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1. IntrodutionThe osillations among pairs of neutral B-mesons provide ruial information for pinningdown the elements of the Cabibbo-Kobayashi-Maskawa (CKM) Matrix that are assoiatedwith the top quark. Owing to the absene of avour-hanging neutral urrents in theStandard Model, these osillations are desribed by box diagrams, in whih the avourhange is brought about through the intermediate propagation of a virtual top quark.By integrating out the W -boson, the box diagram is replaed by an e�etive point-likeinteration vertex assoiated with the left-handed �B = 2 four-quark operatorOLL(x) = �b(x)L� `(x) �b(x)L� `(x) ; (1.1)where L� = �(1 � 5), and the avour label ` denotes either a d or an s quark. Thematrix elements of OLL between B-meson states are ommonly parameterised in terms ofthe B-parameters BB and BBs, for instaneh �B0jOLLjB0i = 83m2Bf2BBB ; (1.2)for ` = d. The operator OLL an be deomposed into parity-even and parity-odd ompo-nents OVV+AA and OVA+AV . In the Standard Model only the parity-even part OVV+AAmakes a ontribution to B-meson mixing. The B-parameters enode the long-distanee�ets of the strong interation and must be determined in a non-perturbative approahsuh as lattie QCD. Indeed, various lattie estimates of BB and BBs have been publishedby several authors in reent years [1{12℄.It is well known that relativisti b-quarks annot be simulated diretly for urrently a-essible lattie spaings. Several formalisms for treating b-quarks on the lattie, based onHeavy Quark E�etive Theory (HQET) [13, 14℄, non-relativisti QCD [15℄, on-shell im-provement for relativisti quarks [16,17℄, as well as �nite-size saling tehniques [18℄, havebeen developed and applied. Obviously, some, if not all, of these approahes imply ertainapproximations or assumptions whose validity and intrinsi auray must be investigated.In order to yield useful phenomenologial information, operators like OLL must be renor-malised. If the regulator breaks hiral symmetry, as is the ase for Wilson fermions, therenormalisation of OLL, whih has a partiular hiral struture, is ompliated by the fatthat it undergoes mixing with operators of di�erent hiralities. Therefore, in addition toan overall logarithmially divergent, multipliative renormalisation fator, one must alsodetermine �nite subtration oeÆients.The analogous ase of K0� �K0 mixing, in whih all �elds that appear in the orrespondingfour-quark operator are treated relativistially, has been studied in ref. [19℄. There therenormalisation and mixing patterns of a general set of four-quark operators were lassi�edaording to their transformation properties under ertain symmetries. In partiular, itwas shown how the mixing due to expliit hiral symmetry breaking implied by the Wilsonterm ould be isolated and absorbed into mixing oeÆients. Another important resultof [19℄ was the observation that the parity-odd omponent OVA+AV is proteted against{ 1 {



mixing by disrete symmetries.In this paper we adopt a similar strategy to extend the analysis of ref. [19℄ to the asewhere the b-quark is treated at leading order in HQET, i.e. in the stati approximation. Inpartiular, we show how the heavy quark spin symmetry, in onjuntion with transforma-tion properties under spatial rotations, as well as disrete symmetries like parity and timereversal an be used to onstrain the renormalisation patterns of a general set of stati-lightfour-quark operators. One key result is that it is possible to �nd a basis of parity-odd oper-ators that renormalise purely multipliatively. This allows to devise a strategy aimed at anon-perturbative determination of the renormalisation fators required for the alulationof B-parameters, without the need to determine �nite subtrations.To this end we use twisted mass QCD (tmQCD) [20℄ as a disretisation for the light quark�elds, whih allows us to map parity-even operators to parity-odd ones. By employingthe Shr�odinger funtional (SF) [21℄, the anomalous dimension of the latter an then bedetermined non-perturbatively in omplete analogy to the ase of K0� �K0 mixing studiedpreviously in [22℄. Thus, in order to reonstrut the phenomenologially relevant matrix ele-ment of OLL, one only needs to determine the renormalisation properties of multipliativelyrenormalisable operators, even in regularisations that break hiral symmetry expliitely.In addition to explaining how the renormalisation properties of stati-light four-quark op-erators an be onstrained, another purpose of this paper is to identify { in the spiritof [23℄ { suitable �nite-volume renormalisation shemes based on the SF, to be used in aforthoming non-perturbative alulation. To this end we have omputed the anomalousdimension in perturbation theory at NLO for the omplete basis of four-quark operatorsin several SF shemes.Of ourse, the ompliated mixing patterns one is onfronted with when using Wilsonfermions an be avoided by using disretisations for the light quarks whih obey theGinsparg-Wilson relation. First steps in this diretion have been taken in ref. [24, 25℄.However, in this work we show, by using symmetry properties and tmQCD, that the renor-malisation of stati-light four-quark operators desribing B0 � �B0 mixing an be studiedin an equally simple framework for Wilson-type regularisations. Non-perturbative renor-malisation an thus be implemented in a straightforward manner and at muh reduedomputational ost.This paper is organised as follows: in setion 2 we disuss how the transformation propertiesunder various symmetries onstrain the mixing patterns of stati-light four-quark opera-tors. In setion 3 we formulate a set of renormalisation onditions for the operator basiswithin the Shr�odinger funtional. Setion 4 desribes the perturbative alulation whihyields the NLO anomalous dimensions of the operators for a set of Shr�odinger funtionalrenormalisation shemes. In setion 5 we disuss the use of tmQCD to ompute the physialmatrix elements for B0{ �B0 mixing using multipliatively renormalisable operators. Ouronlusions are presented in setion 6. Tehnial details regarding the use of symmetries toonstrain the renormalisation pattern and the evaluation of lattie integrals are relegatedto Appendies A and B, respetively. Tables listing the �nite parts of renormalisation{ 2 {



onstants and the NLO anomalous dimensions an be found in Appendix C.2. Mixing of heavy-light four-quark operators in the stati approximationIn this setion we study the mixing of �B = 2 heavy-light four-quark operators in whih theheavy quarks are treated in the stati approximation of HQET. Thus they are representedby a pair of stati �elds ( h;  �h), propagating forward and bakward in time, respetively;their dynamis is governed by the Eihten-Hill ation [26℄Sstat[ h;  �h℄ = a4Xx � � h(x)r�0 h(x)� � �h(x)r0 �h(x)� ; (2.1)where the forward and bakward ovariant derivatives r0; r�0 are de�ned byr0 �h(x) = 1a �U0(x) �h(x+ a0̂)�  �h(x)� ;r�0 h(x) = 1a � h(x)� U0(x� a0̂)�1 h(x� a0̂)� : (2.2)The �eld  h( � h) an be thought of as the annihilator(reator) of a heavy quark. Simi-larly,  �h( � �h) reates(annihilates) a heavy antiquark. Eah �eld is represented by a four-omponent Dira vetor, yet only half of the omponents play a dynamial rôle, owing tothe stati projetion onstraintsP+ h =  h ; � hP+ = � h ; P+ = 12(1+ 0) ;P� �h =  �h ; � �hP� = � �h ; P� = 12(1� 0) : (2.3)Instead of the link variables that appear in eq. (2.2) one an onsider more general de�ni-tions of the parallel transporter whih enters the ovariant derivative. A set of alternativedisretisations was studied in [27℄, where it was found that adequate hoies of paralleltransporter lead to muh improved signal-to-noise ratios in atual simulations.The light (relativisti) quarks are instead taken to be Wilson fermions, using either theplain Wilson ation or its O(a) improved version with a Sheikholeslami-Wohlert term [28℄.The expliit hiral symmetry breaking indued by the Wilson term auses the mixing ofoperator of di�erent naive hirality even in the hiral limit.We onsider a omplete basis of �B = 2 heavy-light four-quark operators whih, forthe sake of de�niteness, we hose to ontain two stati �elds � h and � �h while, in the lightsetor, we onsider massless fermions with two distint avours  1 and  2. We introduea generi �B = 2 operator viaO��1�2 = 12 �( � h�1 1)( � �h�2 2)� ( � h�1 2)( � �h�2 1)� ; (2.4)where �1;2 are Dira matries, and we adopt the notationO��1�2 � �3�4 � O��1�2 �O��3�4 : (2.5){ 3 {



The omplete basis of Lorentz invariant operators is given by the set of 16 operatorsparity-even: Q�1 = O�VV+AA ; parity-odd: Q�1 = O�VA+AV ;Q�2 = O�SS+PP ; Q�2 = O�SP+PSQ�3 = O�VV�AA ; Q�3 = O�VA�AV ;Q�4 = O�SS�PP ; Q�4 = O�SP�PS ; (2.6)whih we have grouped aording to their transformation properties under parity. HereV = �, A = �5, S = 1, P = 5, and an impliit summation over pairs of Lorentz indiesis understood. We inidentally remind the reader that tensor strutures like T = ��� or~T = ���5 produe redundant operators in the stati limit, due the projetion onstraints(2.3).The desription of �B = 2 transitions in terms of the stati approximation of HQETimplies that the operator OLL of eq. (1.1) is related in some partiular way to the operatorslisted in eq. (2.6). Owing to the heavy-quark spin symmetry, one �nds that OLL must bemathed to a linear ombination of O+VV+AA and O+SS+PP [29℄, and thus those two operatorsare of partiular interest to the study of B0 � �B0 mixing.The operator basis in eq. (2.6) renormalises, in full generality, via a 16� 16 matrix Z,the form of whih an be onstrained through symmetry arguments. A systemati methodto arry out this analysis is given by the following presription:(i) Construt the matries �k that implement, at the level of the operator basis, amaximal set of independent symmetry transformations that leave the ation invariant.(ii) Impose the onstraints Z= �kZ��1k ; 8k: (2.7)The solution Z to this system of equations displays the onstrained form of therenormalisation matrix.In most ases the onstraint imposed by a given symmetry on the renormalisation matrixZ an be easily found out, while in a few ases (namely heavy quark spin symmetryand H(3) spatial rotations) an expliit onstrution of the orresponding �k matries isrequired. We leave the explanation of this proedure to Appendix A and we present herethe list of symmetries that have been used and their e�et in onstraining the matrix Z.Flavour exhange symmetry S. S exhanges the two relativisti avours  1 and  2.Operators with supersript � are eigenvetors of �S with eigenvalues �1 respetively. Sthus prevents the mixing between the + and � setors. This redues the renormalisationmatrix Zto a blok-diagonal form, with two 8� 8 bloks.Parity. Mixing among operators with opposite parity is exluded, and the renormalisationmatrix Zis redued to a blok-diagonal form, where four 4� 4 bloks desribe the mixingof the parity-even and parity-odd operators among themselves.{ 4 {



Chiral symmetry. It is used in the same way as in ref. [19℄. In the hiral limit, theontinuum relativisti quark ation is invariant under the �nite axial transformation: k ! i5 k ; � k ! i � k5 : (2.8)Under this transformation we obtain:Q�1 !�Q�1 ; Q�1 !�Q�1 ;Q�2 !�Q�2 ; Q�2 !�Q�2 ;Q�3 ! Q�3 ; Q�3 ! Q�3 ;Q�4 ! Q�4 ; Q�4 ! Q�4 : (2.9)From this one sees that, were hirality respeted by the regulator, Q�1 would mix onlywith Q�2 , and Q�3 only with Q�4 (and similarly in the parity-odd setor). This is notthe ase with a Wilson regularisation, for whih the struture of hiral multiplets mustbe restored by ombining operators with di�erent naive hiralities [30℄. The restorationof hiral properties is ahieved by introduing the mixing matries ��;D�. One thesubtrated operators ~Q� = (1 + ��)Q� and ~Q� = (1 + D�)Q� with the orret hiralproperties have been onstruted, they will mix like in the ontinuum with renormalisationmatries Z�;Z�. We hoose the matries Z�;Z�;��;D� suh that:0BBB�Q�1Q�2Q�3Q�4 1CCCAR = 0BBB�Z�11 Z�12 0 0Z�21 Z�22 0 00 0 Z�33 Z�340 0 Z�43 Z�441CCCA266641+0BBB� 0 0 ��13 ��140 0 ��23 ��24��31 ��32 0 0��41 ��42 0 0 1CCCA377750BBB�Q�1Q�2Q�3Q�4 1CCCA ; (2.10)and 0BBB�Q�1Q�2Q�3Q�4 1CCCAR = 0BBB�Z�11 Z�12 0 0Z�21 Z�22 0 00 0 Z�33 Z�340 0 Z�43 Z�441CCCA266641+0BBB� 0 0 D�13 D�140 0 D�23 D�24D�31 D�32 0 0D�41 D�42 0 0 1CCCA377750BBB�Q�1Q�2Q�3Q�4 1CCCA : (2.11)This hoie is onvenient beause it is easy to show (for instane by using Ward identities)that ��; D� and the produt Z�(Z�)�1 all depend only on the bare oupling g0, whileZ� and Z� alone ontain the ontinuum-like dependene on the renormalisation sale.Heavy quark spin symmetry and H(3) spatial rotations. Further onstraints anbe obtained from the heavy quark spin symmetry and ubi rotations. The proedure isslightly involved and we leave its desription to Appendix A. It applies identially to bothparity-even and parity-odd setors, and below we provide the expressions for the latter |results for the parity-even setor are obtained by simply replaing the symbols Q;Z ;Dwith Q;Z;�. After imposing the onstraints Z= �kZ��1k one �nds that it is possible torotate (2.6) into a new basis(Q0�1 ;Q0�2 ;Q0�3 ;Q0�4 )T = (Q�1 ;Q�1 + 4Q�2 ;Q�3 + 2Q�4 ;Q�3 � 2Q�4 )T ; (2.12){ 5 {



in whih the sale-dependent mixing is ompletely disentangled (even though some sale-independent mixing remains):0BBB�Q0�1Q0�2Q0�3Q0�4 1CCCAR = 0BBB�Z 0�1 0 0 00 Z 0�2 0 00 0 Z 0�3 00 0 0 Z 0�4 1CCCA266641+0BBB� 0 0 D0�1 00 0 0 D0�2D0�3 0 0 00 D0�4 0 0 1CCCA377750BBB�Q0�1Q0�1Q0�3Q0�3 1CCCA : (2.13)Time reversal. Up to this point, the renormalisation mixing of the parity-even andparity-odd setors has the same matrix struture. We now onsider the e�et of a timereversal transformation of both the stati and relativisti quark �elds. To that purpose, itis onvenient to rewrite (2.4) in the formO��1�2 = 12 ���	P+�1 1� � �	P��2 2�� ��	P��1 2� ��	P+�2 1�� ; (2.14)with 	 =  h +  �h ; �	 = � h + � �h : (2.15)It is then easy to apply the time reversal transformation�	(x)! �	(x� )50; k(x)! 05 k(x� ); k = 1; 2 (2.16)where (x0;x)� = (�x0;x).The transformation rules for the operators (apart from the � reetion of the spae-time oordinates) are easily found to beQ�1 !�Q�1 Q�1 !�Q�1 ;Q�2 !�Q�2 Q�2 !�Q�2 ;Q�3 !�Q�3 Q�3 !�Q�3 ;Q�4 !�Q�4 Q�4 !�Q�4 (2.17)and idential ones for the (Q0;Q0) basis. It is then lear that no new onstraints arise forthe parity-even operators and for Z 0�, while the invariane of the sale independent mixingunder time reversal immediately yields D0� = 0: (2.18)This proves the purely multipliative renormalisability of the operator basis (2.12). As anote of referene, we would like to point out that the absene of mixing is already manifestat the one-loop perturbative level in eqs. (20){(23) of [6℄: it is enough to projet both sidesonto parity eigenstates and hange to the basis in eq. (2.12) to �nd that mixing in theparity-odd setor is absent at one loop. { 6 {



Finally, we an rotate bak to the standard basis (2.6), obtaining the following formfor the renormalisation matries:Z� = 0BBB� Z 0�1 0 0 0�14(Z 0�1 � Z 0�2 ) Z0�2 0 00 0 12(Z 0�3 + Z 0�4 ) Z 0�3 � Z 0�40 0 14(Z 0�3 � Z 0�4 ) 12(Z 0�3 + Z 0�4 )1CCCA ; (2.19)�� = 0BBB� 0 0 �0�1 2�0�10 0 �14(�0�1 ��0�2 ) �12(�0�1 +�0�2 )12(�0�3 +�0�4 ) 2�0�4 0 014(�0�3 ��0�4 ) ��0�4 0 0 1CCCA ; (2.20)Z� = 0BBB� Z 0�1 0 0 0�14(Z 0�1 �Z 0�2 ) Z 0�2 0 00 0 12(Z 0�3 + Z 0�4 ) Z 0�3 � Z 0�40 0 14(Z 0�3 �Z 0�4 ) 12(Z 0�3 + Z 0�4 )1CCCA ; (2.21)D� = 0 : (2.22)For later onveniene, we denote by � the matrix responsible for the hange of basis (2.12),suh that Q0�i = �ijQ�j and Q0�i = �ijQ�j . Equation (2.19) reprodues the result of [24℄.Now we will pursue a strategy to ompute the renormalisation matries non perturbati-vely using Shr�odinger funtional tehniques. For parity-even operators, the determinationof the subtration oeÆients in eq. (2.20) an be ahieved by implementing suitable axialWard identities. However, as we will show later on, the use of tmQCD tehniques allows toobtain all the �B = 2 physial amplitudes of interest in the Standard Model from matrixelements of the operators Q+1 ;Q+2 . Therefore, from now on we will onentrate exlusivelyon the renormalisation of Q�k .3. Renormalisation onditions in the Shr�odinger funtionalHaving onstrained their renormalisation patterns by imposing the symmetries of the the-ory, we now proeed to speifying suitable renormalisation onditions on the four-quarkoperators (2.12). To this end we will onsider a set of orrelation funtions de�ned inthe Shr�odinger funtional (SF) whih will serve to impose the renormalisation onditionsat the non-perturbative level. The SF formalism [21℄, whih was initially developed toprodue a preise determination of the running oupling [31{33℄, has been extended tovarious other phenomenologial ontexts. These inlude the study of quark masses [34{36℄and deay onstants [37{39℄, the omputation of moments of struture funtions [40, 41℄,the Kaon B-parameter [22, 23,42℄, and the stati-light axial urrent [43, 44℄. The readeris referred to [45℄ for detailed explanations of the framework and the standard notation,whih are not repeated here.Our onstrution of the relevant SF orrelators extends the one desribed in [23℄ tothe stati ase. We start by introduing the following bilinear boundary soure operators,{ 7 {



projeted to zero external momentum,�s1s2 [�℄ = a6Xx;y ��s1(x)��s2(y) ;�0s1s2 [�℄ = a6Xx;y ��0s1(x)�� 0s2(y) ; (3.1)where � is a Dira matrix, the avour indies s1;2 an assume both relativisti and stativalues, and the �elds � and � 0 represent funtional derivatives with respet to the fermioniboundary �elds of the SF, see [45℄. The hoies for � are limited by the boundary onditionsimposed on quark �elds. At the level of boundary quark and antiquark �elds they imply�(x) = P��(x) ; ��(x) = ��(x)P+ ; (3.2)with P� = 12(1 � 0), and similarly for �0; ��0. Therefore, in order to have a non-vanishingsoure �eld �s1s2 [�℄, � must antiommute with 0.1Starting from the bilinears in (3.1), we have to onstrut suitable boundary soures toprobe four-quark operators. In order to de�ne a set of non-zero orrelators in the masslesstheory, whih an then be used to impose renormalisation onditions in the hiral limit, theprobe should be parity-odd. We further require it to be invariant under the group H(3) oflattie rotations in three dimensions. This leads us to introdue a third \spetator" lightquark and onsider, as the simplest possible hoie, a generalised boundary soure madeof three bilinears, W [�1;�2;�3℄ = �1h[�1℄�23[�2℄�03�h[�3℄ ; (3.3)two of whih are loalised at the boundary x0 = 0, while the third lies at the other bound-ary, namely x0 = T . Odd parity and rotational invariane are then assured through anappropriate hoie of the Dira strutures [�1;�2;�3℄, and a maximal set of orrespondingprobes is given by S(1) =W [5; 5; 5℄ ; (3.4)S(2) = 16 3Xk;l;m=1 "klmW [k; l; m℄ ; (3.5)S(3) = 13 3Xk=1W [5; k; k℄ ; (3.6)S(4) = 13 3Xk=1W [k; 5; k℄ ; (3.7)S(5) = 13 3Xk=1W [k; k; 5℄ : (3.8)1Allowing for a non-vanishing angular momentum would relax this onstraint, but, sine it would mostlikely lead also to worse signal-to-noise ratios in numerial simulations, we do not pursue this approah.{ 8 {



Figure 1: Diagrammati representation of orrelation funtions: the four-quark orrelatorF�;(s)k (x0) (left), the boundary-to-boundary stati-light orrelators f1;hl; k1;hl (enter) and theboundary-to-boundary light-light orrelators f1;ll; k1;ll (right). Eulidean time goes from left toright. The double blob indiates the four-quark operator insertion. Single lines represent relativis-ti quarks and double lines denote the stati ones.The four-quark operators an now be treated as loal insertions in the bulk of the SF, andtheir orrelators are naturally de�ned asF�;(s)k (x0) = L�3hQ0�k (x)S(s)i; s = 1; : : : ; 5 : (3.9)A pitorial interpretation of (3.9) is provided by the left diagram of Figure 1.It has to be observed that, due to the symmetries of the stati approximation forthe heavy quarks, not all of the above orrelation funtions are independent. By usingthe expliit spin struture of the stati propagator, some straightforward though tediousalgebra leads to the onstraintsF�;(4)1 = �F�;(1)1 ; F�;(3)1 = �F�;(2)1 ;F�;(4)2 = 13F�;(1)2 ; F�;(5)1 = �F�;(2)1 ;F�;(4)3 = �F�;(1)3 ; F�;(3)3 = �F�;(2)3 ;F�;(4)4 = 13F�;(1)4 ; F�;(5)3 = �F�;(2)3 : (3.10)These relations show that only 24 out of the 40 orrelation funtions de�ned in eq. (3.9)are independent. We stress that this result is exat; as a ross-hek, later on we will �ndthese identities to be expliitly veri�ed at one loop in perturbation theory.In order to isolate from eq. (3.9) the ultraviolet divergenes that are due to the bulkoperator and absorb them into a renormalisation fator, one has to address the renormal-isation of the boundary �elds. The ultraviolet divergenes of the latter are anelled byde�ning suitable ratios of orrelators for whih the renormalisation fators of the boundary�elds drop out. To this end we introdue a set of boundary-to-boundary light-light andstati-light orrelators, fhl1 = � 12L6 hO01�h[5℄Oh1[5℄i ; (3.11)f ll1 = � 12L6 hO012[5℄O21[5℄i ; (3.12)kll1 = � 16L6 3Xk=1hO012[k℄O21[k℄i ; (3.13){ 9 {



whose valene struture is represented as well in the middle and right diagrams of Figure 1. 2A suitable ombination of suh orrelators must omprise the same number of stati andlight boundary �elds as (3.9). The simplest examples are given by the ratiosF�;(s)k (x0)fhl1 [f ll1 ℄1=2 ; F�;(s)k (x0)fhl1 [kll1 ℄1=2 ; (3.14)involving either the orrelator f ll1 or kll1 . However, it is easy to generalise these onditionsby introduing an arbitrary real parameter �. Hene, we onsider the following ratios oforrelation funtions: h�;(s)k;� (x0) = F�;(s)k (x0)fhl1 [f ll1 ℄1=2��[kll1 ℄� : (3.15)Although there is no real a priori restrition on the value of �, it is lear that \natural"values should lie in the interval [0; 12 ℄. This freedom, together with the hoie of theboundary soure and the �-angle of the SF, an be used in a later stage to tune theoptimal renormalisation shemes, with the aim of having small NLO oeÆients in theorresponding anomalous dimensions. This is important in order to ontrol the systematisof the perturbative mathing to ontinuum shemes at high energy sales.For the moment we observe that the ratios (3.15) are free of boundary divergenes,and onsequently we impose the renormalisation ondition,Z 0�;(s)k;� h�;(s)k;� (T=2) = h�;(s)k;� (T=2)jg0=0 ; (3.16)where all the orrelation funtions are omputed in the hiral limit. This �xes non-perturbatively the renormalisation onstant Z 0�;(s)k;� at the sale � = 1=L. As usual, theZ 0 fators depend upon every alulational detail with the only exeption of the leadinglog, whih is universal. In order to operatively de�ne a renormalisation sheme, a om-plete spei�ation of the parameters that onur to quantify (3.15) is required. We brieysummarise them:� the possible presene of a Sheikholeslami-Wohlert (SW) term in the lattie ation forthe light quarks;� the hoie of the gauge parallel transporter in the ovariant derivatives, eq. (2.2), inthe stati ation;� the Dira struture of the boundary soure;� the value of the angle � entering the spatial boundary onditions of the SF;� the value of the parameter � in eq. (3.15);� the ratio T=L between the time and the spatial extension of the SF.2The stati-light ounterpart of kll1 is not onsidered as, due to the symmetries of the stati limit, it isidential to fhl1 . { 10 {



The last four onditions �x the renormalisation sheme, while the �rst two only introdue aregularisation dependene in the renormalisation onstants. We stress at this point that therunning of the operators is a ontinuum property, i.e. it is independent of the disretisationhosen. The latter only a�ets the way in whih the ontinuum limit is approahed, and {in the ase of the ation for stati quark �elds { the signal-to-noise ratio in the simulations.In this paper we onsider the Wilson ation (with and without SW term) for the lightquarks, and the Eihten-Hill ation for the stati ones. As for the parameters that �xthe renormalisation sheme, we will onsider three values of � (namely � = 0:0; 0:5; 1:0)and two values of � (namely � = 0:0; 0:5). Furthermore, we �x T = L. Taken togetherwith the possible independent hoies of boundary soures, this leaves us with 12 di�erentrenormalisation shemes for the operators Q0�1 and Q0�3 , and 24 shemes for Q0�2 and Q0�4 .The number of independent renormalisation onditions is twie this �gure, as we onsidertwo di�erent ations.4. A perturbative studyWe now proeed to studying the renormalisation of the operators Q+1 ; : : : ;Q+4 at one-loop in perturbation theory. These are the operators that will enter �B = 2 e�etiveHamiltonians in the stati limit. The purpose of this study is threefold. First, it providesan expliit hek of the expeted mixing pattern. Seond, it will allow us to omputethe NLO anomalous dimension of the operators in the SF shemes de�ned above; this isdone via a standard one-loop mathing proedure to ontinuum shemes where the NLOanomalous dimension is already known. Finally, we an work out lattie artefats of thestep saling funtions in one-loop perturbation theory. They an then be ompared tothe ones in the relativisti ase disussed in [23℄, in order to obtain information about theexpeted size of disretisation e�ets for quantities involving stati �elds. In priniple, thedisretisation e�ets omputed in perturbation theory ould subsequently be subtratedby hand from the non-perturbative Monte Carlo data, with the aim of exerting a betterontrol of their ontinuum extrapolation, as pursued in [22,46,47℄.4.1 Sheme dependene of NLO anomalous dimensionsIn order to proeed, some notation has to be �xed. The sale dependene of operatorinsertions in renormalised orrelation funtions is desribed by the RG equation�Æij �� ��� + � ��g + ��� ��� + �m ��m�� +ij� (Q+j )R = 0 ; (4.1)where � is the �-funtion for the oupling, � is the anomalous dimension of the quarkmass, and + is the operator anomalous dimension matrix. We have also inluded a termwhih takes into aount the dependene on the gauge parameter � in ovariant gauges,haraterised by the RG funtion ��, de�ned as����� = ��� : (4.2){ 11 {



This term is absent in shemes like MS (irrespetive of the regularisation presription) orthe SF shemes introdued in setion 3, but is present e.g. in regularisation-independent(RI) shemes, whih will be onsidered later on. If we hoose to work with the operatorbasis in eq. (2.12), the matrix struture of the RG-equation simpli�es, and the evolutionof the various operators is determined by a set of salar anomalous dimensions.In what follows, we fous on mass-independent renormalisation shemes, for whihthe RG funtions depend only upon the oupling. We take the following form for theirperturbative expansions:�(g) = �g3 1Xk=1 bkg2k ; ��(g) = �g2 1Xk=0 b�kg2k ;�(g) =�g2 1Xk=0 dkg2k ; +ij(g) = �g2 1Xk=0 +;(k)ij g2k ; (4.3)with universal oeÆientsb0 = 1(4�)2 �113 N � 23Nf� ; d0 = 1(4�)2 �3N2 � 1N � ;b�0 = 1(4�)2 �N ��� 133 �+ 43Nf� ;b1 = 1(4�)4 �343 N2 ��133 N �N�1�Nf� : (4.4)The LO oeÆient of the anomalous dimension matrix +;(0) is universal as well, andhas been alulated in [29℄ for the �rst operator of the basis and [6℄ for the rest. Thenon-vanishing elements of the anomalous dimension matrix read+;(0)11 = � 1(4�)2 �3N � 3N� ; (4.5)+;(0)21 = 1(4�)2 �1 + 1N� ; (4.6)+;(0)22 = � 1(4�)2 �3N � 4� 7N� ; (4.7)+;(0)33 = � 1(4�)2 �3N � 6N� ; (4.8)+;(0)34 = � 6(4�)2 ; (4.9)+;(0)43 = � 3=2(4�)2 ; (4.10)+;(0)44 = � 1(4�)2 �3N � 6N� : (4.11)A ovariant rotation of this matrix to the diagonal operator basis (2.12), i.e. 0+;(0) =�+;(0)��1, gives the LO oeÆients of the multipliatively renormalisable operators,{ 12 {



namely 0+;(0)1 = � 1(4�)2 �3N � 3N� ;  0+;(0)2 = � 1(4�)2 �3N � 4� 7N� ; 0+;(0)3 = � 1(4�)2 �3N + 3� 6N� ;  0+;(0)4 = � 1(4�)2 �3N � 3� 6N� : (4.12)By ontrast, the NLO oeÆient is sheme-dependent. The perturbative mathingproedure that allows to express its value in the SF sheme in terms of the value in areferene sheme has been derived in [48℄ for the ase of multipliatively renormalisableoperators. The formalism an be trivially extended to situations where mixing ours anda gauge ovariant referene sheme is assumed. The renormalised operators and ouplingonstant are �rst related in the two shemes through a �nite renormalisation,g2SF = Xg(gref)g2ref ;(Q+i;SF)R = X+ij (gref)(Q+j;ref)R : (4.13)The mathing oeÆients X are then expanded in powers of the oupling onstant,X (g) = 1 + 1Xk=1 g2kX (k) ; (4.14)and the requirement of formal invariane of the RG-equation under a hange of renormal-isation sheme leads to the two-loop mathing relation+;(1)SF = +;(1)ref + [X+;(1); +;(0)℄ + 2b0X+;(1) + b�0� ���X+;(1) � +;(0)X (1)g ; (4.15)where the symbol [�; �℄, whih is absent in the ase of multipliative renormalisation, repre-sents the ordinary matrix ommutator. It should be stressed that the hoie of the referenesheme is irrelevant. In fat, a good onsisteny hek on the result for +;(1)SF is providedby omputing the RHS of (4.15) for several di�erent referene shemes.Finally, we point out that the lattie is urrently the only known regularisation of theSF, for whih perturbative alulations of fermioni observables an be operatively per-formed.3 If the referene sheme is de�ned in the ontinuum, the operator mathing musttake into aount both a hange of regularisation and a hange of subtration presription.Aordingly, X (1)O must be omputed as the di�erene of two mathing oeÆients to anintermediate sheme, namely X+;(1)SF;ref = X+;(1)SF;lat �X+;(1)ref;lat : (4.16)The \lat" sheme is by de�nition the minimal subtration lattie sheme, where the renor-malisation onstants are polynomials in ln(a�) without �nite parts. Consequently, X+;(1)SF;lat,whih provides the mathing between SF and \lat", an be obtained from a one-loop alu-lation of the renormalisation onstant in the SF sheme with a lattie regularisation. Themathing oeÆient X+;(1)ref ;lat between the referene sheme and the lattie an be insteadretrieved from the literature for some hoie of the referene sheme, suh as MS or RI.3A reent proposal to perform the mathing diretly in dimensional regularisation has been presentedin [49℄. { 13 {



4.2 Perturbative expansion of SF orrelation funtionsWe now desribe the one-loop alulation of the SF renormalisation onstants introduedin setion 3. The perturbative proedure is fairly onventional, and we inlude it just forompleteness. We start by expanding all the orrelation funtions previously introduedin powers of the bare oupling,X = X(0) + g20 "X(1) +m(1) �X(0)�m0 #+O �g40� ; (4.17)where X is one of F+;(s)k , fhl1 , f ll1 , kll1 , or a linear ombination thereof. The derivative termin square brakets is required in order to set the orrelation funtion X to zero renormalisedquark mass, when eah ontribution to the RHS is alulated at zero bare quark mass, as itwill be assumed. As for the numerial value of m(1) , we use the numbers provided by [50℄,i.e. am(1) = (�0:20255651209CF (sw = 1),�0:32571411742CF (sw = 0), CF = N2 � 12N ; (4.18)The SF renormalisation onstants, de�ned in (3.16), admit an analogous expansion,Z 0+;(s)k;� (g0; a=L) = 1 + g20Z 0+;(s;1)k;� (L=a) +O �g40� : (4.19)The expliit expression of the one-loop order oeÆient Z 0+;(s;1)k;� in terms of the perturbativeexpansion of the four-quark and the boundary-to-boundary orrelators an be obtained byinserting (4.17) and (4.19) into the renormalisation ondition (3.16). One then obtainsZ 0+;(s;1)k;� (L=a) =�(F+;(s;1)kF+;(s;0)k + F+;(s;1)kbF+;(s;0)k + m(1)F+;(s;0)k �F+;(s;0)k�m0 )x0=T=2+(fhl(1)1fhl(0)1 + fhl(1)1bfhl(0)1 + m(1)fhl(0)1 �fhl(0)1�m0 )+ �12 � ��(f ll(1)1f ll(0)1 + f ll(1)1bf ll(0)1 + m(1)f ll(0)1 �f ll(0)1�m0 )+ �(kll(1)1kll(0)1 + kll(1)1bkll(0)1 + m(1)kll(0)1 �kll(0)1�m0 ) : (4.20)Contributions ontaining the subsript \b" arise from the boundary terms that are requiredin addition to the SW term in order to ahieve full O(a)-improvement of the ation in theSF [45℄. Obviously, these ontributions are not present when the unimproved Wilson ationis hosen for the light quarks. From now on we will set them to zero also when the ationis O(a) improved, as they will not a�et the ontinuum limit extrapolations involved inthe omputation of NLO anomalous dimension, and their ontribution to uto� e�ets isnegligible. { 14 {



The evaluation of the RHS of (4.20) requires the alulation of the Feynman diagramsdepited in Figures 2 and 3. The one-loop expansion of the boundary-to-boundary or-relators f ll1 and kll1 is known from [51℄, while fhl1 has been studied perturbatively in [43℄.Aordingly, the only new diagrams whih need to be alulated are the ones that ontributeto the one-loop order oeÆient of the four-quark orrelators. Two groups of diagrams anbe identi�ed: the self-energies orret the valene fermion propagators through a gluonemission with subsequent absorption by the same leg, and the vertex diagrams orret theoperator insertions through the exhange of a gluon between two legs. Eah of them anbe expressed as a loop sum of a Dira trae in time-momentum representation, where thespatial oordinates are Fourier transformed. These sums have been performed numeriallyin double preision arithmetis using a C++ ode, for all the even lattie sizes rangingfrom L=a = 6 to L=a = 48. The results have been heked by an independent Fortran90 program, also in double preision arithmetis. The behaviour of the renormalisationonstants thus obtained, as funtions of the lattie size L=a, is expeted to onform to thestandard asymptoti expansionZ 0+;(s;1)k;� (L=a) = 1X�=0 � aL�� nr+k;� + s+k;� ln(L=a)o ; (4.21)whih an be used in order to extrat the universal LO anomalous dimensions and the �niteonstants peuliar to the shemes, that is to say, the oeÆients s+0 and r+0 , respetively.The latter represents the mathing oeÆient introdued in (4.16) in the diagonal basis,namely X 0(1)k;SF;lat = r+k;0 : (4.22)An eÆient numerial tehnique to isolate these oeÆients, based on a bloking proedureof the funtion at neighbour lattie sizes, has been introdued in [52℄. Details about itsappliation to the ase at hand are provided to Appendix C. Numerial values of theoeÆients r+k;0 for the various shemes introdued in setion 3 are reported in Tables 4 {9.4.3 Mathing to ontinuum shemes and onsisteny heksThe NLO anomalous dimension matrix of the operators (2.6) in ontinuum shemes anbe found in [6℄, together with the one-loop mathing relations to the minimal subtrationlattie sheme. The regularisations employed in [6℄ are DRED and NDR, and two possiblesubtration presriptions are onsidered, namely MS and RI. An attrative feature of thelatter is the independene of the orresponding anomalous dimension from the hoie ofevanesent operators (EO), whih ompliate the mixing pattern in d = 4� 2� dimensions.As a onsequene, it is trivial to perform a rotation of the anomalous dimension matrixin the RI sheme to a di�erent basis of the physial operators, suh as (2.12), without theneed to address subtleties related to the de�nition of evanesent ontributions. The hoieof RI as a referene sheme is therefore onvenient in order to make use of the two-loopmathing relation (4.15) in the diagonal basis (2.12).{ 15 {



Figure 2: Feynman diagrams of the self-energy type.

Figure 3: Feynman diagrams of the vertex type.{ 16 {



Results reported in [6℄ refer to a perturbative expansion in powers of the MS-oupling.We therefore need the mathing oeÆient in eq. (4.13), whih relates gSF to gMS, toone-loop order. This has been alulated in [53℄ and is given byX (1)g = 2b0 ln(�L)� 14� (1;0 + 1;1Nf) ;1;0 = 1:25563(4) ; 1;1 = 0:039863(2) : (4.23)The NLO anomalous dimension of the operator basis (2.12) in the Feynman gauge (� = 1)and NDR regularisation4, obtained from the ovariant rotation 0(1) = �(1)��1, is adiagonal matrix whose non-zero oeÆients read 0+;(1)1;RI = 1(4�)4�� 131 + 8�212 N2 + 6N � 1� 2�23 + 30 + 4�23N � 57 + 16�212N2+Nf �53N � 53N�� ; 0+;(1)2;RI = 1(4�)4�� 131 + 8�212 N2 + 2149 N + 301 + 6�29 + 18� 4�23N + 87� 16�212N2+Nf �53N � 409 � 559N�� ; 0+;(1)3;RI = 1(4�)4�� 131 + 8�212 N2 � 836 N + 309 + 8�212 � 24� 4�23N + 21� 4�23N2+Nf �53N + 103 � 5N�� ; 0+;(1)4;RI = 1(4�)4�� 131 + 8�212 N2 + 716 N + 309 + 8�212 + 42� 4�23N + 33� 4�23N2+Nf �53N � 103 � 5N�� : (4.24)The same rotation an be applied to the one-loop operator mathing matrix X 0(1)RI;lat. In thisase the analyti dependene upon the gauge parameter � is needed in order to aountfor the derivative term inluded in the two-loop mathing relation (4.15). With N = 3,4Although the four-quark operators are renormalised aording to the RI sheme, whih is independentof the regularisation presription, the strong interation Lagrangian is renormalised in MS . This introduesa spurious dependene of the NLO anomalous dimension upon the hoie of the regulator.{ 17 {



one hasX 0(1)1;RI;lat(wilson) = 1(4�)2 �103 � 83�+ (DLL �DRR)� ;X 0(1)2;RI;lat(wilson) = 1(4�)2 �103 � 83�+DSLL� ;X 0(1)3;RI;lat(wilson) = 1(4�)2 �103 � 83�+ 14 �2DLR + 2DSLR � 4 �DRL � �DSRL�� ;X 0(1)4;RI;lat(wilson) = 1(4�)2 �103 � 83�+ 14 �2DLR + 2DSLR + 4 �DRL + �DSRL�� (4.25)for light quarks regularised with the pure Wilson ation. If the O(a) improved ation isused instead, one has to add to them the mathing fators between the two ations, viz.X 0(1)1;lat(sw);lat(wilson) = 1(4�)2 ��43f I � 13vI � 43wI� = 0:038033(2) ;X 0(1)2;lat(sw);lat(wilson) = 1(4�)2 ��43f I � 29vI� = 0:040240(2) ;X 0(1)3;lat(sw);lat(wilson) = 1(4�)2 ��43f I + 23wI� = 0:034253(2) ;X 0(1)4;lat(sw);lat(wilson) = 1(4�)2 ��43f I + 43wI� = 0:037720(2) ; (4.26)where the lattie integrals f I , vI and wI are disussed in Appendix B. Numerial values ofthe D-oeÆients, expressed in [6℄ as linear ombinations of a basi set of lattie integrals,are reported in Table 3 of Appendix B, where a new omputational method to improvetheir numerial auray is also desribed. The fators in eq. (4.26) are obtained from theoeÆients denoted DI in [6℄, after subtrating the ontributions oming from the O(a)improvement of the four-fermion operators.All the ingredients needed to evaluate the RHS of eq. (4.15) have now been spei�ed.The absene of operator mixing in the diagonal basis (2.12) implies that the ommutatorterm in eq. (4.15) is identially zero. NLO anomalous dimensions in the previously intro-dued SF shemes follow from a straightforward use of eqs. (4.12), (4.16) and (4.22){(4.25).We have olleted the ratios of 0+;(1)k;SF to the orresponding LO oeÆients 0+;(0)k in Tables10 { 15. In the mathing we have employed the values of r+k;0 obtained with the pure Wilsonation for light quarks, as they tend to display a better behaved ontinuum extrapolation,after the O(a) ontributions have been removed through bloking.In order to hek our results, we have also derived the SF NLO anomalous dimensionsusing MS as a referene sheme. The mathing proedure, rather deliate in this ase,must take into aount the rôle played by the EO in �xing the �nite ontributions tothe NLO anomalous dimension matrix +;(1)MS . A naive rotation of the latter is potentiallyhazardous without reonsidering the hoie of the EO. An alternative approah is to workwithin the original basis (2.6), to whih the results in [6℄ refer, and then rotate the one-loop{ 18 {



mathing oeÆients from the SF to the lattie sheme aording to the inverse rotationX (1)SF;lat = ��1X 0(1)SF;lat�. This is ertainly possible, as the omputation of suh oeÆientsis performed on the lattie in d = 4 dimensions, where no EO ontributes. Of ourse,the ommutator term in eq. (4.15) must be inluded in this ase, whilst the gauge termproportional to b�0 is not present. One the NLO anomalous dimension matrix has beenobtained in the SF sheme, a straight rotation bak to the diagonal basis (2.12) yields thesalar oeÆients 0+;(1)k;SF . This proedure has been applied using either DRED or NDRregularisations. In both ases we obtain the same results as with RI in the diagonal basis.We have also veri�ed that the di�erene between the �nite parts of the SF renormal-isation onstants with improved and unimproved Wilson light quarks oinides with thevalues in eq. (4.26). The numerial values of these �nite mathing onstants are indeed inperfet agreement with the analogous SF quantities.We �nally onentrate on the numerial values of the NLO anomalous dimension o-eÆients in the SF. A omparison with the ase studied in [23℄, where the four-fermionoperators ontain only relativisti quark �elds, shows that in the present ase the variationof the anomalous dimension due to di�erent hoies of the SF boundary soures in therenormalisation ondition is muh less pronouned. Also, the non-perturbative identitiesin eq. (3.10) are veri�ed expliitly by the one-loop results. The dependene on the value ofthe parameter � is very small, too. Finally, at � = 0:5, whih is ommonly employed in non-perturbative studies of SF renormalisation, the values obtained for the ratios  0+;(1)k;SF =0+;(0)kare relatively small, pointing towards a good onvergene of the perturbative series, savefor Q+2 , where they are lose to �0:5. The question whether this is a relevant soure ofunertainty in the NLO mathing of renormalised matrix elements to ontinuum shemesis left for future studies.4.4 One-loop order uto� e�ets in step-saling funtionsThe non-perturbative RG-evolution of the four-quark operators in the diagonal basis (2.12)is obtained through the omputation of the step-saling funtions�+;(s)k;� (u) = lima!0�+;(s)k;� (u; a=L) ; �+;(s)k;� (u; a=L)) = Z 0+;(s)k;� (g0; a=2L)Z 0+;(s)k;� (g0; a=L) �����g2(L)=u : (4.27)These ratios of renormalisation onstants provide the operator running between the sales� = 1=L and � = 1=2L. The advantage of introduing suh ratios is related to the om-pensation of logarithmi divergenes between numerator and denominator, thus resultingin a �nite ontinuum limit. Cuto� e�ets an be therefore ompletely deoupled from theontinuum RG-evolution. We are onerned here with the perturbative expansion of (4.27)in the renormalised oupling, that is�+;(s)k;� (u) = 1 + �+;(s;1)k;� u+ �+;(s;2)k;� u2 + O(u3) : (4.28)The �rst two terms of this expansion depend upon the LO and NLO anomalous dimension{ 19 {



PSfrag replaementsT=alog10 r PSfrag replaementsT=alog10 rFigure 4: On the left(right) side the step saling funtion of Q0+1 (Q0+2 ) at NLO and Nf = 0 isplotted vs. the squared renormalised oupling in the SF sheme. The boundary soures hoie iss = 1, and the �-parameter is set to zero.oeÆients. They read expliitely�+;(s;1)k;� =  0+;(0)k ln 2 ;�+;(s;2)k;� =  0+;(1)k;SF ln 2 + �12( 0+;(0)k )2 + b0 0+;(0)k � (ln 2)2 : (4.29)A graphial representation of (4.28) for the whole operator basis in some partiular ases isprovided by the four plots of Figures 4 and 5, in the range of values of g2SF used in previousnon-perturbative studies by the ALPHA Collaboration.The rate of onvergene of the step-saling funtions toward the ontinuum limit at LOan be expressed in terms of the �rst non-trivial oeÆient of the perturbative expansion(analogous to (4.28)) of �+;(s)k;� (u; a=L) via the ratioÆ+;(s)k;� (a=L) = �+;(s;1)k;� (a=L)� �+;(s;1)k;��+;(s;1)k;� ; (4.30)where �+;(s;1)k;� (a=L) = Z 0+;(s;1)k;� (2L=a)� Z 0+;(s;1)k;� (L=a) : (4.31)In order to ompare the perturbative lattie artefats (4.30) with the ones obtained fromthe orresponding non-perturbative Monte Carlo simulations, the same de�nition of theritial mass, based on the PCAC Ward identity, should be adopted. This point has beenextensively explained in [23℄, where the numerial values of am(1) (L=a) from L=a = 6 toL=a = 32 have been provided (f. Table 3 in that work). That disussion will not berepeated here. Sine our odes ran up to L=a = 48, we are in the position to extend theaforementioned table to inlude the additional points. The new numbers are reported inTable 1. { 20 {



PSfrag replaementsT=alog10 r PSfrag replaementsT=alog10 rFigure 5: On the left(right) side the step saling funtion of Q0+3 (Q0+4 ) at NLO and Nf = 0 isplotted vs. the renormalised oupling in the SF sheme. The boundary soures hoie is s = 1, andthe �-parameter is set to zero.L=a am(1) (L=a)jsw=1=CF am(1) (L=a)jsw=0=CF34 -0.20255637783 -0.3254408050136 -0.20255639414 -0.3254702322038 -0.20255640819 -0.3254951539040 -0.20255642028 -0.3255164444242 -0.20255643068 -0.3255347759944 -0.20255643965 -0.3255506722446 -0.20255644740 -0.3255645460048 -0.20255645412 -0.32557672619Table 1: The one-loop oeÆients of the ritial mass as obtained from the PCAC Ward Identityat �nite lattie size. For the parameter hoies made here, the onvergene to the values at in�nitelattie size is quadrati/ubi in (a=L), for standard/O(a) improved Wilson quarks.In pratie, non-perturbative simulations based on the Eihten-Hill disretisation ofthe heavy quark �elds should better be avoided, given the bad intrinsi signal-to-noiseratio (2.1, 2.2) [27℄. Nevertheless, it is instrutive to ompute lattie artefats in pertur-bation theory for the Eihten-Hill ation, if only to hek whether the use of stati �eldsenhanes lattie artefats with respet to the purely relativisti ase. A omparison be-tween stati-light and light-light four-quark operators in a typial situation is shown inFigure 6. All data refer to Q+1 , employing a renormalisation sheme in whih the boundarysoures have a Dira struture [5; 5; 5℄ and where the normalisation of the four-quarkorrelator involves only f ll1 . Relativisti data are taken from [23℄. Taken at fae value,{ 21 {



the plot leads to the onlusion that the light quark ation is the main responsible for thepresene of relatively large lattie artefats: one this has been hosen, stati-light andlight-light four-quark operators ome to be a�eted by uto� e�ets of a similar size.

Figure 6: Comparison between uto� e�ets of the step saling funtion of the stati-light andlight-light versions of the four-quark operator Q0+1 . Light quarks are desribed in terms of theunimproved (W) or improved (SW) Wilson ation. Stati quarks are always desribed by theEihten-Hill (EH) ation. The ritial mass has been obtained from the PCAC Ward Identity.5. tmQCD for B0{ �B0 mixingAs stated above, our interest in the renormalisation of Q+k stems from the fat that thephysial �B = 2 matrix elements involving the operators Q+1 ; Q+2 , with  1 =  2 �  `(where in pratie the avour label ` denotes either a d or an s quark), an be mappedonto matrix elements of Q+1 ;Q+2 omputed in some suitable tmQCD regularisation. Thisredues to a minimum the unertainties related to operator renormalisation, whih takesplae essentially in the same way as if exat hiral symmetry were present. Now we willonstrut spei� tmQCD regularisations whih realize this mapping. This tehnique is ageneralisation of the ones already developed for BK [20, 22℄.We will work in the so-alled \twisted basis", and onentrate �rst on the ase of theBB parameter where  ` = d. Let us onsider a quark doublet  T = (u; d), for whih we{ 22 {



speify the tmQCD ationStmQCD[ ; � ℄ = a4Xx � � (x) �Dw +m+ i��35� (x)	 ; (5.1)where Dw is the usual Wilson-Dira operator (with or without a SW term). The hoie ofation for the other relativisti quark avours is immaterial to the argument. The equiv-alene of tmQCD to standard QCD has been �rst established in [20℄. Given a multi-loalgauge-invariant operator O(x1; : : : ; xn), the equivalene amounts to the identity betweenrenormalised orrelation funtionsh ~OR(x1; : : : ; xn)i(MR;0) = hOR(x1; : : : ; xn)i(mR;�R) ; (5.2)whih holds in the regularised theory up to uto� e�ets, and is exat in the ontinuumlimit. In the above expression, the relation between the operators ~O and O is provided bythe axial rotation of the quark �elds whih relates QCD to tmQCD, viz.~ = exp �i�5�3=2� ~� = � exp �i�5�3=2� ; (5.3)where the twist angle � is de�ned in terms of the renormalised mass parameters of thetmQCD ation as tan(�) = �RmR ; (5.4)and the physial renormalised quark mass MR is given byMR =qm2R + �2R : (5.5)Let us now onsider the stati-light four-quark operators O+VV+AA and O+VA+AV with lightavours  1 =  2 = d. We observe that the rotation (5.3) implies~O+VV+AA = os(�)O+VV+AA � i sin(�)O+VA+AV : (5.6)In partiular, at � = �=2, whih is known as the maximally twisted ase, (5.6) simpli�es to~O+VV+AA = �iO+VA+AV : (5.7)Exatly the same property holds for the operator SS + PP, for whih one �nds again~O+SS+PP = �iO+SP+PS : (5.8)This demonstrates expliitly that the matrix elements of O+VV+AA and O+SS+PP, responsi-ble for the partile mixing in the SM and within the stati approximation of QCD, an beobtained from a omputation of the matrix element of O+VA+AV and O+SP+PS in tmQCD at� = �=2. Sine in mass independent shemes, suh as the SF, all dependene of renormal-isation fators on the mass parameters drops out, it is lear that tmQCD does not spoil{ 23 {



the renormalisation pattern of the operator basis (2.12). In partiular, the ombinationsQ01 � O+VA+AV and Q02 � O+VA+AV + 4O+SP+PS renormalise purely multipliatively.In ase one is interested in the B0s{ �B0s mixing amplitude, it is enough to maximallytwist a quark doublet whih ontains the s quark, e.g. (; s), the ation for whih wouldread exatly as eq. (5.1), save for the eventual introdution of non-degenerate masses forthe two quarks of the doublet, along the lines of [54℄. The ation for a twisted (; s) doubletwould then read StmQCD[ ; � ℄ = a4Xx � � (x) [Dw +m+ i�5℄ (x)	 (5.9)with m = diag(m; ms) and � = diag(�; �s), and the onstrainttan(�) = � �s;Rms;R = �;Rm;R : (5.10)A potential shortoming of eq. (5.9) omes about in ase it is taken as the ation for dynam-ial ; s quarks, sine Ms;R 6=M;R would then indue a phase in the fermion determinant.One may then onsider more sophistiated hiral rotations that keep the determinant real,as in [55℄. If ; s are kept quenhed, or interpreted as valene quarks, no suh subtletyarises.We onlude that the use of suitable tmQCD regularisations avoids the need of de-termining mixing oeÆients for the renormalisation of the matrix elements entering theB0{ �B0 amplitude in the stati approximation. For an alternative analysis of operatormixing using a di�erent tmQCD regularisation, we refer the reader to ref. [56℄.An additional advantage brought in by the use of maximally tmQCD is the automatiO(a) improvement of bare matrix elements of the above four-fermion operators. Thisproperty does not hold, on the other hand, for the renormalisation onstants omputedwithin the SF shemes disussed in previous setions. In order to obtain O(a) improvedrenormalization onstants one should use modi�ed SF shemes, as proposed in refs. [57,58℄.In order to show that the bare matrix elements are automatially O(a) improved weextend the argument in Appendix A of ref. [59℄. The �rst observation is that, at maximaltwist, the only O(a) ounterterms to the stati ation are proportional to the dimension�ve operators tr(�2) ( � h h + � �h �h) ; (tr(�))2 ( � h h + � �h �h) : (5.11)(In the simple ase � = ��3 there is one single ounterterm proportional to �2( � h h +� �h �h).) These ounterterms merely generate a shift of the stati quark self-energy 5. Theseond observation is that all the possible O(a) (dimension seven) ounterterms will havethe same stati �eld ontent of the original (dimension six) four-fermion operator, and willdi�er from it only by the addition of mass fators or derivatives. It is then possible toextend the symmetry P � Dd � (� ! ��) of the relativisti ation [59℄ (where P is the5Moreover, they are obviously absent in the quenhed approximation.{ 24 {



physial parity and Dd is de�ned in ref. [60℄) to inlude stati quarks. P and Dd will nowbe de�ned to beP : 8>>>>>>>>>>>><>>>>>>>>>>>>:U0(x) ! U0(x�)Uk(x) ! Uyk(x� � ak̂) (x) ! i05�3 (x�)� (x) ! � (x�)�350i h(x) !  h(x�)� h(x) ! � h(x�) �h(x) ! � �h(x�)� �h(x) ! � � �h(x�) Dd :8>>>>>>>>>><>>>>>>>>>>:U�(x) ! Uy�(�x � a�̂) (x) ! �i (�x)� (x) ! �i � (�x) h(x) !  �h(�x)� h(x) ! � �h(�x) �h(x) !  h(�x)� �h(x) ! � h(�x) (5.12)where (x0;x)� = (x0;�x). Using P �Dd � (� !��) one immediately onludes that allthe relevant dimension seven operators have opposite parity with respet to the dimensionsix ones. Using the same arguments of ref. [59℄, one then onludes that no O(a) appearsin the Symanzik expansion of the relevant orrelation funtions.6. ConlusionsIn this paper we have shown that the renormalisation problem of heavy-light four-quarkoperators in the stati approximation an be takled for Wilson-like fermions without theneed to perform �nite subtrations.Owing to the presene of stati quark �elds, the avour swithing symmetries, whihin the relativisti ase have proved so useful [19,61℄ for imposing onstraints on the mixing,are very muh redued. However, this lak is ompensated by the heavy quark symmetry,spatial rotations and a set of disrete symmetries, suh as time reversal. The emergingrenormalisation and mixing pattern is then quite similar to the relativisti theory: whilehiral symmetry breaking generated by the Wilson term indues mixing among di�erenthiralities of parity-even operators in the lattie regularised theory, suh mixings are om-pletely absent in the parity-odd setor.Twisted-mass QCD an be used to relate the operator bases in the parity-even andparity-odd setors also in the stati approximation. In partiular, we have shown howto do this for the operators that ontribute to B0{ �B0 mixing in the Standard Model,using a maximal twist setup that brings in, as a bonus, the potential for automati O(a)improvement.A fully non-perturbative determination of the renormalisation fators of four-quarkoperators in the framework of the Shr�odinger funtional appears entirely feasible at thispoint, provided that one an overome the well-known problem of the Eihten-Hill ation,namely the exponential growth of statistial utuations at large Eulidean times [68℄.Here the hope is that the methods desribed in refs. [27, 62℄ turn out to be as useful as inthe simpler ase of heavy-light bilinears.We have veri�ed expliitly the expeted mixing pattern in an extensive perturbativealulation at one loop. Thereby we have also obtained the NLO anomalous dimensions,whih will be an important ingredient in future non-perturbative determinations of the{ 25 {



renormalisation fators. Furthermore, our perturbative alulation an be used to optimisethe hoie of renormalisation presription in the forthoming numerial simulations.As we have mentioned above, at the level of B0{ �B0 amplitudes the mathing be-tween HQET and QCD requires to ompute matrix elements of the operators O+VV+AA andO+SS+PP, whih are mapped via tmQCD onto the operators O+VA+AV and O+SP+PS. There-fore, as far as renormalisation is onerned, one is then faed with the task of omputing thestep-saling funtions for the relevant pair of operators, whih renormalise multipliatively,i.e. O+VA+AV and O+VA+AV + 4O+SP+PS.The stati approximation onsidered in this work only represents the lowest orderof HQET, and hene all results for phenomenologially relevant quantities are subjet toorretions in powers of the inverse heavy quark mass. While there are strategies in plaewhih are designed for determining the leading 1=M orretions non-perturbatively [14℄,it is also possible to interpolate lattie results between the stati approximation and theregime of relativisti quarks with masses around that of the harm quark. Our �ndingsmay serve to obtain high-preision results for B0 � �B0 mixing amplitudes in the statiapproximation, whih in turn are required to perform reliable interpolations to the physialb-quark mass.AknowledgementsWe are grateful to J. Heitger and R. Sommer for their partiipation in the early stages of thiswork. We thank D. Be�irevi�, M. Della Morte, F. Mesia and espeially J. Reyes for usefuldisussions. F.P. aknowledges the Alexander-von-Humboldt Stiftung for �nanial support.Hospitality o�ered by CERN (F.P., M.P.) and DESY (C.P.) during the preparation of thiswork is thankfully aknowledged.A. Constraints from heavy quark spin symmetry and H(3) spatial rota-tions on the mixing patternWe now desribe the proedure followed to impose the onstraints from heavy quark spinsymmetry and ubi rotations. It applies identially to both the parity-even and theparity-odd setors and we hoose to desribe it for the latter. It turns out that, in thispartiular ase, there is no need for onsidering a maximal set of independent symmetrytransformations, beause the �nal onstraints are already obtained by onsidering a �nitespin transformation of the heavy �elds, e.g.�1 : � h ! � h23 ; � �h ! � �h23 ; (A.1)and two lattie spatial rotations, e.g.�2 : R( 1̂! 2̂ ) rotates the 1̂ axis onto the 2̂ axis;�3 : R( 2̂! 3̂ ) rotates the 2̂ axis onto the 3̂ axis, (A.2)alone. The subspae spanned by (2.6) is not invariant under the set of transformations(A.1). We hene give up temporarily Lorentz invariane (whih, as we will see, will be{ 26 {



reovered naturally) and onsider an enlarged basis ontaining eight operators,O� = (O�V0A0+A0V0 ; : : : ;O�V3A3+A3V3 ;O�V0A0�A0V0 ; : : : ;O�V3A3�A3V3)T ; (A.3)whih an generate, when properly ombined, the original parity-odd basis (2.6) 6. Theanalysis performed in setion 2 by using hiral symmetry an be arried over to (A.3),whih an be aordingly shown to renormalise asO�R = z�(1+ Æ�)O� : (A.4)Here z� are blok diagonal matries ontaining two (4� 4) sale-dependent bloks whileÆ� are blok o�-diagonal matries, ontaining two (4 � 4) sale-independent bloks. Theadvantage of using (A.3) is that the new basis is losed under (A.1) and (A.2), and the ma-tries �k that implement the symmetry rotations an be onstruted expliitly. Moreover,it should be observed that in order to preserve the renormalisation struture determinedby hiral symmetry, the two matries z� and Æ� have to satisfy the symmetry onstraintsindependently, namely z� = �kz���1k ;Æ� = �kÆ���1k : (A.5)The expliit form of the matries �k is easily found out to be:�1 = 0BBBBBBBBBBBB� 0 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 �1 0 00 0 0 0 �1 0 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 01CCCCCCCCCCCCA ; �2 = 0BBBBBBBBBBBB� 1 0 0 0 0 0 0 00 0 1 0 0 0 0 00 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 0 0 0 0 1 0 00 0 0 0 0 0 0 11CCCCCCCCCCCCA ; �3 = 0BBBBBBBBBBBB� 1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 01CCCCCCCCCCCCA :One all the onstraints are imposed one gets 7:z� = 0BBBBBBBBBBBB� z1 z2 z2 z2 0 0 0 0z2 z1 z2 z2 0 0 0 0z2 z2 z1 z2 0 0 0 0z2 z2 z2 z1 0 0 0 00 0 0 0 z01 �z02 �z02 �z020 0 0 0 �z02 z01 z02 z020 0 0 0 �z02 z02 z01 z020 0 0 0 �z02 z02 z02 z011CCCCCCCCCCCCA ; Æ� = 0BBBBBBBBBBBB� 0 0 0 0 �Æ1 Æ2 Æ2 Æ20 0 0 0 �Æ2 Æ1 Æ2 Æ20 0 0 0 �Æ2 Æ2 Æ1 Æ20 0 0 0 �Æ2 Æ2 Æ2 Æ1�Æ01 �Æ02 �Æ02 �Æ02 0 0 0 0Æ02 Æ01 Æ02 Æ02 0 0 0 0Æ02 Æ02 Æ01 Æ02 0 0 0 0Æ02 Æ02 Æ02 Æ01 0 0 0 01CCCCCCCCCCCCA :6Notie that, due the onstraints (2.3), the operators O�SP+PS andO�SP�PS are ontained in the basis (A.3)7To simplify the notation we neglet the supersript � on z1, z2, z01, z02, Æ1, Æ2, Æ01, Æ02 despite the fatthat these matrix elements are in general di�erent in the S = �1 setors.{ 27 {



Now we go to a basis suh that z� is diagonal. A onvenient hoie is:fQ�1 ;Q�1 + 4Q�2 ; R�1 ; R�2 ;Q�3 + 2Q�4 ;Q�3 � 2Q�4 ; R�3 ; R�4 g ; (A.6)where R�j are some Lorentz non-invariant operators, the preise expression of whih isirrelevant for the rest of the argument. By transforming into this basis it turns out thatalso the nontrivial bloks of Æ� are diagonal8. We have therefore arrived to the �nalonlusion that the basis (2.12) is losed under renormalisation, with the mixing patternpresented in (2.13).B. Integrals in the in�nite volume theoryThe lattie ontributions to the mathing oeÆients X (1)ref ;lat, ommonly expressed in termsof a basi set of Feynman integrals in the momentum-spae representation, have beenalulated and ross-heked by independent authors [6,63{65℄. In all ases, their evaluationhas been pursued through Monte Carlo simulations (VEGAS), resulting in an averagenumerial preision of three digits. On the other hand, the mathing onstants X (1)SF;lat,whih provide the onnetion between the SF and the lattie sheme, have been alulatedwith a better auray, as explained in setion 4.2. As a onsequene, the unertaintyon the NLO oeÆients of the SF anomalous dimensions is dominated by the lak ofpreision in the in�nite lattie integrals. A possible way out would be running the MonteCarlo algorithms on faster omputers and wait long enough for a ouple of digits more.A more attrative alternative is to use an analytial trik to improve the quality of theresults, obtaining at the same time some insight into the peuliar nature of the stati lattieintegrals. As an example, we onsiderd1 = 1�2 Z ��� d4k��4�(1� k2) 1k4 + 14�1�2 + 316 1�2�;�1 = 4X�=1 sin2 k�2 ; �2 = 4X�=1 sin2 k� + 4�21 : (B.1)The �rst term in the integral, whih omes from the stati propagator, diverges logarith-mially at k = 0. This ontribution is ompensated by an opposite divergene of thesubsequent terms, whih brings the �nal result to a �nite value, namely d1 ' 5:46. Inpriniple, d1 ould be regularised through the usual lattie disretisation of the integrationvariables, k� ! 2�N n� ; �N2 < n� � N2 : (B.2)If it were not for the �(1� k2)-funtion, the integral would be expeted to behave like anordinary lattie integral, i.e. its onvergene to the ontinuum would be determined by theasymptoti formula~d1(N) = d1 + a1N + b1N log(N) + a2N2 + b2N2 log(N) + O� 1N3� ; (B.3)8The triplet fQ�1 + 4Q�2 ; R�1 ; R�2 g orresponds to an eigenvalue with a three-dimensional assoiatedsubspae in the spae of operators, and so does fQ�3 � 2Q�4 ; R�3 ; R�4 g { both for z� and Æ�.{ 28 {



Figure 7: Convergene pattern of ~d1(N ).where ~d1 represents the lattie version of d1. The �-funtion, whih is non-zero inside aspherial domain, produes an expliit breaking of the hyper-ubi H(4) symmetry, thusperturbing the onvergene pattern. This e�et an be better understood by de�ningI � Z ��� d4k �(1 � k2) 1k4 �! ~I(N) = 1�2 Xni : n2 6=0 � � N24�2 � n2�n4 ; (B.4)and observing that the number of the lattie points that lie inside a 3-sphere � with radiusR� = N=2� inreases irregularly when N ! 1. The alternating exess or de�it ofintegration points gives rise to the osillating behaviour haraterising the dashed urveof Figure 4. In order to smooth ~d1, we propose to regularise ~I in a way that formallyrestores the hyper-ubi symmetry. To this aim, we introdue an order parameter �V�,whih provides a measure of the spherial symmetry breaking produed by the lattiedisretisation, �V�(N) = V� � ~V�(N)V� : (B.5)Here V� = N4=(32�2) is the volume of the above-mentioned 3-sphere, and ~V�(N) representsthe orresponding lattie volume, obtained by just ounting the number of the lattiepoints that belong to the inner of � at �xed N . The reovery of spherial symmetry inthe ontinuum limit implies that �V� vanishes when N !1. In addition, �V� desribesa surfae e�et at large values of N , and its rate of vanishing is therefore proportional to1=N , up to utuations. We now de�ne~I 0(N) = �1 + ��V�(N) + ��V�(N)2	 ~I(N) ; (B.6)where � and � are two real parameters to be suitably hosen. Although both ~I and ~I 0diverge in the ontinuum limit, their di�erene vanishes. Aording to our onsiderations,{ 29 {



the utuations of �V� are expeted to mimi the ones of ~I , and an appropriate andunique hoie of � and � will provide a partial anellation of the irregularities observed inthe ontinuum approah of ~I 0, and onsequently ~d1. The searh of optimal values an besimply performed by hand, as far as only two parameters have to be tuned (in addition, �multiplies a subdominant ontribution). We �nd, in partiular, (�; �) = (0:0838;�0:45). Aplot of ~d1, regularised aording to this hoie, is represented by the solid urve in Figure 4.A �t of the smoothed data against (B.3) allows to extrat the value of d1 with muh higherpreision than the previous determinations. The proedure an be extended to all the otherlattie integrals whih ontribute to the mathing between the ontinuum and the lattieheavy-light operators. Their expliit expressions, reported in [6,29℄, will not be reproduedhere, but a list of more aurate values, obtained with the method explained above, is givenin Table 2.d1 J1 f v  w5:4636(6) �4:8540(6) 13:3503(6) �6:9230(24) 4:5259(27) �1:20538(1)Table 2: Some basi in�nite lattie integrals, whih are needed to ompute the mathing oeÆientsX (1)ref;lat. Their values have been determined aording to the regularisation method explained inthis Appendix.The �nite lattie onstants that ontribute to the mathing oeÆients X (1)ref ;lat areexpressed in terms of those lattie integrals by a set of algebrai relations that have been�rst published in [6, 29℄. Their values are reported in Table 3.DLL �41:248(8) �DLL 2:5923(12)DSLL �30:879(8) �DRL 2:4489(11)DLR �37:843(6) �DRR 0:40179(3)DSLR �37:843(6) �DSRL 9:796(4)DRR �1:60717(1)Table 3: Values of the ombinations of lattie integrals entering mathing oeÆients.The improvement integrals f I , vI and wI , introdued in eq. (4.26), do not involve afator of �(1 � k2). Hene, their numerial value an be omputed with good preisionthrough the bloking proedure desribed in [52℄. We obtain:f I = �3:6461(2) ;vI = �6:7185(2) ;wI = 0:82130(2) : (B.7)C. Tables.In this appendix we list our results for the oeÆients r+k;0, as well as for the NLO anomalous{ 30 {



dimension, obtained for di�erent disretisations and renormalisation shemes. We also takethe opportunity to desribe the bloking proedure [52℄ applied to determine the oeÆientsr+k;0 (see also ref. [66℄ for another pratial appliation in the ontext of the SF).Here we apply this method at the level of the �rst two bloking steps, in order toeliminate the O(a) uto� e�ets in the data. Going beyond this level yields no bene�twith double preision arithmetis, beause of the numerial rounding that arises whensubsequent anellations of the signal are performed. Starting from the �ltered data, we�rst hek that the logarithmially divergent term in the one-loop renormalisation onstanthas the orret oeÆient, whih we indeed obtain with an average preisions+k;0=0+;(0)k = 1:000(1) ; (C.1)f. eq. (4.21).After having heked the form of the divergene, we remove it from the �ltered databy subtrating expliitly a term  0+;(0)k ln(L=a). We then extrat the �nite part of therenormalisation onstant r+k;0 aording to the following proedure. The data are �ttedwith two di�erent ans�atze, viz.Z(n)(L=a) = A+ n+1X�=2 � aL�� fB� + C� ln(L=a)g ; n = 1; 2: (C.2)Rounding errors are modelled as suggested in [67℄. We then �t in several intervals in L=a,always starting at the largest available value. Next we study the �2 per degree of freedomfor eah �t ansatz as a funtion of the number of values of L=a inluded, and �nd theminimum within the stability interval of the �t, thus obtaining two estimates [r+k;0℄3p and[r+k;0℄5p for r+k;0. We take [r+k;0℄3p as our best estimate. Then we onsider a number ofestimates for the unertainty on r+k;0, namely: the �t errors on [r+k;0℄3p and [r+k;0℄5p; thedi�erene j[r+k;0℄3p � [r+k;0℄5pj; and the utuation of A within the stability interval of eah�t. The �nal unertainty is taken to be the largest of all of them.Our �nal results for the �nite oeÆients of the renormalisation onstants r+k;0 arereported in Tables 4{9 below. In the determination of the NLO anomalous dimensions, wehave derived their unertainties by ombining in quadrature the errors of r+k;0 and of themathing oeÆients in eq. (4.25), f. Table 3.
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ation � s � r+1;0 r+2;0 r+3;0 r+4;0W{EH 0.0 1 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 2 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 3 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 4 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 5 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 1 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 2 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 3 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 4 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 5 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)Table 4: Finite parts of the renormalisation onstants in the primed operator basis. Light quarksare regularised with the unimproved Wilson ation (W); heavy quarks with the Eihten-Hill one(EH). Here � = 0:0. Boundary onditions s are enumerated aording to (3.4)-(3.8).ation � s � r+1;0 r+2;0 r+3;0 r+4;0SW{EH 0.0 1 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 2 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 3 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 4 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 5 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 1 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 2 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 3 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 4 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 5 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)Table 5: Finite parts of the renormalisation onstants in the primed operator basis. Light quarksare regularised with the improved Wilson ation (SW); heavy quarks with the Eihten-Hill one(EH). Here � = 0:0. Boundary onditions s are enumerated aording to (3.4)-(3.8).
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ation � s � r+1;0 r+2;0 r+3;0 r+4;0W{EH 0.5 1 0.0 -0.22302(8) -0.10054(7) -0.15083(5) -0.14615(10)W{EH 0.5 2 0.0 -0.21290(8) -0.09671(7) -0.14767(5) -0.14187(10)W{EH 0.5 3 0.0 -0.21290(8) -0.09566(7) -0.14767(5) -0.13734(10)W{EH 0.5 4 0.0 -0.22302(8) -0.10054(7) -0.15083(5) -0.14615(10)W{EH 0.5 5 0.0 -0.21290(8) -0.09356(7) -0.14767(5) -0.12828(10)W{EH 0.5 1 0.5 -0.22723(8) -0.10475(5) -0.15504(10) -0.15036(6)W{EH 0.5 2 0.5 -0.21711(8) -0.10092(5) -0.15188(10) -0.14608(6)W{EH 0.5 3 0.5 -0.21711(8) -0.09987(5) -0.15188(10) -0.14155(6)W{EH 0.5 4 0.5 -0.22723(8) -0.10475(5) -0.15504(10) -0.15036(6)W{EH 0.5 5 0.5 -0.21711(8) -0.09777(5) -0.15188(10) -0.13249(6)Table 6: Finite parts of the renormalisation onstants in the primed operator basis. Light quarksare regularised with the unimproved Wilson ation (W); heavy quarks with the Eihten-Hill one(EH). Here � = 0:5. Boundary onditions s are enumerated aording to (3.4)-(3.8).ation � s � r+1;0 r+2;0 r+3;0 r+4;0SW{EH 0.5 1 0.0 -0.1850(4) -0.06030(5) -0.11658(15) -0.10843(11)SW{EH 0.5 2 0.0 -0.1749(4) -0.05648(5) -0.11342(15) -0.10416(11)SW{EH 0.5 3 0.0 -0.1749(4) -0.05543(5) -0.11342(15) -0.09963(11)SW{EH 0.5 4 0.0 -0.1850(4) -0.06031(5) -0.11658(15) -0.10843(11)SW{EH 0.5 5 0.0 -0.1749(4) -0.05333(5) -0.11342(15) -0.09057(11)SW{EH 0.5 1 0.5 -0.1892(4) -0.06451(7) -0.12078(15) -0.11264(13)SW{EH 0.5 2 0.5 -0.1791(4) -0.06069(7) -0.11763(15) -0.10836(13)SW{EH 0.5 3 0.5 -0.1791(4) -0.05964(7) -0.11763(15) -0.10383(13)SW{EH 0.5 4 0.5 -0.1892(4) -0.06451(7) -0.12078(15) -0.11264(13)SW{EH 0.5 5 0.5 -0.1791(4) -0.05754(7) -0.11763(15) -0.09478(12)Table 7: Finite parts of the renormalisation onstants in the primed operator basis. Light quarksare regularised with the improved Wilson ation (SW); heavy quarks with the Eihten-Hill one(EH). Here � = 0:5. Boundary onditions s are enumerated aording to (3.4)-(3.8).
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ation � s � r+1;0 r+2;0 r+3;0 r+4;0W{EH 1.0 1 0.0 -0.3596(10) -0.10601(14) -0.16560(14) -0.15650(23)W{EH 1.0 2 0.0 -0.3421(10) -0.10173(14) -0.16161(14) -0.15057(24)W{EH 1.0 3 0.0 -0.3421(10) -0.09975(14) -0.16161(14) -0.14540(24)W{EH 1.0 4 0.0 -0.3596(10) -0.10601(14) -0.16560(14) -0.15650(23)W{EH 1.0 5 0.0 -0.3421(10) -0.09579(14) -0.16161(14) -0.13509(24)W{EH 1.0 1 0.5 -0.3649(10) -0.11133(14) -0.17093(14) -0.16183(23)W{EH 1.0 2 0.5 -0.3474(10) -0.10706(14) -0.16693(14) -0.15589(23)W{EH 1.0 3 0.5 -0.3474(10) -0.10507(14) -0.16693(14) -0.15073(23)W{EH 1.0 4 0.5 -0.3649(10) -0.11133(14) -0.17092(14) -0.16183(23)W{EH 1.0 5 0.5 -0.3474(10) -0.10110(14) -0.16694(14) -0.14041(24)Table 8: Finite parts of the renormalisation onstants in the primed operator basis. Light quarksare regularised with the unimproved Wilson ation (W); heavy quarks with the Eihten-Hill one(EH). Here � = 1:0. Boundary onditions s are enumerated aording to (3.4)-(3.8).ation � s � r+1;0 r+2;0 r+3;0 r+4;0SW{EH 1.0 1 0.0 -0.3216(4) -0.06578(19) -0.13135(23) -0.1188(4)SW{EH 1.0 2 0.0 -0.3041(4) -0.06151(19) -0.12736(23) -0.1129(4)SW{EH 1.0 3 0.0 -0.3041(4) -0.05953(19) -0.12736(23) -0.1077(4)SW{EH 1.0 4 0.0 -0.3216(4) -0.06578(19) -0.13135(23) -0.1188(4)SW{EH 1.0 5 0.0 -0.3041(4) -0.05557(19) -0.12736(23) -0.0974(4)SW{EH 1.0 1 0.5 -0.3269(4) -0.07109(19) -0.13666(23) -0.1241(4)SW{EH 1.0 2 0.5 -0.3094(4) -0.06683(19) -0.13268(23) -0.1182(4)SW{EH 1.0 3 0.5 -0.3094(4) -0.06485(19) -0.13268(23) -0.1130(4)SW{EH 1.0 4 0.5 -0.3269(4) -0.07109(19) -0.13666(23) -0.1241(4)SW{EH 1.0 5 0.5 -0.3094(4) -0.06089(19) -0.13268(23) -0.1027(4)Table 9: Finite parts of the renormalisation onstants in the primed operator basis. Light quarksare regularised with the improved Wilson ation (SW); heavy quarks with the Eihten-Hill one(EH). Here � = 1:0. Boundary onditions s are enumerated aording to (3.4)-(3.8).
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� s �  0+;(1)1;SF =0+;(0)1  0+;(1)2;SF =0+;(0)20.0 1 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 2 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 3 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 4 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 5 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf� s �  0+;(1)3;SF =0+;(0)3  0+;(1)4;SF =0+;(0)40.0 1 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 2 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 3 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 4 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 5 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)NfTable 10: The two loop anomalous dimensions of the diagonal basis in units of the orrespondinguniversal one-loop oeÆients. Here � = 0:0 and � = 0:0.� s �  0+;(1)1;SF =0+;(0)1  0+;(1)2;SF =0+;(0)20.0 1 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 2 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 3 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 4 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 5 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf� s �  0+;(1)3;SF =0+;(0)3  0+;(1)4;SF =0+;(0)40.0 1 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 2 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 3 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 4 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 5 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)NfTable 11: The two loop anomalous dimensions of the diagonal basis in units of the orrespondinguniversal one-loop oeÆients. Here � = 0:0 and � = 0:5.{ 35 {



� s �  0+;(1)1;SF =0+;(0)1  0+;(1)2;SF =0+;(0)20.5 1 0.0 0:1566(4)+ 0:00080(2)Nf �0:4690(5)+ 0:04364(3)Nf0.5 2 0.0 0:1287(4)+ 0:00249(2)Nf �0:5006(5)+ 0:04555(3)Nf0.5 3 0.0 0:1287(4)+ 0:00249(2)Nf �0:5092(5)+ 0:04608(3)Nf0.5 4 0.0 0:1565(4)+ 0:00080(2)Nf �0:4690(5)+ 0:04364(3)Nf0.5 5 0.0 0:1287(4)+ 0:00249(2)Nf �0:5265(5)+ 0:04713(3)Nf� s �  0+;(1)3;SF =0+;(0)3  0+;(1)4;SF =0+;(0)40.5 1 0.0 �0:0327(3)+ 0:01211(2)Nf �0:0364(3)+ 0:01696(2)Nf0.5 2 0.0 �0:0396(3)+ 0:01254(2)Nf �0:0600(3)+ 0:01839(2)Nf0.5 3 0.0 �0:0396(3)+ 0:01254(2)Nf �0:0849(3)+ 0:01990(2)Nf0.5 4 0.0 �0:0327(3)+ 0:01211(2)Nf �0:0364(3)+ 0:01696(2)Nf0.5 5 0.0 �0:0396(3)+ 0:01254(2)Nf �0:1347(3)+ 0:02292(2)NfTable 12: The two loop anomalous dimensions of the diagonal basis in units of the orrespondinguniversal one-loop oeÆients. Here � = 0:5 and � = 0:0.� s �  0+;(1)1;SF =0+;(0)1  0+;(1)2;SF =0+;(0)20.5 1 0.5 0:1681(3)+ 0:00010(2)Nf �0:4342(6)+ 0:04153(3)Nf0.5 2 0.5 0:1403(3)+ 0:00179(2)Nf �0:4658(6)+ 0:04344(3)Nf0.5 3 0.5 0:1403(3)+ 0:00179(2)Nf �0:4745(6)+ 0:04397(3)Nf0.5 4 0.5 0:1681(3)+ 0:00010(2)Nf �0:4342(6)+ 0:04153(3)Nf0.5 5 0.5 0:1403(3)+ 0:00179(2)Nf �0:4918(6)+ 0:04502(3)Nf� s �  0+;(1)3;SF =0+;(0)3  0+;(1)4;SF =0+;(0)40.5 1 0.5 �0:0234(2)+ 0:01155(2)Nf �0:0133(3)+ 0:01556(2)Nf0.5 2 0.5 �0:0304(2)+ 0:01197(2)Nf �0:0368(3)+ 0:01699(2)Nf0.5 3 0.5 �0:0304(2)+ 0:01197(2)Nf �0:0617(3)+ 0:01850(2)Nf0.5 4 0.5 �0:0234(2)+ 0:01155(2)Nf �0:0133(3)+ 0:01556(2)Nf0.5 5 0.5 �0:0304(2)+ 0:01197(2)Nf �0:1116(3)+ 0:02152(2)NfTable 13: The two loop anomalous dimensions of the diagonal basis in units of the orrespondinguniversal one-loop oeÆients. Here � = 0:5 and � = 0:5.{ 36 {



� s �  0+;(1)1;SF =0+;(0)1  0+;(1)2;SF =0+;(0)21.0 1 0.0 0:5321(3)� 0:02196(2)Nf �0:424(1) + 0:04090(8)Nf1.0 2 0.0 0:4840(3)� 0:01904(2)Nf �0:459(1) + 0:04304(8)Nf1.0 3 0.0 0:4840(3)� 0:01904(2)Nf �0:475(1) + 0:04403(8)Nf1.0 4 0.0 0:5321(3)� 0:02196(2)Nf �0:424(1) + 0:04090(8)Nf1.0 5 0.0 0:4840(3)� 0:01904(2)Nf �0:508(1) + 0:04601(8)Nf� s �  0+;(1)3;SF =0+;(0)3  0+;(1)4;SF =0+;(0)41.0 1 0.0 �0:0002(3)+ 0:01014(2)Nf 0:020(1)+ 0:01351(8)Nf1.0 2 0.0 �0:0090(3)+ 0:01068(2)Nf �0:012(1) + 0:01549(8)Nf1.0 3 0.0 �0:0090(3)+ 0:01068(2)Nf �0:041(1) + 0:01721(8)Nf1.0 4 0.0 �0:0002(3)+ 0:01014(2)Nf 0:020(1)+ 0:01351(8)Nf1.0 5 0.0 �0:0090(3)+ 0:01068(2)Nf �0:097(1) + 0:02065(8)NfTable 14: The two loop anomalous dimensions of the diagonal basis in units of the orrespondinguniversal one-loop oeÆients. Here � = 1:0 and � = 0:0.� s �  0+;(1)1;SF =0+;(0)1  0+;(1)2;SF =0+;(0)21.0 1 0.5 0:5467(3)� 0:02284(2)Nf �0:380(1)+ 0:03824(8)Nf1.0 2 0.5 0:4986(3)� 0:01993(2)Nf �0:415(1)+ 0:04038(8)Nf1.0 3 0.5 0:4986(3)� 0:01993(2)Nf �0:432(1)+ 0:04137(8)Nf1.0 4 0.5 0:5467(3)� 0:02284(2)Nf �0:380(1)+ 0:03824(8)Nf1.0 5 0.5 0:4986(3)� 0:01993(2)Nf �0:464(1)+ 0:04336(8)Nf� s �  0+;(1)3;SF =0+;(0)3  0+;(1)4;SF =0+;(0)41.0 1 0.5 0:0116(3)+ 0:00943(2)Nf 0:050(1)+ 0:01174(8)Nf1.0 2 0.5 0:0028(3)+ 0:00997(2)Nf 0:017(1)+ 0:01372(8)Nf1.0 3 0.5 0:0028(3)+ 0:00997(2)Nf �0:011(1)+ 0:01544(8)Nf1.0 4 0.5 0:0115(3)+ 0:00943(2)Nf 0:050(1)+ 0:01174(8)Nf1.0 5 0.5 0:0028(3)+ 0:00997(2)Nf �0:068(1)+ 0:01888(8)NfTable 15: The two loop anomalous dimensions of the diagonal basis in units of the orrespondinguniversal one-loop oeÆients. Here � = 1:0 and � = 0:5.{ 37 {
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