But in thepreeding setion we have seen that the [�?;�℄-ommutator in general deviatesfrom [�; �℄ already at zeroth order5. So the only general way to make thingsonsistent seems to be to require that H is invariant under the symmetryoperation involved in the twist (in our ase the translations), sine then wehave [H?;a℄ = [H; a℄. But then the struture beomes very rigid, sine ahange of H must be aompanied by a hange of the twist. It is not evenlear if there is suh a new F in general.Remark 5.1. There seems to be some similarity to the observation [4, Re-mark 2.2℄ that in the Hamiltonian approah to NCQFT the interatingHeisenberg �eld does not ful�ll the equation of motion (see also [20℄). There,however, the problem appears only if the interation is at least quadratiand if there is nonommutativity between spae and time. Here, instead,the problem is onneted only to translation invariane and thus alreadyarises for a soure term and also in the ase of spae-like nonommutativity.In the ase when H is not invariant under the symmetry involved in thetwist, one ould of ourse simply postulate the time-evolution _a = i[H; a℄.5Even if one interprets the twist as a formal power series and assumes that � is of O(~)(f. remark 4.2), then the two ommutators still deviate at �rst order in ~.8



But this time-evolution would in general be inompatible with the twistedalgebra struture: [H; a ? b℄ 6= [H; a℄ ? b+ a ? [H; b℄. Thus, one would haveto use the old algebra and nothing would have hanged.In order to see how this rigidity makes a meaningful exploration of thenew framework impossible, onsider the following example: Applying a re-ation operator a(g)� on the vauum twie, one gets the two-partile wavefuntion 	Fg
g(k1;k2) = p2g(k1)g(k2) os k+1 �k+22 :Thus, the modulus j	Fg
g(k1;k2)j is redued for momenta k1;k2 suh thatk+1 �k+2 � 1. This an of ourse only happen if �i�j � ��2n for i; j in non-ommuting diretions. Here �i denotes the typial width of g in the dire-tion i. In this sense the wave funtion 	Fg
g is more narrow in momentumspae and thus has a wider spread in position spae in the nonommutingdiretion (of ourse the e�et is tiny for realisti energies if �n is identi�edwith the Plank length). Thus, one gets the impression that the twistingdisfavors the ourrene of several partiles with the same wave funtion ifthis wave funtion is simultaneously loalized in nonommuting diretions.If this was true, this might be an elegant resolution of the unertainty prob-lem posed in [1℄.But the disussion above is of ourse at best heuristi. On the shakyground we are exploring, we do not have any good intuition about whatthe repeated ation of a(g)� might atually signify. And the two-partilewave funtion 	g
g is still an element of our Fok spae. Thus, we wouldlike to make a statement in more operational terms. Now 	g
g is, up tonormalization, the two-partile omponent of the oherent state e�a(g)�
.This, in turn, an be haraterized by being the ground state orrespondingto the Hamiltonian H = H0 + �(a(f)� + a(f));where H0 is the usual free Hamiltonian and f = �P0g. Taking this as amotivation, it would be interesting to �nd the ground state orrespondingto this Hamiltonian in our twisted setting, i.e. the eigenvetor 	 with thelowest eigenvalue H ?	 = E	. This an be done, and it turns out that theorresponding two-partile wave funtion is indeed more narrow than 	g
g(it is even more narrow than 	Fg
g). However, it is not lear if this resulthas any meaning, beause H is, in the twisted setting, not the generatorof the time-evolution. In the present example, this is easily seen for thetime-evolution of a �eld, as we already omputed the [�?;�℄-ommutator oftwo �elds in the preeding setion.Remark 5.2. In [9℄ it has been laimed that in the twisted setting Paulisexlusion priniple is no longer valid. The authors onlude this from thefat that in the ase of twisted antiommutation relations one has in generala(g)� ? a(g)� 6= 0. But of ourse the fermioni wave funtions are still9



antisymmetri. It is simply not lear what Paulis priniple tells us in thetwisted ase (as in the example above, we do not know what the repeatedation of a(g)� atually means). One should rather look for a statementin operational terms. First steps in this diretion have been taken in [21℄.However, in the light of the preeding disussion it is doubtful that this anbe done onsistently.Remark 5.3. In view of the problems disussed here, one might of oursede�ne the interating diretly by the equation of motion, i.e. use the Yang-Feldman formalism [22℄. In the ontext of NCQFT this has �rst been pro-posed in [23℄. However, one has to bear in mind that if the interation isnot translation invariant, the interating �eld will not transform ovariantlyunder translations, i.e. �int(�af) 6= Ua�int(f)U�1a , where � is the ationon test funtions and U the Hilbert spae representation of the translationgroup. This will make the ?-produt of interating �elds more ompliated.6 InterationsThe e�et of interations an be studied by formally omputing the n-pointfuntions of the interating �eld, de�ned, e.g., by the Yang-Feldman formal-ism. If the interation is translation invariant, the interating �eld trans-forms ovariantly under translations (see remark 5.3), and we haveh
; �int(f1) ? � � � ? �int(fn)
i= Z  nYi=1 d4kif̂i(ki)! e� i2Pi<j ki�kj h
; ��int(k1) : : : ��int(kn)
i:On the right hand side, all the loops are ontained in the vauum expetationvalue. Obviously, the twisting fator does not interfere at all with these andhas no e�et on the divergenies, and in partiular does not inuene theUV/IR-mixing. Thus the absene or presene of the UV/IR-mixing doesonly depend on the hoie of the interation term6.In [10℄ the old (pointwise) produt of �elds was used7. Thus, it is notsurprising that the UV/IR-mixing is absent there.If, however, the ?-produt of �elds is used for the interation term, theUV/IR-mixing will be exatly as usual. In partiular, one �nds distorteddispersion relations [18, 24℄.6This also seems to be at odds with the results of [6℄.7More preisely, the inverse ?-produt between the operators ~a; ~a� (see remark 3.2)was used. But sine these operators already realize the ?-produt, the ombined e�etamounts to the pointwise produt. 10



7 SummaryWe developed twisted NCQFT by embedding it in the general ontext ofquantization of systems with twisted symmetries. We disussed two di�erentommutators. One of them ful�lled the usual algebrai properties but failedto reprodue the usual ommutation relations. The other one gave the usualresult when used on simple �elds, but failed to do so for produts of �elds.Furthermore, it did not ful�ll the usual algebrai properties. We foundstrong evidene for the statement that twisted NCQFT in a Hamiltoniansetting is only onsistent if the Hamiltonian is translation invariant. Finally,we showed that the hoie of the interation term and not the twisting isresponsible for the presene or absene of UV/IR-mixing.These �ndings are rather disouraging. They indiate that twisted NC-QFT is not exible enough to derive meaningful new preditions. Further-more, the problem of UV/IR-mixing and the distortion of dispersion rela-tions (and thus violation of Lorentz invariane) is not solved, unless one usesthe point-wise produt for the interation.AknowledgmentsThe author pro�ted a lot from disussions with D. Bahns, S. Dopliher,F. Meyer and in partiular K. Fredenhagen. Finanial support from theGraduiertenkolleg \Zuk�unftige Entwiklungen in der Teilhenphysik" is grate-fully aknowledged.Referenes[1℄ S. Dopliher, K. Fredenhagen and J. E. Roberts, \The Quantum stru-ture of spae-time at the Plank sale and quantum �elds," Commun.Math. Phys. 172 (1995) 187 [arXiv:hep-th/0303037℄.[2℄ N. Seiberg and E. Witten, \String theory and nonommutative geom-etry," JHEP 9909 (1999) 032 [arXiv:hep-th/9908142℄.[3℄ R. J. Szabo, \Quantum �eld theory on nonommutative spaes," Phys.Rept. 378 (2003) 207 [arXiv:hep-th/0109162℄.[4℄ D. Bahns, \Perturbative methods on the nonommutative Minkowskispae," DESY-THESIS-2004-004.[5℄ P. Watts, \Nonommutative string theory, the R-matrix, and Hopf al-gebras," Phys. Lett. B 474 (2000) 295 [arXiv:hep-th/9911026℄.[6℄ R. Oekl, \Untwisting nonommutative Rd and the equivaleneof quantum �eld theories," Nul. Phys. B 581 (2000) 559[arXiv:hep-th/0003018℄. 11
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