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Abstract

We review recent results on twisted noncommutative quantum field
theory by embedding it into a general framework for the quantization
of systems with a twisted symmetry. We discuss commutation relations
in this setting and show that the twisted structure is so rigid that it is
hard to derive any predictions, unless one gives up general principles
of quantum theory. It is also shown that the twisted structure is not
responsible for the presence or absence of UV /IR-mixing, as claimed
in the literature.

1 Introduction

Noncommutative quantum field theory (NCQFT) is quantum field theory
on the noncommutative Minkowski space, which is generated by coordinates
g* subject to the commutation relations

[4",¢"] = ic*.
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Alternatively, it can be formulated via the %-product of ordinary functions,
see section  The main motivations for the study of such models come
from Gedankenexperiments on the possible localization of events [l] and
the theory of open strings in the presence of a background B-field [F]. For
reviews see, e.g., [B M.

Recently, it has been proposed to reconsider the question of violation of
Lorentz invariance in NCQFTs. This was triggered by the realization that
it is possible to twist the coproduct of the universal envelope UP of the
Poincaré algebra such that it is compatible with the x-product. Already in
[ it was shown that the x-product naturally arises from a quasitriangular
structure in the Hopf algebra corresponding to the translation group. Soon
afterwards, it was shown that this quasitriangular structure is generated by




a twist [H]. Also the embedding into the (euclidean) Poincaré group was
discussed there. In [ B this was reformulated in dual language for the
proper Poincaré algebra. Subsequently, there have been claims about the
violation of the Pauli principle [H] and the absence of UV/IR-mixing [ in
this twisted setting. Also an axiomatic characterization of twisted NCQFT
was attempted [iCH].

One aim of the present paper is to reach a more general understanding
of QFT in the presence of a twisted symmetry. In this sense, it is related to
the field of ¢-deformed quantum mechanics (see, e.g., [E4 Chapter 2] for an
overview) and the study of quantum systems with quantum symmetry (see,
e.g., [ 4 [5]). We follow the philosophy outlined in [i&]: Each time we
encounter a bilinear map involving two spaces carrying a representation of
the symmetry group we deform this map with the twist. The general setup
is presented in section B and applied to NCQFT in section B In section B
we consider two different commutators that appear naturally in the twisted
setting. Unfortunately, both are lacking some crucial properties of the usual
commutator. Thus, we are leaving the safe grounds of established quantum
mechanics. This becomes even more evident in section L There it is shown
that it is in general not possible to add a localized interaction (a source,
for example) to the Hamiltonian without getting in serious trouble with the
correspondence principle. We argue that this makes it extremely difficult
to derive any predictions in the twisted setting (at least none that are not
already present in conventional NCQET). In section Blwe make some remarks
on the effect of the twist in the interacting case and in particular on the claim
that the UV/IR-mixing is absent in the twisted setting [E]. We conclude
with a summary.

Added Note

While the present paper was written up, the preprint [Z4], appeared. It has
some overlap with the present paper, in particular it is in agreement with
the results presented in section H

2 Setup

Let p : S(RY) @ S(R*) — S(R*) be the point-wise product of Schwartz
functions. Then the %-product can be defined as! p, = po F with

]: = e_%UMDPM(X)PV .
In i8] the twist was interpreted as a formal power series in some deformation

parameter. We will not do so in the present paper. Instead, we give it a
rigorous meaning by going to momentum space.

'Note that we use a different notation than in [E8]. Our F corresponds to F~! there.



The Poincaré algebra can be embedded into the Lie algebra = of vector
fields and this in turn into the algebra U= that is obtained from the universal
enveloping algebra by dividing out the ideal generated by the commutation
relations in =. Following [[EH], one can equip UZ with the structure of a
Hopf algebra by defining the coproduct, counit and antipode through

Alw)=u®@1+13 u, A(l)y=1®1,
(u) =0, g(1) =1,
S(u) =— u, S(1) =1,

where u € =. This definition can be extended to U= by requiring A and ¢
to be algebra homomorphisms and S to be an antialgebra homomorphism.
Furthermore, one can give UZ a s-structure by defining

u(f) = (S(u) ()" (1)

for f € S(RY) and v € = and extending this as an antialgebra homomor-
phism. Furthermore, we note that F fulfills

(doA)FAeF)=Aeid)F(Fx1) (2)
(e @id)F =1 (3)
(S @ 9)(F) =Fu (4)

where Fy; is the transposed F (in our case Fo; = F~1). Thus, F~! is
a real (@), counital () 2-coclycle (@), see, e.g., [E4]. From (@) it follows

that the x-product is associative and due to () it respects the *-structure?:
(fxg) =g %[

Now we consider the compatibility of the x-product with Poincaré trans-
formations. Let £ € UP. The point-wise product fulfills

§op=poA(). (5)

Here we identified £ with its action on S(R*). Now we want to find a

deformed coproduct A, that fulfills £ o . = p, 0 Ay(€). Using (@), we find
Eope=poA)oF =po0F ToA(E)oF.

Thus, one defines

A =F oAl o F.

Since F € UPQUP, it is clear that A, (§) € UP@UP. In fact one explicitly
finds [, K]

AP) =P, @1+10 P, (6)
A*(M;w) :M;w @1+1® Mp,l/
1
—;faﬁ (Gua (P @ Ps = Ps @ P,) = gua (P @ Ps — P3 @ P,)).

?Note that the notations % and p, are interchangeable in the present paper.



There is a general theorem (see, e.g., [, Thm 2.3.4) stating that A,,
together with ¢, = ¢ and S.(§) = x7'S(§)x with x = S(F(y)) Fz) again
define a Hopf algebra. Note that in our particular case y = 1, i.e., S5 = S.
From this and (@) it follows that we still have a Hopf *-algebra with the old
«-structure ([i54], Prop 2.3.7). Furthermore, one can show [Lf] that there is
a triangular structure (or R-matrix) R = F5;'F. In our particular case we

have '
R = ezcrf“’PM(X)Pu . (7)

Now suppose we are given vector spaces A, B, C that carry a represen-
tation of the Poincaré algebra and a map v : A®@ B — (' that is compatible
with this action. Then it is in the spirit of B8] to deform this map to
v, =voF. As above, one then has a o v, = v, 0 A, (a). Now consider some
special cases:

e Let A be an algebra carrying a representation of the Poincaré algebra
and - the product A ® A — A. Applying the above principle, one gets
a new algebra A,, being identical to A as a vector space, but with
product x = - o F. Due to (H) this product is associative. Note that
if A is a #-algebra, then due to (), the new *x-product is compatible
with the old #-structure: (a%b)* = b" xa*.

e Let A be an algebra with a representation on a vector space V and
-1 A®V — V be the corresponding left action. Applying the above
principle, one first deforms A to A,. Then one defines the action
*: A, @V — V by x = -0F. That this action defines a representation,
ie. (axb)xv=ax(bxv), follows again from (@).

e If Vis even a Hilbert space, one should also define a new scalar product
that is compatible with the adjoint in A,. The scalar product can be
viewed as a bilinear map V @V — C, where V is the conjugate vector
space. The new scalar product (-, -), can then be defined in the obvious
way. It remains to be shown that it is positive definite and compatible
with the #-structure of A,. Note that in order to be consistent with (I,
one defines the action of UZ on V by &0 = S(£*)v. Also note that
to the above left action of A on V there corresponds the right action
v-a=a*-von V. This action can of course also be deformed in the
obvious way. Due to (), we have v xa = a* xv. The compatibility
with the #-structure of A,, i.e. (v,a*w), = (a**v, w),, is now again a
consequence of (A). Unfortunately, there seems to be no general proof
that (-, ) is positive definite®. Thus, this has to be checked explicitly
in each example.

°If one interprets F as a formal power series, one has positive definiteness in the sense
of formal power series, since the zeroth order component is the old one.



3 The application to NCQFT

It is now fairly obvious how to apply the above to NCQFT. Identifying A
with the free field algebra and V with the Fock space, we get a new product
of quantum fields and a new action on the Fock space*. It only remains to

be checked that the new scalar product is positive definite. This is indeed
the case, in fact it is the old one: Let f € L2(R>™),¢ € L*(R*"). Then

dk

(f7 = mn

Flkas - k)9 (Kra)s - - Koram)
' TES,

o o~ H= RN (T, k)

Here we used the notation &+ = (wg, k). Obviously7 the twisting drops out.
This is analogous to the property fd4ac frglz fd4ac f-g(x) for test
functions f and g¢.

Obviously, the same construction can be done for a fermionic Fock space.

Remark 3.1. We remark that the new product of quantum field follows
naturally from the smeared field operators introduced in [i5]:

osa) = [ e ola+0)f(@) = [ atk Fryam o ™
We then have

@wwawz/ﬁ%ﬂﬂafﬁwbﬂMM%ﬁw

1) (k) @ efFitha)e

Here we used the notation

:/li[d% Flhy ke qu @ e'lhittine,
=1

Note that this notation deviates from the one used in [E¥]. In our notation
one has the generalized formula

S g)o0 (q) = SL2, (q).

Note that in [E¥] (and already in [M]) quantum fields are elements of (or
rather affiliated to) §® &, where § is the field algebra and & the C*-algebra
generated by the quantum coordinates ¢*. An element of § is then obtained
by applying id ® w, where w is a state on £. Thus, the action of the field
algebra on the Fock space is different than in the approach followed here.

“Note that the action of the twist on tensor products of L*-functions is well-defined
in momentum space. Thus, we do not have to restrict to Schwartz functions, since no
point-wise products are involved.



Remark 3.2. In [@] the twisted product was realized by a new definition of
the creation and annihilation operators:

(k) = a(k)ez* 7P a(k)* = a(k) e s L

Obviously, one then has a(f)¥ = a(f) x V¥ for any Fock space vector ¥ (and
analogously for a(f)*).

4 The twisted commutators

We turn to a question that is very important for finding a consistent in-
terpretation of the new field algebra. Of course one is inclined to keep the
interpretation of ¢(f) as a field operator and of a(f)*, a(f) as creation and
annihilation operators. But then they should fulfill some commutation rela-
tion that is compatible with the classical Poisson bracket. Since this classical
bracket is not affected by the twist (at least if one uses Peierls definition,
see [[9]), we would want the x-commutator to give the usual result. This,
however, is not the case for

[0(/)56(9)] =6(1) * 6(9) — (g) % 6(/)
= [ dthdth f(iaces
(B3 (ka)em3478 — d{h)d(kr)edot)

as has already been noted in [@, p.73f]. It is not even a c-number. But of
course it fulfills the usual algebraic requirements antisymmetry, Leibniz rule
and Jacobi identity.

Remark 4.1. This is the form of the commutator considered in [i&] and de-
noted by [¢(f), #(g)]s. Thus, our twisted NCQFEFT does not fulfill the locality

axiom posed in there, even in the case of space-like noncommutativity.
One can of course also consider the commutator as a map
[ ]: AR A— A
[,:]:a® b~ ab— ba.

Then it is natural to deform it to the twisted commutator
[y Je =[]0 F = s — puo Ro.

Here 7 is the transposition and R is the triangular structure (@). Note that
this commutator was also used for a deformed Lie bracket of vector fields in
8. In the context of NCQFT, it has already been proposed in [H] in the
language of [B] (cf. remark BZl). There, it simply amounts to postulating
the commutator

(0@ fidv@gl=1¢,¢]® fg



for elements of §® £. It has already been remarked in [@] that it is neither
antisymmetric nor fulfilling the Jacobi identity. However, it is possible to
prove a Jacobi identity that involves the R-matrix [

[a, [b, cli]i = [[a, blx, cli + [R(1)b, [R(2)a, cli]x-

There is an obvious similar formula expressing a twisted antisymmetry.
While these formulae are general, there seems to be no analogous general
formula for the Leibniz rule. In the concrete example of NCQFT, however,
we have

[a,bxcly = [a,bl,*c+ ]—'(_l)zb * []:(_2?(1, €l

This can most elegantly be seen in the notation of [IH].
We can now compute the twisted commutator of two fields:

[6(£), Slg)). = / Atk dhy €575 F(ky)3 (ko) [B(k), Bk
:i/d4k1 F (k) §(—k1)Aky).

We see that the twisting drops out and we obtain the usual result. In partic-
ular, we have twisted commutativity if the supports of f and ¢ are space-like
separated. This seems to indicate that in the case of a twisted symmetry
one should demand the correspondence principle between the classical Pois-
son bracket and the twisted commutator of the basic variables. We remark
that Pusz and Woronowicz ] found completely analogous twisted canon-
ical commutation relations involving the R-matrix in a second quantization
of a finite system with SU,(N)-symmetry. This may be seen as a hint that
this is a general structure (see also [lE4, Chapter 2] and references therein).
However, it should be noted that the vanishing of the commutator has a
physical meaning, the possibility of simultaneous measurement. It is not
clear wether the vanishing of the twisted commutator can be given a similar
meaning.

It should also be noted that, as has already been remarked in [@], the
twisted commutator of products of fields does not coincide with the usual
one, and does in particular not vanish for space-like separated supports.
This is illustrated in the following example:

(60 R o= [ (H d“@ﬁ»(&ﬁ) RG]
=i [ @k i) [t ) (-nB )

i / a'k (k) (k) / d*p ¢4 i (o) Fa(—p) Ap).

We emphasize once more that this is also in conflict with the correspondence
principle. Note that it does not help to use ¢(f1) x ¢(f2) instead.



Remark 4.2. If one interprets the twisting as a formal power series, then the
[, ]s-commutator is local at every order (this is not the case for [-%-]). If one
identifies the scale of noncommutativity with the Planck scale, then ¢ could
be interpreted to be of O(%). In this sense the twisting would yield higher
powers of h. It may be interesting to investigate this further. However, we
will not do so in the present work.

Thus, the upshot of this section is that we have two natural commutators
in the twisted setting. The first one fulfills the usual algebraic requirements
but deviates from the classical Poisson bracket. The other one does not have
very nice algebraic properties, but at least reproduces the classical Poisson
bracket for simple fields (but not for products of fields). In any case the
correspondence principle has to be modified considerably, so one is leaving
the safe grounds of established quantum mechanics.

5 Time evolution

In ordinary quantum theory, the time evolution of observables is given by
the commutator with the Hamiltonian H. If we want to keep this in the
twisted setting, we have to decide which commutator to use. Due to (H)
one expects that the time-evolution fulfills the Leibniz rule, at least if H is
time-independent. Thus, one should use the [-%]-commutator. The classical
equations of motion, however, do not change. Thus, the requirement that
the time-evolution is, to zeroth order in A, identical to the classical evolution
leads to the condition [H*a] = [H, a]+O(h?) for all observables a. But in the
preceding section we have seen that the [-*-]-commutator in general deviates
from [+, ] already at zeroth order®. So the only general way to make things
consistent seems to be to require that H is invariant under the symmetry
operation involved in the twist (in our case the translations), since then we
have [H%a] = [H,a]. But then the structure becomes very rigid, since a
change of H must be accompanied by a change of the twist. It is not even
clear if there is such a new F in general.

Remark 5.1. There seems to be some similarity to the observation [, Re-
mark 2.2] that in the Hamiltonian approach to NCQFT the interacting
Heisenberg field does not fulfill the equation of motion (see also [Ef]). There,
however, the problem appears only if the interaction is at least quadratic
and if there is noncommutativity between space and time. Here, instead,
the problem is connected only to translation invariance and thus already
arises for a source term and also in the case of space-like noncommutativity.

In the case when H is not invariant under the symmetry involved in the
twist, one could of course simply postulate the time-evolution & = i[H, «a].

®Even if one interprets the twist as a formal power series and assumes that ¢ is of O(h)
(cf. remark ), then the two commutators still deviate at first order in .



But this time-evolution would in general be incompatible with the twisted
algebra structure: [H,axb] # [H,a] *b+ a *x[H,b]. Thus, one would have
to use the old algebra and nothing would have changed.

In order to see how this rigidity makes a meaningful exploration of the
new framework impossible, consider the following example: Applying a cre-
ation operator a(g)* on the vacuum twice, one gets the two-particle wave
function
ki"ak;'

—

Thus, the modulus |¥r,e,(ky, k)| is reduced for momenta ky, kg such that
ki"ak;' ~ 1. This can of course only happen if A;A; ~ A2 for ¢, j in non-
commuting directions. Here A; denotes the typical width of ¢ in the direc-
tion 7. In this sense the wave function Wr,g, is more narrow in momentum
space and thus has a wider spread in position space in the noncommuting
direction (of course the effect is tiny for realistic energies if A, is identified
with the Planck length). Thus, one gets the impression that the twisting
disfavors the occurrence of several particles with the same wave function if
this wave function is simultaneously localized in noncommuting directions.
If this was true, this might be an elegant resolution of the uncertainty prob-
lem posed in [H].

But the discussion above is of course at best heuristic. On the shaky
ground we are exploring, we do not have any good intuition about what
the repeated action of a(g)* might actually signify. And the two-particle
wave function W,g, is still an element of our Fock space. Thus, we would
like to make a statement in more operational terms. Now W, , is, up to
normalization, the two-particle component of the coherent state e**(9)"Q.
This, in turn, can be characterized by being the ground state corresponding
to the Hamiltonian

Vryo4(ks, ka) = ﬂg(kl)g(kz) cos

H = Ho+ Ma(f)" + a(f)),

where Hy is the usual free Hamiltonian and f = —Fyg. Taking this as a
motivation, it would be interesting to find the ground state corresponding
to this Hamiltonian in our twisted setting, i.e. the eigenvector ¥ with the
lowest eigenvalue H xW = FW. This can be done, and it turns out that the
corresponding two-particle wave function is indeed more narrow than ¥,g,
(it is even more narrow than Wz,g,). However, it is not clear if this result
has any meaning, because H is, in the twisted setting, not the generator
of the time-evolution. In the present example, this is easily seen for the
time-evolution of a field, as we already computed the [-*]-commutator of
two fields in the preceding section.

Remark 5.2. In [H] it has been claimed that in the twisted setting Paulis
exclusion principle is no longer valid. The authors conclude this from the
fact that in the case of twisted anticommutation relations one has in general
a(g)” % a(g)* # 0. But of course the fermionic wave functions are still



antisymmetric. It is simply not clear what Paulis principle tells us in the
twisted case (as in the example above, we do not know what the repeated
action of a(g)* actually means). One should rather look for a statement
in operational terms. First steps in this direction have been taken in [
However, in the light of the preceding discussion it is doubtful that this can
be done consistently.

Remark 5.3. In view of the problems discussed here, one might of course
define the interacting directly by the equation of motion, i.e. use the Yang-
Feldman formalism [Z2]. In the context of NCQFT this has first been pro-
posed in [Z4]. However, one has to bear in mind that if the interaction is
not translation invariant, the interacting field will not transform covariantly
under translations, i.e. @i (7af) # Usini(f)U; L, where 7 is the action
on test functions and U the Hilbert space representation of the translation
group. This will make the x-product of interacting fields more complicated.

6 Interactions

The effect of interactions can be studied by formally computing the n-point
functions of the interacting field, defined, e.g., by the Yang-Feldman formal-
ism. If the interaction is translation invariant, the interacting field trans-
forms covariantly under translations (see remark B=), and we have

(€, Gine(f1) * -+ % Pine (fr)2)
N / (H d4kifi(ki)) e T ki b (k) - i () ).
=1

On the right hand side, all the loops are contained in the vacuum expectation
value. Obviously, the twisting factor does not interfere at all with these and
has no effect on the divergencies, and in particular does not influence the
UV/IR-mixing. Thus the absence or presence of the UV/IR-mixing does
only depend on the choice of the interaction term®.

In ] the old (pointwise) product of fields was used”. Thus, it is not
surprising that the UV /IR-mixing is absent there.

If, however, the x-product of fields is used for the interaction term, the
UV/IR-mixing will be exactly as usual. In particular, one finds distorted

dispersion relations 5, 7).

®This also seems to be at odds with the results of [H].

"More precisely, the inverse x-product between the operators a,a* (see remark EZ3)
was used. But since these operators already realize the x-product, the combined effect
amounts to the pointwise product.
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7 Summary

We developed twisted NCQFT by embedding it in the general context of
quantization of systems with twisted symmetries. We discussed two different
commutators. One of them fulfilled the usual algebraic properties but failed
to reproduce the usual commutation relations. The other one gave the usual
result when used on simple fields, but failed to do so for products of fields.
Furthermore, it did not fulfill the usual algebraic properties. We found
strong evidence for the statement that twisted NCQFT in a Hamiltonian
setting is only consistent if the Hamiltonian is translation invariant. Finally,
we showed that the choice of the interaction term and not the twisting is
responsible for the presence or absence of UV /IR-mixing.

These findings are rather discouraging. They indicate that twisted NC-
QFT is not flexible enough to derive meaningful new predictions. Further-
more, the problem of UV/IR-mixing and the distortion of dispersion rela-
tions (and thus violation of Lorentz invariance) is not solved, unless one uses
the point-wise product for the interaction.
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