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Statistial Optis approah to the design ofbeamlines for Synhrotron RadiationGianlua Geloni a Evgeni Saldin a Evgeni Shneidmiller aMikhail Yurkov aaDeutshes Elektronen-Synhrotron (DESY), Hamburg, GermanyAbstratIn this paper we analyze the image formation problem for undulator radiationthrough an optial system, aounting for the inuene of the eletron beam emit-tane. On the one hand, image formation with Synhrotron Radiation is governedby the laws of Statistial Optis. On the other hand, the widely used Gaussian-Shell model annot be applied to desribe the oherene properties of X-ray beamsfrom third generation Synhrotron Radiation soures. As a result, a more rigorousanalysis of oherene properties is required. We propose a tehnique to expliitlyalulate the ross-spetral density of an undulator soure, that we subsequentlypropagate through an optial imaging system. At �rst we fous on the ase of anideal lens with a non-limiting pupil aperture. Our theory, whih makes onsistent useof dimensionless analysis, also allows treatment and physial understanding of manyasymptotes of the parameter spae, together with their appliability region. Parti-ular emphasis is given to the asymptoti situation when the horizontal emittane ismuh larger than the radiation wavelength, whih is relevant for third generationSynhrotron Radiation soures. First priniple alulations of undulator radiationharateristis (i.e. ten-dimensional integrals) are then redued to one-dimensionalonvolutions of analytial funtions with universal funtions spei� for undulatorradiation soures. We also onsider the imaging problem for a non-ideal lens in pres-ene of aberrations and a limiting pupil aperture, whih inreases the dimension ofthe onvolution from one to three. In partiular we give emphasis to ases when theintensity at the observation plane an be presented as a onvolution of an impulseresponse funtion and the intensity from an ideal lens. Our results may be used inpratial ases as well as in benhmarks for numerial methods.Key words:X-ray beams, Undulator radiation, Transverse oherene, Image formation,Emittane e�etsPACS: 41.60.m, 41.60.Ap, 41.50 + h, 42.50.ArPreprint submitted to Elsevier Siene 31 Marh 2006
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1 IntrodutionThe majority of experiments based on the use of X-rays are arried out at Syn-hrotron Radiation failities, as very high brilliane is ahievable by means ofundulator devies installed in storage rings. Guiding the photons from the exitof an undulator to the speimen position requires the development of optialbeamlines whose main task is to re-image the undulator soure to any planeof interest. To deal with the image formation problem, one should aount forthe fat that Synhrotron Radiation onstitutes a random stohasti proess.In fat, the shot noise in the eletron beam auses utuations of the ele-tron beam urrent density. These utuations are random both in spae andtime. As a result, the radiation �eld produed by the eletron beam an bedesribed in terms of a phasor with random amplitudes and phases and, in allgenerality, the laws of Statistial Optis must be applied to solve the imageformation problem. In this paper we study the image formation problem withundulator radiation beams based on Statistial Optis. In this framework,the basi quantity haraterizing Synhrotron Radiation soures is the seondorder orrelation funtion of the �elds at two observation points on a giventransverse plane identi�ed by the oordinate zo along the optial beamline.One suh a plane is �xed, the two points, P1 and P2, are fully haraterizedby their transverse oordinates ~r?1 and ~r?2 respetively. Our presentation willbe given in the frequeny domain. Due to the limited temporal resolution ofdetetors in Synhrotron Radiation experiments, the analysis in frequeny do-main is muh more natural than that in the time domain. As a onsequeneof this hoie, and without restritive assumptions on the system, we studythe spatial orrelation between Fourier transforms of the eletri �eld 1 at a�xed frequeny !, that is the ross-spetral densityG = D �E (zo; ~r?1; !) �E� (zo; ~r?2; !)E : (1)In Eq. (1) �E is the omplex amplitude of the Fourier transform of a givenCartesian omponent of the eletri �eld at the spae-frequeny point (zo; ~r?; !),the asterisk denotes omplex onjugation, and brakets < ::: > indiate anensemble average over eletron bunhes. Sine we study an ultra-relativistisystem, the paraxial approximation an always be enfored so that, here, theeletri �eld is understood to obey the paraxial wave equation [1℄. The ross-spetral density arries all information about the transverse harateristis ofundulator radiation. A fully general study of the ross-spetral density is not atrivial one. DiÆulties arise when one tries to inlude simultaneously the e�etof intrinsi divergene of the radiation, due to the presene of the undulator, of1 Sine our analysis deals with the eletri �eld in frequeny domain, we will some-times refer to the "Fourier transform of the eletri �eld" simply as "the �eld",when this does not generate onfusion. 6



the eletron beam size and of the eletron beam divergene. In [2℄ a tehniquewas desribed, based on Statistial Optis, to alulate the ross-spetral den-sity from undulator soures in the most general ase 2 , at any position afterthe undulator but still without optial elements (i.e. in free spae). Althoughself-ontained, the present study relies on that work. Expressions from [2℄ willbe taken as a starting point to proeed along the optial beamline towardsthe speimen position.In general, as we will see, undulator radiation an be thought as originatingfrom an equivalent soure loalized on a transverse plane at a given longitudi-nal position. By de�nition, suh soure has the following property: it produesa �eld whih oinides with that from the undulator at any distane from theexit of the undulator. In partiular, we loalize the equivalent soure in theenter of the undulator, that will be onventionally taken as the beamlineorigin z = 0. Sine in this ase the equivalent soure does not reprodue thereal eletromagneti �eld distribution in the enter of the undulator, we referto it as virtual soure. Further on, throughout this paper we assume that thebeta funtions of the eletron beam have their minimal value in the enter ofthe undulator. By this, as we will see, the virtual soure exhibits partiularproperties whih simplify our treatment. One the onept of virtual soureis introdued, the problem of desribing radiation harateristis at a ertainobservation plane after a given optial element is twofold. First, one has toharaterize the ross-spetral density at the virtual soure and, seond, onehas to propagate the ross-spetral density along the optial beamline to theobservation plane.Let us �rst onsider the problem of haraterizing the soure. An importantsimpli�ed model whih admits an analytial desription without loss of essen-tial information about the soure features is obtained by letting both horizon-tal and vertial eletron beam emittanes be muh larger than the radiationwavelength (�x;y � �=(2�)). This is a good assumption for seond genera-tion Synhrotron Radiation soures. The kind of virtual soure obtained for�x;y � �=(2�) belongs to the wider lass of quasi-homogeneous ones. These areharaterized by the fat that the ross-spetral density at the virtual soureplane (i.e. at z = 0) an be written as:G(~r?1; ~r?2; !) = I (~r?1; !) g(~r?2 � ~r?1; !) ; (2)whereI (~r?1; !) = DjE (~r?1; !)j2E (3)2 With the point of view of the soure parameters.7



is the �eld intensity distribution and g(~r?2 � ~r?1; !) is the spetral degreeof oherene (normalized, by de�nition, so that g(0; !) = 1). The de�nitionof quasi-homogeneity amounts to a fatorization of the ross-spetral densityas the produt of the �eld intensity distribution and the spetral degree ofoherene, whih ontains information about the spatial orrelation. A set ofneessary and suÆient onditions for suh fatorization to be possible follows:(a) the radiation intensity at the virtual soure varies very slowly with theposition aross the soure on the sale of the �eld orrelation length and (b)the spetral degree of oherene depends on the positions aross the soureonly through the di�erene ~r?2 � ~r?1.There are situations when the Statistial Optis desription is not the onlyone possible. The asymptoti limit for large eletron beam emittanes (�x;y ��=(2�)) is one of these. In this limit, the Statistial Optis desription ofthe soure oinides with the Geometrial Optis (or Hamiltonian) desrip-tion of the soure, where a photon-beam phase spae is de�ned and an bedesribed in terms of rays spei�ed by position-angle oordinates. In the Ge-ometrial Optis approah, based on the unertainty priniple, only the ra-diation originating by a photon-beam phase spae area of order [�=(2�)℄2 isspatially oherent. When the emittane is muh larger than the wavelength,2��x;y=� � 1, the divergene of the eletron beam is muh larger than thedi�ration angle of undulator radiation, and the transverse size of the ele-tron beam is muh larger than the di�ration size of undulator radiation. Asa result one an ompletely neglet di�ration e�ets, and the GeometrialOptis approah an always be applied. Sine Geometrial Optis desribes alimiting situation of Statistial Optis there must be a relation between thefundamental Geometrial Optis quantity, the phase spae distribution, andthe fundamental Statistial Optis quantity, the ross-spetral density. It anbe shown [3℄ that the radiant intensity of the �eld generated in free spae by aquasi-homogeneous soure in the diretion of a unit vetor ~s an be expressedas I(~s; !) / �(~s; !) ; (4)�(~s; !) being the two-dimensional spatial Fourier transform of the degree oftransverse oherene g(~r?2 � ~r?1; !):�(~s; !) = Z g(~�0; !) exp �i! ~s � ~�0� d~�0 : (5)The expression for the phase spae distribution is given by the produt of theintensity distribution of the soure and the radiant intensity� (~s; ~r?) = I (~r?; !)I(~s; !) / I (~r?; !) � (~s; !) ; (6)8



where the variables (~r?; ~s) haraterize a ray in phase spae. A omparisonbetween Eq. (6) and Eq. (2) shows that ross-spetral density and phase spaedistribution ontain the same information in the limiting ase �x;y � �=(2�).In other words, if a soure has a large angular divergene (ompared with thedi�ration angle) and a large transverse size (ompared with the di�rationsize), one an ompletely neglet di�ration e�ets and treat the problem ofthe haraterization of the soure by means of Geometrial Optis 3 .Despite the previous disussion, the possibilities of using Geometrial Optisto desribe undulator soures are quite limited in many realisti situations.Appliations of Synhrotron Radiation make use of a very wide range of wave-lengths whih span over four order of magnitude, from 0:1�A to 103�A. For thirdgeneration light soures, either planned or in operation, the horizontal eletronbeam emittane �x = �x�x0 is of order of 1 � 3 nm. The vertial emittane isgiven by �y = �y�y0 = ��x, � being the so alled oupling fator. Typial valuesof � for third generation light soures are of order � � 0:01, orrespondingto vertial emittanes of order 0:1 � 0:3�A. These values are always near orwithin the di�ration limit for wavelength ranges up to the hard X-rays in thevertial diretion, and Geometrial Optis desriptions fail. In partiular, inthe VUV wavelength range, both vertial and horizontal emittanes are muhsmaller than the radiation wavelength (�x;y � �=(2�)). One reovers, then,the perfetly oherent situation when the soure is di�ration limited in bothhorizontal and vertial diretions. This is another situation when the Statisti-al Optis desription is not the only one possible. In this ase, deterministiWave Optis may be used as well. As the wavelength beomes shorter, in thesoft X-ray range, one obtains �y � �=(2�), but �x � �=(2�). At wavelengthsof about 1�A the vertial emittane reahes the same order of magnitude ofthe wavelength �y � �=(2�), while �x � �=(2�). Finally, in the hard X-rayregion, at a wavelength of about 0:1�A, both emittanes are muh larger than3 Condition 2��x;y=�� 1 is suÆient, but not neessary. In general, we annot saythat Geometrial Optis is never appliable for eletron beam emittanes smallerthan the radiation wavelength �. We will treat this subjet in a more extensivefashion in Setion 7. There we will see that there are situations when GeometrialOptis an be applied to desribe the (virtual) soure even when the eletron beamemittane is smaller than �. We will �nd that a suÆient (less restritive, butstill not neessary) ondition for the appliability of Geometrial Optis to thedesription of a given undulator soure is that suh soure an be haraterized interms of a quasi-homogeneous virtual soure. Moreover, as it will also be disussedin Setion 7, our omparison of the emittane with the radiation wavelength is doneunder the assumption that the eletron beam beta funtion is omparable with theradiation formation length at wavelength �. This is often, but not always, the asefor undulator soures, sine the radiation formation length is the undulator length,whih is at least a few meters. However, it is not the ase for bending magnetradiation. 9



the wavelength (�x;y � �=(2�)), and Geometrial Optis an be used along-side Statistial Optis. It follows that, for third generation light soures, onlythe limiting ases for wavelengths around 100 nm and 0:1�A an be treated, re-spetively, my means of Wave Optis or Geometrial Optis. The intermediatesituation an be treated in a rigorous way only with the help of Statistial Op-tis, whih inludes both Wave Optis and Geometrial Optis as asymptotiases.Stritly related to the problem of soure haraterization, but separate fromit, is the issue of propagating the photon beam through the optial beamlineto the observation plane. In the ase of quasi-homogeneous virtual soures,if di�ration e�ets from the optial elements an be negleted, GeometrialOptis an be taken advantage of. The virtual soure an be desribed interms of phase spae distribution, and interations with optial media an beonveniently modelled in terms of sympleti transformations, very muh likeeletron beams in storage rings optis. Several omputer odes (e.g. SHADOW[4℄), usually referred to as ray-traing odes, have been developed and arestandard tools used to arry out Geometrial Optis-based alulations. How-ever, this approah is not always possible as the virtual soure may not bequasi-homogeneous or di�ration e�ets may not be negleted in the optialbeamline. A rigorous analysis of the objet-image oherene relationship is offundamental importane in the ontext of several oherene-based tehniqueslike utuation orrelation dynamis, phase imaging, oherent X-ray di�ra-tion and X-ray holography, whose development has been fostered by the highux of oherent X-rays provided by state-of-the-art third generation failities.It should be noted that, in the ase of partially oherent wavefronts, eventhe alulation of the intensity distribution at the speimen position shouldinvolve Statistial Optis tehniques. In fat, to obtain the intensity at thespeimen position as some optial element is present one �rst needs to trakthe ross-spetral density through the beamline i.e. one needs to study theevolution of the partially oherent wavefront.Computer odes have been written [5℄ in order to deal with beamline designin the ase of partially oherent radiation. These are devoted to the solu-tion of the image formation problem starting from �rst priniples. Resultsmay in fat be obtained using numerial tehniques alone, starting from theLienard-Wiehert expressions for the eletromagneti �eld and applying thede�nition of the �eld orrelation funtion without any analytial manipula-tion. Yet, a �rst-priniple alulation of the �eld orrelation funtion betweentwo generi points or, in partiular, alulation of the intensity at a singlepoint involves very ompliated and time-expensive numerial evaluations. Tobe spei�, one needs to perform two integrations along the undulator devieand four integrations over the eletron-beam phase spae distribution to solvethe problem in free spae. Then, modelling the optial beamline as a singleonvergent lens, other four integrations are needed to haraterize oherene10



properties on the image plane, for a total of ten integrations. The developmentof a universal ode for any experimental setup is then likely to be problemati.A more onservative approah may suggest the use of omputer odes basedon some analytial manipulation of �rst priniple equations suited for spe-i� experimental setups. From this viewpoint our most general expressionsmay be used as reliable basis for the development of numerial methods. Yet,omputer odes an alulate properties for a given set of parameters, butan hardly improve physial understanding, whih is partiularly importantin the stage of planning experiments. Our theory will allow treatment andphysial understanding of many asymptotes of the parameter spae and theirappliability region with the help of a onsistent use of dimensional analysis.In the most general asymptoti ases treated here, this will allow to redue�rst priniple alulations (i.e. ten-dimensional integrals) to one-dimensionalonvolutions of analytial funtions with universal funtions spei� for theundulator soure ase, and still to retain a ertain degree of generality. It isalso worth to underline that our asymptoti results may also be used as abenhmark for numerial methods.One of the main diÆulties in applying a Statistial Optis approah to Syn-hrotron Radiation soures stems from the fat that Statistial Optis hasprinipally developed in onnetion with problems involving thermal light.Solutions to all these problems share approximations that allow major sim-pli�ations, but are spei� of thermal soures only. For instane, thermalsoures an be modelled as perfetly inoherent, and the ross-spetral den-sity assumes the formG(~r?1; ~r?2; !) / I (~r?1; !) Æ (~r?2 � ~r?1) ; (7)where I is the soure intensity distribution and Æ is the two-dimensional DiraÆ-funtion. However, there is a lose onnetion between the state of oher-ene of the soure and the angular distribution of the radiant intensity (seeEq. (4)). The physial interpretation of Eq. (7) is that the soure is orrelatedover the minimal possible distane (whih is of order of the wavelength). Thishas the onsequene that the radiant intensity is distributed over a solid angleof order 2�. This is orret for thermal soures, but is in ontradition withthe fat that any Synhrotron Radiation soure is on�ned within a narrowone in the forward diretion. The high diretionality of Synhrotron Radia-tion rules out the use of Eq. (7) as a model for Synhrotron Radiation soures.However, suh high diretionality is not in ontrast with the poor oherenewhih haraterizes the quasi-homogeneous limit. Quasi-homogeneous souresare only loally oherent over a distane of many wavelengths but, by de�ni-tion of quasi-homogeneity, the linear dimension of the soure is muh largerthan the orrelation distane. Even though a quasi-homogeneous soure an bedesribed with Geometrial Optis tehniques, a oherene distane of many11



wavelengths rules out the use of Eq. (7) as a model for Synhrotron Radia-tion soures. A more preise knowledge of the ross-spetral density (that isequivalent to the knowledge of the orret phase spae density) is neessary tosolve the image formation problem. For instane, suppose that a light soureis plaed at arbitrary distane in front of a lens. If the soure is perfetlyinoherent (thermal light ase) the area of the light inident on the lens is al-ways the area of the lens. In the ase of Synhrotron Radiation soure though,suh area may be smaller than the lens. Even in the limit for a large beamemittane (ompared with the radiation wavelength), information about thesmall angular distribution must be printed in the wavefront at the exit of theundulator leading one more to the same onlusion: Eq. (7) annot be usedin order to model Synhrotron Radiation soures. In [2℄ we treated, amongother ases, the asymptote for a large eletron beam size and divergene. Theexpression for the ross-spetral density of the soure in free spae simpli�esand a partiular quasi-homogeneous model an be given. In the same work,we spei�ed also the region of appliability of suh model, and we showedthat it annot be applied outside the limit for a large eletron beam size anddivergene.In relation with these remarks it should be mentioned that an attempt to fol-low the path proposed in this paper is desribed in [6℄. To our knowledge, [6℄onstitutes the �rst remarkable attempt to use Statistial Optis tehniques inorder to haraterize the evolution of partially oherent X-ray beams throughoptial systems. In that work, as well as in [7℄, the beamline optis from theundulator to the speimen an be modelled as a ritial illumination system[8℄, the beamline behaving as the ondenser. After this, Statistial Optistehniques are onsistently used to alulate oherent properties on the im-age plane. However, the authors of [6℄ redued the general ten-dimensionalintegrals to four-dimensional integrals by postulating that the ross-spetraldensity distribution at the exit of the undulator an be written as Eq. (7), i.e.a perfetly inoherent soure is assumed at the exit of the undulator. As wehave just seen though, this assumption is always inonsistent in the ase ofSynhrotron Radiation, even in the Geometrial Optis limit and, a fortiori,in the ase treated by the authors (the undulator beamline 12 at ALS), where�y ' 0:1�=(2�) and �x ' 3�=(2�), whih is highly spatially oherent.We organize our work as follows. Besides this Introdution, in Setion 2 wedesribe the optial system under study and some onepts from StatistialOptis that will be widely used in the following Setions. In Setion 3 wereview some general expressions pertaining undulator radiation from a singlepartile. In partiular, following [2℄ we present an analytial expression for theFourier transform of the eletri �eld generated by a single eletron with o�setand deetion whih is valid at any distane from the exit of the undulator. Wealso present the analytial solution of the imaging problem for a deterministimodel of undulator radiation (absene of eletron beam emittane). In Setion12



4 we give a derivation of the ross-spetral density for undulator radiationbased soures. Subsequently we analyze the evolution of the ross-spetraldensity funtion through the optial system with partiular attention to thefoal and to the image plane. The following two Setions 5 and 6 desribequasi-homogeneous soures, respetively Gaussian and non-Gaussian, in theideal ase when the lens is aberration-free and the pupil aperture is non-limiting. A digression is then taken in Setion 7, where we analyze in detailthe relation between Geometrial Optis and quasi-homogeneous soures. SuhSetion may therefore be skipped in a �rst reading, without interrupting themain logial stream of our work. The next Setion 8 desribes the e�ets ofa �nite aperture size on the radiation harateristis from quasi-homogeneoussoures at the image plane, and is followed by Setion 9 that assumes a quasi-homogeneous soure as well and deals with the onsequenes of lens aberrationon the intensity at the image plane. In Setion 10 we introdue a partiularsetup, a pinhole amera, apable of produing images of the soures in theabsene of lenses. The study of this partiular setup is of partiular interestbeause it allows the reader to reognize mathematial analogies between asesotherwise physially di�erent and serves as a juntion between the previousSetion 9 and Setion 11 treating physial ases when one obtains, surprisingly,the image of the soure on the foal plane. In the following Setion 12 weextend the treatment for the foal plane to any plane of interest. In Setion13 we disuss the depth of fous, inluding the ase of a large non-limitingaperture and the e�ets of aperture size. In the next Setion 14 solutionsfor the image formation problem in non-homogeneous ases relevant for thirdgeneration Synhrotron Radiation soures are given. Before onlusions, inSetion 15, we disuss the auray of quasi-homogenous soure asymptotes.Finally, in Setion 16, we ome to onlusions.2 Elements and de�nitions of image formation theory2.1 Wave propagation in free spaeLet us indiate with E?(z; ~r?; t) any �xed polarization omponent (along thediretion x or y) of the eletri �eld at time t alulated on a plane at positionz down the beamline at a ertain transverse loation ~r?. E?(z; ~r?; t) obeys,in free spae, the homogeneous wave equation:2r2E? � �2E?�t2 = 0 : (8)13



Let us now introdue the Fourier transform �E?(z; ~r?; !) of the eletri �eldE?(z; ~r?; t):�E?(!) = 1Z�1 dtE?(t)ei!t ; (9)so thatE?(t) = 12� 1Z�1 d! �E?(!)e�i!t : (10)As already remarked in footnote 1, we will sometimes refer to �E? as "the�eld", understanding that we are working in the frequeny domain.Let us onsider the �eld propagation problem. To this purpose, we �rst intro-due the omplex envelope of the �eld:eE = �E? exp[�i!z=℄ : (11)It is always possible to give suh a de�nition. However, its utility is restritedto the ase when ~E is a slowly varying funtion of z with respet to theradiation wavelength �. When the paraxial approximation is appliable (i.e.always, for Synhrotron Radiation soures), this ondition is ful�lled [1℄.In paraxial approximation and in free spae, the following paraboli equationholds for the omplex envelope eE of the Fourier transform of the eletri �eldalong a �xed polarization omponent: r?2 + 2i! ��z! eE = 0 : (12)The derivatives in the Laplaian operator r?2 are taken with respet to thetransverse oordinates. One has to solve Eq. (12) with a given initial onditionat z, whih is a Cauhy problem. Indiating with ~ro the transverse oordinateof an observation point on a plane at longitudinal position zo we haveeE(zo; ~ro) = i!2�(zo � z) Z d~r0 ~E(z; ~r0) exp264i! ���~ro � ~r0���22(zo � z) 375 ; (13)where the integral is performed over the transverse plane.14



Next to the propagation equation for the �eld in free spae, Eq. (13), we andisuss a propagation equation for the spatial Fourier transform of the �eld,whih an also be derived from Eq. (12) and will be useful in the followingparts of this work. We will indiate the spatial Fourier transform of ~E(z; ~r0)with F(z; ~u) 4 :F (z; ~u) = Z d~r0 ~E(z; ~r0) exp hi~r0 � ~ui : (14)Eq. (12) an be rewritten in terms of F as r?2 + 2i! ��z!�Z d~u F (z; ~u) exp [�i~r � ~u℄� = 0 : (15)Eq. (15) requires that � j~uj2 + 2i! ��z!F (z; ~u) = 0 : (16)Solution of Eq. (16) an be presented asF (z; ~u) = F (0; ~u) exp "�ij~uj2z2! # : (17)It should be noted that the de�nition of F(0; ~u) is a matter of initial onditions.In many pratial ases, inluding the totality of the situation treated in thispaper, F (or ~E) may have no diret physial meaning at z = 0. For instane, in4 For the sake of ompleteness we expliitly write the de�nitions of the two-dimensional Fourier transform and inverse transform of a funtion g(~r) in agreementwith the notations used in this paper. The Fourier transform and inverse transformpair reads:~g(~k) = Z d~r g(~r) exp hi~r � ~ki ; g(~r) = 14�2 Z d~k ~g(~k) exp h�i~r � ~ki ;the integration being understood over the entire plane. If g is irular symmetriwe an introdue the Fourier-Bessel transform and inverse transform pair:~g(k) = 2� 1Z0 dr rg(r)Jo(kr) ; g(r) = 12� 1Z0 dk k~g(k)Jo(kr) ;r and k indiating the modulus of the vetors ~r and ~k respetively, and Jo beingthe zero-th order Bessel funtion of the �rst kind.15



all ases onsidered in this paper, z = 0 is in the enter of the undulator, wellwithin the radiation formation length. However, F(0; ~u) an be onsidered asthe spatial Fourier transform of the �eld produed by a virtual soure. Suha soure is de�ned by the fat that, supposedly plaed at z = 0, it wouldprodue, at any distane from the undulator, the same �eld as the real souredoes. The result in Eq. (17) is very general. On the one hand, the spatialFourier transform of the eletri �eld exhibits an almost trivial behavior inz, sine jF(z)j2 = onst. On the other hand, the behavior of the eletri �elditself is not trivial at all (see Setion 2.4 and Fig.s 3-6). These properties followdiretly from the propagation equation for the �eld and its Fourier transform.Let us now disuss the physial meaning of Eq. (17). The spatial Fouriertransform of the �eld, F(z; ~u), may be interpreted as a superposition of planewaves (the so-alled angular spetrum). One the frequeny ! is �xed, the wavenumber k = != is �xed as well, and a given value of the transverse omponentof the wave vetor ~k? = ~u orresponds to a given angle of propagation of aplane wave. Di�erent propagation diretions orrespond to di�erent distanestravelled to get to a ertain observation point. Therefore, they also orrespondto di�erent phase shifts, whih depend on the position along the z axis (see,for example, referene [9℄ Setion 3.7). Free spae basially ats as a Fouriertransformation. This means that the �eld in the far zone is, phase fator andproportionality fator aside, the spatial Fourier transform of the �eld at anyposition z. To show this fat, we �rst reall that if we know the �eld at a givenposition (z; ~r0) we may use Eq. (13) to alulate the �eld at another position(zo; ~ro) . Let us now onsider the limit zo �! 1, with �nite ratio ~ro=zo. Inthis ase, the exponential funtion in Eq. (13) an be expanded givingeE(zo; ~ro) = i!2�zo Z d~r0 ~E(z; ~r0) exp "i!j~roj22zo � i!(~ro � ~r0)zo + i!zj~roj22z2o # :(18)Letting ~� = ~ro=zo we haveeE(zo; ~ro) = i!2�zo exp24i!j~�j22 (zo + z)35F0�z;�!~� 1A : (19)With the help of Eq. (17), Eq. (19) may be presented aseE(zo; ~ro) = i!2�zo exp24i!j~�j22 zo35F0�0;�!~� 1A : (20)Eq. (20) shows what we wanted to demonstrate: free spae basially ats as aFourier transformation. 16
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Fig. 1. Single lens imaging system with an undulator soure as objet.2.2 Image formation with oherent lightAs has been remarked in [6℄, any beamline optis used to re-image undulatorradiation to an observation plane of interest an be modelled as a ritialillumination system [8℄. Therefore, the setup onsidered in this paper an beskethed as in Fig. 1. It onsists of an undulator of length Lw entered atz = 0, a onvergent lens positioned at z = z1, haraterized by a fousingstrength f , and a plane of observation at position z = z2. In priniple, z1, z2and f are unrelated parameters. However our main ase of interest is a ritialillumination system. Therefore, a given soure plane at oordinate z = zs -the objet - is imaged at a partiular observation position z = z2, that de�nesthe image plane. Using Ray Optis we an alulate the distane z2 along theaxis behind the lens where the image is formed. This gives the well-knownlens-maker equation1f = 1z1 � zs + 1z2 � z1 : (21)The size of the image is magni�ed by a fator jMj and a real image is invertedwith respet to the objet beauseM = �z2 � z1z1 � zs < 0 ; (22)as expeted from Ray Optis. We also de�ne a sale fator m, that is theinverse of the magni�ation power jMj of the lens:m = 1jMj = z1 � zsz2 � z1 : (23)17



One the lens position is �xed at z = z1, the position zs of the soure is amatter of hoie. Suh a hoie �xes the position zi = z2 of the image planein agreement with Eq. (21). For instane, with [6℄ and [7℄, one may set theritial illumination system to image the radiation at the undulator exit, inwhih ase the hoie zs = Lw=2 is made. However, one is not obliged to do so.In partiular, in this paper, we will make the hoie zs = 0. Then, the ritialillumination system images the enter of the undulator, in the sense that theimage plane zi = z2 obeys Eq. (21) with zs = 0.From a mathematial viewpoint, speifying the soure is equivalent to �xingthe initial onditions for Maxwell equations in terms of a �eld distribution ona ertain transverse plane. When a ertain �eld distribution (in the frequenydomain) is �xed on a plane at position z, Maxwell equations automatially setthe way radiation propagates in free spae, and the soure is univoally de�ned.The hoie made in [6℄ and [7℄ orresponds to the hoie of a real soure.The denomination "real" is justi�ed by the fat that the initial ondition forMaxwell equations amounts to the spei�ation of a �eld distribution whih isatually present, and in priniple measurable, at the exit of the undulator. Onthe ontrary, our hoie zs = 0 orresponds to the position down the z-axisin the middle of the undulator, well within the radiation formation length.Although it makes sense to talk about the distribution of the eletromagneti�eld in the middle of the undulator, it does not make any sense to identifysuh distribution with the initial ondition for Maxwell equations, i.e. withthe soure. However, it makes sense to de�ne a virtual soure as in Setion2.1. There is a partiular reason for the hoie z = 0 as the position for thevirtual soure. In the ase of a oherent undulator soure (that is being treatedin the present Setion), the wavefront of the radiation at a virtual soureloated at z = 0 is plane. In other words, the far zone �eld from an undulatorhas spherial wavefronts entered in the middle of the undulator. This fatalone makes the enter of the undulator a privileged point with respet toothers. Moreover, in the more general ase of partially oherent radiation wewill assume (as it is often veri�ed in pratie) that the beta funtions of theeletron beam have their minima (in both horizontal and vertial diretions)in the enter of the undulator. Subjet to this assumption, as we will see, theenter of the undulator onstitutes a privileged point of interest in this aseas well. As a result of the previous disussion we setzs = 0 : (24)Let us assume that the position z1 and the foal length f of the lens areset. Throughout this paper we will be partiularly interested in the radiationharateristis at two privileged positions down the beamline:� the image plane, at position z2 identi�ed by Eq. (21).� the foal plane, at position z2 identi�ed by the equation z2 � z1 = f .18



As it will be seen in the next Setions, both image and foal planes havespeial properties that an be expressed in terms of Fourier Optis. Theseproperties are valid for any wavefront. We will �rst take advantage of them inSetion 3, where we will deal with wavefronts generated by an eletron beamwith zero emittane and further on in Setion 4, where emittane e�ets willbe disussed in the realm of Statistial Optis. In the present Setion, afterhaving set the on�guration under study, we will limit ourselves to desribethese properties and to de�ne basi quantities to be used in the StatistialOptis formulation of the image formation problem.Consider the problem of mapping the plane immediately in front of the lensonto the plane at longitudinal position z2 > z1 behind the lens (see Fig. 1). Ifone knows ~E at position z = z1 immediately in front of the lens, one an alsoobtain the expression for ~E immediately behind the lens multiplying by thetransmission funtion:T �~r0� = P �~r0� exp264�i! ���~r0���22f 375 : (25)For simpliity of notation we onsider here idential foal distanes in thehorizontal and in the vertial diretion, i.e. f = fx = fy. Results for moreompliated optial systems (e.g. a ombination of ylindrial mirrors) arefound substituting onsistently Eq. (25) with its straightforward generaliza-tion. We assume with [8℄ that the omplex pupil funtion P is zero outside thelens aperture. Its phase aounts for aberrations and its modulus may varyalong the lens to desribe apodizations: the simplest possible study ase is forjP j = 1 and arg (P ) = 0 within the lens aperture. Aounting for Eq. (25), thepropagation equation for any �eld eE(z1; ~r0) immediately in front of the lens tothe point (z2; ~r2) on the observation plane behind the lens an be written as:~E(z2; ~r2) = i!2�(z2 � z1) exp" i!j~r2j22(z2 � z1)# Z d~r0 ( eE(z1; ~r0)P (~r0)� exp "i!  12(z2 � z1) � 12f ! j~r0j2#) exp "� i!(~r2 � ~r0) (z2 � z1)# : (26)Sine Synhrotron Radiation is highly ollimated, it is pratially relevantto disuss the ase when the area of the spot of the inident radiation issmall ompared with the area of the lens. It is also simpler and more naturalto start with this situation. Then, e�ets from a �nite pupil dimension anbe negleted. Note that this is not the ase for thermal soures: sine theseare emitting into a solid angle of 2� (they are perfetly inoherent) the �nitepupil dimensions annot be ignored and result in the so-alled vignetting e�et[8℄. Considering a perfet lens with no aberrations too, Eq. (26) assumes a19



partiularly simple form at the foal and on the image plane. Initially we willonsider situations when the pupil presene an be negleted. Later on wedisuss how to inlude the e�ets due to the presene of the pupil.2.2.1 Large non-limiting apertureWe will now speialize the result in Eq. (26) in the asymptote for a largenon-limiting aperture and in the ase of the foal and of the image plane. Letus denote with (zf ; ~rf) a point on the foal plane, and with (zi; ~ri) a point onthe image plane. From Eq. (26), on the foal plane we have~E(zf ; ~rf) = i!2�f exp "i!j~rf j22f # Z d~r0 eE(z1; ~r0) exp "�i!(~rf � ~r0)f # : (27)With the help of Eq. (14) we an write Eq. (27) as~E(zf ; ~rf) = i!2�f exp "i!j~rf j22f #F z1;�!~rff ! : (28)Substitution of Eq. (17) in Eq. (28) gives~E(zf ; ~rf) = i!2�f exp "i!j~rf j22f # exp "�i!z1j~rf j22f2 #F 0;�!~rff ! : (29)For the image plane, remembering that1f = 1z1 + 1zi � z1 (30)and thatdi = zi � z1 = z1m ; (31)we obtain, from Eq. (26)~E(zi; ~ri) = i!m2�z1 exp "i!mj~rij22z1 # Z d~r0 ( eE(z1; ~r0)exp "�i!j~r0j22z1 #) exp"�i!m(~ri � ~r0)z1 # : (32)20



On the image plane, aording to Eq. (32), we have to alulate the Fouriertransform of the produt of two fators: exp [�i!j~r0j2=(2z1)℄, representing thephase of a spherial wave in paraxial approximation, and eE(z1; ~r0). A diretalulation shows that the Fourier transform of the phase fator isZ d~r0 exp"�i!j~r0j22z1 # exp "�i!m(~ri � ~r0)z1 # = �4iz1 exp "im2!j~rij22z1 # : (33)Sine the Fourier transform of a produt is equal to the onvolution of theFourier transforms of eah separate fator, from Eq. (32) one obtains~E(zi; ~ri) = m4�2 exp" i!mj~rij22z1 #� Z d~u F (z1; ~u) exp24iz12!  �m!~riz1 � ~u!235 : (34)Substitution of Eq. (17) in Eq. (34) gives~E(zi; ~ri) = m4�2 exp" i!mj~rij22z1 # exp "i!m2j~rij22z1 #� Z d~u F(0; ~u) exp [im~ri � ~u℄ ; (35)that is~E(zi; ~ri) =mexp"i!mj~rij22z1 # exp "i!m2j~rij22z1 # ~E (0;�m~ri) : (36)The phase fator in the Fourier transform of the eletri �eld, given in Eq.(17), anels the quadrati phase fator in j~uj2 in Eq. (34). Therefore, theonvolution integral in Eq. (34) transforms to a Fourier integral. As a result,in the image plane we always obtain (aside for a saling and a net phase fator)the inverted �eld distribution in the virtual soure plane. More in general, atany observation plane loated at z = z2 behind the lens and the foal plane,one observes (aside, again, for a saling and a net phase fator) the inverted�eld distribution on an objet plane loated at z = zs, where zs satis�es thelens ondition Eq. (21).Eq. (29) and Eq. (36) are reetions of well-known theorems of Fourier Optis.Negleting the e�ets from a �nite pupil dimension and assuming a perfetlens with no aberrations, the foal plane has the following property [9℄:21



� For any position of the objet in front of the lens, the �eld distribution(amplitude and phase) on the foal plane di�ers from the spatial Fouriertransform of the �eld distribution on the objet plane by a sale fator�!=(f) and a net phase fator.At the image plane, instead, the following property applies [9℄:� For any position of the objet in front of the lens, the �eld distribution(amplitude and phase) on the image plane di�ers from the �eld distributionon the objet plane by a sale fator �m and a net phase fator 5 .These properties an be interpreted in terms of intensity distributions. The�rst tells that the intensity pro�le on the foal plane has the same shape ofthat on a distant plane and is obtained taking, essentially, the square modulusof the Fourier transform of the �eld on the objet plane. The seond tells thatthe intensity pro�le of the objet is inverted and magni�ed by the lens onthe image plane. For the image plane we just obtained, for perfetly oherentlight, the same result whih is obtained in Geometrial Optis in the perfetlyinoherent limit.2.2.2 E�et of aperture sizePupil e�ets are taken into aount, from a general standpoint, in Eq. (26).Eq. (26) takes a spei� form in the foal and in the image plane. One has~E(zf ; ~rf) = i!2�f exp "i!j~rf j22f # Z d~r0 eE(z1; ~r0)P (~r0) exp "�i!(~rf � ~r0)f #(37)and ~E(zi; ~ri) = i!m2�z1 exp "i!mj~rij22z1 # Z d~r0 ( eE(z1; ~r0)P (~r0) exp "�i!j~r0j22z1 #)� exp "�i!m(~ri � ~r0)z1 # : (38)Eq. (37) and Eq. (38) are formal extensions of Eq. (27) and Eq. (32), respe-tively. Use of the onvolution theorem on Eq. (37) and Eq. (38) allows to writeanalogous extensions of Eq. (29) and Eq. (36). To this purpose we de�ne5 The prefator m(zi) is a onsequene of the onservation of the total energyassoiated with the propagating �eld. 22



P(~u)= Z d~r0P (~r0) exp h�i~r0 � ~ui : (39)Then, indiating with ~EP the �eld in the presene of the pupil, on the foalplane we have~EP (zf ; ~rf )= exp "i!j~rf j22f #� Z d~u P  !~rff � ~u! � exp "�if j~uj22! # ~E  zf ; f~u! ! (40)and on the image plane~EP (zi; ~ri)= exp "i!mj~rij22z1 #� Z d~u P  !m~riz1 � ~u! � exp"�iz1j~uj22!m # ~E  zi; z1~u!m ! : (41)One may apply the following mnemoni rule to inlude the e�ets of the pupilin Eq. (29) or Eq. (36). First, divide Eq. (29) or Eq. (36) by the �rst phasefator, orresponding to the phase fator outside the integral sign in Eq. (26).Seond, onvolve with P. Third, put the phase fator bak.It should be noted that, in the limit for large apertures, P an be substitutedby a Æ-Dira funtion in both Eq. (40) and Eq. (41). In this ase, from Eq. (40)we reover ~EP (zf ; ~rf) = ~E(zf ; ~rf ), given in Eq. (29). Form Eq. (41) instead,we have ~EP (zi; ~ri) = ~E(zi; ~ri), given in Eq. (36).Unless partiular onditions are met, the phase fators under the integral signsin Eq. (40) and Eq. (41) ompensate only partially the phase of ~E, whih anbe found in Eq. (29) and Eq. (36) respetively. This fat ompliates theevaluation of the onvolution integrals. Let us restrit our attention to theimage plane. We an treat analytially the ase when the phase fators underintegral in Eq. (41) ompletely ompensate the phase fator in Eq. (36), i.e.when we an neglet the seond phase fator in Eq. (36). This happens whenwe are in the far �eld limit. The far �eld limit of Eq. (36) an be obtainedby substitution of Eq. (20) in Eq. (32). After the inverse Fourier transform inEq. (32) is alulated one obtains~E(zi; ~ri) =mexp"i!mj~rij22z1 # ~E (0;�m~ri) ; (42)that an also be obtained diretly from Eq. (36) negleting the seond phase23



fator on the right hand side. This is possible when!m2j~rij22z1 � 1 (43)for any point ~ri on the image pattern.Let us indiate with �i the harateristi size of the image. Condition (43) anbe interpreted as the following requirement for z1:z1 � !m2�2i : (44)Sine we are interested in the parametri dependene only, a fator 2 has beennegleted in Eq. (44). From Eq. (36) follows that m�i is the harateristi sizeof the virtual soure. As suh it is independent of the position of the lens andof the magni�ation fator jM j = m�1 as well. Condition (44) is often metin pratie and means that the radiation spot size on the lens, z1=(!m�i), ismuh larger than the harateristi size of the virtual soure, m�i. Then, thelens is plaed in the far zone with respet to the virtual undulator soure byde�nition of far zone �z1=(2��o)� �o, �o being the soure size. We onludethat the ondition for the lens to be plaed in the far zone is equivalent tothe ondition that Eq. (36) an be redued to Eq. (42). This result will be ofimportane in what follows. However, this kind of reasoning is only valid onthe image plane. On the foal plane the seond phase fator in Eq. (29) followsdiretly from the phase fator in Eq. (17), that is related with the propagationof the angular spetrum: in this ase one onludes that plane waves withdi�erent diretions of propagation lead to an inreasing phase di�erene asthe distane z1 inreases. Therefore, in the foal plane, some simpli�ationmay be obtained in the near �eld only, as z1 is small enough that the phasedi�erene between di�erent plane wave omponents is negligible. We will notinvestigate this situation further. Going bak to the image plane one an seethat a term of the expansion of the phase fator under the integral sign inEq. (34) anels the phase fator in Eq. (17). It follows that the seond phasefator in Eq. (36) is not related with the propagation of the angular spetrum.Therefore, in the far �eld region, when ondition (44) holds, we have thatthe pupil e�ets an be aounted for by means of a simpler onvolution. Inthe following parts of this paper we will restrit to this partiular ase whentreating pupil e�ets. It is interesting to remark that pupil e�ets due to �nitepupil dimension are espeially important in the far region. In this limit theradiation spot size on the lens is muh larger than the size of the radiationspot at the virtual soure, and is often larger that the size of the pupil. In thenear �eld instead, the radiation spot size on the lens is of order of the radiationspot size at the virtual soure. Therefore, in this limit, one an neglet e�ets24



from any �nite pupil aperture larger than the radiation spot size at the virtualsoure.In onlusion, expliit substitution of Eq. (42) in Eq. (41) yields the followingfar �eld limit expression on the image plane:~EP (zi; ~ri)= exp "i!mj~rij22z1 # Z d~u P  !m~riz1 � ~u! � ~E  0;�z1~u! ! : (45)2.3 Propagation of partially oherent light in free spaeLet us now onsider the stohasti nature of the Synhrotron Radiation �eldin general terms. Synhrotron Radiation is a Gaussian stohasti proess. Ashas been disussed in detail in referene [2℄, the eletromagneti signal atany position down the beamline is ompletely haraterized, from a statistialviewpoint, by the knowledge of the seond order �eld orrelation funtion inspae-frequeny domain�!(zo; ~ro1; ~ro2; !; !0) = D �E?(zo; ~ro1; !) �E�?(zo; ~ro2; !0)E : (46)In this paper, the averaging brakets h:::i will always indiate an ensembleaverage over bunhes. As it will be better explained in the following Setion3, we will restrit ourselves to the treatment of radiation from planar undu-lators in resonane with the fundamental harmoni. Therefore we an negletvertially polarized radiation omponents and onsider �E as a salar quantity.The shot noise in the eletron beam is responsible for random utuations ofthe beam density, both in spae and time. As a result, the temporal Fouriertransform of the Synhrotron Radiation pulse at a �xed frequeny and a �xedpoint in spae is a sum of a great many independent ontributions:�E?(zo; ~ro; !) = NXk=1 �Es?(~�k;~lk; zo; ~ro; !) exp (i!tk) ; (47)where N is the number of eletrons in the bunh. Here ~�k;~lk and tk are randomvariables desribing random angular diretion, position and arrival time of aneletron at the referene position zo = 0. As has been demonstrated in [2℄,under the assumption - generally veri�ed for X-ray beams and third generationlight soures - that the radiation wavelengths of interest is muh shorter thanthe bunh length we an write Eq. (46) as�!(zo; ~ro1; ~ro2; !; !0)=NF!(! � !0)25



�* �Es?(~�;~l; zo; ~ro1; !) �E�s?(~�;~l; zo; ~ro2; !0)+~�;~l ; (48)where F (!) is the Fourier transform of the bunh longitudinal pro�le funtionFt(tk), that ishexp (i!tk)it = 1Z�1 dtkFt(tk)ei!tk = F!(!) : (49)Note that the ensemble average on the right hand side of Eq. (48) is done overthe produt of the eletri �eld produed by the same eletron. In other wordseah eletron is orrelated only with itself.If the dependene of �Es? on ! and !0 is slow enough, so that �Es? does not varyappreiably on the harateristi sale of F! we an substitute �E�s?(~�;~l; zo; ~ro2; !0)with �E�s?(~�;~l; zo; ~ro2; !) in Eq. (48) thus obtaining:�!(zo; ~ro1; ~ro2; !; !0) = NF!(! � !0)G(zo; ~ro1; ~ro2; !) (50)whereG(zo; ~ro1; ~ro2; !) = * �Es?(~�;~l; zo; ~ro1; !) �E�s?(~�;~l; zo; ~ro2; !)+~�;~l : (51)As has been shown in [2℄ this assumption is by no means a restritive one.From now on we will be onerned with the alulation of the orrelation fun-tion G(zo; ~ro1; ~ro2; !), while the orrelation in frequeny (whih may be om-pliated by other fators desribing, for instane, the presene of a monohro-mator) an be dealt with separately.On the one hand, the ross-spetral density as is de�ned in Eq. (51) inludesthe produt of �elds whih obey the free spae propagation relation Eq. (13).On the other hand, the averaging over random variables ommutes with alloperations involved in the alulation of the �eld propagation. More expliitly,introduing the notation ~E(zo) = O[ ~E(z)℄ as a shortut for Eq. (13) one anwriteG(zo)= D �Es?(zo) �E�s?(zo)E = DO h �Es?(z)iO� h �E�s?(z)iE =O � O� hD �Es?(z) �E�s?(z)Ei = O �O� [G(z)℄ : (52)Note that O may represent, more in general, any linear operator.26



As a result, one an obtain a law for the propagation of the ross-spetraldensity in free spae in analogy with Eq. (13) from position z to position zo:G(zo; ~ro1; ~ro2)= !24�22(zo � z)2 Z d~r01d~r02 G(z; ~r01; ~r02)� exp" i!2(zo � z) ����~ro1 � ~r01���2 � ���~ro2 � ~r02���2�# ; (53)where the integral is performed in four dimensions. We may now proeed inparallel with Setion 2.1. In analogy with Eq. (14) let us �rst de�neG (z; ~u1; ~u2)= Z d~r01d~r02 G �z; ~r01; ~r02� exp hi �~u1 � ~r01 � ~u2 � ~r02�i : (54)Eq. (54) is a seond-order orrelation funtion between spatial Fourier trans-forms of the �eld. In the following, for simpliity, and with some abuse of lan-guage, we will denote G as the "Fourier transform of G". The spatial Fouriertransform of ~E depends on the position along the beamline through a phasefator only. Moreover, as already said, the operation of ensemble average om-mutes with the operation of Fourier transform. It follows that also G dependson the position along the beamline through a phase fator only. To be spei�,the analogous of Eq. (17) is given byG (z; ~u1; ~u2) = G (0; ~u1; ~u2) exp �� i2! �j~u1j2 � j~u2j2� z� : (55)Continuing in analogy with Setion 2.1 we �nd Eq. (20), whih relates thefar �eld expression for ~E(zo; ~ro) (in the limit zo �! 1 and for a �nite ratio~ro=zo) to the spatial Fourier transform F . We an take advantage of Eq. (20)to obtain, with the help of Eq. (51) and Eq. (54), a useful relation betweenthe ross-spetral density in the far �eld and the Fourier transform of G at thevirtual-soure position. In the limit zo �!1 and for �nite ratios ~�1 = ~ro1=zo,~�2 = ~ro2=zo we haveG (zo; ~ro1; ~ro2) = !24�22z2o exp �i!zo2 ����~�1���2 � ���~�2���2��G 0�0;�!~�1 ;�!~�2 1A :(56)This expression will be very useful later on. In [2℄ we obtained an expliitexpression for the ross-spetral density of the undulator soure in free spaeat any distane from the undulator. In partiular we an alulate the ross-spetral density in the far �eld, whih assumes a simpli�ed form. Consequently,27



the use of Eq. (56) allows to alulate the Fourier transform of the ross-spetral density at the virtual-soure position. As a result we an haraterizethe virtual soure and operate with it. Our starting point, here as in [2℄ isthe eletron beam in the undulator devie. In ontrast with this, previousliterature dealing with appliation of Statistial Optis to undulator radiationassumes a priori the validity of a postulated expression for the ross-spetraldensity.2.4 Image formation with partially oherent lightIn analogy with Setion 2.2 we will now onsider the problem of propagatingthe ross-spetral density immediately in front of the lens through the optialsystem up to the sreen at z = z2 behind the lens. Suppose that we knowG(z1) immediately in front of the lens. The ross spetral density immediatelybehind the lens, Gl(z1), is related to G(z1) byGl �z1; ~r01; ~r02� = G �z1; ~r01; ~r02�T �~r01�T � �~r02� ; (57)where the transmission funtion T is de�ned by Eq. (25). One an obtain alaw for the propagation of the ross-spetral density in free spae using Eq.(53), in agreement with [8℄, from position z1 immediately behind the lens tothe image plane at position z2, that isG(z2; ~r1; ~r2) = !24�22(z2 � z1)2 Z d~r01d~r02 Gl(z1; ~r01; ~r02)� exp " i!2(z2 � z1) ����~r1 � ~r01���2 � ���~r2 � ~r02���2�# : (58)Substituting Eq. (57) in Eq. (58) and remembering Eq. (25) one �ndsG(z2; ~r1; ~r2) = !24�22(z2 � z1)2 Z d~r01d~r02 G �z1; ~r01; ~r02�P �~r01�P � �~r02�� exp " i!2f ����~r02���2 � ���~r01���2�+ i!2(z2 � z1) ����~r1 � ~r01���2� ���~r2 � ~r02���2�� : (59)Manipulation of the argument in the exponential funtion under integral allowsthe more suggestive representation 28



G(z2; ~r1; ~r2) = !24�22(z2 � z1)2 exp " i!2(z2 � z1) �j~r1j2 � j~r2j2�#� Z d~r01d~r02 (G �z1; ~r01; ~r02�P �~r01�P � �~r02�� exp "i!  12f � 12(z2 � z1)!����~r02���2 � ���~r01���2�#)� exp " i!(z2 � z1) ��~r1 � ~r01 + ~r2 � ~r02�# ; (60)that is analogous to Eq. (26). The quantity in brakets f:::g is basially Fourier-transformed. As mentioned before, similarities between the way G and ~Eevolve through the beamline have to be asribed to the fat that the averageover random variables ommutes with all other operations in the alulationof the ross-spetral density. As a result, the reason why Eq. (60) is basiallya Fourier transformation is due to the partiular way ~E evolves.Similarly as has been explained above for the �elds, the image and the fo-al plane are privileged planes for whih the ross-spetral density assumespartiularly simple forms, that an be found in terms of Fourier Optis.2.4.1 Large non-limiting apertureWe will now proeed in analogy with Setion 2.2.1. On the foal plane, simi-larly to Eq. (28) we haveG(zf ; ~r1f ; ~r2f)= !24�22f2 exp " i!2f �j~r1f j2 � j~r2f j2�#�G  z1;�!~r1ff ;�!~r2ff ! ; (61)while using Eq. (55) we obtain, similarly to Eq. (29),G(zf ; ~r1f ; ~r2f)= !24�22f2 exp " i!2f �j~r1f j2 � j~r2f j2�#� exp "� i!z12f2 �j~r1f j2 � j~r2f j2�#G  0;�!~r1ff ;�!~r2ff ! :(62)In analogy with Eq. (32), for the image plane we an writeG(zi; ~r1i; ~r2)=� m!2�z1�2 exp �i!m2z1 �j~r1ij2 � j~r2ij2��29



� Z d~r01d~r02 G(z1; ~r01; ~r02) exp � i!2z1 ����~r02���2 � ���~r01���2��� exp ��im!z1 �~r1i � ~r01 � ~r2i � ~r02�� : (63)Using the onvolution theorem in analogy with Eq. (34) we obtainG(zi; ~r1i; ~r2i)=� m4�2�2 exp �i!m2z1 �j~r1ij2 � j~r2ij2�� Z d~u d~v G (z1; ~u;~v)� exp8<:iz12! 24 m!~r1iz1 + ~u!2 �  m!~r2iz1 + ~v!2359=; : (64)Finally, taking advantage of Eq. (55) we haveG(zi; ~r1i; ~r2i)=� m4�2�2 exp �i!m2z1 �j~r1ij2 � j~r2ij2��� exp "im2!2z1 �j~r1ij2 � j~r2ij2�#� Z d~u d~v G (0; ~u;~v) exp [im(~r1i � ~u� ~r2i � ~v)℄ ; (65)that an be rewritten as the analogous of Eq. (36):G(zi; ~r1i; ~r2i)=m2 exp �im!2z1 �j~r1ij2 � j~r2ij2��� exp "im2!2z1 �j~r1ij2 � j~r2ij2�#G (0;�m~r1i;�m~r2i) : (66)2.4.2 E�et of aperture sizeE�ets of aperture size an be inluded in strit analogy with Setion 2.2.2.Similarly to Setion 2.2.2 the following mnemoni rule an be applied to in-lude the e�ets of the pupil in Eq. (62) or Eq. (66). First, divide Eq. (62)or Eq. (66) by the �rst phase fator, orresponding to the phase fator out-side the integral sign in Eq. (60). Seond, onvolve twie with P and P�, Phaving already been de�ned in Eq. (39). Third, put the phase fator bak.We will denote with GP the ross-spetral density inluding the e�ets due tothe presene of the pupil. On the foal plane, in analogy with Eq. (40), oneobtains 30



GP (zf ; ~r1f ; ~r2f)= exp" i!2f �j~r1f j2 � j~r2f j2�#� Z d~u d~v P  !~r1ff � ~u!P�  !~r2ff � ~v!� exp" if2! �j~vj2 � j~uj2�#G zf ; f~u! ; f~v! ! (67)while on the image plane, in analogy with Eq. (41), one hasGP (zi; ~r1i; ~r2i) = exp �im!2z1 �j~r1ij2 � j~r2ij2��� Z d~u d~v P  !m~r1iz1 � ~u!P�  !m~r2iz1 � ~v!� exp � iz12!m �j~vj2 � j~uj2��G zi; z1~u!m ; z1~v!m ! : (68)In the limit for large apertures, P and P� an be substituted by Æ-Dirafuntions in both Eq. (67) and Eq. (68). In this ase, from Eq. (67) we reoverGP (zf ; ~r1f ; ~r2f) = G(zf ; ~r1f ; ~r2f), that is given by Eq. (62). From Eq. (68)instead, we have GP (zi; ~r1i; ~r2i) = G(zi; ~r1i; ~r2i), that is given by Eq. (66).Similarly to the ase analyzed in Setion 2.2, unless partiular onditions aremet, the phase fator under the integrals in Eq. (67) and Eq. (68) ompen-sate only partially the phase in Eq. (62) and Eq. (66). In the following wewill restrit our attention to the image plane. In this ase, omplete phaseompensation is ahieved when the lens is in the far �eld.The far �eld limit of Eq. (66) an be obtained by substitution of Eq. (56) inEq. (63). After alulating the inverse transformation of Eq. (54) one obtains:G(zi; ~r1i; ~r2i)=m2 exp �im!2z1 �j~r1ij2 � j~r2ij2��G (0;�m~r1i;�m~r2i) : (69)Eq. (69) an also be obtained diretly from Eq. (66) negleting the seondphase fator on the right hand side, that is possible whenm2!2z1 �j~r1ij2 � j~r2ij2�� 1 (70)for any pair of points (~r1i; ~r2i) on the image pattern. When the oherenelength on the image plane is muh smaller than the harateristi size of theimage, ondition (70) onstitutes, similarly to ondition (43) before (that holdsin the ase of oherent light), the requirement to be satis�ed for the lens to31



be in the far zone. When ondition (70) is satis�ed, Eq. (69) holds instead ofEq. (66). As explained in Setion 2.2, in this paper we will study pupil e�etsonly under this assumption.Expliit substitution of Eq. (69) in Eq. (68) yields, the following far �eld limitexpression:GP (zi; ~r1i; ~r2i) = exp �im!2z1 �j~r1ij2 � j~r2ij2�� Z d~u d~v P  !m~r1iz1 � ~u!�P� !m~r2iz1 � ~v!G 0;�z1~u! ;�z1~v! ! ; (71)that is the analogous of Eq. (45) in Setion 2.2.2.3 Image formation with a perfetly oherent undulator soureIn order to give an expliit expression for the ross-spetral density at posi-tion z2 we need to know an expliit expression for the ross-spetral densityG(z1; ~r01; ~r02) immediately in front of the lens. This was the subjet of our pre-vious work [2℄. In this and in the following Setions we will present the imageformation problem and its solution with the help of that referene. In partiu-lar, in the present Setion 3 we will begin with the simpler deterministi aseof zero eletron beam emittane. One may think of a �lament eletron beamor equivalently, as onerns the ross-spetral density, of a single eletron. Wewill start negleting the presene of the pupil. At the end we will generalizeour results to aount for it. In the following parts of this paper we will thengeneralize the results obtained in the present Setion 3 to inlude emittanee�ets, thus taking full advantage of the Statistial Optis formulation.Our starting point is an expression, derived in referene [2℄, for the omplexenvelope ~Es? of the Fourier transform of the eletri �eld produed by a singleeletron moving through a planar undulator at any distane from the exit ofthe undulator. That expression aounts for a given o�set and deetion angleof the partile trajetory with respet to the undulator axis. Referring to Fig.2 we found~Es?=�K!eAJJ2 Lw=2Z�Lw=2 dz0 1zo � z0� exp8><>:i264 C + ! j~�j22 ! z0 + ! �~r?o �~l � ~�z0�22(zo � z0) 3759>=>; : (72)32
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OFig. 2. Illustration of the undulator geometry and of the observation plane afterthe undulator.Here K is the undulator parameter, Lw, as before, is the undulator length,(�e) is the eletron harge and  is the relativisti Lorentz fator. MoreoverAJJ = J0  K24 + 2K2!� J1  K24 + 2K2! ; (73)Jn being the Bessel funtion of the �rst kind of order n. Also,!o = 4�2�w (1 +K2=2) (74)is the fundamental frequeny of the undulator, �w being the undulator period.Finally,C = 2��w ! � !o!o (75)is the detuning parameter, whih aounts for small deviations in frequenyfrom resonane.Eq. (72) is valid for frequenies about the fundamental harmoni !o. Thismeans that we are onsidering a large number of undulator periods Nw � 1and that we are looking at frequenies near the fundamental at angles withinthe main lobe of the diretivity diagram of the radiation. In this situationone an neglet the vertial y-polarization omponent of the �eld with anauray (4�Nw)�1. This onstitutes a great simpli�ation of the problem. At33



any position of the observer, we may onsider the temporal Fourier transformof the eletri �eld as a omplex salar quantity orresponding to the survivingx-polarization omponent of the original vetor quantity. Moreover it shouldbe noted that, in deriving Eq. (72), we assumed that no inuene of fousingis present inside the undulator. ~� and ~l are to be understood as deetionangles and o�set of the eletron at the position z = 0.Let us introdue normalized units 6Ês? = � 2 ~Es?K!eAJJ ;~̂� = ~�s!Lw ;Ĉ = LwC = 2�Nw! � !o!o ;~̂r?o = ~r?os !Lw ;~̂l = ~ls !Lw ;ẑ = zLw : (76)As shown in Appendix B of [2℄, after some algebrai manipulation, Eq. (72)an be rewritten in normalized units asÊs? = 1=2Z�1=2 dẑ0ẑo � ẑ0 exp8><>:i264�U + Ĉẑ0 + ẑoẑ02(ẑo � ẑ0) 0B�~̂� � ~̂l̂zo � ~̂�1CA23759>=>; ;(77)where~̂� = ~̂r?oẑo (78)6 The relation between Ês? and ~Es? in Eq. (76) di�ers from the analogous one inEq. (25) of referene [2℄ for a fator ẑo = zo=Lw. The reason for this disrepanyis related to the di�erent subjets treated. In [2℄ we onsidered only the free spaease, while in this paper we extend our onsiderations to an optial element, thusintroduing another privileged longitudinal position (the lens position) other thatthe observation plane. The de�nition of Ês? in [2℄ is no more a onvenient onehere and would lead to arti�ial ompliations in the following parts of this paper.Therefore it has been slightly modi�ed as in Eq. (76). This leads to slight hanges(related with the fator ẑo) in some of the following equations when ompared tothe analogous quantities in [2℄. 34



represents the observation angle and �U is given by�U = 0B�~̂� � ~̂l̂zo1CA2 ẑo2 : (79)Eq. (77) is of the formÊs? 0B�Ĉ; ẑo; ~̂� � ~̂l̂zo � ~̂�1CA = exp (i�U )S 264Ĉ; ẑo;0B�~̂� � ~̂l̂zo � ~̂�1CA2375 : (80)It is possible to show that the expression for the funtion S(�) redues to asin(�) funtion as ẑo � 1 . In this limiting ase, the expression for the eletri�eld from a single partile, Eq. (77), is simpli�ed toÊs? = exp (i�U) 1=2Z�1=2 dẑ0ẑo exp8><>:iẑ0 264Ĉ + 12 0B�~̂� � ~̂lx̂zo � ~̂�1CA23759>=>; : (81)Eq. (81) an be integrated analytially givingÊs? = exp (i�U) 1̂zo sin Ĉ2 + �24 ! ; (82)where� = ~̂� � ~̂l̂zo � ~̂� (83)and where the sin funtion has been de�ned assin(x) = sin(x)x : (84)For simpliity, in this paper we will restrit our attention to the ase Ĉ = 0.In the partiular ase Ĉ = 0, the funtion S an be represented in terms ofthe exponential integral funtion Ei(�) asS �0; ẑo; �2� = exp(�iẑo�2=2) "Ei iẑ2o�2�1 + 2ẑo!� Ei iẑ2o�21 + 2ẑo!# : (85)35
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Fig. 3. Comparison between f(�) = sin(�2=4) (solid line), the real (dashed line)and the imaginary (dash-dotted line) parts of f(�) = ẑoS(0; ẑo; �2) at ẑo = 1.It is interesting to study the behavior of the S funtion as the distane from theundulator enter ẑo inreases. This gives an idea of how good the asymptotiapproximation of the S funtion for ẑo � 1 (that is a sin funtion) is. A om-parison between sin(�2=4) and the real and imaginary parts of ẑoS(0; ẑo; �2)for ẑo = 1, ẑo = 2, ẑo = 5 and ẑo = 10 is given respetively in Fig. 3, Fig. 4,Fig. 5 and Fig. 6.When the eletron beam has zero emittane we are dealing with a perfetlyoherent wavefront. The evolution of the radiation wavefront through our op-tial system an be obtained with the help of Eq. (80). In the following we willstudy suh evolution assuming Ĉ = 0, ~̂l = 0 and ~̂� = 0. These assumptionsmean that the radiation frequeny is perfetly tuned to the fundamental fre-queny of the undulator and that the eletron beam is moving on the z axis.In this ase Eq. (82) desribes, in the far �eld region, a spherial wave withthe soure in the enter of the undulator. This remark allows one to onsiderthe undulator enter as a privileged point. In other words, the phase fator inEq. (82) represents, in paraxial approximation, the phase di�erene (hara-terizing a spherial wave) between the point (x̂o; ŷo; ẑo) and the point (0; 0; ẑo)on the observation plane. 36
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Fig. 4. Comparison between f(�) = sin(�2=4) (solid line), the real (dashed line)and the imaginary (dash-dotted line) parts of f(�) = ẑoS(0; ẑo; �2) at ẑo = 2.
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Fig. 5. Comparison between f(�) = sin(�2=4) (solid line), the real (dashed line)and the imaginary (dash-dotted line) parts of f(�) = ẑoS(0; ẑo; �2) at ẑo = 5.37
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Fig. 6. Comparison between f(�) = sin(�2=4) (solid line), the real (dashed line)and the imaginary (dash-dotted line) parts of f(�) = ẑoS(0; ẑo; �2) at ẑo = 10.3.1 Large non-limiting apertureWe will �rst study the ase when the pupil funtion an be negleted. Let usintrodue a normalized version of the spatial Fourier transform of the �eld,analogous to Eq. (14), that isF̂ �ẑ; ~̂u� = Z d~̂r0Ê �ẑ; ~̂r0� exp �i~̂r0 � ~̂u� : (86)The spatial Fourier transform F̂ �ẑ; ~̂u� an be alulated diretly from Eq. (77)(ompare also with Eq. (184) of referene [2℄) and givesF̂ �ẑ; ~̂u� = �2�i sin0B����~̂u���24 1CA exp264�i ���~̂u���2 ẑ2 375 : (87)Eq. (28) and Eq. (34) an be respetively rewritten in normalized units asÊ?(ẑf ; ~̂rf) = i2�f̂ exp24ij~̂rf j22f̂ 35F̂0�ẑ1;�~̂rf̂f 1A (88)and 38



Ê?(ẑi; ~ri)= m4�2 exp24imj~̂rij22ẑ1 35 Z d~̂u F̂ �ẑ1; ~̂u� exp264iẑ12 0��m~̂riẑ1 � ~̂u1A2375 ;(89)where f̂ = f=Lw. Substitution of Eq. (87) in Eq. (88) and in Eq. (89) yieldsresults respetively for the foal and the image plane. In the foal plane wehaveÊ?(ẑf ; ~̂rf) = 1̂f exp24ij~̂rf j22f̂ 35 exp24�iẑ1j~̂rf j22f̂2 35sin0B����~̂rf ���24f̂2 1CA : (90)Note that the relative distribution of intensity in the fous reprodues theangular distribution of intensity in the far �eld, that isÎ (r̂f )= sin20B����~̂rf ���24f̂2 1CA : (91)A plot of the universal funtion sin2(�2=4) is given in Fig. 7. Note that all ex-pressions pertaining undulator radiation from a single eletron are azimuthalsymmetri but do not admit fatorization in the produt of funtions sepa-rately depending on the x and the y oordinates. As we have shown in [2℄, theabsene of fatorization leads to an inuene of the presene of the horizontalemittane on the oherent properties of undulator radiation in the vertialdiretion. As a result, even in the ase of zero vertial emittane one annothave perfet oherene in the vertial diretion.For the image plane we obtain:Ê?(ẑi; ~̂ri)=�im2� exp24imj~̂rij22ẑ1 35 exp24im2j~̂rij22ẑ1 35� Z d~̂u sin0B����~̂u���24 1CA exp him~̂ri � ~̂ui : (92)As already seen in Eq. (190) of [2℄ (Appendix C), the Fourier transform in Eq.(92) an be alulated in terms of a Fourier-Bessel transform:Z d~̂u sin0B����~̂u���24 1CA exp him~̂ri � ~̂ui=2� 1Z0 du uJo �mj~̂riju� sin u24 !39
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=2� h� � 2Si �m2j~̂rij2�i : (93)Eq. (92) an now be written asÊ?(ẑi; ~̂ri)=�imexp24imj~̂rij22ẑ1 35 exp24im2j~̂rij22ẑ1 35 � h� � 2Si �m2j~̂rij2�i : (94)It is onvenient to introdue the following universal funtion normalized tounity:	(�) = 1�2 h� � 2Si ��2�i2 (95)The relative intensity on the image plane is related to the universal funtion	 through the saling fator m:Î �j~̂rij�=	 �mj~̂rij� : (96)A plot of the universal funtion 	(�) is given in Fig. 8.Comparison of Eq. (94) with Eq. (36) allows one to onlude that the equiva-lent soure for a single eletron moving on the z axis is a soure haraterizedby a plane wavefront and an intensity distribution related to the universalfuntion 	, that an be written asÊ?(0; ~̂r)=�i h� � 2Si �j~̂rj2�i : (97)By means of an inverse Fourier transformation it follows thatF̂ �0; ~̂u� = �2�i sin0B����~̂u���24 1CA ; (98)in agreement with Eq. (87). Comparison of Eq. (97) with a normalized versionof Eq. (20) show that the phase of the �eld of the virtual soure is shifted of aquantity ��=2 with respet to the spherial wave in the far zone. Suh phaseshift is the analogous of the Guoy phase shift in laser physis. A single eletronprodues a laser-like radiation beam that has a (virtual) waste muh largerthan the radiation wavelength loated in the enter of the undulator.The intensity distribution from the most elementary undulator soure, i.e. theradiation from a single eletron (or, equivalently, from an eletron beam with41



zero emittane) was just desribed analytially. Suh analytial desription,Eq. (96), an immediately be applied in situations of pratial relevane. In[10, 11℄ a haraterization of the vertial emittane in Spring-8 is reported. Itis based on the measurement of the X-Ray beam oherene length in the farzone. The experiment was performed at the beamline BL29XU. Based on theassumption of validity of the van Cittert-Zernike theorem, it was found thatthe rms eletron beam size at the undulator enter (orresponding to the min-imal value of the beta funtion) was sy ' 4:5 �m, and that the oupling fatorbetween horizontal and vertial emittane was down to the value � ' 0:12%,whih orresponds to an extremely small vertial emittane �y = 3:6 pm�rad.A resolution limit of this method was also disussed, based on numerial al-ulations of the radiation size from a single eletron sp ' 1:6 �m at Ep = 14:41keV for the 4:5 m long undulator used in the experiment. The resolution limitof the measurement of sy was estimated to be about 1 �m.Based on Eq. (96), we an determine the virtual soure size of undulatorradiation from a single eletron. Let us onsider the ase when the singleeletron is emitting photons at the fundamental harmoni with energy E =14:41 keV. The angular frequeny of light osillations is given, in this ase,by ! = 2:2 � 1019 Hz. For an undulator length Lw = 4:5 m, the normalizationfator for the transverse size introdued in Eq. (76), (Lw=!)1=2, is about 8 �m.From Fig. 8 obtain the dimensionless Half Width Half Maximum (HWHM)radiation size from a single eletron (i.e. the HWHM width of the intensitydistribution at the virtual soure, loated at the enter of the undulator). ThisHWHM dimensionless value is about 0:7. It follows that the HWHM value ofthe radiation spot size from a single eletron is about 0:7 � (Lw=!)1=2 '6 �m. Therefore, the rms value sp ' 1:6 �m in [10, 11℄, whih was alulatednumerially [12℄, is an underestimation of the orret value.Note that the HWHM radiation spot size from a single eletron is largerthan the rms eletron beam size sy ' 4:5 �m found by means of oherenemeasurements. One onludes that the unertainty due to �nite resolution islarger than the measured eletron beam size. This suggests that the methodused in [10, 11℄ may be inonsistent. Suh inonsisteny may be traed to thefat that authors of [10, 11℄ assume the validity of the van Cittert-Zerniketheorem in the vertial diretion. If one assumes their result of a vertialemittane �y ' 0:3�=(2�), it follows a posteriori that the van Cittert-Zerniketheorem ould not have been applied in �rst instane (in this experiment thevalue of the beta funtion was � ' Lw). Hene the inonsisteny of the methodfollows. Analysis of experimental results should have been based, instead, onthe study of transverse oherene for non-homogeneous undulator soures infree spae made in [2℄. 42



3.2 E�et of aperture sizeThe e�ets due to the presene of the pupil an be inluded in the treatmentby means of a normalized version of Eq. (40) and Eq. (41) on the foal planeÊP (ẑf ; ~̂rf)= exp24ij~̂rf j22f̂ 35� Z d~̂u P̂ 0�~̂rf̂f � ~̂u1A � exp24�if̂j~̂uj22 35Ê? �ẑf ; f̂~̂u� ; (99)and on the image planeÊP (ẑi; ~̂ri)= exp24imj~̂rij22ẑ1 35� Z d~̂u P̂ 0�m~̂riẑ1 � ~̂u1A � exp24�iẑ1j~̂uj22m 35Ê? 0�zi; ẑ1~̂um 1A ; (100)wherêP(~̂u)= Z d~̂r0P (~̂r0) exp ��i~̂r0 � ~̂u� : (101)Eq. (100) is valid independently of the position of the lens. However, as ex-plained in Setion 2.2 and in Setion 2.4 we will limit ourselves to the asewhen the lens is in the far zone. From Eq. (96) we see that the harateristisize of the soure is of order unity, beause 	 is a universal funtion. As aresult, the far �eld zone for a single partile is de�ned by the onditionẑ1 � 1 : (102)By substitution of Eq. (20) in Eq. (26), followed by use of the lens equationEq. (30) and normalization, one obtains an expression for the �eld valid in thease the lens is plaed in the far zone. Suh expression is equivalent, in thatlimit, to Eq. (100). If the pupil funtion is not set to unity, we haveÊP (ẑi; ~̂ri)=� m4�2ẑ21 exp24imj~̂rij22ẑ1 35� Z d~̂r0 F̂ 0�0;� ~̂r0ẑ11AP �~̂r0� exp24�im(~̂ri � ~̂r0)ẑ1 35 :43



(103)Eq. (103) an also be obtained by substitution of Eq. (89) in Eq. (100) followedby appliation of the onvolution theorem.In the far �eld ase Eq. (100) (or Eq. (103)) an be more easily used toalulate the e�ets of the pupil on the intensity. A natural example to studyis the ase of a lens with azimuthal symmetry and no aberrations. Consider apupil of radius a. After introdution of the normalized pupil radius:â = as !Lw (104)we set the pupil funtion:P (~̂r)=8><>: 1 if j~̂rj < â0 otherwise . (105)Using the Fourier-Bessel transform one obtainsP̂(~̂u)= 2�âj~̂uj J1 �âj~̂uj� : (106)Substitution of Eq. (94) in Eq. (100) and use of the far zone assumption leadsto ÊP (ẑi; ~̂ri)=�2�imâexp24imj~̂rij22ẑ1 35� Z d~̂u ������m~̂riẑ1 � ~̂u�������1 J10�â ������m~̂riẑ1 � ~̂u������1A h� � 2Si �ẑ21j~̂uj2�i :(107)Eq. (107) is, essentially, the onvolution produt of the Fourier transform oftwo known funtions with irular symmetry. Therefore, realling Eq. (93) andEq. (105), Eq. (107) an be written in terms of the following Fourier-Besseltransform:ÊP (ẑi; ~̂ri)=�i exp24imj~̂rij22ẑ1 35 â=ẑ1Z0 dû ûJ0 �mj~̂rijû� sin û24 ! : (108)44
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Fig. 9. Comparison between the relative intensity for a single eletron at the imageplane ÎP , Eq. (109), the universal funtion 	, Eq. (96), and the (Airy) di�rationpattern from a irular hole, Eq. (110), as a funtion of mr̂i. Here â=ẑ1 = 1.Eq. (108) an also be diretly obtained using the Fourier-Bessel integrationformula and Eq. (103). Eq. (108) orresponds to a relative intensityÎP �j~̂rij�= 14 "Si â24ẑ21!#�2 ������� â=ẑ1Z0 dû ûJ0 �mj~̂rijû� sin û24 !�������2 : (109)In the limit â=ẑ1 � 1 Eq. (108) gives bak Eq. (94) without the seond phasefator, and Eq. (109) gives bak Eq. (96) as it should be.When â=ẑ1 � 1 the sin(�) drops out of the integral in Eq. (109) giving thedi�ration pattern from a irular hole:ÎP �j~̂rij�= 4ẑ41â4 ������� â=ẑ1Z0 dû ûJ0 �mj~̂rijû��������2 = 4ẑ21â2m2j~̂rij2J21  âmr̂iẑ1 ! : (110)Further, analysis of Fig. 9 atually shows that Eq. (110) retains its validity45
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Fig. 10. Comparison between the relative intensity for a single eletron at the imageplane ÎP , Eq. (109), the universal funtion 	, Eq. (96), and the (Airy) di�rationpattern from a irular hole, Eq. (110), as a funtion of mr̂i. Here â=ẑ1 = 5.also for â=ẑ1 . 1.Comparisons between the relative intensity ÎP , Eq. (109), the universal fun-tion 	, Eq. (96), and the di�ration pattern from a irular hole, Eq. (110),are plotted as a funtion of mr̂i in Fig. (9) for â=ẑ1 = 1, in Fig. (10) forâ=ẑ1 = 5 and in Fig. (11) for â=ẑ1 = 10.4 Image formation with partially oherent undulator soure4.1 Coherene properties of undulator soure in the presene of eletronbeam emittaneIn the last Setion we dealt with the image formation problem in the ase of a�lament beam, i.e. when the eletron beam emittane is zero. In this Setionwe will generalize the previous results to the ase when the eletron beamhas �nite emittane. In this situation, methods from Statistial Optis must46
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Fig. 11. Comparison between the relative intensity for a single eletron at the imageplane ÎP , Eq. (109), the universal funtion 	, Eq. (96), and the (Airy) di�rationpattern from a irular hole, Eq. (110), as a funtion of mr̂i. Here â=ẑ1 = 10.be applied in order to solve the image formation problem. As disussed be-fore, the ross-spetral density of an undulator soure must �rst be alulatedat the lens position and subsequently propagated through the lens and theforthoming optial beamline up to the experimental plane.In [2℄ we proposed a method, based on Eq. (77), to alulate the ross-spetraldensity from undulator soures at any position in free spae after the undula-tor. Let us follow [2℄ and use Eq. (77) to alulate the ross-spetral density.The ross-spetral density G is given, in dimensional units and as a funtionof dimensional variables, by Eq. (51). Sine the �eld in Eq. (77) is given innormalized units and as a funtion of normalized variables ẑo, ~̂�x;y and Ĉ,it is onvenient to introdue a version of G de�ned by means of the �eld innormalized unitsĜ(ẑo; ~̂�1; ~̂�2; Ĉ) =*Ês? 0B�Ĉ; ẑo; ~̂�1 � ~̂l̂zo � ~̂�1CA47



�Ê�s? 0B�Ĉ; ẑo; ~̂�2 � ~̂l̂zo � ~̂�1CA+~̂�;~̂l : (111)Transformation ofG in Eq. (51) to Ĝ (and vieversa) an be performed shiftingfrom dimensional to normalized variables and multiplying G by an inessentialfator̂G =  2K!eAJJ !2G : (112)Substituting Eq. (80) in Eq. (111) we obtainĜ(ẑo; ~̂�1; ~̂�2; Ĉ) =*S 264Ĉ; ẑo;0B�~̂�1 � ~̂l̂zo � ~̂�1CA2375S� 264Ĉ; ẑo;0B�~̂�2 � ~̂l̂zo � ~̂�1CA2375� exp8><>:i2640B�~̂�1 � ~̂l̂zo1CA2 � 0B�~̂�2 � ~̂l̂zo1CA2375 ẑo2 9>=>;+~̂�;~̂l : (113)Expanding the exponent in the exponential fator in the right hand side ofEq. (113), one an see that terms in l̂2x;y anel out. Terms in �̂2x;y ontributefor a ommon fator, and only linear terms in l̂x;y remain inside the ensembleaverage sign. Substitution of the ensemble average with integration over thebeam distribution funtion leads toĜ(ẑo; ~̂�1; ~̂�2; Ĉ) = exp "i ~̂�21 � ~̂�22! ẑo2 # Z d~̂�d~̂l F~̂�;~̂l �~̂�;~̂l�� exp �i(~̂�2 � ~̂�1) �~̂l�S 264Ĉ; ẑo;0B�~̂�1 � ~̂l̂zo � ~̂�1CA2375�S� 264Ĉ; ẑo;0B�~̂�2 � ~̂l̂zo � ~̂�1CA2375 : (114)Here integrals d~̂� and in d~̂l are to be intended as integrals over the entire planespanned by the ~̂� and ~̂l vetors. Eq. (114) is very general and an be used asa starting point for omputer simulations.We assume that the distribution in the horizontal and vertial planes are notorrelated, so that F~̂�;~̂l = F�̂x;l̂xF�̂y;l̂y. If the transverse phase-spae is spei�edat the virtual-soure position ẑo = 0 orresponding to the minimal values ofthe beta funtions, we an write F�̂x;l̂x = F�̂xFl̂x and F�̂y;l̂y = F�̂yFl̂y with48



F�̂x(�̂x) = 1q2�D̂x exp � �̂2x2D̂x! ;F�̂y(�̂y) = 1q2�D̂y exp � �̂2y2D̂y! ;Fl̂x(l̂x) = 1q2�N̂x exp � l̂2x2N̂x! ;Fl̂y(l̂y) = 1q2�N̂y exp0�� l̂2y2N̂y1A : (115)From Eq. (76) and Eq. (78) it is possible to see thatD̂x;y = �2x0;y0!Lw (116)N̂x;y = �2x;y !Lw (117)where �x;y and �x0;y0 are the rms transverse bunh dimension and angularspread. Parameters N̂x;y will be indiated as the beam di�ration parametersand are analogous to Fresnel numbers. They orrespond to the normalizedsquare of the eletron beam sizes. D̂x;y represent the normalized square ofthe eletron beam divergenes instead. It is also onvenient to introdue thesquare of the apparent angular size of the eletron beam at the observer pointposition ẑo, that isÂx;y = N̂x;yẑ2o : (118)Substitution of relations (115) in Eq. (114) yields 7 at perfet resonane (Ĉ =0): Ĝ(ẑo; ~̂�1; ~̂�2)= exp"i ~̂�21 � ~̂�22! ẑo=2#4�2qD̂xD̂yN̂xN̂y 1Z�1 d�̂x exp � �̂2x2D̂x!7 In Eq. (119), for notational simpliity we substituted the proper notationĜ(ẑo; ~̂�1; ~̂�2; Ĉ) with the simpli�ed dependene Ĝ(ẑo; ~̂�1; ~̂�2). This is justi�ed beausewe will be treating the ase Ĉ = 0 only. Consistently, also S[ẑo; (~̂� �~̂l=ẑo � ~̂�)2℄ isto be understood as a shortut notation for S[Ĉ; ẑo; (~̂� � ~̂l=ẑo � ~̂�)2℄ alulated atĈ = 0. 49



� 1Z�1 d�̂y exp � �̂2y2D̂y! 1Z�1 dl̂x exp � l̂2x2N̂x!� 1Z�1 dl̂y exp0�� l̂2y2N̂y1A exp �i(~̂�2 � ~̂�1) �~̂l��S 264ẑo;0B�~̂�1 � ~̂l̂zo � ~̂�1CA2375S� 264ẑo;0B�~̂�2 � ~̂l̂zo � ~̂�1CA2375 : (119)Let us now introdue 8��̂x = �̂x1 � �̂x22 ; ��x = �̂x1 + �̂x22 (120)and ��̂y = �̂y1 � �̂y22 ; ��y = �̂y1 + �̂y22 : (121)With this variables rede�nition we obtainĜ = Ĝ(ẑo; ��x; ��y;��̂x;��̂y) (122)and, expliitly,Ĝ= exp hi2ẑo ���x��̂x + ��y��̂y�i4�2qD̂xD̂yN̂xN̂y 1Z�1 d�̂x exp � �̂2x2D̂x!� 1Z�1 d�̂y exp � �̂2y2D̂y! 1Z�1 dl̂x exp � l̂2x2N̂x!� 1Z�1 dl̂y exp0�� l̂2y2N̂y1A exp h�2i ���̂xl̂x +��̂y l̂y�i�S 24ẑo; ��x +��̂x � l̂x̂zo � �̂x!2 +  ��y +��̂y � l̂ŷzo � �̂y!235�S� 24ẑo; ��x ���̂x � l̂x̂zo � �̂x!2 +  ��y ���̂y � l̂ŷzo � �̂y!235 : (123)8 Note that the de�nition of ��̂x and ��̂y di�er for a fator 2 and a sign withrespet to notations in [8, 9℄. 50



A double hange of variables �̂x;y �! �̂x;y + ��x;y followed by the substitutionl̂x;y=ẑo �! �̂x;y � �̂x;y and by analytial alulation of the integrals in d�̂x;yleads toĜ= 14�2qÂxD̂xÂyD̂y�exp hi2��xẑo��̂xi exp "� ��2x + 4Âxẑ2o��̂2xD̂x + 4iÂx��xẑo��̂x2(Âx + D̂x) #�exp hi2��yẑo��̂yi exp24� ��2y + 4Ây ẑ2o��̂2yD̂y + 4iÂy��y ẑo��̂y2(Ây + D̂y) 35� 1Z�1 d�̂x 1Z�1 d�̂y exp24� �̂2x + 2�̂x ���x + 2iÂxẑo��̂x�2(Âx + D̂x) 35� exp24� �̂2y + 2�̂y ���y + 2iÂyẑo��̂y�2(Ây + D̂y) 35�S�hẑo; (�̂x ���̂x)2 + (�̂y ���̂y)2i�S hẑo; (�̂x +��̂x)2 + (�̂y +��̂y)2i : (124)Eq. (124) is a valid expression for the ross-spetral density in free spaeafter the undulator devie (i.e. for ẑo > 1=2) and an be used together withequations from (60) to (66).Let us now introdue the dimensionless version of Eq. (54) with the help of~�r = ẑo~�� and �~̂r = ẑo�~̂� 9 :9 A short digression about Eq. (125) is due here. As the reader may have notied, Ĝoinides with the Fourier transform, done with respet to ~�r0, of the Wigner distri-bution �̂(ẑ;~�r;~�u) = R d�~̂r0 Ĝ(ẑ;~�r;�~̂r0) exp[2i(~�u��~̂r0)℄. The knowledge of the Wignerdistribution is mathematially equivalent to the knowledge of Ĝ or Ĝ. A formalismbased on the Wigner distribution may be thus developed, whih is mathematiallyequivalent to the one developed here. In the ase of quasi-homogeneous soures,the Wigner distribution amounts to Eq. (6), that is the phase spae distribution.Interpretations of suh a funtion as a sort of generalized phase spae distribution inmore generi ases for non-homogeneous soures have been proposed. However, thereis no pratial advantage in onsidering suh an approah in our ase. Moreover,the Wigner distribution is a quantity that annot be diretly measured. Therefore,we prefer to use a formalism based on the ross-spetral density whih is a physi-ally measurable quantity. The ross-spetral density may be diretly measured bymeans of Young's double pinhole interferometer, whereas the Wigner funtion is amathematial transformation of the ross-spetral density.51



Ĝ �ẑ; ~�u;�~̂u�= Z d~�r0 d�~̂r0 Ĝ �ẑ; ~�r0;�~̂r0� exp h2i �~�u ��~̂r0 +�~̂u � ~�r0�i :(125)Its inverse is given byĜ �ẑ;~�r;�~̂r�= 1(2�)4 Z d~�u0 d� ~̂u0�Ĝ �ẑ; ~�u0;� ~̂u0� exp h�2i �~�u0 ��~̂r +� ~̂u0 �~�r�i : (126)Similarly as before, we onsider oordinates ~�� = ~�r=ẑo and �~̂� = �~̂r=ẑo in thelimit ẑo �! 1 but for �nite ratios ~�� and �~̂�. The dimensionless version ofEq. (56) then reads:Ĝ�ẑo;~��;�~̂��= 14�2ẑ2o exp �2iẑo~�� ��~̂�� Ĝ �0;�~��;��~̂�� : (127)This result will be widely used in what follows. Moreover an analogous of Eq.(55) is:Ĝ �ẑ;~��;�~̂��= Ĝ �0;~��;�~̂�� exp ��i2ẑ~�� ��~̂�� : (128)This result means that, aside for a phase fator, the spatial Fourier transformof the ross-orrelation funtion, Ĝ, does not depend on ẑ, as it follows fromthe analogous property of the Fourier transform of the eletri �eld disussedin Setion 2.Before proeeding, let us introdue the spetral degree of oherene g, whihan be presented as a funtion of �r and �r̂:g �~�r;�~̂r� = Ĝ �~�r;�~̂r�����Ês? �~�r +�~̂r����2�1=2 ����Ês? �~�r ��~̂r����2�1=2 : (129)With referene to Fig. 12, the modulus of the spetral degree of oherene, jgj,mathematially desribes the fringe visibility of the interferene pattern froma Young's double-pinhole interferometri measure. The phase of the spetraldegree of oherene is related, instead, to the position of the fringes. Theross-spetral density gives amplitude and position of the fringes. In general,the proess may not be quasi-homogeneous. In this ase, the result of Young'sexperiment varies with ~�r. In this ase, the relation between the visibility V ofthe fringes and g(~�r;�~̂r) reads 52



V=|g| is the fringes visibility

fringes
z1 z2-z1

Fig. 12. Measurement of the ross-spetral density of an undulator soure. (a)Young's double-pinhole interferometer demonstrating the oherene properties ofundulator radiation. Radiation must be spetrally �ltered by a monohromator ordetetor (not shown in �gure). (b) In the quasi-homogeneous ase the fringe visibilityV of the resultant interferene pattern is equal to the absolute value of the spetraldegree of oherene: V = jgj.V = 2����Ês? �~�r +�~̂r����2�1=2����Ês? �~�r ��~̂r����2�1=2����Ês? �~�r +�~̂r����2�+ ����Ês? �~�r ��~̂r����2� ���g �~�r;�~̂r���� : (130)In the quasi-homogeneous limit V �! ���g ��~̂r����.4.2 Large non-limiting apertureAs explained before we start negleting, at �rst, the e�ets from a �nite pupildimension, assuming a perfet lens with no aberrations. The imaging problemfor an ideal lens is solved one we �nd the ross-spetral density of the equiv-alent virtual soure for the undulator soure. On the foal plane we an writeEq. (62) in normalized units asĜ(ẑf ;~�rf ;�~̂rf )= 14�2f̂2 exp "2îf ~�rf ��~̂rf#53



� exp "�2iẑ1f̂2 ~�rf ��~̂rf# Ĝ 0�0;�~�rf̂f ;��~̂rff̂ 1A ; (131)while on the image plane, Eq. (66) in normalized units readsĜ(ẑi;~�ri;�~̂ri)=mexp �2imẑ1 ~�ri ��~̂ri�� exp "2im2ẑ1 ~�ri ��~̂ri# Ĝ �0;�m~�ri;�m�~̂ri� : (132)In all ases onsidered in this paper the position ẑ = 0 is well within the radi-ation formation length of the undulator. Therefore the ross-spetral densityĜ, alulated at ẑ = 0 has no diret physial meaning, and must be onsideredas a quantity haraterizing the virtual soure only. From the de�nitions ofvirtual soure and ross-spetral density follows that the virtual soure pro-dues not only the same �eld but also the same ross-spetral density of thereal undulator soure, at any distane from the exit of the undulator.In the present study ase of a radiation spot size smaller than the area of thelens and of a lens with no aberrations, Eq. (124) and Eq. (128), together withEq. (131) and Eq. (132), solve the problem of haraterizing the ross-spetraldensity on the foal plane (with the help of Eq. (131)) and on the image plane(with the help of Eq. (132)). The situation of a radiation spot size smallerthan the area of the lens is pratially ahievable for Synhrotron Radiationdue to its high diretionality. In this ase, vignetting e�ets are not present.However, even in this ase, in order to use Eq. (131) and Eq. (132) one mustfurther assume that aberrations an be negleted.4.3 E�et of aperture sizeAounting for the presene of the pupil, in analogy with Eq. (60) one has thefollowing normalized expression for the ross-spetral density on any observa-tion plane at position ẑ2 along the beamline behind the lens:Ĝ(ẑ2;~�r;�~̂r) = 14�2(ẑ2 � ẑ1)2 exp242i~�r ��~̂rẑ2 � ẑ1 35� Z d~�r0 d�~̂r0 (Ĝ�ẑ1; ~�r0;�~̂r0�P �~�r0 +�~̂r0�P � �~�r0 ��~̂r0�� exp "2i � 1̂f + 1ẑ2 � ẑ1! ~�r0 ��~̂r0#)54



� exp �� 2iẑ2 � ẑ1 �~�r ��~̂r0 + ~�r0 ��~̂r�� : (133)Let us onsider, more spei�ally, the foal and the image plane. Results anbe obtained diretly from Eq. (133). Alternatively, in analogy with Eq. (67)and Eq. (68), one an use our previous results, Eq. (131) and Eq. (132), dividethem by the �rst phase fator, onvolve them twie with P̂ and P̂� and, �nally,put the phase fator bak. A normalized version of the ross-spetral densityĜP inluding pupil e�ets at the foal is then found and an be written asĜP (ẑf ;~�rf ;�~̂rf )= exp"2îf ~�rf ��~̂rf#� Z d~�u d�~̂u exp h�2if̂~�u ��~̂ui Ĝ(ẑf ; f̂~�u; f̂�~̂u)�P̂ 24~�rf +�~̂rff̂ � ~�u��~̂u35 P̂� 24~�rf ��~̂rff̂ � ~�u+�~̂u35 ;(134)while on the image plane one obtainsĜP (ẑi;~�ri;�~̂ri) = exp �2imẑ1 ~�ri ��~̂ri� Z d~�u d�~̂u exp "�2iẑ1m ~�u ��~̂u#�Ĝ ẑi; ẑ1m~�u; ẑ1m�~̂u! P̂ �m̂z1 �~�ri +�~̂ri�� ~�u��~̂u��P̂� �m̂z1 �~�ri ��~̂ri�� ~�u+�~̂u� : (135)As said before, we will treat partiular situations in the image plane when thelens is in the far �eld. Using oordinates ~�ri and �~̂ri the analogous of ondition(70) reads2m2ẑ1 ~�ri ��~̂ri � 1 (136)for any pair of points on the image pattern.Expliit substitution of Eq. (132) in Eq. (135) yields the following far �eldlimit expression, whih aounts for ondition (136):ĜP (ẑi;~�ri;�~̂ri) =mexp �2imẑ1 ~�ri ��~̂ri� Z d~�u d�~̂u Ĝ �0;�ẑ1~�u;�ẑ1�~̂u��P̂ �m̂z1 �~�ri +�~̂ri�� ~�u��~̂u�55



�P̂� �m̂z1 �~�ri ��~̂ri�� ~�u+�~̂u� : (137)Eq. (137) is in analogy with Eq. (71) and Eq. (45).5 Imaging of quasi-homogeneous Gaussian undulator soures bya lens with large non-limiting apertureIn this Setion we speialize our disussion to the partiular ase of quasi-homogeneous Gaussian undulator soures, assuming a lens with large non-limiting aperture and no aberrations. A Statistial Optis treatment is notthe only one possible in this partiular study ase. A Geometrial Optisapproah an also be applied, pratially onsisting in ray-traing tehniques.In this Setion we will onsider the image formation problem from a StatistialOptis viewpoint. In Setion 7 an analysis in terms of Geometrial Optis willbe given, and agreement between these two methods will be demonstrated.From this point on, we will systematially ignore unimportant pre-fators ap-pearing in the expressions for the ross-spetral density. Moreover we willassume N̂x � 1 and D̂x � 1 whih is a reasonable approximation for thirdgeneration light soures in the X-ray region. We will show that this assump-tion leads to a major simpli�ation: namely, horizontal and vertial oordi-nates turn out to be fatorized in the expression for the ross-spetral densityin free spae. As a onsequene, Eq. (131) and (132) an also be fatorized inthe produt of a fator depending on the horizontal oordinates and a fatordepending on the vertial oordinates. These separate fators will be obtainedfrom Eq. (131) and (132) substituting all vetor quantities with salar quan-tities (horizontal or vertial omponents).5.1 Evolution of the ross-spetral density funtion in free spaeEq. (124) is a valid expression for the ross-spetral density in free spae atperfet resonane, alulated under the only assumptions that the system isultra-relativisti (and, therefore, the paraxial approximation an be applied)and that the insertion devie is haraterized by a large number of undulatorperiods. In this ase the resonane approximation is enfored. Eq. (124) isquite generi and, with respet to �rst-priniple alulations, it involves theomputation of a two-dimensional integral, whereas the most generi alula-tions would require a total of six integrations, two over the undulator lengthand four over the eletron beam transverse phase spae (assuming that theross-orrelation terms between di�erent eletrons is negleted). From a om-putational viewpoint, the advantage of reduing the number of integration is56



obvious and it an be appreiated even more after the ross-spetral density ispropagated through an optial system with limiting apertures, whih naturallyinreases the dimensions of the integration to be performed.When N̂x � 1 and D̂x � 1 the ross-spetral in free spae, Eq. (124), an bewritten as the produt of fators separately depending on the x and on the yoordinate, as has been shown in [2℄. In fat, analyzing the exponential fatoroutside the integral sign in Eq. (124) it is possible to see that the maximumvalue of ��̂2x is of order (Âx + D̂x)=(ÂxD̂xẑ2o)� 1, where we remember Âx =N̂2x=ẑ2o . As a result, ��̂x an be negleted inside the S funtions in Eq. (124).Moreover, sine D̂x � 1 one an also neglet the exponential fator in �̂2x +2�̂x��x inside the integral. This leads toĜ= exp hi2��xẑo��̂xi exp "� ��2x + 4Âxẑ2o��̂2xD̂x + 4iÂx��xẑo��̂x2(Âx + D̂x) #� exp hi2��y ẑo��̂yi exp24� ��2y + 4Ây ẑ2o��̂2yD̂y + 4iÂy ��yẑo��̂y2(Ây + D̂y) 35� 1Z�1 d�̂x exp "i�̂x2Âxẑo��̂xÂx + D̂x #� 1Z�1 d�̂y exp24� �̂2y + 2�̂y ���y + 2iÂy ẑo��̂y�2(Ây + D̂y) 35�S�hẑo; �̂2x + (�̂y ���̂y)2iShẑo; �̂2x + (�̂y +��̂y)2i : (138)Following the same reasoning in [2℄, we an also neglet the phase fator in �̂xunder the integral in d�̂x in Eq. (138). As a result, when N̂x � 1 and D̂x � 1horizontal and vertial oordinates are fatorized and we obtain the followingequation for Ĝ:Ĝ(ẑo; ��x; ��y;��̂x;��̂y) = Ĝx(ẑo; ��x;��̂x) Ĝy(ẑo; ��y;��̂y) ; (139)wherêGx = exp hi2��xẑo��̂xi exp "� ��2x + 4Âxẑ2o��̂2xD̂x + 4iÂx��xẑo��̂x2(Âx + D̂x) # (140)and Ĝy =exp hi2��yẑo��̂yi exp24� ��2y + 4Ây ẑ2o��̂2yD̂y + 4iÂy��y ẑo��̂y2(Ây + D̂y) 3557



� 1Z�1 d�̂y exp24� �̂2y + 2�̂y ���y + 2iÂyẑo��̂y�2(Ây + D̂y) 35� 1Z�1 d�̂xS�hẑo; �̂2x + (�̂y ���̂y)2iShẑo; �̂2x + (�̂y +��̂y)2i : (141)To begin our investigation of quasi-homogeneous soures we will onsider thelimit N̂ � 1 and D̂ � 1, when the photon-beam phase spae in a ertain(horizontal or both horizontal and vertial) diretion is an exat replia of theeletron-beam phase spae. Calulations an be performed in one dimension,suppressing indexes x and y. In the ase of Seond Generation light souresthe results that we are going to derive onstitute a realisti desription of theradiation harateristis in both horizontal and vertial diretions. Then, Eq.(141) oinides with Eq. (140).Let us present Eq. (140), i.e. the asymptoti expression for the ross-spetraldensity in the limit N̂ � 1 and D̂ � 1, in terms of oordinates �r = ẑ�� and�r̂ = ẑ��̂. We haveĜ(ẑ; �r;�r̂)= exp "� �r22(Â+ D̂)ẑ2# exp "2i�r�r̂ẑ #� exp "�2i Â�r�r̂ẑ(Â+ D̂)# exp "�2ÂD̂(�r̂)2(Â+ D̂) # ; (142)wherêA = N̂̂z2 : (143)Note that here, depending on the situation, r may assume the meaning ofeither variable x or y.In the far �eld limit, when Â� D̂ one obtains the following limiting expressionof Eq. (142):Ĝ(ẑ; �r;�r̂)= exp "2i�r�r̂ẑ # exp "� �r22D̂ẑ2# exp h�2Â(�r̂)2i : (144)With the help of Eq. (144) and using Eq. (127) one an �nd the expressionfor Ĝ and Ĝ at the virtual soure position in the enter of the undulator. Inthe ase under study (N̂ � 1 and D̂ � 1) the virtual soure is a Gaussianquasi-homogeneous soure. Aside for unessential multipliation onstants wehave 58



Ĝ �0; ��;��̂�=exp h�2N̂��̂2i exp"� ��22D̂# : (145)Therefore, using Eq. (126) we also obtainĜ(0; �r;�r̂) = exp "� �r22N̂ # exp h�2D̂(�r̂)2i : (146)From Eq. (146) we onlude that the intensity distribution of the virtual soureis a replia of the eletron beam density distribution at the position of minimalbeta funtion of the undulator (i.e. at the undulator enter). Moreover, in thispartiular study ase, if the position of the minimal beta funtion does notoinide with the undulator enter, the virtual soure orresponding to thedesription in Eq. (146) is simply translated, and is always loated at theposition where the beta funtion of the eletron beam is minimal.It should be noted that the far �eld limit Â � D̂ orresponds with the ap-pliability region of the van Cittert-Zernike theorem. In virtue of the vanCittert-Zernike theorem the modulus of the spetral degree of oherene inthe far �eld, i.e. exp[�2Â(�r̂)2℄ from Eq. (144), forms a Fourier pair with theintensity distribution of the virtual soure, i.e. exp[��r2=2N̂ ℄ from Eq. (146).In partiular one onludes that the rms width of the virtual soure is qN̂ ,as it an be seen diretly from Eq. (146). In our study ase for N̂ � 1 andD̂ � 1, suh a relation between the rms width of the spetral degree of o-herene in the far �eld and the rms dimension of the virtual soure is also arelation between the rms width of the ross-spetral density funtion in thefar �eld and the rms dimension of the eletron beam at the plane of minimalbeta funtion in the enter of the undulator. In dimensional units one anwrite the value � of the rms width of the spetral degree of oherene g(�~̂r)in the far �eld as� = �z2�� ; (147)� being, as usual, the rms dimension of the eletron beam. These few last re-marks help to larify what is the size of the soure in the van Cittert-Zerniketheorem, that is far from being a trivial question. For instane, assume that thevan Cittert-Zernike theorem an be applied. Then, the rms eletron beam sizean be reovered from the measurement of the transverse oherene length. Inthis regard, in [10℄ Setion V, one may �nd a statement aording to whihthe rms eletron beam size "is only the average value along the undulator" be-ause "the beta funtion has a large variation along the undulator". However,as we have seen before, the onept of virtual soure does not require a smallvariation of the beta funtion. In the most general ase, any variation of the59



beta funtion does not a�et the virtual soure size and, in our ase of quasi-homogeneous Gaussian soure, the virtual soure size is also the transverse sizeof the eletron beam at the position where the beta funtion is minimal. An-other example dealing with the same issue is given in referene [13℄. This paper(as well as referene [10℄) reports experimental results. However, authors of[13℄ observe a disagreement between the eletron beam rms size reonstrutedfrom the van Cittert-Zernike theorem and beam diagnostis result of about afator 2. They asribe this variation to the variation of the eletron beam sizealong the undulator. In footnote [25℄ of referene [13℄, one may read: "Thepreise shape and width of the x-ray intensity distribution in the soure planeare diretly onneted to the properties of the eletron beam. It would not besurprising if the limited depth of fous of the parabolially shaped eletronbeta funtion in the undulator translates into a virtually enlarged x-ray souresize.". At �rst glane it looks like if the Synhrotron Radiation soure has a�nite longitudinal dimension. However, based on the previous disussion weonlude that the virtual soure size is equal to the eletron beam size at thepoint where the beta funtions have their minimum and that it is not a�etedby variations of the beta funtion along the undulator. As a result, one shouldnot observe any virtually enlarged X-ray soure size beause of this reason.5.2 Evolution of the ross-spetral density funtion behind the lensIf we neglet the e�et of the pupil in the partiular ase under examination(N̂ � 1 and D̂ � 1), it is possible to �nd an analytial expression for theross-spetral density for any observation plane, and not only for the foalor the image plane. This is due to the fat that, in this partiular ase, thevirtual soure is gaussian. In the most general ase instead, one has to makeuse of Eq. (133).As usual we will neglet, at �rst, the e�et of the pupil funtion and group allthe phase terms in �r̂0�r0 in Eq. (133) with the help of the de�nitionQ̂ = 1̂z1 � Âẑ1(Â+ D̂) � 1̂f + 1ẑ2 � ẑ1 ; (148)wherêA = N̂̂z21 : (149)With this in mind, after substitution of Eq. (142) alulated at ẑ = ẑ1 in Eq.(133), one obtains 60



Ĝ(ẑ2; �r;�r̂) = exp "2i �r�r̂ẑ2 � ẑ1# exp "�2(Â+ D̂)ẑ21(�r̂)2(ẑ2 � ẑ1)2 #� exp8><>:� (Â+ D̂) h�r + 2iQ̂(Â+ D̂)ẑ21�r̂i2h2ÂD̂ + 2(Â+ D̂)2Q̂2ẑ21i (ẑ2 � ẑ1)29>=>; : (150)whih orresponds to a relative intensityÎ(ẑ2; �r)= exp8<:� (Â+ D̂)�r2h2ÂD̂ + 2(Â+ D̂)2Q2ẑ21i (ẑ2 � ẑ1)29=; : (151)and to a modulus of the spetral degree of transverse oherenejg(ẑ2; �r;�r̂)j= exp8<:� 2ÂD̂(Â+ D̂)ẑ21(�r̂)2hÂD̂ + (Â+ D̂)2Q̂2ẑ21i (ẑ2 � ẑ1)29=; : (152)Letting Q̂ = �Â=[ẑ1(Â+ D̂)℄ the reader an speialize the results to the aseof the image plane. For Q̂ = 1̂=ẑ1 � Â=[ẑ1(Â + D̂)℄ one gets the results forthe foal plane. Also, the intensity and the modulus of the spetral degree ofoherene on the image plane an be obtained from those on the foal planeexhanging Â with D̂. This symmetry an be explained in terms of Fouriertransforms. Phase fators aside, the ross-spetral density on the image planeis equal to the ross-spetral density on the objet plane. The ross-spetraldensity on the foal plane instead, is equal (phase fators aside) to the Fouriertransform of the ross-spetral density on the objet plane.As we have seen, in the ase for a Gaussian eletron beam with N̂ � 1,D̂ � 1 and for a perfet lens with non-limiting aperture and no aberrations,the Gaussian approximation for the ross-spetral density at the virtual sourein Eq. (146) an be used, and the ross-spetral density in free spae at anyposition ẑ an be alulated with the help of Eq. (142). Then, Eq. (133) anbe simpli�ed to reover both the intensity and the modulus of the spetraldegree of oherene (Eq. (151) and Eq. (152) respetively), whih are Gaussianfuntions for any value of ẑ2 and ẑ1. Even for quasi-homogeneous souresthough, there are a number of examples when it is diÆult to obtain analytialresults from Eq. (133) for any value of ẑ2. Nevertheless it is possible to alulatethe ross-spetral density at the image plane and at the foal plane (for anyvalue of ẑ1) with the help of Eq. (131) and Eq. (132). This an be done relyingon the alulation of the ross-spetral density at the virtual-soure position(and its Fourier transform), whih allows further use of Eq. (131) and Eq.(132). We will �rst use Eq. (131) and Eq. (132) to deal with the ase that wejust disussed when N̂ � 1 and D̂ � 1. This is not a simple repetition ofalready known results, beause the partiular way of reasoning used for the61



foal and the image plane, through Eq. (131) and Eq. (132), will be widelyused in the following parts of this paper too. The Statistial Optis methodonjugated to Fourier Optis results allows us to predit, by manipulationsof Eq. (142), the ross-spetral density (and, therefore, the intensity and theabsolute value of the spetral degree of oherene) on the foal and on theimage plane. In order to use Eq. (131) and Eq. (132) we must take advantageof the expressions for Ĝ and Ĝ at the virtual soure position, Eq. (145) andEq. (146) respetively.With the help of Eq. (131) and Eq. (145), on the foal plane we obtainĜ(ẑf ;~�rf ;�~̂rf )= exp "i2(f̂ � ẑ1)f̂2 �rf�r̂f# exp24�2N̂�r̂2ff̂2 35 exp "� �r2f2D̂f̂2 # :(153)For any value of ẑ1 we have a relative intensity on the foal plane given byÎ = exp"� �r2f2D̂f̂2# ; (154)while the modulus of the spetral degree of oherene (again, for any positionẑ1 of the lens 10 ) isjg (ẑf ; �rf ;�r̂f)j=exp24�2N̂�r̂2ff̂2 35 : (155)These results are intuitively sound. In Setion 2 we explained that we expetto �nd, on the foal plane, the spatial Fourier transform of the wavefront onthe objet plane (exept for a phase and a proportionality fator). Therefore,it is intuitive that the intensity on the foal plane must depend on the eletronbeam divergene only and that the modulus of the spetral degree of oherenemust depend on the eletron beam size only. In fat, the exhange of roles ofN̂ and D̂ passing from the virtual soure plane to the the foal plane is relatedto the operation of Fourier transform. Also note that the Fourier transform ofthe �eld depends on ẑ1 through a phase fator only, and free spae basiallyats as a Fourier transform itself (see Setion 2): what we �nd on the foalplane in terms of intensity and modulus of the spetral degree of oherene we10Note that the modulus of the spetral degree of oherene in Eq. (155) is inde-pendent of �rf . However, the spetral degree of oherene depends on �rf through aphase fator. This situation orresponds, aording to a de�nition given by us in [2℄,to a weakly quasi-homogeneous wavefront. This remark is valid for many expressionsof the modulus of the ross-spetral density given in this work.62



must also �nd in the far �eld after propagation in free spae. The reader mayhek that, after substitution �rf=f̂ �! �� and �r̂f=f̂ �! ��̂, Eq. (154) andEq. (155) an be found from Eq. (54) and Eq. (61) in [2℄ in the limit ẑo � 1,whih desribe propagation in free spae, as it should be.A similar simpli�ed reasoning an be applied for the ross-spetral density onthe image plane. With the help of Eq. (132) and Eq. (146), desribing theross-spetral density of the virtual soure we obtain:Ĝ(ẑi; �ri;�r̂i) = exp "2im(m+ 1)�ri�r̂iẑ1 # exp "�m2�r2i2N̂ #� exp h�2D̂m2(�r̂i)2i : (156)The relative intensity on the image plane is given byÎ = exp"�m2�r2i2N̂ # ; (157)while the modulus of the spetral degree of oherene isjg (ẑi; �ri;�r̂i)j= exp h�2m2D̂(�r̂i)2i : (158)These results are very natural. By de�nition of image plane, when we image anobjet with an ideal lens with a large non-limiting pupil aperture, we obtaina magni�ed version of the objet (virtual, in this ase).We remarked before that the intensity and the modulus of the spetral degreeof oherene on the image plane an be obtained from that on the foal planeexhanging Â with D̂. This symmetry though is not evident from the expres-sions in Eq. (154), Eq. (157), Eq. (155) and Eq. (158): to display it one hasto express these equations in terms of ẑ2 and ẑ1.6 Imaging of quasi-homogeneous non-Gaussian undulator souresby a lens with large non-limiting apertureIn the previous Setion 5 we treated the ase for N̂ � 1 and D̂ � 1. Inthe present Setion 6 we will deal with other quasi-homogeneous ases, alwaysassuming N̂x � 1 and D̂x � 1. The quasi-homogeneous situations that remainto be treated under this assumption are for either N̂y � 1 or D̂y � 1. In fat,the situation for both N̂y � 1 and D̂y � 1 is automatially inluded in Setion5. Moreover, in all quasi-homogeneous ases, the ross-spetral density in the63



horizontal diretion obeys Eq. (150). Therefore, we will fous our attention onthe ross-spetral density in the vertial diretion only.6.1 Soure with non-Gaussian angular distribution in the vertial diretionLet us use of our Statistial Optis approah to solve a somewhat ompliatedimage formation problem. After assuming separability of the horizontal andvertial diretions (N̂x � 1, D̂x � 1) we suppose that the eletron beam hasa vertial transverse size muh larger than the di�ration size, N̂y � 1, anda �nite divergene D̂y > 0. As usual, we will �rst neglet the inuene of thepupil funtion. The di�erene with respet to the ase treated in the previousSetion 5 is that Eq. (133) annot be expliitly alulated for any value ofẑ1 and ẑ2. However, as said before, the Statistial Optis method onjugatedto Fourier Optis results allows us to predit, for any value of ẑ1, the ross-spetral density on the foal (ẑ2 = ẑf ) and on the image (ẑ2 = ẑi) plane bymeans of Eq. (131) and Eq. (132). In order to use these equations we must�rst alulate Ĝ and Ĝ at the virtual soure at position ẑo = 0. This an bedone taking the limit ẑ2o � N̂=D̂ of Eq. (141), i.e. alulating the far zonelimit of Eq. (141), and using Eq. (127). First, under the assumption N̂y � 1we an neglet ��̂y in the S funtions in Eq. (141), thus obtaining the vertialross-spetral density funtion in the far �eld limitĜ= exp hi2��yẑo��̂yi exp h�2N̂y��̂2yi 1Z�1 d�̂y exp "�(�̂y + ��y)22D̂y #ÎS(�̂y) ;(159)wherêIS(�̂y) = 38p� 1Z�1 d�̂x sin2 h��̂2x + �̂2y� =4i (160)is a universal funtion related to undulator radiation. A plot of ÎS is given inFig. 13. Eq. (159), substituted into Eq. (127), gives the Fourier transform ofthe ross-spetral density at ẑo = 0, i.e. at the virtual-soure position:Ĝ (0; �u;�û)= exp h�2N̂y�û2i 1Z�1 d�̂y exp "�(�̂y + �u)22D̂y #ÎS(�̂y) : (161)64
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Fig. 13. The universal funtion ÎS , used to alulate the foal intensity of aquasi-homogeneous soure at N̂x � 1, D̂x � 1 and N̂y � 1.Inverse transforming Eq. (161) aording to the de�nition in Eq. (126), weobtain the ross spetral density at the virtual soure positionĜ(0; �y;�ŷ) = exp "� �y22N̂y # exp h�2D̂y�ŷ2i(�ŷ) ; (162)where funtion (�ŷ) is an inverse Fourier transform, normalized to unity, ofÎS, de�ned as from Eq. (93) in [2℄:(�ŷ) = 12�2 1Z�1 d�̂y exp hi (�2�ŷ) �̂yiÎS(�̂y) : (163)It has been shown in [2℄ that  an be expressed in terms of the sine integralfuntion Si(�) and of the osine integral funtion Ci(�). One has(�ŷ) = 2� ��2 + 2�ŷ2Ci �2�ŷ2�� sin �2�ŷ2�� Si �2�ŷ2�� : (164)65



This means that  is a real funtion. Moreover, in Eq. (162), �ŷ and �y areseparated and, sine N̂y � 1, the typial orrelation length is muh smallerthan the radiation spot, independently of the value of D̂y. This shows thatEq. (162) models a quasi-homogeneous soure. From Eq. (131) and Eq. (161)we obtain the ross-spetral density on the foal planeĜ(ẑf ; �yf ;�ŷf)= exp " 2îf2 �f̂ � ẑ1� �yf�ŷf# exp24�2N̂y�ŷ2ff̂2 35� 1Z�1 d�̂y exp264���yf=f̂ + �̂y�22D̂y 375 ÎS(�̂y) : (165)The relative intensity on the foal plane is therefore given byÎ(ẑf ; �yf )= 1Z�1 d�̂y exp264���yf=f̂ + �̂y�22D̂y 375 ÎS(�̂y)�8<: 1Z�1 d�̂y exp24� �̂2y2D̂y 35 ÎS(�̂y)9=;�1 ; (166)while the modulus of the spetral degree of oherene readsjg(ẑf ; �yf ;�ŷf)j=exp24�2N̂y�ŷ2ff̂2 35 : (167)For the image plane, Eq. (132) and Eq. (162) give the following ross-spetraldensity:Ĝ(ẑi; �yi;�ŷi)= exp "im(m+ 1)�yi�ŷi2ẑ1 #� exp "�m2�y2i2N̂y # exp h�2D̂ym2�ŷ2i i (m�ŷi) ; (168)orresponding to a relative intensity on the image planeÎ(ẑi; �yi) = exp "�m2�y2i2N̂y # : (169)Eq. (169) is the (magni�ed) image of the eletron beam in the objet planeẑ = 0. The modulus of the spetral degree of oherene is:66
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ŷFig. 14. Absolute value of the universal funtion , used to alulate, on the imageplane, the spetral degree of oherene of a quasi-homogeneous undulator sourewhen N̂x � 1, D̂x � 1 and N̂y � 1.jg(ẑi; �yi;�ŷi)j= exp h�2D̂ym2�ŷ2i i j(m�ŷi)j : (170)A plot of j(�ŷ)j is given in Fig. 14.6.2 Soure with non-Gaussian intensity distribution in the vertial diretionLet us now onsider the ase when D̂y � 1 and N̂y assumes arbitrary values.In this ase, Eq. (115) and Eq. (125) of [2℄ allow reonstrution of the ross-spetral density in the far zone, that isĜ = exp h2i��y ẑo��̂yi exp h�2N̂y��̂2yi exp "� ��2y2D̂y # �(��̂y) ; (171)where the funtion �(�ŷ) is de�ned in Eq. (113) of [2℄ and reads:67



�(��̂y)= 12�2 1Z�1 d�̂y 1Z�1 d�̂x�sin" �̂2x + (�̂y ���̂y)24 #sin" �̂2x + (�̂y +��̂y)24 # : (172)Eq. (171) may be obtained diretly from Eq. (141) in the limit ẑ2o � N̂y=D̂y,i.e. in the far zone. Note that if N̂y=D̂y � 1 (N̂y . 1 is our main ase of interestsine we have already treated the ase when both N̂y � 1 and D̂y � 1) thefar zone begins already at the exit of the undulator, when ẑ1 � 1 (see also [2℄for details). Let us introdue, in analogy with Eq. (163) the following (inverse)Fourier transform of the funtion �:B̂(�y) = 1K 1Z�1 d�̂y exp hi(�2�y)�̂yi�(�̂y) : (173)Here K is the normalization fatorK = 1Z�1 d�̂y�(�̂y) ' 2:200 ; (174)and has been alulated numerially.Both �(��̂y) and B̂(�y) admit representations in terms of a one-dimensionalintegral (note that the representation for �(��̂y) has been already introduedin [2℄). In order to see this, let us �rst onsider the funtion:~f(��̂0x;��̂0y)= 12�2 1Z�1 d�̂y 1Z�1 d�̂x�sin24(�̂x ���̂0x=2)2 + (�̂y ���̂0y=2)24 35�sin24(�̂x +��̂0x=2)2 + (�̂y +��̂0y=2)24 35 : (175)The funtion ~f is irularly symmetri. This an be seen swithing to polaroordinates:�̂x= r̂� os(�̂�)�̂y = r̂� sin(�̂�) (176)and 68



��̂0x=2= r̂� os(�̂�)��̂0y=2= r̂� sin(�̂�) : (177)Then, Eq. (175) an be rewritten as~f(r̂�) = 12�2 1Z0 dr̂� 2�Z0 d�̂��sin" r̂2� + r̂2� � 2r̂�r̂� os (�̂� � �̂�)4 #�sin" r̂2� + r̂2� + 2r̂�r̂� os (�̂� � �̂�)4 # ; (178)whih does not depend on �̂�, as an be seen swithing to the integrationvariable �̂0 = �̂� � �̂�. The following relation follows:�(��y) = ~f (��̂0x;��̂0y) (179)for any (��̂0x;��̂0y) suh that��̂y = r(��̂0x=2)2 + (��̂0y=2)2 : (180)The funtion � an be seen as a restrition of the funtion ~f . The reason why~f has been introdued is that it allows the use the autoorrelation theorem toobtain the following relation:1Z�1 d��̂0x 1Z�1 d��̂0y exp [i(�x��̂0x + �y��̂0y)℄ ~f (��̂0x;��̂0y) =12�2 ������ 1Z�1 d�̂x 1Z�1 d�̂y exp [i(�x�̂x + �y�̂y)℄sin24 �̂2x + �̂2y4 35������2 : (181)The integral in the right hand side of Eq. (181) has been already alulated, inpratie, in Eq. (93), and it an be expressed in terms of the universal funtion	 de�ned in Eq. (95). It follows that1Z�1 d��̂0x 1Z�1 d��̂0y exp [i(�x��̂0x + �y��̂0y)℄ ~f(��̂0x;��̂0y) =2 h� � 2Si(�2x + �2y)i2 = 2�2	 �q�2x + �2y� : (182)69



We an now inverse transform Eq. (182) using the Fourier-Bessel formula, thusobtaining~f(��̂0x;��̂0y) = � 1Z0 d� �Jo  �r(��̂0x)2 + (��̂0y)2!	(�) : (183)Letting ��̂0x = 0 and using Eq. (179) and Eq. (180) we obtain the followingrepresentation for �:�(��̂y) = � 1Z0 d� �Jo �2���̂y�	(�) : (184)Applying the de�nition of B̂ in Eq. (174) we obtainB̂(�y) = �K 1Z0 d� �	(�) 1Z�1 d��̂y exp hi(�2�y)��̂yiJo �2���̂y� : (185)The Fourier integral in ��̂y an be performed analytially (see [8℄, AppendixA.3.), thus giving the following representation of B̂:B̂(�y) = �K 1Z0 d� ret [�y=(2�)℄h1 � (�y=�)2i1=2 	(�) ; (186)where the funtion ret(x) is de�ned, following [8℄, to be unity for jxj 6 1=2and zero otherwise. A plot of the universal B̂ is given in Fig. 15.Using Eq. (127) and Eq. (171) we obtain the Fourier transform of the ross-spetral density at the virtual-soure positionĜ (0; �u;�û)= exp h�2N̂y�û2i exp"� �u22D̂y #�(�û) : (187)Inverse transforming Eq. (187) we an write the ross-spetral density at thevirtual-soure positionĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i 1Z�1 d� exp"�(� + �y)22N̂y # B̂(�) : (188)70
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(193)The modulus of the spetral degree of oherene isjg(ẑi; �yi;�ŷi)j= exp h�2D̂ym2�ŷ2i i : (194)Finally, in the partiular ase for N̂y � 1, Eq. (193) redues toÎ(ẑi; �yi) = B̂(m�yi) : (195)7 Analysis of the image formationmehanism for quasi-homogeneousundulator soures in terms of Geometrial OptisIn the Introdution we have stressed that the image formation problem istwofold: one should be able to provide a haraterization of the virtual soureas well as to trak the ross-spetral density of the soure trough the optialbeamline.Let us �rst analyze the problem of soure haraterization. In Setion 1 wehave seen that, in the asymptoti limit for a large eletron beam emittane�x;y � �=(2�), Geometrial Optis may be used equally well as StatistialOptis to ful�ll this task. Here we will disuss more in detail the relationbetween the Statistial Optis approah and the Geometrial Optis approahwith partiular attention to the appliability region of the latter.Let us start with a remark, whih applies not only to undulator radiationsoures but also to soures of other kind (e.g. bending magnets). In the In-trodution, in order to deide wether Geometrial Optis or Wave Optisis appliable, we ompared the eletron beam emittane with the radiationwavelength. This is aeptable in many ases when undulator radiation is in-volved but not, for instane, when bending magnet radiation is onsidered.In all generality one should separately ompare the photon beam size and di-vergene with the radiation di�ration size and di�ration angle, whih arequantities pertaining the single eletron radiation. Let us �x a given diretionx or y. The square of the di�ration angle is de�ned by (�0d)2 � �=(2�Lf ), Lfbeing the formation length of the radiation at wavelength � as de�ned in [1℄.The di�ration size of the soure is given by �d � �0dLf . In alulating thephoton beam size and divergene one should always inlude di�ration e�ets.As a result, if �2 and (�0)2 indiate the square of the eletron beam size anddivergene, the orresponding square of the photon beam size and divergenewill be respetively of order max[�2; �2d℄ and max[(�0)2; (�0d)2℄. These quantitiesan be rewritten in terms of the eletron beam emittane as max[��; �2d℄ and73



max[�=�; (�0d)2℄, � being the minimal beta funtion value, de�ning the virtualsoure position for the radiator (undulator, bending magnet, or other). Di-viding these two quantities respetively by �2d and (�0d)2 give natural values,normalized to unity, for the photon beam size max[2���=(Lf�); 1℄ and diver-gene max[2��Lf=(��); 1℄. When the produt between these two quantities ismuh larger than unity one an use a Geometrial Optis approah. In thisase, this produt represents the normalized photon beam emittane. When� � Lf , as in many undulator ases, one may ompare, for rough estimations,the eletron beam emittane and the radiation wavelength as we have donebefore. However, in the ase of a bending magnet one may typially have � oforder 10 m and Lf of order 10�3 � 10�2 m. The ratio �=Lf � 1 now onsti-tutes an extra large parameter of the problem. In this ase, even if the eletronbeam emittane is two order of magnitude smaller than the wavelength, due todi�ration e�ets one an still apply a Geometrial Optis approah, beausemax[2���=(Lf�); 1℄ �max[2��Lf=(��); 1℄� 1, i.e. the photon beam emittaneis muh larger than the wavelength. As a result, dimensional analysis suggeststhat bending magnet radiation may be treated exhaustively in the frameworkof Geometrial Optis even for third generation light soures.As disussed above, when � � Lf a large eletron beam emittane (om-pared with the radiation wavelength) is a neessary and suÆient onditionfor the Geometrial Opti approah to apply. In spite of that, when � � Lfor � � Lf , a large eletron beam emittane is a suÆient, but not nees-sary ondition for the Geometrial Opti approah to be possibly used forsoure haraterization. Let us prove this statement with undulator souresin mind 11 . It is enough to prove that the wider lass of quasi-homogeneoussoures, whih inludes situations when the eletron beam emittane is notlarger than the wavelength, an be desribed in terms of Geometrial Optis.Let us then onsider the lass of quasi-homogeneous virtual soures for undu-lator devies. The ross-spetral density of the virtual soure (positioned atz = 0, i.e. at the virtual soure plane) an be written as in Eq. (2), that werewrite here for onveniene in terms of oordinates �rx;y and �r̂x;y:Ĝo(�rx; �ry;�r̂x;�r̂y) = Î (�rx; �ry) g(�r̂x;�r̂y) : (196)As usual, the Fourier transform of Eq. (196) with respet to all variables willbe indiated with11Note that, even though in the ase of undulator soures one often has � � Lf ,there are situations when � � Lf or � � Lf and when the eletron emittane isof order of the wavelength. However, in the undulator ase, very large values of theratio �=Lf of order 103 � 104, typial of the bending magnet ase, are unrealisti.74



Ĝo(��x; ��y;��̂x;��̂y) = 1Z�1 d�r̂0x 1Z�1 d�r̂0y 1Z�1 d�r0x 1Z�1 d�r0y Ĝo(�r0x; �r0y;�r̂0x;�r̂0y)� exp[2i(��x�r̂0x + ��y�r̂0y)℄ exp[2i(��̂x�r0x +��̂y�r0y)℄ :(197)The two quantities Î(�rx; �ry) = Ĝo(�rx; �ry; 0; 0) and �̂(��x; ��y) = Ĝo(��x; ��y; 0; 0)are always positive, beause, by de�nition of Ĝo, they are ensemble averagesof quantities under square modulus.Let us now introdue the Fourier transform of Eq. (196) with respet to �r̂x;y:�̂o(�rx; �ry; ��x; ��y)= 1Z�1 d�r̂0x 1Z�1 d�r̂0y Ĝo(�rx; �ry;�r̂0x;�r̂0y)� exp[2i(��x�r̂0x + ��y�r̂0y)℄ : (198)Aounting for Eq. (196), i.e. in the partiular ase of a (virtual) quasi-homogeneous soure, Eq. (198) an be written as�̂o(�rx; �ry; ��x; ��y)= Î (�rx; �ry) �̂(��x; ��y) ; (199)having reognized that �̂(��x; ��y) = Ĝo(��x; ��y; 0; 0) is the Fourier transform ofthe spetral degree of oherene g. The distribution �̂o, being the produt oftwo positive quantities, never assumes negative values. Therefore it may alwaysbe interpreted as a phase spae distribution 12 . This analysis shows that quasi-homogeneous soures an always be haraterized in terms of GeometrialOptis. It also shows that, in this partiular ase, the oordinates in the phasespae, �rx;y and ��x;y, are separable.Eq. (198) is the de�nition of a Wigner distribution. In the ase of quasi-homogenous soures, as we have just seen, the Wigner distribution is nevernegative and, therefore, an always be interpreted as a phase spae distri-bution. In the ase of non quasi-homogeneous soures one may still de�ne a12 It should be remarked that this result has been obtained only on the ground ofmathematial basis, i.e. without asribing to Î and �̂ any physial meaning. In otherwords, we simply onsidered the ross-spetral density Ĝo as the ensemble-averagedprodut of Ê(~̂r1) and Ê�(~̂r2) without asribing to the funtion Ê any physialmeaning. Physially, as has been said in the Introdution, in the quasi-homogeneousase �̂ an be identi�ed with the radiant intensity of the virtual soure (omparewith Eq. (6)). This follows from a statement similar to the van Cittert-Zerniketheorem for quasi-homogeneous soures (see [3℄). Note that the intensity and theFourier transform of the spetral degree of oherene are obtained bak from thephase spae distribution, Eq. (199), by integration over oordinates ��x;y and �rx;yrespetively. 75



Wigner distribution using Eq. (198). The integral of the Wigner funtion overits oordinates must still be �nite 13 . However the Wigner funtion itself isnot always a positive funtion. As a onsequene it annot always be inter-preted as a phase spae distribution. On the one hand, quasi-homogeneity isa suÆient ondition for the Geometrial Optis approah to be possibly usedin the representation of the soure. On the other hand though, neessary andsuÆient onditions for �̂o to be a positive funtion are more diÆult to �nd.One may observe that Bohner's theorem 14 may be used to investigate whetherthe Wigner funtion an be interpreted as a phase spae distribution in thease of non-homogeneous soures. In partiular, it is neessary and suÆientto look for non-negative de�nite ross-spetral density funtions. However, ingeneral, it is not trivial to investigate wether a funtion is non-negative de�nite(see footnote 14) and therefore this observation does not seem to onstitutea simpli�ation. We will simply leave the searh for neessary and suÆientondition for �̂o to be a positive funtion as an open question. We did not ruleout, for undulator setups, the possibility of having a positive Wigner distribu-tion in the non quasi-homogeneous ase. At �rst glane it may look like suh a13This ensures that �̂o has �nite integral over its variables. �̂o is the Fourier trans-form of a orrelation funtion (the ross-spetral density) of eletromagneti �elds.The �elds being physial quantities an arry only a �nite amount of energy andthey are limited in spatial extent. As a result the ross-spetral density must be anintegrable funtion over its variables and so must be, by de�nition, �̂o.14Bohner's theorem "in its elementary form asserts that every non-negative de�-nite funtion of a broad lass has a non-negative Fourier transform and, onversely,that the Fourier transform of every non-negative funtion of a broad lass is non-negative de�nite. This lass inludes funtions whih fall o� suÆiently rapidly toin�nity to ensure that their Fourier transforms are ontinuous funtions" [itedfrom paragraph 1.4.2. of referene [3℄℄. It should hereby be stressed the di�erenein the mathematial language between a positive funtion f(�) > 0 for every realvalue � and a non-negative de�nite funtion. The funtion h is said to be non-negative de�nite when "for an arbitrary set of N real numbers �1, �2,...,�N and Narbitrary omplex numbers a1, a2, ..., aN , PNi=1PNj=1 a�i ajh(�j � �i) > 0."[itedfrom paragraph 1.4.2. of referene [3℄℄. Based on the assumption of a quasi-homogeneous soure authors of [3℄ use Bohner's theorem instead of our previousdisussion to demonstrate that the spetral degree of oherene g in Eq. (196)is neessarily non-negative de�nite. In fat, sine the intensity Î is a positivefuntion, the sign of PNi=1PNj=1 a�i ajg(�r̂x ij ;�r̂y ij) is the same of the sign ofPNi=1PNj=1 a�iaj Î(�rx ij ; �ry ij)g(�r̂x ij ;�r̂y ij) = PNi=1PNj=1 a�iaj hE(r̂j)E�(r̂i)i =����PNi=1 aiE(r̂i)���2� > 0, quantum erat demonstrandum. This demonstration is moreinvolved than ours, even though it is based, as the ours, on the positivity of thesquare modulus of quantities. The reason for this omplexity is that it uses a moregeneral theorem, i.e. Bohner's theorem. However, as we have seen, it is not nees-sary to invoke Bohner's theorem in the quasi-homogeneous ase.76



ase brings advantages in the formulation of the imaging theory, beause thesoure an be desribed in terms of Geometrial Optis. On the one hand, inthe ase the Wigner distribution is positive, the evolution of the radiation infree spae an be desribed by a ray-traing approah, as the Wigner distri-bution an be interpreted as a phase spae distribution. On the other handthough, suh fat is almost irrelevant beause it is not of help when optialelements are onsidered. As we will see later on, there are two partiular on-ditions at the basis of a simpli�ed formulation of the imaging theory basedon the inoherent point spread funtion of the optial system. The �rst is theseparability of the ross-spetral density is the produt of a fator dependingon ~�r and a fator depending on �~r. The seond is a transverse dimension ofthe soure muh larger than the transverse oherene length. As we have al-ready seen these two onditions, together, de�ne a quasi-homogeneous soure.Quasi-homogeneous soures are neessarily haraterized by a positive Wignerfuntion. However, the positivity of the Wigner funtion alone is not suÆientto obtain a simpli�ed formulation of the imaging theory in terms of ino-herent point-spread funtion. A similar remark holds for a partiular kind ofsoures often onsidered in literature also in onnetion with undulator radi-ation (see [14, 15℄). These soures, haraterized by a ross-spetral densityG = qI(r1)qI(r2)g(r1 � r2) are alled Shell soures (in partiular, in [14, 15℄Gaussian-Shell soures are disussed whih assume gaussian a pro�le for bothI and g). They exhibit separability of the ross-spetral density, but are notquasi-homogeneous beause the transverse dimension of the soure fails tobe muh larger than the transverse oherene length: a simpli�ed formula-tion of the imaging theory does not hold in this ase either. Moreover, as itwill be more extensively disussed here below and in Setion 15, the Shellmodel (and, in partiular, the Gaussian-Shell model) may be useful for de-sribing light soures other than undulator-based or for eduational purposes,but does not desribe any pratial realization of an undulator soure.We are now interested to �nd, in partiular, equivalent onditions for quasi-homogeneity in terms of the eletron beam sizes N̂x;y and divergenes D̂x;y thatapply to our ase of interest, i.e. third generation light soures. In order to doso we start deriving an expression Ĝ for the Fourier transform of the ross-spetral density at the virtual soure position. This is given by alulating thelimit of Eq. (124) for ẑo � 1 and taking advantage of Eq. (127). Aside for aninessential multipliative onstant we obtain:Ĝ(0; ��x; ��y;��̂x;��̂y) = exp h�2N̂x��̂2xi exp h�2N̂y��̂2yi 1Z�1 d�̂x 1Z�1 d�̂y� exp264���̂x + ��x�22D̂x 375 exp264���̂y + ��y�22D̂y 37577



�sin"(�̂x ���̂x)2 + (�̂y ���̂y)24 #�sin "(�̂x +��̂x)2 + (�̂y +��̂y)24 #: (200)We have said that the quasi-homogeneity of the virtual soure is equivalent to(i) separability of the ross-spetral density Ĝ in the produt of two fatorsrespetively depending on ��x;y and ��̂x;y and (ii) a large harateristi saleof ��x;y with respet to the harateristi sale of ��̂x;y. From ondition (i)follows that the virtual soure is quasi-homogeneous only if it is possible tofatorize the Fourier transform of the ross-spetral density, Ĝ in Eq. (200),in the produt of two fators separately depending on ��x;y and ��̂x;y. Suhfatorization, for third generation light soures, is equivalent to a partiularhoie of the region of parameters for the eletron beam: N̂x � 1, D̂x � 1 andeither (or both) N̂y � 1 and D̂y � 1 15 . In this ase, the seond ondition (ii)is automatially veri�ed as one an verify inspeting Eq. (200).An intuitive piture in the real spae is given by a (virtual) quasi-homogeneoussoure with harateristi (normalized) square sizes max(N̂xy; 1) and hara-teristi (normalized) orrelation length square of order min(1=D̂x;y ; 1). As al-ready remarked before, in the quasi-homogeneous situation the horizontal andthe vertial diretions an be treated separately, beause Eq. (200) fatorizesin the produt of fators separately depending on the horizontal and on thevertial oordinates. This orresponds to a large number of independentlyradiating soures given by the produtMx;y = max(N̂x;y; 1)max(D̂x;y; 1) : (201)The number Mx;y is, in other words, an estimation of the number of oherentmodes in the horizontal and in the vertial diretion 16 . The number M�1x;y15 It should be remarked here, that these onditions desribe the totality of thirdgeneration quasi-homogeneous soures. In fat, while a purely mathematial analysisindiates that fatorization of Eq. (200) is equivalent to more generi onditions(N̂x � 1 and N̂y � 1, or D̂x � 1 and D̂y � 1), omparison with third generationsoure parameters redues suh onditions to the already mentioned ones.16This is in agreement with an intuitive piture where the photon-beam phase spaereprodues the eletron-beam phase spae up to the limit imposed by the intrinsidi�ration of undulator radiation. Imagine to start from a situation with N̂x;y � 1and D̂x;y � 1 and to "squeeze" the eletron-beam phase spae by diminishing N̂x;yand D̂x;y. On the one hand the harateristi sizes of the phase spae of the eletronbeam are always of order N̂x;y and D̂x;y. On the other hand the harateristi sizesof the phase spae of the photon beam are of order max(N̂x;y; 1) and max(D̂x;y; 1):di�ration e�ets limit the "squeezing" of the phase spae of the photon beam.78



is the auray of Geometrial Optis results ompared with Statistial Op-tis results or, better, the auray of the quasi-homogeneous assumption. Itshould be noted that, as Mx;y approahes unity, the auray of the quasi-homogeneous assumption beomes worse and worse and Mx;y annot be takenanymore as a meaningful estimation of the number of modes: it should bereplaed by a more aurate onept based on Statistial Optis. To ompletethe previous statement we should add that Mx;y ompletely loses the mean-ing of "number of modes" when Geometrial Optis annot be applied. Forinstane when both N̂y and D̂y are of order unity (or smaller), one an statethat the Geometrial Optis approah fails in the vertial diretion beausethe phase spae area is getting near to the unertainty limit. In this ase it isnot possible to asribe the meaning of "number of modes" to the number Mysimply beause the Geometrial Optis approah in the vertial diretion fails.However, when N̂y and D̂y are of order unity (or smaller), but both N̂x � 1and D̂x � 1, the ross-spetral density admits fatorization in the horizontaland in the vertial diretion and the soure in the horizontal diretion an bestill desribed, independently, with the help of Geometrial Optis.Up to now we disussed about the roles of Geometrial and Statistial optisin the haraterization of the soure only. However, as already remarked, thespei�ation of the soure onstitutes only part of the solution of the imagingproblem. One has, in fat, to trak information regarding the soure throughthe optial beamline up to the observation plane. Depending on the situationGeometrial Optis may be used or not. For instane, a quasi-homogeneoussoure may well be desribed in terms of a phase spae distribution, but ifdi�ration e�ets dominate the photon beam transport to the observationplane, one annot use ray-traing tehniques to alulate the intensity pro�leat the observation plane. However, as we will see in the next Setion, if thevirtual soure is quasi-homogeneous, the intensity at the observation plane analways be expressed as a onvolution produt between the impulse responseof the optial system and the intensity whih would be reovered at the obser-vation plane in the ase of an ideal optial system (i.e. one with no aberrationand non-limiting pupil apertures). In this ase, the entire line may be studiedwith the help of ray-traing programs if and only if the impulse response ofthe system an be reovered by means of Geometrial Optis tehniques.In Geometrial Optis, a Hamiltonian desription of the optial system holdsso that interation with optial media (i.e. the system evolution) is onve-niently modelled in terms of sympleti transformations. A given sympletitransformation S ats on point ~�o = (�rox; ��ox; �roy; ��oy) of the phase spae �̂oat ẑo = 0 and maps it to a point ~� = (�rx; ��x; �ry; ��y), of the phase spae �̂ẑ atẑo = ẑ aording to~� = S(~�o) : (202)79



The phase spae distribution is therefore transformed aording to�̂ẑ (~�) = �̂o hS�1 (~�)i : (203)Aording to Liouville's theorem, the area of the phase spae is onservedduring this proess. In the partiular ase of linear transformations, one anuse a matrix formalism. N suessive linear transformations are representedby N matries L1 ... LN and the resulting transformation is represented by Nsuessive matrix multipliations, whih give the matrix L = LN � ::: � L1. Theation of L on an element of the phase spae is then naturally represented bymultipliation. The variables ~� in phase spae haraterize a ray with a ertaindiretion and o�set with respet to the optial axis. The task of alulatingthe phase spae distribution after a given number of optial elements through�̂ẑ (~�) = �̂o hL�1 � (~�)ti ; (204)where t indiates transposition, or through the more general Eq. (203) anbe solved by ray-traing programs. One �̂ẑ is known, these odes usuallyintegrate it over the variable ��x and ��y to give the intensity distributionÎ (ẑ; �rx; �ry) = 1Z�1 d��x 1Z�1 d��y �̂ẑ ��rx; ��x; �ry; ��y� : (205)However, the same programs may also be used to alulate the Fourier trans-form of the spetral degree of oherene through�̂ �ẑ; ��x; ��y� = 1Z�1 d�rx 1Z�1 d�ry �̂ẑ ��rx; ��x; �ry; ��y)� : (206)In partiular, in free spae, Eq. (204) beomes�̂ẑ ��rx; ��x; �ry; ��y�= Î �0; �rx � ẑ��x; �ry � ẑ��y� �̂ �0; ��x; ��y� ; (207)while Eq. (205) and Eq. (206) redue to onvolutions:Î (ẑ; �rx; �ry) = 1Z�1 d��x 1Z�1 d��y Î �0; �rx � ẑ��x; �ry � ẑ��y� �̂ �0; ��x; ��y� (208)and 80



�̂ �ẑ; ��x; ��y�= 1Z�1 d�rx 1Z�1 d�ry Î �0; �rx � ẑ��x; �ry � ẑ��y� �̂ �0; ��x; ��y�= �̂ �0; ��x; ��y� : (209)Note that �̂ alulated at ẑ = 0 has diret physial sense as the intensitydistribution in the far zone, i.e. the angular spetrum. Then, Eq. (209) tellsthat, at arbitrary distane ẑ, the angular spetrum does not vary.The intensity reovered at the image plane in the ase of an ideal optial systemis a saled opy of that at the virtual soure, regardless of the soure. Generally,although as we will see exeptions apply, suh orrespondene between theintensity of the soure and the observed intensity is only true in the asethe observation plane is the image plane. In the ase of a quasi-homogeneousvirtual soure, Geometrial Optis as well as Statistial Optis tehniques anbe employed to reover the intensity at the observation plane. Results fromthe Geometrial Optis and from the Statistial Optis approah must thenoinide. Let us prove this fat onsidering the partiular ase N̂ � 1 andD̂ � 1 in a given diretion and showing that we are able to reover Eq. (151)by means of Geometrial Optis tehniques, namely by means of the matrixformalism employed in ray-traing odes.In this partiular situation, the photon beam an be modelled as if a Gaussianphoton beam was present at ẑ = 0 with the same horizontal phase spae ofthe eletron beam. This is an ansatz on the virtual quasi-homogeneous sourebased on the phase spae piture desribed above sine stritly speaking it doesnot make sense to talk about a Gaussian photon beam inside the undulator,i.e. within the radiation formation length. If, however, this ansatz is made, wean desribe the optial equivalent of the Twiss matrix at ẑ = 0. Let us �rstintrodue the notion of normalized Twiss parameters as:�̂T =�T ;�̂T =L�1w �T ;̂T =LwT ;�̂ = (!=)� ; (210)where �T , �T and T are the Twiss parameters and � is the emittane per-taining the photon beam 17 . In the ase under study they are idential to theanalogous eletron beam parameters. We have�jẑ=0 � �̂0B� �̂T (0) ��̂T (0)��̂T (0) ̂T (0) 1CA = 0B� N̂ 00 D̂1CA ; (211)17The Twiss parameters are the seond moments of the phase spae distribution ofthe photons divided by the emittane. 81



For this exempli�ation we will assume a non-limiting pupil aperture. Then,the linear transformation mapping a phase-spae point in ẑ = 0 to a phase-spae point in ẑ = ẑ2 is represented by the matrix L. In our partiular ase ofinterest we haveL=0B� 1 ẑ2 � ẑ10 1 1CA � 0B� 1 0�1=f̂ 11CA � 0B� 1 ẑ10 1 1CA= 0BBBBB� �ẑ2=ẑ1 + 1 0ẑ2=(ẑ21 � ẑ1ẑ2) ẑ1=(ẑ1 � ẑ2)1CCCCCA : (212)As one an see from Eq. (42), L desribes a free-spae ight followed by afousing element and a seond free-spae ight. A point (l̂o; �̂o) of the photonbeam phase spae at ẑ = 0 is transformed, at ẑ = ẑ2 into0B� l̂1̂�1 1CA = L0B� l̂ô�o1CA ; (213)while the Twiss parameters for the photon beam at ẑ = ẑ2 are desribed bythe matrix�jẑ=ẑ2 =L � �jẑ=0 � Lt = �̂0B� �̂T (ẑ2) ��̂T (ẑ2)��̂T (ẑ2) ̂T (ẑ2) 1CA (214)with�̂�̂T (ẑ2)= 1�Â+ D̂�(ẑ1 hÂ+ �Â+ D̂�Qẑ1i hD̂ + �Â+ D̂�Qẑ1i� �ÂD̂ + �Â+ D̂�2Q2ẑ21� ẑ2) ; (215)�̂�̂T (ẑ2) = �ÂD̂ + �Â+ D̂�2Q2ẑ21� (ẑ1 � ẑ2)2Â+ D̂ (216)and 82



�̂̂T (ẑ2) = ÂD̂Â+ D̂ + �Â+ D̂�Q2ẑ21 + �Â+ D̂� ẑ21(ẑ1 � ẑ2)2 + 2 �Â+ D̂�Qẑ21ẑ1 � ẑ2 :(217)It should be realled that parameters Q and Â have been de�ned in Eq. (148)and Eq. (149).The photon phase spae distribution at ẑ = ẑ2 is desribed byfjẑ=ẑ2 = 12��̂ exp "� ̂T (ẑ2)l̂21 + 2�̂T (ẑ2)l̂1�̂1 + �̂T (ẑ2)�̂212�̂ # : (218)The relative intensity is derived from Eq. (218) integrating over the �̂1-oordinate,whih givesI(ẑ2) = exp "� 2l̂212�̂�̂T (ẑ2)# : (219)Finally, substitution of the expression for �̂�̂T (ẑ2) obtained in Eq. (216), yieldsbak Eq. (151), as it should be. Similar onlusions may be obtained for thespetral degree of oherene integrating over the l̂1-oordinate and inverseFourier transforming the result.In spite of these results, we should stress again that Statistial Optis is theonly mean to deal with the stohasti nature of Synhrotron Radiation ingeneral. Only in partiular ases Synhrotron Radiation an be treated interms of Geometrial Optis. As we have just disussed, one of these ases isonstituted by seond generation light soures, when N̂x;y � 1 and D̂x;y � 1.Experiments in this region of parameters an take advantage of ray-traingode tehniques.To onlude this Setion, we would like to make a muh stronger statement:there are pratial ases of interest when the Statistial Optis approah mustbe used even for seond generation light soures. This should not sound tooawkward sine, as we have stated before, the impulse response of an optial linemay not be treatable in terms of Geometrial Optis. Consider, for instane,the setup illustrated in Fig. 17. This onsists of an entrane slit, a grating andan exit slit, that is a grating monohromator. The grating equation, whihdesribes how the monohromator works, relies on the priniple of interfereneapplied to the light oming from adjaent grooves. Suh priniple though, anonly be applied when phase and amplitude variations of the eletromagneti�eld are well de�ned aross the grating, that is when the �eld is perfetlytransversely oherent. If the transversely oherent spot of the radiation issmaller than the grating, not all the grating is taken advantage of, resulting83



Fig. 17. Illustration of a grating monohromator.in a derease of resolution in wavelength. To better explain this point, withreferene to Fig. 17, let us indiate the width of the entrane slit with d andthe angle of inidene of the inoming radiation with �. Moreover, let Dg bethe typial dimension of the grating, Ng the total groove number,m the orderof di�ration and z the distane between the entrane slit and the grating.The maximal (relative) resolution whih an be obtained with a partiulargrating is given by (mNg)�1. Qualitatively, to obtain suh maximal resolutionwe must have a transverse oherene area of at least the size Dg os(�). If it issmaller, not all the grating is used. We now need to transform this qualitativerequirement into a quantitative requirement.In pratial situations, the grating is plaed in the far zone with respet tothe entrane slit. This is beause the radiation spot size at the grating shouldbe at least of order Dg os(�), whih is muh larger than the slit aperture d.If we assume the slit uniformly illuminated, we an onsider the slit itself likea quasi-homogeneous soure with retangular pro�le. Then, the van Cittert-Zernike theorem applies at the grating position in the far zone. As a result,the modulus of the spetral degree of oherene jgj in the far zone is equalto the modulus of the Fourier transform of the intensity pro�le at the slit,whih is a retangular pro�le. The following expression for jgj is found in thedispersion diretion:jg(�r)j = �����sin �d�r�z !����� : (220)A quantitative requirement for the oherene property of the radiation at thegrating an be given imposing that jgj varies within a �xed interval. For in-stane, one may require 0:8 < jg(�r)j < 1. This requirement may be hanged,and is somewhat subjetive. However it orresponds to a quanti�ation of thetransverse oherene properties of the radiation on the grating. In partiular,if the riterium 0:8 < jg(�r)j < 1 is hosen, the argument of the sin fun-84



tion in Eq. (220) is allowed to vary a ertain range [�X;X℄ with X ' 1:13.Moreover, the maximal value for �r is Dg os(�), i.e. the grating dimension.Putting all together we obtain the following ondition for the monohromatorsetup parameters:�dDg os(�)�z = X ' 1:13 : (221)The same alulation may be repeated with a di�erent hoie for the minimalallowed value of jg(�r)j. This would lead to a di�erent value of X.Our result is in agreement with the onlusion that one may draw onsideringthe following relation [16℄:��� =  dDg os(�)�z ! 1mNg : (222)Eq. (222) desribes how the entrane slit width limits the resolution in wave-length aording to. The seond fator on the right hand side of Eq. (222),i.e. (mNg)�1 is, again, the maximal relative resolution. This resolution anbe obtained by setting the �rst fator to unity. This yields a result in para-metrial agreement with Eq. (221). The right parametri dependene in theondition for the maximal resolution an also be obtained in another way. Ifthe radiation sent through the slit has, at the grating, a spot size equal toDg os(�), the ondition for transverse oherene is given by the spae-angleprodut:d � � = dDg os(�)2z ' �2� : (223)Again, the qualitative estimation in Eq. (223) is in parametrial agreementwith the quantitative alulation in Eq. (220).The grating works with a resolution near to the theoretial limit (mNg)�1 onlywith transversely oherent radiation. We may say that the purpose of the en-trane slit is to supply a transversely oherent radiation spot at the gratingin order to allow the monohromator to work with a ertain resolution. Thisfat must hold for any light soure, and in partiular for seond generationlight soures. The bottom line is that this monohromator setup annot be de-sribed in terms of Geometrial Optis even in the ase of a seond generationlight soure: transversely oherent radiation means that the image on the exitslit is lose to the di�ration limit. Therefore, in this ase, Geometrial Optisan only be used for approximate estimations, while a orret treatment mustinvolve the appliation of Statistial Optis tehniques.85



8 Imaging of quasi-homogeneous undulator soures: e�et of aper-ture sizeWe will now onsider, with the help of Eq. (135), the e�ets of a pupil inthe one-dimensional ase (that an be pratially realized with the help of aslit aperture and a ylindrial lens) when aberrations are not present. First,in Setion 8.1, we will onsider Gaussian quasi-homogeneous soures. Then,in Setion 8.2 we will see that the arguments for Gaussian soures an begeneralized without modifying their substane with the help of some notationalhange to treat the ase of non-Gaussian quasi-homogeneous soures as well.8.1 Quasi-homogeneous Gaussian undulator souresIn the ase for N̂x � 1 and D̂x � 1 we an treat the horizontal and the vertialdiretion separately. Then, also the funtion P and P̂ an be expressed as theprodut of fators in the horizontal and in the vertial diretion. In partiularwe may onsider the pupil funtionP (r̂)=8><>: 1 if jr̂j < â0 otherwise ; (224)where r̂ may represent either the variable x̂ or the variable ŷ. Aording tothe de�nition in Eq. (101) this gives:P̂(û) = 2âsin(âû) : (225)We an use Eq. (135) and Eq. (156) to desribe the ase when the lens is inthe far zone, that is when ondition (136) is satis�ed. From Eq. (146) we anestimate the harateristi size of the soure, that is of order qN̂ , and of theorrelation length at the soure, that is of order 1=qD̂. Aording to ondition(136), the lens is in the far zone when qN̂=ẑ1 � qD̂, in agreement with thefar zone limit of Eq. (142), whih is obtained for Â� D̂ 18 . In this limit, Eq.(135) and Eq. (156) give18Condition (136) is usually not disussed in textbooks desribing thermal soures.In fat, for perfetly inoherent thermal soures, the far zone is de�ned by ẑ � �̂o,�o being the soure transverse size, i.e. when the paraxial approximation is valid.Therefore, in this ase, the pupil is always in the far zone.86



ĜP (ẑi; �ri;�r̂i)= 4â2 exp �2imẑ1 �ri�r̂i�� Z d�u d�û exp"� ẑ21�u22N̂ # exp h�2D̂ẑ21(�û)2i�sin�â �m̂z1 (�ri +�r̂i)� �u��û���sin�â �m̂z1 (�ri ��r̂i)� �u+�û�� : (226)Aording to the far �eld limit of Eq. (142), the quantity D̂ẑ21 is the squareof the radiation spot size on the pupil, while ẑ21=N̂ is essentially the square ofthe oherene length on the pupil. Two interesting limiting ases of Eq. (226)an be obtained omparing these two harateristi sales with â2, that is thesquare of the pupil size.First, let us onsider the ase ẑ21=N̂ . â2 � D̂ẑ21. As we will demonstratelater on, in all situations when the quasi-homogeneous assumption is veri�ed,the exponential funtion in �û inside the integral in Eq. (226) behaves like aÆ-Dira distribution, and one obtainsĜP (ẑi; �ri;�r̂i)= 4â2 exp �2imẑ1 �ri�r̂i� 1Z�1 d�u exp "� ẑ21�u22N̂ #�sin�â �m̂z1 (�ri +�r̂i)� �u���sin�â �m̂z1 (�ri ��r̂i)� �u�� : (227)This orresponds to a relative intensityÎP (ẑi; �ri)= 1C 1Z�1 d�u exp"� ẑ21�u22N̂ # �����sin "â �rîdi � �u!#�����2 ; (228)where the normalization onstant C is given byC= 1Z�1 d�u exp "� ẑ21�u22N̂ # jsin (â�u)j2 : (229)Eq. (228) expresses the image as a onvolution of the geometrial image withthe slit di�ration pattern (in two dimensions this would be the Airy pattern).It is valid for values ẑ21=N̂ . â2 � D̂ẑ21 and also for ẑ21=N̂ � â2 � D̂ẑ21: thedi�erene between these two ases is that in the �rst the pupil inuene issigni�ant, while in the seond it is not. Inspetion of Eq. (228) and useof Eq. (31) yields the ratio between the size of the di�ration pattern and87



the geometrial image: �jMjqN̂ â=d̂i��1 = �âqN̂=ẑ1��1. When ẑ21=N̂ . â2suh ratio is omparable with unity, i.e. the di�ration pattern signi�antlyinuenes the image formation proess. When, ẑ21=N̂ � â2, this ratio is muhsmaller than unity. As a result, the pupil inuene is not signi�ant and theimage is given by the geometrial image. The ratio between the size of thedi�ration pattern and the geometrial image, ẑ1=âqN̂ , gives the resolutionof the image due to di�ration e�ets. It is also interesting to note that inthe limiting ase when ẑ21=N̂ � â2 � D̂ẑ21, Eq. (227) presents the asymptotibehaviorĜP (ẑi; �ri;�r̂i)= 4â2 exp �2imẑ1 �ri�r̂i� exp "�m2�r2i2N̂ #� 1Z�1 d�u sin�â �m̂z1�r̂i � �u�� sin�â �m̂z1�r̂i + �u�� :(230)The onvolution theorem yields the following expression for the spetral degreeof oherene:gP (ẑi;�r̂i)= 1D 1Z�1 dr̂0 jP (r̂0)j2 exp"�2i r̂0�r̂id̂i # ; (231)the normalization fator D being given byD = 1Z�1 dr̂0 jP (r̂0)j2 : (232)After the substitution �u �! �u0pN=ẑ1 we may rewrite Eq. (228) as a funtionof � = âm�ri=ẑ1 with the help of the only parameter p = âpN=ẑ1, that is easierto plot̂IP (�) = 1C 1Z�1 d�u0 exp "� �u022 # jsin (� � p�u)j2 ; (233)where C an expliitly be alulated as:C = r�2 1p2 n�1 + exp h�2p2io+ �p erf hp2pi : (234)88
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Fig. 18. Image intensity for a quasi-homogeneous soure, ÎP , as a funtion of� = âm�ri=ẑ1, alulated with Eq. (233), for di�erent values of the parameterp = âpN̂=ẑ1. The plot illustrates the one-dimensional image formation problem(slit aperture, ylindrial lens).The funtion erf(�) in Eq. (234) indiates the error funtion. Note that thevariable � = âm�ri=ẑ1 may also be written as � = (â=d̂i)�ri, where d̂i = ẑi � ẑ1and jMj = d̂i=ẑ1 = m�1. It is interesting to remark that the ratio d̂i=â isthe dimensionless harateristi size of the Fresnel zone, i.e. �di=(2�a). ÎP isplotted in Fig. 18 for several values of the parameter p. In Fig. 18 we also plotthe asymptoti behaviors of Îp for small values of p, i.e. Îp = sin2(�), that isthe di�ration pattern from a slit, and for large values of p, i.e. exp[�(�=p)2=2℄.On the one hand, the integral in d�u in Eq. (228) is a onvolution. On theother hand, aside for numerial fators, the Fourier transform of jP̂(û)j2 =j2âsin(âû)j2 an be given in terms of the triangular funtion tri(�), de�nedas 1919 It should be noted that � = 2�r̂. The reason why we introdued the new variable� is to keep a ertain homogeneity of notation when omparing with referene [8℄.Sine our de�nition of �r̂ di�ers for a fator 2 with respet to that in [8℄, it issomewhat onvenient to introdue � = 2�r̂.89
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Eq. (236) an be written as an analogous of Eq. (5.7-10) of [8℄, that sometimesgoes under the name of Shell's theorem. Let us de�ne the autoorrelationfuntion of the pupil as~P (�) = 1Z�1 duP �u+ �2�P � �u� �2� : (238)In Fig. 19 we plot the pro�le of the pupil funtion P , together with P̂ and theautoorrelation funtion of the pupil ~P , together with its Fourier transformF( ~P ). With the help of Eq. (238), Eq. (236) an be written asÎP (ẑi; �ri)= 1N 1Z�1 d� exp "�N̂�22ẑ21 # ~P (�) exp ��i�m̂z1�ri� ; (239)that is Eq. (5.7-10) of referene [8℄.A seond limiting ase of interest is found when â2 � ẑ21=N̂ � D̂ẑ21. Thepupil is oherently and uniformly illuminated. In this ase both the exponentialfuntions inside the integral in Eq. (226) behave like Æ-Dira funtions yieldingĜP (ẑi; �ri;�r̂i)= 4â2 exp �2imẑ1 �ri�r̂i� sin�â �m̂z1 (�ri +�r̂i)���sin�â �m̂z1 (�ri ��r̂i)�� : (240)orresponding to a relative intensityÎP (ẑi; �ri)= sin2 " âm̂z1 �ri# = 14â2 ����P̂ �m̂z1 �ri�����2 : (241)Also, using the de�nition of the spetral degree of oherene given in Eq. (129)one sees that jgj = 1, i.e. the pupil is oherently illuminated. Eq. (241) is theanalogous of Eq. (5.7-14) in [8℄.Results obtained here deal both with the ross-spetral density ĜP and therelative intensity ÎP in the presene of the pupil. We lassi�ed these resultsomparing the square of the extent of the pupil â2 with the square of theradiation spot size D̂ẑ21 and of the oherene length ẑ21=N̂ at the pupil loation.Let us now onsider the intensity ÎP only. In the ase of quasi-homogeneoussoures, there is a more general method taken from the theory of linear systemsto aount for the pupil presene. This method an be extended to aountfor aberrations as well, and allows a more ompat treatment of the pupil91



e�ets beause it does not depend on how the extent of the pupil sales withrespet to the oherene length and to the radiation spot size. It is basedon the onept of line spread funtion. A linear time-invariant system in twodimensions an be haraterized by the knowledge of the point spread funtion(or impulse response) h(x; y). Given a ertain input f(x1; y1), the output atany point (x; y) is given by the onvolution of the point-spread funtion h andthe input f . The point spread funtion h(x; y) is the response to a Æ-Dirasignal at position (0; 0), i.e. Æ(x1; y1). The line spread l(x) is, instead, theresponse obtained from a line input Æ(x1), whih is independent of y1, and anbe alulated by integrating the point spread funtion h(x; y) with respet tothe y-variable (see, for instane, [17℄ Se 6.2.).In the quasi-homogeneous ase, the intensity ÎP an be written as a onvo-lution between a suitable line spread funtion l 20 and the intensity Î whihdoes not aount for the pupil presene, that isÎP (ẑi; �ri) = [Î � l℄(ẑi; �ri) (242)The line spread funtion l ats as the passport of the imaging system, anddepends on the properties of the lens only. In this ase we are only onsideringthe e�et of a �nite pupil dimension, i.e. we are aounting for di�ratione�ets from the pupil. More in general, l may depend on lens apodization oraberrations too.In the ase under study here, the line spread funtion of the system is givenby l(�ri) = sin2  â̂di �ri! : (243)For instane, it is straightforward to see that substitution of the (magni�ed)input signal Î = exp[��u2=(2jMj2N̂)℄ with the input signal Î = Æ(�u=jMj), thatis a line input, in Eq. (228) gives bak Eq. (243).It should be emphasized that the resolution due to di�ration e�ets is of orderẑ1=(âqN̂). In all ases when this resolution is better than (i.e. ẑ1=(âqN̂) is20Here we are treating a two-dimensional system, but we are onsidering the asewhen we have separability properties for both the soure and the pupil. For thesoure this means that N̂x � 1 and D̂x � 1, while for the pupil it means that thepupil is retangular. This ase is pratially realized with the help of slit aperturesand ylindrial optis. The line spread funtion l is, then, the proper tool to onsider.If one wants to onsider the situation when no separability property for the pupilis present, one should take advantage of an approah based on the point spreadfuntion. 92



smaller than) the resolution of the ideal image (whih does not aount forthe pupil presene) the pupil does not play any role and, with the aurayof the alulation of the ideal intensity (see Setion 15), the l funtion in Eq.(243) annot be distinguished from a Æ-Dira. In our study ase, the idealintensity Î = exp[�ẑ21�u2=(2N̂ )℄ is alulated with an auray whih is muhworse than the quasi-homogenous auray (see Setion 15 for details) andis of order max(1=qD̂; 1=qN̂). In general, it is important to ompare theresolution due to di�ration e�ets with the auray of the alulation ofthe ideal intensity. For example, on the basis of suh omparison, one mayonlude that the ase for ẑ21=N̂ � â2 . D̂ẑ21 an be alulated assuming thatthe line spread funtion in Eq. (243) is a Æ-Dira. In fat ẑ1=(âqN̂) � 1=qN̂D̂sine â2 . D̂ẑ21 and therefore ẑ1=(âqN̂ ) � max(1=qD̂; 1=qN̂ ). This kind ofreasoning an be used to treat any quasi-homogeneous ase, and the l funtionan be modi�ed to inlude aberrations and apodization e�ets as well. In themost general ase, aounting for the e�ets of the pupil in one dimension,Eq. (135) yields the relative intensityÎP (ẑi; �ri) = 1S Z d�u d�û exp "�2iẑ1m �u ��û# Ĝ ẑi; ẑ1m�u; ẑ1m�û!�P̂ �m̂z1 �ri � �u��û� P̂� �m̂z1 �ri � �u+�û� ; (244)where the normalization fator S is given byS = Z d�u d�û exp "�2iẑ1m �u ��û# Ĝ ẑi; ẑ1m�u; ẑ1m�û!�P̂ [��u��û℄ P̂� [��u+�û℄ : (245)In the quasi-homogeneous ase (inluding ases when the soure is not Gaus-sian, see Setion 6), if the lens is in the far �eld, one an writeĜ ẑi; ẑ1m�u; ẑ1m�û! = Î  ẑi; ẑ1m�u! g  ẑi; ẑ1m�û! exp "2iẑ1m �u ��û# : (246)Further on, within the auray of the quasi-homogeneous approximation, thespetral degree of oherene g behaves like a Dira Æ-funtion in the alulationof both the intensity and the ross-spetral density. In fat, the auray of theinoherent impulse response jP̂j2 is also the auray of the quasi-homogenousassumption, and this is the auray with whih we an substitute g with aDira Æ-funtion on the image plane. As a result, in analogy with Eq. (227)one has 93



ĜP (ẑi; �ri;�r̂i)= 1Z�1 d�u Î  ẑi; ẑ1m�u!�P̂ �m̂z1 (�ri +�r̂i)� �u� P̂� �m̂z1 (�ri ��r̂i)� �u� ; (247)while the relative intensity an be written asÎP (ẑi; �ri) = 1D 1Z�1 d�u ����P̂ �m̂z1 �ri � �u�����2 Î  ẑi; ẑ1m�u! ; (248)D being de�ned in Eq. (232). The line input response is obtained by settingÎ(ẑi; ẑ1�u=m) to a Dira Æ-funtion, thus obtaining the line spread funtion:l(�ri) = ����P̂ �m̂z1 �ri�����2 = F�1( ~P ) : (249)The line spread funtion is therefore the inverse Fourier transform of the au-toorrelation funtion of the pupil. The autoorrelation funtion of the pupil,i.e. the Fourier transform of the line spread funtion, is also known as the Op-tial Transfer Funtion (OTF). Other relevant quantities introdued in linearsystem theory are the phase of the Optial Transfer Funtion and its modulus,whih is known as the Modulation Transfer Funtion (MTF) [17℄.Eq. (248) and, onsequently, the line spread funtion approah, onstitutesa universal desription of the intensity in all quasi-homogeneous ases. Inliterature the line spread funtion is used to desribe perfetly inoherentsoures only. Note that, in general, radiation produed by an eletron beam inan undulator is similar to an inoherent sum of many independent laser-likebeams. Yet, it annot be onsidered as an inoherent sum of point souresbeause, as we have seen in Setion 3, a single eletron annot be onsideredas a point-like radiation soure. Radiation produed by a single eletron issimilar to a laser beam. If no inuene of fousing is present in the undulator,this laser-like beam has a waist loated in the enter of the undulator. Atthe waist the radiation wavefront is plane and the radiation spot size is muhlarger than the wavelength. We extended the use of the line spread funtionapproah to the realm of quasi-homogeneous soures.In the ase of third generation light soures the line spread funtion methodan almost always be applied in the horizontal diretion. However, it fails inthe vertial diretion, where third generation light soures are seldom quasi-homogeneous. If the soure is not quasi-homogeneous, the ross-spetral den-sity annot be fatorized in the produt of the intensity and of the spetraldegree of oherene, or the oherene length is not short (ompared with thesize of the soure). As a result, the inoherent line spread funtion l annot94



be used to desribe the system. The funtion P̂ is known as the oherentline spread funtion and must be used in its plae. In fat, when the sourestarts to exhibit a high degree of transverse oherene (i.e. in the non quasi-homogeneous ase), the oherent line spread funtion, P̂ ats on the �eld atthe image plane analogously to the way the inoherent line spread funtionats on the intensity at the image plane. To see this, it is suÆient to inspetEq. (100).It is interesting to ompare this viewpoint with what an be found in literature.For instane, in [6℄, where a ondenser system is disussed, one may read: "Theintrinsi divergene of the extreme ultraviolet (EUV) undulator onsideredhere is �en = 80�rad, whih is larger than the beamline aeptane �aept of48�rad. Therefore it is evident that the inoherent soure approximation holdshere and the term inoherene soure is used aordingly in this paper". Inthe following Setions of their work, authors of [6℄ use a point-spread funtionapproah to aount for aberration e�ets: in their paper, the intensity atthe soure is used, instead of the ross-spetral density, in order to evaluateboth the intensity and the degree of oherene at the image plane. Suh anapproah is justi�ed in the passage above, where they state that the soure isinoherent.The statement in [6℄ about the inoherene of the soure is a misoneption.Aording to suh statement, perfetly oherent undulator radiation produedby an eletron beam with zero emittane should exhibit inoherent propertieswhen the radiation divergene is larger than the aeptane of the optialsystem. In ontrast with the assertion made in [6℄, the oherene propertiesof the soure are independent of the beamline elements whih follow. In orderto disuss about the oherene properties of the soure one has to refer to theradiation �eld at the virtual plane loation only. In partiular, the fat thatthe soure is oherent (or not) does not depend on how the beam aeptaneangle sales with the intrinsi (single partile) divergene of the undulatorradiation. Our onlusion is that the only parameters whih desribe wethera soure is quasi-homogeneous or not are (in the vertial diretion) N̂y andD̂y. If the soure is quasi-homogeneous, a point-spread funtion approah anbe used. If not, the more general results desribed in Setion 14.1 should beonsidered. In partiular, in the ase of [6℄, the vertial rms dimension of thesoure is �y = 16 �m and the radiation wavelength is � = 13:4 nm, while theundulator (see [7℄) is omposed of 55 periods, eah one 8 m long. This meansLw = 4:4 m. Moreover, the vertial emittane at ALS is �y ' 0:1nm, whilethe vertial beta funtion for beamline 12 is �y = 4:2 m ' Lw. As a resultboth N̂y � 0:1 and D̂y � 0:1 and the soure is non-homogeneous. We onludethat, in this ase, approximations like Eq. (247) or Eq. (248) annot be used.Eq. (376) in Setion 14 should be onsidered instead.95



As a �nal remark we should stress that, even in ases when the virtual soureis quasi-homogeneous, one should verify the assumption that the lens is inthe far zone, before applying a point spread funtion formalism. In ontrastto this, note that in the usual framework of Statistial Optis, the radiantintensity from thermal soures is distributed over a solid angle of order 2�,and optial elements an always be onsidered in the far zone.8.2 Quasi-homogeneous non-Gaussian undulator souresIn the present Setion 8.2 we will extend results obtained in Setion 6. Resultsobtained in the previous Setion 8.1 apply for a quasi-homogeneous Gaussianundulator soure only. In partiular, under the assumptions N̂x � 1 andD̂x � 1 the ross-spetral density an be fatorized in a horizontal and in avertial ontribution, and results in Setion 8.1 an be applied in the horizontaldiretion. Note that, if N̂y � 1 and D̂y � 1, one has, automatially, D̂x � 1and D̂x � 1 and the same results in Setion 8.1 an be separately appliedin both the horizontal and the vertial diretions. Here, with the help of Eq.(135), we will inlude the e�ets of a pupil in the one-dimensional ase whenthe soure is still quasi-homogeneous, but non-Gaussian. In partiular, wewill still assume N̂x � 1 and D̂x � 1 and onentrate our attention onthe vertial diretion. First we will study the ase when N̂y � 1 and D̂yis arbitrary and, then, the ase when N̂y is arbitrary and D̂y � 1. We willsee that the reasoning applied in the ase of quasi-homogeneous Gaussiansoures also holds in the ase for quasi-homogeneous non-Gaussian souresas it relies on the separability of the ross-spetral density only. As a resultwe will present pratial examples of how, with minor substitutions, we anextend our analysis of the pupil e�ets to the ase of non-Gaussian soures.8.2.1 Soure with non-Gaussian angular distribution in the vertial diretionLet us start onsidering the ase when D̂y is arbitrary and N̂y � 1. The pupilfuntion and P̂ are given by Eq. (224) and Eq. (225). The r-diretion shouldbe now substituted with the y-diretion.We an use Eq. (135) and an asymptoti expression of Eq. (168) to desribethe ase when the lens is in the far zone, that is when ondition (136) issatis�ed. From Eq. (162) we an estimate the typial size of the soure thatis of order qN̂y, and of the orrelation length at the soure, that is of or-der min[1=qD̂y; 1℄. Aording to Eq. (136), the lens is in the far zone whenqN̂y=ẑ1 � max[qD̂y ; 1℄. In this limit, Eq. (135) and Eq. (168) give96



ĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi�� Z d�u d�û exp "� ẑ21�u22N̂y # exp h�2D̂y ẑ21(�û)2i (ẑ1�û)�sin�â �m̂z1 (�yi +�ŷi)� �u��û���sin�â �m̂z1 (�yi ��ŷi)� �u+�û�� : (250)From Eq. (159), one sees that ẑ21 max[D̂y; 1℄ is of the order of the square of theradiation spot size on the pupil, while ẑ21=N̂y is of the order of the square ofthe oherene length on the pupil. Note that the limiting expression obtainedfrom Eq. (250) for D̂y � 1 is Eq. (226). As before, two interesting limitingases of Eq. (226) an be obtained omparing these two sales with â2, thatis the square of the pupil size.First, let us onsider the ase ẑ21=N̂y . â2 � ẑ21 max[1; D̂y℄. As we have alreadydisussed, in all situations when the quasi-homogeneous assumption is veri�ed,the exponential funtion in �û inside the integral in Eq. (250) behaves like aÆ-Dira distribution. As in Eq. (227) one obtainsĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi� 1Z�1 d�u exp "� ẑ21�u22N̂ #�sin�â �m̂z1 (�yi +�ŷi)� �u���sin�â �m̂z1 (�yi ��ŷi)� �u�� : (251)Setting �ŷi = 0 one yields the intensityÎP (ẑi; �yi)= 1C 1Z�1 d�u exp "� ẑ21�u22N̂ # ����sin �â�m̂z1 �yi � �u������2 ; (252)where the normalization onstant C has already been de�ned in Eq. (229). Theresult in Eq. (252) is equivalent to the intensity already given in Eq. (228). Itan also be written as in Eq. (236), that isÎP (ẑi; �yi)= 1N 1Z�1 d� exp "�N̂�22ẑ21 # tri� �2â� exp ��i�m̂z1 �yi� ; (253)where N is de�ned in Eq. (237). After introdution of ~P as in Eq. (238), Eq.(253) an be rewritten as Eq. (239), 97



ÎP (ẑi; �yi)= 1N 1Z�1 d� exp "�N̂�22ẑ21 # ~P (�) exp ��i�m̂z1 �yi� : (254)In this ase, the expression for the intensity is the same as in the ase D̂y � 1.Also note that the results obtained for the ase ẑ21=N̂y . â2 � ẑ21 max[1; D̂y℄are valid in the limit ẑ21=N̂y � â2 � ẑ21 max[1; D̂y℄ as well. In this ase Eq.(252) an be simpli�ed toÎP (ẑi; �yi)= exp "�m2�y2i2N̂ # : (255)The seond limiting ase that we an mention here for omparison with whathas been done in the Gaussian ase is when â2 � ẑ21=N̂ � max[D̂y; 1℄ẑ21 thepupil is oherently and uniformly illuminated. In this ase one reovers thesame results in Eq. (240) and Eq. (241).To sum up, we obtain, in all situations, the same intensity as in the aseD̂y � 1 .8.2.2 Soure with non-Gaussian intensity distribution in the vertial dire-tionLet us now study the ase when N̂y is arbitrary and D̂y � 1.We an use Eq. (135) and an asymptoti expression of Eq. (192) to desribethe ase when the lens is in the far zone, that is when ondition (136) issatis�ed. From Eq. (188) we an estimate the typial size of the soure thatis of order max[qN̂y; 1℄, and of the orrelation length at the soure, that isof order 1=qD̂y. Aording to Eq. (136), the lens is in the far zone whenmax[qN̂y; 1℄=ẑ1 � qD̂y. In this limit, Eq. (135) and Eq. (192) giveĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi� Z d�u d�û� 1Z�1 d�̂y exp264���̂y + ẑ1�u�22N̂y 375 B̂(�̂y) exp h�2D̂y ẑ21(�û)2i�sin�â �m̂z1 (�yi +�ŷi)� �u��û���sin�â �m̂z1 (�yi ��ŷi)� �u+�û�� : (256)Aording to Eq. (171), the quantity ẑ21D̂y is of the order of the square of the98



radiation spot size on the pupil, while ẑ21=max[N̂y; 1℄ is of the order of thesquare of the oherene length on the pupil. Note that the limiting expressionobtained from Eq. (256) for D̂y � 1 is Eq. (226). We will study again twolimiting ases of Eq. (256), whih an be obtained omparing these two saleswith â2, that is the square of the pupil size.First, let us onsider the ase ẑ21=max[N̂y; 1℄ . â2 � ẑ21D̂. As before, beauseof the quasi-homogeneous assumption is veri�ed, the exponential funtion in�û inside the integral in Eq. (256) behaves like a Æ-Dira distribution. OneobtainsĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi�� 1Z�1 d�u 1Z�1 d�̂y exp264���̂y + ẑ1�u�22N̂y 375 B̂(�̂y)�sin�â �m̂z1 (�yi +�ŷi)� �u���sin�â �m̂z1 (�yi ��ŷi)� �u�� : (257)This orresponds to the intensityÎP (ẑi; �yi)= 1~C 1Z�1 d�u 1Z�1 d�̂y exp264���̂y + ẑ1�u�22N̂y 375 B̂(�̂y)� ����sin �â�m̂z1 �yi � �u������2 ; (258)where~C= 1Z�1 d�u 1Z�1 d�̂y exp264���̂y + ẑ1�u�22N̂y 375 B̂(�̂y) jsin (â�u)j2 : (259)In analogy with Eq. (239), Eq. (258) an also be written as:ÎP (ẑi; �yi)= 1~N 1Z�1 d�(exp"�N̂y�22ẑ21 # � � �2ẑ1�) ~P (�) exp ��i�m̂z1 �yi� ;(260)where the normalization fator ~N is de�ned as99



~N = 1Z�1 d�(exp "�N̂y�22ẑ21 #� � �2ẑ1�) ~P (�) : (261)Note that results obtained in the ase ẑ21=max[N̂y; 1℄ . â2 � ẑ21D̂ are alsovalid in the asymptote for ẑ21=max[N̂y; 1℄� â2 � ẑ21D̂. In this ase, Eq. (258)is simpli�ed toÎP (ẑi; �yi)= 1~S 1Z�1 d�̂y exp264���̂y +m�yi�22N̂y 375 B̂(�̂y) ; (262)where~S = 1Z�1 d�̂y exp24� �̂2y2N̂y 35 B̂(�̂y) : (263)The seond limiting ase that we will mention here for omparison with whathas been done in the Gaussian ase is for â2 � ẑ21=max(N̂y; 1) � D̂y ẑ21 thepupil is oherently and uniformly illuminated. In this ase one reover thesame results in Eq. (240) and Eq. (241).However, in general, the expression for the intensity is di�erent from that forN̂y � 1 .9 Aberrations and imaging of quasi-homogeneous souresUp to now we have disussed ases when no aberrations are present. Althoughthere are widespread treatments of Aberration Theory in literature, we will in-trodue our own here, so that this work is self-onsistent. In partiular, we willfous on the one-dimensional ase, whih has not been treated widely in booksand monographies, aside for some exeption (see [18℄). In the present Setion9 we will assume that the virtual undulator soure is quasi-homogeneous. Al-though we will begin introduing the Optial Transfer Funtion (OTF) forthe system, we will mainly be onerned with the line spread funtion of thesystem. In addition to that we will disuss the ase of severe aberrations,presenting new analytial results for this asymptote and omparison with nu-merial alulations. Finally, we will intensively disuss defousing aberrationsand present general analytial results for this ase too. Our partiular onsider-ation of the defousing ase is justi�ed by the fat that this is a privileged kindof aberration in the framework of Fourier Optis. In fat it shows a quadrati100
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Fig. 24. The transfer funtion in the presene of oma aberration.sity at the image plane without the pupil inuene allows one to reonstrutthe atual image by means of a onvolution operation. In the present ase ofinterest, the line spread funtion must be alulated aounting for the pres-ene of aberrations. With in mind the purpose of alulating the line spreadfuntion in presene of aberrations, and with the only assumption of a quasi-homogeneous soure, we start onsidering Eq. (137). The quasi-homogeneousassumption allows to represent the ross-spetral density at the virtual soureplane as Ĝ(0;�ẑ1�u;�z1�û) = Î(0;�ẑ1�u)g(0;�ẑ1�û). By de�nition of quasi-homogeneity, and with the auray of the quasi-homogeneous assumption(max[1; N̂y℄ �max[1; D̂y℄)�1=2, the spetral degree of oherene g plays the roleof a Dira Æ-funtion in the alulation of the intensity. Suh alulation beginsfrom Eq. (137). Aounting for the pupil inuene, the following expressionfor the intensity at the image plane is therefore found:ÎP (ẑi; �ri) = 1D 1Z�1 d�u ����P̂a �m̂z1 �ri � �u�����2 Î(0;�ẑ1�u) ; (266)where we reall that D is de�ned in Eq. (232). Note that Eq. (266) is obtainedfrom Eq. (137) under the only assumption of quasi-homogeneity. Also, when104
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Fig. 25. The transfer funtion in the presene of both spherial and defousingaberrations.jP̂aj2(�) �! Æ(�) we obtain bak an ideal lens and ÎP (ẑi; �ri) = Î(0;�m�ri).By de�nition, the line spread funtion an be obtained by letting Î(0; r̂) �!Æ(r̂) in Eq. (266). As a result we havel(�ri) = ����P̂a�m̂z1 �ri�����2 = 1Z�1 d� ~Pa(�) exp"�i �̂di �ri# : (267)The proof of the last equality in Eq. (267) is based on the autoorrelationtheorem, whih states that if the (two-dimensional) Fourier transform of afuntion w(x; y) with respet to variables �x and �y is indiated by �w(�x; �y),then the Fourier transform of the two-dimensional autoorrelation funtion ofw(x; y) with respet to the same variables �x and �y is given by j �w(�x; �y)j2.In formulas, after de�nition of the autoorrelation funtionA[w℄(x; y) = 1Z�1 d� 1Z�1 d�w(� + x; � + y)w�(�; �) ; (268)105



whih is equivalent toA[w℄(x; y) = 1Z�1 d� 1Z�1 d�w(� + x=2; � + y=2)w�(� � x=2; � � y=2) ; (269)the autoorrelation theorem states that1Z�1 dx 1Z�1 dy exp [i(�xx+ �yy)℄A[w℄(x; y) = j �w(�x; �y)j2 : (270)Eq. (267) ould have been written down immediately just realling that the linespread funtion is the Fourier transform of the pupil autoorrelation funtion.It is onvenient to make the hange of variable � �! �xâ. In fat, beauseof the de�nition of bn in Eq. (265), only the ratio �r̂=â, or �=â = 2�r̂=â isimportant. Aside for an unimportant fator â, the line spread funtion beomesl(�ri) = 1Z�1 d�x ~Pa(â�x) exp"�i â̂di�x�ri# : (271)The autoorrelation funtion of the pupil ~Pa, whih is the Fourier transformof l, is known under the name of Optial Transfer Funtion (OTF) of the sys-tem. The Optial Transfer Funtion and the line spread funtion are obviouslyequivalent and their knowledge solves the problem of aounting for aberra-tions. The Optial Transfer Funtion an be written expliitly modifying Eq.(238) to inlude a phase error in the expression for the pupil funtion, that is~Pa(â�x)= Z d�x P �â��x+ �x2 ��P �â��x� �x2 ��� exp�i� �â��x+ �x2 ��� i� �â��x� �x2 ��� : (272)Aounting for the de�nition of the phase error � in Eq. (265) one obtainsfrom Eq. (272) the following expression for the Optial Transfer Funtion:~Pa(â�x)= 1Z�1 d�x P �â��x+ �x2 ��P �â��x� �x2 ��� exp(ibn "��x+ �x2 �n � ��x� �x2 �n#) : (273)106



Here P is the pupil funtion with no aberrations or apodizations and only anaberration term of order n has been onsidered. If �x is outside the interval[�1; 1℄, at least one of the P funtions in the integral gives zero value. Asa result we may substitute the integration limits in Eq. (273) to obtain thefollowing expression for the Optial Transfer Funtion:~Pa(â�x)= 1Z�1 d�x P �â��x+ �x2 ��P �â��x� �x2 ��� exp(ibn "��x+ �x2 �n � ��x� �x2 �n#) : (274)With the help of Eq. (265) it is possible to diretly alulate how di�erentaberrations modify the expression for the autoorrelation funtion and itsFourier transform. These omputations an be arried out by means of nu-merial tehniques for any value of n and bn, in analogy with what has beendone in [18℄.For ompleteness we will now alulate the Optial Transfer Funtion in sev-eral situations, whih may also be found in [18℄. In addition, we will alsopresent the line spread funtion typial of these situation, whih annot beeasily found in textbooks. Other kind of aberrations an be treated in thesame fashion, and pupils with di�erent shape may be seleted. We are inter-ested in the ase when the inuene of the phase error is omparable with theinuene of di�ration e�ets on the pupil, i.e. when jbnj � 1. Here we willonsider several ases for defousing (n = 2), oma (n = 3), spherial aber-rations (n = 4) and a ombination of defousing and spherial aberrations aswell. This last situation is per se interesting, beause it illustrates how it ispossible to improve the quality of a lens with spherial aberration by furtherintroduing a defousing aberration (in the ase under study, i.e. for jbnj � 1).In Fig. 20, Fig. 21 and Fig. 22 we plot the line spread funtions desribingthese aberration ases. As an aside it is worth to antiipate here that Fig. 20is stritly related with the resolution of a pinhole amera setup. This will bedemonstrated in the next Setion 10. As has been already said, the knowledgeof the line spread funtion is ompletely equivalent to the knowledge of thetransfer funtion (OTF) of the system. In Fig. 23, Fig. 24, and Fig. 25 we plotthe transfer funtions relative to the same ases treated in Fig. 20, Fig. 21 andFig. 22.In losing, it is interesting to deal with the limit when ẑ21=N̂ � â2 � D̂ẑ21.In this ase the oherene length at the pupil is muh smaller than the har-ateristi pupil size, or, equivalently, Pa(r̂1)P �a (r̂2) ' jPa(r̂1)j2 ' jPa(r̂2)j2, aspresented in Eq. (7.2-15b) of [8℄. In order to retain this last simpli�ation whenaberrations are present, we must require that the phase of the pupil funtionPa (that is now a omplex objet) is not appreiably di�erent when r̂1 and107



r̂2 are separated by a distane of order of the oherene length or smaller.This is equivalent to the requirement that the harateristi sale of the lensimperfetions is muh larger than the oherene length. Mathematially, thismeans that jbnj . 1. Under this assumption, aberrations annot a�et theross-spetral density in the limit ẑ21=N̂ � â2 � D̂ẑ21. This fat is known froma long time and, as reported in [8℄, it was �rst disovered by Zernike [19℄.The same limiting ase an be presented in the line spread funtion formal-ism. One should reall that the resolution due to di�ration e�ets is of orderẑ1=(âqN̂), as has already been seen in the previous Setion 8. This meansthat in the limit ẑ21=N̂ � â2 � D̂ẑ21 it makes sense to aount for di�ratione�ets from the pupil, beause in this ase the resolution due to di�ratione�ets is worse than that related with the quasi-homogeneous approximation(ẑ1=(âqN̂) � 1=qN̂ D̂). However, one may hoose to worsen the resolutionof the alulations from 1=qN̂D̂ to the resolution due to di�ration e�ets,ẑ1=(âqN̂) � 1. This is equivalent to neglet di�ration e�ets. In this ase,sine jbnj . 1, the autoorrelation funtion of the pupil an be substitutedwith unity or, equivalently, the line spread funtion l plays the role of a DiraÆ-funtion in the alulation of the intensity. Therefore, aberrations annot af-fet the intensity distribution at the image plane. Moreover, the expression forthe spetral degree of oherene Eq. (231), remains valid for jbnj . 1 beause,as already disussed, Pa(r̂1)P �a (r̂2) ' jPa(r̂1)j2 ' jPa(r̂2)j2. One onludes thatin this limit, and with resolution ẑ1=(âqN̂)� 1, aberrations annot a�et theoherene properties on the image plane.9.2 Severe aberrationsIt is now interesting to disuss an analytial treatment valid in the ase forjbnj � 1, whih exploits the simpli�ations arising from the large parameterjbnj. Under this onstraint, aberrations will be onsidered severe.9.2.1 Physial Optis predition of the line spread funtionUnder the approximation jbnj � 1, it is possible to present an analytial al-ulation for the line spread funtion l whih haraterizes the imaging systemin the ase of quasi-homogeneous soures. Then, one the line spread funtionis known, one obtains the intensity at the image plane by onvolving the linespread funtion and the intensity from an ideal system (i.e. without aountingfor the pupil inuene).Let us now fous on that term in the phase fator of Eq. (274) whih is linearin �x, i.e. on nbn�x�xn�1. We will assume that the integrand ontributes to108



the integral for all values of �x inside the interval [�1; 1℄, otherwise the au-toorrelation funtion would be suppressed, as the e�etive integration rangewould be smaller than [�1; 1℄. Then, a typial sale of the autoorrelationfuntion is obtained in terms of �x by imposing njbnj�x�xn�1 � 1. In fat,as njbnj�x�xn�1 > 1 the integrand starts to exhibit fast osillatory behavior,thus suppressing the integral. Thus, the harateristi sale �xtyp � 1=(njbnj)is found. Sine we assumed jbnj � 1, we an state that, with auray 1=jbnj,the funtions P inside the integrand an be substituted with unity and thenonlinear phase fators in �xk with k = 2; 3::: an be negleted, at leastfor reasonable orders of n, as they would give rise to typial sales of order1=jbnj1=k � 1=jbnj. As a result we obtain the following major simpli�ation:~Pa(â�x)= 1Z�1 d�x exp hinbn�x�xn�1i : (275)Eq. (275) an be integrated analytially for all values of n (therefore inludingdefousing, oma, spherial or higher order aberrations). After de�nition ofT (n; bn;�x)= 2(n� 1) [�inbnx℄ 1n�1� �(n� 1)��0; nn� 1�� �� 1n� 1 ;�inbn�x�� ; (276)�(s; z) being the inomplete Euler gamma funtion�(s; z) = 1Zz dt ts�1 exp[�t℄ ; (277)we have the following result:~Pa(â�x) = Re [T (n; bn;�x)℄ + �(n) � Im [T (n; bn;�x)℄ ; (278)where �(n) is the parity of n, i.e. �(n) = 0 if n is even and �(n) = 1 if n isodd. Eq. (278) is valid for any value of n > 1.It is interesting to ompare the shape of the autoorrelation funtion obtainedin the limiting ase jbnj � 1 with that obtained with numerial alulationswhih do not exploit the simpli�ation based on the large value of the pa-rameter jbnj. They rely, instead, on the exat formula for the autoorrelationfuntion, Eq. (274) . This gives a visual idea of the auray of the asymptoti.Fixing bn = 9� we plot the autoorrelation funtion for defousing aberrations,with n = 2, in Fig. 26 and Fig. 27. For oma aberrations, with n = 3, we plot109



the real part of the autoorrelation funtion in Fig. 28 and Fig. 29, while theimaginary part is plotted in Fig. 30 and Fig. 31. The funtion T should betrunated as �x > 2.Expliit substitution of Eq. (275) in Eq. (271) givesl(�ri) = 1Z�1 d�x 1Z�1 d�x exp hinbn�x�xn�1i exp "�i â̂di�x�ri# : (279)Finally, exhange of the integration order and alulation of the integral ind�x yields the following expression for the line spread funtion, provided thatjbnj � 1:l(�ri) = 1Z�1 d�x Æ  nbn�xn�1 � â̂di �ri! : (280)Eq. (280) may be expliitly evaluated with the help of the new integrationvariable y = nbn�xn�1. Care must be taken in separating the ases when n iseven and when n is odd.When n is even we obtainl(�ri) = 12(n� 1) nbnZ�nbn dy Æ  y � â̂di �ri! abs(y)nbn !�n�2n�1= 12(n� 1)ret â�ri2d̂inbn! �  â abs(�ri)d̂inbn !�n�2n�1 : (281)Here the funtion ret(x) is de�ned, as before, following [8℄, and is equal tounity for jxj 6 1=2 and zero otherwise. When n is odd we havel(�ri) = 1n� 1 nbnZ0 dy Æ y � â̂di �ri!� ynbn��n�2n�1= 1n� 1ret â�rid̂inbn � 12! �  â�rid̂inbn!�n�2n�1 : (282)Introdution of the new variable �r00 = â�ri=(d̂inbn) allows to write Eq. (281)and Eq. (282) in a more ompat way,l(�r00)= 12(n � 1)ret �r002 ! � (abs(�r00))�n�2n�1 (283)110



when n is even, andl(�r00)= 1n� 1ret��r00 � 12� � (�r00)�n�2n�1 (284)when n is odd. Note that we have normalized Eq. (283) and Eq. (284) in suha way that integration of l in d�r00 over the real �eld gives unity.As we will see later on, Eq. (283) and Eq. (284) an be found with the help ofGeometrial Optis alone. We will refer to suh derivation as the GeometrialOptis predition of the line spread funtion. We plotted Eq. (283) or Eq. (284)as a funtion of �r00 for di�erent aberrations. In Fig. 32 we plotted the ase ofdefousing aberration , in Fig. 33 the ase of oma and in Fig. 34 the aseof spherial aberrations. Also, in these �gures, omparison with numerialalulations is shown for the severe aberration ases b2 = 9�, b3 = 9� andb4 = 9�. Note that Eq. (283) is symmetri in �r00 (when n is even l is symmetri),while Eq. (284) is not (when n is odd l is not symmetri). This is onsistentwith the fat that the Optial transfer funtion is real in the ase n is even,while it has a non-zero imaginary part in the ase n is odd (see, for instane,Fig. 23, Fig. 24 and Fig. 25 and, later on, Fig. 26, Fig. 28 and Fig. 30). Thesame behavior is also found in Fig. 20, Fig. 21 and Fig. 22. Furthermore itshould be noted that the line spread funtions in Fig. 33 and Fig. 34 are notonvergent for values of �r00 near zero. However, the meaning of the line spreadfuntion is that of the imaged intensity from a line input, but a line input isnot physial, and must be represented in terms of a generalized funtion, aÆ-Dira funtion. It is not surprising that suh an objet may lead to a singularresult.9.2.2 Physial Optis and Geometrial OptisIn the previous Setion 9.2.1 we presented a alulation of the line spreadfuntion l for the ase jbnj � 1 based on Physial Optis. This gave us Eq.(280) for the line spread funtion or, equivalently, Eq. (281) and Eq. (282), thatare an expliit evaluation of Eq. (280) in the ase n is even or odd. We haveseen that the analytial treatment in Setion 9.2.1 follows mathematially froma major simpli�ation of Eq. (274), arising from the large parameter jbnj � 1.Physially, this ondition means that e�ets of di�ration from the pupil anbe negleted. Consider the expression for the pupil autoorrelation funtion,Eq. (272). On the one hand, when �x � 1=bn the phase term due to aberratione�ets in Eq. (272) beomes omparable to unity, thus leading to osillatorybehavior of the integrand. On the other hand, the pupil �nite aperture limitsthe integration in Eq. (272) for �x � 1. Therefore, jbnj � 1 di�ration e�etsan be negleted, while they start to beome important when jbnj . 1. Itfollows that it must be possible to obtain results in Setion 9.2.1, whih have111
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Fig. 26. The transfer funtion in the presene of defousing aberration (n = 2,b2 = 9�). Numerial tehniques have been used to alulate the exat autoorrela-tion funtion that is ompared to the analytial evaluation of the autoorrelationfuntion in the severe aberration asymptote.been derived with the help of physial Optis, with the help of GeometrialOptis only. In the next Setion 9.2.3 we disuss how this an be done.Before doing that it is worth to disuss the relationship between Geometrialand Physial Optis, whih may otherwise be misleading. We should makelear that when we disuss about Geometrial or Physial Optis we are talkingabout possible ways of alulating the line spread funtion of the system l.In Setion 8 we have introdued the onept of line spread funtion l andwe have demonstrated that, under the assumption that the virtual soure isquasi-homogeneous, l onstitutes a sort of passport for a given lens. It relatesthe intensity from any quasi-homogeneous soure imaged with a perfet lensand the intensity obtained by using a partiular non-ideal lens. The intensityfrom a spei� optial system an be reovered as a onvolution of the intensityobtained in the ase of an ideal optial system and the line spread funtion.The intensity from an ideal system at the image plane is, by de�nition, theintensity at the virtual soure. Therefore, when the quasi-homogeneous ap-proximation is appliable, it is always possible to break the imaging problem112
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Fig. 27. An enlarged version of Fig. 26. Numerial tehniques have been usedto alulate the exat autoorrelation funtion that is ompared to the analytialevaluation of the autoorrelation funtion in the severe aberration asymptote.into two separate problems. First, speify the intensity distribution of thesoure. Seond, speify the optial system through the l funtion.When di�ration e�ets are negligible with respet to aberration e�ets, i.e.when jbnj � 1, the line spread funtion of the lens an be alulated by bothPhysial Optis onsiderations (as in Setion 9.2.1) and Geometrial Optisonsiderations, as in the next Setion 9.2.3. In this ase, a �nite aperture sizedoes not inuene the alulation of the line spread funtion. It is responsiblefor the quantity of the total energy transmitted only. One the soure hara-teristis are spei�ed, one may use a ray-traing ode to get the image intensityfrom a non-ideal system or, equivalently, one may alulate the l funtion andonvolve with a saled version of the intensity on the virtual soure. Whendi�ration e�ets are not negligible anymore, l an be evaluated with the helpof Physial Optis onsiderations only. In this ase, use of ray-traing odesto solve the imaging problem makes no sense. Yet, the quasi-homogeneousapproximation allows one to use a line spread funtion approah. Convolu-tion of l with a saled version of the intensity on the virtual soure solves theimaging problem. From this viewpoint the quasi-homogeneity of the soure isan a priori ondition with respet to the possibility of applying Geometrial113
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r''Fig. 32. The line spread funtion versus the redued oordinate on the image plane�r00 = â�ri=(d̂inbn) in the ase of severe defousing aberration(n = 2, b2 = 9�) andomparison with the geometrial optis predition.line soure, we obtain the line spread funtionl(�ri) = aZ�a dr̂Æ 24�ri � nd̂iâ bn  r̂̂a!n�135 : (288)Finally, using the new integration variable �x = r̂=â and normalizing l so thatthe integral of l gives unity yieldsl(�ri) = 1Z�1 d�xÆ  �ri � nd̂iâ bn�xn�1! ; (289)that is equivalent to Eq. (280). From a ray-traing viewpoint, the problem ofalulating the line spread funtion redues to the problem of transforming auniform distribution of rays into a non-uniform distribution related to the non-linear transformation Eq. (287). When jbnj . 1 instead, Geometrial Optisannot be used to alulate the l funtion, and the Eikonal approximationfails. As we have seen in Setion 9.2.1 this is equivalent, in the language ofPhysial Optis, to a situation when the simpli�ation in Eq. (275) does not118
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r''Fig. 33. The line spread funtion versus the redued oordinate on the image plane�r00 = â�ri=(d̂inbn) in the ase of severe oma aberration (n = 3, b3 = 9�) andomparison with the geometrial optis predition.hold.10 Pinhole optisTaking advantage of Eq. (133), we will now study the ase when images of avirtual soure an be obtained with the help of a pinhole (i.e. a pupil withouta lens), without further lenses or mirrors. When a pinhole an be treatedas an imaging system, people refer to it as an (X-ray) pinhole amera. Herewe will onsider the geometry in Fig. 36. The study of this relatively simplesetup will be helpful to reah a better understanding of Setion 11, dediatedto imaging in the foal pane, Setion 12, where we will desribe imaging inany plane behind the lens, and Setion 13, that will deal with the depth offous of an imaging system. Moreover, it will also suggestively show how aproblem apparently not related with the theory of aberrations (in the pinholeamera setup there is not even a lens) an formally be treated like a defousingaberration problem. This is due to the appearane of a quadrati phase fatorin the equation for the intensity at the image plane.119
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l

r''Fig. 34. The line spread funtion versus the redued oordinate on the image plane�r00 = â�ri=(d̂inbn) in the ase of severe spherial aberration (n = 4, b4 = 9�) andomparison with the geometrial optis predition.An X-ray pinhole amera has the same properties as the more familiar visiblelight pinhole-amera. The main advantage of suh a lensless imaging system isthat a pinhole is easier to fabriate than a lens. Pinhole ameras an be om-bined with X-ray Synhrotron Radiation soures and detetors for a numberof relatively speialized appliations [22℄.The onditions under whih the pinhole an be treated as an imaging systemare non-trivial, and are not always satis�ed. With the help of Eq. (133) we aninvestigate the properties of the image in the limiting ase for f̂ �! 1, i.e.when there is no lens. We will restrit ourselves to the one-dimensional ase,thus simplifying the vetorial notation in Eq. (133) to salar notation. Theassumption of separability of the ross-spetral density in the horizontal andin the vertial diretion (N̂x � 1 and D̂x � 1) suggests, in fat, to disusshorizontal and vertial diretions separately. In general, one an see that thefollowing onditions must be satis�ed in order to form an image of the soure(in one dimension):1: The pinhole must be in the far �eld. In this ase, using Eq. (127), theross-spetral density on the pupil plane is given by120
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Ĝ (ẑ1; �r;�r̂)= 14�2ẑ21 exp [2i�r ��r̂=ẑ1℄ Ĝ (0;��r;��r̂) : (290)2: In the integrand of Eq. (133) two spei� phase fators appear. Theseare exp[2i�r0 ��r̂0=(ẑ2 � ẑ1)℄ and exp[2i�r0 ��r̂0=ẑ1℄, the latter appearing throughEq. (290). Both must be negligible.3: The pinhole size must be larger than the oherene length on the pinholeplane, or the pupil funtions P in Eq. (133) will modify the dependene ofĜ(ẑ2) on �r (i.e. the image will not have a good resolution).If onditions from 1. to 3. above are satis�ed, the pinhole amera works as animaging system forming an inverted image of the soure. From Eq. (133) onemay see that the image is magni�ed of a quantity jMj = ẑ2=ẑ1, beause of thesame reason as the lens.We will now give a physial interpretation of onditions 1. through 3. statedabove. We begin onsidering the limiting ase when N̂ � 1 and D̂ � 1, i.e.a Gaussian quasi-homogeneous virtual soure. Further on we will see up towhat extent this assumption an be relaxed. We assume a large magni�ationonstant jMj ' d̂=ẑ1 � 1, where d̂ = ẑ2 � ẑ1. Here this assumption will beaepted for simpliity and relaxed, later on, to an arbitrary value of jMj .The seond ondition requires that two distint phase fators in Eq. (133)may be negleted. The assumption d̂ � ẑ1 leads to the single requirement�r�r̂=ẑ1 � 1. On the one hand, �r is limited by the presene of the pinhole,i.e. we must impose �r . â. On the other hand, �r̂ is limited by the oherenelength at the pinhole, i.e. �r̂ . ẑ1=qN̂ , beause otherwise the ross-spetraldensity Ĝ in Eq. (133) drops to zero. As a result we obtain that the seondondition given above an be expressed in mathematial terms byâ� qN̂ : (291)It is possible to give a lear interpretation of ondition (291) in terms ofGeometrial Optis. In fat, on the one hand, the minimal geometrial spotsize from a line soure is given, at the image plane, by jMjâ. On the otherhand, the size of the image is of order jMjqN̂ , by de�nition of magni�ationjMj. Then, in order to have a good resolution, we must require that the imagesize of a point soure be muh smaller than the image size of the objet, i.e.qN̂=â� 1, that is ondition (291).The third ondition given above requires that the pinhole size be larger thanthe oherene length on the pinhole plane, otherwise the pupil funtions P in122



Eq. (133) would modify the dependene of Ĝ(ẑ2) on ~�r (i.e. the image wouldbe inuened by the pupil). This an be mathematially stated by requiringthat â� ẑ1qN̂ : (292)Condition (292) has a natural explanation in terms of di�ration theory. Infat, the di�ration spot due to the presene of the pupil an be estimated asd̂=â. In order to have a good resolution, we should impose that the di�rationspot be muh smaller than the image size of the objet, i.e. jMjqN̂=(d̂=â)� 1,that is ondition (292).Finally, the �rst ondition given above requires that the ross-spetral densityat the pinhole position be Eq. (290), i.e. the pinhole must be in the far zoneregion. This fat an be alternatively stated by requiring that the radiationspot size at the pupil be dominated by the angular divergene D̂, i.e. ẑ1qD̂ �qN̂ . In the ase N̂ < D̂, one should require in any ase that ẑ1 � 1. This anbe mathematially expressed by the requirementẑ1 � max264vuut N̂̂D ; 1375 : (293)Note that ondition (293) and the initial assumption of a quasi-homogeneoussoure are equivalent to the requirement that the pinhole be far enough forthe van Cittert-Zernike theorem to apply. In the ase of a perfetly inoher-ent objet (e.g. thermal light), the soure radiates over an angle 2�. Then,the validity of the van Cittert-Zernike theorem (i.e. the requirement that theradiation spot size at the pupil be dominated by the angular divergene) isequivalent to the ondition that the transverse dimension of the soure bemuh smaller than the distane between the soure and the pupil. This is thesame ondition for the paraxial approximation to be appliable. As a result,ondition (293) is always onsidered satis�ed in usual treatments desribingpinhole setups in the presene of inoherent objets.The three onditions (291), (292) and (293) an be summed up in the following:qN̂ � â� ẑ1qN̂ � max24 1qD̂ ; 1qN̂ 35 : (294)Let us now disuss about the resolution of the pinhole amera. Consisteny of123
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Fig. 36. Geometry for a pinhole amera setup. S indiates the virtual soure plane.ondition (294) requires thatN̂ � ẑ1 : (295)Although ondition (294) requires that ondition (295) be satis�ed, it doesnot pose any onstraint on the relative magnitude of â2 with respet to ẑ1.This observation suggests the presene of another harateristi sale of theproblem, â2=ẑ1. This sale is linked with the resolution of the system. Whenâ2=ẑ1 � 1 or â2=ẑ1 � 1 we are in the presene of an extra large or small pa-rameter and, thus, we have two asymptoti regimes. In order to systematiallyonsider this issue we start writing the expression for the intensity pro�le forthe pinhole amera image with the help of Eq. (133) and Eq. (290), that isÎ(ẑ2; �r)= 1Z Z d�r0d�r̂0(Ĝ(0;��r0;��r̂0) exp �i� 2̂z1 + 2̂d� �r0�r̂0��P (�r0 +�r̂0)P (�r0 ��r̂0)) exp ��2îd �r�r̂0� : (296)As usual, the normalization fator Z is hosen in suh a way that Î(ẑ2; 0) = 1.The phase in parenthesis f:::g must be negligible under ondition (291), andthe inuene of the pupil funtion P must also be negligible under ondition(292). Here we retain both these fators, beause we are interested in studyingthe resolution of the pinhole amera, i.e. the auray of our alulations.The phase ontribution in 2=d̂ is always muh smaller than the phase ontri-124



bution in 2=ẑ1, sine we assumed jMj � 1. The integrand ontributes to theintegration results only for those values of �r0 and �r̂0 for whih the phase fatoris not muh larger than unity, otherwise the integrand exhibits fast osillatorybehavior and it e�etively averages to zero. As a result we may neglet, withsome auray over the auray of the integral, the phase term in 1=d̂, thatwill start osillating for higher values of �r0 and �r̂0.Note that, under the aepted assumptions N̂ � 1 and D̂ � 1, the expressionfor the Fourier transform of the ross-spetral density at the virtual soureposition is given byĜ (0; �r0;�r̂0)= exp"�2N̂�r̂02ẑ21 # exp "� �r022ẑ21D̂# ; (297)in agreement with Eq. (145).Analysis of Eq. (297) shows that the exponential funtion in �r0 exhibits a har-ateristi sale of order ẑ1qD̂. Conditions (291) and (293) require ẑ1qD̂ �qN̂ � â. As a result, sine ẑ1qD̂ � â, we an approximate the exponentialfuntion in �r0 in Eq. (297) with unity to obtain an equation still suitable forinvestigating the resolution of the pinhole amera, that isÎ(ẑ2; �r)= 1Z 1Z�1 d�r̂0 exp"�2N̂�r̂02ẑ21 # exp ��2îd �r�r̂0��( 1Z�1 d�r0 exp �i� 2̂z1� �r0�r̂0�P (�r0 +�r̂0)P (�r0 ��r̂0)) : (298)The quantity in parenthesis f:::g in Eq. (298) is the autoorrelation funtionof the pupil. It aounts for a phase error, exatly as in the ase of aberrationsof the seond order (defous). Condition (292) states that the harateristisale of �r̂0 in Eq. (297) is small ompared to â, that is the harateristi saleof the pupil funtion P . If also â2=ẑ1 � 1 we see that the harateristi saleof P is large ompared with the sale imposed by the phase in parenthesisf:::g in Eq. (298), beause �r0�r̂0=ẑ1 � 1 at �r̂0 � â and �r0 � â. Therefore,under the assumption â2=ẑ1 � 1 we may neglet the dependene of P on �r̂0in Eq. (298) and obtainÎ(ẑ2; �r)= 1Z 1Z�1 d�r̂0 ~P (�r̂0) exp "�2N̂�r̂02ẑ21 # exp ��2îd �r�r̂0� ; (299)125



where~P (�r̂0) = 1Z�1 d�r0 jP (�r0)j2 exp �i 2̂z1 �r0�r̂0� ; (300)or, equivalently 22 :~P (�r̂0) = âZ�â d�r0 exp �i 2̂z1 �r0�r̂0� : (301)Exept for an unessential multipliative fator â, Eq. (301) is formally equiv-alent 23 to Eq. (275) with n = 2 andb2 = â22ẑ1 � 1 : (302)This means that we may study the problem of the resolution of the pinholeamera as an aberration problem: in partiular, a defousing aberration. Theparameter range when â2=ẑ1 � 1 leads to equations similar to the ase ofsevere aberrations when jbnj � 1, treated in Setion 9.2. The autoorrelationfuntion of the pupil, that is the Optial Transfer Funtion of the system, isthen obtained by integration of Eq. (301) and reads:~P (�r̂0) = sin 2â̂z1�r̂0! ; (303)where Eq. (301) has been used and an unessential multipliative fator 2â hasbeen negleted. Substitution of Eq. (303) in Eq. (299) yieldsÎ(ẑ2; �r)= 1Z 1Z�1 d�r̂0sin 2â̂z1�r̂0! exp "�2N̂�r̂02ẑ21 # exp ��2îd �r�r̂0� : (304)Eq. (304) allows an estimation of the resolution by taking the ratio of thewidth of the sin and of the exponential funtion in �r̂0. On the one hand,22We assume, as done before, that no apodization is present.23 It should be noted that we swithed bak from notations �x and �x, used inSetion 9, to our usual notation �r0 and �r̂0, with �r0 = �x and 2�r̂0 = â�x. Weremind that the reason why we used notations �x and �x in Setion 9 was for thereader's onveniene, as these notations allow diret omparison with aberrationtheory developed in standard textbooks.126



the width of the exponential funtion is of order ẑ1=(2qN̂ ). On the otherhand, the width of the sin funtion is of order ẑ1=(2â). As a result, whenâ2=ẑ1 � 1 the resolution of the amera is of order â=qN̂ . This proedureis justi�ed by the fat that Eq. (304) an be interpreted as a onvolution ofa retangular pro�le with a (new) Gaussian funtion, and that the width ofthese two funtions an be obtained by taking the inverse widths of the sinfuntion and the Gaussian funtion in Eq. (296) and by multiplying them bythe fator d̂.Let us now deal with the ase when â2=ẑ1 � 1. Going bak to Eq. (298), we seethat â is narrow ompared with the sale imposed by the phase in parenthesisf:::g in Eq. (298), beause �r0�r̂0=ẑ1 � 1 at �r̂0 � â and �r0 � â. Thereforewe an neglet the phase fator in parenthesis f:::g, whih orresponds to aase with no aberrations. The autoorrelation funtion of the pupil an nowbe written as a triangle funtion~P (�r̂0) = tri �r̂0â ! ; (305)that should be substituted into Eq. (299) to give the analogous of Eq. (304)in the limit â2=ẑ1 � 1, that isÎ(ẑ2; �r)= 1Z 1Z�1 d�r̂0tri �r̂0â ! exp "�2N̂�r̂02ẑ21 # exp ��2îd �r�r̂0� : (306)Eq. (306) an also be interpreted as a onvolution of a sin2(�) pro�le with aGaussian pro�le.Similarly to Eq. (304), Eq. (306) allows an estimation of the resolution bytaking the ratio of the width of the triangular funtion and of the exponentialfuntion in �r̂0 . As before, on the one hand the width of the exponentialfuntion is of order ẑ1=(2qN̂). On the other hand, the width of the triangularfuntion is of order 2â. As a result, when â2=ẑ1 � 1 the resolution of theamera is of order ẑ1=(âqN̂).When â2=ẑ1 � 1 the resolution of the amera is of order â=qN̂ . One hasbetter resolution as the pupil beomes smaller and smaller, but the onditionâ2=ẑ1 � 1 beomes less and less satis�ed. When â2=ẑ1 � 1 the resolution ofthe amera is of order ẑ1=(âqN̂). In this ase one has better resolution as thepupil beomes larger and larger, but the ondition â2=ẑ1 � 1 beomes less andless satis�ed. As a result there must be an optimum for pupil apertures of order127



â2 � ẑ1. This optimumdepends on the objet onsidered (in this disussion, forinstane, we assumed a Gaussian soure) and on the de�nition of the width ofa funtion, that may vary depending on irumstanes. However, starting fromEq. (298), we may present an expression for the Optial Transfer Funtion ofthe pinhole amera, whih is the quantity in parenthesis f:::g. Suh quantityan be written as~Pp(�r̂0; â; ẑ1) = âZ�â d�r0P (�r0 +�r̂0)P (�r0 ��r̂0) exp "i2�r0�r̂0ẑ1 # : (307)After introdution of � = �r0=â and 
 = â2=ẑ1 we an write Eq. (307) as~Pp  �r̂0â ;
! = 1Z�1 d�P  � + �r̂0â !P  � � �r̂0â ! exp "i2�
�r̂0â # : (308)Note that the limit 
 �!1 of Eq. (308) is a sin(�) funtion, while the limit
 �! 0 is a tri(�) funtion, as it should be. Eq. (308) enters in the expressionfor the intensity as the term in f:::g in Eq. (298), that an be reinterpreted as aonvolution produt. Then, the Fourier transform of Eq. (308) with respet to�r̂0=â is one of the fators in this onvolution produt, and its width is relatedwith the resolution of the pinhole amera. This Fourier transform is the linespread funtion for the pinhole amera. After introdution of y = â�ri=d̂ and� = �r̂0=â we an write the line spread funtion for the pinhole amera aslp (
; y) = 1Z�1 d� 8<: 1Z�1 d�P (� + �)P (� � �) exp [i2� (�
 � y)℄9=; ; (309)where we aounted for the fat that the Fourier transform integral in d�is limited by the presene of the pinhole to the range [�1; 1℄. On the onehand, the integral in parenthesis f:::g in Eq. (309) is the Fourier transform ofP (� + �)P (� � �) alulated with respet to � as a funtion of 2(�
 + y). Onthe other hand, the funtion P (� + �)P (� � �) is a window funtion similarto the pupil funtion P . It is equal to unity for values of j�j < 1 � j�j, and itis zero elsewhere. Therefore, the quantity in parenthesis f:::g in Eq. (309) anbe alulated analytially yieldinglp (
; y) = 1Z�1 d� sin [2(�
 + y)(1� j�j)℄�
 + y : (310)Note that if 
 �! 0 we have 128
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 = 0:5. In this ase the asymptote for
 �! 0, Eq. (311), is well-mathed to the numerial evaluations.lp (
; y) �! 1y 1Z�1 d�sin [2y(1 � j�j)℄ = 2sin2(y) ; (311)as it should be, while if 
 �! 1, after the hange of variable � �! �0 = 
�we an rewrite Eq. (310) aslp (
; y)�! 1
 
Z�
 d�0 sin [2(�0 + y)℄�0 + y = 1
Si[2(y + �)℄�����
�
= 1
 fSi[2(y + 
)℄� Si[2(y �
)℄g ; (312)where Si(�) indiates the sin integral funtion. It an be seen that, as 
 �!1,the funtion de�ned by Eq. (312) approximates more a more a retangularfuntion whih is onstant for �
 < y < 
 and equal to zero elsewhere, as itshould be.We may use a new variable y0 = y=p
 in Eq. (310), thus obtaining:129
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 = 2. In this ase the asymptote for
 �! 0, Eq. (311), starts to diverge from numerial evaluations. The width of lpis lose to its minimum.lp (
; y0) = 1Z�1 d� sin h2(�
 + y0p
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 + y0p
 : (313)The reason for this is that, now, both the asymptotes Eq. (311) for 
� 1 andEq. (312) for 
� 1 present a harateristi width 1=p
 and p
 respetively.In Fig. 37, Fig. 38, Fig. 39 and Fig. 40 we present various shapes of the lpfuntion and its asymptoti limit for di�erent values of 
. One a de�nitionof the width of the funtion lp is hosen, the optimal operation point for thepinhole amera may be set requiring that the width of lp be minimal. It shouldbe remarked that the de�nition of the width of lp is somewhat subjetive.One may, for instane, de�ne the width of lp to be the Full Width HalfMaximum (FWHM). In Fig. 41 we present di�erent plots for lp normalizedto lp(0) for di�erent values of 
 = 1; 2; 3; 4; 5; 6. The minimal value of theFWHM of the line spread funtion for the pinhole amera happens to beloated somewhere between 
 = 4 and 
 = 5. It may be estimated to beabout 1:5. As a result one onludes that the optimal aperture for the pinhole130
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.ases. In partiular, Eq. (313) an be applied when (a) the virtual soure isquasi-homogeneous, (b) the pinhole amera is installed in the far zone and() â2 � max[1; D̂℄ẑ21. When onditions (a), (b) and () are satis�ed, theline spread funtion for the pinhole amera, lp an be alulated from Eq.(313). At the beginning of the present Setion 10 we stated three onditions inorder to have an image of the soure, besides the Gaussian quasi-homogeneousassumption (that we relaxed, here, to the more general ase (a)). Condition1. given at the beginning of the present Setion 10 an be identi�ed with (b).Condition 1. and 2., together, are responsible for (). The other requirementwas formulated in order to obtain a good quality image of the soure. Howeverlp an be alulated regardless of it and, in di�erent situations, one may havea good quality or a bad quality of the image, depending on how the widthof lp sales with the width of the ideal image. The intensity pro�le at theobservation plane loated at ẑ = ẑ2 is given, in any ase, by the onvolutionprodut between the line spread funtion lp and the ideal image. In partiular,for an undulator soure with Gaussian intensity pro�le at the virtual planesuh a produt is given by lp � exp[��r2=(2M2N̂)℄, where jMj = d̂=ẑ1. WhenqN̂ � â� ẑ1=qN̂ a good quality image is formed at the observation plane.In other situations instead, the width of lp is of order of, or even larger than,133



the width of the ideal image, and a bad quality image will be formed. Tosum up, in order to alulate the intensity distribution at the observationplane loated at position ẑ = ẑ2 behind the pinhole, we should �rst alulate
 = â2=ẑe�. Then use Eq. (313) to alulate the line spread funtion lp.Finally, onvolve with the ideal image from the soure. The minimal widthof the line spread funtion, whih orrespond to the best auray for theimage, is for â2=ẑe� ' 4:5. Note that onditions (a), (b) and () above do notrequire the soure to be an undulator soure. In partiular, (a), (b) and () areautomatially satis�ed for thermal soures, or perfetly inoherent objets. Asa result, our theory an be applied for visible light imaging as well.These remarks simplify our disussion and drastially widen the appliabilityregion of our results. In partiular they an desribe bending magnet soures.For instane, at ESRF (European Synhrotron Radiation Faility) a pinholeamera setup has been developed for eletron beam diagnostis [22℄. Syn-hrotron Radiation from a bending magnet is imaged through an X-ray pin-hole amera setup. Subsequent analysis of the pinhole amera image allowsone to retrieve the eletron beam sizes. In the situation studied in [22℄ thedi�ration angle is of order of �1 � 10�4 rad. The system is reported togenerate an image of the soure when the pinhole is moved at about z1 = 23m from the dipole magnet. At this distane, and at the ritial wavelength,the spot size due to divergene of the single partile radiation is estimatedto be about �1z1 ' 2mm � �x;y, �x;y being the transverse eletron beamsizes. This guarantees that the pinhole is in the far �eld, i.e. ondition (b) issatis�ed. The ritial wavelength is of order � ' 3 � 10�11 m, sine one mayread, in [22℄, that "the ontribution from di�ration assumes a typial photonenergy of 40 keV". The radiation di�ration size an be estimated to be oforder �=(2�) ' 10�1�m� �x;y, whih demonstrates the quasi-homogeneityof the soure, i.e. ondition (a). In referene [22℄ one an also �nd di = 11:5m. We obtain an optimal pinhole aperture of a ' 12�m. Sine the pinholeaperture is muh smaller than the spot size due to divergene of the singlepartile radiation, ondition () is satis�ed as well. As a result our theory anbe applied to the situation treated in [22℄. Our results should be omparedwith the atual hoie in [22℄. From Fig. 2 in that referene we an onludethat and 2a ' 50�m in the horizontal diretion. This hoie is not optimal,sine orresponds to the value 
 � 10. The line spread funtion for the pin-hole amera in the horizontal diretion is illustrated, in this ase, in Fig. 39.Estimation of the resolution is not easy beause, as already said, is related tothe de�nition of the width of lp, whih is quite subjetive in the partiularase depited in Fig. 39. However, knowing the pro�le of the line spread fun-tion, we may use it in order to deonvolve experimental results and extratthe eletron beam size. From the same Fig. 2 in [22℄ we an also onlude that2a ' 25�m in the vertial diretion. Although the de�nition of the width oflp is somewhat subjetive, we an onlude that the hoie made in [22℄ isnear the optimal value in the vertial diretion. The resolution in the vertial134



diretion turns out to be, from Eq. (319), Ær ' 14�m. As a result the res-olution in [22℄, that is about 26�m, is somewhat underestimated. It shouldbe lear from the previous disussion that dereasing the pinhole dimensionbeyond the optimal size not only will derease the photon ux, but will alsoworsen the amera resolution.11 Imaging in the foal planeIn this Setion we will investigate the intensity distribution on the foal planedue to a quasi-homogeneous soure. We will �rst onsider the ase of a Gaus-sian quasi-homogeneous soure (N̂ � 1, D̂ � 1) and subsequently generalizeour onlusions, as done before for the more omprehensive ase of generiquasi-homogeneous soures. The harateristis of the intensity distributionin the foal plane an be treated in formal analogy with the pinhole amerasetup treated in Setion 10 and with the physis of aberrations, in partiulardefousing aberrations, desribed in Setion 9. This may seem ounterintu-itive, sine, at �rst glane, we are treating ompletely di�erent systems from aphysial viewpoint. The formal analogy between these situations is a demon-stration of the power of the ombined Statistial and Fourier Optis approah,whih allows one to unify study ases otherwise ompletely distint. Suh uni-�ation an be seen from the expression for the ross-spetral density at anydistane from the soure in the presene of a pupil, Eq. (133). As usual, we willassume that the lens is in the far �eld, i.e. D̂ẑ21 � N̂ . Under this assumptionwe may use Eq. (127) to haraterize the ross-spetral density at the lensposition. In the image plane, the far �eld assumption allows anellation ofall phase fators in the integrand of Eq. (133) and leads to Eq. (226). Thisanellation does not hold anymore for the foal plane. Use of the foal planeondition f̂ = ẑ2 � ẑ1 and of Eq. (127) yields the intensity (�r̂f = 0)Î(ẑ2; �rf )= 1Z Z d�r0d�r̂0(Ĝ(0;��r0;��r̂0) exp �i 2̂z1 �r0�r̂0��P (�r0 +�r̂0)P (�r0 ��r̂0)) exp "�2îf �rf�r̂0# : (320)As one an see, the phase fator in the expression for the ross-spetral den-sity, Eq. (127), survived in Eq. (320) due to the hoie of the foal plane asthe observation plane. From a formal viewpoint Eq. (320) is idential to Eq.(296). In fat, as the reader will remember, the phase �r0�r̂0=d̂i in Eq. (296) isnegligible for jM j � 1 and an be retained without hange in the formalismin the ase jM j is not muh larger than unity by de�ning ẑe� aording toEq. (317). As before, the normalization fator Z is hosen in suh a way thatÎ(ẑ2; 0) = 1. 135



Under the (for now) aepted assumptions N̂ � 1 and D̂ � 1, the expressionfor the Fourier transform of the ross-spetral density at the virtual soureposition is given by Eq.(297). Substitution of Eq. (297) in Eq. (320) yieldsÎ(ẑf ; �rf )= 1Z 1Z�1 d�r̂0 exp "�2N̂�r̂02ẑ21 # exp "�2îf �rf�r̂0#�( 1Z�1 d�r0 exp �i 2̂z1 �r0�r̂0�P (�r0 +�r̂0)P (�r0 ��r̂0)� exp "� �r022ẑ21D̂#) : (321)Note that when the pupil inuene is negligible (that is the ase when â2 �D̂ẑ21 � ẑ21=N̂), Eq. (321) readsÎ(ẑf ; �rf )= 1Z 1Z�1 d�r̂0 exp "�2îf �rf�r̂0#�( 1Z�1 d�r0 exp �i 2̂z1 �r0�r̂0� exp "�2N̂�r̂02ẑ21 # exp "� �r022ẑ21D̂#) :(322)The reader may hek that evaluation of Eq. (322) gives bak Eq. (190), asit should be. For large non-limiting apertures, the extra phase imposes anextra Fourier transformation of the integrand, whih gives the usual result.The intensity in the foal plane is a saled version of the Fourier transformof the spetral degree of oherene on the virtual soure plane. Yet, there aresituations when one may reover an image of the virtual soure at the foalplane. This happens when parameters are suh that the only inuene of a�nal pupil aperture is to make the phase fator in parenthesis f::g in Eq.(321) negligible. Looking for a region in parameter spae where this situationis realized is equivalent to what has been done in Setion 10. Three onditionswere given suh that the phase fator in �r0�r̂0 in Eq. (296) ould be negleted.In that ase, for a pinhole amera, we had image formation at all positionsafter the pinhole.In partiular, when D̂ẑ21 � N̂ � â2 � ẑ21=N̂ not only we an neglet thephase fator in Eq. (321) but we an also see that the width of the exponentialfuntion in �r̂0 is muh narrower than that of the pupil funtion P . Therefore,the dependene on �r̂0 in P an be negleted. Moreover, the width of P in �r0is muh narrower than the width of the exponential funtion in �r0, so that thelatter an be negleted as well. As a result we simplify Eq. (321) to obtain136



Î(ẑf ; �rf )= 1Z Z d�r0d�r̂0 exp "�2N̂�r̂02ẑ21 # jP (�r0)j2 exp "�2îf �rf�r̂0# : (323)The integral in d�r0 yields an unessential multipliation onstant to be inludedin Z, and one is left withÎ(ẑf ; �rf )= 1Z 1Z�1 d�r̂0 exp "�2N̂�r̂02ẑ21 # exp "�2îf �rf�r̂0# : (324)Inluding another unessential onstant in the normalization fator Z, Eq.(324) an be written asÎ(ẑf ; �rf )= 1Z exp"� ẑ21�r2f2f̂2N̂ # : (325)As a result, when D̂ẑ21 � N̂ � â2 � ẑ21=N̂ , we obtain, in the foal plane, asaled image of the virtual soure. This is exatly what a pinhole amera doesin the parameter region when onditions 1. to 3. in Setion 10 are satis�ed.A orrespondene between ompletely di�erent problems has thus been estab-lished thanks to the ombined power of Statistial Optis and Fourier Optisapproah.Suh a orrespondene an be pursued further, up to a omplete formal iden-ti�ation between the pinhole amera and the foal imaging system. To thispurpose we restrit our analysis to the ase â2 � D̂ẑ21. In the opposite limitwe would obtain the already treated result for negligible pupil inuene. Inthis situation we an neglet the exponential funtion in �r02 in Eq. (321). Eq.(321) an thus be simpli�ed toÎ(ẑf ; �rf )= 1Z 1Z�1 d�r̂0 exp "�2N̂�r̂02ẑ21 # exp "�2îf �rf�r̂0#�( 1Z�1 d�r0 exp �i 2̂z1 �r0�r̂0�P (�r0 +�r̂0)P (�r0 ��r̂0)) : (326)One the substitutions f̂ �! d̂, ẑf �! ẑ2 and �rf �! �r are made, Eq. (326)is idential to Eq. (298). This means that, in the limit â2 � D̂ẑ21 studying thepinhole amera setup is ompletely equivalent to studying the foal imagingdetup. As in Eq. (298), the quantity in parenthesis f:::g onstitutes an OptialTransfer Funtion, and its Fourier transform yields a line spread funtion forthe system. Note that in the intermediate region for â2 � D̂ẑ21 one may retainthe same formalism: in this ase though, the exponential funtion in �r02 in Eq.137



(321) annot be negleted and results would be di�erent, depending also onthe soure parameter D̂y whih introdues a fator formally idential to lensapodization.However, in the ase â2 � D̂ẑ21, we an proeed in perfet parallelism with thestudy of the pinhole amera setup in the previous Setion 10. Starting fromEq. (326), we may present an expression for the Optial Transfer Funtion ofthe pinhole amera, whih is the quantity in parenthesis f:::g. This quantityan be written as~Pfp(�r̂0; â; ẑ1) = âZ�â d�r0P (�r0 +�r̂0)P (�r0 ��r̂0) exp "i2�r0�r̂0ẑ1 # : (327)After introdution of � = �r0=â and 
 = â2=ẑ1 we an write Eq. (327) as~Pfp  �r̂0â ;
! = 1Z�1 d�P  � + �r̂0â !P  � � �r̂0â ! exp "i2�
�r̂0â # : (328)Similarly as before, the Fourier transform of Eq. (328) with respet to �r̂0=âis the line spread funtion for the system. Sine it refers to the foal plane itwill be indiated with lfp. After introdution of y = â�ri=f̂ and � = �r̂0=â wean write suh Fourier transform exatly as Eq. (309), that islfp (
; y) = 1Z�1 d� 8<: 1Z�1 d�P (� + �)P (� � �) exp [i2� (�
 � y)℄9=; ; (329)where we aounted for the fat that the Fourier transform integral in d� islimited by the presene of the lens to the range [�1; 1℄. On the one hand,the integral in parenthesis f:::g is the Fourier transform of P (� + �)P (� � �)alulated with respet to � as a funtion of 2(�
+y). On the other hand, thefuntion P (�+�)P (���) is a window funtion similar to the pupil funtion P .It is equal to unity for values of j�j < 1�j�j and is zero elsewhere. Therefore, asin the previous Setion 10, the quantity in parenthesis f:::g an be alulatedanalytially yielding bak Eq. (310). Moreover, as in the previous Setion 10 wemay use a new variable y0 = y=p
 in Eq. (329), thus obtaining the following�nal expression for the line spread funtion:lfp (
; y0) = 1Z�1 d� sin h2(�
 + y0p
)(1 � j�j)i�
 + y0p
 : (330)138



Eq. (330) is idential to Eq. (313). Therefore, the shapes of the funtion lfpand of its asymptoti limit for di�erent values of 
 are the same as those forlp given in Fig. 37, Fig. 38, Fig. 39 and Fig. 40. As before, one a de�nition forthe width of lfp is hosen, the optimal operation point for the pinhole ameramay be set requiring that suh width be minimal. De�ning the width of lfpto be the full width half maximum (FWHM) one onludes that the optimallens aperture for the imaging in the foal plane is given byâ2 ' 4:5ẑ1 (331)or, in dimensional unitsa2 ' 4:5z1! : (332)We an estimate the best resolution in the foal plane Ærf in dimensional unitsrequiring that Æy0 be equal to the minimal FWHM of the line spread funtion,i.e. 1:5, and taking advantage of the de�nition of y0, whih givesÆrf ' 1:5s !z1f : (333)Note that results in this Setion have not been obtained under the assumptionjMj � 1 as those in the last Setion. Therefore, substitution of ẑ1 �! ẑe� isnot required in this ase.Similarly as before, we should now disuss the appliability of Eq. (330). Upto now we disussed about a Gaussian quasi-homogeneous undulator soure,but Eq. (330) an be applied in a wider variety of ases. In partiular, Eq.(330) an be applied when (a) the soure is quasi-homogeneous, (b) the lens isinstalled in the far zone and () â2 � max[1; D̂℄ẑ21. When onditions (a), (b)and () are satis�ed, the line spread funtion for the lens, lfp an be alulatedfrom Eq. (330). Depending on the situation, one may have a good quality or abad quality of the image. This is related with how the width of lfp sales withthe width of the ideal image. The intensity pro�le at the foal plane (loatedat ẑ = ẑ1 + f̂) is given, in any ase, by the onvolution produt of the linespread funtion lfp and the ideal image. In partiular, for an undulator sourewith Gaussian intensity pro�le at the virtual plane, suh produt is given bylfp � exp[��r2=(2M2N̂ )℄, where jMj = f̂ =ẑ1. When qN̂ � â� ẑ1=qN̂ a goodquality image is formed at the observation plane. In other situations instead,the width of lfp is of order of the width of the ideal image, and a bad qualityimage will be formed. To be spei�, for values of 
 � 1 the line spreadfuntion and, therefore, the intensity distribution at the foal plane tends to astepped pro�le, while for values of 
� 1 one obtains a sin2(�) pro�le. To sum139



up, in order to alulate the intensity distribution at the foal plane behindthe lens, we should �rst alulate 
 = â2=ẑ1. Then use Eq. (330) to alulatethe line spread funtion lfp. Finally, onvolve with the ideal image from thesoure. The minimal width of the line spread funtion, whih orrespondsto the best image resolution, is when â2=ẑ1 ' 4:5. Note that onditions (a),(b) and () above do not require the soure to be an undulator soure. Inpartiular, (a), (b) and () are automatially satis�ed for thermal soures, orperfetly inoherent objets. As a result, our theory an be applied for visiblelight imaging as well. These remarks simplify our disussion and drastiallywiden the appliability region of our results.12 A uni�ed theory of inoherent imaging by a single lensIn the present Setion 12 we will develop a uni�ed theory whih is appliableto imaging in an arbitrary plane behind the lens. In the previous Setion 11we disussed the possibility of imaging the soure at the foal plane. Therewe reognized that under onditions (a) the soure is quasi-homogeneous (b)the lens is installed in the far zone and () â2 � max[1; D̂℄ẑ21, the intensity onthe foal plane an be alulated as a onvolution produt of the line spreadfuntion of the system and the ideal image, whih is a saled version of theintensity distribution on the soure plane. Moreover, it was shown that theharateristis of the intensity distribution in the foal plane an be treatedin formal analogy with the pinhole amera setup in Setion 10 and with thephysis of aberrations, in partiular defousing aberrations, desribed in Se-tion 9. We have seen that when the lens is in the far �eld (ondition (b))Eq. (127) an be used to haraterize the ross-spetral density at the lensposition. In the image plane, this assumption alone allows anellation of allphase fators in the integrand of Eq. (133) and yields Eq. (226). In the previ-ous Setion 11 we showed that this anellation does not hold anymore for thefoal plane. From this viewpoint the foal plane is not privileged in any waywith respet to other observation planes. It is this last remark whih suggestsa generalization of the previous results. For a generi observation plane posi-tioned at ẑ = ẑ2 one may use Eq. (127) to get an expression for the intensity(�r̂ = 0) from Eq. (133), in analogy with Eq. (320) and Eq. (296), that isÎ(ẑ2; �r)= Z d�r0d�r̂0(Ĝ(0;��r0;��r̂0) exp "2i �1f + 1̂z1 + 1̂d! �r0�r̂0#�P (�r0 +�r̂0)P (�r0 ��r̂0)) exp ��2îd �r�r̂0� ; (334)where d̂ = ẑ2�ẑ1. As one an see, the phase fator in �r0�r̂0 is more ompliatedthan those Eq. (320) and Eq. (296) due to the omplete arbitrariness of the140



observation plane. Nevertheless, Eq. (334) an be reast to the same form ofEq. (320) simply with the help of with a new de�nition of ẑe�, that is1̂ze� = �1f + 1̂z1 + 1̂d : (335)Aounting for Eq. (335) we may rewrite Eq. (334) asÎ(ẑ2; �r)= Z d�r0d�r̂0(Ĝ(0;��r0;��r̂0) exp �i 2̂ze� �r0�r̂0��P (�r0 +�r̂0)P (�r0 ��r̂0)) exp ��2îd �r�r̂0� ; (336)whih is equivalent to Eq. (320).All that is left to do is now follow, step by step, the previous Setion 11. Thisleads to the following results. When onditions (a), (b) and () are satis�ed onemay introdue, as before, a line spread funtion of the system, harateristiof the observation plane ẑ = ẑ2. This line spread funtion is formally identialto Eq. (330):lz (
; y0) = 1Z�1 d� sin h2(�
 + y0p
)(1� j�j)i�
 + y0p
 ; (337)with 
 = â2=ẑe� and y0 = y=p
, y0 being de�ned by y = â�r=d̂. Here similaritytehniques have been employed. The �ve dimensional parameters �, a, f , z1and z2 have been redued to the only parameters 
 and y0, so that one is leftwith the alulation of a dimensionless funtion in y0 depending on the singleparameter 
, Eq. (337). As before, depending on the situation, one may havea good quality or a bad quality of the image. This is related with how thewidth of lz sales with the width of the ideal image. The intensity pro�le atthe observation plane loated at ẑ = ẑ2 is given by the onvolution produt ofthe line spread funtion lz and the ideal image. In partiular, for an undulatorsoure with Gaussian intensity pro�le at the virtual plane, suh produt isgiven by lz � exp[��r2=(2M2N̂)℄, where jMj = d̂=ẑ1. When qN̂ � â� ẑ1=qN̂a good quality image is formed at the observation plane. In other situationsinstead, the width of lz is of order of the width of the ideal image, and abad quality image will be formed. To sum up, we presented here an algorithmto alulate the intensity distribution of radiation at any observation planeloated at position ẑ = ẑ2 behind the lens, given an arbitrary value of âand a system satisfying onditions (a), (b) and (). First one should alulate
 = â2=ẑe�. Then use Eq. (337) to alulate the line spread funtion lz. Finally,141



onvolve with the ideal image from the soure. As before, when 
� 1 the linespread funtion tends to a stepped pro�le and, as a result, the intensity pro�lereprodues a stepped pro�le too. Note that, ẑe� being arbitrary, we annotgive a relation in terms of â and ẑ1 orresponding to an optimal line spreadfuntion. For instane, when ẑ2 �! ẑi, i.e. when we onsider the asymptotilimit for the image plane, we obtain from Eq. (335) that ẑe� �! 1 and
 �! 0. Then, from Eq. (337) one obtains lz �! sin2(â�ri=d̂), exatly as inEq. (311). In this ase no defousing aberration is present, quadrati phaseterm having being anelled by the partiular hoie of the observation plane.As a result, we annot give a riterium for an optimal line spread funtion: weonly have di�ration e�ets so that the larger the aperture â (always withinthe onstraint imposed by ondition (), i.e. â2 � max[1; D̂℄ẑ21) the better thequality of the image. In losing, it is worth to mention that the asymptotefor f̂ �! 1 orresponds to the pinhole amera setup already disussed inSetion 10. As a result, this partiular ase an be treated in terms of ouruni�ed theory as well.13 Depth of fousAording to [23℄ "the depth of fous of a lens is the permitted displae-ment, away from the foal or image plane, for whih the intensity on axis isdiminished by some permissible amount". In partiular, when plane wave illu-mination is onsidered on a perfet irular lens, the foal plane orrespondsto the plane where the radiation assumes the minimal spot size, and the in-tensity on axis reahes a maximum at that point. It an be shown that, inthis ase, the on-axis intensity dereases of about 20% when "the observationplane is displaed from the ideal foal plane [...℄ by an amount" (see [23℄)j�0zj = �2NA2 ; (338)where the quantity NA indiates the numerial aperture of the lens. NA =sin �, � being the "half angle measured from the opti axis at the fous bak tothe lens" [23℄. The onept of depth of fous desribed in Eq. (338), desribesa ase of oherent illumination of the lens by a plane wave, and the lens istreated, here, as a ondenser. The objet to be imaged is, in fat, the radiationsoure itself. Sine we are dealing with oherent illumination we may say that,in this ase, the depth of fous is di�ration limited.The depth of fous as desribed in Eq. (338) is parametrially related to an-other onept of depth of fous whih is used, for example, in Optial Lithog-raphy [23, 24℄. In this ase one needs to illuminate a wafer with a demagni�edimage of a given pattern on a mask. Here the lens (atually the olletion of142



lenses) is no more treated as a ondenser: its funtion is to produe the demag-ni�ed image of the mask. The mask itself must be illuminated by means of aondenser system instead, and, as remarked in [23℄, "the ability to print �ne,high ontrast features is signi�antly a�eted by the degree of oherene withinthe optial system. If there exists a high degree of spatial oherene, di�ra-tion from adjaent mask features will interfere in the image plane, signi�antlymodifying the reorded pattern". The mask should therefore be illuminatedby inoherent light and should be onsidered as a quasi-homogeneous soureitself. For a lithography setup, the resolution R is the width of the di�ration-limited point spread funtion of the system, while the distane X over whihthe image is in proper fous is, more quantitatively, the distane over whihR is inreased by some permitted amount. Although a lithography setup on-stitutes a ompletely di�erent setup with respet to the ondenser systemilluminated with oherent plane waves, R and X turn out to be respetively[24℄:R = k1 �NA ; X = k2 �NA2 : (339)The distaneX is therefore parametrially related to the distane j�0zj de�nedin Eq. (338) and even though these two quantities refer to very di�erent setups,involving quite di�erent physis, also X is named, as j�0zj, depth of fous.To ompliate the situation further one is frequently interested in the depthof fous j�zj for a ondenser system when the lens is not illuminated by planewaves but by other kind of non quasi-homogeneous or quasi-homogeneoussoures, whih is a di�erent situation from both ases onsidered in the pre-vious disussion. In this Setion we will treat the ase of a ondenser lensilluminated by a quasi-homogeneous soure haraterized by N̂x � 1 andD̂x � 1. Separate treatments of the x and y diretion are thus allowed, whihsimplify to one-dimensional ases. Our study applies to the horizontal dire-tion only. However, if also N̂y � 1 and D̂y � 1 the same results for thehorizontal diretion an be applied to the vertial diretion as well. Our de�-nition of depth of fous will be relative to the plane of smallest spot size of theradiation. Therefore, in the present Setion 13, the depth of fous of a lens isde�ned as the permitted displaement, away from the waist plane, for whihthe intensity on axis is diminished by some permissible amount.Before starting to disuss about the depth of fous, it is neessary to derive anexpression for the point where the radiation spot size is the smallest. This anbe obtained with the help of Eq. (216) in Setion 7. In fat, sine 2q�̂�̂(ẑ2) isthe harateristi width of the Gaussian radiation spot size at the observationplane loated at ẑ = ẑ2, it is suÆient to look at the point ẑ2best where thederivative of �̂�̂(ẑ2) is zero to obtain the position of the waist plane. With thehelp of Eq. (216) one �nds 143



ẑ2best= �f̂ + ẑ1� N̂ � D̂f̂ ẑ21 + D̂ẑ31N̂ + D̂ �f̂ � ẑ1�2 = �f̂ + ẑ1� Âẑ21 � �f̂ � ẑ1� D̂ẑ21Âẑ21 + D̂ �f̂ � ẑ1�2 :(340)It is interesting to study two limiting ases of Eq. (340) for Â � D̂ and forÂ �! 0 respetively. Consider �rst the ase when Â� D̂. From Eq. (340) onemay see that, in this �rst ase, ẑ2best �! ẑf = f̂+ẑ1. This means that the waistplane asymptotially goes to the foal plane of the lens. Consider now the asewhen Â �! 0. Again from Eq. (340) one may see that, in this seond ase,ẑ2best �! ẑi = ẑ21=(ẑ1 � f̂). This means that the waist plane asymptotiallygoes to the image plane of the virtual soure (loated at ẑ = 0).From the analysis of the two limiting ases for Â � D̂ and for Â �! 0, weonlude that one always has ẑ1 + f̂ < ẑ2best < ẑi. In other words, the waistplane is always loated between the foal and the image plane. This resultsmay seem ounterintuitive. In fat, for our Gaussian virtual soure, the waistis loated at ẑs = 0, whih is imaged, reversed and magni�ed, at the imageplane. Therefore, at �rst glane, the smallest spot size should be loated atthe image plane. The reason why this is not the ase is due to the presene ofthe magni�ation fator, whih linearly inreases with ẑ2. On the one hand thesoure has a waist loated at ẑs = 0 and its size inreases symmetrially as onemoves away from ẑs = 0 in both the positive and the negative diretion. Onthe other hand the magni�ation fator inreases linearly with ẑ2 and is notharaterized by the same symmetri dependene on the displaement fromẑs = 0.In the following Setion 13.1 and Setion 13.2 we study the problem of thedepth of fous in a ondenser system with a Gaussian quasi-homogeneoussoure. E�ets from the pupil width will be negleted in Setion 13.1, Finitepupil dimensions will be aounted for in Setion 13.2.13.1 Large non-limiting apertureWe will disuss, for simpliity, the ase when jMj = d̂i=ẑ1 � 1. In this ase,from Eq. (30) we obtain d̂i ' f̂ . Sine we assumed as a starting point jMj � 1it follows that f̂ � ẑ1, and that the distane between the image and the foalplane is � = d̂i � f̂ ' f̂2=ẑ1 ' jMjf̂ . Moreover, the radiation spot size atthe image plane is known to be of order jMjqN̂ from Eq. (157), while theradiation spot size at the foal plane is obtained from Eq. (154) and is oforder qD̂f̂ . As has been disussed above, the position of the waist goes fromthe foal plane to the image plane as we pass from the near to the far zone.This an also be seen by omparing the radiation spot sizes at the image and144



at the foal plane in the near and in the far zone. In the near zone Â� D̂. Itfollows that qD̂f̂ � qN̂ f̂=ẑ1, i.e. the radiation spot size at the foal plane ismuh smaller than that at the image plane. On the ontrary in the far zoneÂ � D̂. It follows that qD̂f̂ � qN̂ f̂ =ẑ1 ' qN̂ d̂i=ẑ1, i.e. the radiation spotsize at the foal plane is muh smaller than that at the image plane. We willanalyze these two ases separately.13.1.1 Far zoneIn this ase Â� D̂ and the waist is near the image. On the one hand, as hasbeen already remarked, the radiation spot size on the image plane is aboutjMjqN̂ and does not depend on D̂. On the other hand, the radiation spot sizeon the non-limiting pupil aperture is de�ned by the beam divergene and anbe estimated as qD̂ẑ1. This means that the rate of hange of the radiationspot size from the lens to the waist an be estimated as qD̂ẑ1=f̂ , sine d̂i ' f̂ .The parametri dependene of the depth of fous an be found requiring thatthe spot size inrease due to a displaement �ẑ, that is �qD̂ẑ1=f̂��ẑ beof order of the radiation spot size at the waist, i.e. jMjqN̂ . This yields thefollowing Geometrial Optis predition for the depth of fous:�ẑ ' f̂ jMjqN̂qD̂ẑ1 'M2vuut N̂̂D : (341)One may separately estimate the di�ration size related with an apertureof size qD̂ẑ1 (the radiation spot size at the non-limiting pupil aperture) atthe observation plane. Suh estimation yields a di�ration size d̂i=(qD̂ẑ1) 'f̂=(qD̂ẑ1). Now, requiring that the spot size inrease due to a displaement�0ẑ, that is �qD̂ẑ1=f̂��0ẑ, be of order of the di�ration size f̂=(qD̂ẑ1) onemay estimate the di�ration limited depth of fous as�0ẑ ' f̂2D̂ẑ21 : (342)The following omparison between the di�ration limited depth of fous �0ẑand the Geometrial Optis predition for the depth of fous �ẑ an be pre-145



sented:�0ẑ�ẑ ' f̂2D̂ẑ21 � 1M2vuut D̂̂N ' 1qN̂D̂ : (343)Eq. (343) allows one to onlude that di�ration e�ets an be negleted withinthe auray of the quasi-homogeneous approximation, and that Eq. (341) isa orret estimation of the depth of fous in this ase. Note that the de�nitionin Eq. (338) has no meaning in the ase of a ondenser system with a quasi-homogeneous soure. Finally, it is interesting to remark that the depth of fousis muh shorter than the distane � between the waist (image) and the foalplane. In fat�ẑ� 'M2vuut N̂̂D � 1jMjf̂ ' vuut N̂̂Dẑ21 � 1 ; (344)beause of the far zone assumption (Â� D̂).13.1.2 Near zoneSimilar estimations an be made in the near zone, i.e. assuming Â � D̂,when the waist is near the foal plane. On the one hand, as has been alreadyremarked, the radiation spot size at the foal plane is about qD̂f̂ and does notdepend on N̂ . On the other hand, the radiation spot size on the non-limitingpupil aperture is de�ned by the eletron beam waist and an be estimated asqN̂ . This means that the rate of hange of the radiation spot size from thelens to the waist an be estimated as qN̂=f̂ sine the waist is near the foalplane. The parametri dependene of the depth of fous an be found imposingthat the spot size inrease due to a displaement �ẑ, that is �qN̂=f̂��ẑ beof order of the radiation spot size at the waist, i.e. qD̂f̂ . This yields thefollowing Geometrial Optis predition for the depth of fous:�ẑ ' qD̂f̂2qN̂ : (345)One may separately estimate the di�ration size related with an aperture ofsize qN̂ (the radiation spot size at the non-limiting pupil aperture) at theobservation plane. Suh estimation gives a di�ration size d̂i=qN̂ ' f̂=qN̂ .146



Now, imposing that the spot size inrease due to a displaement �ẑ, that is�qN̂=f̂��ẑ be of order of the di�ration size f̂=qN̂ one may estimate thedi�ration limited depth of fous as�0ẑ ' f̂ 2̂N : (346)The following omparison between the di�ration limited depth of fous �0ẑand the Geomterial Optis predition of the depth of fous �ẑ:�0ẑ�ẑ ' qN̂qD̂f̂2 f̂ 2̂N ' 1qN̂ D̂ (347)Eq. (347) allows one to onlude that di�ration e�ets an be negleted withinthe auray of the quasi-homogeneous approximation, and that Eq. (345) isa orret estimation for the depth of fous in this ase. Finally, it is interestingto remark that the depth of fous is muh shorter than the distane � betweenthe waist (foal plane) and the image plane. In fat�ẑ� ' qD̂f̂2qN̂ � 1jMjf̂ ' vuutD̂ẑ21N̂ � 1 ; (348)beause of the near zone assumption (Â� D̂).13.2 E�et of aperture sizeWe will now analyze the inuene of a �nite aperture on our analysis of thedepth of fous. For simpliity we will onsider the far �eld ase, as all ourexamples involving e�ets of �nite aperture size have been relying on the far�eld assumption. At �rst glane, substitution of the radiation spot size qD̂ẑ1with the �nite aperture size â solves all issues, as it allows estimations of therate of hange of the radiation spot size and of di�ration e�ets. This wouldlead to the following equations for the Geometrial Optis predition of thedepth of fous:�ẑ ' f̂2qN̂ẑ1â ; (349)147



for the di�ration limited depth of fous:�0ẑ ' f̂2â2 ; (350)for the ratio between �0ẑ and �ẑ:�0ẑ�ẑ ' f̂2â2 � ẑ1âf̂2qN̂ ' ẑ1âqN̂ ; (351)and for the ratio between the depth of fous and the distane �:�ẑ� ' f̂2qN̂ẑ1â � 1jMjf̂ ' qN̂̂a : (352)We have seen in Setion 11 that there exist partiular situations when thephase fator in parenthesis f:::g in Eq. (321) an be negleted.In one of these ases, when D̂ẑ21 � N̂ � â2 � ẑ21=N̂ one reovers a saledimage of the virtual soure at the foal plane, where the saling fator f̂ =ẑ1 'jMj (see Eq. (325)). Thus, in this situation, it is not orret to state that theradiation spot size at the image plane is smaller than the radiation spot sizeat the foal plane, beause in both these planes we have the same, identialimage of the virtual soure with approximatively the same saling fator. Itshould be remarked that in this ase the depth of fous �ẑ is longer than thedistane between foal and image plane, �, as one may see from Eq. (352)when N̂ � â2. Another ritial sale to aount for is ẑ21=N̂ . As we have seenin Setion 11, when â2 � ẑ21=N̂ one obtains, at the foal plane, the di�rationpattern of the pupil (aberrated or not, depending on how â2 sales with respetto ẑ1). This ase orresponds to oherent illumination of the pupil. In thissituation, the di�ration limited depth of fous �0ẑ is muh longer than theGeometrial Optis predition of the depth of fous �ẑ, as one may see fromEq. (351). In this ase, Eq. (350) should be used instead of Eq. (349) in orderto estimate the depth of fous of the system. Summing up, Eq. (349) an beused without any remarks in all the ases when â2 � ẑ21=N̂ . When â2 � N̂ andâ2 � ẑ21=N̂ one should remember that the depth of fous beomes longer thanthe distane between the image and the foal plane, this ase orresponding thesituation when an image of the virtual soure is formed in the foal plane. Inall ases when â2 � ẑ21=N̂ instead, we have oherent illumination of the pupil.The di�ration limited depth of fous beomes longer than the GeometrialOptis predition of the depth of fous and, for estimations, one should useEq. (350) in plae of Eq. (349). 148



14 Solutions to the image formation problem for non-homogeneousundulator souresWe will now onsider non-homogeneous undulator soures. The next Setion14.1 will deal with the ase of a horizontally quasi-homogenous and vertiallynon-homogeneous soure. Speial emphasis will be given to the study of thissituation, whih is relevant for the majority of Synhrotron Radiation souresof the third generation. In the following Setion 14.2 we will disuss, instead,the ase of a horizontally non-homogeneous and vertially di�ration limitedsoure. These two ases pratially deal with all third generation light soures,from the soft to the hard X-rays.Our treatment is based on the assumption that the beta funtions have minimain the enter of the undulator. Plaing the virtual soure in the enter of theundulator, we will obtain a partiularly simple expression for the ross-spetraldensity of the soure and its Fourier transform. In partiular, alulations willyield real results. Statistial Optis methods onjugated to Fourier Optiswill allow us to give expliit presentations of the ross-spetral density andits Fourier transform at the virtual soure position. Suh presentations willaount for all omplexities of the soure, intrinsi properties of undulatorradiation and eletron-beam phase spae distribution. Based on our previouswork [2℄, we will �rst alulate the ross-spetral density Ĝ in the far zonelimit. Then, with the help of Eq. (127), we will be able to reover the Fouriertransform of the ross-spetral density Ĝ at the virtual soure position. Byinverse transforming that expression we will �nally reover the ross-spetraldensity as well.In general, we annot give an expliit expression for the ross-spetral den-sity at any observation plane. In other words, as before, Eq. (133) annot bealulated expliitly for any value of ẑ1 and ẑ2. However, one the enter ofthe undulator is �xed as the virtual soure position, there exists a privilegedobservation plane. This is the plane where the enter of the undulator is im-aged and depends on the position ẑ1 hosen for the lens. Throughout thispaper we simply alled it the image plane. Starting from the expression forthe ross-spetral density and its Fourier transform at the virtual soure wewill be able to alulate, for any hoie of ẑ1, the ross-spetral density on thefoal (ẑ2 = ẑf) and on the image (ẑ2 = ẑi) plane. The proedure that we willuse to perform these alulations is similar to what has been proposed in thease of homogeneous soures and will take advantage of Eq. (131) and Eq.(132).As usual, we will begin our investigations negleting pupil e�ets. Results fora large non-limiting aperture on the image plane will be generalized to inludee�ets of the pupil with the help of Eq. (135). Finally, in Setion 14.3 we will149
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Fig. 42. Plot of the universal funtion M̂ , used to alulate the ross-spetral densityat the foal plane when N̂x � 1, D̂x � 1, N̂y and D̂y are arbitrary.ritially disuss the assumptions made throughout this paper and see howand up to what extent they an be relaxed.14.1 Horizontally quasi-homogenous and vertially non-homogeneous soure14.1.1 Large non-limiting apertureLet us �rst retain the assumption D̂x � 1 and N̂x � 1, but allow D̂y and N̂yto assume arbitrary values. Eq. (141) allows the reonstrution of the vertialross-spetral density in the far zone. Note that, when both N̂y . 1 andD̂y . 1 the soure is non-homogeneous. In this ase the far zone limit is forvalues ẑo � 1, and one obtainsĜ(ẑo; ��y;��̂y)= exp hi2��yẑo��̂yi exp h�2N̂y��̂2yi150



� 1Z�1 d�̂y exp "�(��y + �̂y)22D̂y #M(�̂y;��̂y) ; (353)where the funtion M̂ (�; Æ) is the normalized version of a universal funtion�rst de�ned in [2℄ and reads:M̂(�; Æ) = 38p� 1Z�1 d�̂xsin" �̂2x + (� � Æ)24 #sin" �̂2x + (� + Æ)24 # : (354)A plot of the M̂ funtion is given in Fig. 42. The M̂ funtion is a real funtion.Another remarkable property of M̂ is its invariane for exhange of � with Æ.Also, M̂ is invariant for exhange of � with �� (or Æ with �Æ). The followingrelations between universal funtions hold:ÎS(�) = M̂ (�; 0) ; (355)�(Æ) = 12�2 1Z�1 d�M̂ (�; Æ) (356)and (x) = 12�2 1Z�1 d� exp [�i2x�℄ M̂ (�; 0) : (357)Using Eq. (127) and Eq. (353) we obtain the Fourier transform of the ross-spetral density at ẑo = 0 at the virtual soure positionĜ (0; �u;�û)= exp h�2N̂y�û2i 1Z�1 d�̂y exp "�(�u+ �̂y)22D̂y #M̂(�̂y;�û) : (358)Inverse transforming Eq. (358) we obtain the ross-spetral density at thevirtual soure positionĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i 1Z�1 d�̂ exp"�(�y + �̂)22N̂y #M̂(�ŷ; �̂) : (359)In analogy with Eq. (126), we de�ned M̂ as151
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Ĝ(ẑf ; �yf ;�ŷf)= exp " 2îf2 �f̂ � ẑ1� �yf�ŷf# exp24�2N̂y�ŷ2ff̂2 35� 1Z�1 d�̂y exp "�(�yf=f̂ + �̂y)22D̂y #M̂  �̂y; �ŷff̂ ! : (361)In the vertial diretion, the relative intensity on the foal plane is thereforegiven byÎ(ẑf ; �yf )= 1Z�1 d�̂y exp "�(�yf=f̂ + �̂y)22D̂y #ÎS ��̂y��8<: 1Z�1 d�̂y exp24� �̂2y2D̂y 35ÎS ��̂y�9=;�1 ; (362)beause ÎS(�̂y) = M̂(�̂y; 0). In the limit D̂y � 1, Eq. (362) redues toÎ(ẑf ; �yf ) = ÎS  �yf̂f ! : (363)The modulus of the spetral degree of oherene on the foal plane in thevertial diretion readsjg(ẑf ; �yf ;�ŷf)j=exp "�2N̂yf̂2 �ŷ2f#� 1Z�1 d�̂y exp "�(�yf=f̂ + �̂y)22D̂y #M̂  �̂y; �ŷff̂ !�8<: 1Z�1 d�̂y exp "�(�yf=f̂ +�ŷf=f̂ + �̂y)22D̂y #ÎS(�̂y)9=;�1=2�8<: 1Z�1 d�̂y exp "�(�yf=f̂ ��ŷf=f̂ + �̂y)22D̂y #ÎS(�̂y)9=;�1=2 :(364)In the limiting ase for D̂y � 1 one obtains the simpli�ed expressionjg(ẑf ; �yf ;�ŷf)j=exp "�2N̂yf̂2 �ŷ2f#� �yf̂f ; �ŷff̂ ! ; (365)153
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Ĝ(ẑi; �yi;�ŷi)= exp "im(m+ 1)�yi�ŷi2ẑ1 # 1Z�1 d�̂ exp "�(m�yi+ �̂)22N̂y #�M̂(m�ŷi; �̂) exp h�2D̂ym2�ŷ2i i ; (368)orresponding to a relative intensity on the image planeÎ(ẑi; �yi) = 1Z�1 d�̂ exp "�(m�yi+ �̂)22N̂y #M̂(0; �̂)�8<: 1Z�1 d�̂ exp "� �̂22N̂y #M̂(0; �̂)9=;�1 : (369)With the help of Eq. (360), Eq. (356) and Eq. (174) one sees thatM̂(0; y)= 12�2K 1Z�1 dÆ 24exp [i(�2Æ)y℄ 1Z�1 d�M̂ (�; Æ)35 = B̂(y) : (370)The solution of the image formation problem is thus onstituted by a on-volution produt between a Gaussian funtion and the universal funtion B̂,whih admits the analytial representation given in Eq. (186). The intensityon the image plane is independent of the value of D̂y . In the limit N̂y � 1 Eq.(369) gives bak Eq. (169). Instead, in the limit N̂y � 1 we obtainÎ(ẑi; �yi) =M̂(0;m�yi) = B̂(m�yi) : (371)The modulus of the spetral degree of oherene in the vertial diretion isgiven byjg(ẑi; �yi;�ŷi)j= 1Z�1 d�̂ exp "�(m�yi + �̂)22N̂y #�M̂(m�ŷi; �̂) exp h�2D̂ym2�ŷ2i i�8<: 1Z�1 d�̂ exp "�(m�yi +m�ŷy + �̂)22N̂y #M̂(0; �̂)9=;�1=2�8<: 1Z�1 d�̂ exp "�(m�yi �m�ŷy + �̂)22N̂y #M̂(0; �̂)9=;�1=2 :(372)In the ase D̂y � 1 and N̂y � 1 one obtains155
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We an use ondition (136) and Eq. (368) to desribe the ase when thelens is in the far zone. From Eq. (368) we an estimate the order of thesoure dimension, that is max[1;qN̂y℄, and the order of the oherene length,that is min[1=qD̂y; 1℄. The lens is in the far zone when max[1;qN̂y℄=ẑ1 �max[qD̂y; 1℄. Note that several partiular ases of interest are automatiallyinluded in this ondition: the ase for D̂y � 1 and N̂y � 1, that givesẑ1 � qN̂y=D̂y , the ase for D̂y � 1 and N̂y . 1, that gives ẑ1 � 1=qD̂y,as well as the ase for D̂y . 1 and N̂y � 1, that gives ẑ1 � qN̂y. All thesesituations have been previously disussed in Setion 5. The new situation leftto onsider is for N̂y � 1 and D̂y � 1. In this ase, the lens is in the far �eldwhen ẑ1 � 1. From Eq. (135) and Eq. (368) we obtainĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi� Z d�u d�û exp h�2D̂y ẑ21�û2i� 1Z�1 d�̂ exp264���̂+ ẑ1�u�22N̂y 375M̂(ẑ1�û; �̂)�sin�â �m̂z1 (�yi +�ŷi)� �u��û���sin�â �m̂z1 (�yi ��ŷi)� �u+�û�� : (375)Aording to Eq. (353), ẑ21 max[1; D̂y℄ is of order of the square of the radiationspot size on the pupil, while ẑ21=max[N̂y; 1℄ is of order of the square of theoherene length on the pupil. It is interesting to see that if D̂y � 1 theexponential funtion in �û has a very narrow harateristi length with respetto unity, and one an make the substitution M̂(ẑ1�û; �̂y) �! M̂(0; �̂y) =B̂(�̂y), thus getting bak Eq. (256). If N̂y � 1 instead, �̂y an be set to zeroin the exponential funtion in �̂y + ẑ1�u, and the entire exponential funtionan be taken out of the integral in d�̂y. Then, it is possible to show that thesurviving integral in d�̂y is equal to (ẑ1�û), giving bak Eq. (250). Finally,if both N̂y � 1 and D̂y � 1 we get bak Eq. (226).Eq. (375) should be onsidered as a limiting ase when no aberrations arepresent. More generally, when aberrations and apodization are present, Eq.(375) should be substituted by the following expression:ĜP (ẑi; �yi;�ŷi)= 4â2 exp �2imẑ1 �yi�ŷi� Z d�u d�û exp h�2D̂y ẑ21�û2i� 1Z�1 d�̂ exp264���̂+ ẑ1�u�22N̂y 375M̂(ẑ1�û; �̂)157



�P̂a �m̂z1 (�yi +�ŷi)� �u��û��P̂a� �m̂z1 (�yi ��ŷi)� �u+�û� : (376)Eq. (376) is very general and is valid under the only assumption that thelens is in the far �eld region. The use of old oordinates ŷi1 and ŷi2 insteadof �yi and �ŷi somewhat lari�es the meaning of Eq. (376). Eq. (376) statesthat the ross-spetral density aounting for the pupil inuene (aberrationsand di�ration e�ets) is a double onvolution produt of Eq. (368), i.e. theross-spetral density in the ideal ase, and P̂a, whih an be written asĜP (ẑi; ŷi1; ŷi2)= hDÊ(û1)Ê�(û2)E � P̂a(û1) � P̂�a(û2)i (ŷi1; ŷi2)= DhÊ � P̂ai (ŷi1) hÊ� � P̂�ai (ŷi2)E : (377)The intensity at the image plane is found setting ŷi1 = ŷi2 = ŷi, whih givesÎP (ẑi; ŷi)= hDÊ(û1)Ê�(û2)E � P̂a(û1) � P̂�a(û2)i (ŷi; ŷi)=����Ê � P̂a���2 (ŷi)� : (378)In partiular, in the ase of a ompletely oherent soure, we may neglet theensemble average.Note that in order to evaluate the intensity at the image plane, it is no moreenough to know the ideal intensity and to onvolve with a line spread funtion.One has to know the ross-spetral density in the ideal ase and onvolve twiewith P̂a, whih is known as the amplitude line spread funtion of the system(or the amplitude point spread funtion in the two-dimensional ase) and isa more general identi�er of the system harateristis. Even in the non quasi-homogeneous ase one may ontinue to use, for evaluating the intensity at theimage plane, an algorithm based on the alulation of ideal harateristis andfurther onvolution with a funtion haraterizing the system. The di�erenewith respet to the quasi-homogeneous ase is that the amplitude line spreadfuntion must be used in plae of the line spread funtion, and that the ross-spetral density must be used in plae of the intensity.Note that, in our approah, the Wigner funtion plays no role, as it on-stitutes an arti�ial quantity in the image formation problem, whereas thenatural quantity to onsider is the ross-spetral density. Even if the virtualsoure an be haraterized by a phase spae distribution (i.e. by a positiveWigner funtion) one has no simpli�ation in the imaging problem. The onlysimpli�ation of Eq. (378) takes plae in the quasi-homogeneous ase when,due to the separability of the ross-spetral density variables and to a short158



oherene length (ompared with the size of the soure), one obtains the usualinoherent line spread funtion formalism.14.2 Horizontally non-homogeneous and vertially di�ration limited soureWe will now relax the assumption of a large horizontal eletron beam sizeand divergene and deal with the non-homogeneous ase when N̂x assumesarbitrary values, while D̂x � 1. This is a rather exoti range of parameters,and we will disuss the ase for a large non-limiting aperture only. In this ase,for third generation light soures we have automatially N̂y � 1 and D̂y � 1beause �y � �x 24 . In this ase, in the limit ẑo � 1, from Eq. (124) we obtainĜ= exp�i2��x��̂xẑo� exp h�2N̂x��̂2xiexp�i2��y��̂yẑo��sin"(��x ���̂x)2 + (��y ���̂y)24 #sin" (��x +��̂x)2 + (��y +��̂y)24 # :(379)Using Eq. (127) and Eq. (379) one obtains the Fourier transform of the ross-spetral density at ẑo = 0, i.e. at the virtual-soure position, that is givenby Ĝ �0; ��x;��̂x; ��y;��̂y�=exp h�2N̂x��̂2xisin"(��x ���̂x)2 + (��y ���̂y)24 #�sin"(��x +��̂x)2 + (��y +��̂y)24 #: (380)Inverse transforming Eq. (380) it is possible to express the ross-spetral den-sity at the virtual soure position asĜ(0; �x;�x̂; �y;�ŷ)= 1Z�1 d��xd��̂xd��yd��̂y exp h�2N̂x��̂2xi24This treatment an be easily generalized to the more exoti situation for N̂xarbitrary, D̂x � 1, N̂y arbitrary and D̂y � 1. However, here we will be onernedwith third generation light soures only. Assuming reasonable values for �x . 10 Lwand �y = ��x with � ' 10�2 we see that D̂x � 1 implies both N̂y � 1 and D̂y � 1.Therefore we will avoid to make generalizations whih are not pertinent to the aseunder study, e.g. exoti ase for �x > 10 Lw, �y < 10�1 Lw or �y > 10 Lw.159



�sin" (��x ���̂x)2 + (��y ���̂y)24 #�sin" (��x +��̂x)2 + (��y +��̂y)24 #� exp h2i(��̂x�x+ ��x�x̂)i exp h2i(��̂y�y + i��y�ŷ)i :(381)From Eq. (131) and Eq. (380) we obtain the ross-spetral density on the foalplanêG(ẑf ; �xf ;�x̂f ; �yf ;�ŷf)= exp " 2îf2 �f̂ � ẑ1� �xf�x̂f# exp "�2N̂xf̂2 �x̂2f#� exp " 2îf2 �f̂ � ẑ1� �yf�ŷf#�sin"(�xf ��x̂f)2 + (�yf ��ŷf)24f̂2 #�sin"(�xf +�x̂f)2 + (�yf +�ŷf)24f̂2 #: (382)The relative intensity on the foal plane is therefore given byÎ(ẑf ; �xf ; �yf)= sin2" �x2f + �y2f4f̂2 #: (383)This is just the relative intensity on the foal plane from a single eletron, i.e.Eq. (91). It is interesting to note that the modulus of the spetral degree ofoherene on the foal plane depends on �x̂f only, and an be written asjg(ẑf ; �xf ;�x̂f ; �yf ;�ŷf)j= exp"�2N̂xf̂2 �x̂2f# : (384)In the limit N̂x � 1 one reovers the deterministi ase of a single partile. Inthis limit jgj redues to unity, and the wavefront is perfetly oherent.As regards the image plane, we should note that Eq. (381) is not easy tomanipulate analytially in the most general ase. However, when �x̂ = 0 and�ŷ = 0, one an alulate the intensity of the virtual soure. With the helpof Eq. (175) and Eq. (181) one obtains160



Î(0; �x; �y) = 1Z�1 d�̂xd exp "�(�x+ �̂x)22N̂x #~	(�̂x; �y) ; (385)where we have set~	(x; y) = 	�qx2 + y2� : (386)The funtion 	 was already de�ned in Eq. (95). Using Eq. (132) and Eq. (385)we an now give the following expression for the relative intensity:Î(ẑi; �xi; �yi)= 1Z�1 d�̂x exp "�(m�xi+ �̂x)22N̂x #~	(�̂x;m�yi)�8<: 1Z�1 d�̂x exp "� �̂2x2N̂x#~	(�̂x; 0)9=;�1 : (387)In the limit N̂x � 1 we haveÎ(ẑi; �xi; �yi)=m2~	(m�xi;m�yi) ; (388)in agreement with Eq. (96).14.3 General imaging onsiderationsIn the present Setion 14.3 we disuss a general algorithm for the solution tothe image formation problem for undulator soures based on our StatistialOptis approah.Eq. (376) is an expression for the ross-spetral density on the image planein the ase of a non-homogeneous undulator soure and of a lens with anarbitrary pupil funtion (i.e. a lens with aberrations, apodization and �niteaperture size). However, we assumed that the eletron beam has (i) a Gaussiantransverse pro�le and (ii) a large horizontal emittane ompared with theradiation wavelength (N̂x � 1 and D̂x � 1), that (iii) the radiation frequenyis tuned at perfet resonane with the fundamental frequeny of the undulator,i.e. Ĉ � 1 25 , that (iv) the minimal beta funtions in both horizontal and25This means that monohromatization is good enough to neglet �nite bandwidthof the radiation around the fundamental frequeny, as well as eletron beam energyspread. 161



vertial diretions are loated at ẑ = 0, that (v) there is no inuene offousing inside the undulator, that (vi) the lens is plaed in the far zone and,�nally, that (vii) the observation plane is loated at position ẑ = ẑi, wherethe virtual soure (that we assume at ẑ = 0) is imaged. Assumptions (i),(ii), (iii), (iv) and (v) are related to the form of the ross-spetral densityat the virtual soure plane, Eq. (359). They are very often, but not alwaysveri�ed. Moreover they do not depend on the partiular imaging setup relatedwith a given photon beamline. Assumptions (vi) and (vii) instead, are relatedwith the imaging setup i.e. with how the lens and the observation points arepositioned.The majority of the assumptions from (i) to (vii) are often veri�ed for thirdgeneration light soures. As a matter of fat, our theory is spei�ally built todeal with third generation light soures. However, a generalization to inludethe ase of spontaneous undulators installed in XFEL failities (see e.g. [25℄,[26℄) is ertainly desirable. Of all restritions from (i) to (vii), (v) is the morediÆult to be relaxed. In order to do so, one needs to modify the expressionfor the single partile �eld to aount for the inuene of fousing inside theundulator. The other assumptions may be more easily relaxed, to give a moregeneral algorithm for the alulation of the ross-spetral density in the aseof arbitrary position of the lens (near or far zone). The ase of spontaneousundulators installed in XFEL failities is a partiular one when it is needed todeal with both horizontal and vertial eletron beam emittanes omparableor smaller than the radiation wavelength. In fat, �x ' �y ' 0:3�A. Resultsbased on a Gaussian model of the eletron beam with generi N̂x;y and D̂x;ymay be presented. To this purpose one may use Eq. (124) to alulate theross-spetral density in free spae. As one may see inspeting Eq. (124), itis no more possible to separate the horizontal and the vertial diretion. Eq.(124) is still subjet to assumptions (i), (iii), (iv) and (v). Our theory is builtby exploiting many simplifying assumptions. When some of them fail, oneshould go bak to the point where the invalid simpli�ation is exploited, anduse a more generi expression in its plae. In partiular, while assumption (i)is quite realisti in the ase if storage ring soures, it is to be regarded as aonventional assumption when treating soures based on linear aelerators.Our most generi expression, Eq. (114) should be used in plae of Eq. (124)if one wishes to relax assumption (i), as well as (iii) and (iv). One the ross-spetral density in free spae is known through Eq. (124) or Eq. (114), onemay aount for a generi observation plane, thus relaxing assumption (vii). Tothis purpose one needs to put attention on the fat that any observation planeloated at position ẑ = ẑ2 is related with a ertain plane at position ẑ = ẑs infront of the lens through the lens-maker equation, Eq. (21). The next step inour algorithm onsists in �nding the ross-spetral density at ẑ = ẑs, whihwill be imaged at our hosen observation plane, loated at ẑ = ẑ2. To thispurpose, Eq. (128) may be used. In fat, Eq. (128) desribes the propagationof the Fourier transform of the ross-spetral density, Ĝ, in free spae. As we162



have seen, the fat that the lens is plaed in the far �eld allows anellationof one phase fator in the relation between the ross-spetral density on theimage plane and the ross-spetral density on the virtual soure plane. Thisan be seen using ondition (136) in Eq. (132). Suh phase fator should beretained if the lens is in the near zone (that is when ondition (136) is notsatis�ed). In this way, assumption (vi) an be relaxed as well. At this point,the ross-spetral density Ĝ(ẑs;~�r;�~̂r) is known. The �nal step onsists in thealulation of the amplitude point spread funtion P̂a of the system. The ross-spetral density at position ẑ = ẑ2 is found onvolving twie the produt ofthe ross-spetral density at the soure plane and the extra phase-fator dueto the failure of ondition (136) with the amplitude point spread funtion.This givesĜP (ẑ2;~�r;�~̂r)= 4â2 exp �2imẑ1 ~�r ��~̂r� Z d~�u d�~̂u� exp h2iẑ1~�u ��~̂ui Ĝ �ẑs;�ẑ1~�u;�ẑ1�~̂u��P̂a �m̂z1 �~�r +�~̂r�� ~�u��~̂u��P̂a� �m̂z1 �~�r ��~̂r�� ~�u+�~̂u� ; (389)where m is now de�ned as m = (ẑ1 � ẑs)=(ẑ2 � ẑ1), aording to Eq. (22).It should be noted that, in this paper, together with a theory for third gen-eration light soures we also developed a partiular language that an beapplied for a wider range of problems. Up to now, researh works dealingwith transverse oherene properties of Synhrotron Radiation have used thestandard language developed to treat Statistial Optis problems. Suh a lan-guage has a very limited sope beause Statistial Optis has mainly dealtwith thermal-like soures. As a result, a time domain approah has often beenused. Quasi-stationary approximation and ergodiity are usually assumed, sothat time averages are used instead of ensemble averages. Then, the oneptof ross-spetral purity [3, 8℄ must be forefully evoked in order to separatelongitudinal and transverse oherene e�ets, whih are desribed throughthe mutual intensity funtion. Suh language though, is not suitable to de-sribe Synhrotron Radiation experiments, where many radiation pulses areolleted and results are averaged over an ensemble. Our approah starts fromthe very foundation of Statistial Optis, thus avoiding inonvenient assump-tions. A language based on a frequeny domain desription and on ensembleaverages over an ensemble of radiation pulses (eah orresponding to a di�er-ent eletron bunh) has been developed. In our paper we aimed at presenting asatisfatory desription of the physis involved in the haraterization of lightsoures from a statistial viewpoint, trying to exhaustively explain where themain ideas ome from and where they lead to. We restrited our attention163



to a quantitative treatment of third-generation light soures but we also laidthe foundations to desribe other kind of radiation soures, e.g. spontaneousundulator soures installed in XFEL failities. In fat, many of the featuresof the relatively speialized setup onsidered in this work are ommon in thegeneral theory of undulator soures.15 Supplementary remarks on quasi-homogeneous undulator soureasymptotesIn the last Setion 14 we presented quite general results for vertially non-homogeneous soures. Under the only assumption of a large horizontal emit-tane (D̂x � 1 and N̂x � 1), Eq. (353) spei�es the ross-spetral densityof the radiation in the far zone and in the vertial diretion without on-straints on N̂y and D̂y. Under the same onditions, Eq. (359) spei�es theross-spetral density of the virtual soure in the vertial diretion. Note thatEq. (359) is a onvolution. When the dependene of Ĝ on �ŷ an be isolatedin a single fator, the soure is forefully quasi-homogeneous, while there areno ases when it is desribed by a more generi kind of Shell model (i.e.Ĝ � qI(y1)qI(y2)g(�ŷ)). It is important to stress this fat in onnetionwith several researh works [14, 15℄ devoting partiular attention to the rela-tion between the Gaussian-Shell model and undulator soures. As we remarkedin Setion 7, Shell models (and, in partiular, Gaussian-Shell models) may er-tainly be useful for desribing light soures other than undulator-based onesand for eduational purposes, but they do not desribe any pratial realiza-tion of undulator radiation soures.From Eq. (353), setting ��̂y = 0, one obtains the intensity distribution in thefar zoneÎ(��y) = 1Z�1 d�̂y exp "�(��y + �̂y)22D̂y # ÎS(�̂y) ; (390)having used Eq. (355). From Eq. (359), setting �ŷ = 0, one gets the intensitydistribution of the virtual soure in the enter of the undulator 26 ,Î(0; �y) = 1Z�1 d�̂ exp "�(�yy + �̂)22N̂y # B̂(�̂) ; (391)26We are always assuming that the minimal beta funtion of the eletron beam isloated at the enter of the undulator. 164



having taken advantage of Eq. (370). ÎS in Eq. (390) and B̂ in Eq. (391)are the universal funtions given in Eq. (160) and Eq. (186). Both Eq. (390)and Eq. (391) are onvolutions, and are valid regardless the values of N̂y andD̂y, i.e. regardless the fat that the soure is quasi-homogeneous or not. Inthe ase of a large non-limiting aperture and an ideal lens, other two exatresults an be found in Setion 14, whih are independent of the values ofN̂y and D̂y. In fat, Eq. (362) and Eq. (369) prove that the exat expressionfor the intensity distribution is, both on the foal and on the image plane, aonvolution between Gaussian and universal funtions.When the soure is quasi-homogeneous, with an auray saling as the inversenumber of modes, 1=qmax[N̂y; 1℄max[D̂y; 1℄, we may take the approximationM̂(�ŷ; �̂) ' (�ŷ)B(�̂) in Eq. (359).This fat may be demonstrated as follows. First, let us introdue a normalizedversion of the one-dimensional inverse Fourier transform of the funtion M ,that isM 0(�ŷ;��̂y)= 1A 1Z�1 M̂ ���y;��̂y� exp h�2i�ŷ��yi d��y= 1A 1Z�1 M̂ (�ŷ; �y) exp h2i��̂y�yi d�y : (392)The normalization fator A in Eq. (392) is de�ned asA= 1Z�1 M̂ (0; �y) d�y ; (393)so that M 0(0; 0) = 1. The ross-spetral density in Eq. (359) an therefore bewritten asĜ(0; �y;�ŷ)= exp h�2D̂y�ŷ2i� 1Z�1 dû exp [�2iû�y℄ exp h�2N̂yû2iM 0(�ŷ; û) ; (394)having used the onvolution theorem. Under the quasi-homogeneous assump-tion, we an approximate M 0(�ŷ; û) ' M 0(�ŷ; 0)M 0(0; û). To show this, letus represent M 0(x; y) using a Taylor expansion around the point (0; 0). Oneobtains 165



M 0(x; y)= 1 + 1Xk=1 1k! 24xk �kM 0(x; 0)�xk �����x=0 + yk�kM 0(0; y)�yk �����y=035+O(xy) ; (395)where the normalization relation M 0(0; 0) = 1 has been taken advantageof. Similarly, one may onsider the following representation of the produtM 0(x; 0) M 0(0; y) also obtained by means of a Taylor expansion:M 0(x; 0)M 0(0; y)= "M 0(0; 0) + 1Xk=1 xkk! dkM 0(x; 0)dxk �����x=0#�24M 0(0; 0) + 1Xj=1 yjj! djM 0(0; y)dyj �����y=035=1 + 1Xn=1 1n! "xndnM 0(x; 0)dxn �����x=0+yndnM 0(0; y)dyn �����y=035+O(xy) ; (396)having used M 0(0; 0) = 1. Comparison of the last equality in (396) withthe right hand side of Eq. (395) shows that M 0(x; y) ' M 0(x; 0)M 0(0; y) upto orretions of order xy � 1=qmax[N̂y; 1℄max[D̂y; 1℄, that is the quasi-homogeneous auray. Using this approximation in Eq. (394) yieldsĜ(0; �y;�ŷ)= exp h�2D̂y�ŷ2iM 0(�ŷ; 0)� 1Z�1 dû exp [�2iû�y℄ exp h�2N̂yû2iM 0(0; û) : (397)Finally, realling the de�nitions of  and B we an write Eq. (397) asĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i (�ŷ) 1Z�1 d�̂ exp "�(�y + �̂)22N̂y # B̂(�̂) : (398)Eq. (398) is valid in any quasi-homogeneous ase.Note that Eq. (398) aounts for di�ration e�ets through the universal fun-tions  and B. This may be traed bak to the use of the inhomogeneous waveequation to alulate the ross-spetral density for the virtual soure, fromwhih Eq. (398) follows. Deriving Eq. (398), we assume a large number ofmodes, and this justi�es the use of phase spae representation as an alterna-tive haraterization of the soure, in plae of the ross-spetral density (i.e.Eq. (398) itself). 166



Setting �ŷ = 0, Eq. (398) gives the exat intensity distribution at the vir-tual soure, i.e. Eq. (391). The spetral degree of oherene on the virtualsoure is then reovered using the de�nition of quasi-homogeneous soureĜ = Î(�y)g(�ŷ). Sine the soure is quasi-homogeneous, the Fourier trans-form of the spetral degree of oherene g(�ŷ) yields the intensity in thefar zone. Remembering that  and IS form a Fourier pair, we onlude that,starting from Eq. (398) it is possible to reprodue the exat result for theintensity in the far zone, Eq. (390). Quite remarkably, Eq. (398), whih isderived under the quasi-homogeneous approximation and is related to an a-uray 1=qmax[N̂y; 1℄max[D̂y; 1℄, yields bak two results, Eq. (390) and Eq.(391) whih are valid regardless the fat that the soure is quasi-homogeneousor not. Moreover, in the ase of perfet optis and non-limiting pupil aperture,and independently of the quasi-homogeneous assumption, the intensity pro�lein the virtual plane reprodues the intensity pro�le in the image plane, whilethe intensity pro�le in the far zone reprodues the intensity pro�le in the foalplane. Therefore, we an also onlude that Eq. (398) gives both the intensityin the foal and in the image plane for an ideal lens. Note again that also thesetwo results, Eq. (362) and Eq. (369), have perfet auray. They are exat andare not subjet to the quasi-homogeneous auray 1=qmax[N̂y; 1℄max[D̂y; 1℄.Let us now onsider the partiular quasi-homogeneous ase when both N̂y � 1and D̂y � 1. In this ase, the number of modes along the virtual soure is oforder qN̂yD̂y and the normalized oherene length an be estimated as �̂ �1=qD̂y � 1. In the ase of non-ideal optis, one a line spread funtion l forthe system is found, one may obtain the intensity distribution of the radiationby onvolving l with the ideal image. The auray of these alulations is nowthe auray of the quasi-homogeneous assumption, 1=qN̂yD̂y. In the ase apupil with aperture â is present, we onluded in Setion 8.1 that it makessense to aount for di�ration e�ets when â � qD̂ẑ1. In this ase in fat,the ratio between the width of the line spread funtion and the width of theideal image is of order ẑ1=(âqN̂y)� 1=qN̂yD̂y . As a result, when Eq. (398) isused to alulate the ideal intensity, it makes sense to aount for di�ratione�ets. Worsening the auray in the alulation of the ross-spetral densityof the soure, we may redue Eq. (398) toĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i exp "� �y22N̂y # ; (399)that is Eq. (146). Note that negleting the produt with the  funtion an bedone with an auray 1=qD̂y, while extration of the exponential funtionin �y from the onvolution produt with the B funtion an be done with anauray 1=qN̂y. In our study ase when D̂y � 1 and N̂y � 1, the overall167



auray of Eq. (399) (or Eq. (146)) an be estimated as max(1=qD̂y; 1=qN̂y),that is the auray of the Gaussian approximation. Suh auray is muhworse than that of the quasi-homogeneous assumption in Eq. (398), that is1=qN̂yD̂y. This fat has interesting onsequenes. In fat, Eq. (399) an �rstbe used to alulate the ideal intensity on the image plane and, then, it may beonvolved with the line spread funtion of the lens to give a haraterizationof the intensity distribution with a redued auray. If, for instane, â �qD̂ẑ1 we an have situation when ẑ1=(âqN̂y)� 1=qN̂yD̂y but ẑ1=(âqN̂y)�1=qN̂y and, as a result, aounting for di�ration e�ets would not modifythe intensity with auray 1=qN̂y. In spite of this, going bak to Eq. (398) toalulate the ideal intensity with better auray 1=qN̂yD̂y, di�ration e�etswill appreiably modify the intensity within the auray 1=qN̂yD̂y.When N̂y � 1 and D̂y ' 1 the auray of the quasi-homogeneous ap-proximation beomes 1=qN̂y max[1; D̂y℄. When N̂y ' 1 and D̂y � 1 it be-omes, instead, 1=qmax[1; N̂y℄D̂y. In these ases, the auray of the quasi-homogeneous approximation is omparable to the auray of the Gaussianapproximation. To be spei�, when N̂y � 1 and D̂y ' 1 the auray of thequasi-homogeneous approximation is of order 1=qN̂y (note that the oherenelength at the pupil is �̂ ' 1, that is the di�ration size) and Eq. (398) an besubstituted withĜ(0; �y;�ŷ) = exp "� �y22N̂y # exp h�2D̂y�ŷ2i(�ŷ) (400)without loss of auray, beause the relative auray of the onvolution isof order 1=qN̂y as the auray of the quasi-homogenous approximation. Eq.(400) is just Eq. (162). A similar reasoning an be done when D̂y � 1 andN̂y ' 1. In this ase the auray of the quasi-homogeneous approximation isof order 1=qD̂y (note that the oherene length at the pupil is �̂ � 1, thatis muh smaller than the di�ration size), and Eq. (398) an be substitutedwithĜ(0; �y;�ŷ) = exp h�2D̂y�ŷ2i 1Z�1 d�̂ exp"�(�y + �̂)22N̂y # B̂(�̂) : (401)without loss of auray. In fat, negleting the  funtion in Eq. (398) isequivalent to approximate the onvolution in Eq. (390) with a Gaussian dis-tribution, whih an be done with an auray of order 1=qD̂y, the same ofthe quasi-homogenous approximation. Eq. (401) is just Eq. (188).168



In losing this Setion we should stress that, in the ase of ideal lenses, theintensity on the image plane, that is a saled version of Eq. (391), is exatlygiven by a onvolution of a known universal funtion and the eletron beampro�le. In the ase the eletron beam pro�le is unknown, one may measurethe intensity and deonvolve Eq. (391) in order to �nd bak the eletron beampro�le. In literature (see, for example, [27℄) it is usually aepted that theresolution of any eletron beam size � inferred from the measurement of theradiation intensity distribution on the image plane is limited (in the ase of anideal lens) by the di�ration size of the single partile undulator radiation, i.e.the resolution is of order p�Lw=(2��). However, we have seen that Eq. (391)is an exat result. Therefore, any measurement of � obtained by deonvolutionof Eq. (391) is only limited by the �nite auray of the detetor.16 ConlusionsAs has been remarked in [28℄: "[...℄ it is very desirable to have a way to modelthe performane of undulator beamlines with signi�ant partial oherent ef-fets, and suh modelling would, naturally, start with the soure. The alu-lation would involve the knowledge of the partial oherene properties of thesoure itself and of how to propagate partially oherent �elds through spaeand through the optial omponents used in the beamline. [...℄ it is impor-tant to reognize that, although most of these alulations are, in priniple,straightforward appliations of onventional oherene theory (Born and Wolf,1980; Goodman, 1985), there is not muh urrent interest in the visible optisommunity. [...℄ For example, even for the rather simple problem of di�ra-tion by an open aperture with partially oherent illumination, we have foundpublished solutions only for irular and slit-shaped apertures and only forsoures onsisting of an inoherently illuminated aperture of similar shape tothe di�rating aperture. Thus, there is no ounterpart in these types of FourierOptis problem to the highly developed art of ray traing in geometrial op-tis, not is there anything as simple as a ray to whih an exat system responsean be alulated.". This program of development of Synhrotron Radiationtheory was formulated more than ten years ago. Operation of third generationlight soures also started in this period. This demonstrates that when thirdgeneration light soures were born, it was immediately reognized that theusual theory of Synhrotron Radiation was not adequate to desribe them.Yet, up to now, no theoretial progress has been made in that diretion. Thepresent paper, as well as our previous work [2℄ are devoted to the realizationof the before mentioned program of development of Synhrotron Radiationtheory.In [2℄ we desribed spatial oherene propertied of undulator radiation fromthird-generation light soures in free spae. In this paper we aim at an exten-169



sion of [2℄. Previous sienti� works and textbooks postulate that the ross-spetral density at the virtual undulator soure an be desribed in terms ofa Gaussian-Shell model or, even more restritively, that undulator soures areperfetly inoherent. Suh assumption is not adequate when treating thirdgeneration light soures, beause the vertial emittane is omparable or evenmuh smaller than the radiation wavelength (i.e. �y � �=(2�)) in a wide spe-tral interval extending from the �Amstrong wavelength range up to the softX-rays.In this work we ombined Statistial Optis methods with Fourier Optistehniques in order to desribe in an analytial way the propagation of theross-spetral density of Synhrotron Radiation through a lens. In partiular,we foused our attention on the problem of �nding both the intensity and thespetral degree of oherene of undulator radiation at the foal and at theimage plane of the lens. Although our paper is not limited to this situationalone, our main result deals with the quite generi ase of a large normalizedhorizontal emittane �x � �=(2�) and an arbitrary vertial emittane �y.Our paper provides physial understanding of a setup of general interest andwe expet it to be useful for pratial estimations in almost all range of the pa-rameter spae for third generation light soures. We expet that, in the future,numerial odes fully apable of dealing with transverse oherene propertiesof Synhrotron Radiation will also be developed, and will be apable of pro-viding detailed analysis of partiular experimental setups. Our theory willbe of help to developers of these odes beause it provides both benhmarksand partially manipulated equations for the �eld orrelation, simpler to treatnumerially than �rst priniple alulations and still reasonably generi.Two basi non-restritive assumptions made in our theory are the paraxialapproximation and the resonane approximation. The �rst is justi�ed by thefat that we are treating an ultra-relativisti system. The seond means thatwe are working with an undulator omposed of a large number of periodNw � 1 and that we are interested in frequenies near the fundamental. Thisallows to neglet the vertial polarization omponent of the �eld and to treatthe �eld within a salar theory.Analytial studies also required the introdution of some restritive assump-tions introdued in our theory, to be relaxed in the future. First, we assumedthat the beta funtions in both diretions have their minima in the enter ofthe undulator. However, beta funtions are (or may be) often tuned aroundthe enter of the undulator in ases of pratial interest. Seond, we assumed asingle onverging thin lens with none or very spei� pupil funtions. However,other shapes of the lens an be aounted for by means of numerial onvolu-tions between a more ompliated omplex pupil funtion and our fundamentalresults referring to the ase when inuene of the pupil is negligible. Note that170



the situation of a thin lens is often met in pratie in the ase of X-ray radi-ation, as grazing inidene reetive optis is quite frequently used for imageformation in this spetral range. Third, we assumed that monohromatizationis good enough to neglet �nite bandwidth of the radiation around the funda-mental and also eletron beam energy spread. Both these e�ets may be takeninto aount by an extension of this theory. However, in pratial ases of in-terest these restritions are often met. For instane, a monohromator relativebandwidth of 10�3 is suÆient to guarantee a reasonably narrow bandwidthfor undulators up to about 40 periods. Also, with this number of undulatorperiods, suh a monohromator guarantees small orretions to our results foreletron beams with a relative energy spread of 10�3 or better.The three before mentioned assumptions are somewhat restritive. However,they are often met in pratie and our theory an be extended to the ase whenthey are not met. A more restritive assumption is that radiation frequeny istuned at perfet resonane with the fundamental frequeny of the undulator.Although this last assumption is also often met in pratie, our theory annotbe easily extended to aount for the situation when it is not satis�ed beausethe starting point for the alulation of the ross-spetral density is given byan expression for the eletri �eld around the fundamental frequeny.As a �nal remark, it should be said that we hose not to deal with bendingmagnet soures in this paper. This is left for future investigations. However,some estimates based on dimensional analysis suggest that, as disussed inSetion 7, Geometrial Optis treatments may be suÆient to desribe in asatisfatory way bending magnet radiation from third generation light soures.To onlude, our paper onstitutes, to our knowledge, the �rst satisfatorytheory desribing imaging of undulator soures by a single non-ideal lens. Werestrit ourselves to the analysis of a single lens for simpliity, the resultsfor more ompliated optial systems involving a larger quantity of optialelements being a straightforward extension of the present work.
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