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Statisti
al Opti
s approa
h to the design ofbeamlines for Syn
hrotron RadiationGianlu
a Geloni a Evgeni Saldin a Evgeni S
hneidmiller aMikhail Yurkov aaDeuts
hes Elektronen-Syn
hrotron (DESY), Hamburg, GermanyAbstra
tIn this paper we analyze the image formation problem for undulator radiationthrough an opti
al system, a

ounting for the in
uen
e of the ele
tron beam emit-tan
e. On the one hand, image formation with Syn
hrotron Radiation is governedby the laws of Statisti
al Opti
s. On the other hand, the widely used Gaussian-Shell model 
annot be applied to des
ribe the 
oheren
e properties of X-ray beamsfrom third generation Syn
hrotron Radiation sour
es. As a result, a more rigorousanalysis of 
oheren
e properties is required. We propose a te
hnique to expli
itly
al
ulate the 
ross-spe
tral density of an undulator sour
e, that we subsequentlypropagate through an opti
al imaging system. At �rst we fo
us on the 
ase of anideal lens with a non-limiting pupil aperture. Our theory, whi
h makes 
onsistent useof dimensionless analysis, also allows treatment and physi
al understanding of manyasymptotes of the parameter spa
e, together with their appli
ability region. Parti
-ular emphasis is given to the asymptoti
 situation when the horizontal emittan
e ismu
h larger than the radiation wavelength, whi
h is relevant for third generationSyn
hrotron Radiation sour
es. First prin
iple 
al
ulations of undulator radiation
hara
teristi
s (i.e. ten-dimensional integrals) are then redu
ed to one-dimensional
onvolutions of analyti
al fun
tions with universal fun
tions spe
i�
 for undulatorradiation sour
es. We also 
onsider the imaging problem for a non-ideal lens in pres-en
e of aberrations and a limiting pupil aperture, whi
h in
reases the dimension ofthe 
onvolution from one to three. In parti
ular we give emphasis to 
ases when theintensity at the observation plane 
an be presented as a 
onvolution of an impulseresponse fun
tion and the intensity from an ideal lens. Our results may be used inpra
ti
al 
ases as well as in ben
hmarks for numeri
al methods.Key words:X-ray beams, Undulator radiation, Transverse 
oheren
e, Image formation,Emittan
e e�e
tsPACS: 41.60.m, 41.60.Ap, 41.50 + h, 42.50.ArPreprint submitted to Elsevier S
ien
e 31 Mar
h 2006
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1 Introdu
tionThe majority of experiments based on the use of X-rays are 
arried out at Syn-
hrotron Radiation fa
ilities, as very high brillian
e is a
hievable by means ofundulator devi
es installed in storage rings. Guiding the photons from the exitof an undulator to the spe
imen position requires the development of opti
albeamlines whose main task is to re-image the undulator sour
e to any planeof interest. To deal with the image formation problem, one should a

ount forthe fa
t that Syn
hrotron Radiation 
onstitutes a random sto
hasti
 pro
ess.In fa
t, the shot noise in the ele
tron beam 
auses 
u
tuations of the ele
-tron beam 
urrent density. These 
u
tuations are random both in spa
e andtime. As a result, the radiation �eld produ
ed by the ele
tron beam 
an bedes
ribed in terms of a phasor with random amplitudes and phases and, in allgenerality, the laws of Statisti
al Opti
s must be applied to solve the imageformation problem. In this paper we study the image formation problem withundulator radiation beams based on Statisti
al Opti
s. In this framework,the basi
 quantity 
hara
terizing Syn
hrotron Radiation sour
es is the se
ondorder 
orrelation fun
tion of the �elds at two observation points on a giventransverse plane identi�ed by the 
oordinate zo along the opti
al beamline.On
e su
h a plane is �xed, the two points, P1 and P2, are fully 
hara
terizedby their transverse 
oordinates ~r?1 and ~r?2 respe
tively. Our presentation willbe given in the frequen
y domain. Due to the limited temporal resolution ofdete
tors in Syn
hrotron Radiation experiments, the analysis in frequen
y do-main is mu
h more natural than that in the time domain. As a 
onsequen
eof this 
hoi
e, and without restri
tive assumptions on the system, we studythe spatial 
orrelation between Fourier transforms of the ele
tri
 �eld 1 at a�xed frequen
y !, that is the 
ross-spe
tral densityG = D �E (zo; ~r?1; !) �E� (zo; ~r?2; !)E : (1)In Eq. (1) �E is the 
omplex amplitude of the Fourier transform of a givenCartesian 
omponent of the ele
tri
 �eld at the spa
e-frequen
y point (zo; ~r?; !),the asterisk denotes 
omplex 
onjugation, and bra
kets < ::: > indi
ate anensemble average over ele
tron bun
hes. Sin
e we study an ultra-relativisti
system, the paraxial approximation 
an always be enfor
ed so that, here, theele
tri
 �eld is understood to obey the paraxial wave equation [1℄. The 
ross-spe
tral density 
arries all information about the transverse 
hara
teristi
s ofundulator radiation. A fully general study of the 
ross-spe
tral density is not atrivial one. DiÆ
ulties arise when one tries to in
lude simultaneously the e�e
tof intrinsi
 divergen
e of the radiation, due to the presen
e of the undulator, of1 Sin
e our analysis deals with the ele
tri
 �eld in frequen
y domain, we will some-times refer to the "Fourier transform of the ele
tri
 �eld" simply as "the �eld",when this does not generate 
onfusion. 6



the ele
tron beam size and of the ele
tron beam divergen
e. In [2℄ a te
hniquewas des
ribed, based on Statisti
al Opti
s, to 
al
ulate the 
ross-spe
tral den-sity from undulator sour
es in the most general 
ase 2 , at any position afterthe undulator but still without opti
al elements (i.e. in free spa
e). Althoughself-
ontained, the present study relies on that work. Expressions from [2℄ willbe taken as a starting point to pro
eed along the opti
al beamline towardsthe spe
imen position.In general, as we will see, undulator radiation 
an be thought as originatingfrom an equivalent sour
e lo
alized on a transverse plane at a given longitudi-nal position. By de�nition, su
h sour
e has the following property: it produ
esa �eld whi
h 
oin
ides with that from the undulator at any distan
e from theexit of the undulator. In parti
ular, we lo
alize the equivalent sour
e in the
enter of the undulator, that will be 
onventionally taken as the beamlineorigin z = 0. Sin
e in this 
ase the equivalent sour
e does not reprodu
e thereal ele
tromagneti
 �eld distribution in the 
enter of the undulator, we referto it as virtual sour
e. Further on, throughout this paper we assume that thebeta fun
tions of the ele
tron beam have their minimal value in the 
enter ofthe undulator. By this, as we will see, the virtual sour
e exhibits parti
ularproperties whi
h simplify our treatment. On
e the 
on
ept of virtual sour
eis introdu
ed, the problem of des
ribing radiation 
hara
teristi
s at a 
ertainobservation plane after a given opti
al element is twofold. First, one has to
hara
terize the 
ross-spe
tral density at the virtual sour
e and, se
ond, onehas to propagate the 
ross-spe
tral density along the opti
al beamline to theobservation plane.Let us �rst 
onsider the problem of 
hara
terizing the sour
e. An importantsimpli�ed model whi
h admits an analyti
al des
ription without loss of essen-tial information about the sour
e features is obtained by letting both horizon-tal and verti
al ele
tron beam emittan
es be mu
h larger than the radiationwavelength (�x;y � �=(2�)). This is a good assumption for se
ond genera-tion Syn
hrotron Radiation sour
es. The kind of virtual sour
e obtained for�x;y � �=(2�) belongs to the wider 
lass of quasi-homogeneous ones. These are
hara
terized by the fa
t that the 
ross-spe
tral density at the virtual sour
eplane (i.e. at z = 0) 
an be written as:G(~r?1; ~r?2; !) = I (~r?1; !) g(~r?2 � ~r?1; !) ; (2)whereI (~r?1; !) = DjE (~r?1; !)j2E (3)2 With the point of view of the sour
e parameters.7



is the �eld intensity distribution and g(~r?2 � ~r?1; !) is the spe
tral degreeof 
oheren
e (normalized, by de�nition, so that g(0; !) = 1). The de�nitionof quasi-homogeneity amounts to a fa
torization of the 
ross-spe
tral densityas the produ
t of the �eld intensity distribution and the spe
tral degree of
oheren
e, whi
h 
ontains information about the spatial 
orrelation. A set ofne
essary and suÆ
ient 
onditions for su
h fa
torization to be possible follows:(a) the radiation intensity at the virtual sour
e varies very slowly with theposition a
ross the sour
e on the s
ale of the �eld 
orrelation length and (b)the spe
tral degree of 
oheren
e depends on the positions a
ross the sour
eonly through the di�eren
e ~r?2 � ~r?1.There are situations when the Statisti
al Opti
s des
ription is not the onlyone possible. The asymptoti
 limit for large ele
tron beam emittan
es (�x;y ��=(2�)) is one of these. In this limit, the Statisti
al Opti
s des
ription ofthe sour
e 
oin
ides with the Geometri
al Opti
s (or Hamiltonian) des
rip-tion of the sour
e, where a photon-beam phase spa
e is de�ned and 
an bedes
ribed in terms of rays spe
i�ed by position-angle 
oordinates. In the Ge-ometri
al Opti
s approa
h, based on the un
ertainty prin
iple, only the ra-diation originating by a photon-beam phase spa
e area of order [�=(2�)℄2 isspatially 
oherent. When the emittan
e is mu
h larger than the wavelength,2��x;y=� � 1, the divergen
e of the ele
tron beam is mu
h larger than thedi�ra
tion angle of undulator radiation, and the transverse size of the ele
-tron beam is mu
h larger than the di�ra
tion size of undulator radiation. Asa result one 
an 
ompletely negle
t di�ra
tion e�e
ts, and the Geometri
alOpti
s approa
h 
an always be applied. Sin
e Geometri
al Opti
s des
ribes alimiting situation of Statisti
al Opti
s there must be a relation between thefundamental Geometri
al Opti
s quantity, the phase spa
e distribution, andthe fundamental Statisti
al Opti
s quantity, the 
ross-spe
tral density. It 
anbe shown [3℄ that the radiant intensity of the �eld generated in free spa
e by aquasi-homogeneous sour
e in the dire
tion of a unit ve
tor ~s 
an be expressedas I(~s; !) / �(~s; !) ; (4)�(~s; !) being the two-dimensional spatial Fourier transform of the degree oftransverse 
oheren
e g(~r?2 � ~r?1; !):�(~s; !) = Z g(~�0; !) exp �i!
 ~s � ~�0� d~�0 : (5)The expression for the phase spa
e distribution is given by the produ
t of theintensity distribution of the sour
e and the radiant intensity� (~s; ~r?) = I (~r?; !)I(~s; !) / I (~r?; !) � (~s; !) ; (6)8



where the variables (~r?; ~s) 
hara
terize a ray in phase spa
e. A 
omparisonbetween Eq. (6) and Eq. (2) shows that 
ross-spe
tral density and phase spa
edistribution 
ontain the same information in the limiting 
ase �x;y � �=(2�).In other words, if a sour
e has a large angular divergen
e (
ompared with thedi�ra
tion angle) and a large transverse size (
ompared with the di�ra
tionsize), one 
an 
ompletely negle
t di�ra
tion e�e
ts and treat the problem ofthe 
hara
terization of the sour
e by means of Geometri
al Opti
s 3 .Despite the previous dis
ussion, the possibilities of using Geometri
al Opti
sto des
ribe undulator sour
es are quite limited in many realisti
 situations.Appli
ations of Syn
hrotron Radiation make use of a very wide range of wave-lengths whi
h span over four order of magnitude, from 0:1�A to 103�A. For thirdgeneration light sour
es, either planned or in operation, the horizontal ele
tronbeam emittan
e �x = �x�x0 is of order of 1 � 3 nm. The verti
al emittan
e isgiven by �y = �y�y0 = ��x, � being the so 
alled 
oupling fa
tor. Typi
al valuesof � for third generation light sour
es are of order � � 0:01, 
orrespondingto verti
al emittan
es of order 0:1 � 0:3�A. These values are always near orwithin the di�ra
tion limit for wavelength ranges up to the hard X-rays in theverti
al dire
tion, and Geometri
al Opti
s des
riptions fail. In parti
ular, inthe VUV wavelength range, both verti
al and horizontal emittan
es are mu
hsmaller than the radiation wavelength (�x;y � �=(2�)). One re
overs, then,the perfe
tly 
oherent situation when the sour
e is di�ra
tion limited in bothhorizontal and verti
al dire
tions. This is another situation when the Statisti-
al Opti
s des
ription is not the only one possible. In this 
ase, deterministi
Wave Opti
s may be used as well. As the wavelength be
omes shorter, in thesoft X-ray range, one obtains �y � �=(2�), but �x � �=(2�). At wavelengthsof about 1�A the verti
al emittan
e rea
hes the same order of magnitude ofthe wavelength �y � �=(2�), while �x � �=(2�). Finally, in the hard X-rayregion, at a wavelength of about 0:1�A, both emittan
es are mu
h larger than3 Condition 2��x;y=�� 1 is suÆ
ient, but not ne
essary. In general, we 
annot saythat Geometri
al Opti
s is never appli
able for ele
tron beam emittan
es smallerthan the radiation wavelength �. We will treat this subje
t in a more extensivefashion in Se
tion 7. There we will see that there are situations when Geometri
alOpti
s 
an be applied to des
ribe the (virtual) sour
e even when the ele
tron beamemittan
e is smaller than �. We will �nd that a suÆ
ient (less restri
tive, butstill not ne
essary) 
ondition for the appli
ability of Geometri
al Opti
s to thedes
ription of a given undulator sour
e is that su
h sour
e 
an be 
hara
terized interms of a quasi-homogeneous virtual sour
e. Moreover, as it will also be dis
ussedin Se
tion 7, our 
omparison of the emittan
e with the radiation wavelength is doneunder the assumption that the ele
tron beam beta fun
tion is 
omparable with theradiation formation length at wavelength �. This is often, but not always, the 
asefor undulator sour
es, sin
e the radiation formation length is the undulator length,whi
h is at least a few meters. However, it is not the 
ase for bending magnetradiation. 9



the wavelength (�x;y � �=(2�)), and Geometri
al Opti
s 
an be used along-side Statisti
al Opti
s. It follows that, for third generation light sour
es, onlythe limiting 
ases for wavelengths around 100 nm and 0:1�A 
an be treated, re-spe
tively, my means of Wave Opti
s or Geometri
al Opti
s. The intermediatesituation 
an be treated in a rigorous way only with the help of Statisti
al Op-ti
s, whi
h in
ludes both Wave Opti
s and Geometri
al Opti
s as asymptoti

ases.Stri
tly related to the problem of sour
e 
hara
terization, but separate fromit, is the issue of propagating the photon beam through the opti
al beamlineto the observation plane. In the 
ase of quasi-homogeneous virtual sour
es,if di�ra
tion e�e
ts from the opti
al elements 
an be negle
ted, Geometri
alOpti
s 
an be taken advantage of. The virtual sour
e 
an be des
ribed interms of phase spa
e distribution, and intera
tions with opti
al media 
an be
onveniently modelled in terms of symple
ti
 transformations, very mu
h likeele
tron beams in storage rings opti
s. Several 
omputer 
odes (e.g. SHADOW[4℄), usually referred to as ray-tra
ing 
odes, have been developed and arestandard tools used to 
arry out Geometri
al Opti
s-based 
al
ulations. How-ever, this approa
h is not always possible as the virtual sour
e may not bequasi-homogeneous or di�ra
tion e�e
ts may not be negle
ted in the opti
albeamline. A rigorous analysis of the obje
t-image 
oheren
e relationship is offundamental importan
e in the 
ontext of several 
oheren
e-based te
hniqueslike 
u
tuation 
orrelation dynami
s, phase imaging, 
oherent X-ray di�ra
-tion and X-ray holography, whose development has been fostered by the high
ux of 
oherent X-rays provided by state-of-the-art third generation fa
ilities.It should be noted that, in the 
ase of partially 
oherent wavefronts, eventhe 
al
ulation of the intensity distribution at the spe
imen position shouldinvolve Statisti
al Opti
s te
hniques. In fa
t, to obtain the intensity at thespe
imen position as some opti
al element is present one �rst needs to tra
kthe 
ross-spe
tral density through the beamline i.e. one needs to study theevolution of the partially 
oherent wavefront.Computer 
odes have been written [5℄ in order to deal with beamline designin the 
ase of partially 
oherent radiation. These are devoted to the solu-tion of the image formation problem starting from �rst prin
iples. Resultsmay in fa
t be obtained using numeri
al te
hniques alone, starting from theLienard-Wie
hert expressions for the ele
tromagneti
 �eld and applying thede�nition of the �eld 
orrelation fun
tion without any analyti
al manipula-tion. Yet, a �rst-prin
iple 
al
ulation of the �eld 
orrelation fun
tion betweentwo generi
 points or, in parti
ular, 
al
ulation of the intensity at a singlepoint involves very 
ompli
ated and time-expensive numeri
al evaluations. Tobe spe
i�
, one needs to perform two integrations along the undulator devi
eand four integrations over the ele
tron-beam phase spa
e distribution to solvethe problem in free spa
e. Then, modelling the opti
al beamline as a single
onvergent lens, other four integrations are needed to 
hara
terize 
oheren
e10



properties on the image plane, for a total of ten integrations. The developmentof a universal 
ode for any experimental setup is then likely to be problemati
.A more 
onservative approa
h may suggest the use of 
omputer 
odes basedon some analyti
al manipulation of �rst prin
iple equations suited for spe-
i�
 experimental setups. From this viewpoint our most general expressionsmay be used as reliable basis for the development of numeri
al methods. Yet,
omputer 
odes 
an 
al
ulate properties for a given set of parameters, but
an hardly improve physi
al understanding, whi
h is parti
ularly importantin the stage of planning experiments. Our theory will allow treatment andphysi
al understanding of many asymptotes of the parameter spa
e and theirappli
ability region with the help of a 
onsistent use of dimensional analysis.In the most general asymptoti
 
ases treated here, this will allow to redu
e�rst prin
iple 
al
ulations (i.e. ten-dimensional integrals) to one-dimensional
onvolutions of analyti
al fun
tions with universal fun
tions spe
i�
 for theundulator sour
e 
ase, and still to retain a 
ertain degree of generality. It isalso worth to underline that our asymptoti
 results may also be used as aben
hmark for numeri
al methods.One of the main diÆ
ulties in applying a Statisti
al Opti
s approa
h to Syn-
hrotron Radiation sour
es stems from the fa
t that Statisti
al Opti
s hasprin
ipally developed in 
onne
tion with problems involving thermal light.Solutions to all these problems share approximations that allow major sim-pli�
ations, but are spe
i�
 of thermal sour
es only. For instan
e, thermalsour
es 
an be modelled as perfe
tly in
oherent, and the 
ross-spe
tral den-sity assumes the formG(~r?1; ~r?2; !) / I (~r?1; !) Æ (~r?2 � ~r?1) ; (7)where I is the sour
e intensity distribution and Æ is the two-dimensional Dira
Æ-fun
tion. However, there is a 
lose 
onne
tion between the state of 
oher-en
e of the sour
e and the angular distribution of the radiant intensity (seeEq. (4)). The physi
al interpretation of Eq. (7) is that the sour
e is 
orrelatedover the minimal possible distan
e (whi
h is of order of the wavelength). Thishas the 
onsequen
e that the radiant intensity is distributed over a solid angleof order 2�. This is 
orre
t for thermal sour
es, but is in 
ontradi
tion withthe fa
t that any Syn
hrotron Radiation sour
e is 
on�ned within a narrow
one in the forward dire
tion. The high dire
tionality of Syn
hrotron Radia-tion rules out the use of Eq. (7) as a model for Syn
hrotron Radiation sour
es.However, su
h high dire
tionality is not in 
ontrast with the poor 
oheren
ewhi
h 
hara
terizes the quasi-homogeneous limit. Quasi-homogeneous sour
esare only lo
ally 
oherent over a distan
e of many wavelengths but, by de�ni-tion of quasi-homogeneity, the linear dimension of the sour
e is mu
h largerthan the 
orrelation distan
e. Even though a quasi-homogeneous sour
e 
an bedes
ribed with Geometri
al Opti
s te
hniques, a 
oheren
e distan
e of many11



wavelengths rules out the use of Eq. (7) as a model for Syn
hrotron Radia-tion sour
es. A more pre
ise knowledge of the 
ross-spe
tral density (that isequivalent to the knowledge of the 
orre
t phase spa
e density) is ne
essary tosolve the image formation problem. For instan
e, suppose that a light sour
eis pla
ed at arbitrary distan
e in front of a lens. If the sour
e is perfe
tlyin
oherent (thermal light 
ase) the area of the light in
ident on the lens is al-ways the area of the lens. In the 
ase of Syn
hrotron Radiation sour
e though,su
h area may be smaller than the lens. Even in the limit for a large beamemittan
e (
ompared with the radiation wavelength), information about thesmall angular distribution must be printed in the wavefront at the exit of theundulator leading on
e more to the same 
on
lusion: Eq. (7) 
annot be usedin order to model Syn
hrotron Radiation sour
es. In [2℄ we treated, amongother 
ases, the asymptote for a large ele
tron beam size and divergen
e. Theexpression for the 
ross-spe
tral density of the sour
e in free spa
e simpli�esand a parti
ular quasi-homogeneous model 
an be given. In the same work,we spe
i�ed also the region of appli
ability of su
h model, and we showedthat it 
annot be applied outside the limit for a large ele
tron beam size anddivergen
e.In relation with these remarks it should be mentioned that an attempt to fol-low the path proposed in this paper is des
ribed in [6℄. To our knowledge, [6℄
onstitutes the �rst remarkable attempt to use Statisti
al Opti
s te
hniques inorder to 
hara
terize the evolution of partially 
oherent X-ray beams throughopti
al systems. In that work, as well as in [7℄, the beamline opti
s from theundulator to the spe
imen 
an be modelled as a 
riti
al illumination system[8℄, the beamline behaving as the 
ondenser. After this, Statisti
al Opti
ste
hniques are 
onsistently used to 
al
ulate 
oherent properties on the im-age plane. However, the authors of [6℄ redu
ed the general ten-dimensionalintegrals to four-dimensional integrals by postulating that the 
ross-spe
traldensity distribution at the exit of the undulator 
an be written as Eq. (7), i.e.a perfe
tly in
oherent sour
e is assumed at the exit of the undulator. As wehave just seen though, this assumption is always in
onsistent in the 
ase ofSyn
hrotron Radiation, even in the Geometri
al Opti
s limit and, a fortiori,in the 
ase treated by the authors (the undulator beamline 12 at ALS), where�y ' 0:1�=(2�) and �x ' 3�=(2�), whi
h is highly spatially 
oherent.We organize our work as follows. Besides this Introdu
tion, in Se
tion 2 wedes
ribe the opti
al system under study and some 
on
epts from Statisti
alOpti
s that will be widely used in the following Se
tions. In Se
tion 3 wereview some general expressions pertaining undulator radiation from a singleparti
le. In parti
ular, following [2℄ we present an analyti
al expression for theFourier transform of the ele
tri
 �eld generated by a single ele
tron with o�setand de
e
tion whi
h is valid at any distan
e from the exit of the undulator. Wealso present the analyti
al solution of the imaging problem for a deterministi
model of undulator radiation (absen
e of ele
tron beam emittan
e). In Se
tion12



4 we give a derivation of the 
ross-spe
tral density for undulator radiationbased sour
es. Subsequently we analyze the evolution of the 
ross-spe
traldensity fun
tion through the opti
al system with parti
ular attention to thefo
al and to the image plane. The following two Se
tions 5 and 6 des
ribequasi-homogeneous sour
es, respe
tively Gaussian and non-Gaussian, in theideal 
ase when the lens is aberration-free and the pupil aperture is non-limiting. A digression is then taken in Se
tion 7, where we analyze in detailthe relation between Geometri
al Opti
s and quasi-homogeneous sour
es. Su
hSe
tion may therefore be skipped in a �rst reading, without interrupting themain logi
al stream of our work. The next Se
tion 8 des
ribes the e�e
ts ofa �nite aperture size on the radiation 
hara
teristi
s from quasi-homogeneoussour
es at the image plane, and is followed by Se
tion 9 that assumes a quasi-homogeneous sour
e as well and deals with the 
onsequen
es of lens aberrationon the intensity at the image plane. In Se
tion 10 we introdu
e a parti
ularsetup, a pinhole 
amera, 
apable of produ
ing images of the sour
es in theabsen
e of lenses. The study of this parti
ular setup is of parti
ular interestbe
ause it allows the reader to re
ognize mathemati
al analogies between 
asesotherwise physi
ally di�erent and serves as a jun
tion between the previousSe
tion 9 and Se
tion 11 treating physi
al 
ases when one obtains, surprisingly,the image of the sour
e on the fo
al plane. In the following Se
tion 12 weextend the treatment for the fo
al plane to any plane of interest. In Se
tion13 we dis
uss the depth of fo
us, in
luding the 
ase of a large non-limitingaperture and the e�e
ts of aperture size. In the next Se
tion 14 solutionsfor the image formation problem in non-homogeneous 
ases relevant for thirdgeneration Syn
hrotron Radiation sour
es are given. Before 
on
lusions, inSe
tion 15, we dis
uss the a

ura
y of quasi-homogenous sour
e asymptotes.Finally, in Se
tion 16, we 
ome to 
on
lusions.2 Elements and de�nitions of image formation theory2.1 Wave propagation in free spa
eLet us indi
ate with E?(z; ~r?; t) any �xed polarization 
omponent (along thedire
tion x or y) of the ele
tri
 �eld at time t 
al
ulated on a plane at positionz down the beamline at a 
ertain transverse lo
ation ~r?. E?(z; ~r?; t) obeys,in free spa
e, the homogeneous wave equation:
2r2E? � �2E?�t2 = 0 : (8)13



Let us now introdu
e the Fourier transform �E?(z; ~r?; !) of the ele
tri
 �eldE?(z; ~r?; t):�E?(!) = 1Z�1 dtE?(t)ei!t ; (9)so thatE?(t) = 12� 1Z�1 d! �E?(!)e�i!t : (10)As already remarked in footnote 1, we will sometimes refer to �E? as "the�eld", understanding that we are working in the frequen
y domain.Let us 
onsider the �eld propagation problem. To this purpose, we �rst intro-du
e the 
omplex envelope of the �eld:eE = �E? exp[�i!z=
℄ : (11)It is always possible to give su
h a de�nition. However, its utility is restri
tedto the 
ase when ~E is a slowly varying fun
tion of z with respe
t to theradiation wavelength �. When the paraxial approximation is appli
able (i.e.always, for Syn
hrotron Radiation sour
es), this 
ondition is ful�lled [1℄.In paraxial approximation and in free spa
e, the following paraboli
 equationholds for the 
omplex envelope eE of the Fourier transform of the ele
tri
 �eldalong a �xed polarization 
omponent: r?2 + 2i!
 ��z! eE = 0 : (12)The derivatives in the Lapla
ian operator r?2 are taken with respe
t to thetransverse 
oordinates. One has to solve Eq. (12) with a given initial 
onditionat z, whi
h is a Cau
hy problem. Indi
ating with ~ro the transverse 
oordinateof an observation point on a plane at longitudinal position zo we haveeE(zo; ~ro) = i!2�
(zo � z) Z d~r0 ~E(z; ~r0) exp264i! ���~ro � ~r0���22
(zo � z) 375 ; (13)where the integral is performed over the transverse plane.14



Next to the propagation equation for the �eld in free spa
e, Eq. (13), we 
andis
uss a propagation equation for the spatial Fourier transform of the �eld,whi
h 
an also be derived from Eq. (12) and will be useful in the followingparts of this work. We will indi
ate the spatial Fourier transform of ~E(z; ~r0)with F(z; ~u) 4 :F (z; ~u) = Z d~r0 ~E(z; ~r0) exp hi~r0 � ~ui : (14)Eq. (12) 
an be rewritten in terms of F as r?2 + 2i!
 ��z!�Z d~u F (z; ~u) exp [�i~r � ~u℄� = 0 : (15)Eq. (15) requires that � j~uj2 + 2i!
 ��z!F (z; ~u) = 0 : (16)Solution of Eq. (16) 
an be presented asF (z; ~u) = F (0; ~u) exp "�i
j~uj2z2! # : (17)It should be noted that the de�nition of F(0; ~u) is a matter of initial 
onditions.In many pra
ti
al 
ases, in
luding the totality of the situation treated in thispaper, F (or ~E) may have no dire
t physi
al meaning at z = 0. For instan
e, in4 For the sake of 
ompleteness we expli
itly write the de�nitions of the two-dimensional Fourier transform and inverse transform of a fun
tion g(~r) in agreementwith the notations used in this paper. The Fourier transform and inverse transformpair reads:~g(~k) = Z d~r g(~r) exp hi~r � ~ki ; g(~r) = 14�2 Z d~k ~g(~k) exp h�i~r � ~ki ;the integration being understood over the entire plane. If g is 
ir
ular symmetri
we 
an introdu
e the Fourier-Bessel transform and inverse transform pair:~g(k) = 2� 1Z0 dr rg(r)Jo(kr) ; g(r) = 12� 1Z0 dk k~g(k)Jo(kr) ;r and k indi
ating the modulus of the ve
tors ~r and ~k respe
tively, and Jo beingthe zero-th order Bessel fun
tion of the �rst kind.15



all 
ases 
onsidered in this paper, z = 0 is in the 
enter of the undulator, wellwithin the radiation formation length. However, F(0; ~u) 
an be 
onsidered asthe spatial Fourier transform of the �eld produ
ed by a virtual sour
e. Su
ha sour
e is de�ned by the fa
t that, supposedly pla
ed at z = 0, it wouldprodu
e, at any distan
e from the undulator, the same �eld as the real sour
edoes. The result in Eq. (17) is very general. On the one hand, the spatialFourier transform of the ele
tri
 �eld exhibits an almost trivial behavior inz, sin
e jF(z)j2 = 
onst. On the other hand, the behavior of the ele
tri
 �elditself is not trivial at all (see Se
tion 2.4 and Fig.s 3-6). These properties followdire
tly from the propagation equation for the �eld and its Fourier transform.Let us now dis
uss the physi
al meaning of Eq. (17). The spatial Fouriertransform of the �eld, F(z; ~u), may be interpreted as a superposition of planewaves (the so-
alled angular spe
trum). On
e the frequen
y ! is �xed, the wavenumber k = !=
 is �xed as well, and a given value of the transverse 
omponentof the wave ve
tor ~k? = ~u 
orresponds to a given angle of propagation of aplane wave. Di�erent propagation dire
tions 
orrespond to di�erent distan
estravelled to get to a 
ertain observation point. Therefore, they also 
orrespondto di�erent phase shifts, whi
h depend on the position along the z axis (see,for example, referen
e [9℄ Se
tion 3.7). Free spa
e basi
ally a
ts as a Fouriertransformation. This means that the �eld in the far zone is, phase fa
tor andproportionality fa
tor aside, the spatial Fourier transform of the �eld at anyposition z. To show this fa
t, we �rst re
all that if we know the �eld at a givenposition (z; ~r0) we may use Eq. (13) to 
al
ulate the �eld at another position(zo; ~ro) . Let us now 
onsider the limit zo �! 1, with �nite ratio ~ro=zo. Inthis 
ase, the exponential fun
tion in Eq. (13) 
an be expanded givingeE(zo; ~ro) = i!2�
zo Z d~r0 ~E(z; ~r0) exp "i!j~roj22
zo � i!(~ro � ~r0)
zo + i!zj~roj22
z2o # :(18)Letting ~� = ~ro=zo we haveeE(zo; ~ro) = i!2�
zo exp24i!j~�j22
 (zo + z)35F0�z;�!~�
 1A : (19)With the help of Eq. (17), Eq. (19) may be presented aseE(zo; ~ro) = i!2�
zo exp24i!j~�j22
 zo35F0�0;�!~�
 1A : (20)Eq. (20) shows what we wanted to demonstrate: free spa
e basi
ally a
ts as aFourier transformation. 16
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Fig. 1. Single lens imaging system with an undulator sour
e as obje
t.2.2 Image formation with 
oherent lightAs has been remarked in [6℄, any beamline opti
s used to re-image undulatorradiation to an observation plane of interest 
an be modelled as a 
riti
alillumination system [8℄. Therefore, the setup 
onsidered in this paper 
an besket
hed as in Fig. 1. It 
onsists of an undulator of length Lw 
entered atz = 0, a 
onvergent lens positioned at z = z1, 
hara
terized by a fo
usingstrength f , and a plane of observation at position z = z2. In prin
iple, z1, z2and f are unrelated parameters. However our main 
ase of interest is a 
riti
alillumination system. Therefore, a given sour
e plane at 
oordinate z = zs -the obje
t - is imaged at a parti
ular observation position z = z2, that de�nesthe image plane. Using Ray Opti
s we 
an 
al
ulate the distan
e z2 along theaxis behind the lens where the image is formed. This gives the well-knownlens-maker equation1f = 1z1 � zs + 1z2 � z1 : (21)The size of the image is magni�ed by a fa
tor jMj and a real image is invertedwith respe
t to the obje
t be
auseM = �z2 � z1z1 � zs < 0 ; (22)as expe
ted from Ray Opti
s. We also de�ne a s
ale fa
tor m, that is theinverse of the magni�
ation power jMj of the lens:m = 1jMj = z1 � zsz2 � z1 : (23)17



On
e the lens position is �xed at z = z1, the position zs of the sour
e is amatter of 
hoi
e. Su
h a 
hoi
e �xes the position zi = z2 of the image planein agreement with Eq. (21). For instan
e, with [6℄ and [7℄, one may set the
riti
al illumination system to image the radiation at the undulator exit, inwhi
h 
ase the 
hoi
e zs = Lw=2 is made. However, one is not obliged to do so.In parti
ular, in this paper, we will make the 
hoi
e zs = 0. Then, the 
riti
alillumination system images the 
enter of the undulator, in the sense that theimage plane zi = z2 obeys Eq. (21) with zs = 0.From a mathemati
al viewpoint, spe
ifying the sour
e is equivalent to �xingthe initial 
onditions for Maxwell equations in terms of a �eld distribution ona 
ertain transverse plane. When a 
ertain �eld distribution (in the frequen
ydomain) is �xed on a plane at position z, Maxwell equations automati
ally setthe way radiation propagates in free spa
e, and the sour
e is univo
ally de�ned.The 
hoi
e made in [6℄ and [7℄ 
orresponds to the 
hoi
e of a real sour
e.The denomination "real" is justi�ed by the fa
t that the initial 
ondition forMaxwell equations amounts to the spe
i�
ation of a �eld distribution whi
h isa
tually present, and in prin
iple measurable, at the exit of the undulator. Onthe 
ontrary, our 
hoi
e zs = 0 
orresponds to the position down the z-axisin the middle of the undulator, well within the radiation formation length.Although it makes sense to talk about the distribution of the ele
tromagneti
�eld in the middle of the undulator, it does not make any sense to identifysu
h distribution with the initial 
ondition for Maxwell equations, i.e. withthe sour
e. However, it makes sense to de�ne a virtual sour
e as in Se
tion2.1. There is a parti
ular reason for the 
hoi
e z = 0 as the position for thevirtual sour
e. In the 
ase of a 
oherent undulator sour
e (that is being treatedin the present Se
tion), the wavefront of the radiation at a virtual sour
elo
ated at z = 0 is plane. In other words, the far zone �eld from an undulatorhas spheri
al wavefronts 
entered in the middle of the undulator. This fa
talone makes the 
enter of the undulator a privileged point with respe
t toothers. Moreover, in the more general 
ase of partially 
oherent radiation wewill assume (as it is often veri�ed in pra
ti
e) that the beta fun
tions of theele
tron beam have their minima (in both horizontal and verti
al dire
tions)in the 
enter of the undulator. Subje
t to this assumption, as we will see, the
enter of the undulator 
onstitutes a privileged point of interest in this 
aseas well. As a result of the previous dis
ussion we setzs = 0 : (24)Let us assume that the position z1 and the fo
al length f of the lens areset. Throughout this paper we will be parti
ularly interested in the radiation
hara
teristi
s at two privileged positions down the beamline:� the image plane, at position z2 identi�ed by Eq. (21).� the fo
al plane, at position z2 identi�ed by the equation z2 � z1 = f .18



As it will be seen in the next Se
tions, both image and fo
al planes havespe
ial properties that 
an be expressed in terms of Fourier Opti
s. Theseproperties are valid for any wavefront. We will �rst take advantage of them inSe
tion 3, where we will deal with wavefronts generated by an ele
tron beamwith zero emittan
e and further on in Se
tion 4, where emittan
e e�e
ts willbe dis
ussed in the realm of Statisti
al Opti
s. In the present Se
tion, afterhaving set the 
on�guration under study, we will limit ourselves to des
ribethese properties and to de�ne basi
 quantities to be used in the Statisti
alOpti
s formulation of the image formation problem.Consider the problem of mapping the plane immediately in front of the lensonto the plane at longitudinal position z2 > z1 behind the lens (see Fig. 1). Ifone knows ~E at position z = z1 immediately in front of the lens, one 
an alsoobtain the expression for ~E immediately behind the lens multiplying by thetransmission fun
tion:T �~r0� = P �~r0� exp264�i! ���~r0���22
f 375 : (25)For simpli
ity of notation we 
onsider here identi
al fo
al distan
es in thehorizontal and in the verti
al dire
tion, i.e. f = fx = fy. Results for more
ompli
ated opti
al systems (e.g. a 
ombination of 
ylindri
al mirrors) arefound substituting 
onsistently Eq. (25) with its straightforward generaliza-tion. We assume with [8℄ that the 
omplex pupil fun
tion P is zero outside thelens aperture. Its phase a

ounts for aberrations and its modulus may varyalong the lens to des
ribe apodizations: the simplest possible study 
ase is forjP j = 1 and arg (P ) = 0 within the lens aperture. A

ounting for Eq. (25), thepropagation equation for any �eld eE(z1; ~r0) immediately in front of the lens tothe point (z2; ~r2) on the observation plane behind the lens 
an be written as:~E(z2; ~r2) = i!2�
(z2 � z1) exp" i!j~r2j22
(z2 � z1)# Z d~r0 ( eE(z1; ~r0)P (~r0)� exp "i!
  12(z2 � z1) � 12f ! j~r0j2#) exp "� i!(~r2 � ~r0)
 (z2 � z1)# : (26)Sin
e Syn
hrotron Radiation is highly 
ollimated, it is pra
ti
ally relevantto dis
uss the 
ase when the area of the spot of the in
ident radiation issmall 
ompared with the area of the lens. It is also simpler and more naturalto start with this situation. Then, e�e
ts from a �nite pupil dimension 
anbe negle
ted. Note that this is not the 
ase for thermal sour
es: sin
e theseare emitting into a solid angle of 2� (they are perfe
tly in
oherent) the �nitepupil dimensions 
annot be ignored and result in the so-
alled vignetting e�e
t[8℄. Considering a perfe
t lens with no aberrations too, Eq. (26) assumes a19



parti
ularly simple form at the fo
al and on the image plane. Initially we will
onsider situations when the pupil presen
e 
an be negle
ted. Later on wedis
uss how to in
lude the e�e
ts due to the presen
e of the pupil.2.2.1 Large non-limiting apertureWe will now spe
ialize the result in Eq. (26) in the asymptote for a largenon-limiting aperture and in the 
ase of the fo
al and of the image plane. Letus denote with (zf ; ~rf) a point on the fo
al plane, and with (zi; ~ri) a point onthe image plane. From Eq. (26), on the fo
al plane we have~E(zf ; ~rf) = i!2�
f exp "i!j~rf j22
f # Z d~r0 eE(z1; ~r0) exp "�i!(~rf � ~r0)
f # : (27)With the help of Eq. (14) we 
an write Eq. (27) as~E(zf ; ~rf) = i!2�
f exp "i!j~rf j22
f #F z1;�!~rf
f ! : (28)Substitution of Eq. (17) in Eq. (28) gives~E(zf ; ~rf) = i!2�
f exp "i!j~rf j22
f # exp "�i!z1j~rf j22
f2 #F 0;�!~rf
f ! : (29)For the image plane, remembering that1f = 1z1 + 1zi � z1 (30)and thatdi = zi � z1 = z1m ; (31)we obtain, from Eq. (26)~E(zi; ~ri) = i!m2�
z1 exp "i!mj~rij22
z1 # Z d~r0 ( eE(z1; ~r0)exp "�i!j~r0j22
z1 #) exp"�i!m(~ri � ~r0)
z1 # : (32)20



On the image plane, a

ording to Eq. (32), we have to 
al
ulate the Fouriertransform of the produ
t of two fa
tors: exp [�i!j~r0j2=(2
z1)℄, representing thephase of a spheri
al wave in paraxial approximation, and eE(z1; ~r0). A dire
t
al
ulation shows that the Fourier transform of the phase fa
tor isZ d~r0 exp"�i!j~r0j22
z1 # exp "�i!m(~ri � ~r0)
z1 # = �4iz1 exp "im2!j~rij22
z1 # : (33)Sin
e the Fourier transform of a produ
t is equal to the 
onvolution of theFourier transforms of ea
h separate fa
tor, from Eq. (32) one obtains~E(zi; ~ri) = m4�2 exp" i!mj~rij22
z1 #� Z d~u F (z1; ~u) exp24i
z12!  �m!~ri
z1 � ~u!235 : (34)Substitution of Eq. (17) in Eq. (34) gives~E(zi; ~ri) = m4�2 exp" i!mj~rij22
z1 # exp "i!m2j~rij22
z1 #� Z d~u F(0; ~u) exp [im~ri � ~u℄ ; (35)that is~E(zi; ~ri) =mexp"i!mj~rij22
z1 # exp "i!m2j~rij22
z1 # ~E (0;�m~ri) : (36)The phase fa
tor in the Fourier transform of the ele
tri
 �eld, given in Eq.(17), 
an
els the quadrati
 phase fa
tor in j~uj2 in Eq. (34). Therefore, the
onvolution integral in Eq. (34) transforms to a Fourier integral. As a result,in the image plane we always obtain (aside for a s
aling and a net phase fa
tor)the inverted �eld distribution in the virtual sour
e plane. More in general, atany observation plane lo
ated at z = z2 behind the lens and the fo
al plane,one observes (aside, again, for a s
aling and a net phase fa
tor) the inverted�eld distribution on an obje
t plane lo
ated at z = zs, where zs satis�es thelens 
ondition Eq. (21).Eq. (29) and Eq. (36) are re
e
tions of well-known theorems of Fourier Opti
s.Negle
ting the e�e
ts from a �nite pupil dimension and assuming a perfe
tlens with no aberrations, the fo
al plane has the following property [9℄:21



� For any position of the obje
t in front of the lens, the �eld distribution(amplitude and phase) on the fo
al plane di�ers from the spatial Fouriertransform of the �eld distribution on the obje
t plane by a s
ale fa
tor�!=(
f) and a net phase fa
tor.At the image plane, instead, the following property applies [9℄:� For any position of the obje
t in front of the lens, the �eld distribution(amplitude and phase) on the image plane di�ers from the �eld distributionon the obje
t plane by a s
ale fa
tor �m and a net phase fa
tor 5 .These properties 
an be interpreted in terms of intensity distributions. The�rst tells that the intensity pro�le on the fo
al plane has the same shape ofthat on a distant plane and is obtained taking, essentially, the square modulusof the Fourier transform of the �eld on the obje
t plane. The se
ond tells thatthe intensity pro�le of the obje
t is inverted and magni�ed by the lens onthe image plane. For the image plane we just obtained, for perfe
tly 
oherentlight, the same result whi
h is obtained in Geometri
al Opti
s in the perfe
tlyin
oherent limit.2.2.2 E�e
t of aperture sizePupil e�e
ts are taken into a

ount, from a general standpoint, in Eq. (26).Eq. (26) takes a spe
i�
 form in the fo
al and in the image plane. One has~E(zf ; ~rf) = i!2�
f exp "i!j~rf j22
f # Z d~r0 eE(z1; ~r0)P (~r0) exp "�i!(~rf � ~r0)
f #(37)and ~E(zi; ~ri) = i!m2�
z1 exp "i!mj~rij22
z1 # Z d~r0 ( eE(z1; ~r0)P (~r0) exp "�i!j~r0j22
z1 #)� exp "�i!m(~ri � ~r0)
z1 # : (38)Eq. (37) and Eq. (38) are formal extensions of Eq. (27) and Eq. (32), respe
-tively. Use of the 
onvolution theorem on Eq. (37) and Eq. (38) allows to writeanalogous extensions of Eq. (29) and Eq. (36). To this purpose we de�ne5 The prefa
tor m(zi) is a 
onsequen
e of the 
onservation of the total energyasso
iated with the propagating �eld. 22



P(~u)= Z d~r0P (~r0) exp h�i~r0 � ~ui : (39)Then, indi
ating with ~EP the �eld in the presen
e of the pupil, on the fo
alplane we have~EP (zf ; ~rf )= exp "i!j~rf j22
f #� Z d~u P  !~rf
f � ~u! � exp "�i
f j~uj22! # ~E  zf ; 
f~u! ! (40)and on the image plane~EP (zi; ~ri)= exp "i!mj~rij22
z1 #� Z d~u P  !m~ri
z1 � ~u! � exp"�i
z1j~uj22!m # ~E  zi; 
z1~u!m ! : (41)One may apply the following mnemoni
 rule to in
lude the e�e
ts of the pupilin Eq. (29) or Eq. (36). First, divide Eq. (29) or Eq. (36) by the �rst phasefa
tor, 
orresponding to the phase fa
tor outside the integral sign in Eq. (26).Se
ond, 
onvolve with P. Third, put the phase fa
tor ba
k.It should be noted that, in the limit for large apertures, P 
an be substitutedby a Æ-Dira
 fun
tion in both Eq. (40) and Eq. (41). In this 
ase, from Eq. (40)we re
over ~EP (zf ; ~rf) = ~E(zf ; ~rf ), given in Eq. (29). Form Eq. (41) instead,we have ~EP (zi; ~ri) = ~E(zi; ~ri), given in Eq. (36).Unless parti
ular 
onditions are met, the phase fa
tors under the integral signsin Eq. (40) and Eq. (41) 
ompensate only partially the phase of ~E, whi
h 
anbe found in Eq. (29) and Eq. (36) respe
tively. This fa
t 
ompli
ates theevaluation of the 
onvolution integrals. Let us restri
t our attention to theimage plane. We 
an treat analyti
ally the 
ase when the phase fa
tors underintegral in Eq. (41) 
ompletely 
ompensate the phase fa
tor in Eq. (36), i.e.when we 
an negle
t the se
ond phase fa
tor in Eq. (36). This happens whenwe are in the far �eld limit. The far �eld limit of Eq. (36) 
an be obtainedby substitution of Eq. (20) in Eq. (32). After the inverse Fourier transform inEq. (32) is 
al
ulated one obtains~E(zi; ~ri) =mexp"i!mj~rij22
z1 # ~E (0;�m~ri) ; (42)that 
an also be obtained dire
tly from Eq. (36) negle
ting the se
ond phase23



fa
tor on the right hand side. This is possible when!m2j~rij22
z1 � 1 (43)for any point ~ri on the image pattern.Let us indi
ate with �i the 
hara
teristi
 size of the image. Condition (43) 
anbe interpreted as the following requirement for z1:z1 � !m2�2i
 : (44)Sin
e we are interested in the parametri
 dependen
e only, a fa
tor 2 has beennegle
ted in Eq. (44). From Eq. (36) follows that m�i is the 
hara
teristi
 sizeof the virtual sour
e. As su
h it is independent of the position of the lens andof the magni�
ation fa
tor jM j = m�1 as well. Condition (44) is often metin pra
ti
e and means that the radiation spot size on the lens, 
z1=(!m�i), ismu
h larger than the 
hara
teristi
 size of the virtual sour
e, m�i. Then, thelens is pla
ed in the far zone with respe
t to the virtual undulator sour
e byde�nition of far zone �z1=(2��o)� �o, �o being the sour
e size. We 
on
ludethat the 
ondition for the lens to be pla
ed in the far zone is equivalent tothe 
ondition that Eq. (36) 
an be redu
ed to Eq. (42). This result will be ofimportan
e in what follows. However, this kind of reasoning is only valid onthe image plane. On the fo
al plane the se
ond phase fa
tor in Eq. (29) followsdire
tly from the phase fa
tor in Eq. (17), that is related with the propagationof the angular spe
trum: in this 
ase one 
on
ludes that plane waves withdi�erent dire
tions of propagation lead to an in
reasing phase di�eren
e asthe distan
e z1 in
reases. Therefore, in the fo
al plane, some simpli�
ationmay be obtained in the near �eld only, as z1 is small enough that the phasedi�eren
e between di�erent plane wave 
omponents is negligible. We will notinvestigate this situation further. Going ba
k to the image plane one 
an seethat a term of the expansion of the phase fa
tor under the integral sign inEq. (34) 
an
els the phase fa
tor in Eq. (17). It follows that the se
ond phasefa
tor in Eq. (36) is not related with the propagation of the angular spe
trum.Therefore, in the far �eld region, when 
ondition (44) holds, we have thatthe pupil e�e
ts 
an be a

ounted for by means of a simpler 
onvolution. Inthe following parts of this paper we will restri
t to this parti
ular 
ase whentreating pupil e�e
ts. It is interesting to remark that pupil e�e
ts due to �nitepupil dimension are espe
ially important in the far region. In this limit theradiation spot size on the lens is mu
h larger than the size of the radiationspot at the virtual sour
e, and is often larger that the size of the pupil. In thenear �eld instead, the radiation spot size on the lens is of order of the radiationspot size at the virtual sour
e. Therefore, in this limit, one 
an negle
t e�e
ts24



from any �nite pupil aperture larger than the radiation spot size at the virtualsour
e.In 
on
lusion, expli
it substitution of Eq. (42) in Eq. (41) yields the followingfar �eld limit expression on the image plane:~EP (zi; ~ri)= exp "i!mj~rij22
z1 # Z d~u P  !m~ri
z1 � ~u! � ~E  0;�
z1~u! ! : (45)2.3 Propagation of partially 
oherent light in free spa
eLet us now 
onsider the sto
hasti
 nature of the Syn
hrotron Radiation �eldin general terms. Syn
hrotron Radiation is a Gaussian sto
hasti
 pro
ess. Ashas been dis
ussed in detail in referen
e [2℄, the ele
tromagneti
 signal atany position down the beamline is 
ompletely 
hara
terized, from a statisti
alviewpoint, by the knowledge of the se
ond order �eld 
orrelation fun
tion inspa
e-frequen
y domain�!(zo; ~ro1; ~ro2; !; !0) = D �E?(zo; ~ro1; !) �E�?(zo; ~ro2; !0)E : (46)In this paper, the averaging bra
kets h:::i will always indi
ate an ensembleaverage over bun
hes. As it will be better explained in the following Se
tion3, we will restri
t ourselves to the treatment of radiation from planar undu-lators in resonan
e with the fundamental harmoni
. Therefore we 
an negle
tverti
ally polarized radiation 
omponents and 
onsider �E as a s
alar quantity.The shot noise in the ele
tron beam is responsible for random 
u
tuations ofthe beam density, both in spa
e and time. As a result, the temporal Fouriertransform of the Syn
hrotron Radiation pulse at a �xed frequen
y and a �xedpoint in spa
e is a sum of a great many independent 
ontributions:�E?(zo; ~ro; !) = NXk=1 �Es?(~�k;~lk; zo; ~ro; !) exp (i!tk) ; (47)where N is the number of ele
trons in the bun
h. Here ~�k;~lk and tk are randomvariables des
ribing random angular dire
tion, position and arrival time of anele
tron at the referen
e position zo = 0. As has been demonstrated in [2℄,under the assumption - generally veri�ed for X-ray beams and third generationlight sour
es - that the radiation wavelengths of interest is mu
h shorter thanthe bun
h length we 
an write Eq. (46) as�!(zo; ~ro1; ~ro2; !; !0)=NF!(! � !0)25



�* �Es?(~�;~l; zo; ~ro1; !) �E�s?(~�;~l; zo; ~ro2; !0)+~�;~l ; (48)where F (!) is the Fourier transform of the bun
h longitudinal pro�le fun
tionFt(tk), that ishexp (i!tk)it = 1Z�1 dtkFt(tk)ei!tk = F!(!) : (49)Note that the ensemble average on the right hand side of Eq. (48) is done overthe produ
t of the ele
tri
 �eld produ
ed by the same ele
tron. In other wordsea
h ele
tron is 
orrelated only with itself.If the dependen
e of �Es? on ! and !0 is slow enough, so that �Es? does not varyappre
iably on the 
hara
teristi
 s
ale of F! we 
an substitute �E�s?(~�;~l; zo; ~ro2; !0)with �E�s?(~�;~l; zo; ~ro2; !) in Eq. (48) thus obtaining:�!(zo; ~ro1; ~ro2; !; !0) = NF!(! � !0)G(zo; ~ro1; ~ro2; !) (50)whereG(zo; ~ro1; ~ro2; !) = * �Es?(~�;~l; zo; ~ro1; !) �E�s?(~�;~l; zo; ~ro2; !)+~�;~l : (51)As has been shown in [2℄ this assumption is by no means a restri
tive one.From now on we will be 
on
erned with the 
al
ulation of the 
orrelation fun
-tion G(zo; ~ro1; ~ro2; !), while the 
orrelation in frequen
y (whi
h may be 
om-pli
ated by other fa
tors des
ribing, for instan
e, the presen
e of a mono
hro-mator) 
an be dealt with separately.On the one hand, the 
ross-spe
tral density as is de�ned in Eq. (51) in
ludesthe produ
t of �elds whi
h obey the free spa
e propagation relation Eq. (13).On the other hand, the averaging over random variables 
ommutes with alloperations involved in the 
al
ulation of the �eld propagation. More expli
itly,introdu
ing the notation ~E(zo) = O[ ~E(z)℄ as a short
ut for Eq. (13) one 
anwriteG(zo)= D �Es?(zo) �E�s?(zo)E = DO h �Es?(z)iO� h �E�s?(z)iE =O � O� hD �Es?(z) �E�s?(z)Ei = O �O� [G(z)℄ : (52)Note that O may represent, more in general, any linear operator.26



As a result, one 
an obtain a law for the propagation of the 
ross-spe
traldensity in free spa
e in analogy with Eq. (13) from position z to position zo:G(zo; ~ro1; ~ro2)= !24�2
2(zo � z)2 Z d~r01d~r02 G(z; ~r01; ~r02)� exp" i!2
(zo � z) ����~ro1 � ~r01���2 � ���~ro2 � ~r02���2�# ; (53)where the integral is performed in four dimensions. We may now pro
eed inparallel with Se
tion 2.1. In analogy with Eq. (14) let us �rst de�neG (z; ~u1; ~u2)= Z d~r01d~r02 G �z; ~r01; ~r02� exp hi �~u1 � ~r01 � ~u2 � ~r02�i : (54)Eq. (54) is a se
ond-order 
orrelation fun
tion between spatial Fourier trans-forms of the �eld. In the following, for simpli
ity, and with some abuse of lan-guage, we will denote G as the "Fourier transform of G". The spatial Fouriertransform of ~E depends on the position along the beamline through a phasefa
tor only. Moreover, as already said, the operation of ensemble average 
om-mutes with the operation of Fourier transform. It follows that also G dependson the position along the beamline through a phase fa
tor only. To be spe
i�
,the analogous of Eq. (17) is given byG (z; ~u1; ~u2) = G (0; ~u1; ~u2) exp �� i
2! �j~u1j2 � j~u2j2� z� : (55)Continuing in analogy with Se
tion 2.1 we �nd Eq. (20), whi
h relates thefar �eld expression for ~E(zo; ~ro) (in the limit zo �! 1 and for a �nite ratio~ro=zo) to the spatial Fourier transform F . We 
an take advantage of Eq. (20)to obtain, with the help of Eq. (51) and Eq. (54), a useful relation betweenthe 
ross-spe
tral density in the far �eld and the Fourier transform of G at thevirtual-sour
e position. In the limit zo �!1 and for �nite ratios ~�1 = ~ro1=zo,~�2 = ~ro2=zo we haveG (zo; ~ro1; ~ro2) = !24�2
2z2o exp �i!zo2
 ����~�1���2 � ���~�2���2��G 0�0;�!~�1
 ;�!~�2
 1A :(56)This expression will be very useful later on. In [2℄ we obtained an expli
itexpression for the 
ross-spe
tral density of the undulator sour
e in free spa
eat any distan
e from the undulator. In parti
ular we 
an 
al
ulate the 
ross-spe
tral density in the far �eld, whi
h assumes a simpli�ed form. Consequently,27



the use of Eq. (56) allows to 
al
ulate the Fourier transform of the 
ross-spe
tral density at the virtual-sour
e position. As a result we 
an 
hara
terizethe virtual sour
e and operate with it. Our starting point, here as in [2℄ isthe ele
tron beam in the undulator devi
e. In 
ontrast with this, previousliterature dealing with appli
ation of Statisti
al Opti
s to undulator radiationassumes a priori the validity of a postulated expression for the 
ross-spe
traldensity.2.4 Image formation with partially 
oherent lightIn analogy with Se
tion 2.2 we will now 
onsider the problem of propagatingthe 
ross-spe
tral density immediately in front of the lens through the opti
alsystem up to the s
reen at z = z2 behind the lens. Suppose that we knowG(z1) immediately in front of the lens. The 
ross spe
tral density immediatelybehind the lens, Gl(z1), is related to G(z1) byGl �z1; ~r01; ~r02� = G �z1; ~r01; ~r02�T �~r01�T � �~r02� ; (57)where the transmission fun
tion T is de�ned by Eq. (25). One 
an obtain alaw for the propagation of the 
ross-spe
tral density in free spa
e using Eq.(53), in agreement with [8℄, from position z1 immediately behind the lens tothe image plane at position z2, that isG(z2; ~r1; ~r2) = !24�2
2(z2 � z1)2 Z d~r01d~r02 Gl(z1; ~r01; ~r02)� exp " i!2
(z2 � z1) ����~r1 � ~r01���2 � ���~r2 � ~r02���2�# : (58)Substituting Eq. (57) in Eq. (58) and remembering Eq. (25) one �ndsG(z2; ~r1; ~r2) = !24�2
2(z2 � z1)2 Z d~r01d~r02 G �z1; ~r01; ~r02�P �~r01�P � �~r02�� exp " i!2
f ����~r02���2 � ���~r01���2�+ i!2
(z2 � z1) ����~r1 � ~r01���2� ���~r2 � ~r02���2�� : (59)Manipulation of the argument in the exponential fun
tion under integral allowsthe more suggestive representation 28



G(z2; ~r1; ~r2) = !24�2
2(z2 � z1)2 exp " i!2
(z2 � z1) �j~r1j2 � j~r2j2�#� Z d~r01d~r02 (G �z1; ~r01; ~r02�P �~r01�P � �~r02�� exp "i!
  12f � 12(z2 � z1)!����~r02���2 � ���~r01���2�#)� exp " i!
(z2 � z1) ��~r1 � ~r01 + ~r2 � ~r02�# ; (60)that is analogous to Eq. (26). The quantity in bra
kets f:::g is basi
ally Fourier-transformed. As mentioned before, similarities between the way G and ~Eevolve through the beamline have to be as
ribed to the fa
t that the averageover random variables 
ommutes with all other operations in the 
al
ulationof the 
ross-spe
tral density. As a result, the reason why Eq. (60) is basi
allya Fourier transformation is due to the parti
ular way ~E evolves.Similarly as has been explained above for the �elds, the image and the fo-
al plane are privileged planes for whi
h the 
ross-spe
tral density assumesparti
ularly simple forms, that 
an be found in terms of Fourier Opti
s.2.4.1 Large non-limiting apertureWe will now pro
eed in analogy with Se
tion 2.2.1. On the fo
al plane, simi-larly to Eq. (28) we haveG(zf ; ~r1f ; ~r2f)= !24�2
2f2 exp " i!2
f �j~r1f j2 � j~r2f j2�#�G  z1;�!~r1f
f ;�!~r2f
f ! ; (61)while using Eq. (55) we obtain, similarly to Eq. (29),G(zf ; ~r1f ; ~r2f)= !24�2
2f2 exp " i!2
f �j~r1f j2 � j~r2f j2�#� exp "� i!z12
f2 �j~r1f j2 � j~r2f j2�#G  0;�!~r1f
f ;�!~r2f
f ! :(62)In analogy with Eq. (32), for the image plane we 
an writeG(zi; ~r1i; ~r2)=� m!2�
z1�2 exp �i!m2
z1 �j~r1ij2 � j~r2ij2��29



� Z d~r01d~r02 G(z1; ~r01; ~r02) exp � i!2
z1 ����~r02���2 � ���~r01���2��� exp ��im!
z1 �~r1i � ~r01 � ~r2i � ~r02�� : (63)Using the 
onvolution theorem in analogy with Eq. (34) we obtainG(zi; ~r1i; ~r2i)=� m4�2�2 exp �i!m2
z1 �j~r1ij2 � j~r2ij2�� Z d~u d~v G (z1; ~u;~v)� exp8<:i
z12! 24 m!~r1i
z1 + ~u!2 �  m!~r2i
z1 + ~v!2359=; : (64)Finally, taking advantage of Eq. (55) we haveG(zi; ~r1i; ~r2i)=� m4�2�2 exp �i!m2
z1 �j~r1ij2 � j~r2ij2��� exp "im2!2
z1 �j~r1ij2 � j~r2ij2�#� Z d~u d~v G (0; ~u;~v) exp [im(~r1i � ~u� ~r2i � ~v)℄ ; (65)that 
an be rewritten as the analogous of Eq. (36):G(zi; ~r1i; ~r2i)=m2 exp �im!2
z1 �j~r1ij2 � j~r2ij2��� exp "im2!2
z1 �j~r1ij2 � j~r2ij2�#G (0;�m~r1i;�m~r2i) : (66)2.4.2 E�e
t of aperture sizeE�e
ts of aperture size 
an be in
luded in stri
t analogy with Se
tion 2.2.2.Similarly to Se
tion 2.2.2 the following mnemoni
 rule 
an be applied to in-
lude the e�e
ts of the pupil in Eq. (62) or Eq. (66). First, divide Eq. (62)or Eq. (66) by the �rst phase fa
tor, 
orresponding to the phase fa
tor out-side the integral sign in Eq. (60). Se
ond, 
onvolve twi
e with P and P�, Phaving already been de�ned in Eq. (39). Third, put the phase fa
tor ba
k.We will denote with GP the 
ross-spe
tral density in
luding the e�e
ts due tothe presen
e of the pupil. On the fo
al plane, in analogy with Eq. (40), oneobtains 30



GP (zf ; ~r1f ; ~r2f)= exp" i!2
f �j~r1f j2 � j~r2f j2�#� Z d~u d~v P  !~r1f
f � ~u!P�  !~r2f
f � ~v!� exp" i
f2! �j~vj2 � j~uj2�#G zf ; 
f~u! ; 
f~v! ! (67)while on the image plane, in analogy with Eq. (41), one hasGP (zi; ~r1i; ~r2i) = exp �im!2
z1 �j~r1ij2 � j~r2ij2��� Z d~u d~v P  !m~r1i
z1 � ~u!P�  !m~r2i
z1 � ~v!� exp � i
z12!m �j~vj2 � j~uj2��G zi; 
z1~u!m ; 
z1~v!m ! : (68)In the limit for large apertures, P and P� 
an be substituted by Æ-Dira
fun
tions in both Eq. (67) and Eq. (68). In this 
ase, from Eq. (67) we re
overGP (zf ; ~r1f ; ~r2f) = G(zf ; ~r1f ; ~r2f), that is given by Eq. (62). From Eq. (68)instead, we have GP (zi; ~r1i; ~r2i) = G(zi; ~r1i; ~r2i), that is given by Eq. (66).Similarly to the 
ase analyzed in Se
tion 2.2, unless parti
ular 
onditions aremet, the phase fa
tor under the integrals in Eq. (67) and Eq. (68) 
ompen-sate only partially the phase in Eq. (62) and Eq. (66). In the following wewill restri
t our attention to the image plane. In this 
ase, 
omplete phase
ompensation is a
hieved when the lens is in the far �eld.The far �eld limit of Eq. (66) 
an be obtained by substitution of Eq. (56) inEq. (63). After 
al
ulating the inverse transformation of Eq. (54) one obtains:G(zi; ~r1i; ~r2i)=m2 exp �im!2
z1 �j~r1ij2 � j~r2ij2��G (0;�m~r1i;�m~r2i) : (69)Eq. (69) 
an also be obtained dire
tly from Eq. (66) negle
ting the se
ondphase fa
tor on the right hand side, that is possible whenm2!2
z1 �j~r1ij2 � j~r2ij2�� 1 (70)for any pair of points (~r1i; ~r2i) on the image pattern. When the 
oheren
elength on the image plane is mu
h smaller than the 
hara
teristi
 size of theimage, 
ondition (70) 
onstitutes, similarly to 
ondition (43) before (that holdsin the 
ase of 
oherent light), the requirement to be satis�ed for the lens to31



be in the far zone. When 
ondition (70) is satis�ed, Eq. (69) holds instead ofEq. (66). As explained in Se
tion 2.2, in this paper we will study pupil e�e
tsonly under this assumption.Expli
it substitution of Eq. (69) in Eq. (68) yields, the following far �eld limitexpression:GP (zi; ~r1i; ~r2i) = exp �im!2
z1 �j~r1ij2 � j~r2ij2�� Z d~u d~v P  !m~r1i
z1 � ~u!�P� !m~r2i
z1 � ~v!G 0;�
z1~u! ;�
z1~v! ! ; (71)that is the analogous of Eq. (45) in Se
tion 2.2.2.3 Image formation with a perfe
tly 
oherent undulator sour
eIn order to give an expli
it expression for the 
ross-spe
tral density at posi-tion z2 we need to know an expli
it expression for the 
ross-spe
tral densityG(z1; ~r01; ~r02) immediately in front of the lens. This was the subje
t of our pre-vious work [2℄. In this and in the following Se
tions we will present the imageformation problem and its solution with the help of that referen
e. In parti
u-lar, in the present Se
tion 3 we will begin with the simpler deterministi
 
aseof zero ele
tron beam emittan
e. One may think of a �lament ele
tron beamor equivalently, as 
on
erns the 
ross-spe
tral density, of a single ele
tron. Wewill start negle
ting the presen
e of the pupil. At the end we will generalizeour results to a

ount for it. In the following parts of this paper we will thengeneralize the results obtained in the present Se
tion 3 to in
lude emittan
ee�e
ts, thus taking full advantage of the Statisti
al Opti
s formulation.Our starting point is an expression, derived in referen
e [2℄, for the 
omplexenvelope ~Es? of the Fourier transform of the ele
tri
 �eld produ
ed by a singleele
tron moving through a planar undulator at any distan
e from the exit ofthe undulator. That expression a

ounts for a given o�set and de
e
tion angleof the parti
le traje
tory with respe
t to the undulator axis. Referring to Fig.2 we found~Es?=�K!eAJJ
2
 Lw=2Z�Lw=2 dz0 1zo � z0� exp8><>:i264 C + ! j~�j22
 ! z0 + ! �~r?o �~l � ~�z0�22
(zo � z0) 3759>=>; : (72)32
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OFig. 2. Illustration of the undulator geometry and of the observation plane afterthe undulator.Here K is the undulator parameter, Lw, as before, is the undulator length,(�e) is the ele
tron 
harge and 
 is the relativisti
 Lorentz fa
tor. MoreoverAJJ = J0  K24 + 2K2!� J1  K24 + 2K2! ; (73)Jn being the Bessel fun
tion of the �rst kind of order n. Also,!o = 4�

2�w (1 +K2=2) (74)is the fundamental frequen
y of the undulator, �w being the undulator period.Finally,C = 2��w ! � !o!o (75)is the detuning parameter, whi
h a

ounts for small deviations in frequen
yfrom resonan
e.Eq. (72) is valid for frequen
ies about the fundamental harmoni
 !o. Thismeans that we are 
onsidering a large number of undulator periods Nw � 1and that we are looking at frequen
ies near the fundamental at angles withinthe main lobe of the dire
tivity diagram of the radiation. In this situationone 
an negle
t the verti
al y-polarization 
omponent of the �eld with ana

ura
y (4�Nw)�1. This 
onstitutes a great simpli�
ation of the problem. At33



any position of the observer, we may 
onsider the temporal Fourier transformof the ele
tri
 �eld as a 
omplex s
alar quantity 
orresponding to the survivingx-polarization 
omponent of the original ve
tor quantity. Moreover it shouldbe noted that, in deriving Eq. (72), we assumed that no in
uen
e of fo
usingis present inside the undulator. ~� and ~l are to be understood as de
e
tionangles and o�set of the ele
tron at the position z = 0.Let us introdu
e normalized units 6Ês? = � 
2
 ~Es?K!eAJJ ;~̂� = ~�s!Lw
 ;Ĉ = LwC = 2�Nw! � !o!o ;~̂r?o = ~r?os !Lw
 ;~̂l = ~ls !Lw
 ;ẑ = zLw : (76)As shown in Appendix B of [2℄, after some algebrai
 manipulation, Eq. (72)
an be rewritten in normalized units asÊs? = 1=2Z�1=2 dẑ0ẑo � ẑ0 exp8><>:i264�U + Ĉẑ0 + ẑoẑ02(ẑo � ẑ0) 0B�~̂� � ~̂l̂zo � ~̂�1CA23759>=>; ;(77)where~̂� = ~̂r?oẑo (78)6 The relation between Ês? and ~Es? in Eq. (76) di�ers from the analogous one inEq. (25) of referen
e [2℄ for a fa
tor ẑo = zo=Lw. The reason for this dis
repan
yis related to the di�erent subje
ts treated. In [2℄ we 
onsidered only the free spa
e
ase, while in this paper we extend our 
onsiderations to an opti
al element, thusintrodu
ing another privileged longitudinal position (the lens position) other thatthe observation plane. The de�nition of Ês? in [2℄ is no more a 
onvenient onehere and would lead to arti�
ial 
ompli
ations in the following parts of this paper.Therefore it has been slightly modi�ed as in Eq. (76). This leads to slight 
hanges(related with the fa
tor ẑo) in some of the following equations when 
ompared tothe analogous quantities in [2℄. 34



represents the observation angle and �U is given by�U = 0B�~̂� � ~̂l̂zo1CA2 ẑo2 : (79)Eq. (77) is of the formÊs? 0B�Ĉ; ẑo; ~̂� � ~̂l̂zo � ~̂�1CA = exp (i�U )S 264Ĉ; ẑo;0B�~̂� � ~̂l̂zo � ~̂�1CA2375 : (80)It is possible to show that the expression for the fun
tion S(�) redu
es to asin
(�) fun
tion as ẑo � 1 . In this limiting 
ase, the expression for the ele
tri
�eld from a single parti
le, Eq. (77), is simpli�ed toÊs? = exp (i�U) 1=2Z�1=2 dẑ0ẑo exp8><>:iẑ0 264Ĉ + 12 0B�~̂� � ~̂lx̂zo � ~̂�1CA23759>=>; : (81)Eq. (81) 
an be integrated analyti
ally givingÊs? = exp (i�U) 1̂zo sin
 Ĉ2 + �24 ! ; (82)where� = ~̂� � ~̂l̂zo � ~̂� (83)and where the sin
 fun
tion has been de�ned assin
(x) = sin(x)x : (84)For simpli
ity, in this paper we will restri
t our attention to the 
ase Ĉ = 0.In the parti
ular 
ase Ĉ = 0, the fun
tion S 
an be represented in terms ofthe exponential integral fun
tion Ei(�) asS �0; ẑo; �2� = exp(�iẑo�2=2) "Ei iẑ2o�2�1 + 2ẑo!� Ei iẑ2o�21 + 2ẑo!# : (85)35



0 2 4 6 8 10 12 14

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2
f( )

z
o
=1^

Fig. 3. Comparison between f(�) = sin
(�2=4) (solid line), the real (dashed line)and the imaginary (dash-dotted line) parts of f(�) = ẑoS(0; ẑo; �2) at ẑo = 1.It is interesting to study the behavior of the S fun
tion as the distan
e from theundulator 
enter ẑo in
reases. This gives an idea of how good the asymptoti
approximation of the S fun
tion for ẑo � 1 (that is a sin
 fun
tion) is. A 
om-parison between sin
(�2=4) and the real and imaginary parts of ẑoS(0; ẑo; �2)for ẑo = 1, ẑo = 2, ẑo = 5 and ẑo = 10 is given respe
tively in Fig. 3, Fig. 4,Fig. 5 and Fig. 6.When the ele
tron beam has zero emittan
e we are dealing with a perfe
tly
oherent wavefront. The evolution of the radiation wavefront through our op-ti
al system 
an be obtained with the help of Eq. (80). In the following we willstudy su
h evolution assuming Ĉ = 0, ~̂l = 0 and ~̂� = 0. These assumptionsmean that the radiation frequen
y is perfe
tly tuned to the fundamental fre-quen
y of the undulator and that the ele
tron beam is moving on the z axis.In this 
ase Eq. (82) des
ribes, in the far �eld region, a spheri
al wave withthe sour
e in the 
enter of the undulator. This remark allows one to 
onsiderthe undulator 
enter as a privileged point. In other words, the phase fa
tor inEq. (82) represents, in paraxial approximation, the phase di�eren
e (
hara
-terizing a spheri
al wave) between the point (x̂o; ŷo; ẑo) and the point (0; 0; ẑo)on the observation plane. 36
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Fig. 4. Comparison between f(�) = sin
(�2=4) (solid line), the real (dashed line)and the imaginary (dash-dotted line) parts of f(�) = ẑoS(0; ẑo; �2) at ẑo = 2.
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Fig. 5. Comparison between f(�) = sin
(�2=4) (solid line), the real (dashed line)and the imaginary (dash-dotted line) parts of f(�) = ẑoS(0; ẑo; �2) at ẑo = 5.37
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Fig. 6. Comparison between f(�) = sin
(�2=4) (solid line), the real (dashed line)and the imaginary (dash-dotted line) parts of f(�) = ẑoS(0; ẑo; �2) at ẑo = 10.3.1 Large non-limiting apertureWe will �rst study the 
ase when the pupil fun
tion 
an be negle
ted. Let usintrodu
e a normalized version of the spatial Fourier transform of the �eld,analogous to Eq. (14), that isF̂ �ẑ; ~̂u� = Z d~̂r0Ê �ẑ; ~̂r0� exp �i~̂r0 � ~̂u� : (86)The spatial Fourier transform F̂ �ẑ; ~̂u� 
an be 
al
ulated dire
tly from Eq. (77)(
ompare also with Eq. (184) of referen
e [2℄) and givesF̂ �ẑ; ~̂u� = �2�i sin
0B����~̂u���24 1CA exp264�i ���~̂u���2 ẑ2 375 : (87)Eq. (28) and Eq. (34) 
an be respe
tively rewritten in normalized units asÊ?(ẑf ; ~̂rf) = i2�f̂ exp24ij~̂rf j22f̂ 35F̂0�ẑ1;�~̂rf̂f 1A (88)and 38



Ê?(ẑi; ~ri)= m4�2 exp24imj~̂rij22ẑ1 35 Z d~̂u F̂ �ẑ1; ~̂u� exp264iẑ12 0��m~̂riẑ1 � ~̂u1A2375 ;(89)where f̂ = f=Lw. Substitution of Eq. (87) in Eq. (88) and in Eq. (89) yieldsresults respe
tively for the fo
al and the image plane. In the fo
al plane wehaveÊ?(ẑf ; ~̂rf) = 1̂f exp24ij~̂rf j22f̂ 35 exp24�iẑ1j~̂rf j22f̂2 35sin
0B����~̂rf ���24f̂2 1CA : (90)Note that the relative distribution of intensity in the fo
us reprodu
es theangular distribution of intensity in the far �eld, that isÎ (r̂f )= sin
20B����~̂rf ���24f̂2 1CA : (91)A plot of the universal fun
tion sin
2(�2=4) is given in Fig. 7. Note that all ex-pressions pertaining undulator radiation from a single ele
tron are azimuthalsymmetri
 but do not admit fa
torization in the produ
t of fun
tions sepa-rately depending on the x and the y 
oordinates. As we have shown in [2℄, theabsen
e of fa
torization leads to an in
uen
e of the presen
e of the horizontalemittan
e on the 
oherent properties of undulator radiation in the verti
aldire
tion. As a result, even in the 
ase of zero verti
al emittan
e one 
annothave perfe
t 
oheren
e in the verti
al dire
tion.For the image plane we obtain:Ê?(ẑi; ~̂ri)=�im2� exp24imj~̂rij22ẑ1 35 exp24im2j~̂rij22ẑ1 35� Z d~̂u sin
0B����~̂u���24 1CA exp him~̂ri � ~̂ui : (92)As already seen in Eq. (190) of [2℄ (Appendix C), the Fourier transform in Eq.(92) 
an be 
al
ulated in terms of a Fourier-Bessel transform:Z d~̂u sin
0B����~̂u���24 1CA exp him~̂ri � ~̂ui=2� 1Z0 du uJo �mj~̂riju� sin
 u24 !39
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 at perfe
t resonan
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=2� h� � 2Si �m2j~̂rij2�i : (93)Eq. (92) 
an now be written asÊ?(ẑi; ~̂ri)=�imexp24imj~̂rij22ẑ1 35 exp24im2j~̂rij22ẑ1 35 � h� � 2Si �m2j~̂rij2�i : (94)It is 
onvenient to introdu
e the following universal fun
tion normalized tounity:	(�) = 1�2 h� � 2Si ��2�i2 (95)The relative intensity on the image plane is related to the universal fun
tion	 through the s
aling fa
tor m:Î �j~̂rij�=	 �mj~̂rij� : (96)A plot of the universal fun
tion 	(�) is given in Fig. 8.Comparison of Eq. (94) with Eq. (36) allows one to 
on
lude that the equiva-lent sour
e for a single ele
tron moving on the z axis is a sour
e 
hara
terizedby a plane wavefront and an intensity distribution related to the universalfun
tion 	, that 
an be written asÊ?(0; ~̂r)=�i h� � 2Si �j~̂rj2�i : (97)By means of an inverse Fourier transformation it follows thatF̂ �0; ~̂u� = �2�i sin
0B����~̂u���24 1CA ; (98)in agreement with Eq. (87). Comparison of Eq. (97) with a normalized versionof Eq. (20) show that the phase of the �eld of the virtual sour
e is shifted of aquantity ��=2 with respe
t to the spheri
al wave in the far zone. Su
h phaseshift is the analogous of the Guoy phase shift in laser physi
s. A single ele
tronprodu
es a laser-like radiation beam that has a (virtual) waste mu
h largerthan the radiation wavelength lo
ated in the 
enter of the undulator.The intensity distribution from the most elementary undulator sour
e, i.e. theradiation from a single ele
tron (or, equivalently, from an ele
tron beam with41



zero emittan
e) was just des
ribed analyti
ally. Su
h analyti
al des
ription,Eq. (96), 
an immediately be applied in situations of pra
ti
al relevan
e. In[10, 11℄ a 
hara
terization of the verti
al emittan
e in Spring-8 is reported. Itis based on the measurement of the X-Ray beam 
oheren
e length in the farzone. The experiment was performed at the beamline BL29XU. Based on theassumption of validity of the van Cittert-Zernike theorem, it was found thatthe rms ele
tron beam size at the undulator 
enter (
orresponding to the min-imal value of the beta fun
tion) was sy ' 4:5 �m, and that the 
oupling fa
torbetween horizontal and verti
al emittan
e was down to the value � ' 0:12%,whi
h 
orresponds to an extremely small verti
al emittan
e �y = 3:6 pm�rad.A resolution limit of this method was also dis
ussed, based on numeri
al 
al-
ulations of the radiation size from a single ele
tron sp ' 1:6 �m at Ep = 14:41keV for the 4:5 m long undulator used in the experiment. The resolution limitof the measurement of sy was estimated to be about 1 �m.Based on Eq. (96), we 
an determine the virtual sour
e size of undulatorradiation from a single ele
tron. Let us 
onsider the 
ase when the singleele
tron is emitting photons at the fundamental harmoni
 with energy E =14:41 keV. The angular frequen
y of light os
illations is given, in this 
ase,by ! = 2:2 � 1019 Hz. For an undulator length Lw = 4:5 m, the normalizationfa
tor for the transverse size introdu
ed in Eq. (76), (Lw
=!)1=2, is about 8 �m.From Fig. 8 obtain the dimensionless Half Width Half Maximum (HWHM)radiation size from a single ele
tron (i.e. the HWHM width of the intensitydistribution at the virtual sour
e, lo
ated at the 
enter of the undulator). ThisHWHM dimensionless value is about 0:7. It follows that the HWHM value ofthe radiation spot size from a single ele
tron is about 0:7 � (
Lw=!)1=2 '6 �m. Therefore, the rms value sp ' 1:6 �m in [10, 11℄, whi
h was 
al
ulatednumeri
ally [12℄, is an underestimation of the 
orre
t value.Note that the HWHM radiation spot size from a single ele
tron is largerthan the rms ele
tron beam size sy ' 4:5 �m found by means of 
oheren
emeasurements. One 
on
ludes that the un
ertainty due to �nite resolution islarger than the measured ele
tron beam size. This suggests that the methodused in [10, 11℄ may be in
onsistent. Su
h in
onsisten
y may be tra
ed to thefa
t that authors of [10, 11℄ assume the validity of the van Cittert-Zerniketheorem in the verti
al dire
tion. If one assumes their result of a verti
alemittan
e �y ' 0:3�=(2�), it follows a posteriori that the van Cittert-Zerniketheorem 
ould not have been applied in �rst instan
e (in this experiment thevalue of the beta fun
tion was � ' Lw). Hen
e the in
onsisten
y of the methodfollows. Analysis of experimental results should have been based, instead, onthe study of transverse 
oheren
e for non-homogeneous undulator sour
es infree spa
e made in [2℄. 42



3.2 E�e
t of aperture sizeThe e�e
ts due to the presen
e of the pupil 
an be in
luded in the treatmentby means of a normalized version of Eq. (40) and Eq. (41) on the fo
al planeÊP (ẑf ; ~̂rf)= exp24ij~̂rf j22f̂ 35� Z d~̂u P̂ 0�~̂rf̂f � ~̂u1A � exp24�if̂j~̂uj22 35Ê? �ẑf ; f̂~̂u� ; (99)and on the image planeÊP (ẑi; ~̂ri)= exp24imj~̂rij22ẑ1 35� Z d~̂u P̂ 0�m~̂riẑ1 � ~̂u1A � exp24�iẑ1j~̂uj22m 35Ê? 0�zi; ẑ1~̂um 1A ; (100)wherêP(~̂u)= Z d~̂r0P (~̂r0) exp ��i~̂r0 � ~̂u� : (101)Eq. (100) is valid independently of the position of the lens. However, as ex-plained in Se
tion 2.2 and in Se
tion 2.4 we will limit ourselves to the 
asewhen the lens is in the far zone. From Eq. (96) we see that the 
hara
teristi
size of the sour
e is of order unity, be
ause 	 is a universal fun
tion. As aresult, the far �eld zone for a single parti
le is de�ned by the 
onditionẑ1 � 1 : (102)By substitution of Eq. (20) in Eq. (26), followed by use of the lens equationEq. (30) and normalization, one obtains an expression for the �eld valid in the
ase the lens is pla
ed in the far zone. Su
h expression is equivalent, in thatlimit, to Eq. (100). If the pupil fun
tion is not set to unity, we haveÊP (ẑi; ~̂ri)=� m4�2ẑ21 exp24imj~̂rij22ẑ1 35� Z d~̂r0 F̂ 0�0;� ~̂r0ẑ11AP �~̂r0� exp24�im(~̂ri � ~̂r0)ẑ1 35 :43



(103)Eq. (103) 
an also be obtained by substitution of Eq. (89) in Eq. (100) followedby appli
ation of the 
onvolution theorem.In the far �eld 
ase Eq. (100) (or Eq. (103)) 
an be more easily used to
al
ulate the e�e
ts of the pupil on the intensity. A natural example to studyis the 
ase of a lens with azimuthal symmetry and no aberrations. Consider apupil of radius a. After introdu
tion of the normalized pupil radius:â = as !Lw
 (104)we set the pupil fun
tion:P (~̂r)=8><>: 1 if j~̂rj < â0 otherwise . (105)Using the Fourier-Bessel transform one obtainsP̂(~̂u)= 2�âj~̂uj J1 �âj~̂uj� : (106)Substitution of Eq. (94) in Eq. (100) and use of the far zone assumption leadsto ÊP (ẑi; ~̂ri)=�2�imâexp24imj~̂rij22ẑ1 35� Z d~̂u ������m~̂riẑ1 � ~̂u�������1 J10�â ������m~̂riẑ1 � ~̂u������1A h� � 2Si �ẑ21j~̂uj2�i :(107)Eq. (107) is, essentially, the 
onvolution produ
t of the Fourier transform oftwo known fun
tions with 
ir
ular symmetry. Therefore, re
alling Eq. (93) andEq. (105), Eq. (107) 
an be written in terms of the following Fourier-Besseltransform:ÊP (ẑi; ~̂ri)=�i exp24imj~̂rij22ẑ1 35 â=ẑ1Z0 dû ûJ0 �mj~̂rijû� sin
 û24 ! : (108)44
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Fig. 9. Comparison between the relative intensity for a single ele
tron at the imageplane ÎP , Eq. (109), the universal fun
tion 	, Eq. (96), and the (Airy) di�ra
tionpattern from a 
ir
ular hole, Eq. (110), as a fun
tion of mr̂i. Here â=ẑ1 = 1.Eq. (108) 
an also be dire
tly obtained using the Fourier-Bessel integrationformula and Eq. (103). Eq. (108) 
orresponds to a relative intensityÎP �j~̂rij�= 14 "Si â24ẑ21!#�2 ������� â=ẑ1Z0 dû ûJ0 �mj~̂rijû� sin
 û24 !�������2 : (109)In the limit â=ẑ1 � 1 Eq. (108) gives ba
k Eq. (94) without the se
ond phasefa
tor, and Eq. (109) gives ba
k Eq. (96) as it should be.When â=ẑ1 � 1 the sin
(�) drops out of the integral in Eq. (109) giving thedi�ra
tion pattern from a 
ir
ular hole:ÎP �j~̂rij�= 4ẑ41â4 ������� â=ẑ1Z0 dû ûJ0 �mj~̂rijû��������2 = 4ẑ21â2m2j~̂rij2J21  âmr̂iẑ1 ! : (110)Further, analysis of Fig. 9 a
tually shows that Eq. (110) retains its validity45
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Fig. 10. Comparison between the relative intensity for a single ele
tron at the imageplane ÎP , Eq. (109), the universal fun
tion 	, Eq. (96), and the (Airy) di�ra
tionpattern from a 
ir
ular hole, Eq. (110), as a fun
tion of mr̂i. Here â=ẑ1 = 5.also for â=ẑ1 . 1.Comparisons between the relative intensity ÎP , Eq. (109), the universal fun
-tion 	, Eq. (96), and the di�ra
tion pattern from a 
ir
ular hole, Eq. (110),are plotted as a fun
tion of mr̂i in Fig. (9) for â=ẑ1 = 1, in Fig. (10) forâ=ẑ1 = 5 and in Fig. (11) for â=ẑ1 = 10.4 Image formation with partially 
oherent undulator sour
e4.1 Coheren
e properties of undulator sour
e in the presen
e of ele
tronbeam emittan
eIn the last Se
tion we dealt with the image formation problem in the 
ase of a�lament beam, i.e. when the ele
tron beam emittan
e is zero. In this Se
tionwe will generalize the previous results to the 
ase when the ele
tron beamhas �nite emittan
e. In this situation, methods from Statisti
al Opti
s must46
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Fig. 11. Comparison between the relative intensity for a single ele
tron at the imageplane ÎP , Eq. (109), the universal fun
tion 	, Eq. (96), and the (Airy) di�ra
tionpattern from a 
ir
ular hole, Eq. (110), as a fun
tion of mr̂i. Here â=ẑ1 = 10.be applied in order to solve the image formation problem. As dis
ussed be-fore, the 
ross-spe
tral density of an undulator sour
e must �rst be 
al
ulatedat the lens position and subsequently propagated through the lens and theforth
oming opti
al beamline up to the experimental plane.In [2℄ we proposed a method, based on Eq. (77), to 
al
ulate the 
ross-spe
traldensity from undulator sour
es at any position in free spa
e after the undula-tor. Let us follow [2℄ and use Eq. (77) to 
al
ulate the 
ross-spe
tral density.The 
ross-spe
tral density G is given, in dimensional units and as a fun
tionof dimensional variables, by Eq. (51). Sin
e the �eld in Eq. (77) is given innormalized units and as a fun
tion of normalized variables ẑo, ~̂�x;y and Ĉ,it is 
onvenient to introdu
e a version of G de�ned by means of the �eld innormalized unitsĜ(ẑo; ~̂�1; ~̂�2; Ĉ) =*Ês? 0B�Ĉ; ẑo; ~̂�1 � ~̂l̂zo � ~̂�1CA47



�Ê�s? 0B�Ĉ; ẑo; ~̂�2 � ~̂l̂zo � ~̂�1CA+~̂�;~̂l : (111)Transformation ofG in Eq. (51) to Ĝ (and vi
eversa) 
an be performed shiftingfrom dimensional to normalized variables and multiplying G by an inessentialfa
tor̂G =  
2
K!eAJJ !2G : (112)Substituting Eq. (80) in Eq. (111) we obtainĜ(ẑo; ~̂�1; ~̂�2; Ĉ) =*S 264Ĉ; ẑo;0B�~̂�1 � ~̂l̂zo � ~̂�1CA2375S� 264Ĉ; ẑo;0B�~̂�2 � ~̂l̂zo � ~̂�1CA2375� exp8><>:i2640B�~̂�1 � ~̂l̂zo1CA2 � 0B�~̂�2 � ~̂l̂zo1CA2375 ẑo2 9>=>;+~̂�;~̂l : (113)Expanding the exponent in the exponential fa
tor in the right hand side ofEq. (113), one 
an see that terms in l̂2x;y 
an
el out. Terms in �̂2x;y 
ontributefor a 
ommon fa
tor, and only linear terms in l̂x;y remain inside the ensembleaverage sign. Substitution of the ensemble average with integration over thebeam distribution fun
tion leads toĜ(ẑo; ~̂�1; ~̂�2; Ĉ) = exp "i ~̂�21 � ~̂�22! ẑo2 # Z d~̂�d~̂l F~̂�;~̂l �~̂�;~̂l�� exp �i(~̂�2 � ~̂�1) �~̂l�S 264Ĉ; ẑo;0B�~̂�1 � ~̂l̂zo � ~̂�1CA2375�S� 264Ĉ; ẑo;0B�~̂�2 � ~̂l̂zo � ~̂�1CA2375 : (114)Here integrals d~̂� and in d~̂l are to be intended as integrals over the entire planespanned by the ~̂� and ~̂l ve
tors. Eq. (114) is very general and 
an be used asa starting point for 
omputer simulations.We assume that the distribution in the horizontal and verti
al planes are not
orrelated, so that F~̂�;~̂l = F�̂x;l̂xF�̂y;l̂y. If the transverse phase-spa
e is spe
i�edat the virtual-sour
e position ẑo = 0 
orresponding to the minimal values ofthe beta fun
tions, we 
an write F�̂x;l̂x = F�̂xFl̂x and F�̂y;l̂y = F�̂yFl̂y with48



F�̂x(�̂x) = 1q2�D̂x exp � �̂2x2D̂x! ;F�̂y(�̂y) = 1q2�D̂y exp � �̂2y2D̂y! ;Fl̂x(l̂x) = 1q2�N̂x exp � l̂2x2N̂x! ;Fl̂y(l̂y) = 1q2�N̂y exp0�� l̂2y2N̂y1A : (115)From Eq. (76) and Eq. (78) it is possible to see thatD̂x;y = �2x0;y0!Lw
 (116)N̂x;y = �2x;y !
Lw (117)where �x;y and �x0;y0 are the rms transverse bun
h dimension and angularspread. Parameters N̂x;y will be indi
ated as the beam di�ra
tion parametersand are analogous to Fresnel numbers. They 
orrespond to the normalizedsquare of the ele
tron beam sizes. D̂x;y represent the normalized square ofthe ele
tron beam divergen
es instead. It is also 
onvenient to introdu
e thesquare of the apparent angular size of the ele
tron beam at the observer pointposition ẑo, that isÂx;y = N̂x;yẑ2o : (118)Substitution of relations (115) in Eq. (114) yields 7 at perfe
t resonan
e (Ĉ =0): Ĝ(ẑo; ~̂�1; ~̂�2)= exp"i ~̂�21 � ~̂�22! ẑo=2#4�2qD̂xD̂yN̂xN̂y 1Z�1 d�̂x exp � �̂2x2D̂x!7 In Eq. (119), for notational simpli
ity we substituted the proper notationĜ(ẑo; ~̂�1; ~̂�2; Ĉ) with the simpli�ed dependen
e Ĝ(ẑo; ~̂�1; ~̂�2). This is justi�ed be
ausewe will be treating the 
ase Ĉ = 0 only. Consistently, also S[ẑo; (~̂� �~̂l=ẑo � ~̂�)2℄ isto be understood as a short
ut notation for S[Ĉ; ẑo; (~̂� � ~̂l=ẑo � ~̂�)2℄ 
al
ulated atĈ = 0. 49



� 1Z�1 d�̂y exp � �̂2y2D̂y! 1Z�1 dl̂x exp � l̂2x2N̂x!� 1Z�1 dl̂y exp0�� l̂2y2N̂y1A exp �i(~̂�2 � ~̂�1) �~̂l��S 264ẑo;0B�~̂�1 � ~̂l̂zo � ~̂�1CA2375S� 264ẑo;0B�~̂�2 � ~̂l̂zo � ~̂�1CA2375 : (119)Let us now introdu
e 8��̂x = �̂x1 � �̂x22 ; ��x = �̂x1 + �̂x22 (120)and ��̂y = �̂y1 � �̂y22 ; ��y = �̂y1 + �̂y22 : (121)With this variables rede�nition we obtainĜ = Ĝ(ẑo; ��x; ��y;��̂x;��̂y) (122)and, expli
itly,Ĝ= exp hi2ẑo ���x��̂x + ��y��̂y�i4�2qD̂xD̂yN̂xN̂y 1Z�1 d�̂x exp � �̂2x2D̂x!� 1Z�1 d�̂y exp � �̂2y2D̂y! 1Z�1 dl̂x exp � l̂2x2N̂x!� 1Z�1 dl̂y exp0�� l̂2y2N̂y1A exp h�2i ���̂xl̂x +��̂y l̂y�i�S 24ẑo; ��x +��̂x � l̂x̂zo � �̂x!2 +  ��y +��̂y � l̂ŷzo � �̂y!235�S� 24ẑo; ��x ���̂x � l̂x̂zo � �̂x!2 +  ��y ���̂y � l̂ŷzo � �̂y!235 : (123)8 Note that the de�nition of ��̂x and ��̂y di�er for a fa
tor 2 and a sign withrespe
t to notations in [8, 9℄. 50



A double 
hange of variables �̂x;y �! �̂x;y + ��x;y followed by the substitutionl̂x;y=ẑo �! �̂x;y � �̂x;y and by analyti
al 
al
ulation of the integrals in d�̂x;yleads toĜ= 14�2qÂxD̂xÂyD̂y�exp hi2��xẑo��̂xi exp "� ��2x + 4Âxẑ2o��̂2xD̂x + 4iÂx��xẑo��̂x2(Âx + D̂x) #�exp hi2��yẑo��̂yi exp24� ��2y + 4Ây ẑ2o��̂2yD̂y + 4iÂy��y ẑo��̂y2(Ây + D̂y) 35� 1Z�1 d�̂x 1Z�1 d�̂y exp24� �̂2x + 2�̂x ���x + 2iÂxẑo��̂x�2(Âx + D̂x) 35� exp24� �̂2y + 2�̂y ���y + 2iÂyẑo��̂y�2(Ây + D̂y) 35�S�hẑo; (�̂x ���̂x)2 + (�̂y ���̂y)2i�S hẑo; (�̂x +��̂x)2 + (�̂y +��̂y)2i : (124)Eq. (124) is a valid expression for the 
ross-spe
tral density in free spa
eafter the undulator devi
e (i.e. for ẑo > 1=2) and 
an be used together withequations from (60) to (66).Let us now introdu
e the dimensionless version of Eq. (54) with the help of~�r = ẑo~�� and �~̂r = ẑo�~̂� 9 :9 A short digression about Eq. (125) is due here. As the reader may have noti
ed, Ĝ
oin
ides with the Fourier transform, done with respe
t to ~�r0, of the Wigner distri-bution �̂(ẑ;~�r;~�u) = R d�~̂r0 Ĝ(ẑ;~�r;�~̂r0) exp[2i(~�u��~̂r0)℄. The knowledge of the Wignerdistribution is mathemati
ally equivalent to the knowledge of Ĝ or Ĝ. A formalismbased on the Wigner distribution may be thus developed, whi
h is mathemati
allyequivalent to the one developed here. In the 
ase of quasi-homogeneous sour
es,the Wigner distribution amounts to Eq. (6), that is the phase spa
e distribution.Interpretations of su
h a fun
tion as a sort of generalized phase spa
e distribution inmore generi
 
ases for non-homogeneous sour
es have been proposed. However, thereis no pra
ti
al advantage in 
onsidering su
h an approa
h in our 
ase. Moreover,the Wigner distribution is a quantity that 
annot be dire
tly measured. Therefore,we prefer to use a formalism based on the 
ross-spe
tral density whi
h is a physi-
ally measurable quantity. The 
ross-spe
tral density may be dire
tly measured bymeans of Young's double pinhole interferometer, whereas the Wigner fun
tion is amathemati
al transformation of the 
ross-spe
tral density.51



Ĝ �ẑ; ~�u;�~̂u�= Z d~�r0 d�~̂r0 Ĝ �ẑ; ~�r0;�~̂r0� exp h2i �~�u ��~̂r0 +�~̂u � ~�r0�i :(125)Its inverse is given byĜ �ẑ;~�r;�~̂r�= 1(2�)4 Z d~�u0 d� ~̂u0�Ĝ �ẑ; ~�u0;� ~̂u0� exp h�2i �~�u0 ��~̂r +� ~̂u0 �~�r�i : (126)Similarly as before, we 
onsider 
oordinates ~�� = ~�r=ẑo and �~̂� = �~̂r=ẑo in thelimit ẑo �! 1 but for �nite ratios ~�� and �~̂�. The dimensionless version ofEq. (56) then reads:Ĝ�ẑo;~��;�~̂��= 14�2ẑ2o exp �2iẑo~�� ��~̂�� Ĝ �0;�~��;��~̂�� : (127)This result will be widely used in what follows. Moreover an analogous of Eq.(55) is:Ĝ �ẑ;~��;�~̂��= Ĝ �0;~��;�~̂�� exp ��i2ẑ~�� ��~̂�� : (128)This result means that, aside for a phase fa
tor, the spatial Fourier transformof the 
ross-
orrelation fun
tion, Ĝ, does not depend on ẑ, as it follows fromthe analogous property of the Fourier transform of the ele
tri
 �eld dis
ussedin Se
tion 2.Before pro
eeding, let us introdu
e the spe
tral degree of 
oheren
e g, whi
h
an be presented as a fun
tion of �r and �r̂:g �~�r;�~̂r� = Ĝ �~�r;�~̂r�����Ês? �~�r +�~̂r����2�1=2 ����Ês? �~�r ��~̂r����2�1=2 : (129)With referen
e to Fig. 12, the modulus of the spe
tral degree of 
oheren
e, jgj,mathemati
ally des
ribes the fringe visibility of the interferen
e pattern froma Young's double-pinhole interferometri
 measure. The phase of the spe
traldegree of 
oheren
e is related, instead, to the position of the fringes. The
ross-spe
tral density gives amplitude and position of the fringes. In general,the pro
ess may not be quasi-homogeneous. In this 
ase, the result of Young'sexperiment varies with ~�r. In this 
ase, the relation between the visibility V ofthe fringes and g(~�r;�~̂r) reads 52



V=|g| is the fringes visibility

fringes
z1 z2-z1

Fig. 12. Measurement of the 
ross-spe
tral density of an undulator sour
e. (a)Young's double-pinhole interferometer demonstrating the 
oheren
e properties ofundulator radiation. Radiation must be spe
trally �ltered by a mono
hromator ordete
tor (not shown in �gure). (b) In the quasi-homogeneous 
ase the fringe visibilityV of the resultant interferen
e pattern is equal to the absolute value of the spe
traldegree of 
oheren
e: V = jgj.V = 2����Ês? �~�r +�~̂r����2�1=2����Ês? �~�r ��~̂r����2�1=2����Ês? �~�r +�~̂r����2�+ ����Ês? �~�r ��~̂r����2� ���g �~�r;�~̂r���� : (130)In the quasi-homogeneous limit V �! ���g ��~̂r����.4.2 Large non-limiting apertureAs explained before we start negle
ting, at �rst, the e�e
ts from a �nite pupildimension, assuming a perfe
t lens with no aberrations. The imaging problemfor an ideal lens is solved on
e we �nd the 
ross-spe
tral density of the equiv-alent virtual sour
e for the undulator sour
e. On the fo
al plane we 
an writeEq. (62) in normalized units asĜ(ẑf ;~�rf ;�~̂rf )= 14�2f̂2 exp "2îf ~�rf ��~̂rf#53



� exp "�2iẑ1f̂2 ~�rf ��~̂rf# Ĝ 0�0;�~�rf̂f ;��~̂rff̂ 1A ; (131)while on the image plane, Eq. (66) in normalized units readsĜ(ẑi;~�ri;�~̂ri)=mexp �2imẑ1 ~�ri ��~̂ri�� exp "2im2ẑ1 ~�ri ��~̂ri# Ĝ �0;�m~�ri;�m�~̂ri� : (132)In all 
ases 
onsidered in this paper the position ẑ = 0 is well within the radi-ation formation length of the undulator. Therefore the 
ross-spe
tral densityĜ, 
al
ulated at ẑ = 0 has no dire
t physi
al meaning, and must be 
onsideredas a quantity 
hara
terizing the virtual sour
e only. From the de�nitions ofvirtual sour
e and 
ross-spe
tral density follows that the virtual sour
e pro-du
es not only the same �eld but also the same 
ross-spe
tral density of thereal undulator sour
e, at any distan
e from the exit of the undulator.In the present study 
ase of a radiation spot size smaller than the area of thelens and of a lens with no aberrations, Eq. (124) and Eq. (128), together withEq. (131) and Eq. (132), solve the problem of 
hara
terizing the 
ross-spe
traldensity on the fo
al plane (with the help of Eq. (131)) and on the image plane(with the help of Eq. (132)). The situation of a radiation spot size smallerthan the area of the lens is pra
ti
ally a
hievable for Syn
hrotron Radiationdue to its high dire
tionality. In this 
ase, vignetting e�e
ts are not present.However, even in this 
ase, in order to use Eq. (131) and Eq. (132) one mustfurther assume that aberrations 
an be negle
ted.4.3 E�e
t of aperture sizeA

ounting for the presen
e of the pupil, in analogy with Eq. (60) one has thefollowing normalized expression for the 
ross-spe
tral density on any observa-tion plane at position ẑ2 along the beamline behind the lens:Ĝ(ẑ2;~�r;�~̂r) = 14�2(ẑ2 � ẑ1)2 exp242i~�r ��~̂rẑ2 � ẑ1 35� Z d~�r0 d�~̂r0 (Ĝ�ẑ1; ~�r0;�~̂r0�P �~�r0 +�~̂r0�P � �~�r0 ��~̂r0�� exp "2i � 1̂f + 1ẑ2 � ẑ1! ~�r0 ��~̂r0#)54



� exp �� 2iẑ2 � ẑ1 �~�r ��~̂r0 + ~�r0 ��~̂r�� : (133)Let us 
onsider, more spe
i�
ally, the fo
al and the image plane. Results 
anbe obtained dire
tly from Eq. (133). Alternatively, in analogy with Eq. (67)and Eq. (68), one 
an use our previous results, Eq. (131) and Eq. (132), dividethem by the �rst phase fa
tor, 
onvolve them twi
e with P̂ and P̂� and, �nally,put the phase fa
tor ba
k. A normalized version of the 
ross-spe
tral densityĜP in
luding pupil e�e
ts at the fo
al is then found and 
an be written asĜP (ẑf ;~�rf ;�~̂rf )= exp"2îf ~�rf ��~̂rf#� Z d~�u d�~̂u exp h�2if̂~�u ��~̂ui Ĝ(ẑf ; f̂~�u; f̂�~̂u)�P̂ 24~�rf +�~̂rff̂ � ~�u��~̂u35 P̂� 24~�rf ��~̂rff̂ � ~�u+�~̂u35 ;(134)while on the image plane one obtainsĜP (ẑi;~�ri;�~̂ri) = exp �2imẑ1 ~�ri ��~̂ri� Z d~�u d�~̂u exp "�2iẑ1m ~�u ��~̂u#�Ĝ ẑi; ẑ1m~�u; ẑ1m�~̂u! P̂ �m̂z1 �~�ri +�~̂ri�� ~�u��~̂u��P̂� �m̂z1 �~�ri ��~̂ri�� ~�u+�~̂u� : (135)As said before, we will treat parti
ular situations in the image plane when thelens is in the far �eld. Using 
oordinates ~�ri and �~̂ri the analogous of 
ondition(70) reads2m2ẑ1 ~�ri ��~̂ri � 1 (136)for any pair of points on the image pattern.Expli
it substitution of Eq. (132) in Eq. (135) yields the following far �eldlimit expression, whi
h a

ounts for 
ondition (136):ĜP (ẑi;~�ri;�~̂ri) =mexp �2imẑ1 ~�ri ��~̂ri� Z d~�u d�~̂u Ĝ �0;�ẑ1~�u;�ẑ1�~̂u��P̂ �m̂z1 �~�ri +�~̂ri�� ~�u��~̂u�55



�P̂� �m̂z1 �~�ri ��~̂ri�� ~�u+�~̂u� : (137)Eq. (137) is in analogy with Eq. (71) and Eq. (45).5 Imaging of quasi-homogeneous Gaussian undulator sour
es bya lens with large non-limiting apertureIn this Se
tion we spe
ialize our dis
ussion to the parti
ular 
ase of quasi-homogeneous Gaussian undulator sour
es, assuming a lens with large non-limiting aperture and no aberrations. A Statisti
al Opti
s treatment is notthe only one possible in this parti
ular study 
ase. A Geometri
al Opti
sapproa
h 
an also be applied, pra
ti
ally 
onsisting in ray-tra
ing te
hniques.In this Se
tion we will 
onsider the image formation problem from a Statisti
alOpti
s viewpoint. In Se
tion 7 an analysis in terms of Geometri
al Opti
s willbe given, and agreement between these two methods will be demonstrated.From this point on, we will systemati
ally ignore unimportant pre-fa
tors ap-pearing in the expressions for the 
ross-spe
tral density. Moreover we willassume N̂x � 1 and D̂x � 1 whi
h is a reasonable approximation for thirdgeneration light sour
es in the X-ray region. We will show that this assump-tion leads to a major simpli�
ation: namely, horizontal and verti
al 
oordi-nates turn out to be fa
torized in the expression for the 
ross-spe
tral densityin free spa
e. As a 
onsequen
e, Eq. (131) and (132) 
an also be fa
torized inthe produ
t of a fa
tor depending on the horizontal 
oordinates and a fa
tordepending on the verti
al 
oordinates. These separate fa
tors will be obtainedfrom Eq. (131) and (132) substituting all ve
tor quantities with s
alar quan-tities (horizontal or verti
al 
omponents).5.1 Evolution of the 
ross-spe
tral density fun
tion in free spa
eEq. (124) is a valid expression for the 
ross-spe
tral density in free spa
e atperfe
t resonan
e, 
al
ulated under the only assumptions that the system isultra-relativisti
 (and, therefore, the paraxial approximation 
an be applied)and that the insertion devi
e is 
hara
terized by a large number of undulatorperiods. In this 
ase the resonan
e approximation is enfor
ed. Eq. (124) isquite generi
 and, with respe
t to �rst-prin
iple 
al
ulations, it involves the
omputation of a two-dimensional integral, whereas the most generi
 
al
ula-tions would require a total of six integrations, two over the undulator lengthand four over the ele
tron beam transverse phase spa
e (assuming that the
ross-
orrelation terms between di�erent ele
trons is negle
ted). From a 
om-putational viewpoint, the advantage of redu
ing the number of integration is56



obvious and it 
an be appre
iated even more after the 
ross-spe
tral density ispropagated through an opti
al system with limiting apertures, whi
h naturallyin
reases the dimensions of the integration to be performed.When N̂x � 1 and D̂x � 1 the 
ross-spe
tral in free spa
e, Eq. (124), 
an bewritten as the produ
t of fa
tors separately depending on the x and on the y
oordinate, as has been shown in [2℄. In fa
t, analyzing the exponential fa
toroutside the integral sign in Eq. (124) it is possible to see that the maximumvalue of ��̂2x is of order (Âx + D̂x)=(ÂxD̂xẑ2o)� 1, where we remember Âx =N̂2x=ẑ2o . As a result, ��̂x 
an be negle
ted inside the S fun
tions in Eq. (124).Moreover, sin
e D̂x � 1 one 
an also negle
t the exponential fa
tor in �̂2x +2�̂x��x inside the integral. This leads toĜ= exp hi2��xẑo��̂xi exp "� ��2x + 4Âxẑ2o��̂2xD̂x + 4iÂx��xẑo��̂x2(Âx + D̂x) #� exp hi2��y ẑo��̂yi exp24� ��2y + 4Ây ẑ2o��̂2yD̂y + 4iÂy ��yẑo��̂y2(Ây + D̂y) 35� 1Z�1 d�̂x exp "i�̂x2Âxẑo��̂xÂx + D̂x #� 1Z�1 d�̂y exp24� �̂2y + 2�̂y ���y + 2iÂy ẑo��̂y�2(Ây + D̂y) 35�S�hẑo; �̂2x + (�̂y ���̂y)2iShẑo; �̂2x + (�̂y +��̂y)2i : (138)Following the same reasoning in [2℄, we 
an also negle
t the phase fa
tor in �̂xunder the integral in d�̂x in Eq. (138). As a result, when N̂x � 1 and D̂x � 1horizontal and verti
al 
oordinates are fa
torized and we obtain the followingequation for Ĝ:Ĝ(ẑo; ��x; ��y;��̂x;��̂y) = Ĝx(ẑo; ��x;��̂x) Ĝy(ẑo; ��y;��̂y) ; (139)wherêGx = exp hi2��xẑo��̂xi exp "� ��2x + 4Âxẑ2o��̂2xD̂x + 4iÂx��xẑo��̂x2(Âx + D̂x) # (140)and Ĝy =exp hi2��yẑo��̂yi exp24� ��2y + 4Ây ẑ2o��̂2yD̂y + 4iÂy��y ẑo��̂y2(Ây + D̂y) 3557



� 1Z�1 d�̂y exp24� �̂2y + 2�̂y ���y + 2iÂyẑo��̂y�2(Ây + D̂y) 35� 1Z�1 d�̂xS�hẑo; �̂2x + (�̂y ���̂y)2iShẑo; �̂2x + (�̂y +��̂y)2i : (141)To begin our investigation of quasi-homogeneous sour
es we will 
onsider thelimit N̂ � 1 and D̂ � 1, when the photon-beam phase spa
e in a 
ertain(horizontal or both horizontal and verti
al) dire
tion is an exa
t repli
a of theele
tron-beam phase spa
e. Cal
ulations 
an be performed in one dimension,suppressing indexes x and y. In the 
ase of Se
ond Generation light sour
esthe results that we are going to derive 
onstitute a realisti
 des
ription of theradiation 
hara
teristi
s in both horizontal and verti
al dire
tions. Then, Eq.(141) 
oin
ides with Eq. (140).Let us present Eq. (140), i.e. the asymptoti
 expression for the 
ross-spe
traldensity in the limit N̂ � 1 and D̂ � 1, in terms of 
oordinates �r = ẑ�� and�r̂ = ẑ��̂. We haveĜ(ẑ; �r;�r̂)= exp "� �r22(Â+ D̂)ẑ2# exp "2i�r�r̂ẑ #� exp "�2i Â�r�r̂ẑ(Â+ D̂)# exp "�2ÂD̂(�r̂)2(Â+ D̂) # ; (142)wherêA = N̂̂z2 : (143)Note that here, depending on the situation, r may assume the meaning ofeither variable x or y.In the far �eld limit, when Â� D̂ one obtains the following limiting expressionof Eq. (142):Ĝ(ẑ; �r;�r̂)= exp "2i�r�r̂ẑ # exp "� �r22D̂ẑ2# exp h�2Â(�r̂)2i : (144)With the help of Eq. (144) and using Eq. (127) one 
an �nd the expressionfor Ĝ and Ĝ at the virtual sour
e position in the 
enter of the undulator. Inthe 
ase under study (N̂ � 1 and D̂ � 1) the virtual sour
e is a Gaussianquasi-homogeneous sour
e. Aside for unessential multipli
ation 
onstants wehave 58



Ĝ �0; ��;��̂�=exp h�2N̂��̂2i exp"� ��22D̂# : (145)Therefore, using Eq. (126) we also obtainĜ(0; �r;�r̂) = exp "� �r22N̂ # exp h�2D̂(�r̂)2i : (146)From Eq. (146) we 
on
lude that the intensity distribution of the virtual sour
eis a repli
a of the ele
tron beam density distribution at the position of minimalbeta fun
tion of the undulator (i.e. at the undulator 
enter). Moreover, in thisparti
ular study 
ase, if the position of the minimal beta fun
tion does not
oin
ide with the undulator 
enter, the virtual sour
e 
orresponding to thedes
ription in Eq. (146) is simply translated, and is always lo
ated at theposition where the beta fun
tion of the ele
tron beam is minimal.It should be noted that the far �eld limit Â � D̂ 
orresponds with the ap-pli
ability region of the van Cittert-Zernike theorem. In virtue of the vanCittert-Zernike theorem the modulus of the spe
tral degree of 
oheren
e inthe far �eld, i.e. exp[�2Â(�r̂)2℄ from Eq. (144), forms a Fourier pair with theintensity distribution of the virtual sour
e, i.e. exp[��r2=2N̂ ℄ from Eq. (146).In parti
ular one 
on
ludes that the rms width of the virtual sour
e is qN̂ ,as it 
an be seen dire
tly from Eq. (146). In our study 
ase for N̂ � 1 andD̂ � 1, su
h a relation between the rms width of the spe
tral degree of 
o-heren
e in the far �eld and the rms dimension of the virtual sour
e is also arelation between the rms width of the 
ross-spe
tral density fun
tion in thefar �eld and the rms dimension of the ele
tron beam at the plane of minimalbeta fun
tion in the 
enter of the undulator. In dimensional units one 
anwrite the value �
 of the rms width of the spe
tral degree of 
oheren
e g(�~̂r)in the far �eld as�
 = �z2�� ; (147)� being, as usual, the rms dimension of the ele
tron beam. These few last re-marks help to 
larify what is the size of the sour
e in the van Cittert-Zerniketheorem, that is far from being a trivial question. For instan
e, assume that thevan Cittert-Zernike theorem 
an be applied. Then, the rms ele
tron beam size
an be re
overed from the measurement of the transverse 
oheren
e length. Inthis regard, in [10℄ Se
tion V, one may �nd a statement a

ording to whi
hthe rms ele
tron beam size "is only the average value along the undulator" be-
ause "the beta fun
tion has a large variation along the undulator". However,as we have seen before, the 
on
ept of virtual sour
e does not require a smallvariation of the beta fun
tion. In the most general 
ase, any variation of the59



beta fun
tion does not a�e
t the virtual sour
e size and, in our 
ase of quasi-homogeneous Gaussian sour
e, the virtual sour
e size is also the transverse sizeof the ele
tron beam at the position where the beta fun
tion is minimal. An-other example dealing with the same issue is given in referen
e [13℄. This paper(as well as referen
e [10℄) reports experimental results. However, authors of[13℄ observe a disagreement between the ele
tron beam rms size re
onstru
tedfrom the van Cittert-Zernike theorem and beam diagnosti
s result of about afa
tor 2. They as
ribe this variation to the variation of the ele
tron beam sizealong the undulator. In footnote [25℄ of referen
e [13℄, one may read: "Thepre
ise shape and width of the x-ray intensity distribution in the sour
e planeare dire
tly 
onne
ted to the properties of the ele
tron beam. It would not besurprising if the limited depth of fo
us of the paraboli
ally shaped ele
tronbeta fun
tion in the undulator translates into a virtually enlarged x-ray sour
esize.". At �rst glan
e it looks like if the Syn
hrotron Radiation sour
e has a�nite longitudinal dimension. However, based on the previous dis
ussion we
on
lude that the virtual sour
e size is equal to the ele
tron beam size at thepoint where the beta fun
tions have their minimum and that it is not a�e
tedby variations of the beta fun
tion along the undulator. As a result, one shouldnot observe any virtually enlarged X-ray sour
e size be
ause of this reason.5.2 Evolution of the 
ross-spe
tral density fun
tion behind the lensIf we negle
t the e�e
t of the pupil in the parti
ular 
ase under examination(N̂ � 1 and D̂ � 1), it is possible to �nd an analyti
al expression for the
ross-spe
tral density for any observation plane, and not only for the fo
alor the image plane. This is due to the fa
t that, in this parti
ular 
ase, thevirtual sour
e is gaussian. In the most general 
ase instead, one has to makeuse of Eq. (133).As usual we will negle
t, at �rst, the e�e
t of the pupil fun
tion and group allthe phase terms in �r̂0�r0 in Eq. (133) with the help of the de�nitionQ̂ = 1̂z1 � Âẑ1(Â+ D̂) � 1̂f + 1ẑ2 � ẑ1 ; (148)wherêA = N̂̂z21 : (149)With this in mind, after substitution of Eq. (142) 
al
ulated at ẑ = ẑ1 in Eq.(133), one obtains 60



Ĝ(ẑ2; �r;�r̂) = exp "2i �r�r̂ẑ2 � ẑ1# exp "�2(Â+ D̂)ẑ21(�r̂)2(ẑ2 � ẑ1)2 #� exp8><>:� (Â+ D̂) h�r + 2iQ̂(Â+ D̂)ẑ21�r̂i2h2ÂD̂ + 2(Â+ D̂)2Q̂2ẑ21i (ẑ2 � ẑ1)29>=>; : (150)whi
h 
orresponds to a relative intensityÎ(ẑ2; �r)= exp8<:� (Â+ D̂)�r2h2ÂD̂ + 2(Â+ D̂)2Q2ẑ21i (ẑ2 � ẑ1)29=; : (151)and to a modulus of the spe
tral degree of transverse 
oheren
ejg(ẑ2; �r;�r̂)j= exp8<:� 2ÂD̂(Â+ D̂)ẑ21(�r̂)2hÂD̂ + (Â+ D̂)2Q̂2ẑ21i (ẑ2 � ẑ1)29=; : (152)Letting Q̂ = �Â=[ẑ1(Â+ D̂)℄ the reader 
an spe
ialize the results to the 
aseof the image plane. For Q̂ = 1̂=ẑ1 � Â=[ẑ1(Â + D̂)℄ one gets the results forthe fo
al plane. Also, the intensity and the modulus of the spe
tral degree of
oheren
e on the image plane 
an be obtained from those on the fo
al planeex
hanging Â with D̂. This symmetry 
an be explained in terms of Fouriertransforms. Phase fa
tors aside, the 
ross-spe
tral density on the image planeis equal to the 
ross-spe
tral density on the obje
t plane. The 
ross-spe
traldensity on the fo
al plane instead, is equal (phase fa
tors aside) to the Fouriertransform of the 
ross-spe
tral density on the obje
t plane.As we have seen, in the 
ase for a Gaussian ele
tron beam with N̂ � 1,D̂ � 1 and for a perfe
t lens with non-limiting aperture and no aberrations,the Gaussian approximation for the 
ross-spe
tral density at the virtual sour
ein Eq. (146) 
an be used, and the 
ross-spe
tral density in free spa
e at anyposition ẑ 
an be 
al
ulated with the help of Eq. (142). Then, Eq. (133) 
anbe simpli�ed to re
over both the intensity and the modulus of the spe
traldegree of 
oheren
e (Eq. (151) and Eq. (152) respe
tively), whi
h are Gaussianfun
tions for any value of ẑ2 and ẑ1. Even for quasi-homogeneous sour
esthough, there are a number of examples when it is diÆ
ult to obtain analyti
alresults from Eq. (133) for any value of ẑ2. Nevertheless it is possible to 
al
ulatethe 
ross-spe
tral density at the image plane and at the fo
al plane (for anyvalue of ẑ1) with the help of Eq. (131) and Eq. (132). This 
an be done relyingon the 
al
ulation of the 
ross-spe
tral density at the virtual-sour
e position(and its Fourier transform), whi
h allows further use of Eq. (131) and Eq.(132). We will �rst use Eq. (131) and Eq. (132) to deal with the 
ase that wejust dis
ussed when N̂ � 1 and D̂ � 1. This is not a simple repetition ofalready known results, be
ause the parti
ular way of reasoning used for the61



fo
al and the image plane, through Eq. (131) and Eq. (132), will be widelyused in the following parts of this paper too. The Statisti
al Opti
s method
onjugated to Fourier Opti
s results allows us to predi
t, by manipulationsof Eq. (142), the 
ross-spe
tral density (and, therefore, the intensity and theabsolute value of the spe
tral degree of 
oheren
e) on the fo
al and on theimage plane. In order to use Eq. (131) and Eq. (132) we must take advantageof the expressions for Ĝ and Ĝ at the virtual sour
e position, Eq. (145) andEq. (146) respe
tively.With the help of Eq. (131) and Eq. (145), on the fo
al plane we obtainĜ(ẑf ;~�rf ;�~̂rf )= exp "i2(f̂ � ẑ1)f̂2 �rf�r̂f# exp24�2N̂�r̂2ff̂2 35 exp "� �r2f2D̂f̂2 # :(153)For any value of ẑ1 we have a relative intensity on the fo
al plane given byÎ = exp"� �r2f2D̂f̂2# ; (154)while the modulus of the spe
tral degree of 
oheren
e (again, for any positionẑ1 of the lens 10 ) isjg (ẑf ; �rf ;�r̂f)j=exp24�2N̂�r̂2ff̂2 35 : (155)These results are intuitively sound. In Se
tion 2 we explained that we expe
tto �nd, on the fo
al plane, the spatial Fourier transform of the wavefront onthe obje
t plane (ex
ept for a phase and a proportionality fa
tor). Therefore,it is intuitive that the intensity on the fo
al plane must depend on the ele
tronbeam divergen
e only and that the modulus of the spe
tral degree of 
oheren
emust depend on the ele
tron beam size only. In fa
t, the ex
hange of roles ofN̂ and D̂ passing from the virtual sour
e plane to the the fo
al plane is relatedto the operation of Fourier transform. Also note that the Fourier transform ofthe �eld depends on ẑ1 through a phase fa
tor only, and free spa
e basi
allya
ts as a Fourier transform itself (see Se
tion 2): what we �nd on the fo
alplane in terms of intensity and modulus of the spe
tral degree of 
oheren
e we10Note that the modulus of the spe
tral degree of 
oheren
e in Eq. (155) is inde-pendent of �rf . However, the spe
tral degree of 
oheren
e depends on �rf through aphase fa
tor. This situation 
orresponds, a

ording to a de�nition given by us in [2℄,to a weakly quasi-homogeneous wavefront. This remark is valid for many expressionsof the modulus of the 
ross-spe
tral density given in this work.62



must also �nd in the far �eld after propagation in free spa
e. The reader may
he
k that, after substitution �rf=f̂ �! �� and �r̂f=f̂ �! ��̂, Eq. (154) andEq. (155) 
an be found from Eq. (54) and Eq. (61) in [2℄ in the limit ẑo � 1,whi
h des
ribe propagation in free spa
e, as it should be.A similar simpli�ed reasoning 
an be applied for the 
ross-spe
tral density onthe image plane. With the help of Eq. (132) and Eq. (146), des
ribing the
ross-spe
tral density of the virtual sour
e we obtain:Ĝ(ẑi; �ri;�r̂i) = exp "2im(m+ 1)�ri�r̂iẑ1 # exp "�m2�r2i2N̂ #� exp h�2D̂m2(�r̂i)2i : (156)The relative intensity on the image plane is given byÎ = exp"�m2�r2i2N̂ # ; (157)while the modulus of the spe
tral degree of 
oheren
e isjg (ẑi; �ri;�r̂i)j= exp h�2m2D̂(�r̂i)2i : (158)These results are very natural. By de�nition of image plane, when we image anobje
t with an ideal lens with a large non-limiting pupil aperture, we obtaina magni�ed version of the obje
t (virtual, in this 
ase).We remarked before that the intensity and the modulus of the spe
tral degreeof 
oheren
e on the image plane 
an be obtained from that on the fo
al planeex
hanging Â with D̂. This symmetry though is not evident from the expres-sions in Eq. (154), Eq. (157), Eq. (155) and Eq. (158): to display it one hasto express these equations in terms of ẑ2 and ẑ1.6 Imaging of quasi-homogeneous non-Gaussian undulator sour
esby a lens with large non-limiting apertureIn the previous Se
tion 5 we treated the 
ase for N̂ � 1 and D̂ � 1. Inthe present Se
tion 6 we will deal with other quasi-homogeneous 
ases, alwaysassuming N̂x � 1 and D̂x � 1. The quasi-homogeneous situations that remainto be treated under this assumption are for either N̂y � 1 or D̂y � 1. In fa
t,the situation for both N̂y � 1 and D̂y � 1 is automati
ally in
luded in Se
tion5. Moreover, in all quasi-homogeneous 
ases, the 
ross-spe
tral density in the63



horizontal dire
tion obeys Eq. (150). Therefore, we will fo
us our attention onthe 
ross-spe
tral density in the verti
al dire
tion only.6.1 Sour
e with non-Gaussian angular distribution in the verti
al dire
tionLet us use of our Statisti
al Opti
s approa
h to solve a somewhat 
ompli
atedimage formation problem. After assuming separability of the horizontal andverti
al dire
tions (N̂x � 1, D̂x � 1) we suppose that the ele
tron beam hasa verti
al transverse size mu
h larger than the di�ra
tion size, N̂y � 1, anda �nite divergen
e D̂y > 0. As usual, we will �rst negle
t the in
uen
e of thepupil fun
tion. The di�eren
e with respe
t to the 
ase treated in the previousSe
tion 5 is that Eq. (133) 
annot be expli
itly 
al
ulated for any value ofẑ1 and ẑ2. However, as said before, the Statisti
al Opti
s method 
onjugatedto Fourier Opti
s results allows us to predi
t, for any value of ẑ1, the 
ross-spe
tral density on the fo
al (ẑ2 = ẑf ) and on the image (ẑ2 = ẑi) plane bymeans of Eq. (131) and Eq. (132). In order to use these equations we must�rst 
al
ulate Ĝ and Ĝ at the virtual sour
e at position ẑo = 0. This 
an bedone taking the limit ẑ2o � N̂=D̂ of Eq. (141), i.e. 
al
ulating the far zonelimit of Eq. (141), and using Eq. (127). First, under the assumption N̂y � 1we 
an negle
t ��̂y in the S fun
tions in Eq. (141), thus obtaining the verti
al
ross-spe
tral density fun
tion in the far �eld limitĜ= exp hi2��yẑo��̂yi exp h�2N̂y��̂2yi 1Z�1 d�̂y exp "�(�̂y + ��y)22D̂y #ÎS(�̂y) ;(159)wherêIS(�̂y) = 38p� 1Z�1 d�̂x sin
2 h��̂2x + �̂2y� =4i (160)is a universal fun
tion related to undulator radiation. A plot of ÎS is given inFig. 13. Eq. (159), substituted into Eq. (127), gives the Fourier transform ofthe 
ross-spe
tral density at ẑo = 0, i.e. at the virtual-sour
e position:Ĝ (0; �u;�û)= exp h�2N̂y�û2i 1Z�1 d�̂y exp "�(�̂y + �u)22D̂y #ÎS(�̂y) : (161)64
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Fig. 13. The universal fun
tion ÎS , used to 
al
ulate the fo
al intensity of aquasi-homogeneous sour
e at N̂x � 1, D̂x � 1 and N̂y � 1.Inverse transforming Eq. (161) a

ording to the de�nition in Eq. (126), weobtain the 
ross spe
tral density at the virtual sour
e positionĜ(0; �y;�ŷ) = exp "� �y22N̂y # exp h�2D̂y�ŷ2i
(�ŷ) ; (162)where fun
tion 
(�ŷ) is an inverse Fourier transform, normalized to unity, ofÎS, de�ned as from Eq. (93) in [2℄:
(�ŷ) = 12�2 1Z�1 d�̂y exp hi (�2�ŷ) �̂yiÎS(�̂y) : (163)It has been shown in [2℄ that 
 
an be expressed in terms of the sine integralfun
tion Si(�) and of the 
osine integral fun
tion Ci(�). One has
(�ŷ) = 2� ��2 + 2�ŷ2Ci �2�ŷ2�� sin �2�ŷ2�� Si �2�ŷ2�� : (164)65



This means that 
 is a real fun
tion. Moreover, in Eq. (162), �ŷ and �y areseparated and, sin
e N̂y � 1, the typi
al 
orrelation length is mu
h smallerthan the radiation spot, independently of the value of D̂y. This shows thatEq. (162) models a quasi-homogeneous sour
e. From Eq. (131) and Eq. (161)we obtain the 
ross-spe
tral density on the fo
al planeĜ(ẑf ; �yf ;�ŷf)= exp " 2îf2 �f̂ � ẑ1� �yf�ŷf# exp24�2N̂y�ŷ2ff̂2 35� 1Z�1 d�̂y exp264���yf=f̂ + �̂y�22D̂y 375 ÎS(�̂y) : (165)The relative intensity on the fo
al plane is therefore given byÎ(ẑf ; �yf )= 1Z�1 d�̂y exp264���yf=f̂ + �̂y�22D̂y 375 ÎS(�̂y)�8<: 1Z�1 d�̂y exp24� �̂2y2D̂y 35 ÎS(�̂y)9=;�1 ; (166)while the modulus of the spe
tral degree of 
oheren
e readsjg(ẑf ; �yf ;�ŷf)j=exp24�2N̂y�ŷ2ff̂2 35 : (167)For the image plane, Eq. (132) and Eq. (162) give the following 
ross-spe
traldensity:Ĝ(ẑi; �yi;�ŷi)= exp "im(m+ 1)�yi�ŷi2ẑ1 #� exp "�m2�y2i2N̂y # exp h�2D̂ym2�ŷ2i i 
(m�ŷi) ; (168)
orresponding to a relative intensity on the image planeÎ(ẑi; �yi) = exp "�m2�y2i2N̂y # : (169)Eq. (169) is the (magni�ed) image of the ele
tron beam in the obje
t planeẑ = 0. The modulus of the spe
tral degree of 
oheren
e is:66
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ŷFig. 14. Absolute value of the universal fun
tion 
, used to 
al
ulate, on the imageplane, the spe
tral degree of 
oheren
e of a quasi-homogeneous undulator sour
ewhen N̂x � 1, D̂x � 1 and N̂y � 1.jg(ẑi; �yi;�ŷi)j= exp h�2D̂ym2�ŷ2i i j
(m�ŷi)j : (170)A plot of j
(�ŷ)j is given in Fig. 14.6.2 Sour
e with non-Gaussian intensity distribution in the verti
al dire
tionLet us now 
onsider the 
ase when D̂y � 1 and N̂y assumes arbitrary values.In this 
ase, Eq. (115) and Eq. (125) of [2℄ allow re
onstru
tion of the 
ross-spe
tral density in the far zone, that isĜ = exp h2i��y ẑo��̂yi exp h�2N̂y��̂2yi exp "� ��2y2D̂y # �(��̂y) ; (171)where the fun
tion �(�ŷ) is de�ned in Eq. (113) of [2℄ and reads:67



�(��̂y)= 12�2 1Z�1 d�̂y 1Z�1 d�̂x�sin
" �̂2x + (�̂y ���̂y)24 #sin
" �̂2x + (�̂y +��̂y)24 # : (172)Eq. (171) may be obtained dire
tly from Eq. (141) in the limit ẑ2o � N̂y=D̂y,i.e. in the far zone. Note that if N̂y=D̂y � 1 (N̂y . 1 is our main 
ase of interestsin
e we have already treated the 
ase when both N̂y � 1 and D̂y � 1) thefar zone begins already at the exit of the undulator, when ẑ1 � 1 (see also [2℄for details). Let us introdu
e, in analogy with Eq. (163) the following (inverse)Fourier transform of the fun
tion �:B̂(�y) = 1K 1Z�1 d�̂y exp hi(�2�y)�̂yi�(�̂y) : (173)Here K is the normalization fa
torK = 1Z�1 d�̂y�(�̂y) ' 2:200 ; (174)and has been 
al
ulated numeri
ally.Both �(��̂y) and B̂(�y) admit representations in terms of a one-dimensionalintegral (note that the representation for �(��̂y) has been already introdu
edin [2℄). In order to see this, let us �rst 
onsider the fun
tion:~f(��̂0x;��̂0y)= 12�2 1Z�1 d�̂y 1Z�1 d�̂x�sin
24(�̂x ���̂0x=2)2 + (�̂y ���̂0y=2)24 35�sin
24(�̂x +��̂0x=2)2 + (�̂y +��̂0y=2)24 35 : (175)The fun
tion ~f is 
ir
ularly symmetri
. This 
an be seen swit
hing to polar
oordinates:�̂x= r̂� 
os(�̂�)�̂y = r̂� sin(�̂�) (176)and 68



��̂0x=2= r̂� 
os(�̂�)��̂0y=2= r̂� sin(�̂�) : (177)Then, Eq. (175) 
an be rewritten as~f(r̂�) = 12�2 1Z0 dr̂� 2�Z0 d�̂��sin
" r̂2� + r̂2� � 2r̂�r̂� 
os (�̂� � �̂�)4 #�sin
" r̂2� + r̂2� + 2r̂�r̂� 
os (�̂� � �̂�)4 # ; (178)whi
h does not depend on �̂�, as 
an be seen swit
hing to the integrationvariable �̂0 = �̂� � �̂�. The following relation follows:�(��y) = ~f (��̂0x;��̂0y) (179)for any (��̂0x;��̂0y) su
h that��̂y = r(��̂0x=2)2 + (��̂0y=2)2 : (180)The fun
tion � 
an be seen as a restri
tion of the fun
tion ~f . The reason why~f has been introdu
ed is that it allows the use the auto
orrelation theorem toobtain the following relation:1Z�1 d��̂0x 1Z�1 d��̂0y exp [i(�x��̂0x + �y��̂0y)℄ ~f (��̂0x;��̂0y) =12�2 ������ 1Z�1 d�̂x 1Z�1 d�̂y exp [i(�x�̂x + �y�̂y)℄sin
24 �̂2x + �̂2y4 35������2 : (181)The integral in the right hand side of Eq. (181) has been already 
al
ulated, inpra
ti
e, in Eq. (93), and it 
an be expressed in terms of the universal fun
tion	 de�ned in Eq. (95). It follows that1Z�1 d��̂0x 1Z�1 d��̂0y exp [i(�x��̂0x + �y��̂0y)℄ ~f(��̂0x;��̂0y) =2 h� � 2Si(�2x + �2y)i2 = 2�2	 �q�2x + �2y� : (182)69



We 
an now inverse transform Eq. (182) using the Fourier-Bessel formula, thusobtaining~f(��̂0x;��̂0y) = � 1Z0 d� �Jo  �r(��̂0x)2 + (��̂0y)2!	(�) : (183)Letting ��̂0x = 0 and using Eq. (179) and Eq. (180) we obtain the followingrepresentation for �:�(��̂y) = � 1Z0 d� �Jo �2���̂y�	(�) : (184)Applying the de�nition of B̂ in Eq. (174) we obtainB̂(�y) = �K 1Z0 d� �	(�) 1Z�1 d��̂y exp hi(�2�y)��̂yiJo �2���̂y� : (185)The Fourier integral in ��̂y 
an be performed analyti
ally (see [8℄, AppendixA.3.), thus giving the following representation of B̂:B̂(�y) = �K 1Z0 d� re
t [�y=(2�)℄h1 � (�y=�)2i1=2 	(�) ; (186)where the fun
tion re
t(x) is de�ned, following [8℄, to be unity for jxj 6 1=2and zero otherwise. A plot of the universal B̂ is given in Fig. 15.Using Eq. (127) and Eq. (171) we obtain the Fourier transform of the 
ross-spe
tral density at the virtual-sour
e positionĜ (0; �u;�û)= exp h�2N̂y�û2i exp"� �u22D̂y #�(�û) : (187)Inverse transforming Eq. (187) we 
an write the 
ross-spe
tral density at thevirtual-sour
e positionĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i 1Z�1 d� exp"�(� + �y)22N̂y # B̂(�) : (188)70
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Fig. 15. The universal fun
tion B̂, used to 
al
ulate intensity on the image planeof a quasi-homogeneous undulator sour
e when N̂x � 1, D̂x � 1 and D̂y � 1.Then, from Eq. (131) and Eq. (187) we obtain the 
ross-spe
tral density onthe fo
al planeĜ(ẑf ; �yf ;�ŷf)= exp " 2îf2 �f̂ � ẑ1� �yf�ŷf# exp24�2N̂y�ŷ2ff̂2 35� exp "� �y2f2D̂y f̂2#�  �ŷff̂ ! : (189)The relative intensity on the fo
al plane is therefore given byÎ(ẑf ; �yf )= exp "� �y2f2D̂y f̂2# ; (190)while the modulus of the spe
tral degree of 
oheren
e reads71
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Fig. 16. Absolute value of the universal fun
tion �, used to 
al
ulate 
oheren
e onthe fo
al plane of a quasi-homogeneous undulator sour
e when N̂x � 1, D̂x � 1and D̂y � 1.jg(ẑf ; �yf ;�ŷf)j=exp24�2N̂y�ŷ2ff̂2 35 ������  �ŷff̂ !����� : (191)A plot of j�(��̂y)j is given in Fig. 16. For the image plane, Eq. (132) and Eq.(188) give the following 
ross-spe
tral density:Ĝ(ẑi; �yi;�ŷi)= exp "im(m+ 1)�yi�ŷi2ẑ1 #� exp h�2D̂ym2�ŷ2i i 1Z�1 d� exp "�(� +m�yi)22N̂y # B̂(�) ;(192)
orresponding to a relative intensity on the image planeÎ(ẑi; �yi) = 1Z�1 d� exp "�(� +m�yi)22N̂y # B̂(�),8<: 1Z�1 d� exp"� �22N̂y # B̂(�)9=; :72



(193)The modulus of the spe
tral degree of 
oheren
e isjg(ẑi; �yi;�ŷi)j= exp h�2D̂ym2�ŷ2i i : (194)Finally, in the parti
ular 
ase for N̂y � 1, Eq. (193) redu
es toÎ(ẑi; �yi) = B̂(m�yi) : (195)7 Analysis of the image formationme
hanism for quasi-homogeneousundulator sour
es in terms of Geometri
al Opti
sIn the Introdu
tion we have stressed that the image formation problem istwofold: one should be able to provide a 
hara
terization of the virtual sour
eas well as to tra
k the 
ross-spe
tral density of the sour
e trough the opti
albeamline.Let us �rst analyze the problem of sour
e 
hara
terization. In Se
tion 1 wehave seen that, in the asymptoti
 limit for a large ele
tron beam emittan
e�x;y � �=(2�), Geometri
al Opti
s may be used equally well as Statisti
alOpti
s to ful�ll this task. Here we will dis
uss more in detail the relationbetween the Statisti
al Opti
s approa
h and the Geometri
al Opti
s approa
hwith parti
ular attention to the appli
ability region of the latter.Let us start with a remark, whi
h applies not only to undulator radiationsour
es but also to sour
es of other kind (e.g. bending magnets). In the In-trodu
tion, in order to de
ide wether Geometri
al Opti
s or Wave Opti
sis appli
able, we 
ompared the ele
tron beam emittan
e with the radiationwavelength. This is a

eptable in many 
ases when undulator radiation is in-volved but not, for instan
e, when bending magnet radiation is 
onsidered.In all generality one should separately 
ompare the photon beam size and di-vergen
e with the radiation di�ra
tion size and di�ra
tion angle, whi
h arequantities pertaining the single ele
tron radiation. Let us �x a given dire
tionx or y. The square of the di�ra
tion angle is de�ned by (�0d)2 � �=(2�Lf ), Lfbeing the formation length of the radiation at wavelength � as de�ned in [1℄.The di�ra
tion size of the sour
e is given by �d � �0dLf . In 
al
ulating thephoton beam size and divergen
e one should always in
lude di�ra
tion e�e
ts.As a result, if �2 and (�0)2 indi
ate the square of the ele
tron beam size anddivergen
e, the 
orresponding square of the photon beam size and divergen
ewill be respe
tively of order max[�2; �2d℄ and max[(�0)2; (�0d)2℄. These quantities
an be rewritten in terms of the ele
tron beam emittan
e as max[��; �2d℄ and73



max[�=�; (�0d)2℄, � being the minimal beta fun
tion value, de�ning the virtualsour
e position for the radiator (undulator, bending magnet, or other). Di-viding these two quantities respe
tively by �2d and (�0d)2 give natural values,normalized to unity, for the photon beam size max[2���=(Lf�); 1℄ and diver-gen
e max[2��Lf=(��); 1℄. When the produ
t between these two quantities ismu
h larger than unity one 
an use a Geometri
al Opti
s approa
h. In this
ase, this produ
t represents the normalized photon beam emittan
e. When� � Lf , as in many undulator 
ases, one may 
ompare, for rough estimations,the ele
tron beam emittan
e and the radiation wavelength as we have donebefore. However, in the 
ase of a bending magnet one may typi
ally have � oforder 10 m and Lf of order 10�3 � 10�2 m. The ratio �=Lf � 1 now 
onsti-tutes an extra large parameter of the problem. In this 
ase, even if the ele
tronbeam emittan
e is two order of magnitude smaller than the wavelength, due todi�ra
tion e�e
ts one 
an still apply a Geometri
al Opti
s approa
h, be
ausemax[2���=(Lf�); 1℄ �max[2��Lf=(��); 1℄� 1, i.e. the photon beam emittan
eis mu
h larger than the wavelength. As a result, dimensional analysis suggeststhat bending magnet radiation may be treated exhaustively in the frameworkof Geometri
al Opti
s even for third generation light sour
es.As dis
ussed above, when � � Lf a large ele
tron beam emittan
e (
om-pared with the radiation wavelength) is a ne
essary and suÆ
ient 
onditionfor the Geometri
al Opti
 approa
h to apply. In spite of that, when � � Lfor � � Lf , a large ele
tron beam emittan
e is a suÆ
ient, but not ne
es-sary 
ondition for the Geometri
al Opti
 approa
h to be possibly used forsour
e 
hara
terization. Let us prove this statement with undulator sour
esin mind 11 . It is enough to prove that the wider 
lass of quasi-homogeneoussour
es, whi
h in
ludes situations when the ele
tron beam emittan
e is notlarger than the wavelength, 
an be des
ribed in terms of Geometri
al Opti
s.Let us then 
onsider the 
lass of quasi-homogeneous virtual sour
es for undu-lator devi
es. The 
ross-spe
tral density of the virtual sour
e (positioned atz = 0, i.e. at the virtual sour
e plane) 
an be written as in Eq. (2), that werewrite here for 
onvenien
e in terms of 
oordinates �rx;y and �r̂x;y:Ĝo(�rx; �ry;�r̂x;�r̂y) = Î (�rx; �ry) g(�r̂x;�r̂y) : (196)As usual, the Fourier transform of Eq. (196) with respe
t to all variables willbe indi
ated with11Note that, even though in the 
ase of undulator sour
es one often has � � Lf ,there are situations when � � Lf or � � Lf and when the ele
tron emittan
e isof order of the wavelength. However, in the undulator 
ase, very large values of theratio �=Lf of order 103 � 104, typi
al of the bending magnet 
ase, are unrealisti
.74



Ĝo(��x; ��y;��̂x;��̂y) = 1Z�1 d�r̂0x 1Z�1 d�r̂0y 1Z�1 d�r0x 1Z�1 d�r0y Ĝo(�r0x; �r0y;�r̂0x;�r̂0y)� exp[2i(��x�r̂0x + ��y�r̂0y)℄ exp[2i(��̂x�r0x +��̂y�r0y)℄ :(197)The two quantities Î(�rx; �ry) = Ĝo(�rx; �ry; 0; 0) and �̂(��x; ��y) = Ĝo(��x; ��y; 0; 0)are always positive, be
ause, by de�nition of Ĝo, they are ensemble averagesof quantities under square modulus.Let us now introdu
e the Fourier transform of Eq. (196) with respe
t to �r̂x;y:�̂o(�rx; �ry; ��x; ��y)= 1Z�1 d�r̂0x 1Z�1 d�r̂0y Ĝo(�rx; �ry;�r̂0x;�r̂0y)� exp[2i(��x�r̂0x + ��y�r̂0y)℄ : (198)A

ounting for Eq. (196), i.e. in the parti
ular 
ase of a (virtual) quasi-homogeneous sour
e, Eq. (198) 
an be written as�̂o(�rx; �ry; ��x; ��y)= Î (�rx; �ry) �̂(��x; ��y) ; (199)having re
ognized that �̂(��x; ��y) = Ĝo(��x; ��y; 0; 0) is the Fourier transform ofthe spe
tral degree of 
oheren
e g. The distribution �̂o, being the produ
t oftwo positive quantities, never assumes negative values. Therefore it may alwaysbe interpreted as a phase spa
e distribution 12 . This analysis shows that quasi-homogeneous sour
es 
an always be 
hara
terized in terms of Geometri
alOpti
s. It also shows that, in this parti
ular 
ase, the 
oordinates in the phasespa
e, �rx;y and ��x;y, are separable.Eq. (198) is the de�nition of a Wigner distribution. In the 
ase of quasi-homogenous sour
es, as we have just seen, the Wigner distribution is nevernegative and, therefore, 
an always be interpreted as a phase spa
e distri-bution. In the 
ase of non quasi-homogeneous sour
es one may still de�ne a12 It should be remarked that this result has been obtained only on the ground ofmathemati
al basis, i.e. without as
ribing to Î and �̂ any physi
al meaning. In otherwords, we simply 
onsidered the 
ross-spe
tral density Ĝo as the ensemble-averagedprodu
t of Ê(~̂r1) and Ê�(~̂r2) without as
ribing to the fun
tion Ê any physi
almeaning. Physi
ally, as has been said in the Introdu
tion, in the quasi-homogeneous
ase �̂ 
an be identi�ed with the radiant intensity of the virtual sour
e (
omparewith Eq. (6)). This follows from a statement similar to the van Cittert-Zerniketheorem for quasi-homogeneous sour
es (see [3℄). Note that the intensity and theFourier transform of the spe
tral degree of 
oheren
e are obtained ba
k from thephase spa
e distribution, Eq. (199), by integration over 
oordinates ��x;y and �rx;yrespe
tively. 75



Wigner distribution using Eq. (198). The integral of the Wigner fun
tion overits 
oordinates must still be �nite 13 . However the Wigner fun
tion itself isnot always a positive fun
tion. As a 
onsequen
e it 
annot always be inter-preted as a phase spa
e distribution. On the one hand, quasi-homogeneity isa suÆ
ient 
ondition for the Geometri
al Opti
s approa
h to be possibly usedin the representation of the sour
e. On the other hand though, ne
essary andsuÆ
ient 
onditions for �̂o to be a positive fun
tion are more diÆ
ult to �nd.One may observe that Bo
hner's theorem 14 may be used to investigate whetherthe Wigner fun
tion 
an be interpreted as a phase spa
e distribution in the
ase of non-homogeneous sour
es. In parti
ular, it is ne
essary and suÆ
ientto look for non-negative de�nite 
ross-spe
tral density fun
tions. However, ingeneral, it is not trivial to investigate wether a fun
tion is non-negative de�nite(see footnote 14) and therefore this observation does not seem to 
onstitutea simpli�
ation. We will simply leave the sear
h for ne
essary and suÆ
ient
ondition for �̂o to be a positive fun
tion as an open question. We did not ruleout, for undulator setups, the possibility of having a positive Wigner distribu-tion in the non quasi-homogeneous 
ase. At �rst glan
e it may look like su
h a13This ensures that �̂o has �nite integral over its variables. �̂o is the Fourier trans-form of a 
orrelation fun
tion (the 
ross-spe
tral density) of ele
tromagneti
 �elds.The �elds being physi
al quantities 
an 
arry only a �nite amount of energy andthey are limited in spatial extent. As a result the 
ross-spe
tral density must be anintegrable fun
tion over its variables and so must be, by de�nition, �̂o.14Bo
hner's theorem "in its elementary form asserts that every non-negative de�-nite fun
tion of a broad 
lass has a non-negative Fourier transform and, 
onversely,that the Fourier transform of every non-negative fun
tion of a broad 
lass is non-negative de�nite. This 
lass in
ludes fun
tions whi
h fall o� suÆ
iently rapidly toin�nity to ensure that their Fourier transforms are 
ontinuous fun
tions" [
itedfrom paragraph 1.4.2. of referen
e [3℄℄. It should hereby be stressed the di�eren
ein the mathemati
al language between a positive fun
tion f(�) > 0 for every realvalue � and a non-negative de�nite fun
tion. The fun
tion h is said to be non-negative de�nite when "for an arbitrary set of N real numbers �1, �2,...,�N and Narbitrary 
omplex numbers a1, a2, ..., aN , PNi=1PNj=1 a�i ajh(�j � �i) > 0."[
itedfrom paragraph 1.4.2. of referen
e [3℄℄. Based on the assumption of a quasi-homogeneous sour
e authors of [3℄ use Bo
hner's theorem instead of our previousdis
ussion to demonstrate that the spe
tral degree of 
oheren
e g in Eq. (196)is ne
essarily non-negative de�nite. In fa
t, sin
e the intensity Î is a positivefun
tion, the sign of PNi=1PNj=1 a�i ajg(�r̂x ij ;�r̂y ij) is the same of the sign ofPNi=1PNj=1 a�iaj Î(�rx ij ; �ry ij)g(�r̂x ij ;�r̂y ij) = PNi=1PNj=1 a�iaj hE(r̂j)E�(r̂i)i =����PNi=1 aiE(r̂i)���2� > 0, quantum erat demonstrandum. This demonstration is moreinvolved than ours, even though it is based, as the ours, on the positivity of thesquare modulus of quantities. The reason for this 
omplexity is that it uses a moregeneral theorem, i.e. Bo
hner's theorem. However, as we have seen, it is not ne
es-sary to invoke Bo
hner's theorem in the quasi-homogeneous 
ase.76




ase brings advantages in the formulation of the imaging theory, be
ause thesour
e 
an be des
ribed in terms of Geometri
al Opti
s. On the one hand, inthe 
ase the Wigner distribution is positive, the evolution of the radiation infree spa
e 
an be des
ribed by a ray-tra
ing approa
h, as the Wigner distri-bution 
an be interpreted as a phase spa
e distribution. On the other handthough, su
h fa
t is almost irrelevant be
ause it is not of help when opti
alelements are 
onsidered. As we will see later on, there are two parti
ular 
on-ditions at the basis of a simpli�ed formulation of the imaging theory basedon the in
oherent point spread fun
tion of the opti
al system. The �rst is theseparability of the 
ross-spe
tral density is the produ
t of a fa
tor dependingon ~�r and a fa
tor depending on �~r. The se
ond is a transverse dimension ofthe sour
e mu
h larger than the transverse 
oheren
e length. As we have al-ready seen these two 
onditions, together, de�ne a quasi-homogeneous sour
e.Quasi-homogeneous sour
es are ne
essarily 
hara
terized by a positive Wignerfun
tion. However, the positivity of the Wigner fun
tion alone is not suÆ
ientto obtain a simpli�ed formulation of the imaging theory in terms of in
o-herent point-spread fun
tion. A similar remark holds for a parti
ular kind ofsour
es often 
onsidered in literature also in 
onne
tion with undulator radi-ation (see [14, 15℄). These sour
es, 
hara
terized by a 
ross-spe
tral densityG = qI(r1)qI(r2)g(r1 � r2) are 
alled Shell sour
es (in parti
ular, in [14, 15℄Gaussian-Shell sour
es are dis
ussed whi
h assume gaussian a pro�le for bothI and g). They exhibit separability of the 
ross-spe
tral density, but are notquasi-homogeneous be
ause the transverse dimension of the sour
e fails tobe mu
h larger than the transverse 
oheren
e length: a simpli�ed formula-tion of the imaging theory does not hold in this 
ase either. Moreover, as itwill be more extensively dis
ussed here below and in Se
tion 15, the Shellmodel (and, in parti
ular, the Gaussian-Shell model) may be useful for de-s
ribing light sour
es other than undulator-based or for edu
ational purposes,but does not des
ribe any pra
ti
al realization of an undulator sour
e.We are now interested to �nd, in parti
ular, equivalent 
onditions for quasi-homogeneity in terms of the ele
tron beam sizes N̂x;y and divergen
es D̂x;y thatapply to our 
ase of interest, i.e. third generation light sour
es. In order to doso we start deriving an expression Ĝ for the Fourier transform of the 
ross-spe
tral density at the virtual sour
e position. This is given by 
al
ulating thelimit of Eq. (124) for ẑo � 1 and taking advantage of Eq. (127). Aside for aninessential multipli
ative 
onstant we obtain:Ĝ(0; ��x; ��y;��̂x;��̂y) = exp h�2N̂x��̂2xi exp h�2N̂y��̂2yi 1Z�1 d�̂x 1Z�1 d�̂y� exp264���̂x + ��x�22D̂x 375 exp264���̂y + ��y�22D̂y 37577



�sin
"(�̂x ���̂x)2 + (�̂y ���̂y)24 #�sin
 "(�̂x +��̂x)2 + (�̂y +��̂y)24 #: (200)We have said that the quasi-homogeneity of the virtual sour
e is equivalent to(i) separability of the 
ross-spe
tral density Ĝ in the produ
t of two fa
torsrespe
tively depending on ��x;y and ��̂x;y and (ii) a large 
hara
teristi
 s
aleof ��x;y with respe
t to the 
hara
teristi
 s
ale of ��̂x;y. From 
ondition (i)follows that the virtual sour
e is quasi-homogeneous only if it is possible tofa
torize the Fourier transform of the 
ross-spe
tral density, Ĝ in Eq. (200),in the produ
t of two fa
tors separately depending on ��x;y and ��̂x;y. Su
hfa
torization, for third generation light sour
es, is equivalent to a parti
ular
hoi
e of the region of parameters for the ele
tron beam: N̂x � 1, D̂x � 1 andeither (or both) N̂y � 1 and D̂y � 1 15 . In this 
ase, the se
ond 
ondition (ii)is automati
ally veri�ed as one 
an verify inspe
ting Eq. (200).An intuitive pi
ture in the real spa
e is given by a (virtual) quasi-homogeneoussour
e with 
hara
teristi
 (normalized) square sizes max(N̂xy; 1) and 
hara
-teristi
 (normalized) 
orrelation length square of order min(1=D̂x;y ; 1). As al-ready remarked before, in the quasi-homogeneous situation the horizontal andthe verti
al dire
tions 
an be treated separately, be
ause Eq. (200) fa
torizesin the produ
t of fa
tors separately depending on the horizontal and on theverti
al 
oordinates. This 
orresponds to a large number of independentlyradiating sour
es given by the produ
tMx;y = max(N̂x;y; 1)max(D̂x;y; 1) : (201)The number Mx;y is, in other words, an estimation of the number of 
oherentmodes in the horizontal and in the verti
al dire
tion 16 . The number M�1x;y15 It should be remarked here, that these 
onditions des
ribe the totality of thirdgeneration quasi-homogeneous sour
es. In fa
t, while a purely mathemati
al analysisindi
ates that fa
torization of Eq. (200) is equivalent to more generi
 
onditions(N̂x � 1 and N̂y � 1, or D̂x � 1 and D̂y � 1), 
omparison with third generationsour
e parameters redu
es su
h 
onditions to the already mentioned ones.16This is in agreement with an intuitive pi
ture where the photon-beam phase spa
ereprodu
es the ele
tron-beam phase spa
e up to the limit imposed by the intrinsi
di�ra
tion of undulator radiation. Imagine to start from a situation with N̂x;y � 1and D̂x;y � 1 and to "squeeze" the ele
tron-beam phase spa
e by diminishing N̂x;yand D̂x;y. On the one hand the 
hara
teristi
 sizes of the phase spa
e of the ele
tronbeam are always of order N̂x;y and D̂x;y. On the other hand the 
hara
teristi
 sizesof the phase spa
e of the photon beam are of order max(N̂x;y; 1) and max(D̂x;y; 1):di�ra
tion e�e
ts limit the "squeezing" of the phase spa
e of the photon beam.78



is the a

ura
y of Geometri
al Opti
s results 
ompared with Statisti
al Op-ti
s results or, better, the a

ura
y of the quasi-homogeneous assumption. Itshould be noted that, as Mx;y approa
hes unity, the a

ura
y of the quasi-homogeneous assumption be
omes worse and worse and Mx;y 
annot be takenanymore as a meaningful estimation of the number of modes: it should berepla
ed by a more a

urate 
on
ept based on Statisti
al Opti
s. To 
ompletethe previous statement we should add that Mx;y 
ompletely loses the mean-ing of "number of modes" when Geometri
al Opti
s 
annot be applied. Forinstan
e when both N̂y and D̂y are of order unity (or smaller), one 
an statethat the Geometri
al Opti
s approa
h fails in the verti
al dire
tion be
ausethe phase spa
e area is getting near to the un
ertainty limit. In this 
ase it isnot possible to as
ribe the meaning of "number of modes" to the number Mysimply be
ause the Geometri
al Opti
s approa
h in the verti
al dire
tion fails.However, when N̂y and D̂y are of order unity (or smaller), but both N̂x � 1and D̂x � 1, the 
ross-spe
tral density admits fa
torization in the horizontaland in the verti
al dire
tion and the sour
e in the horizontal dire
tion 
an bestill des
ribed, independently, with the help of Geometri
al Opti
s.Up to now we dis
ussed about the roles of Geometri
al and Statisti
al opti
sin the 
hara
terization of the sour
e only. However, as already remarked, thespe
i�
ation of the sour
e 
onstitutes only part of the solution of the imagingproblem. One has, in fa
t, to tra
k information regarding the sour
e throughthe opti
al beamline up to the observation plane. Depending on the situationGeometri
al Opti
s may be used or not. For instan
e, a quasi-homogeneoussour
e may well be des
ribed in terms of a phase spa
e distribution, but ifdi�ra
tion e�e
ts dominate the photon beam transport to the observationplane, one 
annot use ray-tra
ing te
hniques to 
al
ulate the intensity pro�leat the observation plane. However, as we will see in the next Se
tion, if thevirtual sour
e is quasi-homogeneous, the intensity at the observation plane 
analways be expressed as a 
onvolution produ
t between the impulse responseof the opti
al system and the intensity whi
h would be re
overed at the obser-vation plane in the 
ase of an ideal opti
al system (i.e. one with no aberrationand non-limiting pupil apertures). In this 
ase, the entire line may be studiedwith the help of ray-tra
ing programs if and only if the impulse response ofthe system 
an be re
overed by means of Geometri
al Opti
s te
hniques.In Geometri
al Opti
s, a Hamiltonian des
ription of the opti
al system holdsso that intera
tion with opti
al media (i.e. the system evolution) is 
onve-niently modelled in terms of symple
ti
 transformations. A given symple
ti
transformation S a
ts on point ~�o = (�rox; ��ox; �roy; ��oy) of the phase spa
e �̂oat ẑo = 0 and maps it to a point ~� = (�rx; ��x; �ry; ��y), of the phase spa
e �̂ẑ atẑo = ẑ a

ording to~� = S(~�o) : (202)79



The phase spa
e distribution is therefore transformed a

ording to�̂ẑ (~�) = �̂o hS�1 (~�)i : (203)A

ording to Liouville's theorem, the area of the phase spa
e is 
onservedduring this pro
ess. In the parti
ular 
ase of linear transformations, one 
anuse a matrix formalism. N su

essive linear transformations are representedby N matri
es L1 ... LN and the resulting transformation is represented by Nsu

essive matrix multipli
ations, whi
h give the matrix L = LN � ::: � L1. Thea
tion of L on an element of the phase spa
e is then naturally represented bymultipli
ation. The variables ~� in phase spa
e 
hara
terize a ray with a 
ertaindire
tion and o�set with respe
t to the opti
al axis. The task of 
al
ulatingthe phase spa
e distribution after a given number of opti
al elements through�̂ẑ (~�) = �̂o hL�1 � (~�)ti ; (204)where t indi
ates transposition, or through the more general Eq. (203) 
anbe solved by ray-tra
ing programs. On
e �̂ẑ is known, these 
odes usuallyintegrate it over the variable ��x and ��y to give the intensity distributionÎ (ẑ; �rx; �ry) = 1Z�1 d��x 1Z�1 d��y �̂ẑ ��rx; ��x; �ry; ��y� : (205)However, the same programs may also be used to 
al
ulate the Fourier trans-form of the spe
tral degree of 
oheren
e through�̂ �ẑ; ��x; ��y� = 1Z�1 d�rx 1Z�1 d�ry �̂ẑ ��rx; ��x; �ry; ��y)� : (206)In parti
ular, in free spa
e, Eq. (204) be
omes�̂ẑ ��rx; ��x; �ry; ��y�= Î �0; �rx � ẑ��x; �ry � ẑ��y� �̂ �0; ��x; ��y� ; (207)while Eq. (205) and Eq. (206) redu
e to 
onvolutions:Î (ẑ; �rx; �ry) = 1Z�1 d��x 1Z�1 d��y Î �0; �rx � ẑ��x; �ry � ẑ��y� �̂ �0; ��x; ��y� (208)and 80



�̂ �ẑ; ��x; ��y�= 1Z�1 d�rx 1Z�1 d�ry Î �0; �rx � ẑ��x; �ry � ẑ��y� �̂ �0; ��x; ��y�= �̂ �0; ��x; ��y� : (209)Note that �̂ 
al
ulated at ẑ = 0 has dire
t physi
al sense as the intensitydistribution in the far zone, i.e. the angular spe
trum. Then, Eq. (209) tellsthat, at arbitrary distan
e ẑ, the angular spe
trum does not vary.The intensity re
overed at the image plane in the 
ase of an ideal opti
al systemis a s
aled 
opy of that at the virtual sour
e, regardless of the sour
e. Generally,although as we will see ex
eptions apply, su
h 
orresponden
e between theintensity of the sour
e and the observed intensity is only true in the 
asethe observation plane is the image plane. In the 
ase of a quasi-homogeneousvirtual sour
e, Geometri
al Opti
s as well as Statisti
al Opti
s te
hniques 
anbe employed to re
over the intensity at the observation plane. Results fromthe Geometri
al Opti
s and from the Statisti
al Opti
s approa
h must then
oin
ide. Let us prove this fa
t 
onsidering the parti
ular 
ase N̂ � 1 andD̂ � 1 in a given dire
tion and showing that we are able to re
over Eq. (151)by means of Geometri
al Opti
s te
hniques, namely by means of the matrixformalism employed in ray-tra
ing 
odes.In this parti
ular situation, the photon beam 
an be modelled as if a Gaussianphoton beam was present at ẑ = 0 with the same horizontal phase spa
e ofthe ele
tron beam. This is an ansatz on the virtual quasi-homogeneous sour
ebased on the phase spa
e pi
ture des
ribed above sin
e stri
tly speaking it doesnot make sense to talk about a Gaussian photon beam inside the undulator,i.e. within the radiation formation length. If, however, this ansatz is made, we
an des
ribe the opti
al equivalent of the Twiss matrix at ẑ = 0. Let us �rstintrodu
e the notion of normalized Twiss parameters as:�̂T =�T ;�̂T =L�1w �T ;
̂T =Lw
T ;�̂ = (!=
)� ; (210)where �T , �T and 
T are the Twiss parameters and � is the emittan
e per-taining the photon beam 17 . In the 
ase under study they are identi
al to theanalogous ele
tron beam parameters. We have�jẑ=0 � �̂0B� �̂T (0) ��̂T (0)��̂T (0) 
̂T (0) 1CA = 0B� N̂ 00 D̂1CA ; (211)17The Twiss parameters are the se
ond moments of the phase spa
e distribution ofthe photons divided by the emittan
e. 81



For this exempli�
ation we will assume a non-limiting pupil aperture. Then,the linear transformation mapping a phase-spa
e point in ẑ = 0 to a phase-spa
e point in ẑ = ẑ2 is represented by the matrix L. In our parti
ular 
ase ofinterest we haveL=0B� 1 ẑ2 � ẑ10 1 1CA � 0B� 1 0�1=f̂ 11CA � 0B� 1 ẑ10 1 1CA= 0BBBBB� �ẑ2=ẑ1 + 1 0ẑ2=(ẑ21 � ẑ1ẑ2) ẑ1=(ẑ1 � ẑ2)1CCCCCA : (212)As one 
an see from Eq. (42), L des
ribes a free-spa
e 
ight followed by afo
using element and a se
ond free-spa
e 
ight. A point (l̂o; �̂o) of the photonbeam phase spa
e at ẑ = 0 is transformed, at ẑ = ẑ2 into0B� l̂1̂�1 1CA = L0B� l̂ô�o1CA ; (213)while the Twiss parameters for the photon beam at ẑ = ẑ2 are des
ribed bythe matrix�jẑ=ẑ2 =L � �jẑ=0 � Lt = �̂0B� �̂T (ẑ2) ��̂T (ẑ2)��̂T (ẑ2) 
̂T (ẑ2) 1CA (214)with�̂�̂T (ẑ2)= 1�Â+ D̂�(ẑ1 hÂ+ �Â+ D̂�Qẑ1i hD̂ + �Â+ D̂�Qẑ1i� �ÂD̂ + �Â+ D̂�2Q2ẑ21� ẑ2) ; (215)�̂�̂T (ẑ2) = �ÂD̂ + �Â+ D̂�2Q2ẑ21� (ẑ1 � ẑ2)2Â+ D̂ (216)and 82



�̂
̂T (ẑ2) = ÂD̂Â+ D̂ + �Â+ D̂�Q2ẑ21 + �Â+ D̂� ẑ21(ẑ1 � ẑ2)2 + 2 �Â+ D̂�Qẑ21ẑ1 � ẑ2 :(217)It should be re
alled that parameters Q and Â have been de�ned in Eq. (148)and Eq. (149).The photon phase spa
e distribution at ẑ = ẑ2 is des
ribed byfjẑ=ẑ2 = 12��̂ exp "� 
̂T (ẑ2)l̂21 + 2�̂T (ẑ2)l̂1�̂1 + �̂T (ẑ2)�̂212�̂ # : (218)The relative intensity is derived from Eq. (218) integrating over the �̂1-
oordinate,whi
h givesI(ẑ2) = exp "� 2l̂212�̂�̂T (ẑ2)# : (219)Finally, substitution of the expression for �̂�̂T (ẑ2) obtained in Eq. (216), yieldsba
k Eq. (151), as it should be. Similar 
on
lusions may be obtained for thespe
tral degree of 
oheren
e integrating over the l̂1-
oordinate and inverseFourier transforming the result.In spite of these results, we should stress again that Statisti
al Opti
s is theonly mean to deal with the sto
hasti
 nature of Syn
hrotron Radiation ingeneral. Only in parti
ular 
ases Syn
hrotron Radiation 
an be treated interms of Geometri
al Opti
s. As we have just dis
ussed, one of these 
ases is
onstituted by se
ond generation light sour
es, when N̂x;y � 1 and D̂x;y � 1.Experiments in this region of parameters 
an take advantage of ray-tra
ing
ode te
hniques.To 
on
lude this Se
tion, we would like to make a mu
h stronger statement:there are pra
ti
al 
ases of interest when the Statisti
al Opti
s approa
h mustbe used even for se
ond generation light sour
es. This should not sound tooawkward sin
e, as we have stated before, the impulse response of an opti
al linemay not be treatable in terms of Geometri
al Opti
s. Consider, for instan
e,the setup illustrated in Fig. 17. This 
onsists of an entran
e slit, a grating andan exit slit, that is a grating mono
hromator. The grating equation, whi
hdes
ribes how the mono
hromator works, relies on the prin
iple of interferen
eapplied to the light 
oming from adja
ent grooves. Su
h prin
iple though, 
anonly be applied when phase and amplitude variations of the ele
tromagneti
�eld are well de�ned a
ross the grating, that is when the �eld is perfe
tlytransversely 
oherent. If the transversely 
oherent spot of the radiation issmaller than the grating, not all the grating is taken advantage of, resulting83



Fig. 17. Illustration of a grating mono
hromator.in a de
rease of resolution in wavelength. To better explain this point, withreferen
e to Fig. 17, let us indi
ate the width of the entran
e slit with d andthe angle of in
iden
e of the in
oming radiation with �. Moreover, let Dg bethe typi
al dimension of the grating, Ng the total groove number,m the orderof di�ra
tion and z the distan
e between the entran
e slit and the grating.The maximal (relative) resolution whi
h 
an be obtained with a parti
ulargrating is given by (mNg)�1. Qualitatively, to obtain su
h maximal resolutionwe must have a transverse 
oheren
e area of at least the size Dg 
os(�). If it issmaller, not all the grating is used. We now need to transform this qualitativerequirement into a quantitative requirement.In pra
ti
al situations, the grating is pla
ed in the far zone with respe
t tothe entran
e slit. This is be
ause the radiation spot size at the grating shouldbe at least of order Dg 
os(�), whi
h is mu
h larger than the slit aperture d.If we assume the slit uniformly illuminated, we 
an 
onsider the slit itself likea quasi-homogeneous sour
e with re
tangular pro�le. Then, the van Cittert-Zernike theorem applies at the grating position in the far zone. As a result,the modulus of the spe
tral degree of 
oheren
e jgj in the far zone is equalto the modulus of the Fourier transform of the intensity pro�le at the slit,whi
h is a re
tangular pro�le. The following expression for jgj is found in thedispersion dire
tion:jg(�r)j = �����sin
 �d�r�z !����� : (220)A quantitative requirement for the 
oheren
e property of the radiation at thegrating 
an be given imposing that jgj varies within a �xed interval. For in-stan
e, one may require 0:8 < jg(�r)j < 1. This requirement may be 
hanged,and is somewhat subje
tive. However it 
orresponds to a quanti�
ation of thetransverse 
oheren
e properties of the radiation on the grating. In parti
ular,if the 
riterium 0:8 < jg(�r)j < 1 is 
hosen, the argument of the sin
 fun
-84



tion in Eq. (220) is allowed to vary a 
ertain range [�X;X℄ with X ' 1:13.Moreover, the maximal value for �r is Dg 
os(�), i.e. the grating dimension.Putting all together we obtain the following 
ondition for the mono
hromatorsetup parameters:�dDg 
os(�)�z = X ' 1:13 : (221)The same 
al
ulation may be repeated with a di�erent 
hoi
e for the minimalallowed value of jg(�r)j. This would lead to a di�erent value of X.Our result is in agreement with the 
on
lusion that one may draw 
onsideringthe following relation [16℄:��� =  dDg 
os(�)�z ! 1mNg : (222)Eq. (222) des
ribes how the entran
e slit width limits the resolution in wave-length a

ording to. The se
ond fa
tor on the right hand side of Eq. (222),i.e. (mNg)�1 is, again, the maximal relative resolution. This resolution 
anbe obtained by setting the �rst fa
tor to unity. This yields a result in para-metri
al agreement with Eq. (221). The right parametri
 dependen
e in the
ondition for the maximal resolution 
an also be obtained in another way. Ifthe radiation sent through the slit has, at the grating, a spot size equal toDg 
os(�), the 
ondition for transverse 
oheren
e is given by the spa
e-angleprodu
t:d � � = dDg 
os(�)2z ' �2� : (223)Again, the qualitative estimation in Eq. (223) is in parametri
al agreementwith the quantitative 
al
ulation in Eq. (220).The grating works with a resolution near to the theoreti
al limit (mNg)�1 onlywith transversely 
oherent radiation. We may say that the purpose of the en-tran
e slit is to supply a transversely 
oherent radiation spot at the gratingin order to allow the mono
hromator to work with a 
ertain resolution. Thisfa
t must hold for any light sour
e, and in parti
ular for se
ond generationlight sour
es. The bottom line is that this mono
hromator setup 
annot be de-s
ribed in terms of Geometri
al Opti
s even in the 
ase of a se
ond generationlight sour
e: transversely 
oherent radiation means that the image on the exitslit is 
lose to the di�ra
tion limit. Therefore, in this 
ase, Geometri
al Opti
s
an only be used for approximate estimations, while a 
orre
t treatment mustinvolve the appli
ation of Statisti
al Opti
s te
hniques.85



8 Imaging of quasi-homogeneous undulator sour
es: e�e
t of aper-ture sizeWe will now 
onsider, with the help of Eq. (135), the e�e
ts of a pupil inthe one-dimensional 
ase (that 
an be pra
ti
ally realized with the help of aslit aperture and a 
ylindri
al lens) when aberrations are not present. First,in Se
tion 8.1, we will 
onsider Gaussian quasi-homogeneous sour
es. Then,in Se
tion 8.2 we will see that the arguments for Gaussian sour
es 
an begeneralized without modifying their substan
e with the help of some notational
hange to treat the 
ase of non-Gaussian quasi-homogeneous sour
es as well.8.1 Quasi-homogeneous Gaussian undulator sour
esIn the 
ase for N̂x � 1 and D̂x � 1 we 
an treat the horizontal and the verti
aldire
tion separately. Then, also the fun
tion P and P̂ 
an be expressed as theprodu
t of fa
tors in the horizontal and in the verti
al dire
tion. In parti
ularwe may 
onsider the pupil fun
tionP (r̂)=8><>: 1 if jr̂j < â0 otherwise ; (224)where r̂ may represent either the variable x̂ or the variable ŷ. A

ording tothe de�nition in Eq. (101) this gives:P̂(û) = 2âsin
(âû) : (225)We 
an use Eq. (135) and Eq. (156) to des
ribe the 
ase when the lens is inthe far zone, that is when 
ondition (136) is satis�ed. From Eq. (146) we 
anestimate the 
hara
teristi
 size of the sour
e, that is of order qN̂ , and of the
orrelation length at the sour
e, that is of order 1=qD̂. A

ording to 
ondition(136), the lens is in the far zone when qN̂=ẑ1 � qD̂, in agreement with thefar zone limit of Eq. (142), whi
h is obtained for Â� D̂ 18 . In this limit, Eq.(135) and Eq. (156) give18Condition (136) is usually not dis
ussed in textbooks des
ribing thermal sour
es.In fa
t, for perfe
tly in
oherent thermal sour
es, the far zone is de�ned by ẑ � �̂o,�o being the sour
e transverse size, i.e. when the paraxial approximation is valid.Therefore, in this 
ase, the pupil is always in the far zone.86



ĜP (ẑi; �ri;�r̂i)= 4â2 exp �2imẑ1 �ri�r̂i�� Z d�u d�û exp"� ẑ21�u22N̂ # exp h�2D̂ẑ21(�û)2i�sin
�â �m̂z1 (�ri +�r̂i)� �u��û���sin
�â �m̂z1 (�ri ��r̂i)� �u+�û�� : (226)A

ording to the far �eld limit of Eq. (142), the quantity D̂ẑ21 is the squareof the radiation spot size on the pupil, while ẑ21=N̂ is essentially the square ofthe 
oheren
e length on the pupil. Two interesting limiting 
ases of Eq. (226)
an be obtained 
omparing these two 
hara
teristi
 s
ales with â2, that is thesquare of the pupil size.First, let us 
onsider the 
ase ẑ21=N̂ . â2 � D̂ẑ21. As we will demonstratelater on, in all situations when the quasi-homogeneous assumption is veri�ed,the exponential fun
tion in �û inside the integral in Eq. (226) behaves like aÆ-Dira
 distribution, and one obtainsĜP (ẑi; �ri;�r̂i)= 4â2 exp �2imẑ1 �ri�r̂i� 1Z�1 d�u exp "� ẑ21�u22N̂ #�sin
�â �m̂z1 (�ri +�r̂i)� �u���sin
�â �m̂z1 (�ri ��r̂i)� �u�� : (227)This 
orresponds to a relative intensityÎP (ẑi; �ri)= 1C 1Z�1 d�u exp"� ẑ21�u22N̂ # �����sin
 "â �rîdi � �u!#�����2 ; (228)where the normalization 
onstant C is given byC= 1Z�1 d�u exp "� ẑ21�u22N̂ # jsin
 (â�u)j2 : (229)Eq. (228) expresses the image as a 
onvolution of the geometri
al image withthe slit di�ra
tion pattern (in two dimensions this would be the Airy pattern).It is valid for values ẑ21=N̂ . â2 � D̂ẑ21 and also for ẑ21=N̂ � â2 � D̂ẑ21: thedi�eren
e between these two 
ases is that in the �rst the pupil in
uen
e issigni�
ant, while in the se
ond it is not. Inspe
tion of Eq. (228) and useof Eq. (31) yields the ratio between the size of the di�ra
tion pattern and87



the geometri
al image: �jMjqN̂ â=d̂i��1 = �âqN̂=ẑ1��1. When ẑ21=N̂ . â2su
h ratio is 
omparable with unity, i.e. the di�ra
tion pattern signi�
antlyin
uen
es the image formation pro
ess. When, ẑ21=N̂ � â2, this ratio is mu
hsmaller than unity. As a result, the pupil in
uen
e is not signi�
ant and theimage is given by the geometri
al image. The ratio between the size of thedi�ra
tion pattern and the geometri
al image, ẑ1=âqN̂ , gives the resolutionof the image due to di�ra
tion e�e
ts. It is also interesting to note that inthe limiting 
ase when ẑ21=N̂ � â2 � D̂ẑ21, Eq. (227) presents the asymptoti
behaviorĜP (ẑi; �ri;�r̂i)= 4â2 exp �2imẑ1 �ri�r̂i� exp "�m2�r2i2N̂ #� 1Z�1 d�u sin
�â �m̂z1�r̂i � �u�� sin
�â �m̂z1�r̂i + �u�� :(230)The 
onvolution theorem yields the following expression for the spe
tral degreeof 
oheren
e:gP (ẑi;�r̂i)= 1D 1Z�1 dr̂0 jP (r̂0)j2 exp"�2i r̂0�r̂id̂i # ; (231)the normalization fa
tor D being given byD = 1Z�1 dr̂0 jP (r̂0)j2 : (232)After the substitution �u �! �u0pN=ẑ1 we may rewrite Eq. (228) as a fun
tionof � = âm�ri=ẑ1 with the help of the only parameter p = âpN=ẑ1, that is easierto plot̂IP (�) = 1C 1Z�1 d�u0 exp "� �u022 # jsin
 (� � p�u)j2 ; (233)where C 
an expli
itly be 
al
ulated as:C = r�2 1p2 n�1 + exp h�2p2io+ �p erf hp2pi : (234)88
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Fig. 18. Image intensity for a quasi-homogeneous sour
e, ÎP , as a fun
tion of� = âm�ri=ẑ1, 
al
ulated with Eq. (233), for di�erent values of the parameterp = âpN̂=ẑ1. The plot illustrates the one-dimensional image formation problem(slit aperture, 
ylindri
al lens).The fun
tion erf(�) in Eq. (234) indi
ates the error fun
tion. Note that thevariable � = âm�ri=ẑ1 may also be written as � = (â=d̂i)�ri, where d̂i = ẑi � ẑ1and jMj = d̂i=ẑ1 = m�1. It is interesting to remark that the ratio d̂i=â isthe dimensionless 
hara
teristi
 size of the Fresnel zone, i.e. �di=(2�a). ÎP isplotted in Fig. 18 for several values of the parameter p. In Fig. 18 we also plotthe asymptoti
 behaviors of Îp for small values of p, i.e. Îp = sin
2(�), that isthe di�ra
tion pattern from a slit, and for large values of p, i.e. exp[�(�=p)2=2℄.On the one hand, the integral in d�u in Eq. (228) is a 
onvolution. On theother hand, aside for numeri
al fa
tors, the Fourier transform of jP̂(û)j2 =j2âsin
(âû)j2 
an be given in terms of the triangular fun
tion tri(�), de�nedas 1919 It should be noted that � = 2�r̂. The reason why we introdu
ed the new variable� is to keep a 
ertain homogeneity of notation when 
omparing with referen
e [8℄.Sin
e our de�nition of �r̂ di�ers for a fa
tor 2 with respe
t to that in [8℄, it issomewhat 
onvenient to introdu
e � = 2�r̂.89
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Fig. 19. Upper plots: pro�le of the pupil fun
tion P (slit aperture), together withP̂. Lower plots: auto
orrelation fun
tion of the pupil, ~P , together with F( ~P).tri� �2â�=8>>>>><>>>>>: 1 + �=(2â) if �2â < � < 01 � �=(2â) if 0 < � < 2â0 otherwise . (235)By means of the 
onvolution theorem, Eq. (228) 
an be written asÎP (ẑi; �ri)= 1N 1Z�1 d� exp "�N̂�22ẑ21 # tri� �2â� exp ��i�m̂z1�ri� : (236)The normalization fa
tor N is given byN = 1Z�1 d� exp "�N̂�22ẑ21 # tri� �2â� =ẑ12âN̂ 8><>:�1 + â2� "�1 + exp �2 â2N̂ẑ21 !# ẑ1 + 2âq2�N̂ erf 264q2N̂ âẑ1 3759>=>; :(237)90



Eq. (236) 
an be written as an analogous of Eq. (5.7-10) of [8℄, that sometimesgoes under the name of Shell's theorem. Let us de�ne the auto
orrelationfun
tion of the pupil as~P (�) = 1Z�1 duP �u+ �2�P � �u� �2� : (238)In Fig. 19 we plot the pro�le of the pupil fun
tion P , together with P̂ and theauto
orrelation fun
tion of the pupil ~P , together with its Fourier transformF( ~P ). With the help of Eq. (238), Eq. (236) 
an be written asÎP (ẑi; �ri)= 1N 1Z�1 d� exp "�N̂�22ẑ21 # ~P (�) exp ��i�m̂z1�ri� ; (239)that is Eq. (5.7-10) of referen
e [8℄.A se
ond limiting 
ase of interest is found when â2 � ẑ21=N̂ � D̂ẑ21. Thepupil is 
oherently and uniformly illuminated. In this 
ase both the exponentialfun
tions inside the integral in Eq. (226) behave like Æ-Dira
 fun
tions yieldingĜP (ẑi; �ri;�r̂i)= 4â2 exp �2imẑ1 �ri�r̂i� sin
�â �m̂z1 (�ri +�r̂i)���sin
�â �m̂z1 (�ri ��r̂i)�� : (240)
orresponding to a relative intensityÎP (ẑi; �ri)= sin
2 " âm̂z1 �ri# = 14â2 ����P̂ �m̂z1 �ri�����2 : (241)Also, using the de�nition of the spe
tral degree of 
oheren
e given in Eq. (129)one sees that jgj = 1, i.e. the pupil is 
oherently illuminated. Eq. (241) is theanalogous of Eq. (5.7-14) in [8℄.Results obtained here deal both with the 
ross-spe
tral density ĜP and therelative intensity ÎP in the presen
e of the pupil. We 
lassi�ed these results
omparing the square of the extent of the pupil â2 with the square of theradiation spot size D̂ẑ21 and of the 
oheren
e length ẑ21=N̂ at the pupil lo
ation.Let us now 
onsider the intensity ÎP only. In the 
ase of quasi-homogeneoussour
es, there is a more general method taken from the theory of linear systemsto a

ount for the pupil presen
e. This method 
an be extended to a

ountfor aberrations as well, and allows a more 
ompa
t treatment of the pupil91



e�e
ts be
ause it does not depend on how the extent of the pupil s
ales withrespe
t to the 
oheren
e length and to the radiation spot size. It is basedon the 
on
ept of line spread fun
tion. A linear time-invariant system in twodimensions 
an be 
hara
terized by the knowledge of the point spread fun
tion(or impulse response) h(x; y). Given a 
ertain input f(x1; y1), the output atany point (x; y) is given by the 
onvolution of the point-spread fun
tion h andthe input f . The point spread fun
tion h(x; y) is the response to a Æ-Dira
signal at position (0; 0), i.e. Æ(x1; y1). The line spread l(x) is, instead, theresponse obtained from a line input Æ(x1), whi
h is independent of y1, and 
anbe 
al
ulated by integrating the point spread fun
tion h(x; y) with respe
t tothe y-variable (see, for instan
e, [17℄ Se
 6.2.).In the quasi-homogeneous 
ase, the intensity ÎP 
an be written as a 
onvo-lution between a suitable line spread fun
tion l 20 and the intensity Î whi
hdoes not a

ount for the pupil presen
e, that isÎP (ẑi; �ri) = [Î � l℄(ẑi; �ri) (242)The line spread fun
tion l a
ts as the passport of the imaging system, anddepends on the properties of the lens only. In this 
ase we are only 
onsideringthe e�e
t of a �nite pupil dimension, i.e. we are a

ounting for di�ra
tione�e
ts from the pupil. More in general, l may depend on lens apodization oraberrations too.In the 
ase under study here, the line spread fun
tion of the system is givenby l(�ri) = sin
2  â̂di �ri! : (243)For instan
e, it is straightforward to see that substitution of the (magni�ed)input signal Î = exp[��u2=(2jMj2N̂)℄ with the input signal Î = Æ(�u=jMj), thatis a line input, in Eq. (228) gives ba
k Eq. (243).It should be emphasized that the resolution due to di�ra
tion e�e
ts is of orderẑ1=(âqN̂). In all 
ases when this resolution is better than (i.e. ẑ1=(âqN̂) is20Here we are treating a two-dimensional system, but we are 
onsidering the 
asewhen we have separability properties for both the sour
e and the pupil. For thesour
e this means that N̂x � 1 and D̂x � 1, while for the pupil it means that thepupil is re
tangular. This 
ase is pra
ti
ally realized with the help of slit aperturesand 
ylindri
al opti
s. The line spread fun
tion l is, then, the proper tool to 
onsider.If one wants to 
onsider the situation when no separability property for the pupilis present, one should take advantage of an approa
h based on the point spreadfun
tion. 92



smaller than) the resolution of the ideal image (whi
h does not a

ount forthe pupil presen
e) the pupil does not play any role and, with the a

ura
yof the 
al
ulation of the ideal intensity (see Se
tion 15), the l fun
tion in Eq.(243) 
annot be distinguished from a Æ-Dira
. In our study 
ase, the idealintensity Î = exp[�ẑ21�u2=(2N̂ )℄ is 
al
ulated with an a

ura
y whi
h is mu
hworse than the quasi-homogenous a

ura
y (see Se
tion 15 for details) andis of order max(1=qD̂; 1=qN̂). In general, it is important to 
ompare theresolution due to di�ra
tion e�e
ts with the a

ura
y of the 
al
ulation ofthe ideal intensity. For example, on the basis of su
h 
omparison, one may
on
lude that the 
ase for ẑ21=N̂ � â2 . D̂ẑ21 
an be 
al
ulated assuming thatthe line spread fun
tion in Eq. (243) is a Æ-Dira
. In fa
t ẑ1=(âqN̂) � 1=qN̂D̂sin
e â2 . D̂ẑ21 and therefore ẑ1=(âqN̂ ) � max(1=qD̂; 1=qN̂ ). This kind ofreasoning 
an be used to treat any quasi-homogeneous 
ase, and the l fun
tion
an be modi�ed to in
lude aberrations and apodization e�e
ts as well. In themost general 
ase, a

ounting for the e�e
ts of the pupil in one dimension,Eq. (135) yields the relative intensityÎP (ẑi; �ri) = 1S Z d�u d�û exp "�2iẑ1m �u ��û# Ĝ ẑi; ẑ1m�u; ẑ1m�û!�P̂ �m̂z1 �ri � �u��û� P̂� �m̂z1 �ri � �u+�û� ; (244)where the normalization fa
tor S is given byS = Z d�u d�û exp "�2iẑ1m �u ��û# Ĝ ẑi; ẑ1m�u; ẑ1m�û!�P̂ [��u��û℄ P̂� [��u+�û℄ : (245)In the quasi-homogeneous 
ase (in
luding 
ases when the sour
e is not Gaus-sian, see Se
tion 6), if the lens is in the far �eld, one 
an writeĜ ẑi; ẑ1m�u; ẑ1m�û! = Î  ẑi; ẑ1m�u! g  ẑi; ẑ1m�û! exp "2iẑ1m �u ��û# : (246)Further on, within the a

ura
y of the quasi-homogeneous approximation, thespe
tral degree of 
oheren
e g behaves like a Dira
 Æ-fun
tion in the 
al
ulationof both the intensity and the 
ross-spe
tral density. In fa
t, the a

ura
y of thein
oherent impulse response jP̂j2 is also the a

ura
y of the quasi-homogenousassumption, and this is the a

ura
y with whi
h we 
an substitute g with aDira
 Æ-fun
tion on the image plane. As a result, in analogy with Eq. (227)one has 93



ĜP (ẑi; �ri;�r̂i)= 1Z�1 d�u Î  ẑi; ẑ1m�u!�P̂ �m̂z1 (�ri +�r̂i)� �u� P̂� �m̂z1 (�ri ��r̂i)� �u� ; (247)while the relative intensity 
an be written asÎP (ẑi; �ri) = 1D 1Z�1 d�u ����P̂ �m̂z1 �ri � �u�����2 Î  ẑi; ẑ1m�u! ; (248)D being de�ned in Eq. (232). The line input response is obtained by settingÎ(ẑi; ẑ1�u=m) to a Dira
 Æ-fun
tion, thus obtaining the line spread fun
tion:l(�ri) = ����P̂ �m̂z1 �ri�����2 = F�1( ~P ) : (249)The line spread fun
tion is therefore the inverse Fourier transform of the au-to
orrelation fun
tion of the pupil. The auto
orrelation fun
tion of the pupil,i.e. the Fourier transform of the line spread fun
tion, is also known as the Op-ti
al Transfer Fun
tion (OTF). Other relevant quantities introdu
ed in linearsystem theory are the phase of the Opti
al Transfer Fun
tion and its modulus,whi
h is known as the Modulation Transfer Fun
tion (MTF) [17℄.Eq. (248) and, 
onsequently, the line spread fun
tion approa
h, 
onstitutesa universal des
ription of the intensity in all quasi-homogeneous 
ases. Inliterature the line spread fun
tion is used to des
ribe perfe
tly in
oherentsour
es only. Note that, in general, radiation produ
ed by an ele
tron beam inan undulator is similar to an in
oherent sum of many independent laser-likebeams. Yet, it 
annot be 
onsidered as an in
oherent sum of point sour
esbe
ause, as we have seen in Se
tion 3, a single ele
tron 
annot be 
onsideredas a point-like radiation sour
e. Radiation produ
ed by a single ele
tron issimilar to a laser beam. If no in
uen
e of fo
using is present in the undulator,this laser-like beam has a waist lo
ated in the 
enter of the undulator. Atthe waist the radiation wavefront is plane and the radiation spot size is mu
hlarger than the wavelength. We extended the use of the line spread fun
tionapproa
h to the realm of quasi-homogeneous sour
es.In the 
ase of third generation light sour
es the line spread fun
tion method
an almost always be applied in the horizontal dire
tion. However, it fails inthe verti
al dire
tion, where third generation light sour
es are seldom quasi-homogeneous. If the sour
e is not quasi-homogeneous, the 
ross-spe
tral den-sity 
annot be fa
torized in the produ
t of the intensity and of the spe
traldegree of 
oheren
e, or the 
oheren
e length is not short (
ompared with thesize of the sour
e). As a result, the in
oherent line spread fun
tion l 
annot94



be used to des
ribe the system. The fun
tion P̂ is known as the 
oherentline spread fun
tion and must be used in its pla
e. In fa
t, when the sour
estarts to exhibit a high degree of transverse 
oheren
e (i.e. in the non quasi-homogeneous 
ase), the 
oherent line spread fun
tion, P̂ a
ts on the �eld atthe image plane analogously to the way the in
oherent line spread fun
tiona
ts on the intensity at the image plane. To see this, it is suÆ
ient to inspe
tEq. (100).It is interesting to 
ompare this viewpoint with what 
an be found in literature.For instan
e, in [6℄, where a 
ondenser system is dis
ussed, one may read: "Theintrinsi
 divergen
e of the extreme ultraviolet (EUV) undulator 
onsideredhere is �
en = 80�rad, whi
h is larger than the beamline a

eptan
e �a

ept of48�rad. Therefore it is evident that the in
oherent sour
e approximation holdshere and the term in
oheren
e sour
e is used a

ordingly in this paper". Inthe following Se
tions of their work, authors of [6℄ use a point-spread fun
tionapproa
h to a

ount for aberration e�e
ts: in their paper, the intensity atthe sour
e is used, instead of the 
ross-spe
tral density, in order to evaluateboth the intensity and the degree of 
oheren
e at the image plane. Su
h anapproa
h is justi�ed in the passage above, where they state that the sour
e isin
oherent.The statement in [6℄ about the in
oheren
e of the sour
e is a mis
on
eption.A

ording to su
h statement, perfe
tly 
oherent undulator radiation produ
edby an ele
tron beam with zero emittan
e should exhibit in
oherent propertieswhen the radiation divergen
e is larger than the a

eptan
e of the opti
alsystem. In 
ontrast with the assertion made in [6℄, the 
oheren
e propertiesof the sour
e are independent of the beamline elements whi
h follow. In orderto dis
uss about the 
oheren
e properties of the sour
e one has to refer to theradiation �eld at the virtual plane lo
ation only. In parti
ular, the fa
t thatthe sour
e is 
oherent (or not) does not depend on how the beam a

eptan
eangle s
ales with the intrinsi
 (single parti
le) divergen
e of the undulatorradiation. Our 
on
lusion is that the only parameters whi
h des
ribe wethera sour
e is quasi-homogeneous or not are (in the verti
al dire
tion) N̂y andD̂y. If the sour
e is quasi-homogeneous, a point-spread fun
tion approa
h 
anbe used. If not, the more general results des
ribed in Se
tion 14.1 should be
onsidered. In parti
ular, in the 
ase of [6℄, the verti
al rms dimension of thesour
e is �y = 16 �m and the radiation wavelength is � = 13:4 nm, while theundulator (see [7℄) is 
omposed of 55 periods, ea
h one 8 
m long. This meansLw = 4:4 m. Moreover, the verti
al emittan
e at ALS is �y ' 0:1nm, whilethe verti
al beta fun
tion for beamline 12 is �y = 4:2 m ' Lw. As a resultboth N̂y � 0:1 and D̂y � 0:1 and the sour
e is non-homogeneous. We 
on
ludethat, in this 
ase, approximations like Eq. (247) or Eq. (248) 
annot be used.Eq. (376) in Se
tion 14 should be 
onsidered instead.95



As a �nal remark we should stress that, even in 
ases when the virtual sour
eis quasi-homogeneous, one should verify the assumption that the lens is inthe far zone, before applying a point spread fun
tion formalism. In 
ontrastto this, note that in the usual framework of Statisti
al Opti
s, the radiantintensity from thermal sour
es is distributed over a solid angle of order 2�,and opti
al elements 
an always be 
onsidered in the far zone.8.2 Quasi-homogeneous non-Gaussian undulator sour
esIn the present Se
tion 8.2 we will extend results obtained in Se
tion 6. Resultsobtained in the previous Se
tion 8.1 apply for a quasi-homogeneous Gaussianundulator sour
e only. In parti
ular, under the assumptions N̂x � 1 andD̂x � 1 the 
ross-spe
tral density 
an be fa
torized in a horizontal and in averti
al 
ontribution, and results in Se
tion 8.1 
an be applied in the horizontaldire
tion. Note that, if N̂y � 1 and D̂y � 1, one has, automati
ally, D̂x � 1and D̂x � 1 and the same results in Se
tion 8.1 
an be separately appliedin both the horizontal and the verti
al dire
tions. Here, with the help of Eq.(135), we will in
lude the e�e
ts of a pupil in the one-dimensional 
ase whenthe sour
e is still quasi-homogeneous, but non-Gaussian. In parti
ular, wewill still assume N̂x � 1 and D̂x � 1 and 
on
entrate our attention onthe verti
al dire
tion. First we will study the 
ase when N̂y � 1 and D̂yis arbitrary and, then, the 
ase when N̂y is arbitrary and D̂y � 1. We willsee that the reasoning applied in the 
ase of quasi-homogeneous Gaussiansour
es also holds in the 
ase for quasi-homogeneous non-Gaussian sour
esas it relies on the separability of the 
ross-spe
tral density only. As a resultwe will present pra
ti
al examples of how, with minor substitutions, we 
anextend our analysis of the pupil e�e
ts to the 
ase of non-Gaussian sour
es.8.2.1 Sour
e with non-Gaussian angular distribution in the verti
al dire
tionLet us start 
onsidering the 
ase when D̂y is arbitrary and N̂y � 1. The pupilfun
tion and P̂ are given by Eq. (224) and Eq. (225). The r-dire
tion shouldbe now substituted with the y-dire
tion.We 
an use Eq. (135) and an asymptoti
 expression of Eq. (168) to des
ribethe 
ase when the lens is in the far zone, that is when 
ondition (136) issatis�ed. From Eq. (162) we 
an estimate the typi
al size of the sour
e thatis of order qN̂y, and of the 
orrelation length at the sour
e, that is of or-der min[1=qD̂y; 1℄. A

ording to Eq. (136), the lens is in the far zone whenqN̂y=ẑ1 � max[qD̂y ; 1℄. In this limit, Eq. (135) and Eq. (168) give96



ĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi�� Z d�u d�û exp "� ẑ21�u22N̂y # exp h�2D̂y ẑ21(�û)2i 
(ẑ1�û)�sin
�â �m̂z1 (�yi +�ŷi)� �u��û���sin
�â �m̂z1 (�yi ��ŷi)� �u+�û�� : (250)From Eq. (159), one sees that ẑ21 max[D̂y; 1℄ is of the order of the square of theradiation spot size on the pupil, while ẑ21=N̂y is of the order of the square ofthe 
oheren
e length on the pupil. Note that the limiting expression obtainedfrom Eq. (250) for D̂y � 1 is Eq. (226). As before, two interesting limiting
ases of Eq. (226) 
an be obtained 
omparing these two s
ales with â2, thatis the square of the pupil size.First, let us 
onsider the 
ase ẑ21=N̂y . â2 � ẑ21 max[1; D̂y℄. As we have alreadydis
ussed, in all situations when the quasi-homogeneous assumption is veri�ed,the exponential fun
tion in �û inside the integral in Eq. (250) behaves like aÆ-Dira
 distribution. As in Eq. (227) one obtainsĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi� 1Z�1 d�u exp "� ẑ21�u22N̂ #�sin
�â �m̂z1 (�yi +�ŷi)� �u���sin
�â �m̂z1 (�yi ��ŷi)� �u�� : (251)Setting �ŷi = 0 one yields the intensityÎP (ẑi; �yi)= 1C 1Z�1 d�u exp "� ẑ21�u22N̂ # ����sin
 �â�m̂z1 �yi � �u������2 ; (252)where the normalization 
onstant C has already been de�ned in Eq. (229). Theresult in Eq. (252) is equivalent to the intensity already given in Eq. (228). It
an also be written as in Eq. (236), that isÎP (ẑi; �yi)= 1N 1Z�1 d� exp "�N̂�22ẑ21 # tri� �2â� exp ��i�m̂z1 �yi� ; (253)where N is de�ned in Eq. (237). After introdu
tion of ~P as in Eq. (238), Eq.(253) 
an be rewritten as Eq. (239), 97



ÎP (ẑi; �yi)= 1N 1Z�1 d� exp "�N̂�22ẑ21 # ~P (�) exp ��i�m̂z1 �yi� : (254)In this 
ase, the expression for the intensity is the same as in the 
ase D̂y � 1.Also note that the results obtained for the 
ase ẑ21=N̂y . â2 � ẑ21 max[1; D̂y℄are valid in the limit ẑ21=N̂y � â2 � ẑ21 max[1; D̂y℄ as well. In this 
ase Eq.(252) 
an be simpli�ed toÎP (ẑi; �yi)= exp "�m2�y2i2N̂ # : (255)The se
ond limiting 
ase that we 
an mention here for 
omparison with whathas been done in the Gaussian 
ase is when â2 � ẑ21=N̂ � max[D̂y; 1℄ẑ21 thepupil is 
oherently and uniformly illuminated. In this 
ase one re
overs thesame results in Eq. (240) and Eq. (241).To sum up, we obtain, in all situations, the same intensity as in the 
aseD̂y � 1 .8.2.2 Sour
e with non-Gaussian intensity distribution in the verti
al dire
-tionLet us now study the 
ase when N̂y is arbitrary and D̂y � 1.We 
an use Eq. (135) and an asymptoti
 expression of Eq. (192) to des
ribethe 
ase when the lens is in the far zone, that is when 
ondition (136) issatis�ed. From Eq. (188) we 
an estimate the typi
al size of the sour
e thatis of order max[qN̂y; 1℄, and of the 
orrelation length at the sour
e, that isof order 1=qD̂y. A

ording to Eq. (136), the lens is in the far zone whenmax[qN̂y; 1℄=ẑ1 � qD̂y. In this limit, Eq. (135) and Eq. (192) giveĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi� Z d�u d�û� 1Z�1 d�̂y exp264���̂y + ẑ1�u�22N̂y 375 B̂(�̂y) exp h�2D̂y ẑ21(�û)2i�sin
�â �m̂z1 (�yi +�ŷi)� �u��û���sin
�â �m̂z1 (�yi ��ŷi)� �u+�û�� : (256)A

ording to Eq. (171), the quantity ẑ21D̂y is of the order of the square of the98



radiation spot size on the pupil, while ẑ21=max[N̂y; 1℄ is of the order of thesquare of the 
oheren
e length on the pupil. Note that the limiting expressionobtained from Eq. (256) for D̂y � 1 is Eq. (226). We will study again twolimiting 
ases of Eq. (256), whi
h 
an be obtained 
omparing these two s
aleswith â2, that is the square of the pupil size.First, let us 
onsider the 
ase ẑ21=max[N̂y; 1℄ . â2 � ẑ21D̂. As before, be
auseof the quasi-homogeneous assumption is veri�ed, the exponential fun
tion in�û inside the integral in Eq. (256) behaves like a Æ-Dira
 distribution. OneobtainsĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi�� 1Z�1 d�u 1Z�1 d�̂y exp264���̂y + ẑ1�u�22N̂y 375 B̂(�̂y)�sin
�â �m̂z1 (�yi +�ŷi)� �u���sin
�â �m̂z1 (�yi ��ŷi)� �u�� : (257)This 
orresponds to the intensityÎP (ẑi; �yi)= 1~C 1Z�1 d�u 1Z�1 d�̂y exp264���̂y + ẑ1�u�22N̂y 375 B̂(�̂y)� ����sin
 �â�m̂z1 �yi � �u������2 ; (258)where~C= 1Z�1 d�u 1Z�1 d�̂y exp264���̂y + ẑ1�u�22N̂y 375 B̂(�̂y) jsin
 (â�u)j2 : (259)In analogy with Eq. (239), Eq. (258) 
an also be written as:ÎP (ẑi; �yi)= 1~N 1Z�1 d�(exp"�N̂y�22ẑ21 # � � �2ẑ1�) ~P (�) exp ��i�m̂z1 �yi� ;(260)where the normalization fa
tor ~N is de�ned as99



~N = 1Z�1 d�(exp "�N̂y�22ẑ21 #� � �2ẑ1�) ~P (�) : (261)Note that results obtained in the 
ase ẑ21=max[N̂y; 1℄ . â2 � ẑ21D̂ are alsovalid in the asymptote for ẑ21=max[N̂y; 1℄� â2 � ẑ21D̂. In this 
ase, Eq. (258)is simpli�ed toÎP (ẑi; �yi)= 1~S 1Z�1 d�̂y exp264���̂y +m�yi�22N̂y 375 B̂(�̂y) ; (262)where~S = 1Z�1 d�̂y exp24� �̂2y2N̂y 35 B̂(�̂y) : (263)The se
ond limiting 
ase that we will mention here for 
omparison with whathas been done in the Gaussian 
ase is for â2 � ẑ21=max(N̂y; 1) � D̂y ẑ21 thepupil is 
oherently and uniformly illuminated. In this 
ase one re
over thesame results in Eq. (240) and Eq. (241).However, in general, the expression for the intensity is di�erent from that forN̂y � 1 .9 Aberrations and imaging of quasi-homogeneous sour
esUp to now we have dis
ussed 
ases when no aberrations are present. Althoughthere are widespread treatments of Aberration Theory in literature, we will in-trodu
e our own here, so that this work is self-
onsistent. In parti
ular, we willfo
us on the one-dimensional 
ase, whi
h has not been treated widely in booksand monographies, aside for some ex
eption (see [18℄). In the present Se
tion9 we will assume that the virtual undulator sour
e is quasi-homogeneous. Al-though we will begin introdu
ing the Opti
al Transfer Fun
tion (OTF) forthe system, we will mainly be 
on
erned with the line spread fun
tion of thesystem. In addition to that we will dis
uss the 
ase of severe aberrations,presenting new analyti
al results for this asymptote and 
omparison with nu-meri
al 
al
ulations. Finally, we will intensively dis
uss defo
using aberrationsand present general analyti
al results for this 
ase too. Our parti
ular 
onsider-ation of the defo
using 
ase is justi�ed by the fa
t that this is a privileged kindof aberration in the framework of Fourier Opti
s. In fa
t it shows a quadrati
100
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iFig. 20. The line spread l fun
tion in the presen
e of defo
using aberration.dependen
e of the phase error along the pupil aperture, that is quite a naturaldependen
e in the Fourier Opti
s approa
h. Quadrati
 phase fa
tors, whi
h
an be interpreted as defo
using aberrations, are present even in the 
ase ofa pinhole 
amera setup (that will be treated in the next Se
tion 10) and ofimaging from ideal lenses in an arbitrary plane of interest behind the lens (asit will be seen in Se
tion 11 and 12).9.1 Aberrations and the e�e
t of aperture sizeIn general, aberrations may be a

ounted for substituting the pupil fun
tionP , the 
oherent line spread fun
tion P̂, the auto
orrelation fun
tion ~P and theFourier transform of the auto
orrelation fun
tion F( ~P ) with new fun
tions,respe
tively Pa,P̂a, ~Pa and F( ~Pa), that a

ount for aberrations. Sin
e from thevery beginning of the present Se
tion 9 we 
onsidered only the one-dimensional
ase, we will 
onsider one-dimensional aberration theory only. Generalizationis possible, although 
al
ulations would be
ome more 
umbersome.Mathemati
ally, the presen
e of aberrations in one-dimension modi�es thepupil fun
tion by means of a phase error �(r̂) leading to101
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tion in the presen
e of defo
using aberration.Pa(r̂) = P (r̂) exp [i�(r̂)℄ : (264)It is 
ustomary (see, for instan
e, [18℄) to 
onsider phase errors of the form:� (r̂) = bn  r̂̂a!n ; (265)n being an integer number, and bn being the maximumphase error at the edgeof the aperture. The value n = 0 
orresponds to a 
onstant phase error andhas no e�e
ts, as it 
an
els out when one 
al
ulates the pupil auto
orrelationfun
tion. The value n = 1 
ontributes to the auto
orrelation fun
tion fora phase term linearly varying with the position. Its only e�e
t is to shift theimage position. We will not deal with the 
ases n = 0 and n = 1. We will fo
usinstead on the values n = 2 
orresponding to defo
using, n = 3 
orrespondingto 
oma and n = 4 
orresponding to spheri
al aberrations.As we have seen in Se
tion 8, the presen
e of the pupil 
an be dealt with in-dependently of how the pupil extension â s
ales with respe
t to the radiationspot size and 
oheren
e length at the pupil lo
ation. Every quasi-homogeneousimaging system 
an be des
ribed by means of a line spread fun
tion that de-pends on the physi
al 
hara
teristi
s of the pupil only. As has been shownin Se
tion 8, the knowledge of the line spread fun
tion l and of the inten-103
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Fig. 24. The transfer fun
tion in the presen
e of 
oma aberration.sity at the image plane without the pupil in
uen
e allows one to re
onstru
tthe a
tual image by means of a 
onvolution operation. In the present 
ase ofinterest, the line spread fun
tion must be 
al
ulated a

ounting for the pres-en
e of aberrations. With in mind the purpose of 
al
ulating the line spreadfun
tion in presen
e of aberrations, and with the only assumption of a quasi-homogeneous sour
e, we start 
onsidering Eq. (137). The quasi-homogeneousassumption allows to represent the 
ross-spe
tral density at the virtual sour
eplane as Ĝ(0;�ẑ1�u;�z1�û) = Î(0;�ẑ1�u)g(0;�ẑ1�û). By de�nition of quasi-homogeneity, and with the a

ura
y of the quasi-homogeneous assumption(max[1; N̂y℄ �max[1; D̂y℄)�1=2, the spe
tral degree of 
oheren
e g plays the roleof a Dira
 Æ-fun
tion in the 
al
ulation of the intensity. Su
h 
al
ulation beginsfrom Eq. (137). A

ounting for the pupil in
uen
e, the following expressionfor the intensity at the image plane is therefore found:ÎP (ẑi; �ri) = 1D 1Z�1 d�u ����P̂a �m̂z1 �ri � �u�����2 Î(0;�ẑ1�u) ; (266)where we re
all that D is de�ned in Eq. (232). Note that Eq. (266) is obtainedfrom Eq. (137) under the only assumption of quasi-homogeneity. Also, when104
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tion in the presen
e of both spheri
al and defo
usingaberrations.jP̂aj2(�) �! Æ(�) we obtain ba
k an ideal lens and ÎP (ẑi; �ri) = Î(0;�m�ri).By de�nition, the line spread fun
tion 
an be obtained by letting Î(0; r̂) �!Æ(r̂) in Eq. (266). As a result we havel(�ri) = ����P̂a�m̂z1 �ri�����2 = 1Z�1 d� ~Pa(�) exp"�i �̂di �ri# : (267)The proof of the last equality in Eq. (267) is based on the auto
orrelationtheorem, whi
h states that if the (two-dimensional) Fourier transform of afun
tion w(x; y) with respe
t to variables �x and �y is indi
ated by �w(�x; �y),then the Fourier transform of the two-dimensional auto
orrelation fun
tion ofw(x; y) with respe
t to the same variables �x and �y is given by j �w(�x; �y)j2.In formulas, after de�nition of the auto
orrelation fun
tionA[w℄(x; y) = 1Z�1 d� 1Z�1 d�w(� + x; � + y)w�(�; �) ; (268)105



whi
h is equivalent toA[w℄(x; y) = 1Z�1 d� 1Z�1 d�w(� + x=2; � + y=2)w�(� � x=2; � � y=2) ; (269)the auto
orrelation theorem states that1Z�1 dx 1Z�1 dy exp [i(�xx+ �yy)℄A[w℄(x; y) = j �w(�x; �y)j2 : (270)Eq. (267) 
ould have been written down immediately just re
alling that the linespread fun
tion is the Fourier transform of the pupil auto
orrelation fun
tion.It is 
onvenient to make the 
hange of variable � �! �xâ. In fa
t, be
auseof the de�nition of bn in Eq. (265), only the ratio �r̂=â, or �=â = 2�r̂=â isimportant. Aside for an unimportant fa
tor â, the line spread fun
tion be
omesl(�ri) = 1Z�1 d�x ~Pa(â�x) exp"�i â̂di�x�ri# : (271)The auto
orrelation fun
tion of the pupil ~Pa, whi
h is the Fourier transformof l, is known under the name of Opti
al Transfer Fun
tion (OTF) of the sys-tem. The Opti
al Transfer Fun
tion and the line spread fun
tion are obviouslyequivalent and their knowledge solves the problem of a

ounting for aberra-tions. The Opti
al Transfer Fun
tion 
an be written expli
itly modifying Eq.(238) to in
lude a phase error in the expression for the pupil fun
tion, that is~Pa(â�x)= Z d�x P �â��x+ �x2 ��P �â��x� �x2 ��� exp�i� �â��x+ �x2 ��� i� �â��x� �x2 ��� : (272)A

ounting for the de�nition of the phase error � in Eq. (265) one obtainsfrom Eq. (272) the following expression for the Opti
al Transfer Fun
tion:~Pa(â�x)= 1Z�1 d�x P �â��x+ �x2 ��P �â��x� �x2 ��� exp(ibn "��x+ �x2 �n � ��x� �x2 �n#) : (273)106



Here P is the pupil fun
tion with no aberrations or apodizations and only anaberration term of order n has been 
onsidered. If �x is outside the interval[�1; 1℄, at least one of the P fun
tions in the integral gives zero value. Asa result we may substitute the integration limits in Eq. (273) to obtain thefollowing expression for the Opti
al Transfer Fun
tion:~Pa(â�x)= 1Z�1 d�x P �â��x+ �x2 ��P �â��x� �x2 ��� exp(ibn "��x+ �x2 �n � ��x� �x2 �n#) : (274)With the help of Eq. (265) it is possible to dire
tly 
al
ulate how di�erentaberrations modify the expression for the auto
orrelation fun
tion and itsFourier transform. These 
omputations 
an be 
arried out by means of nu-meri
al te
hniques for any value of n and bn, in analogy with what has beendone in [18℄.For 
ompleteness we will now 
al
ulate the Opti
al Transfer Fun
tion in sev-eral situations, whi
h may also be found in [18℄. In addition, we will alsopresent the line spread fun
tion typi
al of these situation, whi
h 
annot beeasily found in textbooks. Other kind of aberrations 
an be treated in thesame fashion, and pupils with di�erent shape may be sele
ted. We are inter-ested in the 
ase when the in
uen
e of the phase error is 
omparable with thein
uen
e of di�ra
tion e�e
ts on the pupil, i.e. when jbnj � 1. Here we will
onsider several 
ases for defo
using (n = 2), 
oma (n = 3), spheri
al aber-rations (n = 4) and a 
ombination of defo
using and spheri
al aberrations aswell. This last situation is per se interesting, be
ause it illustrates how it ispossible to improve the quality of a lens with spheri
al aberration by furtherintrodu
ing a defo
using aberration (in the 
ase under study, i.e. for jbnj � 1).In Fig. 20, Fig. 21 and Fig. 22 we plot the line spread fun
tions des
ribingthese aberration 
ases. As an aside it is worth to anti
ipate here that Fig. 20is stri
tly related with the resolution of a pinhole 
amera setup. This will bedemonstrated in the next Se
tion 10. As has been already said, the knowledgeof the line spread fun
tion is 
ompletely equivalent to the knowledge of thetransfer fun
tion (OTF) of the system. In Fig. 23, Fig. 24, and Fig. 25 we plotthe transfer fun
tions relative to the same 
ases treated in Fig. 20, Fig. 21 andFig. 22.In 
losing, it is interesting to deal with the limit when ẑ21=N̂ � â2 � D̂ẑ21.In this 
ase the 
oheren
e length at the pupil is mu
h smaller than the 
har-a
teristi
 pupil size, or, equivalently, Pa(r̂1)P �a (r̂2) ' jPa(r̂1)j2 ' jPa(r̂2)j2, aspresented in Eq. (7.2-15b) of [8℄. In order to retain this last simpli�
ation whenaberrations are present, we must require that the phase of the pupil fun
tionPa (that is now a 
omplex obje
t) is not appre
iably di�erent when r̂1 and107



r̂2 are separated by a distan
e of order of the 
oheren
e length or smaller.This is equivalent to the requirement that the 
hara
teristi
 s
ale of the lensimperfe
tions is mu
h larger than the 
oheren
e length. Mathemati
ally, thismeans that jbnj . 1. Under this assumption, aberrations 
annot a�e
t the
ross-spe
tral density in the limit ẑ21=N̂ � â2 � D̂ẑ21. This fa
t is known froma long time and, as reported in [8℄, it was �rst dis
overed by Zernike [19℄.The same limiting 
ase 
an be presented in the line spread fun
tion formal-ism. One should re
all that the resolution due to di�ra
tion e�e
ts is of orderẑ1=(âqN̂), as has already been seen in the previous Se
tion 8. This meansthat in the limit ẑ21=N̂ � â2 � D̂ẑ21 it makes sense to a

ount for di�ra
tione�e
ts from the pupil, be
ause in this 
ase the resolution due to di�ra
tione�e
ts is worse than that related with the quasi-homogeneous approximation(ẑ1=(âqN̂) � 1=qN̂ D̂). However, one may 
hoose to worsen the resolutionof the 
al
ulations from 1=qN̂D̂ to the resolution due to di�ra
tion e�e
ts,ẑ1=(âqN̂) � 1. This is equivalent to negle
t di�ra
tion e�e
ts. In this 
ase,sin
e jbnj . 1, the auto
orrelation fun
tion of the pupil 
an be substitutedwith unity or, equivalently, the line spread fun
tion l plays the role of a Dira
Æ-fun
tion in the 
al
ulation of the intensity. Therefore, aberrations 
annot af-fe
t the intensity distribution at the image plane. Moreover, the expression forthe spe
tral degree of 
oheren
e Eq. (231), remains valid for jbnj . 1 be
ause,as already dis
ussed, Pa(r̂1)P �a (r̂2) ' jPa(r̂1)j2 ' jPa(r̂2)j2. One 
on
ludes thatin this limit, and with resolution ẑ1=(âqN̂)� 1, aberrations 
annot a�e
t the
oheren
e properties on the image plane.9.2 Severe aberrationsIt is now interesting to dis
uss an analyti
al treatment valid in the 
ase forjbnj � 1, whi
h exploits the simpli�
ations arising from the large parameterjbnj. Under this 
onstraint, aberrations will be 
onsidered severe.9.2.1 Physi
al Opti
s predi
tion of the line spread fun
tionUnder the approximation jbnj � 1, it is possible to present an analyti
al 
al-
ulation for the line spread fun
tion l whi
h 
hara
terizes the imaging systemin the 
ase of quasi-homogeneous sour
es. Then, on
e the line spread fun
tionis known, one obtains the intensity at the image plane by 
onvolving the linespread fun
tion and the intensity from an ideal system (i.e. without a

ountingfor the pupil in
uen
e).Let us now fo
us on that term in the phase fa
tor of Eq. (274) whi
h is linearin �x, i.e. on nbn�x�xn�1. We will assume that the integrand 
ontributes to108



the integral for all values of �x inside the interval [�1; 1℄, otherwise the au-to
orrelation fun
tion would be suppressed, as the e�e
tive integration rangewould be smaller than [�1; 1℄. Then, a typi
al s
ale of the auto
orrelationfun
tion is obtained in terms of �x by imposing njbnj�x�xn�1 � 1. In fa
t,as njbnj�x�xn�1 > 1 the integrand starts to exhibit fast os
illatory behavior,thus suppressing the integral. Thus, the 
hara
teristi
 s
ale �xtyp � 1=(njbnj)is found. Sin
e we assumed jbnj � 1, we 
an state that, with a

ura
y 1=jbnj,the fun
tions P inside the integrand 
an be substituted with unity and thenonlinear phase fa
tors in �xk with k = 2; 3::: 
an be negle
ted, at leastfor reasonable orders of n, as they would give rise to typi
al s
ales of order1=jbnj1=k � 1=jbnj. As a result we obtain the following major simpli�
ation:~Pa(â�x)= 1Z�1 d�x exp hinbn�x�xn�1i : (275)Eq. (275) 
an be integrated analyti
ally for all values of n (therefore in
ludingdefo
using, 
oma, spheri
al or higher order aberrations). After de�nition ofT (n; bn;�x)= 2(n� 1) [�inbnx℄ 1n�1� �(n� 1)��0; nn� 1�� �� 1n� 1 ;�inbn�x�� ; (276)�(s; z) being the in
omplete Euler gamma fun
tion�(s; z) = 1Zz dt ts�1 exp[�t℄ ; (277)we have the following result:~Pa(â�x) = Re [T (n; bn;�x)℄ + �(n) � Im [T (n; bn;�x)℄ ; (278)where �(n) is the parity of n, i.e. �(n) = 0 if n is even and �(n) = 1 if n isodd. Eq. (278) is valid for any value of n > 1.It is interesting to 
ompare the shape of the auto
orrelation fun
tion obtainedin the limiting 
ase jbnj � 1 with that obtained with numeri
al 
al
ulationswhi
h do not exploit the simpli�
ation based on the large value of the pa-rameter jbnj. They rely, instead, on the exa
t formula for the auto
orrelationfun
tion, Eq. (274) . This gives a visual idea of the a

ura
y of the asymptoti
.Fixing bn = 9� we plot the auto
orrelation fun
tion for defo
using aberrations,with n = 2, in Fig. 26 and Fig. 27. For 
oma aberrations, with n = 3, we plot109



the real part of the auto
orrelation fun
tion in Fig. 28 and Fig. 29, while theimaginary part is plotted in Fig. 30 and Fig. 31. The fun
tion T should betrun
ated as �x > 2.Expli
it substitution of Eq. (275) in Eq. (271) givesl(�ri) = 1Z�1 d�x 1Z�1 d�x exp hinbn�x�xn�1i exp "�i â̂di�x�ri# : (279)Finally, ex
hange of the integration order and 
al
ulation of the integral ind�x yields the following expression for the line spread fun
tion, provided thatjbnj � 1:l(�ri) = 1Z�1 d�x Æ  nbn�xn�1 � â̂di �ri! : (280)Eq. (280) may be expli
itly evaluated with the help of the new integrationvariable y = nbn�xn�1. Care must be taken in separating the 
ases when n iseven and when n is odd.When n is even we obtainl(�ri) = 12(n� 1) nbnZ�nbn dy Æ  y � â̂di �ri! abs(y)nbn !�n�2n�1= 12(n� 1)re
t â�ri2d̂inbn! �  â abs(�ri)d̂inbn !�n�2n�1 : (281)Here the fun
tion re
t(x) is de�ned, as before, following [8℄, and is equal tounity for jxj 6 1=2 and zero otherwise. When n is odd we havel(�ri) = 1n� 1 nbnZ0 dy Æ y � â̂di �ri!� ynbn��n�2n�1= 1n� 1re
t â�rid̂inbn � 12! �  â�rid̂inbn!�n�2n�1 : (282)Introdu
tion of the new variable �r00 = â�ri=(d̂inbn) allows to write Eq. (281)and Eq. (282) in a more 
ompa
t way,l(�r00)= 12(n � 1)re
t �r002 ! � (abs(�r00))�n�2n�1 (283)110



when n is even, andl(�r00)= 1n� 1re
t��r00 � 12� � (�r00)�n�2n�1 (284)when n is odd. Note that we have normalized Eq. (283) and Eq. (284) in su
ha way that integration of l in d�r00 over the real �eld gives unity.As we will see later on, Eq. (283) and Eq. (284) 
an be found with the help ofGeometri
al Opti
s alone. We will refer to su
h derivation as the Geometri
alOpti
s predi
tion of the line spread fun
tion. We plotted Eq. (283) or Eq. (284)as a fun
tion of �r00 for di�erent aberrations. In Fig. 32 we plotted the 
ase ofdefo
using aberration , in Fig. 33 the 
ase of 
oma and in Fig. 34 the 
aseof spheri
al aberrations. Also, in these �gures, 
omparison with numeri
al
al
ulations is shown for the severe aberration 
ases b2 = 9�, b3 = 9� andb4 = 9�. Note that Eq. (283) is symmetri
 in �r00 (when n is even l is symmetri
),while Eq. (284) is not (when n is odd l is not symmetri
). This is 
onsistentwith the fa
t that the Opti
al transfer fun
tion is real in the 
ase n is even,while it has a non-zero imaginary part in the 
ase n is odd (see, for instan
e,Fig. 23, Fig. 24 and Fig. 25 and, later on, Fig. 26, Fig. 28 and Fig. 30). Thesame behavior is also found in Fig. 20, Fig. 21 and Fig. 22. Furthermore itshould be noted that the line spread fun
tions in Fig. 33 and Fig. 34 are not
onvergent for values of �r00 near zero. However, the meaning of the line spreadfun
tion is that of the imaged intensity from a line input, but a line input isnot physi
al, and must be represented in terms of a generalized fun
tion, aÆ-Dira
 fun
tion. It is not surprising that su
h an obje
t may lead to a singularresult.9.2.2 Physi
al Opti
s and Geometri
al Opti
sIn the previous Se
tion 9.2.1 we presented a 
al
ulation of the line spreadfun
tion l for the 
ase jbnj � 1 based on Physi
al Opti
s. This gave us Eq.(280) for the line spread fun
tion or, equivalently, Eq. (281) and Eq. (282), thatare an expli
it evaluation of Eq. (280) in the 
ase n is even or odd. We haveseen that the analyti
al treatment in Se
tion 9.2.1 follows mathemati
ally froma major simpli�
ation of Eq. (274), arising from the large parameter jbnj � 1.Physi
ally, this 
ondition means that e�e
ts of di�ra
tion from the pupil 
anbe negle
ted. Consider the expression for the pupil auto
orrelation fun
tion,Eq. (272). On the one hand, when �x � 1=bn the phase term due to aberratione�e
ts in Eq. (272) be
omes 
omparable to unity, thus leading to os
illatorybehavior of the integrand. On the other hand, the pupil �nite aperture limitsthe integration in Eq. (272) for �x � 1. Therefore, jbnj � 1 di�ra
tion e�e
ts
an be negle
ted, while they start to be
ome important when jbnj . 1. Itfollows that it must be possible to obtain results in Se
tion 9.2.1, whi
h have111
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Fig. 26. The transfer fun
tion in the presen
e of defo
using aberration (n = 2,b2 = 9�). Numeri
al te
hniques have been used to 
al
ulate the exa
t auto
orrela-tion fun
tion that is 
ompared to the analyti
al evaluation of the auto
orrelationfun
tion in the severe aberration asymptote.been derived with the help of physi
al Opti
s, with the help of Geometri
alOpti
s only. In the next Se
tion 9.2.3 we dis
uss how this 
an be done.Before doing that it is worth to dis
uss the relationship between Geometri
aland Physi
al Opti
s, whi
h may otherwise be misleading. We should make
lear that when we dis
uss about Geometri
al or Physi
al Opti
s we are talkingabout possible ways of 
al
ulating the line spread fun
tion of the system l.In Se
tion 8 we have introdu
ed the 
on
ept of line spread fun
tion l andwe have demonstrated that, under the assumption that the virtual sour
e isquasi-homogeneous, l 
onstitutes a sort of passport for a given lens. It relatesthe intensity from any quasi-homogeneous sour
e imaged with a perfe
t lensand the intensity obtained by using a parti
ular non-ideal lens. The intensityfrom a spe
i�
 opti
al system 
an be re
overed as a 
onvolution of the intensityobtained in the 
ase of an ideal opti
al system and the line spread fun
tion.The intensity from an ideal system at the image plane is, by de�nition, theintensity at the virtual sour
e. Therefore, when the quasi-homogeneous ap-proximation is appli
able, it is always possible to break the imaging problem112
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Fig. 27. An enlarged version of Fig. 26. Numeri
al te
hniques have been usedto 
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
alevaluation of the auto
orrelation fun
tion in the severe aberration asymptote.into two separate problems. First, spe
ify the intensity distribution of thesour
e. Se
ond, spe
ify the opti
al system through the l fun
tion.When di�ra
tion e�e
ts are negligible with respe
t to aberration e�e
ts, i.e.when jbnj � 1, the line spread fun
tion of the lens 
an be 
al
ulated by bothPhysi
al Opti
s 
onsiderations (as in Se
tion 9.2.1) and Geometri
al Opti
s
onsiderations, as in the next Se
tion 9.2.3. In this 
ase, a �nite aperture sizedoes not in
uen
e the 
al
ulation of the line spread fun
tion. It is responsiblefor the quantity of the total energy transmitted only. On
e the sour
e 
hara
-teristi
s are spe
i�ed, one may use a ray-tra
ing 
ode to get the image intensityfrom a non-ideal system or, equivalently, one may 
al
ulate the l fun
tion and
onvolve with a s
aled version of the intensity on the virtual sour
e. Whendi�ra
tion e�e
ts are not negligible anymore, l 
an be evaluated with the helpof Physi
al Opti
s 
onsiderations only. In this 
ase, use of ray-tra
ing 
odesto solve the imaging problem makes no sense. Yet, the quasi-homogeneousapproximation allows one to use a line spread fun
tion approa
h. Convolu-tion of l with a s
aled version of the intensity on the virtual sour
e solves theimaging problem. From this viewpoint the quasi-homogeneity of the sour
e isan a priori 
ondition with respe
t to the possibility of applying Geometri
al113
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^χ/aFig. 28. The real part of the transfer fun
tion in the presen
e of 
oma aberra-tion (n = 3, b3 = 9�). Numeri
al te
hniques have been use to 
al
ulate the exa
tauto
orrelation fun
tion that is 
ompared to the analyti
al evaluation of the auto-
orrelation fun
tion in the severe aberration asymptote.Opti
s for the solution of imaging problems from a non-ideal setup.A �nal word of 
aution should be spent regarding notations histori
ally used torepresent aberrations (see, for instan
e, [20℄). On the one hand, the knowledgeof the phase error �(r̂) = bn(r̂=â)n is equivalent to the knowledge of thesurfa
es of equal phase, i.e. of the wavefronts of the ele
tromagneti
 �eld. Inthis 
ase one usually talks about "wave aberration". On the other hand, theknowledge of the derivative d�(r̂)=dr̂ (or, in more dimensions, of the gradient~r�(~̂r)) is equivalent to the knowledge of the ve
tor �eld orthogonal to thewavefronts of the ele
tromagneti
 �eld. In the 
ase di�ra
tion e�e
ts are notpresent, one may identify d�(r̂)=dr̂ with the extra angular displa
ement of aray and re
over the deviation of the transverse 
oordinate of a ray on the imageplane. In this 
ase, usually, one talks about "Geometri
al aberration" [20℄ 21 . Itshould be 
lear though, that the presentations in terms of "Wave aberration"and "Geometri
al aberration" are 
ompletely equivalent from a mathemati
al21 In referen
e [21℄ the term "Rays aberration" is used in pla
e of "Geometri
alaberration" 114
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^χ/aFig. 29. An enlarged version of Fig. 28. Numeri
al te
hniques have been use to
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
al eval-uation of the auto
orrelation fun
tion in the severe aberration asymptote.viewpoint, regardless the value assumed by the parameter jbnj with respe
t tounity. Therefore, one needs to 
learly distinguish between the language used(Geometri
al or Wave aberration) and the possibility of applying Geometri
alOpti
s to 
al
ulate the line spread fun
tion. When jbnj . 1 this is not possible,and one has to rely on Wave Opti
s predi
tions for the line spread fun
tionl only. When jbnj � 1 one may rely both on Wave Opti
s predi
tions (seeSe
tion 9.2.1) or Geometri
al Opti
s predi
tions (see Se
tion 9.2.3), and thetwo predi
tions must 
oin
ide.9.2.3 Geometri
al Opti
s predi
tion of the line spread fun
tionAs has been already said in Se
tion 9.2.2, when di�ra
tion e�e
ts are negligiblewith respe
t to aberration e�e
ts, i.e. when jbnj � 1, the line spread fun
tionof the lens 
an be 
al
ulated by both Physi
al Opti
s 
onsiderations (as inSe
tion 9.2.1) and Geometri
al Opti
s 
onsiderations. In this 
ase, a �niteaperture size does not in
uen
e the 
al
ulation of the line spread fun
tion,and is responsible for the quantity of the total energy transmitted only.115
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^χ/aFig. 30. The imaginary part of the transfer fun
tion in the presen
e of 
oma aber-ration (n = 3, b3 = 9�). Numeri
al te
hniques have been use to 
al
ulate the exa
tauto
orrelation fun
tion that is 
ompared to the analyti
al evaluation of the auto-
orrelation fun
tion in the severe aberration asymptote.In the Geometri
al Opti
s limit, Maxwell equations 
an be repla
ed by thesimpler Eikonal equation, whi
h should be solved for surfa
es of equal phase.In our one-dimensional 
ase of study, these surfa
es are indeed lines on theplane r̂ � ẑ and may be indi
ated with the family �p(r̂; ẑ), where p identi�esa parti
ular value of the phase. On
e the fun
tions �p are known, one 
anre
over the usual ray-tra
ing te
hniques remembering that rays are, at anypoint, normal to surfa
es with equal phase. The following ray equation holds:~s(r̂; ẑ) = ~r�p(r̂; ẑ) ; (285)where ~s indi
ates a ve
tor �eld tangent to the rays expressed in normalizedunits. If the lens is ideal one re
overs, at the image plane, the intensity pro�leof the sour
e reversed and magni�ed. In parti
ular, a line input would bemapped to a line on the image plane. However, aberrations modify the surfa
esof equal phase in Eq. (285), be
ause a phase error is to be added to �p . As aresult, when 
al
ulating ~s by means of Eq. (285), one obtains an extra angulardispla
ement in normalized units for ea
h ray dependent on the transverseposition of the ray, that is 116
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^χ/aFig. 31. An enlarged version of Fig. 30. Numeri
al te
hniques have been use to
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
al eval-uation of the auto
orrelation fun
tion in the severe aberration asymptote.�(r̂) = d�(r̂)dr̂ = n̂abn  r̂̂a!n�1 : (286)It follows that the 
oordinate of the ray going through the lens at transverseposition r̂ has a transverse position, at the image plane, given by�ri(r̂) = nd̂iâ bn  r̂̂a!n�1 : (287)The relation between the 
oordinate of a ray at the pupil and its transverseposition at the image plane for n = 2 (defo
using), n = 3 (
oma), and n = 4(spheri
al aberration) is plotted in Fig. 35.If the lens is hit by a �nite number of rays, the output of the system at theimage plane is 
onstituted by a �nite sum of Dira
-Æ fun
tions. Ea
h of these
an be represented in the impli
it form Æ ��ri � nd̂iâ bn � r̂̂a�n�1�. Therefore, if thelens is homogeneously illuminated by an in�nite number of rays from the input117
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l

r''Fig. 32. The line spread fun
tion versus the redu
ed 
oordinate on the image plane�r00 = â�ri=(d̂inbn) in the 
ase of severe defo
using aberration(n = 2, b2 = 9�) and
omparison with the geometri
al opti
s predi
tion.line sour
e, we obtain the line spread fun
tionl(�ri) = aZ�a dr̂Æ 24�ri � nd̂iâ bn  r̂̂a!n�135 : (288)Finally, using the new integration variable �x = r̂=â and normalizing l so thatthe integral of l gives unity yieldsl(�ri) = 1Z�1 d�xÆ  �ri � nd̂iâ bn�xn�1! ; (289)that is equivalent to Eq. (280). From a ray-tra
ing viewpoint, the problem of
al
ulating the line spread fun
tion redu
es to the problem of transforming auniform distribution of rays into a non-uniform distribution related to the non-linear transformation Eq. (287). When jbnj . 1 instead, Geometri
al Opti
s
annot be used to 
al
ulate the l fun
tion, and the Eikonal approximationfails. As we have seen in Se
tion 9.2.1 this is equivalent, in the language ofPhysi
al Opti
s, to a situation when the simpli�
ation in Eq. (275) does not118
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l

r''Fig. 33. The line spread fun
tion versus the redu
ed 
oordinate on the image plane�r00 = â�ri=(d̂inbn) in the 
ase of severe 
oma aberration (n = 3, b3 = 9�) and
omparison with the geometri
al opti
s predi
tion.hold.10 Pinhole opti
sTaking advantage of Eq. (133), we will now study the 
ase when images of avirtual sour
e 
an be obtained with the help of a pinhole (i.e. a pupil withouta lens), without further lenses or mirrors. When a pinhole 
an be treatedas an imaging system, people refer to it as an (X-ray) pinhole 
amera. Herewe will 
onsider the geometry in Fig. 36. The study of this relatively simplesetup will be helpful to rea
h a better understanding of Se
tion 11, dedi
atedto imaging in the fo
al pane, Se
tion 12, where we will des
ribe imaging inany plane behind the lens, and Se
tion 13, that will deal with the depth offo
us of an imaging system. Moreover, it will also suggestively show how aproblem apparently not related with the theory of aberrations (in the pinhole
amera setup there is not even a lens) 
an formally be treated like a defo
usingaberration problem. This is due to the appearan
e of a quadrati
 phase fa
torin the equation for the intensity at the image plane.119
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l

r''Fig. 34. The line spread fun
tion versus the redu
ed 
oordinate on the image plane�r00 = â�ri=(d̂inbn) in the 
ase of severe spheri
al aberration (n = 4, b4 = 9�) and
omparison with the geometri
al opti
s predi
tion.An X-ray pinhole 
amera has the same properties as the more familiar visiblelight pinhole-
amera. The main advantage of su
h a lensless imaging system isthat a pinhole is easier to fabri
ate than a lens. Pinhole 
ameras 
an be 
om-bined with X-ray Syn
hrotron Radiation sour
es and dete
tors for a numberof relatively spe
ialized appli
ations [22℄.The 
onditions under whi
h the pinhole 
an be treated as an imaging systemare non-trivial, and are not always satis�ed. With the help of Eq. (133) we 
aninvestigate the properties of the image in the limiting 
ase for f̂ �! 1, i.e.when there is no lens. We will restri
t ourselves to the one-dimensional 
ase,thus simplifying the ve
torial notation in Eq. (133) to s
alar notation. Theassumption of separability of the 
ross-spe
tral density in the horizontal andin the verti
al dire
tion (N̂x � 1 and D̂x � 1) suggests, in fa
t, to dis
usshorizontal and verti
al dire
tions separately. In general, one 
an see that thefollowing 
onditions must be satis�ed in order to form an image of the sour
e(in one dimension):1: The pinhole must be in the far �eld. In this 
ase, using Eq. (127), the
ross-spe
tral density on the pupil plane is given by120
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h a geometri
ally tra
ed ray departs from a desired lo
ationin the image formed by an opti
al system. The ordinate for ea
h 
urve is the heightat whi
h the ray interse
ts the image plane. The abs
issa is the 
oordinate of theray at the pupil plane. n = 2 represents defo
using, n = 3 represents 
oma, andn = 4 represents spheri
al aberration 
ases a

ording to Eq. (287).121



Ĝ (ẑ1; �r;�r̂)= 14�2ẑ21 exp [2i�r ��r̂=ẑ1℄ Ĝ (0;��r;��r̂) : (290)2: In the integrand of Eq. (133) two spe
i�
 phase fa
tors appear. Theseare exp[2i�r0 ��r̂0=(ẑ2 � ẑ1)℄ and exp[2i�r0 ��r̂0=ẑ1℄, the latter appearing throughEq. (290). Both must be negligible.3: The pinhole size must be larger than the 
oheren
e length on the pinholeplane, or the pupil fun
tions P in Eq. (133) will modify the dependen
e ofĜ(ẑ2) on �r (i.e. the image will not have a good resolution).If 
onditions from 1. to 3. above are satis�ed, the pinhole 
amera works as animaging system forming an inverted image of the sour
e. From Eq. (133) onemay see that the image is magni�ed of a quantity jMj = ẑ2=ẑ1, be
ause of thesame reason as the lens.We will now give a physi
al interpretation of 
onditions 1. through 3. statedabove. We begin 
onsidering the limiting 
ase when N̂ � 1 and D̂ � 1, i.e.a Gaussian quasi-homogeneous virtual sour
e. Further on we will see up towhat extent this assumption 
an be relaxed. We assume a large magni�
ation
onstant jMj ' d̂=ẑ1 � 1, where d̂ = ẑ2 � ẑ1. Here this assumption will bea

epted for simpli
ity and relaxed, later on, to an arbitrary value of jMj .The se
ond 
ondition requires that two distin
t phase fa
tors in Eq. (133)may be negle
ted. The assumption d̂ � ẑ1 leads to the single requirement�r�r̂=ẑ1 � 1. On the one hand, �r is limited by the presen
e of the pinhole,i.e. we must impose �r . â. On the other hand, �r̂ is limited by the 
oheren
elength at the pinhole, i.e. �r̂ . ẑ1=qN̂ , be
ause otherwise the 
ross-spe
traldensity Ĝ in Eq. (133) drops to zero. As a result we obtain that the se
ond
ondition given above 
an be expressed in mathemati
al terms byâ� qN̂ : (291)It is possible to give a 
lear interpretation of 
ondition (291) in terms ofGeometri
al Opti
s. In fa
t, on the one hand, the minimal geometri
al spotsize from a line sour
e is given, at the image plane, by jMjâ. On the otherhand, the size of the image is of order jMjqN̂ , by de�nition of magni�
ationjMj. Then, in order to have a good resolution, we must require that the imagesize of a point sour
e be mu
h smaller than the image size of the obje
t, i.e.qN̂=â� 1, that is 
ondition (291).The third 
ondition given above requires that the pinhole size be larger thanthe 
oheren
e length on the pinhole plane, otherwise the pupil fun
tions P in122



Eq. (133) would modify the dependen
e of Ĝ(ẑ2) on ~�r (i.e. the image wouldbe in
uen
ed by the pupil). This 
an be mathemati
ally stated by requiringthat â� ẑ1qN̂ : (292)Condition (292) has a natural explanation in terms of di�ra
tion theory. Infa
t, the di�ra
tion spot due to the presen
e of the pupil 
an be estimated asd̂=â. In order to have a good resolution, we should impose that the di�ra
tionspot be mu
h smaller than the image size of the obje
t, i.e. jMjqN̂=(d̂=â)� 1,that is 
ondition (292).Finally, the �rst 
ondition given above requires that the 
ross-spe
tral densityat the pinhole position be Eq. (290), i.e. the pinhole must be in the far zoneregion. This fa
t 
an be alternatively stated by requiring that the radiationspot size at the pupil be dominated by the angular divergen
e D̂, i.e. ẑ1qD̂ �qN̂ . In the 
ase N̂ < D̂, one should require in any 
ase that ẑ1 � 1. This 
anbe mathemati
ally expressed by the requirementẑ1 � max264vuut N̂̂D ; 1375 : (293)Note that 
ondition (293) and the initial assumption of a quasi-homogeneoussour
e are equivalent to the requirement that the pinhole be far enough forthe van Cittert-Zernike theorem to apply. In the 
ase of a perfe
tly in
oher-ent obje
t (e.g. thermal light), the sour
e radiates over an angle 2�. Then,the validity of the van Cittert-Zernike theorem (i.e. the requirement that theradiation spot size at the pupil be dominated by the angular divergen
e) isequivalent to the 
ondition that the transverse dimension of the sour
e bemu
h smaller than the distan
e between the sour
e and the pupil. This is thesame 
ondition for the paraxial approximation to be appli
able. As a result,
ondition (293) is always 
onsidered satis�ed in usual treatments des
ribingpinhole setups in the presen
e of in
oherent obje
ts.The three 
onditions (291), (292) and (293) 
an be summed up in the following:qN̂ � â� ẑ1qN̂ � max24 1qD̂ ; 1qN̂ 35 : (294)Let us now dis
uss about the resolution of the pinhole 
amera. Consisten
y of123
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ondition (294) requires thatN̂ � ẑ1 : (295)Although 
ondition (294) requires that 
ondition (295) be satis�ed, it doesnot pose any 
onstraint on the relative magnitude of â2 with respe
t to ẑ1.This observation suggests the presen
e of another 
hara
teristi
 s
ale of theproblem, â2=ẑ1. This s
ale is linked with the resolution of the system. Whenâ2=ẑ1 � 1 or â2=ẑ1 � 1 we are in the presen
e of an extra large or small pa-rameter and, thus, we have two asymptoti
 regimes. In order to systemati
ally
onsider this issue we start writing the expression for the intensity pro�le forthe pinhole 
amera image with the help of Eq. (133) and Eq. (290), that isÎ(ẑ2; �r)= 1Z Z d�r0d�r̂0(Ĝ(0;��r0;��r̂0) exp �i� 2̂z1 + 2̂d� �r0�r̂0��P (�r0 +�r̂0)P (�r0 ��r̂0)) exp ��2îd �r�r̂0� : (296)As usual, the normalization fa
tor Z is 
hosen in su
h a way that Î(ẑ2; 0) = 1.The phase in parenthesis f:::g must be negligible under 
ondition (291), andthe in
uen
e of the pupil fun
tion P must also be negligible under 
ondition(292). Here we retain both these fa
tors, be
ause we are interested in studyingthe resolution of the pinhole 
amera, i.e. the a

ura
y of our 
al
ulations.The phase 
ontribution in 2=d̂ is always mu
h smaller than the phase 
ontri-124



bution in 2=ẑ1, sin
e we assumed jMj � 1. The integrand 
ontributes to theintegration results only for those values of �r0 and �r̂0 for whi
h the phase fa
toris not mu
h larger than unity, otherwise the integrand exhibits fast os
illatorybehavior and it e�e
tively averages to zero. As a result we may negle
t, withsome a

ura
y over the a

ura
y of the integral, the phase term in 1=d̂, thatwill start os
illating for higher values of �r0 and �r̂0.Note that, under the a

epted assumptions N̂ � 1 and D̂ � 1, the expressionfor the Fourier transform of the 
ross-spe
tral density at the virtual sour
eposition is given byĜ (0; �r0;�r̂0)= exp"�2N̂�r̂02ẑ21 # exp "� �r022ẑ21D̂# ; (297)in agreement with Eq. (145).Analysis of Eq. (297) shows that the exponential fun
tion in �r0 exhibits a 
har-a
teristi
 s
ale of order ẑ1qD̂. Conditions (291) and (293) require ẑ1qD̂ �qN̂ � â. As a result, sin
e ẑ1qD̂ � â, we 
an approximate the exponentialfun
tion in �r0 in Eq. (297) with unity to obtain an equation still suitable forinvestigating the resolution of the pinhole 
amera, that isÎ(ẑ2; �r)= 1Z 1Z�1 d�r̂0 exp"�2N̂�r̂02ẑ21 # exp ��2îd �r�r̂0��( 1Z�1 d�r0 exp �i� 2̂z1� �r0�r̂0�P (�r0 +�r̂0)P (�r0 ��r̂0)) : (298)The quantity in parenthesis f:::g in Eq. (298) is the auto
orrelation fun
tionof the pupil. It a

ounts for a phase error, exa
tly as in the 
ase of aberrationsof the se
ond order (defo
us). Condition (292) states that the 
hara
teristi
s
ale of �r̂0 in Eq. (297) is small 
ompared to â, that is the 
hara
teristi
 s
aleof the pupil fun
tion P . If also â2=ẑ1 � 1 we see that the 
hara
teristi
 s
aleof P is large 
ompared with the s
ale imposed by the phase in parenthesisf:::g in Eq. (298), be
ause �r0�r̂0=ẑ1 � 1 at �r̂0 � â and �r0 � â. Therefore,under the assumption â2=ẑ1 � 1 we may negle
t the dependen
e of P on �r̂0in Eq. (298) and obtainÎ(ẑ2; �r)= 1Z 1Z�1 d�r̂0 ~P (�r̂0) exp "�2N̂�r̂02ẑ21 # exp ��2îd �r�r̂0� ; (299)125



where~P (�r̂0) = 1Z�1 d�r0 jP (�r0)j2 exp �i 2̂z1 �r0�r̂0� ; (300)or, equivalently 22 :~P (�r̂0) = âZ�â d�r0 exp �i 2̂z1 �r0�r̂0� : (301)Ex
ept for an unessential multipli
ative fa
tor â, Eq. (301) is formally equiv-alent 23 to Eq. (275) with n = 2 andb2 = â22ẑ1 � 1 : (302)This means that we may study the problem of the resolution of the pinhole
amera as an aberration problem: in parti
ular, a defo
using aberration. Theparameter range when â2=ẑ1 � 1 leads to equations similar to the 
ase ofsevere aberrations when jbnj � 1, treated in Se
tion 9.2. The auto
orrelationfun
tion of the pupil, that is the Opti
al Transfer Fun
tion of the system, isthen obtained by integration of Eq. (301) and reads:~P (�r̂0) = sin
 2â̂z1�r̂0! ; (303)where Eq. (301) has been used and an unessential multipli
ative fa
tor 2â hasbeen negle
ted. Substitution of Eq. (303) in Eq. (299) yieldsÎ(ẑ2; �r)= 1Z 1Z�1 d�r̂0sin
 2â̂z1�r̂0! exp "�2N̂�r̂02ẑ21 # exp ��2îd �r�r̂0� : (304)Eq. (304) allows an estimation of the resolution by taking the ratio of thewidth of the sin
 and of the exponential fun
tion in �r̂0. On the one hand,22We assume, as done before, that no apodization is present.23 It should be noted that we swit
hed ba
k from notations �x and �x, used inSe
tion 9, to our usual notation �r0 and �r̂0, with �r0 = �x and 2�r̂0 = â�x. Weremind that the reason why we used notations �x and �x in Se
tion 9 was for thereader's 
onvenien
e, as these notations allow dire
t 
omparison with aberrationtheory developed in standard textbooks.126



the width of the exponential fun
tion is of order ẑ1=(2qN̂ ). On the otherhand, the width of the sin
 fun
tion is of order ẑ1=(2â). As a result, whenâ2=ẑ1 � 1 the resolution of the 
amera is of order â=qN̂ . This pro
edureis justi�ed by the fa
t that Eq. (304) 
an be interpreted as a 
onvolution ofa re
tangular pro�le with a (new) Gaussian fun
tion, and that the width ofthese two fun
tions 
an be obtained by taking the inverse widths of the sin
fun
tion and the Gaussian fun
tion in Eq. (296) and by multiplying them bythe fa
tor d̂.Let us now deal with the 
ase when â2=ẑ1 � 1. Going ba
k to Eq. (298), we seethat â is narrow 
ompared with the s
ale imposed by the phase in parenthesisf:::g in Eq. (298), be
ause �r0�r̂0=ẑ1 � 1 at �r̂0 � â and �r0 � â. Thereforewe 
an negle
t the phase fa
tor in parenthesis f:::g, whi
h 
orresponds to a
ase with no aberrations. The auto
orrelation fun
tion of the pupil 
an nowbe written as a triangle fun
tion~P (�r̂0) = tri �r̂0â ! ; (305)that should be substituted into Eq. (299) to give the analogous of Eq. (304)in the limit â2=ẑ1 � 1, that isÎ(ẑ2; �r)= 1Z 1Z�1 d�r̂0tri �r̂0â ! exp "�2N̂�r̂02ẑ21 # exp ��2îd �r�r̂0� : (306)Eq. (306) 
an also be interpreted as a 
onvolution of a sin
2(�) pro�le with aGaussian pro�le.Similarly to Eq. (304), Eq. (306) allows an estimation of the resolution bytaking the ratio of the width of the triangular fun
tion and of the exponentialfun
tion in �r̂0 . As before, on the one hand the width of the exponentialfun
tion is of order ẑ1=(2qN̂). On the other hand, the width of the triangularfun
tion is of order 2â. As a result, when â2=ẑ1 � 1 the resolution of the
amera is of order ẑ1=(âqN̂).When â2=ẑ1 � 1 the resolution of the 
amera is of order â=qN̂ . One hasbetter resolution as the pupil be
omes smaller and smaller, but the 
onditionâ2=ẑ1 � 1 be
omes less and less satis�ed. When â2=ẑ1 � 1 the resolution ofthe 
amera is of order ẑ1=(âqN̂). In this 
ase one has better resolution as thepupil be
omes larger and larger, but the 
ondition â2=ẑ1 � 1 be
omes less andless satis�ed. As a result there must be an optimum for pupil apertures of order127



â2 � ẑ1. This optimumdepends on the obje
t 
onsidered (in this dis
ussion, forinstan
e, we assumed a Gaussian sour
e) and on the de�nition of the width ofa fun
tion, that may vary depending on 
ir
umstan
es. However, starting fromEq. (298), we may present an expression for the Opti
al Transfer Fun
tion ofthe pinhole 
amera, whi
h is the quantity in parenthesis f:::g. Su
h quantity
an be written as~Pp
(�r̂0; â; ẑ1) = âZ�â d�r0P (�r0 +�r̂0)P (�r0 ��r̂0) exp "i2�r0�r̂0ẑ1 # : (307)After introdu
tion of � = �r0=â and 
 = â2=ẑ1 we 
an write Eq. (307) as~Pp
  �r̂0â ;
! = 1Z�1 d�P  � + �r̂0â !P  � � �r̂0â ! exp "i2�
�r̂0â # : (308)Note that the limit 
 �!1 of Eq. (308) is a sin
(�) fun
tion, while the limit
 �! 0 is a tri(�) fun
tion, as it should be. Eq. (308) enters in the expressionfor the intensity as the term in f:::g in Eq. (298), that 
an be reinterpreted as a
onvolution produ
t. Then, the Fourier transform of Eq. (308) with respe
t to�r̂0=â is one of the fa
tors in this 
onvolution produ
t, and its width is relatedwith the resolution of the pinhole 
amera. This Fourier transform is the linespread fun
tion for the pinhole 
amera. After introdu
tion of y = â�ri=d̂ and� = �r̂0=â we 
an write the line spread fun
tion for the pinhole 
amera aslp
 (
; y) = 1Z�1 d� 8<: 1Z�1 d�P (� + �)P (� � �) exp [i2� (�
 � y)℄9=; ; (309)where we a

ounted for the fa
t that the Fourier transform integral in d�is limited by the presen
e of the pinhole to the range [�1; 1℄. On the onehand, the integral in parenthesis f:::g in Eq. (309) is the Fourier transform ofP (� + �)P (� � �) 
al
ulated with respe
t to � as a fun
tion of 2(�
 + y). Onthe other hand, the fun
tion P (� + �)P (� � �) is a window fun
tion similarto the pupil fun
tion P . It is equal to unity for values of j�j < 1 � j�j, and itis zero elsewhere. Therefore, the quantity in parenthesis f:::g in Eq. (309) 
anbe 
al
ulated analyti
ally yieldinglp
 (
; y) = 1Z�1 d� sin [2(�
 + y)(1� j�j)℄�
 + y : (310)Note that if 
 �! 0 we have 128
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y'Fig. 37. The line spread fun
tion lp
 with 
 = 0:5. In this 
ase the asymptote for
 �! 0, Eq. (311), is well-mat
hed to the numeri
al evaluations.lp
 (
; y) �! 1y 1Z�1 d�sin [2y(1 � j�j)℄ = 2sin
2(y) ; (311)as it should be, while if 
 �! 1, after the 
hange of variable � �! �0 = 
�we 
an rewrite Eq. (310) aslp
 (
; y)�! 1
 
Z�
 d�0 sin [2(�0 + y)℄�0 + y = 1
Si[2(y + �)℄�����
�
= 1
 fSi[2(y + 
)℄� Si[2(y �
)℄g ; (312)where Si(�) indi
ates the sin integral fun
tion. It 
an be seen that, as 
 �!1,the fun
tion de�ned by Eq. (312) approximates more a more a re
tangularfun
tion whi
h is 
onstant for �
 < y < 
 and equal to zero elsewhere, as itshould be.We may use a new variable y0 = y=p
 in Eq. (310), thus obtaining:129
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tion lp
 with 
 = 2. In this 
ase the asymptote for
 �! 0, Eq. (311), starts to diverge from numeri
al evaluations. The width of lp
is 
lose to its minimum.lp
 (
; y0) = 1Z�1 d� sin h2(�
 + y0p
)(1 � j�j)i�
 + y0p
 : (313)The reason for this is that, now, both the asymptotes Eq. (311) for 
� 1 andEq. (312) for 
� 1 present a 
hara
teristi
 width 1=p
 and p
 respe
tively.In Fig. 37, Fig. 38, Fig. 39 and Fig. 40 we present various shapes of the lp
fun
tion and its asymptoti
 limit for di�erent values of 
. On
e a de�nitionof the width of the fun
tion lp
 is 
hosen, the optimal operation point for thepinhole 
amera may be set requiring that the width of lp
 be minimal. It shouldbe remarked that the de�nition of the width of lp
 is somewhat subje
tive.One may, for instan
e, de�ne the width of lp
 to be the Full Width HalfMaximum (FWHM). In Fig. 41 we present di�erent plots for lp
 normalizedto lp
(0) for di�erent values of 
 = 1; 2; 3; 4; 5; 6. The minimal value of theFWHM of the line spread fun
tion for the pinhole 
amera happens to belo
ated somewhere between 
 = 4 and 
 = 5. It may be estimated to beabout 1:5. As a result one 
on
ludes that the optimal aperture for the pinhole130
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tion lp
 with 
 = 10. An intermediate situationbetween the two limits for 
 �! 0 and 
 �!1.is given byâ2 ' 4:5ẑ1 (314)or, in dimensional units,a2 ' 4:5z1
! : (315)We 
an estimate the resolution Ær of the pinhole 
amera in dimensional unitsimposing Æy0 to be equal to the FWHM of the line spread fun
tion, i.e. 1:5,and taking advantage of the de�nition of y0. Therefore we obtainÆr ' 1:5s 
!z1d : (316)Results in this Se
tion have been obtained under the assumption jMj � 1. A131
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y'Fig. 40. The line spread fun
tion lp
 with 
 = 100. The asymptote in Eq. (312)starts to mat
h the numeri
al 
al
ulations. In the limit 
 �! 1 they both mergeto a re
tangular fun
tion.generalization 
an be presented introdu
ingẑe� = ẑ1d̂ẑ1 + d̂ (317)and the analogous dimensional value ze� = ẑe�Lw to be used in pla
e of ẑ1and z1 in Eq. (314), Eq. (315) and Eq. (316). In dimensional units we havea2 ' 4:5ze�
! (318)and Ær ' 1:5s 
!ze� d : (319)Before pro
eeding we should dis
uss about the appli
ability of Eq. (313). Upto now, in fa
t, we dis
ussed about a Gaussian quasi-homogeneous undulatorsour
e (N̂ � 1 and D̂ � 1). Eq. (313) 
an be applied in a wider variety of132
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tion lp
=lp
(0) for di�erent values of 
.
ases. In parti
ular, Eq. (313) 
an be applied when (a) the virtual sour
e isquasi-homogeneous, (b) the pinhole 
amera is installed in the far zone and(
) â2 � max[1; D̂℄ẑ21. When 
onditions (a), (b) and (
) are satis�ed, theline spread fun
tion for the pinhole 
amera, lp
 
an be 
al
ulated from Eq.(313). At the beginning of the present Se
tion 10 we stated three 
onditions inorder to have an image of the sour
e, besides the Gaussian quasi-homogeneousassumption (that we relaxed, here, to the more general 
ase (a)). Condition1. given at the beginning of the present Se
tion 10 
an be identi�ed with (b).Condition 1. and 2., together, are responsible for (
). The other requirementwas formulated in order to obtain a good quality image of the sour
e. Howeverlp
 
an be 
al
ulated regardless of it and, in di�erent situations, one may havea good quality or a bad quality of the image, depending on how the widthof lp
 s
ales with the width of the ideal image. The intensity pro�le at theobservation plane lo
ated at ẑ = ẑ2 is given, in any 
ase, by the 
onvolutionprodu
t between the line spread fun
tion lp
 and the ideal image. In parti
ular,for an undulator sour
e with Gaussian intensity pro�le at the virtual planesu
h a produ
t is given by lp
 � exp[��r2=(2M2N̂)℄, where jMj = d̂=ẑ1. WhenqN̂ � â� ẑ1=qN̂ a good quality image is formed at the observation plane.In other situations instead, the width of lp
 is of order of, or even larger than,133



the width of the ideal image, and a bad quality image will be formed. Tosum up, in order to 
al
ulate the intensity distribution at the observationplane lo
ated at position ẑ = ẑ2 behind the pinhole, we should �rst 
al
ulate
 = â2=ẑe�. Then use Eq. (313) to 
al
ulate the line spread fun
tion lp
.Finally, 
onvolve with the ideal image from the sour
e. The minimal widthof the line spread fun
tion, whi
h 
orrespond to the best a

ura
y for theimage, is for â2=ẑe� ' 4:5. Note that 
onditions (a), (b) and (
) above do notrequire the sour
e to be an undulator sour
e. In parti
ular, (a), (b) and (
) areautomati
ally satis�ed for thermal sour
es, or perfe
tly in
oherent obje
ts. Asa result, our theory 
an be applied for visible light imaging as well.These remarks simplify our dis
ussion and drasti
ally widen the appli
abilityregion of our results. In parti
ular they 
an des
ribe bending magnet sour
es.For instan
e, at ESRF (European Syn
hrotron Radiation Fa
ility) a pinhole
amera setup has been developed for ele
tron beam diagnosti
s [22℄. Syn-
hrotron Radiation from a bending magnet is imaged through an X-ray pin-hole 
amera setup. Subsequent analysis of the pinhole 
amera image allowsone to retrieve the ele
tron beam sizes. In the situation studied in [22℄ thedi�ra
tion angle is of order of 
�1 � 10�4 rad. The system is reported togenerate an image of the sour
e when the pinhole is moved at about z1 = 23m from the dipole magnet. At this distan
e, and at the 
riti
al wavelength,the spot size due to divergen
e of the single parti
le radiation is estimatedto be about 
�1z1 ' 2mm � �x;y, �x;y being the transverse ele
tron beamsizes. This guarantees that the pinhole is in the far �eld, i.e. 
ondition (b) issatis�ed. The 
riti
al wavelength is of order � ' 3 � 10�11 m, sin
e one mayread, in [22℄, that "the 
ontribution from di�ra
tion assumes a typi
al photonenergy of 40 keV". The radiation di�ra
tion size 
an be estimated to be oforder �
=(2�) ' 10�1�m� �x;y, whi
h demonstrates the quasi-homogeneityof the sour
e, i.e. 
ondition (a). In referen
e [22℄ one 
an also �nd di = 11:5m. We obtain an optimal pinhole aperture of a ' 12�m. Sin
e the pinholeaperture is mu
h smaller than the spot size due to divergen
e of the singleparti
le radiation, 
ondition (
) is satis�ed as well. As a result our theory 
anbe applied to the situation treated in [22℄. Our results should be 
omparedwith the a
tual 
hoi
e in [22℄. From Fig. 2 in that referen
e we 
an 
on
ludethat and 2a ' 50�m in the horizontal dire
tion. This 
hoi
e is not optimal,sin
e 
orresponds to the value 
 � 10. The line spread fun
tion for the pin-hole 
amera in the horizontal dire
tion is illustrated, in this 
ase, in Fig. 39.Estimation of the resolution is not easy be
ause, as already said, is related tothe de�nition of the width of lp
, whi
h is quite subje
tive in the parti
ular
ase depi
ted in Fig. 39. However, knowing the pro�le of the line spread fun
-tion, we may use it in order to de
onvolve experimental results and extra
tthe ele
tron beam size. From the same Fig. 2 in [22℄ we 
an also 
on
lude that2a ' 25�m in the verti
al dire
tion. Although the de�nition of the width oflp
 is somewhat subje
tive, we 
an 
on
lude that the 
hoi
e made in [22℄ isnear the optimal value in the verti
al dire
tion. The resolution in the verti
al134



dire
tion turns out to be, from Eq. (319), Ær ' 14�m. As a result the res-olution in [22℄, that is about 26�m, is somewhat underestimated. It shouldbe 
lear from the previous dis
ussion that de
reasing the pinhole dimensionbeyond the optimal size not only will de
rease the photon 
ux, but will alsoworsen the 
amera resolution.11 Imaging in the fo
al planeIn this Se
tion we will investigate the intensity distribution on the fo
al planedue to a quasi-homogeneous sour
e. We will �rst 
onsider the 
ase of a Gaus-sian quasi-homogeneous sour
e (N̂ � 1, D̂ � 1) and subsequently generalizeour 
on
lusions, as done before for the more 
omprehensive 
ase of generi
quasi-homogeneous sour
es. The 
hara
teristi
s of the intensity distributionin the fo
al plane 
an be treated in formal analogy with the pinhole 
amerasetup treated in Se
tion 10 and with the physi
s of aberrations, in parti
ulardefo
using aberrations, des
ribed in Se
tion 9. This may seem 
ounterintu-itive, sin
e, at �rst glan
e, we are treating 
ompletely di�erent systems from aphysi
al viewpoint. The formal analogy between these situations is a demon-stration of the power of the 
ombined Statisti
al and Fourier Opti
s approa
h,whi
h allows one to unify study 
ases otherwise 
ompletely distin
t. Su
h uni-�
ation 
an be seen from the expression for the 
ross-spe
tral density at anydistan
e from the sour
e in the presen
e of a pupil, Eq. (133). As usual, we willassume that the lens is in the far �eld, i.e. D̂ẑ21 � N̂ . Under this assumptionwe may use Eq. (127) to 
hara
terize the 
ross-spe
tral density at the lensposition. In the image plane, the far �eld assumption allows 
an
ellation ofall phase fa
tors in the integrand of Eq. (133) and leads to Eq. (226). This
an
ellation does not hold anymore for the fo
al plane. Use of the fo
al plane
ondition f̂ = ẑ2 � ẑ1 and of Eq. (127) yields the intensity (�r̂f = 0)Î(ẑ2; �rf )= 1Z Z d�r0d�r̂0(Ĝ(0;��r0;��r̂0) exp �i 2̂z1 �r0�r̂0��P (�r0 +�r̂0)P (�r0 ��r̂0)) exp "�2îf �rf�r̂0# : (320)As one 
an see, the phase fa
tor in the expression for the 
ross-spe
tral den-sity, Eq. (127), survived in Eq. (320) due to the 
hoi
e of the fo
al plane asthe observation plane. From a formal viewpoint Eq. (320) is identi
al to Eq.(296). In fa
t, as the reader will remember, the phase �r0�r̂0=d̂i in Eq. (296) isnegligible for jM j � 1 and 
an be retained without 
hange in the formalismin the 
ase jM j is not mu
h larger than unity by de�ning ẑe� a

ording toEq. (317). As before, the normalization fa
tor Z is 
hosen in su
h a way thatÎ(ẑ2; 0) = 1. 135



Under the (for now) a

epted assumptions N̂ � 1 and D̂ � 1, the expressionfor the Fourier transform of the 
ross-spe
tral density at the virtual sour
eposition is given by Eq.(297). Substitution of Eq. (297) in Eq. (320) yieldsÎ(ẑf ; �rf )= 1Z 1Z�1 d�r̂0 exp "�2N̂�r̂02ẑ21 # exp "�2îf �rf�r̂0#�( 1Z�1 d�r0 exp �i 2̂z1 �r0�r̂0�P (�r0 +�r̂0)P (�r0 ��r̂0)� exp "� �r022ẑ21D̂#) : (321)Note that when the pupil in
uen
e is negligible (that is the 
ase when â2 �D̂ẑ21 � ẑ21=N̂), Eq. (321) readsÎ(ẑf ; �rf )= 1Z 1Z�1 d�r̂0 exp "�2îf �rf�r̂0#�( 1Z�1 d�r0 exp �i 2̂z1 �r0�r̂0� exp "�2N̂�r̂02ẑ21 # exp "� �r022ẑ21D̂#) :(322)The reader may 
he
k that evaluation of Eq. (322) gives ba
k Eq. (190), asit should be. For large non-limiting apertures, the extra phase imposes anextra Fourier transformation of the integrand, whi
h gives the usual result.The intensity in the fo
al plane is a s
aled version of the Fourier transformof the spe
tral degree of 
oheren
e on the virtual sour
e plane. Yet, there aresituations when one may re
over an image of the virtual sour
e at the fo
alplane. This happens when parameters are su
h that the only in
uen
e of a�nal pupil aperture is to make the phase fa
tor in parenthesis f::g in Eq.(321) negligible. Looking for a region in parameter spa
e where this situationis realized is equivalent to what has been done in Se
tion 10. Three 
onditionswere given su
h that the phase fa
tor in �r0�r̂0 in Eq. (296) 
ould be negle
ted.In that 
ase, for a pinhole 
amera, we had image formation at all positionsafter the pinhole.In parti
ular, when D̂ẑ21 � N̂ � â2 � ẑ21=N̂ not only we 
an negle
t thephase fa
tor in Eq. (321) but we 
an also see that the width of the exponentialfun
tion in �r̂0 is mu
h narrower than that of the pupil fun
tion P . Therefore,the dependen
e on �r̂0 in P 
an be negle
ted. Moreover, the width of P in �r0is mu
h narrower than the width of the exponential fun
tion in �r0, so that thelatter 
an be negle
ted as well. As a result we simplify Eq. (321) to obtain136



Î(ẑf ; �rf )= 1Z Z d�r0d�r̂0 exp "�2N̂�r̂02ẑ21 # jP (�r0)j2 exp "�2îf �rf�r̂0# : (323)The integral in d�r0 yields an unessential multipli
ation 
onstant to be in
ludedin Z, and one is left withÎ(ẑf ; �rf )= 1Z 1Z�1 d�r̂0 exp "�2N̂�r̂02ẑ21 # exp "�2îf �rf�r̂0# : (324)In
luding another unessential 
onstant in the normalization fa
tor Z, Eq.(324) 
an be written asÎ(ẑf ; �rf )= 1Z exp"� ẑ21�r2f2f̂2N̂ # : (325)As a result, when D̂ẑ21 � N̂ � â2 � ẑ21=N̂ , we obtain, in the fo
al plane, as
aled image of the virtual sour
e. This is exa
tly what a pinhole 
amera doesin the parameter region when 
onditions 1. to 3. in Se
tion 10 are satis�ed.A 
orresponden
e between 
ompletely di�erent problems has thus been estab-lished thanks to the 
ombined power of Statisti
al Opti
s and Fourier Opti
sapproa
h.Su
h a 
orresponden
e 
an be pursued further, up to a 
omplete formal iden-ti�
ation between the pinhole 
amera and the fo
al imaging system. To thispurpose we restri
t our analysis to the 
ase â2 � D̂ẑ21. In the opposite limitwe would obtain the already treated result for negligible pupil in
uen
e. Inthis situation we 
an negle
t the exponential fun
tion in �r02 in Eq. (321). Eq.(321) 
an thus be simpli�ed toÎ(ẑf ; �rf )= 1Z 1Z�1 d�r̂0 exp "�2N̂�r̂02ẑ21 # exp "�2îf �rf�r̂0#�( 1Z�1 d�r0 exp �i 2̂z1 �r0�r̂0�P (�r0 +�r̂0)P (�r0 ��r̂0)) : (326)On
e the substitutions f̂ �! d̂, ẑf �! ẑ2 and �rf �! �r are made, Eq. (326)is identi
al to Eq. (298). This means that, in the limit â2 � D̂ẑ21 studying thepinhole 
amera setup is 
ompletely equivalent to studying the fo
al imagingdetup. As in Eq. (298), the quantity in parenthesis f:::g 
onstitutes an Opti
alTransfer Fun
tion, and its Fourier transform yields a line spread fun
tion forthe system. Note that in the intermediate region for â2 � D̂ẑ21 one may retainthe same formalism: in this 
ase though, the exponential fun
tion in �r02 in Eq.137



(321) 
annot be negle
ted and results would be di�erent, depending also onthe sour
e parameter D̂y whi
h introdu
es a fa
tor formally identi
al to lensapodization.However, in the 
ase â2 � D̂ẑ21, we 
an pro
eed in perfe
t parallelism with thestudy of the pinhole 
amera setup in the previous Se
tion 10. Starting fromEq. (326), we may present an expression for the Opti
al Transfer Fun
tion ofthe pinhole 
amera, whi
h is the quantity in parenthesis f:::g. This quantity
an be written as~Pfp(�r̂0; â; ẑ1) = âZ�â d�r0P (�r0 +�r̂0)P (�r0 ��r̂0) exp "i2�r0�r̂0ẑ1 # : (327)After introdu
tion of � = �r0=â and 
 = â2=ẑ1 we 
an write Eq. (327) as~Pfp  �r̂0â ;
! = 1Z�1 d�P  � + �r̂0â !P  � � �r̂0â ! exp "i2�
�r̂0â # : (328)Similarly as before, the Fourier transform of Eq. (328) with respe
t to �r̂0=âis the line spread fun
tion for the system. Sin
e it refers to the fo
al plane itwill be indi
ated with lfp. After introdu
tion of y = â�ri=f̂ and � = �r̂0=â we
an write su
h Fourier transform exa
tly as Eq. (309), that islfp (
; y) = 1Z�1 d� 8<: 1Z�1 d�P (� + �)P (� � �) exp [i2� (�
 � y)℄9=; ; (329)where we a

ounted for the fa
t that the Fourier transform integral in d� islimited by the presen
e of the lens to the range [�1; 1℄. On the one hand,the integral in parenthesis f:::g is the Fourier transform of P (� + �)P (� � �)
al
ulated with respe
t to � as a fun
tion of 2(�
+y). On the other hand, thefun
tion P (�+�)P (���) is a window fun
tion similar to the pupil fun
tion P .It is equal to unity for values of j�j < 1�j�j and is zero elsewhere. Therefore, asin the previous Se
tion 10, the quantity in parenthesis f:::g 
an be 
al
ulatedanalyti
ally yielding ba
k Eq. (310). Moreover, as in the previous Se
tion 10 wemay use a new variable y0 = y=p
 in Eq. (329), thus obtaining the following�nal expression for the line spread fun
tion:lfp (
; y0) = 1Z�1 d� sin h2(�
 + y0p
)(1 � j�j)i�
 + y0p
 : (330)138



Eq. (330) is identi
al to Eq. (313). Therefore, the shapes of the fun
tion lfpand of its asymptoti
 limit for di�erent values of 
 are the same as those forlp
 given in Fig. 37, Fig. 38, Fig. 39 and Fig. 40. As before, on
e a de�nition forthe width of lfp is 
hosen, the optimal operation point for the pinhole 
ameramay be set requiring that su
h width be minimal. De�ning the width of lfpto be the full width half maximum (FWHM) one 
on
ludes that the optimallens aperture for the imaging in the fo
al plane is given byâ2 ' 4:5ẑ1 (331)or, in dimensional unitsa2 ' 4:5z1
! : (332)We 
an estimate the best resolution in the fo
al plane Ærf in dimensional unitsrequiring that Æy0 be equal to the minimal FWHM of the line spread fun
tion,i.e. 1:5, and taking advantage of the de�nition of y0, whi
h givesÆrf ' 1:5s 
!z1f : (333)Note that results in this Se
tion have not been obtained under the assumptionjMj � 1 as those in the last Se
tion. Therefore, substitution of ẑ1 �! ẑe� isnot required in this 
ase.Similarly as before, we should now dis
uss the appli
ability of Eq. (330). Upto now we dis
ussed about a Gaussian quasi-homogeneous undulator sour
e,but Eq. (330) 
an be applied in a wider variety of 
ases. In parti
ular, Eq.(330) 
an be applied when (a) the sour
e is quasi-homogeneous, (b) the lens isinstalled in the far zone and (
) â2 � max[1; D̂℄ẑ21. When 
onditions (a), (b)and (
) are satis�ed, the line spread fun
tion for the lens, lfp 
an be 
al
ulatedfrom Eq. (330). Depending on the situation, one may have a good quality or abad quality of the image. This is related with how the width of lfp s
ales withthe width of the ideal image. The intensity pro�le at the fo
al plane (lo
atedat ẑ = ẑ1 + f̂) is given, in any 
ase, by the 
onvolution produ
t of the linespread fun
tion lfp and the ideal image. In parti
ular, for an undulator sour
ewith Gaussian intensity pro�le at the virtual plane, su
h produ
t is given bylfp � exp[��r2=(2M2N̂ )℄, where jMj = f̂ =ẑ1. When qN̂ � â� ẑ1=qN̂ a goodquality image is formed at the observation plane. In other situations instead,the width of lfp is of order of the width of the ideal image, and a bad qualityimage will be formed. To be spe
i�
, for values of 
 � 1 the line spreadfun
tion and, therefore, the intensity distribution at the fo
al plane tends to astepped pro�le, while for values of 
� 1 one obtains a sin
2(�) pro�le. To sum139



up, in order to 
al
ulate the intensity distribution at the fo
al plane behindthe lens, we should �rst 
al
ulate 
 = â2=ẑ1. Then use Eq. (330) to 
al
ulatethe line spread fun
tion lfp. Finally, 
onvolve with the ideal image from thesour
e. The minimal width of the line spread fun
tion, whi
h 
orrespondsto the best image resolution, is when â2=ẑ1 ' 4:5. Note that 
onditions (a),(b) and (
) above do not require the sour
e to be an undulator sour
e. Inparti
ular, (a), (b) and (
) are automati
ally satis�ed for thermal sour
es, orperfe
tly in
oherent obje
ts. As a result, our theory 
an be applied for visiblelight imaging as well. These remarks simplify our dis
ussion and drasti
allywiden the appli
ability region of our results.12 A uni�ed theory of in
oherent imaging by a single lensIn the present Se
tion 12 we will develop a uni�ed theory whi
h is appli
ableto imaging in an arbitrary plane behind the lens. In the previous Se
tion 11we dis
ussed the possibility of imaging the sour
e at the fo
al plane. Therewe re
ognized that under 
onditions (a) the sour
e is quasi-homogeneous (b)the lens is installed in the far zone and (
) â2 � max[1; D̂℄ẑ21, the intensity onthe fo
al plane 
an be 
al
ulated as a 
onvolution produ
t of the line spreadfun
tion of the system and the ideal image, whi
h is a s
aled version of theintensity distribution on the sour
e plane. Moreover, it was shown that the
hara
teristi
s of the intensity distribution in the fo
al plane 
an be treatedin formal analogy with the pinhole 
amera setup in Se
tion 10 and with thephysi
s of aberrations, in parti
ular defo
using aberrations, des
ribed in Se
-tion 9. We have seen that when the lens is in the far �eld (
ondition (b))Eq. (127) 
an be used to 
hara
terize the 
ross-spe
tral density at the lensposition. In the image plane, this assumption alone allows 
an
ellation of allphase fa
tors in the integrand of Eq. (133) and yields Eq. (226). In the previ-ous Se
tion 11 we showed that this 
an
ellation does not hold anymore for thefo
al plane. From this viewpoint the fo
al plane is not privileged in any waywith respe
t to other observation planes. It is this last remark whi
h suggestsa generalization of the previous results. For a generi
 observation plane posi-tioned at ẑ = ẑ2 one may use Eq. (127) to get an expression for the intensity(�r̂ = 0) from Eq. (133), in analogy with Eq. (320) and Eq. (296), that isÎ(ẑ2; �r)= Z d�r0d�r̂0(Ĝ(0;��r0;��r̂0) exp "2i �1f + 1̂z1 + 1̂d! �r0�r̂0#�P (�r0 +�r̂0)P (�r0 ��r̂0)) exp ��2îd �r�r̂0� ; (334)where d̂ = ẑ2�ẑ1. As one 
an see, the phase fa
tor in �r0�r̂0 is more 
ompli
atedthan those Eq. (320) and Eq. (296) due to the 
omplete arbitrariness of the140



observation plane. Nevertheless, Eq. (334) 
an be re
ast to the same form ofEq. (320) simply with the help of with a new de�nition of ẑe�, that is1̂ze� = �1f + 1̂z1 + 1̂d : (335)A

ounting for Eq. (335) we may rewrite Eq. (334) asÎ(ẑ2; �r)= Z d�r0d�r̂0(Ĝ(0;��r0;��r̂0) exp �i 2̂ze� �r0�r̂0��P (�r0 +�r̂0)P (�r0 ��r̂0)) exp ��2îd �r�r̂0� ; (336)whi
h is equivalent to Eq. (320).All that is left to do is now follow, step by step, the previous Se
tion 11. Thisleads to the following results. When 
onditions (a), (b) and (
) are satis�ed onemay introdu
e, as before, a line spread fun
tion of the system, 
hara
teristi
of the observation plane ẑ = ẑ2. This line spread fun
tion is formally identi
alto Eq. (330):lz (
; y0) = 1Z�1 d� sin h2(�
 + y0p
)(1� j�j)i�
 + y0p
 ; (337)with 
 = â2=ẑe� and y0 = y=p
, y0 being de�ned by y = â�r=d̂. Here similarityte
hniques have been employed. The �ve dimensional parameters �, a, f , z1and z2 have been redu
ed to the only parameters 
 and y0, so that one is leftwith the 
al
ulation of a dimensionless fun
tion in y0 depending on the singleparameter 
, Eq. (337). As before, depending on the situation, one may havea good quality or a bad quality of the image. This is related with how thewidth of lz s
ales with the width of the ideal image. The intensity pro�le atthe observation plane lo
ated at ẑ = ẑ2 is given by the 
onvolution produ
t ofthe line spread fun
tion lz and the ideal image. In parti
ular, for an undulatorsour
e with Gaussian intensity pro�le at the virtual plane, su
h produ
t isgiven by lz � exp[��r2=(2M2N̂)℄, where jMj = d̂=ẑ1. When qN̂ � â� ẑ1=qN̂a good quality image is formed at the observation plane. In other situationsinstead, the width of lz is of order of the width of the ideal image, and abad quality image will be formed. To sum up, we presented here an algorithmto 
al
ulate the intensity distribution of radiation at any observation planelo
ated at position ẑ = ẑ2 behind the lens, given an arbitrary value of âand a system satisfying 
onditions (a), (b) and (
). First one should 
al
ulate
 = â2=ẑe�. Then use Eq. (337) to 
al
ulate the line spread fun
tion lz. Finally,141




onvolve with the ideal image from the sour
e. As before, when 
� 1 the linespread fun
tion tends to a stepped pro�le and, as a result, the intensity pro�lereprodu
es a stepped pro�le too. Note that, ẑe� being arbitrary, we 
annotgive a relation in terms of â and ẑ1 
orresponding to an optimal line spreadfun
tion. For instan
e, when ẑ2 �! ẑi, i.e. when we 
onsider the asymptoti
limit for the image plane, we obtain from Eq. (335) that ẑe� �! 1 and
 �! 0. Then, from Eq. (337) one obtains lz �! sin
2(â�ri=d̂), exa
tly as inEq. (311). In this 
ase no defo
using aberration is present, quadrati
 phaseterm having being 
an
elled by the parti
ular 
hoi
e of the observation plane.As a result, we 
annot give a 
riterium for an optimal line spread fun
tion: weonly have di�ra
tion e�e
ts so that the larger the aperture â (always withinthe 
onstraint imposed by 
ondition (
), i.e. â2 � max[1; D̂℄ẑ21) the better thequality of the image. In 
losing, it is worth to mention that the asymptotefor f̂ �! 1 
orresponds to the pinhole 
amera setup already dis
ussed inSe
tion 10. As a result, this parti
ular 
ase 
an be treated in terms of ouruni�ed theory as well.13 Depth of fo
usA

ording to [23℄ "the depth of fo
us of a lens is the permitted displa
e-ment, away from the fo
al or image plane, for whi
h the intensity on axis isdiminished by some permissible amount". In parti
ular, when plane wave illu-mination is 
onsidered on a perfe
t 
ir
ular lens, the fo
al plane 
orrespondsto the plane where the radiation assumes the minimal spot size, and the in-tensity on axis rea
hes a maximum at that point. It 
an be shown that, inthis 
ase, the on-axis intensity de
reases of about 20% when "the observationplane is displa
ed from the ideal fo
al plane [...℄ by an amount" (see [23℄)j�0zj = �2NA2 ; (338)where the quantity NA indi
ates the numeri
al aperture of the lens. NA =sin �, � being the "half angle measured from the opti
 axis at the fo
us ba
k tothe lens" [23℄. The 
on
ept of depth of fo
us des
ribed in Eq. (338), des
ribesa 
ase of 
oherent illumination of the lens by a plane wave, and the lens istreated, here, as a 
ondenser. The obje
t to be imaged is, in fa
t, the radiationsour
e itself. Sin
e we are dealing with 
oherent illumination we may say that,in this 
ase, the depth of fo
us is di�ra
tion limited.The depth of fo
us as des
ribed in Eq. (338) is parametri
ally related to an-other 
on
ept of depth of fo
us whi
h is used, for example, in Opti
al Lithog-raphy [23, 24℄. In this 
ase one needs to illuminate a wafer with a demagni�edimage of a given pattern on a mask. Here the lens (a
tually the 
olle
tion of142



lenses) is no more treated as a 
ondenser: its fun
tion is to produ
e the demag-ni�ed image of the mask. The mask itself must be illuminated by means of a
ondenser system instead, and, as remarked in [23℄, "the ability to print �ne,high 
ontrast features is signi�
antly a�e
ted by the degree of 
oheren
e withinthe opti
al system. If there exists a high degree of spatial 
oheren
e, di�ra
-tion from adja
ent mask features will interfere in the image plane, signi�
antlymodifying the re
orded pattern". The mask should therefore be illuminatedby in
oherent light and should be 
onsidered as a quasi-homogeneous sour
eitself. For a lithography setup, the resolution R is the width of the di�ra
tion-limited point spread fun
tion of the system, while the distan
e X over whi
hthe image is in proper fo
us is, more quantitatively, the distan
e over whi
hR is in
reased by some permitted amount. Although a lithography setup 
on-stitutes a 
ompletely di�erent setup with respe
t to the 
ondenser systemilluminated with 
oherent plane waves, R and X turn out to be respe
tively[24℄:R = k1 �NA ; X = k2 �NA2 : (339)The distan
eX is therefore parametri
ally related to the distan
e j�0zj de�nedin Eq. (338) and even though these two quantities refer to very di�erent setups,involving quite di�erent physi
s, also X is named, as j�0zj, depth of fo
us.To 
ompli
ate the situation further one is frequently interested in the depthof fo
us j�zj for a 
ondenser system when the lens is not illuminated by planewaves but by other kind of non quasi-homogeneous or quasi-homogeneoussour
es, whi
h is a di�erent situation from both 
ases 
onsidered in the pre-vious dis
ussion. In this Se
tion we will treat the 
ase of a 
ondenser lensilluminated by a quasi-homogeneous sour
e 
hara
terized by N̂x � 1 andD̂x � 1. Separate treatments of the x and y dire
tion are thus allowed, whi
hsimplify to one-dimensional 
ases. Our study applies to the horizontal dire
-tion only. However, if also N̂y � 1 and D̂y � 1 the same results for thehorizontal dire
tion 
an be applied to the verti
al dire
tion as well. Our de�-nition of depth of fo
us will be relative to the plane of smallest spot size of theradiation. Therefore, in the present Se
tion 13, the depth of fo
us of a lens isde�ned as the permitted displa
ement, away from the waist plane, for whi
hthe intensity on axis is diminished by some permissible amount.Before starting to dis
uss about the depth of fo
us, it is ne
essary to derive anexpression for the point where the radiation spot size is the smallest. This 
anbe obtained with the help of Eq. (216) in Se
tion 7. In fa
t, sin
e 2q�̂�̂(ẑ2) isthe 
hara
teristi
 width of the Gaussian radiation spot size at the observationplane lo
ated at ẑ = ẑ2, it is suÆ
ient to look at the point ẑ2best where thederivative of �̂�̂(ẑ2) is zero to obtain the position of the waist plane. With thehelp of Eq. (216) one �nds 143



ẑ2best= �f̂ + ẑ1� N̂ � D̂f̂ ẑ21 + D̂ẑ31N̂ + D̂ �f̂ � ẑ1�2 = �f̂ + ẑ1� Âẑ21 � �f̂ � ẑ1� D̂ẑ21Âẑ21 + D̂ �f̂ � ẑ1�2 :(340)It is interesting to study two limiting 
ases of Eq. (340) for Â � D̂ and forÂ �! 0 respe
tively. Consider �rst the 
ase when Â� D̂. From Eq. (340) onemay see that, in this �rst 
ase, ẑ2best �! ẑf = f̂+ẑ1. This means that the waistplane asymptoti
ally goes to the fo
al plane of the lens. Consider now the 
asewhen Â �! 0. Again from Eq. (340) one may see that, in this se
ond 
ase,ẑ2best �! ẑi = ẑ21=(ẑ1 � f̂). This means that the waist plane asymptoti
allygoes to the image plane of the virtual sour
e (lo
ated at ẑ = 0).From the analysis of the two limiting 
ases for Â � D̂ and for Â �! 0, we
on
lude that one always has ẑ1 + f̂ < ẑ2best < ẑi. In other words, the waistplane is always lo
ated between the fo
al and the image plane. This resultsmay seem 
ounterintuitive. In fa
t, for our Gaussian virtual sour
e, the waistis lo
ated at ẑs = 0, whi
h is imaged, reversed and magni�ed, at the imageplane. Therefore, at �rst glan
e, the smallest spot size should be lo
ated atthe image plane. The reason why this is not the 
ase is due to the presen
e ofthe magni�
ation fa
tor, whi
h linearly in
reases with ẑ2. On the one hand thesour
e has a waist lo
ated at ẑs = 0 and its size in
reases symmetri
ally as onemoves away from ẑs = 0 in both the positive and the negative dire
tion. Onthe other hand the magni�
ation fa
tor in
reases linearly with ẑ2 and is not
hara
terized by the same symmetri
 dependen
e on the displa
ement fromẑs = 0.In the following Se
tion 13.1 and Se
tion 13.2 we study the problem of thedepth of fo
us in a 
ondenser system with a Gaussian quasi-homogeneoussour
e. E�e
ts from the pupil width will be negle
ted in Se
tion 13.1, Finitepupil dimensions will be a

ounted for in Se
tion 13.2.13.1 Large non-limiting apertureWe will dis
uss, for simpli
ity, the 
ase when jMj = d̂i=ẑ1 � 1. In this 
ase,from Eq. (30) we obtain d̂i ' f̂ . Sin
e we assumed as a starting point jMj � 1it follows that f̂ � ẑ1, and that the distan
e between the image and the fo
alplane is � = d̂i � f̂ ' f̂2=ẑ1 ' jMjf̂ . Moreover, the radiation spot size atthe image plane is known to be of order jMjqN̂ from Eq. (157), while theradiation spot size at the fo
al plane is obtained from Eq. (154) and is oforder qD̂f̂ . As has been dis
ussed above, the position of the waist goes fromthe fo
al plane to the image plane as we pass from the near to the far zone.This 
an also be seen by 
omparing the radiation spot sizes at the image and144



at the fo
al plane in the near and in the far zone. In the near zone Â� D̂. Itfollows that qD̂f̂ � qN̂ f̂=ẑ1, i.e. the radiation spot size at the fo
al plane ismu
h smaller than that at the image plane. On the 
ontrary in the far zoneÂ � D̂. It follows that qD̂f̂ � qN̂ f̂ =ẑ1 ' qN̂ d̂i=ẑ1, i.e. the radiation spotsize at the fo
al plane is mu
h smaller than that at the image plane. We willanalyze these two 
ases separately.13.1.1 Far zoneIn this 
ase Â� D̂ and the waist is near the image. On the one hand, as hasbeen already remarked, the radiation spot size on the image plane is aboutjMjqN̂ and does not depend on D̂. On the other hand, the radiation spot sizeon the non-limiting pupil aperture is de�ned by the beam divergen
e and 
anbe estimated as qD̂ẑ1. This means that the rate of 
hange of the radiationspot size from the lens to the waist 
an be estimated as qD̂ẑ1=f̂ , sin
e d̂i ' f̂ .The parametri
 dependen
e of the depth of fo
us 
an be found requiring thatthe spot size in
rease due to a displa
ement �ẑ, that is �qD̂ẑ1=f̂��ẑ beof order of the radiation spot size at the waist, i.e. jMjqN̂ . This yields thefollowing Geometri
al Opti
s predi
tion for the depth of fo
us:�ẑ ' f̂ jMjqN̂qD̂ẑ1 'M2vuut N̂̂D : (341)One may separately estimate the di�ra
tion size related with an apertureof size qD̂ẑ1 (the radiation spot size at the non-limiting pupil aperture) atthe observation plane. Su
h estimation yields a di�ra
tion size d̂i=(qD̂ẑ1) 'f̂=(qD̂ẑ1). Now, requiring that the spot size in
rease due to a displa
ement�0ẑ, that is �qD̂ẑ1=f̂��0ẑ, be of order of the di�ra
tion size f̂=(qD̂ẑ1) onemay estimate the di�ra
tion limited depth of fo
us as�0ẑ ' f̂2D̂ẑ21 : (342)The following 
omparison between the di�ra
tion limited depth of fo
us �0ẑand the Geometri
al Opti
s predi
tion for the depth of fo
us �ẑ 
an be pre-145



sented:�0ẑ�ẑ ' f̂2D̂ẑ21 � 1M2vuut D̂̂N ' 1qN̂D̂ : (343)Eq. (343) allows one to 
on
lude that di�ra
tion e�e
ts 
an be negle
ted withinthe a

ura
y of the quasi-homogeneous approximation, and that Eq. (341) isa 
orre
t estimation of the depth of fo
us in this 
ase. Note that the de�nitionin Eq. (338) has no meaning in the 
ase of a 
ondenser system with a quasi-homogeneous sour
e. Finally, it is interesting to remark that the depth of fo
usis mu
h shorter than the distan
e � between the waist (image) and the fo
alplane. In fa
t�ẑ� 'M2vuut N̂̂D � 1jMjf̂ ' vuut N̂̂Dẑ21 � 1 ; (344)be
ause of the far zone assumption (Â� D̂).13.1.2 Near zoneSimilar estimations 
an be made in the near zone, i.e. assuming Â � D̂,when the waist is near the fo
al plane. On the one hand, as has been alreadyremarked, the radiation spot size at the fo
al plane is about qD̂f̂ and does notdepend on N̂ . On the other hand, the radiation spot size on the non-limitingpupil aperture is de�ned by the ele
tron beam waist and 
an be estimated asqN̂ . This means that the rate of 
hange of the radiation spot size from thelens to the waist 
an be estimated as qN̂=f̂ sin
e the waist is near the fo
alplane. The parametri
 dependen
e of the depth of fo
us 
an be found imposingthat the spot size in
rease due to a displa
ement �ẑ, that is �qN̂=f̂��ẑ beof order of the radiation spot size at the waist, i.e. qD̂f̂ . This yields thefollowing Geometri
al Opti
s predi
tion for the depth of fo
us:�ẑ ' qD̂f̂2qN̂ : (345)One may separately estimate the di�ra
tion size related with an aperture ofsize qN̂ (the radiation spot size at the non-limiting pupil aperture) at theobservation plane. Su
h estimation gives a di�ra
tion size d̂i=qN̂ ' f̂=qN̂ .146



Now, imposing that the spot size in
rease due to a displa
ement �ẑ, that is�qN̂=f̂��ẑ be of order of the di�ra
tion size f̂=qN̂ one may estimate thedi�ra
tion limited depth of fo
us as�0ẑ ' f̂ 2̂N : (346)The following 
omparison between the di�ra
tion limited depth of fo
us �0ẑand the Geomteri
al Opti
s predi
tion of the depth of fo
us �ẑ:�0ẑ�ẑ ' qN̂qD̂f̂2 f̂ 2̂N ' 1qN̂ D̂ (347)Eq. (347) allows one to 
on
lude that di�ra
tion e�e
ts 
an be negle
ted withinthe a

ura
y of the quasi-homogeneous approximation, and that Eq. (345) isa 
orre
t estimation for the depth of fo
us in this 
ase. Finally, it is interestingto remark that the depth of fo
us is mu
h shorter than the distan
e � betweenthe waist (fo
al plane) and the image plane. In fa
t�ẑ� ' qD̂f̂2qN̂ � 1jMjf̂ ' vuutD̂ẑ21N̂ � 1 ; (348)be
ause of the near zone assumption (Â� D̂).13.2 E�e
t of aperture sizeWe will now analyze the in
uen
e of a �nite aperture on our analysis of thedepth of fo
us. For simpli
ity we will 
onsider the far �eld 
ase, as all ourexamples involving e�e
ts of �nite aperture size have been relying on the far�eld assumption. At �rst glan
e, substitution of the radiation spot size qD̂ẑ1with the �nite aperture size â solves all issues, as it allows estimations of therate of 
hange of the radiation spot size and of di�ra
tion e�e
ts. This wouldlead to the following equations for the Geometri
al Opti
s predi
tion of thedepth of fo
us:�ẑ ' f̂2qN̂ẑ1â ; (349)147



for the di�ra
tion limited depth of fo
us:�0ẑ ' f̂2â2 ; (350)for the ratio between �0ẑ and �ẑ:�0ẑ�ẑ ' f̂2â2 � ẑ1âf̂2qN̂ ' ẑ1âqN̂ ; (351)and for the ratio between the depth of fo
us and the distan
e �:�ẑ� ' f̂2qN̂ẑ1â � 1jMjf̂ ' qN̂̂a : (352)We have seen in Se
tion 11 that there exist parti
ular situations when thephase fa
tor in parenthesis f:::g in Eq. (321) 
an be negle
ted.In one of these 
ases, when D̂ẑ21 � N̂ � â2 � ẑ21=N̂ one re
overs a s
aledimage of the virtual sour
e at the fo
al plane, where the s
aling fa
tor f̂ =ẑ1 'jMj (see Eq. (325)). Thus, in this situation, it is not 
orre
t to state that theradiation spot size at the image plane is smaller than the radiation spot sizeat the fo
al plane, be
ause in both these planes we have the same, identi
alimage of the virtual sour
e with approximatively the same s
aling fa
tor. Itshould be remarked that in this 
ase the depth of fo
us �ẑ is longer than thedistan
e between fo
al and image plane, �, as one may see from Eq. (352)when N̂ � â2. Another 
riti
al s
ale to a

ount for is ẑ21=N̂ . As we have seenin Se
tion 11, when â2 � ẑ21=N̂ one obtains, at the fo
al plane, the di�ra
tionpattern of the pupil (aberrated or not, depending on how â2 s
ales with respe
tto ẑ1). This 
ase 
orresponds to 
oherent illumination of the pupil. In thissituation, the di�ra
tion limited depth of fo
us �0ẑ is mu
h longer than theGeometri
al Opti
s predi
tion of the depth of fo
us �ẑ, as one may see fromEq. (351). In this 
ase, Eq. (350) should be used instead of Eq. (349) in orderto estimate the depth of fo
us of the system. Summing up, Eq. (349) 
an beused without any remarks in all the 
ases when â2 � ẑ21=N̂ . When â2 � N̂ andâ2 � ẑ21=N̂ one should remember that the depth of fo
us be
omes longer thanthe distan
e between the image and the fo
al plane, this 
ase 
orresponding thesituation when an image of the virtual sour
e is formed in the fo
al plane. Inall 
ases when â2 � ẑ21=N̂ instead, we have 
oherent illumination of the pupil.The di�ra
tion limited depth of fo
us be
omes longer than the Geometri
alOpti
s predi
tion of the depth of fo
us and, for estimations, one should useEq. (350) in pla
e of Eq. (349). 148



14 Solutions to the image formation problem for non-homogeneousundulator sour
esWe will now 
onsider non-homogeneous undulator sour
es. The next Se
tion14.1 will deal with the 
ase of a horizontally quasi-homogenous and verti
allynon-homogeneous sour
e. Spe
ial emphasis will be given to the study of thissituation, whi
h is relevant for the majority of Syn
hrotron Radiation sour
esof the third generation. In the following Se
tion 14.2 we will dis
uss, instead,the 
ase of a horizontally non-homogeneous and verti
ally di�ra
tion limitedsour
e. These two 
ases pra
ti
ally deal with all third generation light sour
es,from the soft to the hard X-rays.Our treatment is based on the assumption that the beta fun
tions have minimain the 
enter of the undulator. Pla
ing the virtual sour
e in the 
enter of theundulator, we will obtain a parti
ularly simple expression for the 
ross-spe
traldensity of the sour
e and its Fourier transform. In parti
ular, 
al
ulations willyield real results. Statisti
al Opti
s methods 
onjugated to Fourier Opti
swill allow us to give expli
it presentations of the 
ross-spe
tral density andits Fourier transform at the virtual sour
e position. Su
h presentations willa

ount for all 
omplexities of the sour
e, intrinsi
 properties of undulatorradiation and ele
tron-beam phase spa
e distribution. Based on our previouswork [2℄, we will �rst 
al
ulate the 
ross-spe
tral density Ĝ in the far zonelimit. Then, with the help of Eq. (127), we will be able to re
over the Fouriertransform of the 
ross-spe
tral density Ĝ at the virtual sour
e position. Byinverse transforming that expression we will �nally re
over the 
ross-spe
traldensity as well.In general, we 
annot give an expli
it expression for the 
ross-spe
tral den-sity at any observation plane. In other words, as before, Eq. (133) 
annot be
al
ulated expli
itly for any value of ẑ1 and ẑ2. However, on
e the 
enter ofthe undulator is �xed as the virtual sour
e position, there exists a privilegedobservation plane. This is the plane where the 
enter of the undulator is im-aged and depends on the position ẑ1 
hosen for the lens. Throughout thispaper we simply 
alled it the image plane. Starting from the expression forthe 
ross-spe
tral density and its Fourier transform at the virtual sour
e wewill be able to 
al
ulate, for any 
hoi
e of ẑ1, the 
ross-spe
tral density on thefo
al (ẑ2 = ẑf) and on the image (ẑ2 = ẑi) plane. The pro
edure that we willuse to perform these 
al
ulations is similar to what has been proposed in the
ase of homogeneous sour
es and will take advantage of Eq. (131) and Eq.(132).As usual, we will begin our investigations negle
ting pupil e�e
ts. Results fora large non-limiting aperture on the image plane will be generalized to in
ludee�e
ts of the pupil with the help of Eq. (135). Finally, in Se
tion 14.3 we will149
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Fig. 42. Plot of the universal fun
tion M̂ , used to 
al
ulate the 
ross-spe
tral densityat the fo
al plane when N̂x � 1, D̂x � 1, N̂y and D̂y are arbitrary.
riti
ally dis
uss the assumptions made throughout this paper and see howand up to what extent they 
an be relaxed.14.1 Horizontally quasi-homogenous and verti
ally non-homogeneous sour
e14.1.1 Large non-limiting apertureLet us �rst retain the assumption D̂x � 1 and N̂x � 1, but allow D̂y and N̂yto assume arbitrary values. Eq. (141) allows the re
onstru
tion of the verti
al
ross-spe
tral density in the far zone. Note that, when both N̂y . 1 andD̂y . 1 the sour
e is non-homogeneous. In this 
ase the far zone limit is forvalues ẑo � 1, and one obtainsĜ(ẑo; ��y;��̂y)= exp hi2��yẑo��̂yi exp h�2N̂y��̂2yi150



� 1Z�1 d�̂y exp "�(��y + �̂y)22D̂y #M(�̂y;��̂y) ; (353)where the fun
tion M̂ (�; Æ) is the normalized version of a universal fun
tion�rst de�ned in [2℄ and reads:M̂(�; Æ) = 38p� 1Z�1 d�̂xsin
" �̂2x + (� � Æ)24 #sin
" �̂2x + (� + Æ)24 # : (354)A plot of the M̂ fun
tion is given in Fig. 42. The M̂ fun
tion is a real fun
tion.Another remarkable property of M̂ is its invarian
e for ex
hange of � with Æ.Also, M̂ is invariant for ex
hange of � with �� (or Æ with �Æ). The followingrelations between universal fun
tions hold:ÎS(�) = M̂ (�; 0) ; (355)�(Æ) = 12�2 1Z�1 d�M̂ (�; Æ) (356)and 
(x) = 12�2 1Z�1 d� exp [�i2x�℄ M̂ (�; 0) : (357)Using Eq. (127) and Eq. (353) we obtain the Fourier transform of the 
ross-spe
tral density at ẑo = 0 at the virtual sour
e positionĜ (0; �u;�û)= exp h�2N̂y�û2i 1Z�1 d�̂y exp "�(�u+ �̂y)22D̂y #M̂(�̂y;�û) : (358)Inverse transforming Eq. (358) we obtain the 
ross-spe
tral density at thevirtual sour
e positionĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i 1Z�1 d�̂ exp"�(�y + �̂)22N̂y #M̂(�ŷ; �̂) : (359)In analogy with Eq. (126), we de�ned M̂ as151
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Fig. 43. Plot of the universal fun
tion M̂, used to 
al
ulate the 
ross-spe
traldensity at the image plane when N̂x � 1, D̂x � 1, N̂y and D̂y are arbitrary.M̂(x; y) = 8p�3 12�2K 1Z�1 d� 1Z�1 dÆ exp [�2i(�x+ Æy)℄M̂ (�; Æ) ; (360)where K is given in Eq. (174). A plot of M̂ is presented in Fig. 43. Note thatthe symmetry of M̂ for ex
hange of � with �� or Æ with �Æ implies thatM̂ is a real fun
tion. This fa
t, together with Eq. (359), implies that Ĝ atthe virtual plane, that is an ensemble-averaged �eld produ
t, is real as well.This is a 
onsequen
e of the fa
t that single parti
le sour
es produ
e a �eld
hara
terized by a plane wavefront at the virtual sour
e position. It 
an beseen 
omparing Eq. (36) with Eq. (94) or, dire
tly, by inspe
ting Eq. (97).Moreover, note that M̂ is invariant for the ex
hange of x with y.From Eq. (131) and Eq. (358) we obtain the 
ross-spe
tral density on the fo
alplane in the verti
al dire
tion, that is152



Ĝ(ẑf ; �yf ;�ŷf)= exp " 2îf2 �f̂ � ẑ1� �yf�ŷf# exp24�2N̂y�ŷ2ff̂2 35� 1Z�1 d�̂y exp "�(�yf=f̂ + �̂y)22D̂y #M̂  �̂y; �ŷff̂ ! : (361)In the verti
al dire
tion, the relative intensity on the fo
al plane is thereforegiven byÎ(ẑf ; �yf )= 1Z�1 d�̂y exp "�(�yf=f̂ + �̂y)22D̂y #ÎS ��̂y��8<: 1Z�1 d�̂y exp24� �̂2y2D̂y 35ÎS ��̂y�9=;�1 ; (362)be
ause ÎS(�̂y) = M̂(�̂y; 0). In the limit D̂y � 1, Eq. (362) redu
es toÎ(ẑf ; �yf ) = ÎS  �yf̂f ! : (363)The modulus of the spe
tral degree of 
oheren
e on the fo
al plane in theverti
al dire
tion readsjg(ẑf ; �yf ;�ŷf)j=exp "�2N̂yf̂2 �ŷ2f#� 1Z�1 d�̂y exp "�(�yf=f̂ + �̂y)22D̂y #M̂  �̂y; �ŷff̂ !�8<: 1Z�1 d�̂y exp "�(�yf=f̂ +�ŷf=f̂ + �̂y)22D̂y #ÎS(�̂y)9=;�1=2�8<: 1Z�1 d�̂y exp "�(�yf=f̂ ��ŷf=f̂ + �̂y)22D̂y #ÎS(�̂y)9=;�1=2 :(364)In the limiting 
ase for D̂y � 1 one obtains the simpli�ed expressionjg(ẑf ; �yf ;�ŷf)j=exp "�2N̂yf̂2 �ŷ2f#� �yf̂f ; �ŷff̂ ! ; (365)153
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Fig. 44. Plot of the universal fun
tion �̂, used to 
al
ulate the modulus of thespe
tral degree of 
oheren
e on the fo
al plane when N̂x � 1, D̂x � 1, N̂y � 1 andD̂y � 1.where, as in Eq. (145) of [2℄,�(�; Æ) = M̂ (�; Æ)hÎS(�� Æ)i1=2 hÎS(�+ Æ)i1=2 : (366)A plot of � is given in Fig. 44. Eq. (364) redu
es even more in the 
ase whenboth D̂y � 1 and N̂y � 1. In this 
ase we havejg(ẑf ; �yf ;�ŷf)j=� �yf̂f ; �ŷff̂ ! : (367)On the image plane, Eq. (132) and Eq. (359) give the following 
ross-spe
traldensity in the verti
al dire
tion: 154



Ĝ(ẑi; �yi;�ŷi)= exp "im(m+ 1)�yi�ŷi2ẑ1 # 1Z�1 d�̂ exp "�(m�yi+ �̂)22N̂y #�M̂(m�ŷi; �̂) exp h�2D̂ym2�ŷ2i i ; (368)
orresponding to a relative intensity on the image planeÎ(ẑi; �yi) = 1Z�1 d�̂ exp "�(m�yi+ �̂)22N̂y #M̂(0; �̂)�8<: 1Z�1 d�̂ exp "� �̂22N̂y #M̂(0; �̂)9=;�1 : (369)With the help of Eq. (360), Eq. (356) and Eq. (174) one sees thatM̂(0; y)= 12�2K 1Z�1 dÆ 24exp [i(�2Æ)y℄ 1Z�1 d�M̂ (�; Æ)35 = B̂(y) : (370)The solution of the image formation problem is thus 
onstituted by a 
on-volution produ
t between a Gaussian fun
tion and the universal fun
tion B̂,whi
h admits the analyti
al representation given in Eq. (186). The intensityon the image plane is independent of the value of D̂y . In the limit N̂y � 1 Eq.(369) gives ba
k Eq. (169). Instead, in the limit N̂y � 1 we obtainÎ(ẑi; �yi) =M̂(0;m�yi) = B̂(m�yi) : (371)The modulus of the spe
tral degree of 
oheren
e in the verti
al dire
tion isgiven byjg(ẑi; �yi;�ŷi)j= 1Z�1 d�̂ exp "�(m�yi + �̂)22N̂y #�M̂(m�ŷi; �̂) exp h�2D̂ym2�ŷ2i i�8<: 1Z�1 d�̂ exp "�(m�yi +m�ŷy + �̂)22N̂y #M̂(0; �̂)9=;�1=2�8<: 1Z�1 d�̂ exp "�(m�yi �m�ŷy + �̂)22N̂y #M̂(0; �̂)9=;�1=2 :(372)In the 
ase D̂y � 1 and N̂y � 1 one obtains155
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xFig. 45. Plot of the universal fun
tion X, used to 
al
ulate the modulus of thespe
tral degree of 
oheren
e on the image plane when N̂x � 1, D̂x � 1, N̂y � 1and D̂y � 1.jg(ẑi; �yi;�ŷi)j=X(m�ŷi;m�yi) (373)where, in analogy with Eq. (366), we de�neX(x; y) = M̂(x; y)hB̂(x� y)i1=2 hB̂(x+ y)i1=2 : (374)Note that when N̂y � 1 and D̂y assumes arbitrary values, the modulus of thespe
tral degree of 
oheren
e, Eq. (372), simpli�es to Eq. (170). A plot of theuniversal fun
tion X is given in Fig. 45.14.1.2 E�e
t of aperture sizeWe will now in
lude, with the help of Eq. (135), the e�e
ts of pupil in theone-dimensional 
ase. The pupil fun
tion and P̂ are given by Eq. (224) andEq. (225). The r-dire
tion should be now substituted with the y-dire
tion.156



We 
an use 
ondition (136) and Eq. (368) to des
ribe the 
ase when thelens is in the far zone. From Eq. (368) we 
an estimate the order of thesour
e dimension, that is max[1;qN̂y℄, and the order of the 
oheren
e length,that is min[1=qD̂y; 1℄. The lens is in the far zone when max[1;qN̂y℄=ẑ1 �max[qD̂y; 1℄. Note that several parti
ular 
ases of interest are automati
allyin
luded in this 
ondition: the 
ase for D̂y � 1 and N̂y � 1, that givesẑ1 � qN̂y=D̂y , the 
ase for D̂y � 1 and N̂y . 1, that gives ẑ1 � 1=qD̂y,as well as the 
ase for D̂y . 1 and N̂y � 1, that gives ẑ1 � qN̂y. All thesesituations have been previously dis
ussed in Se
tion 5. The new situation leftto 
onsider is for N̂y � 1 and D̂y � 1. In this 
ase, the lens is in the far �eldwhen ẑ1 � 1. From Eq. (135) and Eq. (368) we obtainĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi� Z d�u d�û exp h�2D̂y ẑ21�û2i� 1Z�1 d�̂ exp264���̂+ ẑ1�u�22N̂y 375M̂(ẑ1�û; �̂)�sin
�â �m̂z1 (�yi +�ŷi)� �u��û���sin
�â �m̂z1 (�yi ��ŷi)� �u+�û�� : (375)A

ording to Eq. (353), ẑ21 max[1; D̂y℄ is of order of the square of the radiationspot size on the pupil, while ẑ21=max[N̂y; 1℄ is of order of the square of the
oheren
e length on the pupil. It is interesting to see that if D̂y � 1 theexponential fun
tion in �û has a very narrow 
hara
teristi
 length with respe
tto unity, and one 
an make the substitution M̂(ẑ1�û; �̂y) �! M̂(0; �̂y) =B̂(�̂y), thus getting ba
k Eq. (256). If N̂y � 1 instead, �̂y 
an be set to zeroin the exponential fun
tion in �̂y + ẑ1�u, and the entire exponential fun
tion
an be taken out of the integral in d�̂y. Then, it is possible to show that thesurviving integral in d�̂y is equal to 
(ẑ1�û), giving ba
k Eq. (250). Finally,if both N̂y � 1 and D̂y � 1 we get ba
k Eq. (226).Eq. (375) should be 
onsidered as a limiting 
ase when no aberrations arepresent. More generally, when aberrations and apodization are present, Eq.(375) should be substituted by the following expression:ĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi� Z d�u d�û exp h�2D̂y ẑ21�û2i� 1Z�1 d�̂ exp264���̂+ ẑ1�u�22N̂y 375M̂(ẑ1�û; �̂)157



�P̂a �m̂z1 (�yi +�ŷi)� �u��û��P̂a� �m̂z1 (�yi ��ŷi)� �u+�û� : (376)Eq. (376) is very general and is valid under the only assumption that thelens is in the far �eld region. The use of old 
oordinates ŷi1 and ŷi2 insteadof �yi and �ŷi somewhat 
lari�es the meaning of Eq. (376). Eq. (376) statesthat the 
ross-spe
tral density a

ounting for the pupil in
uen
e (aberrationsand di�ra
tion e�e
ts) is a double 
onvolution produ
t of Eq. (368), i.e. the
ross-spe
tral density in the ideal 
ase, and P̂a, whi
h 
an be written asĜP (ẑi; ŷi1; ŷi2)= hDÊ(û1)Ê�(û2)E � P̂a(û1) � P̂�a(û2)i (ŷi1; ŷi2)= DhÊ � P̂ai (ŷi1) hÊ� � P̂�ai (ŷi2)E : (377)The intensity at the image plane is found setting ŷi1 = ŷi2 = ŷi, whi
h givesÎP (ẑi; ŷi)= hDÊ(û1)Ê�(û2)E � P̂a(û1) � P̂�a(û2)i (ŷi; ŷi)=����Ê � P̂a���2 (ŷi)� : (378)In parti
ular, in the 
ase of a 
ompletely 
oherent sour
e, we may negle
t theensemble average.Note that in order to evaluate the intensity at the image plane, it is no moreenough to know the ideal intensity and to 
onvolve with a line spread fun
tion.One has to know the 
ross-spe
tral density in the ideal 
ase and 
onvolve twi
ewith P̂a, whi
h is known as the amplitude line spread fun
tion of the system(or the amplitude point spread fun
tion in the two-dimensional 
ase) and isa more general identi�er of the system 
hara
teristi
s. Even in the non quasi-homogeneous 
ase one may 
ontinue to use, for evaluating the intensity at theimage plane, an algorithm based on the 
al
ulation of ideal 
hara
teristi
s andfurther 
onvolution with a fun
tion 
hara
terizing the system. The di�eren
ewith respe
t to the quasi-homogeneous 
ase is that the amplitude line spreadfun
tion must be used in pla
e of the line spread fun
tion, and that the 
ross-spe
tral density must be used in pla
e of the intensity.Note that, in our approa
h, the Wigner fun
tion plays no role, as it 
on-stitutes an arti�
ial quantity in the image formation problem, whereas thenatural quantity to 
onsider is the 
ross-spe
tral density. Even if the virtualsour
e 
an be 
hara
terized by a phase spa
e distribution (i.e. by a positiveWigner fun
tion) one has no simpli�
ation in the imaging problem. The onlysimpli�
ation of Eq. (378) takes pla
e in the quasi-homogeneous 
ase when,due to the separability of the 
ross-spe
tral density variables and to a short158




oheren
e length (
ompared with the size of the sour
e), one obtains the usualin
oherent line spread fun
tion formalism.14.2 Horizontally non-homogeneous and verti
ally di�ra
tion limited sour
eWe will now relax the assumption of a large horizontal ele
tron beam sizeand divergen
e and deal with the non-homogeneous 
ase when N̂x assumesarbitrary values, while D̂x � 1. This is a rather exoti
 range of parameters,and we will dis
uss the 
ase for a large non-limiting aperture only. In this 
ase,for third generation light sour
es we have automati
ally N̂y � 1 and D̂y � 1be
ause �y � �x 24 . In this 
ase, in the limit ẑo � 1, from Eq. (124) we obtainĜ= exp�i2��x��̂xẑo� exp h�2N̂x��̂2xiexp�i2��y��̂yẑo��sin
"(��x ���̂x)2 + (��y ���̂y)24 #sin
" (��x +��̂x)2 + (��y +��̂y)24 # :(379)Using Eq. (127) and Eq. (379) one obtains the Fourier transform of the 
ross-spe
tral density at ẑo = 0, i.e. at the virtual-sour
e position, that is givenby Ĝ �0; ��x;��̂x; ��y;��̂y�=exp h�2N̂x��̂2xisin
"(��x ���̂x)2 + (��y ���̂y)24 #�sin
"(��x +��̂x)2 + (��y +��̂y)24 #: (380)Inverse transforming Eq. (380) it is possible to express the 
ross-spe
tral den-sity at the virtual sour
e position asĜ(0; �x;�x̂; �y;�ŷ)= 1Z�1 d��xd��̂xd��yd��̂y exp h�2N̂x��̂2xi24This treatment 
an be easily generalized to the more exoti
 situation for N̂xarbitrary, D̂x � 1, N̂y arbitrary and D̂y � 1. However, here we will be 
on
ernedwith third generation light sour
es only. Assuming reasonable values for �x . 10 Lwand �y = ��x with � ' 10�2 we see that D̂x � 1 implies both N̂y � 1 and D̂y � 1.Therefore we will avoid to make generalizations whi
h are not pertinent to the 
aseunder study, e.g. exoti
 
ase for �x > 10 Lw, �y < 10�1 Lw or �y > 10 Lw.159



�sin
" (��x ���̂x)2 + (��y ���̂y)24 #�sin
" (��x +��̂x)2 + (��y +��̂y)24 #� exp h2i(��̂x�x+ ��x�x̂)i exp h2i(��̂y�y + i��y�ŷ)i :(381)From Eq. (131) and Eq. (380) we obtain the 
ross-spe
tral density on the fo
alplanêG(ẑf ; �xf ;�x̂f ; �yf ;�ŷf)= exp " 2îf2 �f̂ � ẑ1� �xf�x̂f# exp "�2N̂xf̂2 �x̂2f#� exp " 2îf2 �f̂ � ẑ1� �yf�ŷf#�sin
"(�xf ��x̂f)2 + (�yf ��ŷf)24f̂2 #�sin
"(�xf +�x̂f)2 + (�yf +�ŷf)24f̂2 #: (382)The relative intensity on the fo
al plane is therefore given byÎ(ẑf ; �xf ; �yf)= sin
2" �x2f + �y2f4f̂2 #: (383)This is just the relative intensity on the fo
al plane from a single ele
tron, i.e.Eq. (91). It is interesting to note that the modulus of the spe
tral degree of
oheren
e on the fo
al plane depends on �x̂f only, and 
an be written asjg(ẑf ; �xf ;�x̂f ; �yf ;�ŷf)j= exp"�2N̂xf̂2 �x̂2f# : (384)In the limit N̂x � 1 one re
overs the deterministi
 
ase of a single parti
le. Inthis limit jgj redu
es to unity, and the wavefront is perfe
tly 
oherent.As regards the image plane, we should note that Eq. (381) is not easy tomanipulate analyti
ally in the most general 
ase. However, when �x̂ = 0 and�ŷ = 0, one 
an 
al
ulate the intensity of the virtual sour
e. With the helpof Eq. (175) and Eq. (181) one obtains160



Î(0; �x; �y) = 1Z�1 d�̂xd exp "�(�x+ �̂x)22N̂x #~	(�̂x; �y) ; (385)where we have set~	(x; y) = 	�qx2 + y2� : (386)The fun
tion 	 was already de�ned in Eq. (95). Using Eq. (132) and Eq. (385)we 
an now give the following expression for the relative intensity:Î(ẑi; �xi; �yi)= 1Z�1 d�̂x exp "�(m�xi+ �̂x)22N̂x #~	(�̂x;m�yi)�8<: 1Z�1 d�̂x exp "� �̂2x2N̂x#~	(�̂x; 0)9=;�1 : (387)In the limit N̂x � 1 we haveÎ(ẑi; �xi; �yi)=m2~	(m�xi;m�yi) ; (388)in agreement with Eq. (96).14.3 General imaging 
onsiderationsIn the present Se
tion 14.3 we dis
uss a general algorithm for the solution tothe image formation problem for undulator sour
es based on our Statisti
alOpti
s approa
h.Eq. (376) is an expression for the 
ross-spe
tral density on the image planein the 
ase of a non-homogeneous undulator sour
e and of a lens with anarbitrary pupil fun
tion (i.e. a lens with aberrations, apodization and �niteaperture size). However, we assumed that the ele
tron beam has (i) a Gaussiantransverse pro�le and (ii) a large horizontal emittan
e 
ompared with theradiation wavelength (N̂x � 1 and D̂x � 1), that (iii) the radiation frequen
yis tuned at perfe
t resonan
e with the fundamental frequen
y of the undulator,i.e. Ĉ � 1 25 , that (iv) the minimal beta fun
tions in both horizontal and25This means that mono
hromatization is good enough to negle
t �nite bandwidthof the radiation around the fundamental frequen
y, as well as ele
tron beam energyspread. 161



verti
al dire
tions are lo
ated at ẑ = 0, that (v) there is no in
uen
e offo
using inside the undulator, that (vi) the lens is pla
ed in the far zone and,�nally, that (vii) the observation plane is lo
ated at position ẑ = ẑi, wherethe virtual sour
e (that we assume at ẑ = 0) is imaged. Assumptions (i),(ii), (iii), (iv) and (v) are related to the form of the 
ross-spe
tral densityat the virtual sour
e plane, Eq. (359). They are very often, but not alwaysveri�ed. Moreover they do not depend on the parti
ular imaging setup relatedwith a given photon beamline. Assumptions (vi) and (vii) instead, are relatedwith the imaging setup i.e. with how the lens and the observation points arepositioned.The majority of the assumptions from (i) to (vii) are often veri�ed for thirdgeneration light sour
es. As a matter of fa
t, our theory is spe
i�
ally built todeal with third generation light sour
es. However, a generalization to in
ludethe 
ase of spontaneous undulators installed in XFEL fa
ilities (see e.g. [25℄,[26℄) is 
ertainly desirable. Of all restri
tions from (i) to (vii), (v) is the morediÆ
ult to be relaxed. In order to do so, one needs to modify the expressionfor the single parti
le �eld to a

ount for the in
uen
e of fo
using inside theundulator. The other assumptions may be more easily relaxed, to give a moregeneral algorithm for the 
al
ulation of the 
ross-spe
tral density in the 
aseof arbitrary position of the lens (near or far zone). The 
ase of spontaneousundulators installed in XFEL fa
ilities is a parti
ular one when it is needed todeal with both horizontal and verti
al ele
tron beam emittan
es 
omparableor smaller than the radiation wavelength. In fa
t, �x ' �y ' 0:3�A. Resultsbased on a Gaussian model of the ele
tron beam with generi
 N̂x;y and D̂x;ymay be presented. To this purpose one may use Eq. (124) to 
al
ulate the
ross-spe
tral density in free spa
e. As one may see inspe
ting Eq. (124), itis no more possible to separate the horizontal and the verti
al dire
tion. Eq.(124) is still subje
t to assumptions (i), (iii), (iv) and (v). Our theory is builtby exploiting many simplifying assumptions. When some of them fail, oneshould go ba
k to the point where the invalid simpli�
ation is exploited, anduse a more generi
 expression in its pla
e. In parti
ular, while assumption (i)is quite realisti
 in the 
ase if storage ring sour
es, it is to be regarded as a
onventional assumption when treating sour
es based on linear a

elerators.Our most generi
 expression, Eq. (114) should be used in pla
e of Eq. (124)if one wishes to relax assumption (i), as well as (iii) and (iv). On
e the 
ross-spe
tral density in free spa
e is known through Eq. (124) or Eq. (114), onemay a

ount for a generi
 observation plane, thus relaxing assumption (vii). Tothis purpose one needs to put attention on the fa
t that any observation planelo
ated at position ẑ = ẑ2 is related with a 
ertain plane at position ẑ = ẑs infront of the lens through the lens-maker equation, Eq. (21). The next step inour algorithm 
onsists in �nding the 
ross-spe
tral density at ẑ = ẑs, whi
hwill be imaged at our 
hosen observation plane, lo
ated at ẑ = ẑ2. To thispurpose, Eq. (128) may be used. In fa
t, Eq. (128) des
ribes the propagationof the Fourier transform of the 
ross-spe
tral density, Ĝ, in free spa
e. As we162



have seen, the fa
t that the lens is pla
ed in the far �eld allows 
an
ellationof one phase fa
tor in the relation between the 
ross-spe
tral density on theimage plane and the 
ross-spe
tral density on the virtual sour
e plane. This
an be seen using 
ondition (136) in Eq. (132). Su
h phase fa
tor should beretained if the lens is in the near zone (that is when 
ondition (136) is notsatis�ed). In this way, assumption (vi) 
an be relaxed as well. At this point,the 
ross-spe
tral density Ĝ(ẑs;~�r;�~̂r) is known. The �nal step 
onsists in the
al
ulation of the amplitude point spread fun
tion P̂a of the system. The 
ross-spe
tral density at position ẑ = ẑ2 is found 
onvolving twi
e the produ
t ofthe 
ross-spe
tral density at the sour
e plane and the extra phase-fa
tor dueto the failure of 
ondition (136) with the amplitude point spread fun
tion.This givesĜP (ẑ2;~�r;�~̂r)= 4â2 exp �2imẑ1 ~�r ��~̂r� Z d~�u d�~̂u� exp h2iẑ1~�u ��~̂ui Ĝ �ẑs;�ẑ1~�u;�ẑ1�~̂u��P̂a �m̂z1 �~�r +�~̂r�� ~�u��~̂u��P̂a� �m̂z1 �~�r ��~̂r�� ~�u+�~̂u� ; (389)where m is now de�ned as m = (ẑ1 � ẑs)=(ẑ2 � ẑ1), a

ording to Eq. (22).It should be noted that, in this paper, together with a theory for third gen-eration light sour
es we also developed a parti
ular language that 
an beapplied for a wider range of problems. Up to now, resear
h works dealingwith transverse 
oheren
e properties of Syn
hrotron Radiation have used thestandard language developed to treat Statisti
al Opti
s problems. Su
h a lan-guage has a very limited s
ope be
ause Statisti
al Opti
s has mainly dealtwith thermal-like sour
es. As a result, a time domain approa
h has often beenused. Quasi-stationary approximation and ergodi
ity are usually assumed, sothat time averages are used instead of ensemble averages. Then, the 
on
eptof 
ross-spe
tral purity [3, 8℄ must be for
efully evoked in order to separatelongitudinal and transverse 
oheren
e e�e
ts, whi
h are des
ribed throughthe mutual intensity fun
tion. Su
h language though, is not suitable to de-s
ribe Syn
hrotron Radiation experiments, where many radiation pulses are
olle
ted and results are averaged over an ensemble. Our approa
h starts fromthe very foundation of Statisti
al Opti
s, thus avoiding in
onvenient assump-tions. A language based on a frequen
y domain des
ription and on ensembleaverages over an ensemble of radiation pulses (ea
h 
orresponding to a di�er-ent ele
tron bun
h) has been developed. In our paper we aimed at presenting asatisfa
tory des
ription of the physi
s involved in the 
hara
terization of lightsour
es from a statisti
al viewpoint, trying to exhaustively explain where themain ideas 
ome from and where they lead to. We restri
ted our attention163



to a quantitative treatment of third-generation light sour
es but we also laidthe foundations to des
ribe other kind of radiation sour
es, e.g. spontaneousundulator sour
es installed in XFEL fa
ilities. In fa
t, many of the featuresof the relatively spe
ialized setup 
onsidered in this work are 
ommon in thegeneral theory of undulator sour
es.15 Supplementary remarks on quasi-homogeneous undulator sour
easymptotesIn the last Se
tion 14 we presented quite general results for verti
ally non-homogeneous sour
es. Under the only assumption of a large horizontal emit-tan
e (D̂x � 1 and N̂x � 1), Eq. (353) spe
i�es the 
ross-spe
tral densityof the radiation in the far zone and in the verti
al dire
tion without 
on-straints on N̂y and D̂y. Under the same 
onditions, Eq. (359) spe
i�es the
ross-spe
tral density of the virtual sour
e in the verti
al dire
tion. Note thatEq. (359) is a 
onvolution. When the dependen
e of Ĝ on �ŷ 
an be isolatedin a single fa
tor, the sour
e is for
efully quasi-homogeneous, while there areno 
ases when it is des
ribed by a more generi
 kind of Shell model (i.e.Ĝ � qI(y1)qI(y2)g(�ŷ)). It is important to stress this fa
t in 
onne
tionwith several resear
h works [14, 15℄ devoting parti
ular attention to the rela-tion between the Gaussian-Shell model and undulator sour
es. As we remarkedin Se
tion 7, Shell models (and, in parti
ular, Gaussian-Shell models) may 
er-tainly be useful for des
ribing light sour
es other than undulator-based onesand for edu
ational purposes, but they do not des
ribe any pra
ti
al realiza-tion of undulator radiation sour
es.From Eq. (353), setting ��̂y = 0, one obtains the intensity distribution in thefar zoneÎ(��y) = 1Z�1 d�̂y exp "�(��y + �̂y)22D̂y # ÎS(�̂y) ; (390)having used Eq. (355). From Eq. (359), setting �ŷ = 0, one gets the intensitydistribution of the virtual sour
e in the 
enter of the undulator 26 ,Î(0; �y) = 1Z�1 d�̂ exp "�(�yy + �̂)22N̂y # B̂(�̂) ; (391)26We are always assuming that the minimal beta fun
tion of the ele
tron beam islo
ated at the 
enter of the undulator. 164



having taken advantage of Eq. (370). ÎS in Eq. (390) and B̂ in Eq. (391)are the universal fun
tions given in Eq. (160) and Eq. (186). Both Eq. (390)and Eq. (391) are 
onvolutions, and are valid regardless the values of N̂y andD̂y, i.e. regardless the fa
t that the sour
e is quasi-homogeneous or not. Inthe 
ase of a large non-limiting aperture and an ideal lens, other two exa
tresults 
an be found in Se
tion 14, whi
h are independent of the values ofN̂y and D̂y. In fa
t, Eq. (362) and Eq. (369) prove that the exa
t expressionfor the intensity distribution is, both on the fo
al and on the image plane, a
onvolution between Gaussian and universal fun
tions.When the sour
e is quasi-homogeneous, with an a

ura
y s
aling as the inversenumber of modes, 1=qmax[N̂y; 1℄max[D̂y; 1℄, we may take the approximationM̂(�ŷ; �̂) ' 
(�ŷ)B(�̂) in Eq. (359).This fa
t may be demonstrated as follows. First, let us introdu
e a normalizedversion of the one-dimensional inverse Fourier transform of the fun
tion M ,that isM 0(�ŷ;��̂y)= 1A 1Z�1 M̂ ���y;��̂y� exp h�2i�ŷ��yi d��y= 1A 1Z�1 M̂ (�ŷ; �y) exp h2i��̂y�yi d�y : (392)The normalization fa
tor A in Eq. (392) is de�ned asA= 1Z�1 M̂ (0; �y) d�y ; (393)so that M 0(0; 0) = 1. The 
ross-spe
tral density in Eq. (359) 
an therefore bewritten asĜ(0; �y;�ŷ)= exp h�2D̂y�ŷ2i� 1Z�1 dû exp [�2iû�y℄ exp h�2N̂yû2iM 0(�ŷ; û) ; (394)having used the 
onvolution theorem. Under the quasi-homogeneous assump-tion, we 
an approximate M 0(�ŷ; û) ' M 0(�ŷ; 0)M 0(0; û). To show this, letus represent M 0(x; y) using a Taylor expansion around the point (0; 0). Oneobtains 165



M 0(x; y)= 1 + 1Xk=1 1k! 24xk �kM 0(x; 0)�xk �����x=0 + yk�kM 0(0; y)�yk �����y=035+O(xy) ; (395)where the normalization relation M 0(0; 0) = 1 has been taken advantageof. Similarly, one may 
onsider the following representation of the produ
tM 0(x; 0) M 0(0; y) also obtained by means of a Taylor expansion:M 0(x; 0)M 0(0; y)= "M 0(0; 0) + 1Xk=1 xkk! dkM 0(x; 0)dxk �����x=0#�24M 0(0; 0) + 1Xj=1 yjj! djM 0(0; y)dyj �����y=035=1 + 1Xn=1 1n! "xndnM 0(x; 0)dxn �����x=0+yndnM 0(0; y)dyn �����y=035+O(xy) ; (396)having used M 0(0; 0) = 1. Comparison of the last equality in (396) withthe right hand side of Eq. (395) shows that M 0(x; y) ' M 0(x; 0)M 0(0; y) upto 
orre
tions of order xy � 1=qmax[N̂y; 1℄max[D̂y; 1℄, that is the quasi-homogeneous a

ura
y. Using this approximation in Eq. (394) yieldsĜ(0; �y;�ŷ)= exp h�2D̂y�ŷ2iM 0(�ŷ; 0)� 1Z�1 dû exp [�2iû�y℄ exp h�2N̂yû2iM 0(0; û) : (397)Finally, re
alling the de�nitions of 
 and B we 
an write Eq. (397) asĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i 
(�ŷ) 1Z�1 d�̂ exp "�(�y + �̂)22N̂y # B̂(�̂) : (398)Eq. (398) is valid in any quasi-homogeneous 
ase.Note that Eq. (398) a

ounts for di�ra
tion e�e
ts through the universal fun
-tions 
 and B. This may be tra
ed ba
k to the use of the inhomogeneous waveequation to 
al
ulate the 
ross-spe
tral density for the virtual sour
e, fromwhi
h Eq. (398) follows. Deriving Eq. (398), we assume a large number ofmodes, and this justi�es the use of phase spa
e representation as an alterna-tive 
hara
terization of the sour
e, in pla
e of the 
ross-spe
tral density (i.e.Eq. (398) itself). 166



Setting �ŷ = 0, Eq. (398) gives the exa
t intensity distribution at the vir-tual sour
e, i.e. Eq. (391). The spe
tral degree of 
oheren
e on the virtualsour
e is then re
overed using the de�nition of quasi-homogeneous sour
eĜ = Î(�y)g(�ŷ). Sin
e the sour
e is quasi-homogeneous, the Fourier trans-form of the spe
tral degree of 
oheren
e g(�ŷ) yields the intensity in thefar zone. Remembering that 
 and IS form a Fourier pair, we 
on
lude that,starting from Eq. (398) it is possible to reprodu
e the exa
t result for theintensity in the far zone, Eq. (390). Quite remarkably, Eq. (398), whi
h isderived under the quasi-homogeneous approximation and is related to an a
-
ura
y 1=qmax[N̂y; 1℄max[D̂y; 1℄, yields ba
k two results, Eq. (390) and Eq.(391) whi
h are valid regardless the fa
t that the sour
e is quasi-homogeneousor not. Moreover, in the 
ase of perfe
t opti
s and non-limiting pupil aperture,and independently of the quasi-homogeneous assumption, the intensity pro�lein the virtual plane reprodu
es the intensity pro�le in the image plane, whilethe intensity pro�le in the far zone reprodu
es the intensity pro�le in the fo
alplane. Therefore, we 
an also 
on
lude that Eq. (398) gives both the intensityin the fo
al and in the image plane for an ideal lens. Note again that also thesetwo results, Eq. (362) and Eq. (369), have perfe
t a

ura
y. They are exa
t andare not subje
t to the quasi-homogeneous a

ura
y 1=qmax[N̂y; 1℄max[D̂y; 1℄.Let us now 
onsider the parti
ular quasi-homogeneous 
ase when both N̂y � 1and D̂y � 1. In this 
ase, the number of modes along the virtual sour
e is oforder qN̂yD̂y and the normalized 
oheren
e length 
an be estimated as �̂
 �1=qD̂y � 1. In the 
ase of non-ideal opti
s, on
e a line spread fun
tion l forthe system is found, one may obtain the intensity distribution of the radiationby 
onvolving l with the ideal image. The a

ura
y of these 
al
ulations is nowthe a

ura
y of the quasi-homogeneous assumption, 1=qN̂yD̂y. In the 
ase apupil with aperture â is present, we 
on
luded in Se
tion 8.1 that it makessense to a

ount for di�ra
tion e�e
ts when â � qD̂ẑ1. In this 
ase in fa
t,the ratio between the width of the line spread fun
tion and the width of theideal image is of order ẑ1=(âqN̂y)� 1=qN̂yD̂y . As a result, when Eq. (398) isused to 
al
ulate the ideal intensity, it makes sense to a

ount for di�ra
tione�e
ts. Worsening the a

ura
y in the 
al
ulation of the 
ross-spe
tral densityof the sour
e, we may redu
e Eq. (398) toĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i exp "� �y22N̂y # ; (399)that is Eq. (146). Note that negle
ting the produ
t with the 
 fun
tion 
an bedone with an a

ura
y 1=qD̂y, while extra
tion of the exponential fun
tionin �y from the 
onvolution produ
t with the B fun
tion 
an be done with ana

ura
y 1=qN̂y. In our study 
ase when D̂y � 1 and N̂y � 1, the overall167



a

ura
y of Eq. (399) (or Eq. (146)) 
an be estimated as max(1=qD̂y; 1=qN̂y),that is the a

ura
y of the Gaussian approximation. Su
h a

ura
y is mu
hworse than that of the quasi-homogeneous assumption in Eq. (398), that is1=qN̂yD̂y. This fa
t has interesting 
onsequen
es. In fa
t, Eq. (399) 
an �rstbe used to 
al
ulate the ideal intensity on the image plane and, then, it may be
onvolved with the line spread fun
tion of the lens to give a 
hara
terizationof the intensity distribution with a redu
ed a

ura
y. If, for instan
e, â �qD̂ẑ1 we 
an have situation when ẑ1=(âqN̂y)� 1=qN̂yD̂y but ẑ1=(âqN̂y)�1=qN̂y and, as a result, a

ounting for di�ra
tion e�e
ts would not modifythe intensity with a

ura
y 1=qN̂y. In spite of this, going ba
k to Eq. (398) to
al
ulate the ideal intensity with better a

ura
y 1=qN̂yD̂y, di�ra
tion e�e
tswill appre
iably modify the intensity within the a

ura
y 1=qN̂yD̂y.When N̂y � 1 and D̂y ' 1 the a

ura
y of the quasi-homogeneous ap-proximation be
omes 1=qN̂y max[1; D̂y℄. When N̂y ' 1 and D̂y � 1 it be-
omes, instead, 1=qmax[1; N̂y℄D̂y. In these 
ases, the a

ura
y of the quasi-homogeneous approximation is 
omparable to the a

ura
y of the Gaussianapproximation. To be spe
i�
, when N̂y � 1 and D̂y ' 1 the a

ura
y of thequasi-homogeneous approximation is of order 1=qN̂y (note that the 
oheren
elength at the pupil is �̂
 ' 1, that is the di�ra
tion size) and Eq. (398) 
an besubstituted withĜ(0; �y;�ŷ) = exp "� �y22N̂y # exp h�2D̂y�ŷ2i
(�ŷ) (400)without loss of a

ura
y, be
ause the relative a

ura
y of the 
onvolution isof order 1=qN̂y as the a

ura
y of the quasi-homogenous approximation. Eq.(400) is just Eq. (162). A similar reasoning 
an be done when D̂y � 1 andN̂y ' 1. In this 
ase the a

ura
y of the quasi-homogeneous approximation isof order 1=qD̂y (note that the 
oheren
e length at the pupil is �̂
 � 1, thatis mu
h smaller than the di�ra
tion size), and Eq. (398) 
an be substitutedwithĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i 1Z�1 d�̂ exp"�(�y + �̂)22N̂y # B̂(�̂) : (401)without loss of a

ura
y. In fa
t, negle
ting the 
 fun
tion in Eq. (398) isequivalent to approximate the 
onvolution in Eq. (390) with a Gaussian dis-tribution, whi
h 
an be done with an a

ura
y of order 1=qD̂y, the same ofthe quasi-homogenous approximation. Eq. (401) is just Eq. (188).168



In 
losing this Se
tion we should stress that, in the 
ase of ideal lenses, theintensity on the image plane, that is a s
aled version of Eq. (391), is exa
tlygiven by a 
onvolution of a known universal fun
tion and the ele
tron beampro�le. In the 
ase the ele
tron beam pro�le is unknown, one may measurethe intensity and de
onvolve Eq. (391) in order to �nd ba
k the ele
tron beampro�le. In literature (see, for example, [27℄) it is usually a

epted that theresolution of any ele
tron beam size � inferred from the measurement of theradiation intensity distribution on the image plane is limited (in the 
ase of anideal lens) by the di�ra
tion size of the single parti
le undulator radiation, i.e.the resolution is of order p�Lw=(2��). However, we have seen that Eq. (391)is an exa
t result. Therefore, any measurement of � obtained by de
onvolutionof Eq. (391) is only limited by the �nite a

ura
y of the dete
tor.16 Con
lusionsAs has been remarked in [28℄: "[...℄ it is very desirable to have a way to modelthe performan
e of undulator beamlines with signi�
ant partial 
oherent ef-fe
ts, and su
h modelling would, naturally, start with the sour
e. The 
al
u-lation would involve the knowledge of the partial 
oheren
e properties of thesour
e itself and of how to propagate partially 
oherent �elds through spa
eand through the opti
al 
omponents used in the beamline. [...℄ it is impor-tant to re
ognize that, although most of these 
al
ulations are, in prin
iple,straightforward appli
ations of 
onventional 
oheren
e theory (Born and Wolf,1980; Goodman, 1985), there is not mu
h 
urrent interest in the visible opti
s
ommunity. [...℄ For example, even for the rather simple problem of di�ra
-tion by an open aperture with partially 
oherent illumination, we have foundpublished solutions only for 
ir
ular and slit-shaped apertures and only forsour
es 
onsisting of an in
oherently illuminated aperture of similar shape tothe di�ra
ting aperture. Thus, there is no 
ounterpart in these types of FourierOpti
s problem to the highly developed art of ray tra
ing in geometri
al op-ti
s, not is there anything as simple as a ray to whi
h an exa
t system response
an be 
al
ulated.". This program of development of Syn
hrotron Radiationtheory was formulated more than ten years ago. Operation of third generationlight sour
es also started in this period. This demonstrates that when thirdgeneration light sour
es were born, it was immediately re
ognized that theusual theory of Syn
hrotron Radiation was not adequate to des
ribe them.Yet, up to now, no theoreti
al progress has been made in that dire
tion. Thepresent paper, as well as our previous work [2℄ are devoted to the realizationof the before mentioned program of development of Syn
hrotron Radiationtheory.In [2℄ we des
ribed spatial 
oheren
e propertied of undulator radiation fromthird-generation light sour
es in free spa
e. In this paper we aim at an exten-169



sion of [2℄. Previous s
ienti�
 works and textbooks postulate that the 
ross-spe
tral density at the virtual undulator sour
e 
an be des
ribed in terms ofa Gaussian-Shell model or, even more restri
tively, that undulator sour
es areperfe
tly in
oherent. Su
h assumption is not adequate when treating thirdgeneration light sour
es, be
ause the verti
al emittan
e is 
omparable or evenmu
h smaller than the radiation wavelength (i.e. �y � �=(2�)) in a wide spe
-tral interval extending from the �Amstrong wavelength range up to the softX-rays.In this work we 
ombined Statisti
al Opti
s methods with Fourier Opti
ste
hniques in order to des
ribe in an analyti
al way the propagation of the
ross-spe
tral density of Syn
hrotron Radiation through a lens. In parti
ular,we fo
used our attention on the problem of �nding both the intensity and thespe
tral degree of 
oheren
e of undulator radiation at the fo
al and at theimage plane of the lens. Although our paper is not limited to this situationalone, our main result deals with the quite generi
 
ase of a large normalizedhorizontal emittan
e �x � �=(2�) and an arbitrary verti
al emittan
e �y.Our paper provides physi
al understanding of a setup of general interest andwe expe
t it to be useful for pra
ti
al estimations in almost all range of the pa-rameter spa
e for third generation light sour
es. We expe
t that, in the future,numeri
al 
odes fully 
apable of dealing with transverse 
oheren
e propertiesof Syn
hrotron Radiation will also be developed, and will be 
apable of pro-viding detailed analysis of parti
ular experimental setups. Our theory willbe of help to developers of these 
odes be
ause it provides both ben
hmarksand partially manipulated equations for the �eld 
orrelation, simpler to treatnumeri
ally than �rst prin
iple 
al
ulations and still reasonably generi
.Two basi
 non-restri
tive assumptions made in our theory are the paraxialapproximation and the resonan
e approximation. The �rst is justi�ed by thefa
t that we are treating an ultra-relativisti
 system. The se
ond means thatwe are working with an undulator 
omposed of a large number of periodNw � 1 and that we are interested in frequen
ies near the fundamental. Thisallows to negle
t the verti
al polarization 
omponent of the �eld and to treatthe �eld within a s
alar theory.Analyti
al studies also required the introdu
tion of some restri
tive assump-tions introdu
ed in our theory, to be relaxed in the future. First, we assumedthat the beta fun
tions in both dire
tions have their minima in the 
enter ofthe undulator. However, beta fun
tions are (or may be) often tuned aroundthe 
enter of the undulator in 
ases of pra
ti
al interest. Se
ond, we assumed asingle 
onverging thin lens with none or very spe
i�
 pupil fun
tions. However,other shapes of the lens 
an be a

ounted for by means of numeri
al 
onvolu-tions between a more 
ompli
ated 
omplex pupil fun
tion and our fundamentalresults referring to the 
ase when in
uen
e of the pupil is negligible. Note that170



the situation of a thin lens is often met in pra
ti
e in the 
ase of X-ray radi-ation, as grazing in
iden
e re
e
tive opti
s is quite frequently used for imageformation in this spe
tral range. Third, we assumed that mono
hromatizationis good enough to negle
t �nite bandwidth of the radiation around the funda-mental and also ele
tron beam energy spread. Both these e�e
ts may be takeninto a

ount by an extension of this theory. However, in pra
ti
al 
ases of in-terest these restri
tions are often met. For instan
e, a mono
hromator relativebandwidth of 10�3 is suÆ
ient to guarantee a reasonably narrow bandwidthfor undulators up to about 40 periods. Also, with this number of undulatorperiods, su
h a mono
hromator guarantees small 
orre
tions to our results forele
tron beams with a relative energy spread of 10�3 or better.The three before mentioned assumptions are somewhat restri
tive. However,they are often met in pra
ti
e and our theory 
an be extended to the 
ase whenthey are not met. A more restri
tive assumption is that radiation frequen
y istuned at perfe
t resonan
e with the fundamental frequen
y of the undulator.Although this last assumption is also often met in pra
ti
e, our theory 
annotbe easily extended to a

ount for the situation when it is not satis�ed be
ausethe starting point for the 
al
ulation of the 
ross-spe
tral density is given byan expression for the ele
tri
 �eld around the fundamental frequen
y.As a �nal remark, it should be said that we 
hose not to deal with bendingmagnet sour
es in this paper. This is left for future investigations. However,some estimates based on dimensional analysis suggest that, as dis
ussed inSe
tion 7, Geometri
al Opti
s treatments may be suÆ
ient to des
ribe in asatisfa
tory way bending magnet radiation from third generation light sour
es.To 
on
lude, our paper 
onstitutes, to our knowledge, the �rst satisfa
torytheory des
ribing imaging of undulator sour
es by a single non-ideal lens. Werestri
t ourselves to the analysis of a single lens for simpli
ity, the resultsfor more 
ompli
ated opti
al systems involving a larger quantity of opti
alelements being a straightforward extension of the present work.
171
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tion of mr̂i. Here â=ẑ1 = 10. 4712 Measurement of the 
ross-spe
tral density of an undulator sour
e. (a) Young's double-pinhole interferometer demonstrating the 
oheren
e properties of undulator radiation. Radiation must be spe
trally �ltered by a mono
hromator or dete
tor (not shown in �gure). (b) In the quasi-homogeneous 
ase the fringe visibility V of the resultant interferen
e pattern is equal to the absolute value of the spe
tral degree of 
oheren
e: V = jgj. 5313 The universal fun
tion ÎS, used to 
al
ulate the fo
al intensity of a quasi-homogeneous sour
e at N̂x � 1, D̂x � 1 and N̂y � 1. 6514 Absolute value of the universal fun
tion 
, used to 
al
ulate, on the image plane, the spe
tral degree of 
oheren
e of a quasi-homogeneous undulator sour
e when N̂x � 1, D̂x � 1 and N̂y � 1. 6715 The universal fun
tion B̂, used to 
al
ulate intensity on the image plane of a quasi-homogeneous undulator sour
e when N̂x � 1, D̂x � 1 and D̂y � 1. 7116 Absolute value of the universal fun
tion �, used to 
al
ulate 
oheren
e on the fo
al plane of a quasi-homogeneous undulator sour
e when N̂x � 1, D̂x � 1 and D̂y � 1. 7217 Illustration of a grating mono
hromator. 8418 Image intensity for a quasi-homogeneous sour
e, ÎP , as a fun
tion of � = âm�ri=ẑ1, 
al
ulated with Eq. (233), for di�erent values of the parameter p = âqN̂=ẑ1. The plot illustrates the one-dimensional image formation problem (slit aperture, 
ylindri
al lens). 8919 Upper plots: pro�le of the pupil fun
tion P (slit aperture), together with P̂. Lower plots: auto
orrelation fun
tion of the pupil, ~P , together with F( ~P). 9020 The line spread l fun
tion in the presen
e of defo
using aberration. 10121 The line spread l fun
tion in the presen
e of 
oma aberration. 10222 The line spread l fun
tion in the presen
e of both spheri
al and defo
using aberrations. 10223 The transfer fun
tion in the presen
e of defo
using aberration. 103174
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tion in the presen
e of 
oma aberration. 10425 The transfer fun
tion in the presen
e of both spheri
al and defo
using aberrations. 10526 The transfer fun
tion in the presen
e of defo
using aberration (n = 2, b2 = 9�). Numeri
al te
hniques have been used to 
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
al evaluation of the auto
orrelation fun
tion in the severe aberration asymptote. 11227 An enlarged version of Fig. 26. Numeri
al te
hniques have been used to 
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
al evaluation of the auto
orrelation fun
tion in the severe aberration asymptote. 11328 The real part of the transfer fun
tion in the presen
e of 
oma aberration (n = 3, b3 = 9�). Numeri
al te
hniques have been use to 
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
al evaluation of the auto
orrelation fun
tion in the severe aberration asymptote. 11429 An enlarged version of Fig. 28. Numeri
al te
hniques have been use to 
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
al evaluation of the auto
orrelation fun
tion in the severe aberration asymptote. 11530 The imaginary part of the transfer fun
tion in the presen
e of 
oma aberration (n = 3, b3 = 9�). Numeri
al te
hniques have been use to 
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
al evaluation of the auto
orrelation fun
tion in the severe aberration asymptote. 11631 An enlarged version of Fig. 30. Numeri
al te
hniques have been use to 
al
ulate the exa
t auto
orrelation fun
tion that is 
ompared to the analyti
al evaluation of the auto
orrelation fun
tion in the severe aberration asymptote. 11732 The line spread fun
tion versus the redu
ed 
oordinate on the image plane �r00 = â�ri=(d̂inbn) in the 
ase of severe defo
using aberration(n = 2, b2 = 9�) and 
omparison with the geometri
al opti
s predi
tion. 11833 The line spread fun
tion versus the redu
ed 
oordinate on the image plane �r00 = â�ri=(d̂inbn) in the 
ase of severe 
oma aberration (n = 3, b3 = 9�) and 
omparison with the geometri
al opti
s predi
tion. 11934 The line spread fun
tion versus the redu
ed 
oordinate on the image plane �r00 = â�ri=(d̂inbn) in the 
ase of severe spheri
al aberration (n = 4, b4 = 9�) and 
omparison with the geometri
al opti
s predi
tion. 12035 Amount by whi
h a geometri
ally tra
ed ray departs from a desired lo
ation in the image formed by an opti
al system. The ordinate for ea
h 
urve is the height at whi
h the ray interse
ts the image plane. The abs
issa is the 
oordinate of the ray at the pupil plane. n = 2 represents defo
using, n = 3 represents 
oma, and n = 4 represents spheri
al aberration 
ases a

ording to Eq. (287). 12136 Geometry for a pinhole 
amera setup. S indi
ates the virtual sour
e plane. 12437 The line spread fun
tion lp
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 = 0:5. In this 
ase the asymptote for 
 �! 0, Eq. (311), is well-mat
hed to the numeri
al evaluations. 12938 The line spread fun
tion lp
 with 
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 �! 0, Eq. (311), starts to diverge from numeri
al evaluations. The width of lp
 is 
lose to its minimum. 13039 The line spread fun
tion lp
 with 
 = 10. An intermediate situation between the two limits for 
 �! 0 and 
 �!1. 13140 The line spread fun
tion lp
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 = 100. The asymptote in Eq. (312) starts to mat
h the numeri
al 
al
ulations. In the limit 
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tion. 13241 Relative line spread fun
tion lp
=lp
(0) for di�erent values of 
. 13342 Plot of the universal fun
tion M̂ , used to 
al
ulate the 
ross-spe
tral density at the fo
al plane when N̂x � 1, D̂x � 1, N̂y and D̂y are arbitrary. 15043 Plot of the universal fun
tion M̂, used to 
al
ulate the 
ross-spe
tral density at the image plane when N̂x � 1, D̂x � 1, N̂y and D̂y are arbitrary. 15244 Plot of the universal fun
tion �̂, used to 
al
ulate the modulus of the spe
tral degree of 
oheren
e on the fo
al plane when N̂x � 1, D̂x � 1, N̂y � 1 and D̂y � 1. 15445 Plot of the universal fun
tion X, used to 
al
ulate the modulus of the spe
tral degree of 
oheren
e on the image plane when N̂x � 1, D̂x � 1, N̂y � 1 and D̂y � 1. 156175
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