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breaking can be avoided completely.
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1. Introduction

The oscillations among pairs of neutral B-mesons provide crucial information for pinning
down the elements of the Cabibbo-Kobayashi-Maskawa (CKM) Matrix that are associated
with the top quark. Owing to the absence of flavour-changing neutral currents in the
Standard Model, these oscillations are described by box diagrams, in which the flavour
change is brought about through the intermediate propagation of a virtual top quark.
By integrating out the W-boson, the box diagram is replaced by an effective point-like
interaction vertex associated with the left-handed AB = 2 four-quark operator

OvL(e) = bla)ykoul(z) bla)ylun(e) | (1)

where 'yf = v,(1 — 75), and the flavour label { denotes either a d or an s quark. The
matrix elements of Opp, between B-meson states are commonly parameterised in terms of
the B-parameters Bg and Bp,, for instance

_ 8
(B°|OLL|B%) = gm%f%BB , (1.2)

for £ = d. The operator Or1, can be decomposed into parity-even and parity-odd compo-
nents Oyvyaa and Ovayav. In the Standard Model only the parity-even part Ovvyaa
makes a contribution to B-meson mixing. The B-parameters encode the long-distance
effects of the strong interaction and must be determined in a non-perturbative approach
such as lattice QCD. Indeed, various lattice estimates of Bg and Bg, have been published

by several authors in recent years [1-12].

It is well known that relativistic b-quarks cannot be simulated directly for currently ac-
cessible lattice spacings. Several formalisms for treating b-quarks on the lattice, based on
Heavy Quark Effective Theory (HQET) [13,14], non-relativistic QCD [15], on-shell im-
provement for relativistic quarks [16,17], as well as finite-size scaling techniques [18], have
been developed and applied. Obviously, some, if not all, of these approaches imply certain

approximations or assumptions whose validity and intrinsic accuracy must be investigated.

In order to yield useful phenomenological information, operators like (Opy, must be renor-
malised. If the regulator breaks chiral symmetry, as is the case for Wilson fermions, the
renormalisation of Ory,, which has a particular chiral structure, is complicated by the fact
that it undergoes mixing with operators of different chiralities. Therefore, in addition to
an overall logarithmically divergent, multiplicative renormalisation factor, one must also
determine finite subtraction coefficients.

The analogous case of K° — K° mixing, in which all fields that appear in the corresponding
four-quark operator are treated relativistically, has been studied in ref. [19]. There the
renormalisation and mixing patterns of a general set of four-quark operators were classified
according to their transformation properties under certain symmetries. In particular, it
was shown how the mixing due to explicit chiral symmetry breaking implied by the Wilson
term could be isolated and absorbed into mixing coefficients. Another important result
of [19] was the observation that the parity-odd component Oyaiay is protected against



mixing by discrete symmetries.

In this paper we adopt a similar strategy to extend the analysis of ref. [19] to the case
where the b-quark is treated at leading order in HQET, i.e. in the static approximation. In
particular, we show how the heavy quark spin symmetry, in conjunction with transforma-
tion properties under spatial rotations, as well as discrete symmetries like parity and time
reversal can be used to constrain the renormalisation patterns of a general set of static-light
four-quark operators. One key result is that it is possible to find a basis of parity-odd oper-
ators that renormalise purely multiplicatively. This allows to devise a strategy aimed at a
non-perturbative determination of the renormalisation factors required for the calculation
of B-parameters, without the need to determine finite subtractions.

To this end we use twisted mass QCD (tmQCD) [20] as a discretisation for the light quark
fields, which allows us to map parity-even operators to parity-odd ones. By employing
the Schrédinger functional (SF) [21], the anomalous dimension of the latter can then be
determined non-perturbatively in complete analogy to the case of K© — K% mixing studied
previously in [22]. Thus, in order to reconstruct the phenomenologically relevant matrix ele-
ment of Op,, one only needs to determine the renormalisation properties of multiplicatively

renormalisable operators, even in regularisations that break chiral symmetry explicitely.

In addition to explaining how the renormalisation properties of static-light four-quark op-
erators can be constrained, another purpose of this paper is to identify — in the spirit
of [23] — suitable finite-volume renormalisation schemes based on the SF, to be used in a
forthcoming non-perturbative calculation. To this end we have computed the anomalous
dimension in perturbation theory at NLO for the complete basis of four-quark operators

in several SF schemes.

Of course, the complicated mixing patterns one is confronted with when using Wilson
fermions can be avoided by using discretisations for the light quarks which obey the
Ginsparg-Wilson relation. First steps in this direction have been taken in ref. [24,25].
However, in this work we show, by using symmetry properties and tmQCD, that the renor-
malisation of static-light four-quark operators describing B® — BY mixing can be studied
in an equally simple framework for Wilson-type regularisations. Non-perturbative renor-
malisation can thus be implemented in a straightforward manner and at much reduced

computational cost.

This paper is organised as follows: in section P we discuss how the transformation properties
under various symmetries constrain the mixing patterns of static-light four-quark opera-
tors. In section ] we formulate a set of renormalisation conditions for the operator basis
within the Schrodinger functional. Section H| describes the perturbative calculation which
yields the NLO anomalous dimensions of the operators for a set of Schrédinger functional
renormalisation schemes. In section | we discuss the use of tmQCD to compute the physical
matrix elements for B~ B® mixing using multiplicatively renormalisable operators. Our
conclusions are presented in section f]. Technical details regarding the use of symmetries to
constrain the renormalisation pattern and the evaluation of lattice integrals are relegated
to Appendices [A] and [B, respectively. Tables listing the finite parts of renormalisation



constants and the NLO anomalous dimensions can be found in Appendix [0

2. Mixing of heavy-light four-quark operators in the static approximation

In this section we study the mixing of AB = 2 heavy-light four-quark operators in which the
heavy quarks are treated in the static approximation of HQET. Thus they are represented
by a pair of static fields (¢, ¥y), propagating forward and backward in time, respectively;
their dynamics is governed by the Eichten-Hill action [26]

S¥ by, r) = a* D [dn(2) Viibn (@) — ¢y (2) Vorby ()] (2.1)

xT
where the forward and backward covariant derivatives Vg, V§ are defined by

Voun(e) = = [Uo(e) s (e + ad) — ()]

Vit (2) = é [dn () — Uole — ad) "4y (x — ab)] . (2.2)

The field vy, (¢,) can be thought of as the annihilator(creator) of a heavy quark. Simi-
larly, 7 (;) creates(annihilates) a heavy antiquark. Each field is represented by a four-
component Dirac vector, yet only half of the components play a dynamical role, owing to
the static projection constraints

Pty =t Pn Py =y Py = %(]1 +70) ;
Py =4y, dpP-=dp, P= %(]1 — Y0) - (2.3)

Instead of the link variables that appear in eq. (B-2) one can consider more general defini-
tions of the parallel transporter which enters the covariant derivative. A set of alternative
discretisations was studied in [27], where it was found that adequate choices of parallel
transporter lead to much improved signal-to-noise ratios in actual simulations.

The light (relativistic) quarks are instead taken to be Wilson fermions, using either the
plain Wilson action or its O(a) improved version with a Sheikholeslami-Wohlert term [28].
The explicit chiral symmetry breaking induced by the Wilson term causes the mixing of
operator of different naive chirality even in the chiral limit.

We consider a complete basis of AB = 2 heavy-light four-quark operators which, for
the sake of definiteness, we chose to contain two static fields ¢, and 1; while, in the light
sector, we consider massless fermions with two distinet flavours 4; and 3. We introduce
a generic AB = 2 operator via

OlitlF2 =

% [(0rT1001) (5 Tat02) £ (PnD102) (W3 02%01)] (2.4)

where I'y o are Dirac matrices, and we adopt the notation

+ — nE +
OFlFQ + F3F4 = OFlFQ :i: OF3F4 . (25)



The complete basis of Lorentz invariant operators is given by the set of 16 operators

parity-even: Qf = O\i/w—AA , parity-odd: QFf = O\i/A_|_Av ;
Qét = Osis+PP ) Q; = OsiPJrPS
Qét = O\j/:V—AA ) Qét = O\j/:A—AV )
Q7 = O%_pp » Qr = O3 _ps + (2.6)

which we have grouped according to their transformation properties under parity. Here
V=79 A=7v7,5 =1, P=s, and an implicit summation over pairs of Lorentz indices
is understood. We incidentally remind the reader that tensor structures like 7" = o, or
T = 0,775 produce redundant operators in the static limit, due the projection constraints
.

The description of AB = 2 transitions in terms of the static approximation of HQET
implies that the operator Oy, of eq. ([[.1]) is related in some particular way to the operators
listed in eq. (2.6). Owing to the heavy-quark spin symmetry, one finds that Opy, must be
matched to a linear combination of (’){','V_I_AA and O§S+PP [29], and thus those two operators
are of particular interest to the study of B® — B® mixing.

The operator basis in eq. (2.6) renormalises, in full generality, via a 16 x 16 matrix Z,
the form of which can be constrained through symmetry arguments. A systematic method

to carry out this analysis is given by the following prescription:

(i) Construct the matrices ®; that implement, at the level of the operator basis, a

maximal set of independent symmetry transformations that leave the action invariant.
(ii) Impose the constraints
Z = Oy Z®; ", V. (2.7)

The solution Z to this system of equations displays the constrained form of the

renormalisation matrix.

In most cases the constraint imposed by a given symmetry on the renormalisation matrix
Z can be easily found out, while in a few cases (namely heavy quark spin symmetry
and H(3) spatial rotations) an explicit construction of the corresponding ®j matrices is
required. We leave the explanation of this procedure to Appendix [A] and we present here
the list of symmetries that have been used and their effect in constraining the matrix Z.

Flavour exchange symmetry §. § exchanges the two relativistic flavours 1 and ;.
Operators with superscript £ are eigenvectors of ®s with eigenvalues 1 respectively. §
thus prevents the mixing between the + and — sectors. This reduces the renormalisation

matrix Z to a block-diagonal form, with two 8 x 8 blocks.

Parity. Mixing among operators with opposite parity is excluded, and the renormalisation
matrix Z is reduced to a block-diagonal form, where four 4 x 4 blocks describe the mixing

of the parity-even and parity-odd operators among themselves.



Chiral symmetry. It is used in the same way as in ref. [19].

In the chiral limit, the

continuum relativistic quark action is invariant under the finite axial transformation:

VY = Y505 Pr = 1rys - (2.8)
Under this transformation we obtain:
it — _Qit 3 Qit — _Qit y
ét%_Qétv Qét%_gétv
;= QF, ;= 9,
i Qr, o of. (2.9)

From this one sees that, were chirality respected by the regulator, Qli would mix only
with Q;t, and Qét only with Qf (and similarly in the parity-odd sector). This is not
the case with a Wilson regularisation, for which the structure of chiral multiplets must
be restored by combining operators with different naive chiralities [30]. The restoration
of chiral properties is achieved by introducing the mixing matrices A%, J1T. Once the
subtracted operators Qi = (1+ Ai)Qi and Qi = (1+ ﬂi)Qi with the correct chiral
properties have been constructed, they will mix like in the continuum with renormalisation
matrices 7%, Z*. We choose the matrices Z%, 2, A%, JI* such that:

i Zil Z?E 0 0 0 0 Ai?) A% Qi
: 7i 7% 0i 0i " 0i 0i AL AL Qi | (2.10)
3 0 0 Z33 Z34 ASI A32 0 0 QB
i 0 0 75 7% AL AL 0 0 i
and

o zEzE 0 0 0 0 IE 4 o

Qy 25 2% 00 [ |00 Ul Qy 2.11)
+ 0 0 2zt z of nt o o + '
3 33 34 31 32 3
i) w 0 0 Zf 2 I I 000 :

This choice is convenient because it is easy to show (for instance by using Ward identities)
that A%, 1% and the product Zi(Zi)_1 all depend only on the bare coupling go, while
Z% and Z* alone contain the continuum-like dependence on the renormalisation scale.

Heavy quark spin symmetry and H(3) spatial rotations. Further constraints can
be obtained from the heavy quark spin symmetry and cubic rotations. The procedure is
slightly involved and we leave its description to Appendix [A. It applies identically to both
parity-even and parity-odd sectors, and below we provide the expressions for the latter —
results for the parity-even sector are obtained by simply replacing the symbols Q, Z, /1
with @, Z, A. After imposing the constraints Z = @qu)lzl one finds that it is possible to
rotate (R.6) into a new basis

(QF, 05%, 5%, 0" = (QF, OF +405, QF +205, 97 - 297)", (2.12)



in which the scale-dependent mixing is completely disentangled (even though some scale-

independent mixing remains):

ot ZE 0 0 0 0 0 I o Qi
GEl | 0 20 o0 o0 hivs o | (2.13)
i 0 0 2F 0 oE 0 0 0 i
+ + + +
Il 0 0 0 2 0 A7 0 0 5

Time reversal. Up to this point, the renormalisation mixing of the parity-even and
parity-odd sectors has the same matrix structure. We now consider the effect of a time
reversal transformation of both the static and relativistic quark fields. To that purpose, it
is convenient to rewrite (2.4) in the form

OF 1, = = [(WPLT 1) (PP_Tatpp) & (UP_T1h) (PPLT294)] (2.14)

N | —

with
U =, + 13, U = oy, + 9y, . (2.15)

It is then easy to apply the time reversal transformation

U(z) — ¥(27)vs70,

2.16
V() = voystr(z”), k=1,2 (2.16)

where (z9,%x)™ = (=20, X).
The transformation rules for the operators (apart from the 7 reflection of the space-

time coordinates) are easily found to be

T 20T Qf = FOr .
2 Q3 QF = F95
3 = +Q3 ;107
T~ 0T 10t (2.17)

and identical ones for the (@', Q') basis. It is then clear that no new constraints arise for
the parity-even operators and for 2’ while the invariance of the scale independent mixing

under time reversal immediately yields
% =o. (2.18)

This proves the purely multiplicative renormalisability of the operator basis (2.13). As a
note of reference, we would like to point out that the absence of mixing is already manifest
at the one-loop perturbative level in eqs. (20)—(23) of [6]: it is enough to project both sides
onto parity eigenstates and change to the basis in eq. (R.12) to find that mixing in the

parity-odd sector is absent at one loop.



Finally, we can rotate back to the standard basis (P.6), obtaining the following form

for the renormalisation matrices:

+
Zi{ . 0i 0 0
1 ! ! !
gt _ | i - 240 4 0 0 (2.19)
0 0 Nz +2F) ZiF -z |
0 0 §(Z5F - 2) 5(755 + 75F)
0 0 AE 2AE
%(Agi + Aﬁi) QAQ:—LE 0 0 ’
! ! !
$(AF = AF) —Af 0 0
+
z! 0 0 0
L | —aEE -z 2 0 0
== 0 0 l(Z/j: —I—Z/i) ZIE _ oz J (2:21)
0 0 i(,z:’gi - zjli) l(ZS’i + 34’*)
4 3 4 2 3 4
ot =o0. (2.22)

For later convenience, we denote by A the matrix responsible for the change of basis (2.12),
such that Q;i =A;; jS and Qii = AijQ;—L. Equation (2.19) reproduces the result of [24].

Now we will pursue a strategy to compute the renormalisation matrices non perturbati-
vely using Schrodinger functional techniques. For parity-even operators, the determination
of the subtraction coefficients in eq. (R.20) can be achieved by implementing suitable axial
Ward identities. However, as we will show later on, the use of tmQCD techniques allows to
obtain all the AB = 2 physical amplitudes of interest in the Standard Model from matrix
elements of the operators Qi", Q;’. Therefore, from now on we will concentrate exclusively
on the renormalisation of Qf.

3. Renormalisation conditions in the Schrodinger functional

Having constrained their renormalisation patterns by imposing the symmetries of the the-
ory, we now proceed to specifying suitable renormalisation conditions on the four-quark
operators (R.12). To this end we will consider a set of correlation functions defined in
the Schrédinger functional (SF) which will serve to impose the renormalisation conditions
at the non-perturbative level. The SF formalism [21], which was initially developed to
produce a precise determination of the running coupling [31-33], has been extended to
various other phenomenological contexts. These include the study of quark masses [34-36]
and decay constants [37-39], the computation of moments of structure functions [40,41],
the Kaon B-parameter [22,23,42], and the static-light axial current [43,44]. The reader
is referred to [45] for detailed explanations of the framework and the standard notation,
which are not repeated here.

Our construction of the relevant SF correlators extends the one described in [23] to

the static case. We start by introducing the following bilinear boundary source operators,



projected to zero external momentum,

5152 - a6 Z Csl FCSQ ) )

2{9152 - a6 Z Csl FCSQ ) ? (31)

where I is a Dirac matrix, the flavour indices s; 5 can assume both relativistic and static
values, and the fields ¢ and (’ represent functional derivatives with respect to the fermionic
boundary fields of the SF, see [45]. The choices for I" are limited by the boundary conditions
imposed on quark fields. At the level of boundary quark and antiquark fields they imply

((x) = P_¢(x), C(x) = C(x) Py, (3.2)

with Py = L(1 £ 7o), and similarly for (', ¢'. Therefore, in order to have a non-vanishing
source field 3, [['], I' must anticommute with yo.!

Starting from the bilinears in (B.1]), we have to construct suitable boundary sources to
probe four-quark operators. In order to define a set of non-zero correlators in the massless
theory, which can then be used to impose renormalisation conditions in the chiral limit, the
probe should be parity-odd. We further require it to be invariant under the group H(3) of
lattice rotations in three dimensions. This leads us to introduce a third “spectator” light
quark and consider, as the simplest possible choice, a generalised boundary source made

of three bilinears,
WLy, Ty, T3] = S5 [T1]803[T2] 25 [T's] (3.3)

two of which are localised at the boundary zg = 0, while the third lies at the other bound-
ary, namely zog = T. Odd parity and rotational invariance are then assured through an
appropriate choice of the Dirac structures [I'y, 'y, I's], and a maximal set of corresponding
probes is given by

5(1) = W[’Y57’Y57’Y5] ) (3-4)
3
Z Ektm W[V V15 Ym) (3.5)
k,,m=1
3
s = L3 3.6
— 3 7577167716] 3 ( . )
k=1
3
s = Ly ] 3.7
— 3 Vks V59 VE] 5 ( . )
k=1
3
80 = 25" Wi 73] (35)
— 3 Vks Vis V5] - .
k=1

! Allowing for a non-vanishing angular momentum would relax this constraint, but, since it would most

likely lead also to worse signal-to-noise ratios in numerical simulations, we do not pursue this approach.



—

Figure 1: Diagrammatic representation of correlation functions: the four-quark correlator
f:;(s)(l‘o) (left), the boundary-to-boundary static-light correlators fi pi, k1 p (center) and the
boundary-to-boundary light-light correlators fiu, k1 y (right). Euclidean time goes from left to
right. The double blob indicates the four-quark operator insertion. Single lines represent relativis-
tic quarks and double lines denote the static ones.

The four-quark operators can now be treated as local insertions in the bulk of the SF, and

their correlators are naturally defined as
FEO (20) = L7HQE@)8P)), s=1,...,5. (3.9)

A pictorial interpretation of (B.9)) is provided by the left diagram of Figure [.

It has to be observed that, due to the symmetries of the static approximation for
the heavy quarks, not all of the above correlation functions are independent. By using
the explicit spin structure of the static propagator, some straightforward though tedious

algebra leads to the constraints

}-li;(‘l) _ _}-li;(l) : }-li;(i%): }-li;@) :
FEO _ % FEO - pEE )
}-??—L;(‘l) _ _}-??—L;(l) 7 }-??—L;(i%)_ _}-??—L;@) 7
FEW = %ff?(” . FEO- B (3.10)

These relations show that only 24 out of the 40 correlation functions defined in eq. (B.9)
are independent. We stress that this result is exact; as a cross-check, later on we will find
these identities to be explicitly verified at one loop in perturbation theory.

In order to isolate from eq. (B.9) the ultraviolet divergences that are due to the bulk
operator and absorb them into a renormalisation factor, one has to address the renormal-
isation of the boundary fields. The ultraviolet divergences of the latter are cancelled by
defining suitable ratios of correlators for which the renormalisation factors of the boundary
fields drop out. To this end we introduce a set of boundary-to-boundary light-light and

static-light correlators,

M = = 55 (OhsI0n ) 3.11)

[l = — (OOl (312

B = = S (O bOnn) | (313
k=1



whose valence structure is represented as well in the middle and right diagrams of Figure [l]. 2
A suitable combination of such correlators must comprise the same number of static and
light boundary fields as (B.9). The simplest examples are given by the ratios

F) (o) F) (o) (3.14)
f1hl[f1”]1/2 ’ flhl[klll]lﬂ ’ :

involving either the correlator f1” or klll. However, it is easy to generalise these conditions
by introducing an arbitrary real parameter «. Hence, we consider the following ratios of
correlation functions:
+;(s)
+i(s) Fi (o)
h (o) = . (3.15)
k; _
o flhl[flll]l/Q oz[klll]oz

Although there is no real a priori restriction on the value of «, it is clear that “natural”
values should lie in the interval [0,1]. This freedom, together with the choice of the
boundary source and the f-angle of the SF, can be used in a later stage to tune the

optimal renormalisation schemes, with the aim of having small NLO coefficients in the
corresponding anomalous dimensions. This is important in order to control the systematics
of the perturbative matching to continuum schemes at high energy scales.

For the moment we observe that the ratios (B.13) are free of boundary divergences,

and consequently we impose the renormalisation condition,
+;(s); +;(s +;(s
25 (1)2) = W (1)l gemo (3.16)

where all the correlation functions are computed in the chiral limit. This fixes non-
perturbatively the renormalisation constant Z,’fcé(s) at the scale g = 1/L. As usual, the
Z' factors depend upon every calculational detail with the only exception of the leading
log, which is universal. In order to operatively define a renormalisation scheme, a com-
plete specification of the parameters that concur to quantify (B.15) is required. We briefly
summarise them:

e the possible presence of a Sheikholeslami-Wohlert (SW) term in the lattice action for
the light quarks;

e the choice of the gauge parallel transporter in the covariant derivatives, eq. (2.3), in
the static action;

e the Dirac structure of the boundary source;
e the value of the angle # entering the spatial boundary conditions of the SF;
e the value of the parameter « in eq. (B.I7);

e the ratio 7'/L between the time and the spatial extension of the SF.

2The static-light counterpart of k! is not considered as, due to the symmetries of the static limit, it is
identical to fP*.

,10,



The last four conditions fix the renormalisation scheme, while the first two only introduce a
regularisation dependence in the renormalisation constants. We stress at this point that the
running of the operators is a continuum property, i.e. it is independent of the discretisation
chosen. The latter only affects the way in which the continuum limit is approached, and —
in the case of the action for static quark fields — the signal-to-noise ratio in the simulations.

In this paper we consider the Wilson action (with and without SW term) for the light
quarks, and the Eichten-Hill action for the static ones. As for the parameters that fix
the renormalisation scheme, we will consider three values of # (namely § = 0.0, 0.5, 1.0)
and two values of a (namely o = 0.0, 0.5). Furthermore, we fix T'= L. Taken together
with the possible independent choices of boundary sources, this leaves us with 12 different
renormalisation schemes for the operators Q’li and Qéi, and 24 schemes for Q’zi and Qf.
The number of independent renormalisation conditions is twice this figure, as we consider
two different actions.

4. A perturbative study

We now proceed to studying the renormalisation of the operators Qi", ey QI at one-
loop in perturbation theory. These are the operators that will enter AB = 2 effective
Hamiltonians in the static limit. The purpose of this study is threefold. First, it provides
an explicit check of the expected mixing pattern. Second, it will allow us to compute
the NLO anomalous dimension of the operators in the SF schemes defined above; this is
done via a standard one-loop matching procedure to continuum schemes where the NLO
anomalous dimension is already known. Finally, we can work out lattice artefacts of the
step scaling functions in one-loop perturbation theory. They can then be compared to
the ones in the relativistic case discussed in [23], in order to obtain information about the
expected size of discretisation effects for quantities involving static fields. In principle, the
discretisation effects computed in perturbation theory could subsequently be subtracted
by hand from the non-perturbative Monte Carlo data, with the aim of exerting a better

control of their continuum extrapolation, as pursued in [22,46,47].

4.1 Scheme dependence of NLO anomalous dimensions

In order to proceed, some notation has to be fixed. The scale dependence of operator

insertions in renormalised correlation functions is described by the RG equation
J J J J
[;(uau—l—ﬁag—l-ﬁx 8>\+Tm8m> 72]](9])1:; 0, (4.1)

where § is the p-function for the coupling, 7 is the anomalous dimension of the quark
mass, and 7T is the operator anomalous dimension matrix. We have also included a term
which takes into account the dependence on the gauge parameter A in covariant gauges,
characterised by the RG function f3, defined as

oA

— 11 -



This term is absent in schemes like MS (irrespective of the regularisation prescription) or
the SF schemes introduced in section [§, but is present e.g. in regularisation-independent
(RI) schemes, which will be considered later on. If we choose to work with the operator
basis in eq. (R.12)), the matrix structure of the RG-equation simplifies, and the evolution
of the various operators is determined by a set of scalar anomalous dimensions.

In what follows, we focus on mass-independent renormalisation schemes, for which
the RG functions depend only upon the coupling. We take the following form for their

perturbative expansions:

PR P RV
k=1

T(9) ==¢"> deg®™ . vig)=-¢’ Z%] : (4.3)
k=0

with universal coefficients

=R RO N = G o
gt (3023
by = (4717 { (; - )Nf} . (4.4)

The LO coefficient of the anomalous dimension matrix 419 is universal as well, and
has been calculated in [29] for the first operator of the basis and [6] for the rest. The

non-vanishing elements of the anomalous dimension matrix read

7 = - (4717)2 <3N - %) 7 (4.5)
7 = (4717)2 (1 + %) : (4.6)
vHO = —@ <3N —4- %) : (4.7)
735 = - (4717)2 <3N - %) 7 (4.8)
73 = —(4i)2 : (4.9)
75" = _(i/j? : (4.10)
74 = —@ <3N - %) : (4.11)

A covariant rotation of this matrix to the diagonal operator basis (B.1F), i.e. 510 =

Ay T (OA-T, gives the LO coefficients of the multiplicatively renormalisable operators,
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namely

o) 1 3 i0) L 4
= (V1) = (¥ 1)
o) 1 6 ) _ 1 45
Y3 BRNCESE <3N—|—3 N) , Y4 BRNCESE <3N 3 ~) (4.12)

By contrast, the NLO coefficient is scheme-dependent. The perturbative matching
procedure that allows to express its value in the SE scheme in terms of the value in a
reference scheme has been derived in [48] for the case of multiplicatively renormalisable
operators. The formalism can be trivially extended to situations where mixing occurs and
a gauge covariant reference scheme is assumed. The renormalised operators and coupling
constant are first related in the two schemes through a finite renormalisation,

ggF = Xg (gref)gl?ef )

(Q;I,—SF)R — X[]l' (gref)(Q;:ref)R . (413)

The matching coefficients X" are then expanded in powers of the coupling constant,
X(g) =14 g*x® (4.14)
k=1

and the requirement of formal invariance of the RG-equation under a change of renormal-
isation scheme leads to the two-loop matching relation

@F’(l) — 7:;%(1) + [t A H0] 4 opo D) 4 béka—)\?f”(l) _ 7+’(0)Xg(1) 7 (4.15)
where the symbol [+, -], which is absent in the case of multiplicative renormalisation, repre-
sents the ordinary matrix commutator. It should be stressed that the choice of the reference

(1)

scheme is irrelevant. In fact, a good consistency check on the result for 7;15 is provided

by computing the RHS of (f.17]) for several different reference schemes.

Finally, we point out that the lattice is currently the only known regularisation of the
SFE, for which perturbative calculations of fermionic observables can be operatively per-
formed.? If the reference scheme is defined in the continuum, the operator matching must
take into account both a change of regularisation and a change of subtraction prescription.
Accordingly, X((Ql) must be computed as the difference of two matching coeflicients to an
intermediate scheme, namely

+(1) _ pti(1) +;(1)
XSF,ref - XSF,lat - Xref,lat . (416)
The “lat” scheme is by definition the minimal subtraction lattice scheme, where the renor-

malisation constants are polynomials in In(ap) without finite parts. Consequently, Xs-lg(lla)t,

which provides the matching between SF and “lat”, can be obtained from a one-loop calcu-

lation of the renormalisation constant in the SF scheme with a lattice regularisation. The
i

ref,lat -
retrieved from the literature for some choice of the reference scheme, such as MS or RI.

matching coefficient between the reference scheme and the lattice can be instead

®A recent proposal to perform the matching directly in dimensional regularisation has been presented
in [49].
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4.2 Perturbative expansion of SF correlation functions

We now describe the one-loop calculation of the SF renormalisation constants introduced
in section fl. The perturbative procedure is fairly conventional, and we include it just for
completeness. We start by expanding all the correlation functions previously introduced
in powers of the bare coupling,

) 0Xx©

8m0

X=XO 42| xM 4yt +0 (g3) (4.17)

where X is one of ]_.]:-;(5)7 P KL or a linear combination thereof. The derivative term
in square brackets is required in order to set the correlation function X to zero renormalised
quark mass, when each contribution to the RHS is calculated at zero bare quark mass, as it

(1)

will be assumed. As for the numerical value of m;’, we use the numbers provided by [50],

ie.
—0.20255651209 C sw = 1), N2 -1
am(t) = Polew=1 o 7 (4.18)
—0.32571411742CF  (csw = 0), 2N
The SF renormalisation constants, defined in (B.16), admit an analogous expansion,
2 (go,a/L) = 1+ 32,5V (L/a) + 0 (gd). (4.19)

The explicit expression of the one-loop order coefficient Z;—Z(S’l) in terms of the perturbative

expansion of the four-quark and the boundary-to-boundary correlators can be obtained by

inserting ({.17) and ({.19) into the renormalisation condition (B.16]). One then obtains

+i(s,1 +3(s,1 +:(5,0
z’+?<5’1)(L/a) _ F (s:1) ]—'kb( ) m®) OF, (5,0)
ko ]_-];H(S,O) ‘7:]:—;(570) ]_‘];H(Svo) 8m0 T/

RO RO ) g )
+ 770 + 71 + 10 " gng

. JU0) )
+ (5 - 0‘) 70 F @) 0 g

CONNIEY (1) ~,.1(0)
+a{k1 ey me Ok } (4.20)

kil(O) klll(O) kil(o) Omg

Contributions containing the subscript “b” arise from the boundary terms that are required
in addition to the SW term in order to achieve full O(a)-improvement of the action in the
SF [45]. Obviously, these contributions are not present when the unimproved Wilson action
is chosen for the light quarks. From now on we will set them to zero also when the action
is O(a) improved, as they will not affect the continuum limit extrapolations involved in
the computation of NLO anomalous dimension, and their contribution to cutoff effects is
negligible.
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The evaluation of the RHS of ([.20) requires the calculation of the Feynman diagrams
depicted in Figures f] and []. The one-loop expansion of the boundary-to-boundary cor-
relators fi' and kY is known from [51], while f! has been studied perturbatively in [43].
Accordingly, the only new diagrams which need to be calculated are the ones that contribute
to the one-loop order coeflicient of the four-quark correlators. Two groups of diagrams can
be identified: the self-energies correct the valence fermion propagators through a gluon
emission with subsequent absorption by the same leg, and the vertex diagrams correct the
operator insertions through the exchange of a gluon between two legs. Each of them can
be expressed as a loop sum of a Dirac trace in time-momentum representation, where the
spatial coordinates are Fourier transformed. These sums have been performed numerically
in double precision arithmetics using a C4++4 code, for all the even lattice sizes ranging
from L/a = 6 to L/a = 48. The results have been checked by an independent Fortran
90 program, also in double precision arithmetics. The behaviour of the renormalisation
constants thus obtained, as functions of the lattice size L/a, is expected to conform to the
standard asymptotic expansion

ZHON(L fa) = i (%) {r;y +s7, 1n(L/a)} , (4.21)

v=0

which can be used in order to extract the universal LO anomalous dimensions and the finite
constants peculiar to the schemes, that is to say, the coefficients SE')' and r(‘)", respectively.
The latter represents the matching coefficient introduced in ([l.16) in the diagonal basis,
namely

(1) _ o+
Xk;SF,lat =Tro- (4.22)

An efficient numerical technique to isolate these coefficients, based on a blocking procedure
of the function at neighbour lattice sizes, has been introduced in [52]. Details about its
application to the case at hand are provided to Appendix [J. Numerical values of the
coefficients r,io for the various schemes introduced in section P are reported in Tables fl] -

O
-

4.3 Matching to continuum schemes and consistency checks

The NLO anomalous dimension matrix of the operators (R.) in continuum schemes can
be found in [6], together with the one-loop matching relations to the minimal subtraction
lattice scheme. The regularisations employed in [6] are DRED and NDR, and two possible
subtraction prescriptions are considered, namely MS and RI. An attractive feature of the
latter is the independence of the corresponding anomalous dimension from the choice of
evanescent operators (EO), which complicate the mixing pattern in d = 4 — 2¢ dimensions.
As a consequence, it is trivial to perform a rotation of the anomalous dimension matrix
in the RI scheme to a different basis of the physical operators, such as (R.19), without the
need to address subtleties related to the definition of evanescent contributions. The choice

of RI as a reference scheme is therefore convenient in order to make use of the two-loop

matching relation ({.15) in the diagonal basis (R.13).
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Results reported in [6] refer to a perturbative expansion in powers of the MS-coupling.
We therefore need the matching coefficient in eq. (f.13), which relates gsp to g5ig to
one-loop order. This has been calculated in [53] and is given by

1
AN = 2boIn(uL) - o= (ero+ e1alp)

c10=1.25563(4) , c1q = 0.039863(2) . (4.23)

The NLO anomalous dimension of the operator basis (.12) in the Feynman gauge (A = 1)
and NDR regularisation*, obtained from the covariant rotation ~'(1) = Ay(WA~1 is a

diagonal matrix whose non-zero coeflicients read

1—272 304472 BT+ 1672
N2+ 6N — —
12 +6 3 + 3N 12N2

5 5
Ne (2N = 2
+ f<3 3N>]’

) 1 131 + 87°
Y1:RI _(477)4 -

214 301 + 672 N 18 — 472 87 — 1672

iy 1 _131—|—8772N2 214
ZR1 _(477)4[ 12 TNt SN 12N2
5 40 55
Ny (=N - — - =
+ f<3 9 9N>]’
iy 1 _131+8772N2_§N 309+ 872 24 —d4x? 21 —dr?
3iRI _(477)4[ 12 6 T T 12 e
5 10 5
N[N+ — - =
+ f<3 + 3 N)] ;
| _131—|—8772N2 1y 309 + 872 42 —4x? 33 —4x?
TaRI _(477)4[ 12 TN T T T3y T 3
5 10 5
Ne(=N-———-=)]|. 4.24
+ f<3 3 N)] (4.24)

The same rotation can be applied to the one-loop operator matching matrix Xlé,flll)at. In this
case the analytic dependence upon the gauge parameter A is needed in order to account
for the derivative term included in the two-loop matching relation (fL.I7]). With N = 3,

* Although the four-quark operators are renormalised according to the RI scheme, which is independent
of the regularisation prescription, the strong interaction Lagrangian is renormalised in MS . This introduces

a spurious dependence of the NLO anomalous dimension upon the choice of the regulator.
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one has

(1) 1 [10 8
Xl;RLlat(Wilson) - (47‘_)2 _? - g)\ + (DLL - DRR) s
(1) 1 [10 8 s
XQ;RLlat(Wilson) - (47‘_)2 _? - g)\ + DLL ;
(1) 1 J10 8 1 s _ .
XB;RLlat(Wilson) - (477)2 _? o §>\ + Z <2DLR + QDLR —4Dpyr, — DRL) )
(1) 1 [10 8

L s F HS
4R Ila(wilson) — (42 |3 g)\ T (2DLr+2D7p + 4DRr, + DRL)] (4.25)

for light quarks regularised with the pure Wilson action. If the O(a) improved action is
used instead, one has to add to them the matching factors between the two actions, viz.

{fllzl)t(sW),lat(wilson) - (4717)2 ;_gfl - %UI - %wl] = 0.038033(2) ,

2/flla)t(sw),lat(wilson) = (4717)2 :—gff _ gvl] = 0.040240(2) ,
X:):flla)t(sw),lat(wilson) = (4717)2 :_gfl + %wl] = 0.034253(2) ,

(o)t wilsom) = ( 4717)2 _—%ff + %wl] — 0.037720(2) , (4.26)

where the lattice integrals f!, v! and w! are discussed in Appendix J. Numerical values of
the D-coefficients, expressed in [6] as linear combinations of a basic set of lattice integrals,
are reported in Table | of Appendix [B, where a new computational method to improve
their numerical accuracy is also described. The factors in eq. (J.26]) are obtained from the
coefficients denoted D! in [6], after subtracting the contributions coming from the O(a)

improvement of the four-fermion operators.

All the ingredients needed to evaluate the RHS of eq. (f.15) have now been specified.
The absence of operator mixing in the diagonal basis (P.12) implies that the commutator

term in eq. ({L.15) is identically zero. NLO anomalous dimensions in the previously intro-
duced SF schemes follow from a straightforward use of eqs. (1.19), (j£.14) and (J1.22)—({1.27).
We have collected the ratios of 'ygs;l(:l) to the corresponding LO coefficients 7]/:-;(0) in Tables
—[[3. In the matching we have employed the values of r,io obtained with the pure Wilson

action for light quarks, as they tend to display a better behaved continuum extrapolation,

after the O(a) contributions have been removed through blocking.

In order to check our results, we have also derived the SF NLO anomalous dimensions
using MS as a reference scheme. The matching procedure, rather delicate in this case,
must take into account the réle played by the EO in fixing the finite contributions to
the NLO anomalous dimension matrix 7%1). A naive rotation of the latter is potentially
hazardous without reconsidering the choice of the EQ. An alternative approach is to work

within the original basis (P.6]), to which the results in [6] refer, and then rotate the one-loop
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matching coefficients from the SF to the lattice scheme according to the inverse rotation
XS(;),lat = A_IXS/(F{)latA. This is certainly possible, as the computation of such coefficients
is performed on the lattice in d = 4 dimensions, where no EO contributes. Of course,
the commutator term in eq. ([l.1J) must be included in this case, whilst the gauge term
proportional to bé is not present. Once the NLO anomalous dimension matrix has been
obtained in the SF scheme, a straight rotation back to the diagonal basis (R.12) yields the
scalar coefficients 'y;—,l_s;l(?l). This procedure has been applied using either DRED or NDR
regularisations. In both cases we obtain the same results as with RI in the diagonal basis.

We have also verified that the difference between the finite parts of the SF renormal-
isation constants with improved and unimproved Wilson light quarks coincides with the
values in eq. (1.26). The numerical values of these finite matching constants are indeed in
perfect agreement with the analogous SF quantities.

We finally concentrate on the numerical values of the NLO anomalous dimension co-
efficients in the SF. A comparison with the case studied in [23], where the four-fermion
operators contain only relativistic quark fields, shows that in the present case the variation
of the anomalous dimension due to different choices of the SF boundary sources in the
renormalisation condition is much less pronounced. Also, the non-perturbative identities
in eq. (B.10) are verified explicitly by the one-loop results. The dependence on the value of
the parameter « is very small, too. Finally, at # = 0.5, which is commonly employed in non-
perturbative studies of SF renormalisation, the values obtained for the ratios 'y;—,l_s;l(vl)/'yg;(o)
are relatively small, pointing towards a good convergence of the perturbative éeries, save
for Q;’, where they are close to —0.5. The question whether this is a relevant source of
uncertainty in the NLO matching of renormalised matrix elements to continuum schemes
is left for future studies.

4.4 One-loop order cutoff effects in step-scaling functions

The non-perturbative RG-evolution of the four-quark operators in the diagonal basis (£.12)
is obtained through the computation of the step-scaling functions

250 (go,a/2L)
2 go, a/ L) l2(m)=u

o w) = im i (w,a/2) . 55 (wa/L)) =

4.27
! a—0 ( )
These ratios of renormalisation constants provide the operator running between the scales
w=1/L and p = 1/2L. The advantage of introducing such ratios is related to the com-
pensation of logarithmic divergences between numerator and denominator, thus resulting
in a finite continuum limit. Cutofl effects can be therefore completely decoupled from the
continuum RG-evolution. We are concerned here with the perturbative expansion of ([.27)
in the renormalised coupling, that is

+i(s)

Ok.ov

)

(u) =1+ 0'2_;;(571)u + U;gs,z)uz + O(u?). (4.28)

O

The first two terms of this expansion depend upon the LO and NLO anomalous dimension
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Figure 4: On the left(right) side the step scaling function of Q7 (Q5") at NLO and Ny = 0 is
plotted vs. the squared renormalised coupling in the SF scheme. The boundary sources choice is
s = 1, and the a-parameter is set to zero.

coefficients. They read explicitely

kog )_ /+§(0)1n2

ot = D 2 | ) 40O (n2)?. (4.29)

A graphical representation of ([£.2§) for the whole operator basis in some particular cases is
provided by the four plots of Figures ] and [}, in the range of values of g2 used in previous
non-perturbative studies by the ALPHA Collaboration.

The rate of convergence of the step-scaling functions toward the continuum limit at LO
can be expressed in terms of the first non-trivial coefficient of the perturbative expansion

(analogous to ([.28)) of E;;(S)(u, a/L) via the ratio

o3

E—I— (s,1) I —I—( 1)
Ma/L) = e/ ) T (4.30)
o HD

where

S /L) = ZH Y 2L /a) - 25D (La) | (4.31)

In order to compare the perturbative lattice artefacts ([1.3()) with the ones obtained from
the corresponding non-perturbative Monte Carlo simulations, the same definition of the
critical mass, based on the PCAC Ward identity, should be adopted This point has been
extensively explained in [23], where the numerical values of am!! (L/a) from L/a = 6 to
L/a = 32 have been provided (¢f. Table 3 in that work). That discussion will not be
repeated here. Since our codes ran up to L/a = 48, we are in the position to extend the
aforementioned table to include the additional points. The new numbers are reported in

Table [I.
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Figure 5: On the left(right) side the step scaling function of Q57 (Q5") at NLO and Ny = 0 is
plotted vs. the renormalised coupling in the SF scheme. The boundary sources choice is s = 1, and

the a-parameter is set to zero.

L/a amgl)(L/a)

ezt /Cr  amY(L/a)

Csw ZO/CF

34 -0.20255637783 -0.32544080501
36 -0.20255639414 -0.32547023220
38 -0.20255640819 -0.32549515390
40 -0.20255642028 -0.32551644442
42 -0.20255643068 -0.32553477599
44 -0.20255643965 -0.32555067224
46 -0.20255644740 -0.32556454600
48 -0.20255645412 -0.32557672619

Table 1: The one-loop coefficients of the critical mass as obtained from the PCAC Ward Identity
at finite lattice size. For the parameter choices made here, the convergence to the values at infinite
lattice size is quadratic/cubic in (a/L), for standard/O(a) improved Wilson quarks.

In practice, non-perturbative simulations based on the Eichten-Hill discretisation of
the heavy quark fields should better be avoided, given the bad intrinsic signal-to-noise
ratio (2.1, [27]. Nevertheless, it is instructive to compute lattice artefacts in pertur-
bation theory for the Eichten-Hill action, if only to check whether the use of static fields
enhances lattice artefacts with respect to the purely relativistic case. A comparison be-
tween static-light and light-light four-quark operators in a typical situation is shown in
Figure . All data refer to Qi", employing a renormalisation scheme in which the boundary
sources have a Dirac structure [vs,¥s,75] and where the normalisation of the four-quark
correlator involves only f1” Relativistic data are take