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1. Introdu
tionThe os
illations among pairs of neutral B-mesons provide 
ru
ial information for pinningdown the elements of the Cabibbo-Kobayashi-Maskawa (CKM) Matrix that are asso
iatedwith the top quark. Owing to the absen
e of 
avour-
hanging neutral 
urrents in theStandard Model, these os
illations are des
ribed by box diagrams, in whi
h the 
avour
hange is brought about through the intermediate propagation of a virtual top quark.By integrating out the W -boson, the box diagram is repla
ed by an e�e
tive point-likeintera
tion vertex asso
iated with the left-handed �B = 2 four-quark operatorOLL(x) = �b(x)
L� `(x) �b(x)
L� `(x) ; (1.1)where 
L� = 
�(1 � 
5), and the 
avour label ` denotes either a d or an s quark. Thematrix elements of OLL between B-meson states are 
ommonly parameterised in terms ofthe B-parameters BB and BBs, for instan
eh �B0jOLLjB0i = 83m2Bf2BBB ; (1.2)for ` = d. The operator OLL 
an be de
omposed into parity-even and parity-odd 
ompo-nents OVV+AA and OVA+AV . In the Standard Model only the parity-even part OVV+AAmakes a 
ontribution to B-meson mixing. The B-parameters en
ode the long-distan
ee�e
ts of the strong intera
tion and must be determined in a non-perturbative approa
hsu
h as latti
e QCD. Indeed, various latti
e estimates of BB and BBs have been publishedby several authors in re
ent years [1{12℄.It is well known that relativisti
 b-quarks 
annot be simulated dire
tly for 
urrently a
-
essible latti
e spa
ings. Several formalisms for treating b-quarks on the latti
e, based onHeavy Quark E�e
tive Theory (HQET) [13, 14℄, non-relativisti
 QCD [15℄, on-shell im-provement for relativisti
 quarks [16,17℄, as well as �nite-size s
aling te
hniques [18℄, havebeen developed and applied. Obviously, some, if not all, of these approa
hes imply 
ertainapproximations or assumptions whose validity and intrinsi
 a

ura
y must be investigated.In order to yield useful phenomenologi
al information, operators like OLL must be renor-malised. If the regulator breaks 
hiral symmetry, as is the 
ase for Wilson fermions, therenormalisation of OLL, whi
h has a parti
ular 
hiral stru
ture, is 
ompli
ated by the fa
tthat it undergoes mixing with operators of di�erent 
hiralities. Therefore, in addition toan overall logarithmi
ally divergent, multipli
ative renormalisation fa
tor, one must alsodetermine �nite subtra
tion 
oeÆ
ients.The analogous 
ase of K0� �K0 mixing, in whi
h all �elds that appear in the 
orrespondingfour-quark operator are treated relativisti
ally, has been studied in ref. [19℄. There therenormalisation and mixing patterns of a general set of four-quark operators were 
lassi�eda

ording to their transformation properties under 
ertain symmetries. In parti
ular, itwas shown how the mixing due to expli
it 
hiral symmetry breaking implied by the Wilsonterm 
ould be isolated and absorbed into mixing 
oeÆ
ients. Another important resultof [19℄ was the observation that the parity-odd 
omponent OVA+AV is prote
ted against{ 1 {



mixing by dis
rete symmetries.In this paper we adopt a similar strategy to extend the analysis of ref. [19℄ to the 
asewhere the b-quark is treated at leading order in HQET, i.e. in the stati
 approximation. Inparti
ular, we show how the heavy quark spin symmetry, in 
onjun
tion with transforma-tion properties under spatial rotations, as well as dis
rete symmetries like parity and timereversal 
an be used to 
onstrain the renormalisation patterns of a general set of stati
-lightfour-quark operators. One key result is that it is possible to �nd a basis of parity-odd oper-ators that renormalise purely multipli
atively. This allows to devise a strategy aimed at anon-perturbative determination of the renormalisation fa
tors required for the 
al
ulationof B-parameters, without the need to determine �nite subtra
tions.To this end we use twisted mass QCD (tmQCD) [20℄ as a dis
retisation for the light quark�elds, whi
h allows us to map parity-even operators to parity-odd ones. By employingthe S
hr�odinger fun
tional (SF) [21℄, the anomalous dimension of the latter 
an then bedetermined non-perturbatively in 
omplete analogy to the 
ase of K0� �K0 mixing studiedpreviously in [22℄. Thus, in order to re
onstru
t the phenomenologi
ally relevant matrix ele-ment of OLL, one only needs to determine the renormalisation properties of multipli
ativelyrenormalisable operators, even in regularisations that break 
hiral symmetry expli
itely.In addition to explaining how the renormalisation properties of stati
-light four-quark op-erators 
an be 
onstrained, another purpose of this paper is to identify { in the spiritof [23℄ { suitable �nite-volume renormalisation s
hemes based on the SF, to be used in aforth
oming non-perturbative 
al
ulation. To this end we have 
omputed the anomalousdimension in perturbation theory at NLO for the 
omplete basis of four-quark operatorsin several SF s
hemes.Of 
ourse, the 
ompli
ated mixing patterns one is 
onfronted with when using Wilsonfermions 
an be avoided by using dis
retisations for the light quarks whi
h obey theGinsparg-Wilson relation. First steps in this dire
tion have been taken in ref. [24, 25℄.However, in this work we show, by using symmetry properties and tmQCD, that the renor-malisation of stati
-light four-quark operators des
ribing B0 � �B0 mixing 
an be studiedin an equally simple framework for Wilson-type regularisations. Non-perturbative renor-malisation 
an thus be implemented in a straightforward manner and at mu
h redu
ed
omputational 
ost.This paper is organised as follows: in se
tion 2 we dis
uss how the transformation propertiesunder various symmetries 
onstrain the mixing patterns of stati
-light four-quark opera-tors. In se
tion 3 we formulate a set of renormalisation 
onditions for the operator basiswithin the S
hr�odinger fun
tional. Se
tion 4 des
ribes the perturbative 
al
ulation whi
hyields the NLO anomalous dimensions of the operators for a set of S
hr�odinger fun
tionalrenormalisation s
hemes. In se
tion 5 we dis
uss the use of tmQCD to 
ompute the physi
almatrix elements for B0{ �B0 mixing using multipli
atively renormalisable operators. Our
on
lusions are presented in se
tion 6. Te
hni
al details regarding the use of symmetries to
onstrain the renormalisation pattern and the evaluation of latti
e integrals are relegatedto Appendi
es A and B, respe
tively. Tables listing the �nite parts of renormalisation{ 2 {




onstants and the NLO anomalous dimensions 
an be found in Appendix C.2. Mixing of heavy-light four-quark operators in the stati
 approximationIn this se
tion we study the mixing of �B = 2 heavy-light four-quark operators in whi
h theheavy quarks are treated in the stati
 approximation of HQET. Thus they are representedby a pair of stati
 �elds ( h;  �h), propagating forward and ba
kward in time, respe
tively;their dynami
s is governed by the Ei
hten-Hill a
tion [26℄Sstat[ h;  �h℄ = a4Xx � � h(x)r�0 h(x)� � �h(x)r0 �h(x)� ; (2.1)where the forward and ba
kward 
ovariant derivatives r0; r�0 are de�ned byr0 �h(x) = 1a �U0(x) �h(x+ a0̂)�  �h(x)� ;r�0 h(x) = 1a � h(x)� U0(x� a0̂)�1 h(x� a0̂)� : (2.2)The �eld  h( � h) 
an be thought of as the annihilator(
reator) of a heavy quark. Simi-larly,  �h( � �h) 
reates(annihilates) a heavy antiquark. Ea
h �eld is represented by a four-
omponent Dira
 ve
tor, yet only half of the 
omponents play a dynami
al rôle, owing tothe stati
 proje
tion 
onstraintsP+ h =  h ; � hP+ = � h ; P+ = 12(1+ 
0) ;P� �h =  �h ; � �hP� = � �h ; P� = 12(1� 
0) : (2.3)Instead of the link variables that appear in eq. (2.2) one 
an 
onsider more general de�ni-tions of the parallel transporter whi
h enters the 
ovariant derivative. A set of alternativedis
retisations was studied in [27℄, where it was found that adequate 
hoi
es of paralleltransporter lead to mu
h improved signal-to-noise ratios in a
tual simulations.The light (relativisti
) quarks are instead taken to be Wilson fermions, using either theplain Wilson a
tion or its O(a) improved version with a Sheikholeslami-Wohlert term [28℄.The expli
it 
hiral symmetry breaking indu
ed by the Wilson term 
auses the mixing ofoperator of di�erent naive 
hirality even in the 
hiral limit.We 
onsider a 
omplete basis of �B = 2 heavy-light four-quark operators whi
h, forthe sake of de�niteness, we 
hose to 
ontain two stati
 �elds � h and � �h while, in the lightse
tor, we 
onsider massless fermions with two distin
t 
avours  1 and  2. We introdu
ea generi
 �B = 2 operator viaO��1�2 = 12 �( � h�1 1)( � �h�2 2)� ( � h�1 2)( � �h�2 1)� ; (2.4)where �1;2 are Dira
 matri
es, and we adopt the notationO��1�2 � �3�4 � O��1�2 �O��3�4 : (2.5){ 3 {



The 
omplete basis of Lorentz invariant operators is given by the set of 16 operatorsparity-even: Q�1 = O�VV+AA ; parity-odd: Q�1 = O�VA+AV ;Q�2 = O�SS+PP ; Q�2 = O�SP+PSQ�3 = O�VV�AA ; Q�3 = O�VA�AV ;Q�4 = O�SS�PP ; Q�4 = O�SP�PS ; (2.6)whi
h we have grouped a

ording to their transformation properties under parity. HereV = 
�, A = 
�
5, S = 1, P = 
5, and an impli
it summation over pairs of Lorentz indi
esis understood. We in
identally remind the reader that tensor stru
tures like T = ��� or~T = ���
5 produ
e redundant operators in the stati
 limit, due the proje
tion 
onstraints(2.3).The des
ription of �B = 2 transitions in terms of the stati
 approximation of HQETimplies that the operator OLL of eq. (1.1) is related in some parti
ular way to the operatorslisted in eq. (2.6). Owing to the heavy-quark spin symmetry, one �nds that OLL must bemat
hed to a linear 
ombination of O+VV+AA and O+SS+PP [29℄, and thus those two operatorsare of parti
ular interest to the study of B0 � �B0 mixing.The operator basis in eq. (2.6) renormalises, in full generality, via a 16� 16 matrix Z,the form of whi
h 
an be 
onstrained through symmetry arguments. A systemati
 methodto 
arry out this analysis is given by the following pres
ription:(i) Constru
t the matri
es �k that implement, at the level of the operator basis, amaximal set of independent symmetry transformations that leave the a
tion invariant.(ii) Impose the 
onstraints Z= �kZ��1k ; 8k: (2.7)The solution Z to this system of equations displays the 
onstrained form of therenormalisation matrix.In most 
ases the 
onstraint imposed by a given symmetry on the renormalisation matrixZ 
an be easily found out, while in a few 
ases (namely heavy quark spin symmetryand H(3) spatial rotations) an expli
it 
onstru
tion of the 
orresponding �k matri
es isrequired. We leave the explanation of this pro
edure to Appendix A and we present herethe list of symmetries that have been used and their e�e
t in 
onstraining the matrix Z.Flavour ex
hange symmetry S. S ex
hanges the two relativisti
 
avours  1 and  2.Operators with supers
ript � are eigenve
tors of �S with eigenvalues �1 respe
tively. Sthus prevents the mixing between the + and � se
tors. This redu
es the renormalisationmatrix Zto a blo
k-diagonal form, with two 8� 8 blo
ks.Parity. Mixing among operators with opposite parity is ex
luded, and the renormalisationmatrix Zis redu
ed to a blo
k-diagonal form, where four 4� 4 blo
ks des
ribe the mixingof the parity-even and parity-odd operators among themselves.{ 4 {



Chiral symmetry. It is used in the same way as in ref. [19℄. In the 
hiral limit, the
ontinuum relativisti
 quark a
tion is invariant under the �nite axial transformation: k ! i
5 k ; � k ! i � k
5 : (2.8)Under this transformation we obtain:Q�1 !�Q�1 ; Q�1 !�Q�1 ;Q�2 !�Q�2 ; Q�2 !�Q�2 ;Q�3 ! Q�3 ; Q�3 ! Q�3 ;Q�4 ! Q�4 ; Q�4 ! Q�4 : (2.9)From this one sees that, were 
hirality respe
ted by the regulator, Q�1 would mix onlywith Q�2 , and Q�3 only with Q�4 (and similarly in the parity-odd se
tor). This is notthe 
ase with a Wilson regularisation, for whi
h the stru
ture of 
hiral multiplets mustbe restored by 
ombining operators with di�erent naive 
hiralities [30℄. The restorationof 
hiral properties is a
hieved by introdu
ing the mixing matri
es ��;D�. On
e thesubtra
ted operators ~Q� = (1 + ��)Q� and ~Q� = (1 + D�)Q� with the 
orre
t 
hiralproperties have been 
onstru
ted, they will mix like in the 
ontinuum with renormalisationmatri
es Z�;Z�. We 
hoose the matri
es Z�;Z�;��;D� su
h that:0BBB�Q�1Q�2Q�3Q�4 1CCCAR = 0BBB�Z�11 Z�12 0 0Z�21 Z�22 0 00 0 Z�33 Z�340 0 Z�43 Z�441CCCA266641+0BBB� 0 0 ��13 ��140 0 ��23 ��24��31 ��32 0 0��41 ��42 0 0 1CCCA377750BBB�Q�1Q�2Q�3Q�4 1CCCA ; (2.10)and 0BBB�Q�1Q�2Q�3Q�4 1CCCAR = 0BBB�Z�11 Z�12 0 0Z�21 Z�22 0 00 0 Z�33 Z�340 0 Z�43 Z�441CCCA266641+0BBB� 0 0 D�13 D�140 0 D�23 D�24D�31 D�32 0 0D�41 D�42 0 0 1CCCA377750BBB�Q�1Q�2Q�3Q�4 1CCCA : (2.11)This 
hoi
e is 
onvenient be
ause it is easy to show (for instan
e by using Ward identities)that ��; D� and the produ
t Z�(Z�)�1 all depend only on the bare 
oupling g0, whileZ� and Z� alone 
ontain the 
ontinuum-like dependen
e on the renormalisation s
ale.Heavy quark spin symmetry and H(3) spatial rotations. Further 
onstraints 
anbe obtained from the heavy quark spin symmetry and 
ubi
 rotations. The pro
edure isslightly involved and we leave its des
ription to Appendix A. It applies identi
ally to bothparity-even and parity-odd se
tors, and below we provide the expressions for the latter |results for the parity-even se
tor are obtained by simply repla
ing the symbols Q;Z ;Dwith Q;Z;�. After imposing the 
onstraints Z= �kZ��1k one �nds that it is possible torotate (2.6) into a new basis(Q0�1 ;Q0�2 ;Q0�3 ;Q0�4 )T = (Q�1 ;Q�1 + 4Q�2 ;Q�3 + 2Q�4 ;Q�3 � 2Q�4 )T ; (2.12){ 5 {



in whi
h the s
ale-dependent mixing is 
ompletely disentangled (even though some s
ale-independent mixing remains):0BBB�Q0�1Q0�2Q0�3Q0�4 1CCCAR = 0BBB�Z 0�1 0 0 00 Z 0�2 0 00 0 Z 0�3 00 0 0 Z 0�4 1CCCA266641+0BBB� 0 0 D0�1 00 0 0 D0�2D0�3 0 0 00 D0�4 0 0 1CCCA377750BBB�Q0�1Q0�1Q0�3Q0�3 1CCCA : (2.13)Time reversal. Up to this point, the renormalisation mixing of the parity-even andparity-odd se
tors has the same matrix stru
ture. We now 
onsider the e�e
t of a timereversal transformation of both the stati
 and relativisti
 quark �elds. To that purpose, itis 
onvenient to rewrite (2.4) in the formO��1�2 = 12 ���	P+�1 1� � �	P��2 2�� ��	P��1 2� ��	P+�2 1�� ; (2.14)with 	 =  h +  �h ; �	 = � h + � �h : (2.15)It is then easy to apply the time reversal transformation�	(x)! �	(x� )
5
0; k(x)! 
0
5 k(x� ); k = 1; 2 (2.16)where (x0;x)� = (�x0;x).The transformation rules for the operators (apart from the � re
e
tion of the spa
e-time 
oordinates) are easily found to beQ�1 !�Q�1 Q�1 !�Q�1 ;Q�2 !�Q�2 Q�2 !�Q�2 ;Q�3 !�Q�3 Q�3 !�Q�3 ;Q�4 !�Q�4 Q�4 !�Q�4 (2.17)and identi
al ones for the (Q0;Q0) basis. It is then 
lear that no new 
onstraints arise forthe parity-even operators and for Z 0�, while the invarian
e of the s
ale independent mixingunder time reversal immediately yields D0� = 0: (2.18)This proves the purely multipli
ative renormalisability of the operator basis (2.12). As anote of referen
e, we would like to point out that the absen
e of mixing is already manifestat the one-loop perturbative level in eqs. (20){(23) of [6℄: it is enough to proje
t both sidesonto parity eigenstates and 
hange to the basis in eq. (2.12) to �nd that mixing in theparity-odd se
tor is absent at one loop. { 6 {



Finally, we 
an rotate ba
k to the standard basis (2.6), obtaining the following formfor the renormalisation matri
es:Z� = 0BBB� Z 0�1 0 0 0�14(Z 0�1 � Z 0�2 ) Z0�2 0 00 0 12(Z 0�3 + Z 0�4 ) Z 0�3 � Z 0�40 0 14(Z 0�3 � Z 0�4 ) 12(Z 0�3 + Z 0�4 )1CCCA ; (2.19)�� = 0BBB� 0 0 �0�1 2�0�10 0 �14(�0�1 ��0�2 ) �12(�0�1 +�0�2 )12(�0�3 +�0�4 ) 2�0�4 0 014(�0�3 ��0�4 ) ��0�4 0 0 1CCCA ; (2.20)Z� = 0BBB� Z 0�1 0 0 0�14(Z 0�1 �Z 0�2 ) Z 0�2 0 00 0 12(Z 0�3 + Z 0�4 ) Z 0�3 � Z 0�40 0 14(Z 0�3 �Z 0�4 ) 12(Z 0�3 + Z 0�4 )1CCCA ; (2.21)D� = 0 : (2.22)For later 
onvenien
e, we denote by � the matrix responsible for the 
hange of basis (2.12),su
h that Q0�i = �ijQ�j and Q0�i = �ijQ�j . Equation (2.19) reprodu
es the result of [24℄.Now we will pursue a strategy to 
ompute the renormalisation matri
es non perturbati-vely using S
hr�odinger fun
tional te
hniques. For parity-even operators, the determinationof the subtra
tion 
oeÆ
ients in eq. (2.20) 
an be a
hieved by implementing suitable axialWard identities. However, as we will show later on, the use of tmQCD te
hniques allows toobtain all the �B = 2 physi
al amplitudes of interest in the Standard Model from matrixelements of the operators Q+1 ;Q+2 . Therefore, from now on we will 
on
entrate ex
lusivelyon the renormalisation of Q�k .3. Renormalisation 
onditions in the S
hr�odinger fun
tionalHaving 
onstrained their renormalisation patterns by imposing the symmetries of the the-ory, we now pro
eed to spe
ifying suitable renormalisation 
onditions on the four-quarkoperators (2.12). To this end we will 
onsider a set of 
orrelation fun
tions de�ned inthe S
hr�odinger fun
tional (SF) whi
h will serve to impose the renormalisation 
onditionsat the non-perturbative level. The SF formalism [21℄, whi
h was initially developed toprodu
e a pre
ise determination of the running 
oupling [31{33℄, has been extended tovarious other phenomenologi
al 
ontexts. These in
lude the study of quark masses [34{36℄and de
ay 
onstants [37{39℄, the 
omputation of moments of stru
ture fun
tions [40, 41℄,the Kaon B-parameter [22, 23,42℄, and the stati
-light axial 
urrent [43, 44℄. The readeris referred to [45℄ for detailed explanations of the framework and the standard notation,whi
h are not repeated here.Our 
onstru
tion of the relevant SF 
orrelators extends the one des
ribed in [23℄ tothe stati
 
ase. We start by introdu
ing the following bilinear boundary sour
e operators,{ 7 {



proje
ted to zero external momentum,�s1s2 [�℄ = a6Xx;y ��s1(x)��s2(y) ;�0s1s2 [�℄ = a6Xx;y ��0s1(x)�� 0s2(y) ; (3.1)where � is a Dira
 matrix, the 
avour indi
es s1;2 
an assume both relativisti
 and stati
values, and the �elds � and � 0 represent fun
tional derivatives with respe
t to the fermioni
boundary �elds of the SF, see [45℄. The 
hoi
es for � are limited by the boundary 
onditionsimposed on quark �elds. At the level of boundary quark and antiquark �elds they imply�(x) = P��(x) ; ��(x) = ��(x)P+ ; (3.2)with P� = 12(1 � 
0), and similarly for �0; ��0. Therefore, in order to have a non-vanishingsour
e �eld �s1s2 [�℄, � must anti
ommute with 
0.1Starting from the bilinears in (3.1), we have to 
onstru
t suitable boundary sour
es toprobe four-quark operators. In order to de�ne a set of non-zero 
orrelators in the masslesstheory, whi
h 
an then be used to impose renormalisation 
onditions in the 
hiral limit, theprobe should be parity-odd. We further require it to be invariant under the group H(3) oflatti
e rotations in three dimensions. This leads us to introdu
e a third \spe
tator" lightquark and 
onsider, as the simplest possible 
hoi
e, a generalised boundary sour
e madeof three bilinears, W [�1;�2;�3℄ = �1h[�1℄�23[�2℄�03�h[�3℄ ; (3.3)two of whi
h are lo
alised at the boundary x0 = 0, while the third lies at the other bound-ary, namely x0 = T . Odd parity and rotational invarian
e are then assured through anappropriate 
hoi
e of the Dira
 stru
tures [�1;�2;�3℄, and a maximal set of 
orrespondingprobes is given by S(1) =W [
5; 
5; 
5℄ ; (3.4)S(2) = 16 3Xk;l;m=1 "klmW [
k; 
l; 
m℄ ; (3.5)S(3) = 13 3Xk=1W [
5; 
k; 
k℄ ; (3.6)S(4) = 13 3Xk=1W [
k; 
5; 
k℄ ; (3.7)S(5) = 13 3Xk=1W [
k; 
k; 
5℄ : (3.8)1Allowing for a non-vanishing angular momentum would relax this 
onstraint, but, sin
e it would mostlikely lead also to worse signal-to-noise ratios in numeri
al simulations, we do not pursue this approa
h.{ 8 {



Figure 1: Diagrammati
 representation of 
orrelation fun
tions: the four-quark 
orrelatorF�;(s)k (x0) (left), the boundary-to-boundary stati
-light 
orrelators f1;hl; k1;hl (
enter) and theboundary-to-boundary light-light 
orrelators f1;ll; k1;ll (right). Eu
lidean time goes from left toright. The double blob indi
ates the four-quark operator insertion. Single lines represent relativis-ti
 quarks and double lines denote the stati
 ones.The four-quark operators 
an now be treated as lo
al insertions in the bulk of the SF, andtheir 
orrelators are naturally de�ned asF�;(s)k (x0) = L�3hQ0�k (x)S(s)i; s = 1; : : : ; 5 : (3.9)A pi
torial interpretation of (3.9) is provided by the left diagram of Figure 1.It has to be observed that, due to the symmetries of the stati
 approximation forthe heavy quarks, not all of the above 
orrelation fun
tions are independent. By usingthe expli
it spin stru
ture of the stati
 propagator, some straightforward though tediousalgebra leads to the 
onstraintsF�;(4)1 = �F�;(1)1 ; F�;(3)1 = �F�;(2)1 ;F�;(4)2 = 13F�;(1)2 ; F�;(5)1 = �F�;(2)1 ;F�;(4)3 = �F�;(1)3 ; F�;(3)3 = �F�;(2)3 ;F�;(4)4 = 13F�;(1)4 ; F�;(5)3 = �F�;(2)3 : (3.10)These relations show that only 24 out of the 40 
orrelation fun
tions de�ned in eq. (3.9)are independent. We stress that this result is exa
t; as a 
ross-
he
k, later on we will �ndthese identities to be expli
itly veri�ed at one loop in perturbation theory.In order to isolate from eq. (3.9) the ultraviolet divergen
es that are due to the bulkoperator and absorb them into a renormalisation fa
tor, one has to address the renormal-isation of the boundary �elds. The ultraviolet divergen
es of the latter are 
an
elled byde�ning suitable ratios of 
orrelators for whi
h the renormalisation fa
tors of the boundary�elds drop out. To this end we introdu
e a set of boundary-to-boundary light-light andstati
-light 
orrelators, fhl1 = � 12L6 hO01�h[
5℄Oh1[
5℄i ; (3.11)f ll1 = � 12L6 hO012[
5℄O21[
5℄i ; (3.12)kll1 = � 16L6 3Xk=1hO012[
k℄O21[
k℄i ; (3.13){ 9 {



whose valen
e stru
ture is represented as well in the middle and right diagrams of Figure 1. 2A suitable 
ombination of su
h 
orrelators must 
omprise the same number of stati
 andlight boundary �elds as (3.9). The simplest examples are given by the ratiosF�;(s)k (x0)fhl1 [f ll1 ℄1=2 ; F�;(s)k (x0)fhl1 [kll1 ℄1=2 ; (3.14)involving either the 
orrelator f ll1 or kll1 . However, it is easy to generalise these 
onditionsby introdu
ing an arbitrary real parameter �. Hen
e, we 
onsider the following ratios of
orrelation fun
tions: h�;(s)k;� (x0) = F�;(s)k (x0)fhl1 [f ll1 ℄1=2��[kll1 ℄� : (3.15)Although there is no real a priori restri
tion on the value of �, it is 
lear that \natural"values should lie in the interval [0; 12 ℄. This freedom, together with the 
hoi
e of theboundary sour
e and the �-angle of the SF, 
an be used in a later stage to tune theoptimal renormalisation s
hemes, with the aim of having small NLO 
oeÆ
ients in the
orresponding anomalous dimensions. This is important in order to 
ontrol the systemati
sof the perturbative mat
hing to 
ontinuum s
hemes at high energy s
ales.For the moment we observe that the ratios (3.15) are free of boundary divergen
es,and 
onsequently we impose the renormalisation 
ondition,Z 0�;(s)k;� h�;(s)k;� (T=2) = h�;(s)k;� (T=2)jg0=0 ; (3.16)where all the 
orrelation fun
tions are 
omputed in the 
hiral limit. This �xes non-perturbatively the renormalisation 
onstant Z 0�;(s)k;� at the s
ale � = 1=L. As usual, theZ 0 fa
tors depend upon every 
al
ulational detail with the only ex
eption of the leadinglog, whi
h is universal. In order to operatively de�ne a renormalisation s
heme, a 
om-plete spe
i�
ation of the parameters that 
on
ur to quantify (3.15) is required. We brie
ysummarise them:� the possible presen
e of a Sheikholeslami-Wohlert (SW) term in the latti
e a
tion forthe light quarks;� the 
hoi
e of the gauge parallel transporter in the 
ovariant derivatives, eq. (2.2), inthe stati
 a
tion;� the Dira
 stru
ture of the boundary sour
e;� the value of the angle � entering the spatial boundary 
onditions of the SF;� the value of the parameter � in eq. (3.15);� the ratio T=L between the time and the spatial extension of the SF.2The stati
-light 
ounterpart of kll1 is not 
onsidered as, due to the symmetries of the stati
 limit, it isidenti
al to fhl1 . { 10 {



The last four 
onditions �x the renormalisation s
heme, while the �rst two only introdu
e aregularisation dependen
e in the renormalisation 
onstants. We stress at this point that therunning of the operators is a 
ontinuum property, i.e. it is independent of the dis
retisation
hosen. The latter only a�e
ts the way in whi
h the 
ontinuum limit is approa
hed, and {in the 
ase of the a
tion for stati
 quark �elds { the signal-to-noise ratio in the simulations.In this paper we 
onsider the Wilson a
tion (with and without SW term) for the lightquarks, and the Ei
hten-Hill a
tion for the stati
 ones. As for the parameters that �xthe renormalisation s
heme, we will 
onsider three values of � (namely � = 0:0; 0:5; 1:0)and two values of � (namely � = 0:0; 0:5). Furthermore, we �x T = L. Taken togetherwith the possible independent 
hoi
es of boundary sour
es, this leaves us with 12 di�erentrenormalisation s
hemes for the operators Q0�1 and Q0�3 , and 24 s
hemes for Q0�2 and Q0�4 .The number of independent renormalisation 
onditions is twi
e this �gure, as we 
onsidertwo di�erent a
tions.4. A perturbative studyWe now pro
eed to studying the renormalisation of the operators Q+1 ; : : : ;Q+4 at one-loop in perturbation theory. These are the operators that will enter �B = 2 e�e
tiveHamiltonians in the stati
 limit. The purpose of this study is threefold. First, it providesan expli
it 
he
k of the expe
ted mixing pattern. Se
ond, it will allow us to 
omputethe NLO anomalous dimension of the operators in the SF s
hemes de�ned above; this isdone via a standard one-loop mat
hing pro
edure to 
ontinuum s
hemes where the NLOanomalous dimension is already known. Finally, we 
an work out latti
e artefa
ts of thestep s
aling fun
tions in one-loop perturbation theory. They 
an then be 
ompared tothe ones in the relativisti
 
ase dis
ussed in [23℄, in order to obtain information about theexpe
ted size of dis
retisation e�e
ts for quantities involving stati
 �elds. In prin
iple, thedis
retisation e�e
ts 
omputed in perturbation theory 
ould subsequently be subtra
tedby hand from the non-perturbative Monte Carlo data, with the aim of exerting a better
ontrol of their 
ontinuum extrapolation, as pursued in [22,46,47℄.4.1 S
heme dependen
e of NLO anomalous dimensionsIn order to pro
eed, some notation has to be �xed. The s
ale dependen
e of operatorinsertions in renormalised 
orrelation fun
tions is des
ribed by the RG equation�Æij �� ��� + � ��g + ��� ��� + �m ��m�� 
+ij� (Q+j )R = 0 ; (4.1)where � is the �-fun
tion for the 
oupling, � is the anomalous dimension of the quarkmass, and 
+ is the operator anomalous dimension matrix. We have also in
luded a termwhi
h takes into a

ount the dependen
e on the gauge parameter � in 
ovariant gauges,
hara
terised by the RG fun
tion ��, de�ned as����� = ��� : (4.2){ 11 {



This term is absent in s
hemes like MS (irrespe
tive of the regularisation pres
ription) orthe SF s
hemes introdu
ed in se
tion 3, but is present e.g. in regularisation-independent(RI) s
hemes, whi
h will be 
onsidered later on. If we 
hoose to work with the operatorbasis in eq. (2.12), the matrix stru
ture of the RG-equation simpli�es, and the evolutionof the various operators is determined by a set of s
alar anomalous dimensions.In what follows, we fo
us on mass-independent renormalisation s
hemes, for whi
hthe RG fun
tions depend only upon the 
oupling. We take the following form for theirperturbative expansions:�(g) = �g3 1Xk=1 bkg2k ; ��(g) = �g2 1Xk=0 b�kg2k ;�(g) =�g2 1Xk=0 dkg2k ; 
+ij(g) = �g2 1Xk=0 
+;(k)ij g2k ; (4.3)with universal 
oeÆ
ientsb0 = 1(4�)2 �113 N � 23Nf� ; d0 = 1(4�)2 �3N2 � 1N � ;b�0 = 1(4�)2 �N ��� 133 �+ 43Nf� ;b1 = 1(4�)4 �343 N2 ��133 N �N�1�Nf� : (4.4)The LO 
oeÆ
ient of the anomalous dimension matrix 
+;(0) is universal as well, andhas been 
al
ulated in [29℄ for the �rst operator of the basis and [6℄ for the rest. Thenon-vanishing elements of the anomalous dimension matrix read
+;(0)11 = � 1(4�)2 �3N � 3N� ; (4.5)
+;(0)21 = 1(4�)2 �1 + 1N� ; (4.6)
+;(0)22 = � 1(4�)2 �3N � 4� 7N� ; (4.7)
+;(0)33 = � 1(4�)2 �3N � 6N� ; (4.8)
+;(0)34 = � 6(4�)2 ; (4.9)
+;(0)43 = � 3=2(4�)2 ; (4.10)
+;(0)44 = � 1(4�)2 �3N � 6N� : (4.11)A 
ovariant rotation of this matrix to the diagonal operator basis (2.12), i.e. 
0+;(0) =�
+;(0)��1, gives the LO 
oeÆ
ients of the multipli
atively renormalisable operators,{ 12 {



namely
 0+;(0)1 = � 1(4�)2 �3N � 3N� ; 
 0+;(0)2 = � 1(4�)2 �3N � 4� 7N� ;
 0+;(0)3 = � 1(4�)2 �3N + 3� 6N� ; 
 0+;(0)4 = � 1(4�)2 �3N � 3� 6N� : (4.12)By 
ontrast, the NLO 
oeÆ
ient is s
heme-dependent. The perturbative mat
hingpro
edure that allows to express its value in the SF s
heme in terms of the value in areferen
e s
heme has been derived in [48℄ for the 
ase of multipli
atively renormalisableoperators. The formalism 
an be trivially extended to situations where mixing o

urs anda gauge 
ovariant referen
e s
heme is assumed. The renormalised operators and 
oupling
onstant are �rst related in the two s
hemes through a �nite renormalisation,g2SF = Xg(gref)g2ref ;(Q+i;SF)R = X+ij (gref)(Q+j;ref)R : (4.13)The mat
hing 
oeÆ
ients X are then expanded in powers of the 
oupling 
onstant,X (g) = 1 + 1Xk=1 g2kX (k) ; (4.14)and the requirement of formal invarian
e of the RG-equation under a 
hange of renormal-isation s
heme leads to the two-loop mat
hing relation
+;(1)SF = 
+;(1)ref + [X+;(1); 
+;(0)℄ + 2b0X+;(1) + b�0� ���X+;(1) � 
+;(0)X (1)g ; (4.15)where the symbol [�; �℄, whi
h is absent in the 
ase of multipli
ative renormalisation, repre-sents the ordinary matrix 
ommutator. It should be stressed that the 
hoi
e of the referen
es
heme is irrelevant. In fa
t, a good 
onsisten
y 
he
k on the result for 
+;(1)SF is providedby 
omputing the RHS of (4.15) for several di�erent referen
e s
hemes.Finally, we point out that the latti
e is 
urrently the only known regularisation of theSF, for whi
h perturbative 
al
ulations of fermioni
 observables 
an be operatively per-formed.3 If the referen
e s
heme is de�ned in the 
ontinuum, the operator mat
hing musttake into a

ount both a 
hange of regularisation and a 
hange of subtra
tion pres
ription.A

ordingly, X (1)O must be 
omputed as the di�eren
e of two mat
hing 
oeÆ
ients to anintermediate s
heme, namely X+;(1)SF;ref = X+;(1)SF;lat �X+;(1)ref;lat : (4.16)The \lat" s
heme is by de�nition the minimal subtra
tion latti
e s
heme, where the renor-malisation 
onstants are polynomials in ln(a�) without �nite parts. Consequently, X+;(1)SF;lat,whi
h provides the mat
hing between SF and \lat", 
an be obtained from a one-loop 
al
u-lation of the renormalisation 
onstant in the SF s
heme with a latti
e regularisation. Themat
hing 
oeÆ
ient X+;(1)ref ;lat between the referen
e s
heme and the latti
e 
an be insteadretrieved from the literature for some 
hoi
e of the referen
e s
heme, su
h as MS or RI.3A re
ent proposal to perform the mat
hing dire
tly in dimensional regularisation has been presentedin [49℄. { 13 {



4.2 Perturbative expansion of SF 
orrelation fun
tionsWe now des
ribe the one-loop 
al
ulation of the SF renormalisation 
onstants introdu
edin se
tion 3. The perturbative pro
edure is fairly 
onventional, and we in
lude it just for
ompleteness. We start by expanding all the 
orrelation fun
tions previously introdu
edin powers of the bare 
oupling,X = X(0) + g20 "X(1) +m(1)
 �X(0)�m0 #+O �g40� ; (4.17)where X is one of F+;(s)k , fhl1 , f ll1 , kll1 , or a linear 
ombination thereof. The derivative termin square bra
kets is required in order to set the 
orrelation fun
tion X to zero renormalisedquark mass, when ea
h 
ontribution to the RHS is 
al
ulated at zero bare quark mass, as itwill be assumed. As for the numeri
al value of m(1)
 , we use the numbers provided by [50℄,i.e. am(1)
 = (�0:20255651209CF (
sw = 1),�0:32571411742CF (
sw = 0), CF = N2 � 12N ; (4.18)The SF renormalisation 
onstants, de�ned in (3.16), admit an analogous expansion,Z 0+;(s)k;� (g0; a=L) = 1 + g20Z 0+;(s;1)k;� (L=a) +O �g40� : (4.19)The expli
it expression of the one-loop order 
oeÆ
ient Z 0+;(s;1)k;� in terms of the perturbativeexpansion of the four-quark and the boundary-to-boundary 
orrelators 
an be obtained byinserting (4.17) and (4.19) into the renormalisation 
ondition (3.16). One then obtainsZ 0+;(s;1)k;� (L=a) =�(F+;(s;1)kF+;(s;0)k + F+;(s;1)kbF+;(s;0)k + m(1)
F+;(s;0)k �F+;(s;0)k�m0 )x0=T=2+(fhl(1)1fhl(0)1 + fhl(1)1bfhl(0)1 + m(1)
fhl(0)1 �fhl(0)1�m0 )+ �12 � ��(f ll(1)1f ll(0)1 + f ll(1)1bf ll(0)1 + m(1)
f ll(0)1 �f ll(0)1�m0 )+ �(kll(1)1kll(0)1 + kll(1)1bkll(0)1 + m(1)
kll(0)1 �kll(0)1�m0 ) : (4.20)Contributions 
ontaining the subs
ript \b" arise from the boundary terms that are requiredin addition to the SW term in order to a
hieve full O(a)-improvement of the a
tion in theSF [45℄. Obviously, these 
ontributions are not present when the unimproved Wilson a
tionis 
hosen for the light quarks. From now on we will set them to zero also when the a
tionis O(a) improved, as they will not a�e
t the 
ontinuum limit extrapolations involved inthe 
omputation of NLO anomalous dimension, and their 
ontribution to 
uto� e�e
ts isnegligible. { 14 {



The evaluation of the RHS of (4.20) requires the 
al
ulation of the Feynman diagramsdepi
ted in Figures 2 and 3. The one-loop expansion of the boundary-to-boundary 
or-relators f ll1 and kll1 is known from [51℄, while fhl1 has been studied perturbatively in [43℄.A

ordingly, the only new diagrams whi
h need to be 
al
ulated are the ones that 
ontributeto the one-loop order 
oeÆ
ient of the four-quark 
orrelators. Two groups of diagrams 
anbe identi�ed: the self-energies 
orre
t the valen
e fermion propagators through a gluonemission with subsequent absorption by the same leg, and the vertex diagrams 
orre
t theoperator insertions through the ex
hange of a gluon between two legs. Ea
h of them 
anbe expressed as a loop sum of a Dira
 tra
e in time-momentum representation, where thespatial 
oordinates are Fourier transformed. These sums have been performed numeri
allyin double pre
ision arithmeti
s using a C++ 
ode, for all the even latti
e sizes rangingfrom L=a = 6 to L=a = 48. The results have been 
he
ked by an independent Fortran90 program, also in double pre
ision arithmeti
s. The behaviour of the renormalisation
onstants thus obtained, as fun
tions of the latti
e size L=a, is expe
ted to 
onform to thestandard asymptoti
 expansionZ 0+;(s;1)k;� (L=a) = 1X�=0 � aL�� nr+k;� + s+k;� ln(L=a)o ; (4.21)whi
h 
an be used in order to extra
t the universal LO anomalous dimensions and the �nite
onstants pe
uliar to the s
hemes, that is to say, the 
oeÆ
ients s+0 and r+0 , respe
tively.The latter represents the mat
hing 
oeÆ
ient introdu
ed in (4.16) in the diagonal basis,namely X 0(1)k;SF;lat = r+k;0 : (4.22)An eÆ
ient numeri
al te
hnique to isolate these 
oeÆ
ients, based on a blo
king pro
edureof the fun
tion at neighbour latti
e sizes, has been introdu
ed in [52℄. Details about itsappli
ation to the 
ase at hand are provided to Appendix C. Numeri
al values of the
oeÆ
ients r+k;0 for the various s
hemes introdu
ed in se
tion 3 are reported in Tables 4 {9.4.3 Mat
hing to 
ontinuum s
hemes and 
onsisten
y 
he
ksThe NLO anomalous dimension matrix of the operators (2.6) in 
ontinuum s
hemes 
anbe found in [6℄, together with the one-loop mat
hing relations to the minimal subtra
tionlatti
e s
heme. The regularisations employed in [6℄ are DRED and NDR, and two possiblesubtra
tion pres
riptions are 
onsidered, namely MS and RI. An attra
tive feature of thelatter is the independen
e of the 
orresponding anomalous dimension from the 
hoi
e ofevanes
ent operators (EO), whi
h 
ompli
ate the mixing pattern in d = 4� 2� dimensions.As a 
onsequen
e, it is trivial to perform a rotation of the anomalous dimension matrixin the RI s
heme to a di�erent basis of the physi
al operators, su
h as (2.12), without theneed to address subtleties related to the de�nition of evanes
ent 
ontributions. The 
hoi
eof RI as a referen
e s
heme is therefore 
onvenient in order to make use of the two-loopmat
hing relation (4.15) in the diagonal basis (2.12).{ 15 {



Figure 2: Feynman diagrams of the self-energy type.

Figure 3: Feynman diagrams of the vertex type.{ 16 {



Results reported in [6℄ refer to a perturbative expansion in powers of the MS-
oupling.We therefore need the mat
hing 
oeÆ
ient in eq. (4.13), whi
h relates gSF to gMS, toone-loop order. This has been 
al
ulated in [53℄ and is given byX (1)g = 2b0 ln(�L)� 14� (
1;0 + 
1;1Nf) ;
1;0 = 1:25563(4) ; 
1;1 = 0:039863(2) : (4.23)The NLO anomalous dimension of the operator basis (2.12) in the Feynman gauge (� = 1)and NDR regularisation4, obtained from the 
ovariant rotation 
0(1) = �
(1)��1, is adiagonal matrix whose non-zero 
oeÆ
ients read
 0+;(1)1;RI = 1(4�)4�� 131 + 8�212 N2 + 6N � 1� 2�23 + 30 + 4�23N � 57 + 16�212N2+Nf �53N � 53N�� ;
 0+;(1)2;RI = 1(4�)4�� 131 + 8�212 N2 + 2149 N + 301 + 6�29 + 18� 4�23N + 87� 16�212N2+Nf �53N � 409 � 559N�� ;
 0+;(1)3;RI = 1(4�)4�� 131 + 8�212 N2 � 836 N + 309 + 8�212 � 24� 4�23N + 21� 4�23N2+Nf �53N + 103 � 5N�� ;
 0+;(1)4;RI = 1(4�)4�� 131 + 8�212 N2 + 716 N + 309 + 8�212 + 42� 4�23N + 33� 4�23N2+Nf �53N � 103 � 5N�� : (4.24)The same rotation 
an be applied to the one-loop operator mat
hing matrix X 0(1)RI;lat. In this
ase the analyti
 dependen
e upon the gauge parameter � is needed in order to a

ountfor the derivative term in
luded in the two-loop mat
hing relation (4.15). With N = 3,4Although the four-quark operators are renormalised a

ording to the RI s
heme, whi
h is independentof the regularisation pres
ription, the strong intera
tion Lagrangian is renormalised in MS . This introdu
esa spurious dependen
e of the NLO anomalous dimension upon the 
hoi
e of the regulator.{ 17 {



one hasX 0(1)1;RI;lat(wilson) = 1(4�)2 �103 � 83�+ (DLL �DRR)� ;X 0(1)2;RI;lat(wilson) = 1(4�)2 �103 � 83�+DSLL� ;X 0(1)3;RI;lat(wilson) = 1(4�)2 �103 � 83�+ 14 �2DLR + 2DSLR � 4 �DRL � �DSRL�� ;X 0(1)4;RI;lat(wilson) = 1(4�)2 �103 � 83�+ 14 �2DLR + 2DSLR + 4 �DRL + �DSRL�� (4.25)for light quarks regularised with the pure Wilson a
tion. If the O(a) improved a
tion isused instead, one has to add to them the mat
hing fa
tors between the two a
tions, viz.X 0(1)1;lat(sw);lat(wilson) = 1(4�)2 ��43f I � 13vI � 43wI� = 0:038033(2) ;X 0(1)2;lat(sw);lat(wilson) = 1(4�)2 ��43f I � 29vI� = 0:040240(2) ;X 0(1)3;lat(sw);lat(wilson) = 1(4�)2 ��43f I + 23wI� = 0:034253(2) ;X 0(1)4;lat(sw);lat(wilson) = 1(4�)2 ��43f I + 43wI� = 0:037720(2) ; (4.26)where the latti
e integrals f I , vI and wI are dis
ussed in Appendix B. Numeri
al values ofthe D-
oeÆ
ients, expressed in [6℄ as linear 
ombinations of a basi
 set of latti
e integrals,are reported in Table 3 of Appendix B, where a new 
omputational method to improvetheir numeri
al a

ura
y is also des
ribed. The fa
tors in eq. (4.26) are obtained from the
oeÆ
ients denoted DI in [6℄, after subtra
ting the 
ontributions 
oming from the O(a)improvement of the four-fermion operators.All the ingredients needed to evaluate the RHS of eq. (4.15) have now been spe
i�ed.The absen
e of operator mixing in the diagonal basis (2.12) implies that the 
ommutatorterm in eq. (4.15) is identi
ally zero. NLO anomalous dimensions in the previously intro-du
ed SF s
hemes follow from a straightforward use of eqs. (4.12), (4.16) and (4.22){(4.25).We have 
olle
ted the ratios of 
0+;(1)k;SF to the 
orresponding LO 
oeÆ
ients 
0+;(0)k in Tables10 { 15. In the mat
hing we have employed the values of r+k;0 obtained with the pure Wilsona
tion for light quarks, as they tend to display a better behaved 
ontinuum extrapolation,after the O(a) 
ontributions have been removed through blo
king.In order to 
he
k our results, we have also derived the SF NLO anomalous dimensionsusing MS as a referen
e s
heme. The mat
hing pro
edure, rather deli
ate in this 
ase,must take into a

ount the rôle played by the EO in �xing the �nite 
ontributions tothe NLO anomalous dimension matrix 
+;(1)MS . A naive rotation of the latter is potentiallyhazardous without re
onsidering the 
hoi
e of the EO. An alternative approa
h is to workwithin the original basis (2.6), to whi
h the results in [6℄ refer, and then rotate the one-loop{ 18 {



mat
hing 
oeÆ
ients from the SF to the latti
e s
heme a

ording to the inverse rotationX (1)SF;lat = ��1X 0(1)SF;lat�. This is 
ertainly possible, as the 
omputation of su
h 
oeÆ
ientsis performed on the latti
e in d = 4 dimensions, where no EO 
ontributes. Of 
ourse,the 
ommutator term in eq. (4.15) must be in
luded in this 
ase, whilst the gauge termproportional to b�0 is not present. On
e the NLO anomalous dimension matrix has beenobtained in the SF s
heme, a straight rotation ba
k to the diagonal basis (2.12) yields thes
alar 
oeÆ
ients 
0+;(1)k;SF . This pro
edure has been applied using either DRED or NDRregularisations. In both 
ases we obtain the same results as with RI in the diagonal basis.We have also veri�ed that the di�eren
e between the �nite parts of the SF renormal-isation 
onstants with improved and unimproved Wilson light quarks 
oin
ides with thevalues in eq. (4.26). The numeri
al values of these �nite mat
hing 
onstants are indeed inperfe
t agreement with the analogous SF quantities.We �nally 
on
entrate on the numeri
al values of the NLO anomalous dimension 
o-eÆ
ients in the SF. A 
omparison with the 
ase studied in [23℄, where the four-fermionoperators 
ontain only relativisti
 quark �elds, shows that in the present 
ase the variationof the anomalous dimension due to di�erent 
hoi
es of the SF boundary sour
es in therenormalisation 
ondition is mu
h less pronoun
ed. Also, the non-perturbative identitiesin eq. (3.10) are veri�ed expli
itly by the one-loop results. The dependen
e on the value ofthe parameter � is very small, too. Finally, at � = 0:5, whi
h is 
ommonly employed in non-perturbative studies of SF renormalisation, the values obtained for the ratios 
 0+;(1)k;SF =
0+;(0)kare relatively small, pointing towards a good 
onvergen
e of the perturbative series, savefor Q+2 , where they are 
lose to �0:5. The question whether this is a relevant sour
e ofun
ertainty in the NLO mat
hing of renormalised matrix elements to 
ontinuum s
hemesis left for future studies.4.4 One-loop order 
uto� e�e
ts in step-s
aling fun
tionsThe non-perturbative RG-evolution of the four-quark operators in the diagonal basis (2.12)is obtained through the 
omputation of the step-s
aling fun
tions�+;(s)k;� (u) = lima!0�+;(s)k;� (u; a=L) ; �+;(s)k;� (u; a=L)) = Z 0+;(s)k;� (g0; a=2L)Z 0+;(s)k;� (g0; a=L) �����g2(L)=u : (4.27)These ratios of renormalisation 
onstants provide the operator running between the s
ales� = 1=L and � = 1=2L. The advantage of introdu
ing su
h ratios is related to the 
om-pensation of logarithmi
 divergen
es between numerator and denominator, thus resultingin a �nite 
ontinuum limit. Cuto� e�e
ts 
an be therefore 
ompletely de
oupled from the
ontinuum RG-evolution. We are 
on
erned here with the perturbative expansion of (4.27)in the renormalised 
oupling, that is�+;(s)k;� (u) = 1 + �+;(s;1)k;� u+ �+;(s;2)k;� u2 + O(u3) : (4.28)The �rst two terms of this expansion depend upon the LO and NLO anomalous dimension{ 19 {



PSfrag repla
ementsT=alog10 r PSfrag repla
ementsT=alog10 rFigure 4: On the left(right) side the step s
aling fun
tion of Q0+1 (Q0+2 ) at NLO and Nf = 0 isplotted vs. the squared renormalised 
oupling in the SF s
heme. The boundary sour
es 
hoi
e iss = 1, and the �-parameter is set to zero.
oeÆ
ients. They read expli
itely�+;(s;1)k;� = 
 0+;(0)k ln 2 ;�+;(s;2)k;� = 
 0+;(1)k;SF ln 2 + �12(
 0+;(0)k )2 + b0
 0+;(0)k � (ln 2)2 : (4.29)A graphi
al representation of (4.28) for the whole operator basis in some parti
ular 
ases isprovided by the four plots of Figures 4 and 5, in the range of values of g2SF used in previousnon-perturbative studies by the ALPHA Collaboration.The rate of 
onvergen
e of the step-s
aling fun
tions toward the 
ontinuum limit at LO
an be expressed in terms of the �rst non-trivial 
oeÆ
ient of the perturbative expansion(analogous to (4.28)) of �+;(s)k;� (u; a=L) via the ratioÆ+;(s)k;� (a=L) = �+;(s;1)k;� (a=L)� �+;(s;1)k;��+;(s;1)k;� ; (4.30)where �+;(s;1)k;� (a=L) = Z 0+;(s;1)k;� (2L=a)� Z 0+;(s;1)k;� (L=a) : (4.31)In order to 
ompare the perturbative latti
e artefa
ts (4.30) with the ones obtained fromthe 
orresponding non-perturbative Monte Carlo simulations, the same de�nition of the
riti
al mass, based on the PCAC Ward identity, should be adopted. This point has beenextensively explained in [23℄, where the numeri
al values of am(1)
 (L=a) from L=a = 6 toL=a = 32 have been provided (
f. Table 3 in that work). That dis
ussion will not berepeated here. Sin
e our 
odes ran up to L=a = 48, we are in the position to extend theaforementioned table to in
lude the additional points. The new numbers are reported inTable 1. { 20 {



PSfrag repla
ementsT=alog10 r PSfrag repla
ementsT=alog10 rFigure 5: On the left(right) side the step s
aling fun
tion of Q0+3 (Q0+4 ) at NLO and Nf = 0 isplotted vs. the renormalised 
oupling in the SF s
heme. The boundary sour
es 
hoi
e is s = 1, andthe �-parameter is set to zero.L=a am(1)
 (L=a)j
sw=1=CF am(1)
 (L=a)j
sw=0=CF34 -0.20255637783 -0.3254408050136 -0.20255639414 -0.3254702322038 -0.20255640819 -0.3254951539040 -0.20255642028 -0.3255164444242 -0.20255643068 -0.3255347759944 -0.20255643965 -0.3255506722446 -0.20255644740 -0.3255645460048 -0.20255645412 -0.32557672619Table 1: The one-loop 
oeÆ
ients of the 
riti
al mass as obtained from the PCAC Ward Identityat �nite latti
e size. For the parameter 
hoi
es made here, the 
onvergen
e to the values at in�nitelatti
e size is quadrati
/
ubi
 in (a=L), for standard/O(a) improved Wilson quarks.In pra
ti
e, non-perturbative simulations based on the Ei
hten-Hill dis
retisation ofthe heavy quark �elds should better be avoided, given the bad intrinsi
 signal-to-noiseratio (2.1, 2.2) [27℄. Nevertheless, it is instru
tive to 
ompute latti
e artefa
ts in pertur-bation theory for the Ei
hten-Hill a
tion, if only to 
he
k whether the use of stati
 �eldsenhan
es latti
e artefa
ts with respe
t to the purely relativisti
 
ase. A 
omparison be-tween stati
-light and light-light four-quark operators in a typi
al situation is shown inFigure 6. All data refer to Q+1 , employing a renormalisation s
heme in whi
h the boundarysour
es have a Dira
 stru
ture [
5; 
5; 
5℄ and where the normalisation of the four-quark
orrelator involves only f ll1 . Relativisti
 data are taken from [23℄. Taken at fa
e value,{ 21 {



the plot leads to the 
on
lusion that the light quark a
tion is the main responsible for thepresen
e of relatively large latti
e artefa
ts: on
e this has been 
hosen, stati
-light andlight-light four-quark operators 
ome to be a�e
ted by 
uto� e�e
ts of a similar size.

Figure 6: Comparison between 
uto� e�e
ts of the step s
aling fun
tion of the stati
-light andlight-light versions of the four-quark operator Q0+1 . Light quarks are des
ribed in terms of theunimproved (W) or improved (SW) Wilson a
tion. Stati
 quarks are always des
ribed by theEi
hten-Hill (EH) a
tion. The 
riti
al mass has been obtained from the PCAC Ward Identity.5. tmQCD for B0{ �B0 mixingAs stated above, our interest in the renormalisation of Q+k stems from the fa
t that thephysi
al �B = 2 matrix elements involving the operators Q+1 ; Q+2 , with  1 =  2 �  `(where in pra
ti
e the 
avour label ` denotes either a d or an s quark), 
an be mappedonto matrix elements of Q+1 ;Q+2 
omputed in some suitable tmQCD regularisation. Thisredu
es to a minimum the un
ertainties related to operator renormalisation, whi
h takespla
e essentially in the same way as if exa
t 
hiral symmetry were present. Now we will
onstru
t spe
i�
 tmQCD regularisations whi
h realize this mapping. This te
hnique is ageneralisation of the ones already developed for BK [20, 22℄.We will work in the so-
alled \twisted basis", and 
on
entrate �rst on the 
ase of theBB parameter where  ` = d. Let us 
onsider a quark doublet  T = (u; d), for whi
h we{ 22 {



spe
ify the tmQCD a
tionStmQCD[ ; � ℄ = a4Xx � � (x) �Dw +m+ i��3
5� (x)	 ; (5.1)where Dw is the usual Wilson-Dira
 operator (with or without a SW term). The 
hoi
e ofa
tion for the other relativisti
 quark 
avours is immaterial to the argument. The equiv-alen
e of tmQCD to standard QCD has been �rst established in [20℄. Given a multi-lo
algauge-invariant operator O(x1; : : : ; xn), the equivalen
e amounts to the identity betweenrenormalised 
orrelation fun
tionsh ~OR(x1; : : : ; xn)i(MR;0) = hOR(x1; : : : ; xn)i(mR;�R) ; (5.2)whi
h holds in the regularised theory up to 
uto� e�e
ts, and is exa
t in the 
ontinuumlimit. In the above expression, the relation between the operators ~O and O is provided bythe axial rotation of the quark �elds whi
h relates QCD to tmQCD, viz.~ = exp �i�
5�3=2� ~� = � exp �i�
5�3=2� ; (5.3)where the twist angle � is de�ned in terms of the renormalised mass parameters of thetmQCD a
tion as tan(�) = �RmR ; (5.4)and the physi
al renormalised quark mass MR is given byMR =qm2R + �2R : (5.5)Let us now 
onsider the stati
-light four-quark operators O+VV+AA and O+VA+AV with light
avours  1 =  2 = d. We observe that the rotation (5.3) implies~O+VV+AA = 
os(�)O+VV+AA � i sin(�)O+VA+AV : (5.6)In parti
ular, at � = �=2, whi
h is known as the maximally twisted 
ase, (5.6) simpli�es to~O+VV+AA = �iO+VA+AV : (5.7)Exa
tly the same property holds for the operator SS + PP, for whi
h one �nds again~O+SS+PP = �iO+SP+PS : (5.8)This demonstrates expli
itly that the matrix elements of O+VV+AA and O+SS+PP, responsi-ble for the parti
le mixing in the SM and within the stati
 approximation of QCD, 
an beobtained from a 
omputation of the matrix element of O+VA+AV and O+SP+PS in tmQCD at� = �=2. Sin
e in mass independent s
hemes, su
h as the SF, all dependen
e of renormal-isation fa
tors on the mass parameters drops out, it is 
lear that tmQCD does not spoil{ 23 {



the renormalisation pattern of the operator basis (2.12). In parti
ular, the 
ombinationsQ01 � O+VA+AV and Q02 � O+VA+AV + 4O+SP+PS renormalise purely multipli
atively.In 
ase one is interested in the B0s{ �B0s mixing amplitude, it is enough to maximallytwist a quark doublet whi
h 
ontains the s quark, e.g. (
; s), the a
tion for whi
h wouldread exa
tly as eq. (5.1), save for the eventual introdu
tion of non-degenerate masses forthe two quarks of the doublet, along the lines of [54℄. The a
tion for a twisted (
; s) doubletwould then read StmQCD[ ; � ℄ = a4Xx � � (x) [Dw +m+ i�
5℄ (x)	 (5.9)with m = diag(m
; ms) and � = diag(�
; �s), and the 
onstrainttan(�) = � �s;Rms;R = �
;Rm
;R : (5.10)A potential short
oming of eq. (5.9) 
omes about in 
ase it is taken as the a
tion for dynam-i
al 
; s quarks, sin
e Ms;R 6=M
;R would then indu
e a phase in the fermion determinant.One may then 
onsider more sophisti
ated 
hiral rotations that keep the determinant real,as in [55℄. If 
; s are kept quen
hed, or interpreted as valen
e quarks, no su
h subtletyarises.We 
on
lude that the use of suitable tmQCD regularisations avoids the need of de-termining mixing 
oeÆ
ients for the renormalisation of the matrix elements entering theB0{ �B0 amplitude in the stati
 approximation. For an alternative analysis of operatormixing using a di�erent tmQCD regularisation, we refer the reader to ref. [56℄.An additional advantage brought in by the use of maximally tmQCD is the automati
O(a) improvement of bare matrix elements of the above four-fermion operators. Thisproperty does not hold, on the other hand, for the renormalisation 
onstants 
omputedwithin the SF s
hemes dis
ussed in previous se
tions. In order to obtain O(a) improvedrenormalization 
onstants one should use modi�ed SF s
hemes, as proposed in refs. [57,58℄.In order to show that the bare matrix elements are automati
ally O(a) improved weextend the argument in Appendix A of ref. [59℄. The �rst observation is that, at maximaltwist, the only O(a) 
ounterterms to the stati
 a
tion are proportional to the dimension�ve operators tr(�2) ( � h h + � �h �h) ; (tr(�))2 ( � h h + � �h �h) : (5.11)(In the simple 
ase � = ��3 there is one single 
ounterterm proportional to �2( � h h +� �h �h).) These 
ounterterms merely generate a shift of the stati
 quark self-energy 5. These
ond observation is that all the possible O(a) (dimension seven) 
ounterterms will havethe same stati
 �eld 
ontent of the original (dimension six) four-fermion operator, and willdi�er from it only by the addition of mass fa
tors or derivatives. It is then possible toextend the symmetry P � Dd � (� ! ��) of the relativisti
 a
tion [59℄ (where P is the5Moreover, they are obviously absent in the quen
hed approximation.{ 24 {



physi
al parity and Dd is de�ned in ref. [60℄) to in
lude stati
 quarks. P and Dd will nowbe de�ned to beP : 8>>>>>>>>>>>><>>>>>>>>>>>>:U0(x) ! U0(x�)Uk(x) ! Uyk(x� � ak̂) (x) ! i
0
5�3 (x�)� (x) ! � (x�)�3
5
0i h(x) !  h(x�)� h(x) ! � h(x�) �h(x) ! � �h(x�)� �h(x) ! � � �h(x�) Dd :8>>>>>>>>>><>>>>>>>>>>:U�(x) ! Uy�(�x � a�̂) (x) ! �i (�x)� (x) ! �i � (�x) h(x) !  �h(�x)� h(x) ! � �h(�x) �h(x) !  h(�x)� �h(x) ! � h(�x) (5.12)where (x0;x)� = (x0;�x). Using P �Dd � (� !��) one immediately 
on
ludes that allthe relevant dimension seven operators have opposite parity with respe
t to the dimensionsix ones. Using the same arguments of ref. [59℄, one then 
on
ludes that no O(a) appearsin the Symanzik expansion of the relevant 
orrelation fun
tions.6. Con
lusionsIn this paper we have shown that the renormalisation problem of heavy-light four-quarkoperators in the stati
 approximation 
an be ta
kled for Wilson-like fermions without theneed to perform �nite subtra
tions.Owing to the presen
e of stati
 quark �elds, the 
avour swit
hing symmetries, whi
hin the relativisti
 
ase have proved so useful [19,61℄ for imposing 
onstraints on the mixing,are very mu
h redu
ed. However, this la
k is 
ompensated by the heavy quark symmetry,spatial rotations and a set of dis
rete symmetries, su
h as time reversal. The emergingrenormalisation and mixing pattern is then quite similar to the relativisti
 theory: while
hiral symmetry breaking generated by the Wilson term indu
es mixing among di�erent
hiralities of parity-even operators in the latti
e regularised theory, su
h mixings are 
om-pletely absent in the parity-odd se
tor.Twisted-mass QCD 
an be used to relate the operator bases in the parity-even andparity-odd se
tors also in the stati
 approximation. In parti
ular, we have shown howto do this for the operators that 
ontribute to B0{ �B0 mixing in the Standard Model,using a maximal twist setup that brings in, as a bonus, the potential for automati
 O(a)improvement.A fully non-perturbative determination of the renormalisation fa
tors of four-quarkoperators in the framework of the S
hr�odinger fun
tional appears entirely feasible at thispoint, provided that one 
an over
ome the well-known problem of the Ei
hten-Hill a
tion,namely the exponential growth of statisti
al 
u
tuations at large Eu
lidean times [68℄.Here the hope is that the methods des
ribed in refs. [27, 62℄ turn out to be as useful as inthe simpler 
ase of heavy-light bilinears.We have veri�ed expli
itly the expe
ted mixing pattern in an extensive perturbative
al
ulation at one loop. Thereby we have also obtained the NLO anomalous dimensions,whi
h will be an important ingredient in future non-perturbative determinations of the{ 25 {



renormalisation fa
tors. Furthermore, our perturbative 
al
ulation 
an be used to optimisethe 
hoi
e of renormalisation pres
ription in the forth
oming numeri
al simulations.As we have mentioned above, at the level of B0{ �B0 amplitudes the mat
hing be-tween HQET and QCD requires to 
ompute matrix elements of the operators O+VV+AA andO+SS+PP, whi
h are mapped via tmQCD onto the operators O+VA+AV and O+SP+PS. There-fore, as far as renormalisation is 
on
erned, one is then fa
ed with the task of 
omputing thestep-s
aling fun
tions for the relevant pair of operators, whi
h renormalise multipli
atively,i.e. O+VA+AV and O+VA+AV + 4O+SP+PS.The stati
 approximation 
onsidered in this work only represents the lowest orderof HQET, and hen
e all results for phenomenologi
ally relevant quantities are subje
t to
orre
tions in powers of the inverse heavy quark mass. While there are strategies in pla
ewhi
h are designed for determining the leading 1=M 
orre
tions non-perturbatively [14℄,it is also possible to interpolate latti
e results between the stati
 approximation and theregime of relativisti
 quarks with masses around that of the 
harm quark. Our �ndingsmay serve to obtain high-pre
ision results for B0 � �B0 mixing amplitudes in the stati
approximation, whi
h in turn are required to perform reliable interpolations to the physi
alb-quark mass.A
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knowledged.A. Constraints from heavy quark spin symmetry and H(3) spatial rota-tions on the mixing patternWe now des
ribe the pro
edure followed to impose the 
onstraints from heavy quark spinsymmetry and 
ubi
 rotations. It applies identi
ally to both the parity-even and theparity-odd se
tors and we 
hoose to des
ribe it for the latter. It turns out that, in thisparti
ular 
ase, there is no need for 
onsidering a maximal set of independent symmetrytransformations, be
ause the �nal 
onstraints are already obtained by 
onsidering a �nitespin transformation of the heavy �elds, e.g.�1 : � h ! � h
2
3 ; � �h ! � �h
2
3 ; (A.1)and two latti
e spatial rotations, e.g.�2 : R( 1̂! 2̂ ) rotates the 1̂ axis onto the 2̂ axis;�3 : R( 2̂! 3̂ ) rotates the 2̂ axis onto the 3̂ axis, (A.2)alone. The subspa
e spanned by (2.6) is not invariant under the set of transformations(A.1). We hen
e give up temporarily Lorentz invarian
e (whi
h, as we will see, will be{ 26 {



re
overed naturally) and 
onsider an enlarged basis 
ontaining eight operators,O� = (O�V0A0+A0V0 ; : : : ;O�V3A3+A3V3 ;O�V0A0�A0V0 ; : : : ;O�V3A3�A3V3)T ; (A.3)whi
h 
an generate, when properly 
ombined, the original parity-odd basis (2.6) 6. Theanalysis performed in se
tion 2 by using 
hiral symmetry 
an be 
arried over to (A.3),whi
h 
an be a

ordingly shown to renormalise asO�R = z�(1+ Æ�)O� : (A.4)Here z� are blo
k diagonal matri
es 
ontaining two (4� 4) s
ale-dependent blo
ks whileÆ� are blo
k o�-diagonal matri
es, 
ontaining two (4 � 4) s
ale-independent blo
ks. Theadvantage of using (A.3) is that the new basis is 
losed under (A.1) and (A.2), and the ma-tri
es �k that implement the symmetry rotations 
an be 
onstru
ted expli
itly. Moreover,it should be observed that in order to preserve the renormalisation stru
ture determinedby 
hiral symmetry, the two matri
es z� and Æ� have to satisfy the symmetry 
onstraintsindependently, namely z� = �kz���1k ;Æ� = �kÆ���1k : (A.5)The expli
it form of the matri
es �k is easily found out to be:�1 = 0BBBBBBBBBBBB� 0 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 �1 0 00 0 0 0 �1 0 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 01CCCCCCCCCCCCA ; �2 = 0BBBBBBBBBBBB� 1 0 0 0 0 0 0 00 0 1 0 0 0 0 00 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 0 0 0 0 1 0 00 0 0 0 0 0 0 11CCCCCCCCCCCCA ; �3 = 0BBBBBBBBBBBB� 1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 01CCCCCCCCCCCCA :On
e all the 
onstraints are imposed one gets 7:z� = 0BBBBBBBBBBBB� z1 z2 z2 z2 0 0 0 0z2 z1 z2 z2 0 0 0 0z2 z2 z1 z2 0 0 0 0z2 z2 z2 z1 0 0 0 00 0 0 0 z01 �z02 �z02 �z020 0 0 0 �z02 z01 z02 z020 0 0 0 �z02 z02 z01 z020 0 0 0 �z02 z02 z02 z011CCCCCCCCCCCCA ; Æ� = 0BBBBBBBBBBBB� 0 0 0 0 �Æ1 Æ2 Æ2 Æ20 0 0 0 �Æ2 Æ1 Æ2 Æ20 0 0 0 �Æ2 Æ2 Æ1 Æ20 0 0 0 �Æ2 Æ2 Æ2 Æ1�Æ01 �Æ02 �Æ02 �Æ02 0 0 0 0Æ02 Æ01 Æ02 Æ02 0 0 0 0Æ02 Æ02 Æ01 Æ02 0 0 0 0Æ02 Æ02 Æ02 Æ01 0 0 0 01CCCCCCCCCCCCA :6Noti
e that, due the 
onstraints (2.3), the operators O�SP+PS andO�SP�PS are 
ontained in the basis (A.3)7To simplify the notation we negle
t the supers
ript � on z1, z2, z01, z02, Æ1, Æ2, Æ01, Æ02 despite the fa
tthat these matrix elements are in general di�erent in the S = �1 se
tors.{ 27 {



Now we go to a basis su
h that z� is diagonal. A 
onvenient 
hoi
e is:fQ�1 ;Q�1 + 4Q�2 ; R�1 ; R�2 ;Q�3 + 2Q�4 ;Q�3 � 2Q�4 ; R�3 ; R�4 g ; (A.6)where R�j are some Lorentz non-invariant operators, the pre
ise expression of whi
h isirrelevant for the rest of the argument. By transforming into this basis it turns out thatalso the nontrivial blo
ks of Æ� are diagonal8. We have therefore arrived to the �nal
on
lusion that the basis (2.12) is 
losed under renormalisation, with the mixing patternpresented in (2.13).B. Integrals in the in�nite volume theoryThe latti
e 
ontributions to the mat
hing 
oeÆ
ients X (1)ref ;lat, 
ommonly expressed in termsof a basi
 set of Feynman integrals in the momentum-spa
e representation, have been
al
ulated and 
ross-
he
ked by independent authors [6,63{65℄. In all 
ases, their evaluationhas been pursued through Monte Carlo simulations (VEGAS), resulting in an averagenumeri
al pre
ision of three digits. On the other hand, the mat
hing 
onstants X (1)SF;lat,whi
h provide the 
onne
tion between the SF and the latti
e s
heme, have been 
al
ulatedwith a better a

ura
y, as explained in se
tion 4.2. As a 
onsequen
e, the un
ertaintyon the NLO 
oeÆ
ients of the SF anomalous dimensions is dominated by the la
k ofpre
ision in the in�nite latti
e integrals. A possible way out would be running the MonteCarlo algorithms on faster 
omputers and wait long enough for a 
ouple of digits more.A more attra
tive alternative is to use an analyti
al tri
k to improve the quality of theresults, obtaining at the same time some insight into the pe
uliar nature of the stati
 latti
eintegrals. As an example, we 
onsiderd1 = 1�2 Z ��� d4k��4�(1� k2) 1k4 + 14�1�2 + 316 1�2�;�1 = 4X�=1 sin2 k�2 ; �2 = 4X�=1 sin2 k� + 4�21 : (B.1)The �rst term in the integral, whi
h 
omes from the stati
 propagator, diverges logarith-mi
ally at k = 0. This 
ontribution is 
ompensated by an opposite divergen
e of thesubsequent terms, whi
h brings the �nal result to a �nite value, namely d1 ' 5:46. Inprin
iple, d1 
ould be regularised through the usual latti
e dis
retisation of the integrationvariables, k� ! 2�N n� ; �N2 < n� � N2 : (B.2)If it were not for the �(1� k2)-fun
tion, the integral would be expe
ted to behave like anordinary latti
e integral, i.e. its 
onvergen
e to the 
ontinuum would be determined by theasymptoti
 formula~d1(N) = d1 + a1N + b1N log(N) + a2N2 + b2N2 log(N) + O� 1N3� ; (B.3)8The triplet fQ�1 + 4Q�2 ; R�1 ; R�2 g 
orresponds to an eigenvalue with a three-dimensional asso
iatedsubspa
e in the spa
e of operators, and so does fQ�3 � 2Q�4 ; R�3 ; R�4 g { both for z� and Æ�.{ 28 {



Figure 7: Convergen
e pattern of ~d1(N ).where ~d1 represents the latti
e version of d1. The �-fun
tion, whi
h is non-zero inside aspheri
al domain, produ
es an expli
it breaking of the hyper-
ubi
 H(4) symmetry, thusperturbing the 
onvergen
e pattern. This e�e
t 
an be better understood by de�ningI � Z ��� d4k �(1 � k2) 1k4 �! ~I(N) = 1�2 Xni : n2 6=0 � � N24�2 � n2�n4 ; (B.4)and observing that the number of the latti
e points that lie inside a 3-sphere � with radiusR� = N=2� in
reases irregularly when N ! 1. The alternating ex
ess or de�
it ofintegration points gives rise to the os
illating behaviour 
hara
terising the dashed 
urveof Figure 4. In order to smooth ~d1, we propose to regularise ~I in a way that formallyrestores the hyper-
ubi
 symmetry. To this aim, we introdu
e an order parameter �V�,whi
h provides a measure of the spheri
al symmetry breaking produ
ed by the latti
edis
retisation, �V�(N) = V� � ~V�(N)V� : (B.5)Here V� = N4=(32�2) is the volume of the above-mentioned 3-sphere, and ~V�(N) representsthe 
orresponding latti
e volume, obtained by just 
ounting the number of the latti
epoints that belong to the inner of � at �xed N . The re
overy of spheri
al symmetry inthe 
ontinuum limit implies that �V� vanishes when N !1. In addition, �V� des
ribesa surfa
e e�e
t at large values of N , and its rate of vanishing is therefore proportional to1=N , up to 
u
tuations. We now de�ne~I 0(N) = �1 + ��V�(N) + ��V�(N)2	 ~I(N) ; (B.6)where � and � are two real parameters to be suitably 
hosen. Although both ~I and ~I 0diverge in the 
ontinuum limit, their di�eren
e vanishes. A

ording to our 
onsiderations,{ 29 {



the 
u
tuations of �V� are expe
ted to mimi
 the ones of ~I , and an appropriate andunique 
hoi
e of � and � will provide a partial 
an
ellation of the irregularities observed inthe 
ontinuum approa
h of ~I 0, and 
onsequently ~d1. The sear
h of optimal values 
an besimply performed by hand, as far as only two parameters have to be tuned (in addition, �multiplies a subdominant 
ontribution). We �nd, in parti
ular, (�; �) = (0:0838;�0:45). Aplot of ~d1, regularised a

ording to this 
hoi
e, is represented by the solid 
urve in Figure 4.A �t of the smoothed data against (B.3) allows to extra
t the value of d1 with mu
h higherpre
ision than the previous determinations. The pro
edure 
an be extended to all the otherlatti
e integrals whi
h 
ontribute to the mat
hing between the 
ontinuum and the latti
eheavy-light operators. Their expli
it expressions, reported in [6,29℄, will not be reprodu
edhere, but a list of more a

urate values, obtained with the method explained above, is givenin Table 2.d1 J1 f v 
 w5:4636(6) �4:8540(6) 13:3503(6) �6:9230(24) 4:5259(27) �1:20538(1)Table 2: Some basi
 in�nite latti
e integrals, whi
h are needed to 
ompute the mat
hing 
oeÆ
ientsX (1)ref;lat. Their values have been determined a

ording to the regularisation method explained inthis Appendix.The �nite latti
e 
onstants that 
ontribute to the mat
hing 
oeÆ
ients X (1)ref ;lat areexpressed in terms of those latti
e integrals by a set of algebrai
 relations that have been�rst published in [6, 29℄. Their values are reported in Table 3.DLL �41:248(8) �DLL 2:5923(12)DSLL �30:879(8) �DRL 2:4489(11)DLR �37:843(6) �DRR 0:40179(3)DSLR �37:843(6) �DSRL 9:796(4)DRR �1:60717(1)Table 3: Values of the 
ombinations of latti
e integrals entering mat
hing 
oeÆ
ients.The improvement integrals f I , vI and wI , introdu
ed in eq. (4.26), do not involve afa
tor of �(1 � k2). Hen
e, their numeri
al value 
an be 
omputed with good pre
isionthrough the blo
king pro
edure des
ribed in [52℄. We obtain:f I = �3:6461(2) ;vI = �6:7185(2) ;wI = 0:82130(2) : (B.7)C. Tables.In this appendix we list our results for the 
oeÆ
ients r+k;0, as well as for the NLO anomalous{ 30 {



dimension, obtained for di�erent dis
retisations and renormalisation s
hemes. We also takethe opportunity to des
ribe the blo
king pro
edure [52℄ applied to determine the 
oeÆ
ientsr+k;0 (see also ref. [66℄ for another pra
ti
al appli
ation in the 
ontext of the SF).Here we apply this method at the level of the �rst two blo
king steps, in order toeliminate the O(a) 
uto� e�e
ts in the data. Going beyond this level yields no bene�twith double pre
ision arithmeti
s, be
ause of the numeri
al rounding that arises whensubsequent 
an
ellations of the signal are performed. Starting from the �ltered data, we�rst 
he
k that the logarithmi
ally divergent term in the one-loop renormalisation 
onstanthas the 
orre
t 
oeÆ
ient, whi
h we indeed obtain with an average pre
isions+k;0=
0+;(0)k = 1:000(1) ; (C.1)
f. eq. (4.21).After having 
he
ked the form of the divergen
e, we remove it from the �ltered databy subtra
ting expli
itly a term 
 0+;(0)k ln(L=a). We then extra
t the �nite part of therenormalisation 
onstant r+k;0 a

ording to the following pro
edure. The data are �ttedwith two di�erent ans�atze, viz.Z(n)(L=a) = A+ n+1X�=2 � aL�� fB� + C� ln(L=a)g ; n = 1; 2: (C.2)Rounding errors are modelled as suggested in [67℄. We then �t in several intervals in L=a,always starting at the largest available value. Next we study the �2 per degree of freedomfor ea
h �t ansatz as a fun
tion of the number of values of L=a in
luded, and �nd theminimum within the stability interval of the �t, thus obtaining two estimates [r+k;0℄3p and[r+k;0℄5p for r+k;0. We take [r+k;0℄3p as our best estimate. Then we 
onsider a number ofestimates for the un
ertainty on r+k;0, namely: the �t errors on [r+k;0℄3p and [r+k;0℄5p; thedi�eren
e j[r+k;0℄3p � [r+k;0℄5pj; and the 
u
tuation of A within the stability interval of ea
h�t. The �nal un
ertainty is taken to be the largest of all of them.Our �nal results for the �nite 
oeÆ
ients of the renormalisation 
onstants r+k;0 arereported in Tables 4{9 below. In the determination of the NLO anomalous dimensions, wehave derived their un
ertainties by 
ombining in quadrature the errors of r+k;0 and of themat
hing 
oeÆ
ients in eq. (4.25), 
f. Table 3.
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a
tion � s � r+1;0 r+2;0 r+3;0 r+4;0W{EH 0.0 1 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 2 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 3 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 4 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 5 0.0 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 1 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 2 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 3 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 4 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)W{EH 0.0 5 0.5 -0.09022(12) -0.09029(4) -0.13884(12) -0.12270(4)Table 4: Finite parts of the renormalisation 
onstants in the primed operator basis. Light quarksare regularised with the unimproved Wilson a
tion (W); heavy quarks with the Ei
hten-Hill one(EH). Here � = 0:0. Boundary 
onditions s are enumerated a

ording to (3.4)-(3.8).a
tion � s � r+1;0 r+2;0 r+3;0 r+4;0SW{EH 0.0 1 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 2 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 3 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 4 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 5 0.0 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 1 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 2 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 3 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 4 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)SW{EH 0.0 5 0.5 -0.05219(12) -0.05005(13) -0.1046(13) -0.08498(15)Table 5: Finite parts of the renormalisation 
onstants in the primed operator basis. Light quarksare regularised with the improved Wilson a
tion (SW); heavy quarks with the Ei
hten-Hill one(EH). Here � = 0:0. Boundary 
onditions s are enumerated a

ording to (3.4)-(3.8).
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a
tion � s � r+1;0 r+2;0 r+3;0 r+4;0W{EH 0.5 1 0.0 -0.22302(8) -0.10054(7) -0.15083(5) -0.14615(10)W{EH 0.5 2 0.0 -0.21290(8) -0.09671(7) -0.14767(5) -0.14187(10)W{EH 0.5 3 0.0 -0.21290(8) -0.09566(7) -0.14767(5) -0.13734(10)W{EH 0.5 4 0.0 -0.22302(8) -0.10054(7) -0.15083(5) -0.14615(10)W{EH 0.5 5 0.0 -0.21290(8) -0.09356(7) -0.14767(5) -0.12828(10)W{EH 0.5 1 0.5 -0.22723(8) -0.10475(5) -0.15504(10) -0.15036(6)W{EH 0.5 2 0.5 -0.21711(8) -0.10092(5) -0.15188(10) -0.14608(6)W{EH 0.5 3 0.5 -0.21711(8) -0.09987(5) -0.15188(10) -0.14155(6)W{EH 0.5 4 0.5 -0.22723(8) -0.10475(5) -0.15504(10) -0.15036(6)W{EH 0.5 5 0.5 -0.21711(8) -0.09777(5) -0.15188(10) -0.13249(6)Table 6: Finite parts of the renormalisation 
onstants in the primed operator basis. Light quarksare regularised with the unimproved Wilson a
tion (W); heavy quarks with the Ei
hten-Hill one(EH). Here � = 0:5. Boundary 
onditions s are enumerated a

ording to (3.4)-(3.8).a
tion � s � r+1;0 r+2;0 r+3;0 r+4;0SW{EH 0.5 1 0.0 -0.1850(4) -0.06030(5) -0.11658(15) -0.10843(11)SW{EH 0.5 2 0.0 -0.1749(4) -0.05648(5) -0.11342(15) -0.10416(11)SW{EH 0.5 3 0.0 -0.1749(4) -0.05543(5) -0.11342(15) -0.09963(11)SW{EH 0.5 4 0.0 -0.1850(4) -0.06031(5) -0.11658(15) -0.10843(11)SW{EH 0.5 5 0.0 -0.1749(4) -0.05333(5) -0.11342(15) -0.09057(11)SW{EH 0.5 1 0.5 -0.1892(4) -0.06451(7) -0.12078(15) -0.11264(13)SW{EH 0.5 2 0.5 -0.1791(4) -0.06069(7) -0.11763(15) -0.10836(13)SW{EH 0.5 3 0.5 -0.1791(4) -0.05964(7) -0.11763(15) -0.10383(13)SW{EH 0.5 4 0.5 -0.1892(4) -0.06451(7) -0.12078(15) -0.11264(13)SW{EH 0.5 5 0.5 -0.1791(4) -0.05754(7) -0.11763(15) -0.09478(12)Table 7: Finite parts of the renormalisation 
onstants in the primed operator basis. Light quarksare regularised with the improved Wilson a
tion (SW); heavy quarks with the Ei
hten-Hill one(EH). Here � = 0:5. Boundary 
onditions s are enumerated a

ording to (3.4)-(3.8).
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a
tion � s � r+1;0 r+2;0 r+3;0 r+4;0W{EH 1.0 1 0.0 -0.3596(10) -0.10601(14) -0.16560(14) -0.15650(23)W{EH 1.0 2 0.0 -0.3421(10) -0.10173(14) -0.16161(14) -0.15057(24)W{EH 1.0 3 0.0 -0.3421(10) -0.09975(14) -0.16161(14) -0.14540(24)W{EH 1.0 4 0.0 -0.3596(10) -0.10601(14) -0.16560(14) -0.15650(23)W{EH 1.0 5 0.0 -0.3421(10) -0.09579(14) -0.16161(14) -0.13509(24)W{EH 1.0 1 0.5 -0.3649(10) -0.11133(14) -0.17093(14) -0.16183(23)W{EH 1.0 2 0.5 -0.3474(10) -0.10706(14) -0.16693(14) -0.15589(23)W{EH 1.0 3 0.5 -0.3474(10) -0.10507(14) -0.16693(14) -0.15073(23)W{EH 1.0 4 0.5 -0.3649(10) -0.11133(14) -0.17092(14) -0.16183(23)W{EH 1.0 5 0.5 -0.3474(10) -0.10110(14) -0.16694(14) -0.14041(24)Table 8: Finite parts of the renormalisation 
onstants in the primed operator basis. Light quarksare regularised with the unimproved Wilson a
tion (W); heavy quarks with the Ei
hten-Hill one(EH). Here � = 1:0. Boundary 
onditions s are enumerated a

ording to (3.4)-(3.8).a
tion � s � r+1;0 r+2;0 r+3;0 r+4;0SW{EH 1.0 1 0.0 -0.3216(4) -0.06578(19) -0.13135(23) -0.1188(4)SW{EH 1.0 2 0.0 -0.3041(4) -0.06151(19) -0.12736(23) -0.1129(4)SW{EH 1.0 3 0.0 -0.3041(4) -0.05953(19) -0.12736(23) -0.1077(4)SW{EH 1.0 4 0.0 -0.3216(4) -0.06578(19) -0.13135(23) -0.1188(4)SW{EH 1.0 5 0.0 -0.3041(4) -0.05557(19) -0.12736(23) -0.0974(4)SW{EH 1.0 1 0.5 -0.3269(4) -0.07109(19) -0.13666(23) -0.1241(4)SW{EH 1.0 2 0.5 -0.3094(4) -0.06683(19) -0.13268(23) -0.1182(4)SW{EH 1.0 3 0.5 -0.3094(4) -0.06485(19) -0.13268(23) -0.1130(4)SW{EH 1.0 4 0.5 -0.3269(4) -0.07109(19) -0.13666(23) -0.1241(4)SW{EH 1.0 5 0.5 -0.3094(4) -0.06089(19) -0.13268(23) -0.1027(4)Table 9: Finite parts of the renormalisation 
onstants in the primed operator basis. Light quarksare regularised with the improved Wilson a
tion (SW); heavy quarks with the Ei
hten-Hill one(EH). Here � = 1:0. Boundary 
onditions s are enumerated a

ording to (3.4)-(3.8).
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� s � 
 0+;(1)1;SF =
0+;(0)1 
 0+;(1)2;SF =
0+;(0)20.0 1 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 2 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 3 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 4 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 5 0.0 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf� s � 
 0+;(1)3;SF =
0+;(0)3 
 0+;(1)4;SF =
0+;(0)40.0 1 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 2 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 3 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 4 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 5 0.0 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)NfTable 10: The two loop anomalous dimensions of the diagonal basis in units of the 
orrespondinguniversal one-loop 
oeÆ
ients. Here � = 0:0 and � = 0:0.� s � 
 0+;(1)1;SF =
0+;(0)1 
 0+;(1)2;SF =
0+;(0)20.0 1 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 2 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 3 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 4 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf0.0 5 0.5 �0:2087(4)+ 0:02294(2)Nf �0:5535(5)+ 0:04876(3)Nf� s � 
 0+;(1)3;SF =
0+;(0)3 
 0+;(1)4;SF =
0+;(0)40.0 1 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 2 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 3 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 4 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)Nf0.0 5 0.5 �0:0590(3)+ 0:01371(2)Nf �0:1654(3)+ 0:02478(2)NfTable 11: The two loop anomalous dimensions of the diagonal basis in units of the 
orrespondinguniversal one-loop 
oeÆ
ients. Here � = 0:0 and � = 0:5.{ 35 {



� s � 
 0+;(1)1;SF =
0+;(0)1 
 0+;(1)2;SF =
0+;(0)20.5 1 0.0 0:1566(4)+ 0:00080(2)Nf �0:4690(5)+ 0:04364(3)Nf0.5 2 0.0 0:1287(4)+ 0:00249(2)Nf �0:5006(5)+ 0:04555(3)Nf0.5 3 0.0 0:1287(4)+ 0:00249(2)Nf �0:5092(5)+ 0:04608(3)Nf0.5 4 0.0 0:1565(4)+ 0:00080(2)Nf �0:4690(5)+ 0:04364(3)Nf0.5 5 0.0 0:1287(4)+ 0:00249(2)Nf �0:5265(5)+ 0:04713(3)Nf� s � 
 0+;(1)3;SF =
0+;(0)3 
 0+;(1)4;SF =
0+;(0)40.5 1 0.0 �0:0327(3)+ 0:01211(2)Nf �0:0364(3)+ 0:01696(2)Nf0.5 2 0.0 �0:0396(3)+ 0:01254(2)Nf �0:0600(3)+ 0:01839(2)Nf0.5 3 0.0 �0:0396(3)+ 0:01254(2)Nf �0:0849(3)+ 0:01990(2)Nf0.5 4 0.0 �0:0327(3)+ 0:01211(2)Nf �0:0364(3)+ 0:01696(2)Nf0.5 5 0.0 �0:0396(3)+ 0:01254(2)Nf �0:1347(3)+ 0:02292(2)NfTable 12: The two loop anomalous dimensions of the diagonal basis in units of the 
orrespondinguniversal one-loop 
oeÆ
ients. Here � = 0:5 and � = 0:0.� s � 
 0+;(1)1;SF =
0+;(0)1 
 0+;(1)2;SF =
0+;(0)20.5 1 0.5 0:1681(3)+ 0:00010(2)Nf �0:4342(6)+ 0:04153(3)Nf0.5 2 0.5 0:1403(3)+ 0:00179(2)Nf �0:4658(6)+ 0:04344(3)Nf0.5 3 0.5 0:1403(3)+ 0:00179(2)Nf �0:4745(6)+ 0:04397(3)Nf0.5 4 0.5 0:1681(3)+ 0:00010(2)Nf �0:4342(6)+ 0:04153(3)Nf0.5 5 0.5 0:1403(3)+ 0:00179(2)Nf �0:4918(6)+ 0:04502(3)Nf� s � 
 0+;(1)3;SF =
0+;(0)3 
 0+;(1)4;SF =
0+;(0)40.5 1 0.5 �0:0234(2)+ 0:01155(2)Nf �0:0133(3)+ 0:01556(2)Nf0.5 2 0.5 �0:0304(2)+ 0:01197(2)Nf �0:0368(3)+ 0:01699(2)Nf0.5 3 0.5 �0:0304(2)+ 0:01197(2)Nf �0:0617(3)+ 0:01850(2)Nf0.5 4 0.5 �0:0234(2)+ 0:01155(2)Nf �0:0133(3)+ 0:01556(2)Nf0.5 5 0.5 �0:0304(2)+ 0:01197(2)Nf �0:1116(3)+ 0:02152(2)NfTable 13: The two loop anomalous dimensions of the diagonal basis in units of the 
orrespondinguniversal one-loop 
oeÆ
ients. Here � = 0:5 and � = 0:5.{ 36 {



� s � 
 0+;(1)1;SF =
0+;(0)1 
 0+;(1)2;SF =
0+;(0)21.0 1 0.0 0:5321(3)� 0:02196(2)Nf �0:424(1) + 0:04090(8)Nf1.0 2 0.0 0:4840(3)� 0:01904(2)Nf �0:459(1) + 0:04304(8)Nf1.0 3 0.0 0:4840(3)� 0:01904(2)Nf �0:475(1) + 0:04403(8)Nf1.0 4 0.0 0:5321(3)� 0:02196(2)Nf �0:424(1) + 0:04090(8)Nf1.0 5 0.0 0:4840(3)� 0:01904(2)Nf �0:508(1) + 0:04601(8)Nf� s � 
 0+;(1)3;SF =
0+;(0)3 
 0+;(1)4;SF =
0+;(0)41.0 1 0.0 �0:0002(3)+ 0:01014(2)Nf 0:020(1)+ 0:01351(8)Nf1.0 2 0.0 �0:0090(3)+ 0:01068(2)Nf �0:012(1) + 0:01549(8)Nf1.0 3 0.0 �0:0090(3)+ 0:01068(2)Nf �0:041(1) + 0:01721(8)Nf1.0 4 0.0 �0:0002(3)+ 0:01014(2)Nf 0:020(1)+ 0:01351(8)Nf1.0 5 0.0 �0:0090(3)+ 0:01068(2)Nf �0:097(1) + 0:02065(8)NfTable 14: The two loop anomalous dimensions of the diagonal basis in units of the 
orrespondinguniversal one-loop 
oeÆ
ients. Here � = 1:0 and � = 0:0.� s � 
 0+;(1)1;SF =
0+;(0)1 
 0+;(1)2;SF =
0+;(0)21.0 1 0.5 0:5467(3)� 0:02284(2)Nf �0:380(1)+ 0:03824(8)Nf1.0 2 0.5 0:4986(3)� 0:01993(2)Nf �0:415(1)+ 0:04038(8)Nf1.0 3 0.5 0:4986(3)� 0:01993(2)Nf �0:432(1)+ 0:04137(8)Nf1.0 4 0.5 0:5467(3)� 0:02284(2)Nf �0:380(1)+ 0:03824(8)Nf1.0 5 0.5 0:4986(3)� 0:01993(2)Nf �0:464(1)+ 0:04336(8)Nf� s � 
 0+;(1)3;SF =
0+;(0)3 
 0+;(1)4;SF =
0+;(0)41.0 1 0.5 0:0116(3)+ 0:00943(2)Nf 0:050(1)+ 0:01174(8)Nf1.0 2 0.5 0:0028(3)+ 0:00997(2)Nf 0:017(1)+ 0:01372(8)Nf1.0 3 0.5 0:0028(3)+ 0:00997(2)Nf �0:011(1)+ 0:01544(8)Nf1.0 4 0.5 0:0115(3)+ 0:00943(2)Nf 0:050(1)+ 0:01174(8)Nf1.0 5 0.5 0:0028(3)+ 0:00997(2)Nf �0:068(1)+ 0:01888(8)NfTable 15: The two loop anomalous dimensions of the diagonal basis in units of the 
orrespondinguniversal one-loop 
oeÆ
ients. Here � = 1:0 and � = 0:5.{ 37 {
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