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DESY 06-047ZMP-HH/06-05Remarks on twisted non
ommutative quantum �eldtheoryJo
hen ZahnII. Institut f�ur Theoretis
he Physik, Universit�at HamburgLuruper Chaussee 149, 22761 Hamburg, Germanyjo
hen.zahn�desy.deMar
h 29, 2006Abstra
tWe review re
ent results on twisted non
ommutative quantum �eldtheory by embedding it into a general framework for the quantizationof systems with a twisted symmetry. We dis
uss 
ommutation relationsin this setting and show that the twisted stru
ture is so rigid that it ishard to derive any predi
tions, unless one gives up general prin
iplesof quantum theory. It is also shown that the twisted stru
ture is notresponsible for the presen
e or absen
e of UV/IR-mixing, as 
laimedin the literature.1 Introdu
tionNon
ommutative quantum �eld theory (NCQFT) is quantum �eld theoryon the non
ommutative Minkowski spa
e, whi
h is generated by 
oordinatesq� subje
t to the 
ommutation relations[q�; q� ℄ = i��� :Alternatively, it 
an be formulated via the ?-produ
t of ordinary fun
tions,see se
tion 2. The main motivations for the study of su
h models 
omefrom Gedankenexperiments on the possible lo
alization of events [1℄ andthe theory of open strings in the presen
e of a ba
kground B-�eld [2℄. Forreviews see, e.g., [3, 4℄.Re
ently, it has been proposed to re
onsider the question of violation ofLorentz invarian
e in NCQFTs. This was triggered by the realization thatit is possible to twist the 
oprodu
t of the universal envelope UP of thePoin
ar�e algebra su
h that it is 
ompatible with the ?-produ
t. Already in[5℄ it was shown that the ?-produ
t naturally arises from a quasitriangularstru
ture in the Hopf algebra 
orresponding to the translation group. Soonafterwards, it was shown that this quasitriangular stru
ture is generated by1



a twist [6℄. Also the embedding into the (eu
lidean) Poin
ar�e group wasdis
ussed there. In [7, 8℄ this was reformulated in dual language for theproper Poin
ar�e algebra. Subsequently, there have been 
laims about theviolation of the Pauli prin
iple [9℄ and the absen
e of UV/IR-mixing [10℄ inthis twisted setting. Also an axiomati
 
hara
terization of twisted NCQFTwas attempted [11℄.One aim of the present paper is to rea
h a more general understandingof QFT in the presen
e of a twisted symmetry. In this sense, it is related tothe �eld of q-deformed quantum me
hani
s (see, e.g., [12, Chapter 2℄ for anoverview) and the study of quantum systems with quantum symmetry (see,e.g., [13, 14, 15℄). We follow the philosophy outlined in [16℄: Ea
h time ween
ounter a bilinear map involving two spa
es 
arrying a representation ofthe symmetry group we deform this map with the twist. The general setupis presented in se
tion 2 and applied to NCQFT in se
tion 3. In se
tion 4we 
onsider two di�erent 
ommutators that appear naturally in the twistedsetting. Unfortunately, both are la
king some 
ru
ial properties of the usual
ommutator. Thus, we are leaving the safe grounds of established quantumme
hani
s. This be
omes even more evident in se
tion 5. There it is shownthat it is in general not possible to add a lo
alized intera
tion (a sour
e,for example) to the Hamiltonian without getting in serious trouble with the
orresponden
e prin
iple. We argue that this makes it extremely diÆ
ultto derive any predi
tions in the twisted setting (at least none that are notalready present in 
onventional NCQFT). In se
tion 6 we make some remarkson the e�e
t of the twist in the intera
ting 
ase and in parti
ular on the 
laimthat the UV/IR-mixing is absent in the twisted setting [10℄. We 
on
ludewith a summary.Added NoteWhile the present paper was written up, the preprint [25℄, appeared. It hassome overlap with the present paper, in parti
ular it is in agreement withthe results presented in se
tion 6.2 SetupLet � : S(R4) 
 S(R4) ! S(R4) be the point-wise produ
t of S
hwartzfun
tions. Then the ?-produ
t 
an be de�ned as1 �? = � Æ F withF = e� i2���P�
P� :In [16℄ the twist was interpreted as a formal power series in some deformationparameter. We will not do so in the present paper. Instead, we give it arigorous meaning by going to momentum spa
e.1Note that we use a di�erent notation than in [16℄. Our F 
orresponds to F�1 there.2



The Poin
ar�e algebra 
an be embedded into the Lie algebra � of ve
tor�elds and this in turn into the algebra U� that is obtained from the universalenveloping algebra by dividing out the ideal generated by the 
ommutationrelations in �. Following [16℄, one 
an equip U� with the stru
ture of aHopf algebra by de�ning the 
oprodu
t, 
ounit and antipode through�(u) =u
 1 + 1
 u; �(1) =1
 1;"(u) =0; "(1) =1;S(u) =� u; S(1) =1;where u 2 �. This de�nition 
an be extended to U� by requiring � and "to be algebra homomorphisms and S to be an antialgebra homomorphism.Furthermore, one 
an give U� a �-stru
ture by de�ningu�(f) = (S(u)(f�))� (1)for f 2 S(R4) and u 2 � and extending this as an antialgebra homomor-phism. Furthermore, we note that F ful�lls(id
�)F(1
F) =(�
 id)F(F 
 1) (2)("
 id)F =1 (3)(S 
 S)(F�
�) =F21 (4)where F21 is the transposed F (in our 
ase F21 = F�1). Thus, F�1 isa real (4), 
ounital (3) 2-
o
ly
le (2), see, e.g., [17℄. From (2) it followsthat the ?-produ
t is asso
iative and due to (4) it respe
ts the �-stru
ture2:(f ? g)� = g� ? f�.Now we 
onsider the 
ompatibility of the ?-produ
t with Poin
ar�e trans-formations. Let � 2 UP . The point-wise produ
t ful�lls� Æ � = � Æ�(�): (5)Here we identi�ed � with its a
tion on S(R4). Now we want to �nd adeformed 
oprodu
t �? that ful�lls � Æ �? = �? Æ�?(�). Using (5), we �nd� Æ �? = � Æ�(�) Æ F = �? Æ F�1 Æ�(�) Æ F :Thus, one de�nes �?(�) = F�1 Æ�(�) Æ F :Sin
e F 2 UP
UP , it is 
lear that �?(�) 2 UP
UP . In fa
t one expli
itly�nds [7, 8℄�?(P�) =P� 
 1 + 1
 P� (6)�?(M��) =M�� 
 1 + 1
M���12��� (g�� (P� 
 P� � P� 
 P�)� g�� (P� 
 P� � P� 
 P�)) :2Note that the notations ? and �? are inter
hangeable in the present paper.3



There is a general theorem (see, e.g., [17℄, Thm 2.3.4) stating that �?,together with �? = � and S?(�) = ��1S(�)� with � = S(F(1))F(2) againde�ne a Hopf algebra. Note that in our parti
ular 
ase � = 1, i.e., S? = S.From this and (4) it follows that we still have a Hopf �-algebra with the old�-stru
ture ([17℄, Prop 2.3.7). Furthermore, one 
an show [16℄ that there isa triangular stru
ture (or R-matrix) R = F�121 F . In our parti
ular 
ase wehave R = ei���P�
P� : (7)Now suppose we are given ve
tor spa
es A;B;C that 
arry a represen-tation of the Poin
ar�e algebra and a map � : A
B ! C that is 
ompatiblewith this a
tion. Then it is in the spirit of [16℄ to deform this map to�? = � Æ F . As above, one then has a Æ �? = �? Æ�?(a). Now 
onsider somespe
ial 
ases:� Let A be an algebra 
arrying a representation of the Poin
ar�e algebraand � the produ
t A
A! A. Applying the above prin
iple, one getsa new algebra A?, being identi
al to A as a ve
tor spa
e, but withprodu
t ? = � Æ F . Due to (2) this produ
t is asso
iative. Note thatif A is a �-algebra, then due to (4), the new ?-produ
t is 
ompatiblewith the old �-stru
ture: (a ? b)� = b� ? a�.� Let A be an algebra with a representation on a ve
tor spa
e V and� : A 
 V ! V be the 
orresponding left a
tion. Applying the aboveprin
iple, one �rst deforms A to A?. Then one de�nes the a
tion? : A?
V ! V by ? = �ÆF . That this a
tion de�nes a representation,i.e. (a ? b) ? v = a ? (b ? v), follows again from (2).� If V is even a Hilbert spa
e, one should also de�ne a new s
alar produ
tthat is 
ompatible with the adjoint in A?. The s
alar produ
t 
an beviewed as a bilinear map �V 
V ! C, where �V is the 
onjugate ve
torspa
e. The new s
alar produ
t (�; �)? 
an then be de�ned in the obviousway. It remains to be shown that it is positive de�nite and 
ompatiblewith the �-stru
ture ofA?. Note that in order to be 
onsistent with (1),one de�nes the a
tion of U� on �V by ��v = S(��)v. Also note thatto the above left a
tion of A on V there 
orresponds the right a
tion�v � a = a� � v on �V . This a
tion 
an of 
ourse also be deformed in theobvious way. Due to (4), we have �v ? a = a� ? v. The 
ompatibilitywith the �-stru
ture of A?, i.e. (v; a?w)? = (a� ?v; w)?, is now again a
onsequen
e of (2). Unfortunately, there seems to be no general proofthat (�; �)? is positive de�nite3. Thus, this has to be 
he
ked expli
itlyin ea
h example.3If one interprets F as a formal power series, one has positive de�niteness in the senseof formal power series, sin
e the zeroth order 
omponent is the old one.4



3 The appli
ation to NCQFTIt is now fairly obvious how to apply the above to NCQFT. Identifying Awith the free �eld algebra and V with the Fo
k spa
e, we get a new produ
tof quantum �elds and a new a
tion on the Fo
k spa
e4. It only remains tobe 
he
ked that the new s
alar produ
t is positive de�nite. This is indeedthe 
ase, in fa
t it is the old one: Let f 2 L2(R3m); g 2 L2(R3n). Then(f; g)? = Æmn 1m! X�2Sm Z mYi=1 d3ki2!i �f(k1; : : : ;km)g(k�(1); : : : ;k�(m))� e� i2 (�Pi k+i )�(Pj k+j )Here we used the notation k+ = (!k;k). Obviously, the twisting drops out.This is analogous to the property R d4x f ? g(x) = R d4x f � g(x) for testfun
tions f and g.Obviously, the same 
onstru
tion 
an be done for a fermioni
 Fo
k spa
e.Remark 3.1. We remark that the new produ
t of quantum �eld followsnaturally from the smeared �eld operators introdu
ed in [18℄:�f (q) = Z d4x �(q + x)f(x) = Z d4k f̂(k)��(k)
 eikq :We then have�f (q)�g(q) = Z d4k1d4k2 e� i2k1�k2 f̂(k1)ĝ(k2)��(k1)��(k2)
 ei(k1+k2)q=�2Ff
g(q):Here we used the notation�nf (q) = Z nYi=1 d4ki f̂(k1; : : : ; kn)Yi ��(ki)
 ei(k1+���+kn)q:Note that this notation deviates from the one used in [18℄. In our notationone has the generalized formula�nf (q)�mg (q) = �m+nFf
g(q):Note that in [18℄ (and already in [1℄) quantum �elds are elements of (orrather aÆliated to) F
E , where F is the �eld algebra and E the C�-algebragenerated by the quantum 
oordinates q�. An element of F is then obtainedby applying id 
 !, where ! is a state on E . Thus, the a
tion of the �eldalgebra on the Fo
k spa
e is di�erent than in the approa
h followed here.4Note that the a
tion of the twist on tensor produ
ts of L2-fun
tions is well-de�nedin momentum spa
e. Thus, we do not have to restri
t to S
hwartz fun
tions, sin
e nopoint-wise produ
ts are involved. 5



Remark 3.2. In [9℄ the twisted produ
t was realized by a new de�nition ofthe 
reation and annihilation operators:~a(k) = a(k)e i2k+�P ; ~a(k)� = a(k)�e� i2k+�P :Obviously, one then has ~a(f)	 = a(f) ?	 for any Fo
k spa
e ve
tor 	 (andanalogously for a(f)�).4 The twisted 
ommutatorsWe turn to a question that is very important for �nding a 
onsistent in-terpretation of the new �eld algebra. Of 
ourse one is in
lined to keep theinterpretation of �(f) as a �eld operator and of a(f)�; a(f) as 
reation andannihilation operators. But then they should ful�ll some 
ommutation rela-tion that is 
ompatible with the 
lassi
al Poisson bra
ket. Sin
e this 
lassi
albra
ket is not a�e
ted by the twist (at least if one uses Peierls de�nition,see [19℄), we would want the ?-
ommutator to give the usual result. This,however, is not the 
ase for[�(f)?;�(g)℄ =�(f) ? �(g)� �(g) ? �(f)= Z d4k1d4k2 f̂ (k1)ĝ(k2)� ���(k1)��(k2)e� i2k1�k2 � ��(k2)��(k1)e i2k1�k2� ;as has already been noted in [4, p.73f℄. It is not even a 
-number. But of
ourse it ful�lls the usual algebrai
 requirements antisymmetry, Leibniz ruleand Ja
obi identity.Remark 4.1. This is the form of the 
ommutator 
onsidered in [11℄ and de-noted by [�(f); �(g)℄?. Thus, our twisted NCQFT does not ful�ll the lo
alityaxiom posed in there, even in the 
ase of spa
e-like non
ommutativity.One 
an of 
ourse also 
onsider the 
ommutator as a map[�; �℄ : A
 A! A[�; �℄ : a
 b 7! ab� ba:Then it is natural to deform it to the twisted 
ommutator[�; �℄? = [�; �℄ Æ F = �? � �? ÆR Æ �:Here � is the transposition and R is the triangular stru
ture (7). Note thatthis 
ommutator was also used for a deformed Lie bra
ket of ve
tor �elds in[16℄. In the 
ontext of NCQFT, it has already been proposed in [4℄ in thelanguage of [18℄ (
f. remark 3.1). There, it simply amounts to postulatingthe 
ommutator [�
 f;  
 g℄ = [�;  ℄
 fg6



for elements of F
 E . It has already been remarked in [4℄ that it is neitherantisymmetri
 nor ful�lling the Ja
obi identity. However, it is possible toprove a Ja
obi identity that involves the R-matrix [16℄:[a; [b; 
℄?℄? = [[a; b℄?; 
℄? + [R(1)b; [R(2)a; 
℄?℄?:There is an obvious similar formula expressing a twisted antisymmetry.While these formulae are general, there seems to be no analogous generalformula for the Leibniz rule. In the 
on
rete example of NCQFT, however,we have [a; b ? 
℄? = [a; b℄? ? 
+ F�2(1)b ? [F�2(2)a; 
℄?:This 
an most elegantly be seen in the notation of [18℄.We 
an now 
ompute the twisted 
ommutator of two �elds:[�(f); �(g)℄? = Z d4k1d4k2 e� i2 k1�k2 f̂ (k1)ĝ(k2)[ ��(k1); ��(k2)℄=i Z d4k1 f̂(k1)ĝ(�k1) ��(k1):We see that the twisting drops out and we obtain the usual result. In parti
-ular, we have twisted 
ommutativity if the supports of f and g are spa
e-likeseparated. This seems to indi
ate that in the 
ase of a twisted symmetryone should demand the 
orresponden
e prin
iple between the 
lassi
al Pois-son bra
ket and the twisted 
ommutator of the basi
 variables. We remarkthat Pusz and Woronowi
z [13℄ found 
ompletely analogous twisted 
anon-i
al 
ommutation relations involving the R-matrix in a se
ond quantizationof a �nite system with SUq(N)-symmetry. This may be seen as a hint thatthis is a general stru
ture (see also [12, Chapter 2℄ and referen
es therein).However, it should be noted that the vanishing of the 
ommutator has aphysi
al meaning, the possibility of simultaneous measurement. It is not
lear wether the vanishing of the twisted 
ommutator 
an be given a similarmeaning.It should also be noted that, as has already been remarked in [4℄, thetwisted 
ommutator of produ
ts of �elds does not 
oin
ide with the usualone, and does in parti
ular not vanish for spa
e-like separated supports.This is illustrated in the following example:[�2(f1 
 f2); �(f3)℄? = Z  3Yi=1 d4kif̂i(ki)! e� i2 (k1+k2)�k3 [ ��(k1)��(k2); ��(k3)℄=i Z d4k f̂1(k)��(k) Z d4p e i2k�pf̂2(p)f̂3(�p) ��(p)+i Z d4k f̂2(k)��(k) Z d4p e i2k�pf̂1(p)f̂3(�p) ��(p):We emphasize on
e more that this is also in 
on
i
t with the 
orresponden
eprin
iple. Note that it does not help to use �(f1) ? �(f2) instead.7



Remark 4.2. If one interprets the twisting as a formal power series, then the[�; �℄?-
ommutator is lo
al at every order (this is not the 
ase for [�?;�℄). If oneidenti�es the s
ale of non
ommutativity with the Plan
k s
ale, then � 
ouldbe interpreted to be of O(~). In this sense the twisting would yield higherpowers of ~. It may be interesting to investigate this further. However, wewill not do so in the present work.Thus, the upshot of this se
tion is that we have two natural 
ommutatorsin the twisted setting. The �rst one ful�lls the usual algebrai
 requirementsbut deviates from the 
lassi
al Poisson bra
ket. The other one does not havevery ni
e algebrai
 properties, but at least reprodu
es the 
lassi
al Poissonbra
ket for simple �elds (but not for produ
ts of �elds). In any 
ase the
orresponden
e prin
iple has to be modi�ed 
onsiderably, so one is leavingthe safe grounds of established quantum me
hani
s.5 Time evolutionIn ordinary quantum theory, the time evolution of observables is given bythe 
ommutator with the Hamiltonian H . If we want to keep this in thetwisted setting, we have to de
ide whi
h 
ommutator to use. Due to (6)one expe
ts that the time-evolution ful�lls the Leibniz rule, at least if H istime-independent. Thus, one should use the [�?;�℄-
ommutator. The 
lassi
alequations of motion, however, do not 
hange. Thus, the requirement thatthe time-evolution is, to zeroth order in ~, identi
al to the 
lassi
al evolutionleads to the 
ondition [H?;a℄ = [H; a℄+O(~2) for all observables a. But in thepre
eding se
tion we have seen that the [�?;�℄-
ommutator in general deviatesfrom [�; �℄ already at zeroth order5. So the only general way to make things
onsistent seems to be to require that H is invariant under the symmetryoperation involved in the twist (in our 
ase the translations), sin
e then wehave [H?;a℄ = [H; a℄. But then the stru
ture be
omes very rigid, sin
e a
hange of H must be a

ompanied by a 
hange of the twist. It is not even
lear if there is su
h a new F in general.Remark 5.1. There seems to be some similarity to the observation [4, Re-mark 2.2℄ that in the Hamiltonian approa
h to NCQFT the intera
tingHeisenberg �eld does not ful�ll the equation of motion (see also [20℄). There,however, the problem appears only if the intera
tion is at least quadrati
and if there is non
ommutativity between spa
e and time. Here, instead,the problem is 
onne
ted only to translation invarian
e and thus alreadyarises for a sour
e term and also in the 
ase of spa
e-like non
ommutativity.In the 
ase when H is not invariant under the symmetry involved in thetwist, one 
ould of 
ourse simply postulate the time-evolution _a = i[H; a℄.5Even if one interprets the twist as a formal power series and assumes that � is of O(~)(
f. remark 4.2), then the two 
ommutators still deviate at �rst order in ~.8



But this time-evolution would in general be in
ompatible with the twistedalgebra stru
ture: [H; a ? b℄ 6= [H; a℄ ? b+ a ? [H; b℄. Thus, one would haveto use the old algebra and nothing would have 
hanged.In order to see how this rigidity makes a meaningful exploration of thenew framework impossible, 
onsider the following example: Applying a 
re-ation operator a(g)� on the va
uum twi
e, one gets the two-parti
le wavefun
tion 	Fg
g(k1;k2) = p2g(k1)g(k2) 
os k+1 �k+22 :Thus, the modulus j	Fg
g(k1;k2)j is redu
ed for momenta k1;k2 su
h thatk+1 �k+2 � 1. This 
an of 
ourse only happen if �i�j � ��2n
 for i; j in non-
ommuting dire
tions. Here �i denotes the typi
al width of g in the dire
-tion i. In this sense the wave fun
tion 	Fg
g is more narrow in momentumspa
e and thus has a wider spread in position spa
e in the non
ommutingdire
tion (of 
ourse the e�e
t is tiny for realisti
 energies if �n
 is identi�edwith the Plan
k length). Thus, one gets the impression that the twistingdisfavors the o

urren
e of several parti
les with the same wave fun
tion ifthis wave fun
tion is simultaneously lo
alized in non
ommuting dire
tions.If this was true, this might be an elegant resolution of the un
ertainty prob-lem posed in [1℄.But the dis
ussion above is of 
ourse at best heuristi
. On the shakyground we are exploring, we do not have any good intuition about whatthe repeated a
tion of a(g)� might a
tually signify. And the two-parti
lewave fun
tion 	g
g is still an element of our Fo
k spa
e. Thus, we wouldlike to make a statement in more operational terms. Now 	g
g is, up tonormalization, the two-parti
le 
omponent of the 
oherent state e�a(g)�
.This, in turn, 
an be 
hara
terized by being the ground state 
orrespondingto the Hamiltonian H = H0 + �(a(f)� + a(f));where H0 is the usual free Hamiltonian and f = �P0g. Taking this as amotivation, it would be interesting to �nd the ground state 
orrespondingto this Hamiltonian in our twisted setting, i.e. the eigenve
tor 	 with thelowest eigenvalue H ?	 = E	. This 
an be done, and it turns out that the
orresponding two-parti
le wave fun
tion is indeed more narrow than 	g
g(it is even more narrow than 	Fg
g). However, it is not 
lear if this resulthas any meaning, be
ause H is, in the twisted setting, not the generatorof the time-evolution. In the present example, this is easily seen for thetime-evolution of a �eld, as we already 
omputed the [�?;�℄-
ommutator oftwo �elds in the pre
eding se
tion.Remark 5.2. In [9℄ it has been 
laimed that in the twisted setting Paulisex
lusion prin
iple is no longer valid. The authors 
on
lude this from thefa
t that in the 
ase of twisted anti
ommutation relations one has in generala(g)� ? a(g)� 6= 0. But of 
ourse the fermioni
 wave fun
tions are still9



antisymmetri
. It is simply not 
lear what Paulis prin
iple tells us in thetwisted 
ase (as in the example above, we do not know what the repeateda
tion of a(g)� a
tually means). One should rather look for a statementin operational terms. First steps in this dire
tion have been taken in [21℄.However, in the light of the pre
eding dis
ussion it is doubtful that this 
anbe done 
onsistently.Remark 5.3. In view of the problems dis
ussed here, one might of 
oursede�ne the intera
ting dire
tly by the equation of motion, i.e. use the Yang-Feldman formalism [22℄. In the 
ontext of NCQFT this has �rst been pro-posed in [23℄. However, one has to bear in mind that if the intera
tion isnot translation invariant, the intera
ting �eld will not transform 
ovariantlyunder translations, i.e. �int(�af) 6= Ua�int(f)U�1a , where � is the a
tionon test fun
tions and U the Hilbert spa
e representation of the translationgroup. This will make the ?-produ
t of intera
ting �elds more 
ompli
ated.6 Intera
tionsThe e�e
t of intera
tions 
an be studied by formally 
omputing the n-pointfun
tions of the intera
ting �eld, de�ned, e.g., by the Yang-Feldman formal-ism. If the intera
tion is translation invariant, the intera
ting �eld trans-forms 
ovariantly under translations (see remark 5.3), and we haveh
; �int(f1) ? � � � ? �int(fn)
i= Z  nYi=1 d4kif̂i(ki)! e� i2Pi<j ki�kj h
; ��int(k1) : : : ��int(kn)
i:On the right hand side, all the loops are 
ontained in the va
uum expe
tationvalue. Obviously, the twisting fa
tor does not interfere at all with these andhas no e�e
t on the divergen
ies, and in parti
ular does not in
uen
e theUV/IR-mixing. Thus the absen
e or presen
e of the UV/IR-mixing doesonly depend on the 
hoi
e of the intera
tion term6.In [10℄ the old (pointwise) produ
t of �elds was used7. Thus, it is notsurprising that the UV/IR-mixing is absent there.If, however, the ?-produ
t of �elds is used for the intera
tion term, theUV/IR-mixing will be exa
tly as usual. In parti
ular, one �nds distorteddispersion relations [18, 24℄.6This also seems to be at odds with the results of [6℄.7More pre
isely, the inverse ?-produ
t between the operators ~a; ~a� (see remark 3.2)was used. But sin
e these operators already realize the ?-produ
t, the 
ombined e�e
tamounts to the pointwise produ
t. 10



7 SummaryWe developed twisted NCQFT by embedding it in the general 
ontext ofquantization of systems with twisted symmetries. We dis
ussed two di�erent
ommutators. One of them ful�lled the usual algebrai
 properties but failedto reprodu
e the usual 
ommutation relations. The other one gave the usualresult when used on simple �elds, but failed to do so for produ
ts of �elds.Furthermore, it did not ful�ll the usual algebrai
 properties. We foundstrong eviden
e for the statement that twisted NCQFT in a Hamiltoniansetting is only 
onsistent if the Hamiltonian is translation invariant. Finally,we showed that the 
hoi
e of the intera
tion term and not the twisting isresponsible for the presen
e or absen
e of UV/IR-mixing.These �ndings are rather dis
ouraging. They indi
ate that twisted NC-QFT is not 
exible enough to derive meaningful new predi
tions. Further-more, the problem of UV/IR-mixing and the distortion of dispersion rela-tions (and thus violation of Lorentz invarian
e) is not solved, unless one usesthe point-wise produ
t for the intera
tion.A
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