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tionIn re
ent years, the study of additional 
ompa
t spa
e dimensions in an e�e
tive �eld the-ory framework [1℄ has been popular in the parti
le physi
s 
ommunity, sin
e this providesnew possibilities for sear
hing for physi
s beyond the Standard Model. Although stringtheory may present a better set-up for su
h studies, e�e
tive �eld theories also allow afully 
onsistent investigation of quantum e�e
ts asso
iated with (large) extra dimensions,{ 1 {



and may even 
apture e�e
ts not seen by the on-shell string. Sin
e no additional spa
edimensions are observed at low energies, these have to be 
ompa
ti�ed at suÆ
iently highs
ales1. In �eld theory approa
hes only simple 
overing spa
es are usually 
onsidered,su
h as S1, T 2:::, suÆ
ient however to 
apture the main e�e
ts investigated. To obtain4D 
hiral fermions from bulk �elds dis
rete symmetries must a
t (non-freely) upon theextra dimensions, resulting in orbifolds su
h as S1=Z2 or T 2=ZN (N = 2; 3; 4; 6). Theseorbifolds have �xed points, invariant under subgroups of the dis
rete group a
tion. Sin
ethe bulk �elds satisfy boundary 
onditions at the orbifold �xed points, momentum 
on-servation does not hold in the extra dimensions. Ultimately, brane-lo
alised (either 4D orhigher derivative) intera
tions are required as 
ounterterms [3{7℄, to ensure the quantum
onsisten
y of the models. New bulk intera
tions, in addition to the original ones, are alsogenerated dynami
ally [7{12℄ as higher dimensional (derivative) terms.In this paper we 
onsider the one-loop 
orre
tion to the self-energy of gauge bosons in6D N = 1 supersymmetri
 Abelian and non-Abelian gauge theories 
oupled to hypermulti-plets on the T 2=Z2 orbifold, within the 
omponent �eld formulation. We �nd that one-loopdivergen
es are generated whi
h require the addition of new 
ounterterms. These involvenew, brane-lo
alised 4D intera
tions as well as higher derivative, bulk gauge intera
tions,not present in the original a
tion. We provide a 
areful study of the role of these operatorsin the running of the gauge 
oupling at high and low momentum s
ales. We also dis
ussthe link between these one-loop 
orre
tions and those in string theory. These are the mainpurposes of this paper. Re
ent work on this topi
 
an be found in [9, 10℄ in the super�eldformalism (for related studies see also [13℄).In the Abelian 
ase, we use the Feynman diagram approa
h to 
onsider bulk s
alar andfermion 
ontributions to the self-energy of the gauge bosons. We �nd that the fermionsgive rise to a bulk divergen
e only, requiring a bulk higher derivative 
ounterterm. Atthe te
hni
al level, the origin of this divergen
e is the presen
e of in�nite double sumsover the modes and a re-summation of their individual divergent 
ontributions [5{7, 9{11,14℄. In 
ontrast, bulk 
omplex s
alars bring in both bulk and brane 
orre
tions. Theirdivergent part must be 
an
elled by bulk higher derivative and brane-lo
alised gauge kineti

ounterterms, respe
tively. Both fermioni
 and bosoni
 
ontributions also 
ontain �niteLorentz violating mass terms in the bulk. For a hypermultiplet there are neither brane
ontributions nor bulk Lorentz violating mass terms. Thus, even after 
ompa
ti�
ation,the Lorentz invarian
e in these mass 
orre
tions is prote
ted by the initial supersymmetry.Nonetheless, one still needs a bulk higher derivative 
ounterterm, whi
h re
e
ts the non-renormalisable nature of the initial, higher dimensional �eld theory.The above analysis is extended to the non-Abelian 
ase by employing a ba
kground �eldmethod whi
h is made 
onsistent with the orbifold boundary 
onditions. This formalism
an be generalised to other orbifold a
tions, su
h as Wilson lines. The results show that ahypermultiplet generates only a bulk loop 
orre
tion, just like in the Abelian 
ase, while ave
tor multiplet generates both bulk and brane-lo
alised 
ontributions. These 
ontributions
ontain divergent terms whi
h are 
an
elled by bulk higher derivative and brane-lo
alised1Non-
ompa
t, in�nite extra dimensions are also possible [2℄.{ 2 {



gauge kineti
 
ounterterms. After the renormalisation of these operators, the running of theone-loop e�e
tive 
oupling ge�(k2), whi
h is the 
oupling of the zero mode gauge bosons,is 
ontrolled by �nite terms 
oming from both bulk and branes. This will be dis
ussed indetail.In the limit of external momenta k2 smaller than the 
ompa
ti�
ation s
ale(s), thehigher derivative gauge kineti
 term is suppressed. In this 
ase, after 
onsidering bothbulk and brane one-loop e�e
ts, we show that the e�e
tive gauge 
oupling has a 4D log-arithmi
 running with respe
t to the momentum k2, with the 4D N = 1 beta fun
tion.This is an interesting result and a 
onsisten
y 
he
k of our 
al
ulation. The logarithmi
running in momentum originates from both bulk and brane 
ontributions. We also estab-lish a relation between the high s
ale physi
s (gtree) and ge�(k2� 1=R25;6), whi
h involvesre-summing threshold 
orre
tions due to in�nitely many massive Kaluza-Klein modes. Weprovide detailed expressions of these 
orre
tions in
luding �nite terms. This relation islittle dependent on the role of the higher derivative operator, strongly suppressed at su
hlow momentum s
ales. The running of the e�e
tive 
oupling with respe
t to k2 
an be ex-tended to larger values of k2, 
loser to 
ompa
ti�
ation s
ales (k2 � 1=R25;6), to rea
h theregime of dimensional 
ross-over [15℄. In this 
ase the higher derivative operator brings inan important 
ontribution to the e�e
tive gauge 
oupling. After its renormalisation, thereare non-negligible power-like 
orre
tions in momentum s
ale to ge�(k2). The 
oeÆ
ient ofthe power-like running is the renormalised 
oupling h(k2) of the higher derivative operator,whi
h below the 
ompa
ti�
ation s
ales is 
onstant while far above them it runs logarithmi-
ally with respe
t to the momentum s
ale. At even higher momentum s
ales k2 � 1=R25;6we show that ge�(k2) has a power-like running with respe
t to the high momentum s
ale,with a 
oeÆ
ient equal to the renormalised 
oupling of the higher derivative operator.The link of these 
orre
tions to similar results from string theory is addressed. Wedis
uss the relation of our result to string 
orre
tions in the type I strings [16℄ and het-eroti
 toroidal orbifolds [17,18℄ with N = 2 sub-se
tors. Although the on-shell (heteroti
)string 
al
ulation to the gauge boson self-energy misses 
ontributions asso
iated with higherderivative operators, we show that there are remnant e�e
ts of their presen
e, even in the(on-shell) string result. These e�e
ts are related to the fa
t that the infrared regularisationof the (heteroti
) string loop 
orre
tions and their �0 ! 0 limit do not 
ommute, leavinga troublesome UV-IR mixing in the e�e
tive �eld theory regime of the (heteroti
) string(�0 ! 0). This stresses the importan
e of investigating the role of su
h operators in stringtheory, too.The results for the self-energy of the gauge bosons in our 
omponent �eld formulationare fully 
onsistent with those obtained in the super�eld formulation. Nevertheless, thegauge �xing term and the asso
iated ghost Lagrangian 
onsidered are not invariant underthe original supersymmetry transformation. This is related to the well-known fa
t thatthe Wess-Zumino gauge is not 
onsistent with a super-
ovariant gauge �xing [19℄. Thisproblem is very 
ommon in similar works, and be
omes manifest in the fa
t that theanomalous dimensions of s
alar and fermion matter �elds in a 
hiral multiplet are notequal at one-loop level [20℄. However, for our 
ase of the self-energy of the gauge bosons,additional auxiliary multiplets required by a manifestly supersymmetri
 quantisation will{ 3 {



not 
hange the result, as dis
ussed for the holomorphi
 anomaly to the gauge 
oupling in4D supersymmetri
 gauge theory [21℄.The paper is organised as follows. We start with a 6D N = 1 supersymmetri
 Abeliangauge theory where the one-loop 
orre
tion to the gauge bosons is 
omputed. Then weemploy the higher dimensional ba
kground �eld method to �nd the one-loop e�e
tive a
tionof non-Abelian gauge theories and apply this formalism to T 2=Z2, using orbifold-
ompatiblefun
tional di�erentiations. Finally we dis
uss the running of the e�e
tive gauge 
oupling.Te
hni
al details of our 
al
ulations are given in the Appendix.2. One-loop va
uum polarisation to U(1) gauge bosons on orbifoldsWe 
onsider the one-loop va
uum polarisation in a 6D N = 1 supersymmetri
 Abeliangauge theory 
oupled to hypermultiplets. The two extra dimensions are denoted by the
omplex 
oordinate z = x5+ ix6, and are 
ompa
ti�ed on the orbifold T 2=Z2 with the tworadii R5 and R6. The torus is modded out by the Z2 re
e
tion, whi
h identi�es 
oordinatesof extra dimensions under z ! �z. Under this Z2 a
tion, there appear four �xed pointswhi
h transform into themselves.In a 6D N = 1 supersymmetri
 gauge theory, a ve
tor multiplet is 
omposed of gaugebosons AM and (right-handed) symple
ti
 Majorana gauginos � while a hypermultipletis 
omposed of two 
omplex hypers
alars �� with opposite 
harges and a (left-handed)hyperino  . The supersymmetri
 a
tion is given in 
omponent �elds2 by [22℄S = Sve
tor+ ShyperwithSve
tor = 12 Z d6X�� 12FMNFMN+��i
M�M�+��
i
M�M�
+��D1 + iD2��2+(D3)2�;(2.1)Shyper = Z d6X�X� jDM��j2 + � i�
MDM +p2g� � ���� + � �
�+ + 
:
:��g�(D1 + iD2)�+�� + 
:
�+ gD3���+�+ � �������; (2.2)where �
 = C5��T is the �ve-dimensional 
harge 
onjugate of �, DM�� = (�M � igAM)��,and DM = (�M � igAM) . Details on our 
onventions are given in Appendix A.To promote the Z2-symmetry of the orbifold to a symmetry of our theory, we have tospe
ify the Z2 parities of the bulk �elds. These parities are given byA�(x;�z) = A�(x; z); A5;6(x;�z) = �A5;6(x; z); �(x;�z) = i
5�(x; z);��(x;�z) = �� ��(x; z);  (x;�z) = i� 
5 (x; z) (2.3)where � 
an be 
hosen +1 or �1. Within this framework, we evaluate the 
ontributions tothe 4D one-loop self-energy of the gauge bosons indu
ed by bulk �elds running in the loop.2We also in
luded the auxiliary �elds ~D = (D1;D2;D3) for 
ompleteness. We have written gaugino andhyperino in 4D Dira
 representations. { 4 {



2.1 A bulk fermion 
ontributionWe 
onsider the one-loop 
ontribution of a 6D left-handed bulk fermion to the self-energyof the 4D 
omponents of the gauge �eld. The Feynman diagram given in Fig. 1 
an be A� A�Figure 1: The Feynman diagram with a bulk fermion  
ontributing to ��� at one-loop order.evaluated as�f��(k;~k;~k0) = g2�4�dX~p;~p0 Z ddp(2�)d Tr�
� i2� Æ~p;~p0p=+ 
5p5 + p6 � � Æ~p;�~p0p=+ 
5p5 + p6 i
5�
�� i2� Æ~k0+~p0 ;~k+~pp=+ k=+ 
5(k05 + p05) + k06 + p06 � � Æ~k0+~p0;�~k�~pp=+ k=+ 
5(k05 + p05) + k06 + p06 i
5�� (2.4)where we used eq. (B.4) for the fermion propagator in the loop. Here a sum over dis
retemomenta ~p is to be understood as a double sum over integers n1;2 su
h that for an arbitraryfun
tion f X~p f(~p) = � Xn1;22Z f(n1=R1; n2=R6); � � [(2�)2R5R6℄�1 (2.5)where ~p � (p5; p6) = (n1=R5; n2=R6). Moreover, we use the Krone
ker delta symbol fordis
rete momenta, whose a
tion and normalisation areX~p Æ~p;~p0f(~p) = f(~p0); Æ~p;~p0 � (2�)2Æp5 ;p05Æp6;p06 = 1� Æn1;n01Æn2;n02 (2.6)The integral in (2.4) is 
ontinued to d � 4 � � dimensions, with � ! 0 after performingthe double sum; � is the �nite s
ale of the DR s
heme. Note that both the 4D integraland the double sum over the momenta are regularised by the same regulator �. That is, �a
ts essentially as a 6D regulator, as it should be the 
ase. These 
onventions will be usedthroughout the paper. After some standard 
al
ulations, we rewrite expression (2.4) as�f�� = �14g2X~p;~p0 Z ddp(2�)d �4�d(p2 � p25)[(p+ k)2 � (~p0 + ~k0)2℄��(1)�� (~p0;~k0)Æ~k0;~k+�(1)�� (�~p0;�~k0)Æ~k0;�~k � ��(2)�� (~p0;~k0)Æ�2~p0;~k0�~k � ��(2)�� (�~p0;�~k0)Æ�2~p0;~k0+~k� (2.7){ 5 {



with �(1)�� (~p0;~k0) = 4[2p�p� + p�k� + p�k� + g��(�p(p+ k) + ~p0 � (~p0 + ~k0))℄;�(2)�� (~p0;~k0) = �4ip�k������ : (2.8)Here we note that terms proportional to Æ~k;~k0 or Æ~k;�~k0 
onserve the external extra mo-mentum j~kj. Therefore these terms 
orrespond to bulk terms. On the 
ontrary, termsmultiplied by Æ�2~p0;~k0�~k or Æ�2~p0;~k0+~k 
hange the external dis
rete momentum in the 
om-pa
t dimensions, and therefore 
orrespond to brane-lo
alised terms [3℄. These momentumnon-
onserving terms are due to the breaking of translational invarian
e along the extradimensions in the presen
e of orbifold �xed points. Although the momentum is 
onservedat ea
h vertex in Feynman diagrams, extra momenta of ingoing and outgoing gauge bosons
an be di�erent due to the momentum non-
onserving part Æ~p;�~p0 in the propagator of abulk �eld running in loops.After performing the 4D momentum integral, the 
ontribution involving �(2)�� vanishes.Therefore no 
orre
tion to the lo
alised gauge 
oupling is generated by the bulk fermion.Finally, after introdu
ing a Feynman parameter and shifting the integration momentum asin Appendix C.1, we obtain the 
orre
tion�f�� [k;~k;~k0℄ = �2 g2 Æ~k;~k0 �4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2��2x(1� x)[(k2 � ~k02)g�� � k�k� ℄ + (1� 2x)~k0 � (~p0 + x~k0)g��� (2.9)with � � �x(1�x)(k2�~k02)+(~p0+x~k0)2. The �rst part of this result 
ontains the familiartensor stru
ture 
oming from 6D gauge and Lorentz invarian
e and 
an be fa
torised outof the momentum integration and the Kaluza-Klein summation. The se
ond part of (2.9)however 
orresponds to a Lorentz violating mass term, sin
e 6D Lorentz invarian
e isbroken by the 
ompa
ti�
ation. This term leads to radiative 
orre
tions to the nonzeroKaluza-Klein masses [4℄.The 
urrent form of the result in eq. (2.9) is all we need for our purpose of investigatingthe one-loop 
orre
tions to gauge 
ouplings in supersymmetri
 models. It is neverthelessimportant to simplify eq. (2.9) to identify its divergen
es3. After some algebra we �nd, inEu
lidean spa
e4�f�� [k;~k;~k0℄ = �2g2i�2(2�)d � Æ~k;~k0 h[(k2 + ~k02)Æ�� + k�k� ℄ �f0 � Æ�� �f1i; (2.10)�f0 � Z 10 dx �0(x)J0[x(1� x)(k2 + ~k02); xk05R5; xk06R6℄; (2.11)�f1 � k05R5 Z 10 dx �1(x)J1[x(1� x)(k2 + ~k02); xk05R5; xk06R6℄+�k05$k06;R5$R6�; (2.12)3The non-zero external momenta (k;~k;~k0) in the Green fun
tions ensure infrared-
onvergent integrals.4Denoting by �E the Eu
lidean form of � we used that: R ddp (p2 ��)�2 = i�2 R10 dt t1�d=2 e�� t�E .Unless stated otherwise, our formulae are always written using the Minkowskian metri
; the distin
tion isalso obvious by the presen
e of either g�� or Æ�� . { 6 {



with �0(x) � 2x(1� x) and �1(x) � (1� 2x). The fun
tions J0;1[
; 
1; 
2℄ are de�ned andstudied in detail in Appendix D, eqs. (D.1), (D.20) to (D.24) and they 
an be integratedover x, yielding 
ompa
t �nal expressions. Sin
e these expressions are rather long, we donot present them here. However, it is important for our purpose to noti
e that J0 has apole, while J1 is a
tually �nite. Using this information, the pole stru
ture in � of the �nalresult is obtained�f0 = �15(k2 + ~k02)R5R6��2� �+ O(�0); �f1 = O(�0) (2.13)with momentum again in Eu
lidean spa
e. The 
onsequen
e of this 6D divergen
e in �f0and thus in �f�� is that a higher derivative 
ounterterm is ne
essary. This is a dimension-six bulk 
ounterterm, and its stru
ture would be, in a non-susy 
ase, R5R6FMN26FMN .Although ea
h bulk mode brings a pole for the usual gauge kineti
 term, the resummation ofin�nitely many bulk mode 
ontributions leads only to a pole for the higher derivative term5.A similar result has been obtained in a 6D Abelian gauge theory without 
ompa
ti�
ationin [8℄. We postpone a further dis
ussion on su
h operators to Se
tions 2.3 and 3 wheretheir role will be investigated in detail.2.2 A bulk s
alar 
ontributionNow we 
onsider the one-loop 
ontribution of a 
omplex bulk s
alar with parity � to theself-energy of the gauge boson. In this 
ase, there are two Feynman diagrams (see Fig.2)
ontributing to the one-loop va
uum polarisation.��A� A� + ��A� A�Figure 2: The Feynman diagrams with the bulk s
alar � 
ontributing to ��� at one-loop order.Then the one-loop s
alar 
ontribution is�s��;�[k;~k;~k0℄ = �(1)�� [k;~k;~k0℄ + �(2)�� [k;~k;~k0℄ (2.14)5As will be dis
ussed in detail in se
tion 5, in a regularisation s
heme with a momentum 
uto�, notethat there is no logarithmi
ally divergent 
orre
tion to the FMNFMN operator and this is 
onsistent withthe absen
e of a 1=� pole to this operator in DR. In su
h 
uto� regularisation, however, there exists aquadrati
ally divergent 
orre
tion to the FMNFMN operator (unlike in the 4D gauge theory), dis
ussed inse
tion 5. { 7 {



with �(1)�� [k;~k;~k0℄ = (�ig)2�4�dX~p;~p0 Z ddp(2�)d (2p+ k)�(2p+ k)� i2�Æ~p;~p0 � �Æ~p;�~p0p2 � ~p2 �� i2�Æ~p0+~k0 ;~p+~k � �Æ~p0+~k0;�~p�~k(p+ k)2 � (~p0 + ~k0)2 �; (2.15)�(2)�� [k;~k;~k0℄ = (2ig2) g�� �4�d X~p;~p0=~p+~k�~k0 Z ddp(2�)d i2�Æ~p;~p0 � �Æ~p;�~p0p2 � ~p2 � (2.16)where we used eq. (B.7) for the s
alar propagator in the loop. After re-arranging the result,we obtain the one-loop va
uum polarisation as�s��;�[k;~k;~k0℄ = �g22 �4�dX~p0 Z ddp(2�)d Æ~k;~k0 � �Æ�2~p0;~k0�~k(p2 � (~p0)2)[(p+ k)2 � (~p0 + ~k0)2℄�n � (2p+ k)�(2p+ k)� + 2g��h(p+ k)2 � (~p0 + ~k0)2io� �bulk�� [k;~k;~k0℄� ��brane�� [k;~k;~k0℄ (2.17)with the bulk and brane terms easily identi�ed by whether they do or do not 
onserve thedis
rete momenta asso
iated with the two 
ompa
t dimensions. After using a Feynmanparameter and a shift of the integration momentum we obtain the bulk 
orre
tion, wherea 6D Lorentz violating mass term is present again, due to 
ompa
ti�
ation:�bulk�� [k;~k;~k0℄ = �g22 Æ~k;~k0 �4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2�h(1� 2x)2[(k2 � ~k02)g�� � k�k� ℄ + 2(2x� 1)~k0 � (~p0 + x~k0)g��i: (2.18)As in the fermioni
 
ase, the form of the result in (2.18) is all we need for our purpose ofinvestigating one-loop 
orre
tions to the gauge 
ouplings in supersymmetri
 models. Thisresult 
an however be evaluated expli
itly as done in the fermioni
 
ase, to identify itsdivergen
es and �nite parts6. One �nds, using an Eu
lidean metri
�bulk�� [k;~k;~k0℄ = �g22 i�2(2�)d � Æ~k;~k0 h[(k2 + ~k02)Æ�� + k�k� ℄ �bulk0 � Æ�� �bulk1 i�bulk0 = �30(k2 + ~k02)R5R6��2� �+ O(�0); �bulk1 = O(�0) (2.19)Here �bulk0 and �bulk1 have an expression identi
al to that of �f0 of (2.11) and �f1 of(2.12) respe
tively, but with �0(x) = (1 � 2x)2, �1(x) = 2(2x � 1). The divergen
e of6This is parti
ularly relevant in non-supersymmetri
 models, where similar 
orre
tions are present.{ 8 {



�bulk�� requires a higher derivative 
ounterterm, of stru
ture identi
al to that for fermions:R5R6FMN26FMN . We return to dis
uss the role of su
h operators in Se
tions 2.3, 3.For the brane 
orre
tion the Kaluza-Klein loop momentum ~p0 is �xed by the di�er-en
e between ingoing and outgoing Kaluza-Klein momenta ~k and ~k0. After introdu
ing aFeynman parameter and shifting the 4D momentum, we also �nd the brane 
orre
tion as�brane�� [k;~k;~k0℄=�g22 �4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2�2(1� 3x+ 2x2)(k2 � ~k02)g��� (1� 2x)2k�k� + 4(x� 1)~k0 � (~p0 + x~k0)g��� � Æ�2~p0;~k0�~k (2.20)= �ig22(4�)2�13�2� +ln 4��2e�
E�(g��k2�k�k��3~k:~k0g��)�Z 10dxs(x) ln��withs(x) = 2(1�3x+2x2)(k2�~k02)g���(1�2x)2k�k�+4(x� 1)(~k=2 + (x� 1=2)~k0)2g�� : (2.21)Therefore, to 
an
el the one-loop divergen
e of the brane 
orre
tion, brane-lo
alised gaugekineti
 terms 
ontaining the derivatives with respe
t to the extra dimensions are required.The remaining integral over x is �nite. In 
on
lusion, a bulk s
alar in 6D leads to bothbulk higher derivative and brane-lo
alised gauge kineti
 terms.2.3 A hypermultiplet 
ontributionWe 
onsider the 
ontribution of a hypermultiplet to the va
uum polarisation. A hypermul-tiplet is 
omposed of one Dira
 fermion and two 
omplex s
alars with opposite 
harges.Using eqs. (2.9) and (2.17) with (2.18), we easily obtain the 
ontribution in a simple formas �hyper�� = �f�� + �s��;+ + �s��;�= �g2Æ~k;~k0 [(k2 � ~k02)g�� � k�k� ℄�4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2 : (2.22)As indi
ated, the s
alars take opposite Z2 parities. Consequently, we note that the would-be mass 
orre
tions to Kaluza-Klein modes of gauge bosons that we referred to earlierin the s
alar and fermioni
 
ontributions are 
an
elled out due to supersymmetry. Alsothe two would-be brane 
ontributions of the s
alars are 
an
elled out. The above resultobtained in the 
omponent �eld formalism is in agreement with that obtained in a similar
al
ulation using instead the super�eld approa
h [9℄.The expli
it evaluation of �hyper is rather te
hni
al and we provide the details inAppendix D. Essentially one performs the momentum integral in (2.22) in the DR s
heme,then re-writes that result in proper-time representation and �nally performs the double sumover the dis
rete momenta ~p � (p5; p6). Using eqs. (D.20), (D.21) for J0, with a1 � 1=R25and a2 � 1=R26, one �nds the 
ontribution of a hypermultiplet in Eu
lidean spa
e7:7The term ln �2 is made dimensionless by additional logarithmi
 terms in J �nite0 , not shown expli
itly.{ 9 {



�hyper(k;~k0) = i �4�d(4�)d=2X~p0 Z 10 dx�[2� d=2℄hx(1� x)(k2 + ~k02) + (~p0 + x~k0)2id=2�2= i�2�4�d(2�)d X~p0 Z 10 dx Z 10 dttd=2�1 e��t�x(1�x)(k2+~k02)+(~p0+x~k0)2�= i�2� �4�d(2�)d Z 10 dx J0hx(1� x)(k2 + ~k02); xk05R5; xk06R6i= i�(4�)2��R5R66 (k2+~k02)��2� � ln 4�2�2�+Z 10 dxJ �nite0 i� (2.23)with J �nite0 [
; 
1; 
2℄ � J0[
; 
1; 
2℄� �R5R6 
�� 2��: (2.24)The above de�nition of J �nite0 together with (D.20), (D.21) shows that J �nite0 
ontains nopole in �. Here 
 = x(1� x)(k2 + ~k02), 
1 = xk05R5, 
2 = xk06R6.Eq. (2.23) is an important result of this paper. The presen
e of the momentum-dependent divergen
e (k2+~k02)=� in �hyper(k;~k0) suggests the need for a higher derivativeoperator as a 
ounterterm to the one-loop 
orre
tion. Note that the 
ounterterm requiredis a
tually a bulk operator sin
e it is of 6D Lorentz invariant form. Its form is the super-symmetri
 version of that already en
ountered for bulk s
alar and fermion 
ontributions.The need for su
h an operator is ultimately a re
e
tion of the fa
t that the initial theory isnon-renormalisable. The divergen
e found is due to re-summing the in�nitely many bulkmode 
ontributions in J0, ea
h of them bringing a pole 1=�, to obtain instead a k2=� pole.This means the k2=� pole is of non-perturbative origin. Note that 
al
ulations in the past,performed for vanishing external momenta, k2+~k02 = 0, missed the presen
e of su
h higherderivative operators, sin
e the 
oeÆ
ient of the pole is then formally8 set to zero.If one also introdu
es a non-trivial 
omplex stru
ture for the underlying torus, U =R6=R5ei� (in our 
ase � = �=2), then the 
oeÆ
ient of the pole in eq. (2.23) be
omesproportional to R5R6 sin �. For � = 0, when the two dimensions 
ollapse onto ea
h other,one obtains the 5D limit [7℄ as expe
ted, and no pole is present anymore in that 
ase.This is 
onsistent with the fa
t that su
h operators are not generated by one-loop gauge
orre
tions in the 5D 
ase where only a single sum over modes is present. However, at twoloop order, two sums over the modes are present and higher derivative operators will againbe generated, even in 5D. In 
on
lusion su
h higher derivative operators are usually present8Stri
tly speaking this should not be the 
ase: even in su
h limiting 
ases, mathemati
al 
onsisten
ywould require one to introdu
e an infrared regulator �IR (here repla
ed by (k2+~k02)) to �nd a term whi
h\mixes" the IR (�IR) and UV (�) regulators/terms; su
h unwel
ome UV-IR mixing [11, 14℄ would signala non-de
oupling of high s
ale physi
s from its IR region. This would lead one to 
on
lude that higherderivative 
ounterterms are required, if one remembers that the IR regulator 
an be equivalently repla
edby non-zero momentum in
ow. { 10 {



in 
ompa
ti�
ations, being dynami
ally generated at the loop level. These operators 
analso be boundary-lo
alised, in the 
ase of lo
alised superpotential intera
tions [5{7℄.Returning to eq. (2.23), the integral over x 
ontains no poles and 
an be evaluatednumeri
ally, using our detailed expressions for J0 in Appendix D. In spe
i�
 
ases furthersimpli�
ations 
an o

ur, for example when ~k0 = 0. The analysis of the higher derivativeoperator and of �hyper will be further extended to the 
ase of non-Abelian theories, whereits expression and properties will be dis
ussed in greater detail.3. The e�e
tive a
tion for non-Abelian gauge theories on orbifoldsSo far we have 
onsidered the 
ase of Abelian gauge theories. In this se
tion we 
ontinue ouranalysis of one-loop 
orre
tions and derive the e�e
tive a
tion for a non-Abelian gauge the-ory in higher dimensions by developing an approa
h outlined by Peskin and S
hroeder [24℄.To this purpose we employ a ba
kground �eld method appli
able to orbifold 
ompa
ti�
a-tions. First we present the method and derive the general form of the one-loop e�e
tivea
tion, then we apply it to the 
ase of the T 2=Z2 orbifold.3.1 Ba
kground �eld method for gauge theories in higher dimensionsLet us start with the relevant terms of the 6D supersymmetri
 a
tion with a hypermultipletin a representation of the bulk gauge groupS = Z d6X� 1g2Tr�� 12FMNFMN + 2�� i
MDM��+ � i�
MDM +X� jDM��j2� (3.1)where FMN = �MAN��NAM�i[AM ; AN ℄, DM� = �M��i[AM ; �℄,DM = (�M�iAM ) andDM�� = (�M�iAM)��. To introdu
e the ba
kground �eld method, we split the gauge�eld into a 
lassi
al ba
kground and a quantum 
u
tuation:AaM ! AaM + AaM : (3.2)Then, � i�
MDM ! � i�
MDM +AaM � �
M ta ; (3.3)where DM is the 
ovariant derivative with respe
t to the ba
kground gauge �eld.Likewise, the gauge �eld strength is de
omposed asF aMN ! F aMN +DMAaN �DNAaM + fab
AbMA
N : (3.4)Considering the higher dimensional generalisation of the Faddeev-Popov pro
edure for thegauge-�xing, the 6D Lagrangian in the Feynman-'t Hooft gauge is given by{ 11 {



LFP = � 14g2�F aMN +DMAaN �DNAaM + fab
AbMA
N�2 � 12g2 (DMAaM )2+ 1g2 h2Tr���i
MDM��+ i��afab
AbM
M�
i + � �i�
MDM + AaM �
Mta� +X� �jDM��j2 � (DM��)�iAaM ta�� � i���AaM taDM�� + ���(AaM ta)2���+�
a�� (D2)a
 �DMfab
AbM�

; (3.5)where 
a are ghost �elds and D2 = DMDM .In order to 
ompute the e�e
tive a
tion at one-loop order, we shall ignore terms linearin AaM and integrate over the terms whi
h are quadrati
 in the gauge �elds AaM , gauginos�, hyperinos  , hypers
alars � and ghost �elds 
. After integration by parts, the quadrati
terms in AaM are simpli�ed toLA = � 12g2nAaMh� (D2)a
gMN � 2fab
F bMNiA
No: (3.6)By using the generator of 6D Lorentz transformations on 6-ve
tors,�J PQ�MN = i�ÆPMÆQN � ÆQMÆPN� (3.7)satisfying tr�J PQJMN� = 2�gPMgQN � gPNgQM�; (3.8)we 
an rewrite the above Lagrangian asLA = � 12g2nAaMh � (D2)a
gMN + 2�12F bPQJ PQ�MN(tbG)a
iA
No (3.9)with (tbG)a
 � ifab
. Further, the quadrati
 terms in fermion �elds areLf = 1g2Tr�2��i
MDM��+ � i�
MDM : (3.10)Integrating over the fermion �elds, we obtain the fun
tional determinant of the operator(i
MDM) for the gaugino and (i�
MDM) for the hyperino. Finally, the quadrati
 terms inhypers
alars (Ls) and ghost �elds (Lg) areLs = X� (�a�)�[�(D2)a
℄�
�; (3.11)Lg = �
a[�(D2)a
℄

: (3.12)With these �ndings, after performing the path integral for the terms quadrati
 in quantum
u
tuations, we obtain the e�e
tive a
tion for the 
lassi
al �eld AaM at one-loop order as{ 12 {



ei�[A℄ = exp�i Z d6X�� 14g2 (F aMN)2 + L
:t:�� (3.13)�(det�G;1)� 12 (detDG)+1[det(��G;0)℄+1(detDr)+1[det(��r;0)℄�1[det(��r�;0)℄�1with �G;1 = 1g2h��D21gMN + 2 �12F bPQ1J PQ�MN tbG� ÆAN12 i;�G;0 = �D21 Æ
12; �r;0 = �D21 Æ�r12 ;DG = 1g2�i
M�M1 + AaM1taG
M� Æ�12;Dr = �i�
M�M1 + AaM1tar �
M� Æ 12; (3.14)where r denotes the 
orresponding representation and an extra index "1" as in f1 denotesf(X1) while the Æ12's are de�ned as fun
tional di�erentiations presented below. Finally, asthe upper letter on the Æ12's imply, the above expressions are 
ontributions of the gaugebosons, ghosts, hypers
alars, gaugino and hyperino �elds respe
tively. Further(ÆAM12 )a b � ÆAaM(X1)ÆAbM(X2) ; (Æ�r12 )a b � Æ�ar(X1)Æ�br(X2) ; (3.15)and similar for the remaining �elds. Note that as long as there is no orbifold a
tion presentÆAM12 = Æ�r12 = Æ�12 = Æ 12 = Æ6(X1�X2). With these observations, we have the full one-loope�e
tive a
tion�[A℄ = Z d6X�� 14g2 (F aMN)2 + L
:t:�+ i2� ln det�G;1 � 2 ln detDG � 2 ln det(��G;0)�2 ln detDr + 2 ln det(��r;0) + 2 ln det(��r�;0)�: (3.16)This is the general formula for the one-loop e�e
tive a
tion in higher dimensions with our�eld 
ontent. It 
an be applied to spe
i�
 
ases, by 
omputing the above determinants,after spe
ifying the boundary 
onditions for the �elds involved.3.2 The e�e
tive a
tion on the T 2=Z2 orbifoldWe 
an now apply the method presented in the previous se
tion to the 
ase of orbifold
ompa
ti�
ations, where important 
hanges appear due to the presen
e of the asso
iatedboundary 
onditions with respe
t to the 
ompa
t dimensions. On the orbifold T 2=Z2, the{ 13 {



orbifold boundary 
onditions are given byAa�(x;�z) = Aa�(x; z); Aa5;6(x;�z) = �Aa5;6(x; z);
a(x;�z) = 
a(x; z); �(x;�z) = i
5�(x; z); (3.17) (x;�z) = i
5 �  (x; z); ��(x;�z) = ����(x; z)where � 
an be 
hosen either +1 or �1. Taking into a

ount these boundary 
onditions,the fun
tional di�erentiations de�ned in (3.15) 
an be made orbifold-
ompatible as follows:ÆA�12 = 12�Æ6(X1 �X2) + Æ6(X1 +X2)� = Æ
12 � Æ+12;ÆAn12 = 12�Æ6(X1 �X2)� Æ6(X1 +X2)� � Æ�12;Æ��12 = 12�Æ6(X1 �X2)� � Æ6(X1 +X2)� (3.18)Æ�12 = 12�Æ6(X1 �X2)� i
5Æ6(X1 +X2)�Æ 12 = 12�Æ6(X1 �X2)� i� 
5Æ6(X1 +X2)�where Æ6(X1 � X2) � Æ4(x1 � x2)Æ2(z1 � z2). We 
an now evaluate the determinants in(3.16) giving the 
ontributions of various �elds to the one-loop e�e
tive a
tion. To se
ondorder in the ba
kground gauge �eld we have from eq. (3.16)�(2)[AM ℄ = 12g2 X~k Z d4k(2�)4AaM (�k;�~k)AbN (k;~k)(�(k2 � ~k2)gMN + kMkN)+ i2 hWG;1 � 2WG;0 � 2Wgaugino+ 2Whypers� 2Whyperinoi (3.19)where ea
h W is the quadrati
 term of the 
orresponding log determinant in (3.16).3.2.1 Gauge �eld 
ontribution WG;1We start with the 
ontribution of the gauge bosons and �rst introdu
e the notation:M� ��21g��Æ+12 00 ��21gmnÆ�12! ; N � (�Gg�� +���)1Æ+12 ��n1 Æ�12�m�1 Æ+12 (�Ggmn +�mn)1Æ�12! (3.20)where �G � �(1)G +�(2)G�(1)G � ih�MAaM taG +AaM taG�Mi; �(2)G � AaM taGAbM tbG; (3.21)�MN � 2�12F bPQJ PQ�MN tbG:{ 14 {



With this notation and (3.14) we obtainln det�G;1 = ln det 1g2hM+N i = ln det 1g2M� 1Xn=1 1n trh(OM N )ni= ln det 1g2M� tr(O� �)� tr(Om n)� 12�tr(O� �O� �) + tr(Om lOl n) + tr(O� lOl �) + tr(Om �O� n)�+ � � � ; (3.22)where we introdu
edOM N�� Æ+12i(��22)�1g�� 00 Æ�12i(��22 )�1gml �0� i(�Gg��+���)2Æ+23 i��n2 Æ�23i�l�2 Æ+23 i(�Ggln+�ln)2Æ�231A (3.23)Therefore, the terms in ln det�G;1 quadrati
 in the ba
kground gauge �eld areWG;1[AM ℄ = 4 (TG+1 + TG+2 ) + 2 (TG�1 + TG�2 ) + TG3 + TG4 + TG5 + TG6 : (3.24)Their origin is as follows: 4(TG+1 +TG+2 ) a

ounts for part of the term tr(O� �O� �) and forthe term tr(O� �), while 2(TG�1 +TG�2 ) a

ounts for similar terms but with matri
es entrieswith extra dimensional Lorentz indi
es. The di�erent fa
tors multiplying them (4 and 2)arise from the di�erent metri
 
ontra
tions. Further, TG3 a

ounts for (the remaining partof) tr(O� �O� �) while TG4 a

ounts for similar 
ontribution but with all Lorentz indi
esextra dimensional. Finally, TG5;6 a

ount for the \mixed" indi
es 
ontributions, the last twoterms in the last line of (3.22), respe
tively. All these 
ontributions 
an be easily identi�edby re
alling that Æ+ij (Æ�ij) arise with 
ontributions from 4D (extra dimensional) Lorentzindi
es, respe
tively, as seen from the de�nition of OM N . The results of evaluating theterms in (3.24) are thenTG�1 + TG�2 � �12 trh�Æ�12 i(��22)�1 (i�(1)G;2 Æ�23)��Æ�34i(��24)�1 (i�(1)G;4 Æ�41)�i�trhÆ�12i(��22)�1(i�(2)G;2Æ�21)i= �12 C2(G)X~k;~k0 Z d4k(2�)4AaM(�k;�~k0)AaN(k;~k) �sMN;�: (3.25)One should 
onsider in (3.25) either the upper or the lower signs only. Further TG3 is{ 15 {



generated by parity-even gauge �elds, as the presen
e of Æ+ij shows and equalsTG3 � �12trh�Æ+12 i(��22)�1 (i(�� �)2 Æ+23)��Æ+34i(��24)�1 (i(�� �)4 Æ+41)�i= 2 trhJ ��taGJ ��tbGiX~k;~k0 Z d4k(2�)4 Aa�(�k;�~k0)Ab�(k;~k) k� g�� k� g���X~p;~p0 Z d4p(2�)4 ~G+(p; ~p; ~p0) ~G+(p+ k; ~p0 + ~k0; ~p+ ~k)= 4C2(G)X~k;~k0 Z d4k(2�)4Aa�(�k;�~k0)Aa�(k;~k)�k2g�� � k�k���G++; (3.26)TG4 has similar form, but involves only parity-odd �elds (noti
e the presen
e of Æ�ij):TG4 � �12trh�Æ�12 i(��22)�1 (i(�m l)2 Æ�23)��Æ�34i(��24)�1 (i(�l n)4 Æ�41)�i= 2trhJ ijtaGJ kltbGiX~k;~k0 Z d4k(2�)4 Aam(�k;�~k0)Abn(k;~k) k0i gmj kk gnl�X~p;~p0 Z d4p(2�)4 ~G�(p; ~p; ~p0) ~G�(p+ k; ~p0 + ~k0; ~p+ ~k);= 4C2(G)X~k;~k0 Z d4k(2�)4Aam(�k;�~k0)Aan(k;~k)�� ~k0 � ~kgmn � kmk0n��G��; (3.27)Finally TG5 and TG6 have similar stru
ture, involving parity-odd and -even 
omponent �elds:TG5 � �12trh�Æ+12 i(��22)�1 (i(�� l)2 Æ�23)��Æ�34 i(��24)�1 (i(�l �)4 Æ+41)�i= 2 trh(J �k)� ltaG(J �n)l �tbGi�k�Aak(�k;�~k0)� k0kAa�(�k;�~k0)��k�Abn(k;~k)� knAb�(k;~k)�X~p;~p0 Z d4p(2�)4 ~G�(p; ~p; ~p0) ~G+(p+ k; ~p0 + ~k0; ~p+ ~k)= �2C2(G)X~k;~k0 Z d4k(2�)4�k�Aak(�k;�~k0)� k0kAa�(�k;�~k0)���k�Aan(k;~k)� knAa�(k;~k)� g��gkn�G�+ ; (3.28){ 16 {



and TG6 � �12trh�Æ�12 i(��22)�1 (i(�n �)2 Æ+23)��Æ+34 i(��24)�1 (i(�� m)4 Æ�41)�i= 2 trh(J �k)n �taG(J �l)� mtbGiX~k;~k0 Z d4k(2�)4�k�Aak(�k;�~k0)� k0kAa�(�k;�~k0)��k�Abl (k;~k)� klAb�(k;~k)�X~p;~p0 Z d4p(2�)4 ~G+(p; ~p; ~p0) ~G�(p+ k; ~p0 + ~k0; ~p+ ~k)= �2C2(G)X~k;~k0 Z d4k(2�)4�k�Aak(�k;�~k0)� k0kAa�(�k;�~k0)���k�Aan(k;~k)� knAa�(k;~k)� g��gkn�G+�: (3.29)In the equations above we used the notation C2(G) de�ned by tr(taGtbG) = C2(G)Æab. Interms of the bulk propagator for bosons (See also eq. (B.7)),~G�(p; ~p; ~p0) = i2 Æ~p;~p0 � Æ~p;�~p0p2 � ~p2 ; (3.30)one has the following expressions for �sMN;� and �G�� used previously�sMN;� = X~p;~p0 Z d4p(2�)4h � (2p0 + k0)M(2p+ k)N ~G�(p+ k; ~p0 + ~k0; ~p+ ~k)+2igMNÆ~p0;~p+~k�~k0i � ~G�(p; ~p; ~p0)= �12X~p0 Z d4p(2�)4 �(2p0 + k0)M(2p+ k)N + 2gMN [(p+ k)2 � (~p0 + ~k0)2℄(p2 � ~p02)[(p+ k)2 � (~p0 + ~k0)2℄��Æ~k;~k0 � Æ�2~p0;~k0�~k�; (3.31)�G�� = X~p;~p0 Z d4p(2�)4 ~G�(p; ~p; ~p0) ~G�(p+ k; ~p+ ~k; ~p0 + ~k0)= �12X~p0 Z d4p(2�)4 Æ~k;~k0 � Æ�2~p0;~k0�~k(p2 � ~p02)[(p+ k)2 � (~p0 + ~k0)2℄ (3.32)and �G�� = X~p;~p0 Z d4p(2�)4 ~G�(p; ~p; ~p0) ~G�(p+ k; ~p+ ~k; ~p0+ ~k0) = �G�;�: (3.33)To obtain the above results for TG5 and TG6 we had to 
hange the order of operators in anappropriate way, by using O2Æ�23 = Æ�23O3 for the Z2-even operator O while eO2Æ�23 = Æ�23 eO3for the Z2-odd operator eO. Further, to simplify the Krone
ker deltas, we have taken intoa

ount the Z2-parity 
onditions: Aa�(k;~k0) = Aa�(k;�~k0) and Aam(k;~k0) = �Aam(k;�~k0).This 
on
ludes the evaluation of the gauge �elds 
ontribution WG;1 of (3.24).{ 17 {



3.2.2 Ghost �eld 
ontribution WG;0Next we evaluate the determinant of the ghost �eld 
ontribution (3.14) with (3.18)ln det(��G;0) = ln det�(�2 ��G)1Æ+12�= ln det(�21Æ+12)� 1Xn=1 1ntrh�Æ+12i(��22)�1i(�G)2Æ+23�ni: (3.34)from whi
h, upon expansion, we isolate the quadrati
 terms for the ba
kground �eld asWG;0[AM ℄ = TG+1 + TG+2 : (3.35)The sum on the right-hand side was already 
omputed in (3.25).3.2.3 Hypers
alar 
ontribution WhypersLikewise, the quadrati
 terms from the determinant for hypers
alars are, with (3.14), (3.18)ln det(��r;0) = ln det�(�2 ��r)1Æ�12�= ln det(�21Æ�12)� 1Xn=1 1ntrh�Æ�12i(��22)�1i(�r)2Æ�23�ni: (3.36)with the notation of � as in eq. (3.21) with G! r. One �nds from (3.36)Whypers[AM ℄ = (T r+1 + T r+2 ) + (T r�1 + T r�2 ) (3.37)where T r�1;2 = �C(r)=C2(G)�TG�1;2 and with TG�1 + TG�2 already evaluated in eq. (3.25).Here C(r) is de�ned by tr(tartbr) = C(r)Æab.3.2.4 Gaugino and hyperino 
ontributions Wgaugino and WhyperinoFinally, we evaluate the determinants for the fermion �elds, whi
h are expanded as (usingagain (3.14), (3.18))ln detDG = ln det h 1g2 (i
M�M1 +AaM1taG
M)Æ�12i= ln det h 1g2 i
M�M1Æ�12i� 1Xn=1 1ntr��Æ�12 ii
P�P2 (iAaM2taG
MÆ�23)�n�;(3.38)ln detDr = ln det h(i�
M�M1 + AaM1tar �
M)Æ 12i= ln det hi�
M�M1Æ 12i � 1Xn=1 1n tr��Æ 12 ii�
P�P2 (iAaM2tar �
MÆ 23)�n�: (3.39){ 18 {



with the former (latter) for gaugino (hyperino) �elds, respe
tively. From these eqs. thequadrati
 terms 
oming from the determinants of gaugino and hyperino are evaluated toWgaugino[AM ℄ = �12tr�Æ�12 ii
P�P2 (iAaM2taG
MÆ�23) Æ�34 ii
Q�Q4 (iAbN4tbG
NÆ�41)�= 12tr(taGtbG)X~k;~k0 Z d4k(2�)4AaM(�k;�~k0)AbN(k;~k) ~�fMN ; (3.40)Whyperino[AM ℄ = �12tr�Æ 12 ii�
P�P2 (iAaM2tar �
MÆ 23) Æ 34 ii�
Q�Q4 (iAaN4tar �
NÆ 41)�= 12tr(tar tbr)X~k;~k0 Z d4k(2�)4AaM(�k;�~k0)AbN (k;~k) �fMN (3.41)Here we introdu
ed the following self-energies~�fMN �X~p;~p0 Z d4p(2�)4Trh ~D�(p; ~p; ~p0)
M ~D�(p+ k; ~p0 + ~k0; ~p+ ~k)
Ni; (3.42)�fMN �X~p;~p0 Z d4p(2�)4Trh ~D (p; ~p; ~p0)�
M ~D (p+ k; ~p0 + ~k0; ~p+ ~k)�
Ni; (3.43)and used the propagators on T 2=Z2 (for details see the Appendix, eq. (B.4))~D�(p; ~p; ~p0) = i2 � Æ~p;~p0p=+ 
5p5 � p6 � Æ~p;�~p0p=+ 
5p5 � p6 i
5� ; (3.44)~D (p; ~p; ~p0) = i2 � Æ~p;~p0p=+ 
5p5 + p6 � �Æ~p;�~p0p=+ 
5p5 + p6 i
5� : (3.45)This 
on
ludes the identi�
ation of all 
omponent �eld 
ontributions to the e�e
tive a
tion.We now have the ne
essary te
hni
al results eqs. (3.24), (3.35), (3.37), (3.40), (3.41), toanalyse the one-loop e�e
tive a
tion of non-Abelian gauge theories on T 2=Z2.3.2.5 The one-loop e�e
tive a
tion on T 2=Z2, its poles and 
ountertermsIn the following we 
on
entrate on the 4D gauge �eld part of the e�e
tive a
tion. In this
ase, we note that �f�� and �s��;� are the same as the ones in (2.9), (2.17), respe
tively,whi
h were obtained by using the Feynman diagram approa
h in the U(1) 
ase. Therefore,using (3.19), the 4D gauge �eld part of the e�e
tive a
tion 
an be written as�(2)[A�℄ = 12g2 X~k Z d4k(2�)4Aa�(�k;�~k)Aa�(k;~k)�� (k2 � ~k2)g�� + k�k��+ i2X~k;~k0 Z d4k(2�)4Aa�(�k;�~k0)Aa�(k;~k) (3.46)��C2(G)h��hyper�� +4(k2g���k�k�)�G++ � 2~k � ~k0g��(�G+�+�G�+)i�C(r)�hyper�� �{ 19 {



where �hyper�� � �s��;+ + �s��;� + �f�� : (3.47)Then, by de
omposing this e�e
tive a
tion into bulk and brane parts, we rea
h the mainresult of Se
tion 3.2: �(2)[A�℄ = �bulk + �brane (3.48)with�bulk = 12X~k;~k0 Z d4k(2�)4Aa�(�k;�~k0)Aa�(k;~k)�(k2 � ~k2)g�� � k�k����� 1g2 � i�C2(G)� C(r)��hyper(k;~k0)�Æ~k;~k0 ; (3.49)�brane = 12X~k;~k0Z d4k(2�)4Aa�(�k;�~k0)Aa�(k;~k)�k2g���k�k��h�4iC2(G)�lo
al(k;~k;~k0)i(3.50)where �hyper(k;~k0) � �4�dX~p0 Z ddp(2�)d 1(p2 � ~p02)[(p+ k)2 � (~p0 + ~k0)2℄ ; (3.51)�lo
al(k;~k;~k0) � �4�d2 X~p0 Z ddp(2�)d Æ�2~p0;~k0�~k(p2 � (~p0)2)[(p+ k)2 � (~p0 + ~k0)2℄ : (3.52)From the expression of �bulk we see that the bulk 
orre
tion 
omes with the standardbeta fun
tion 
oeÆ
ient9 in 6D whi
h is given by C(r) � C2(G). Note also that, as inthe Abelian 
ase dis
ussed previously, a hypermultiplet does not generate a boundary-lo
alised gauge 
oupling. However, a 6D bulk 
ounterterm 
an be present as we alreadysaw in the Abelian 
ase (2.23), when evaluating �hyper. Unlike the hypermultiplet, a ve
tormultiplet does generate boundary-lo
alised gauge 
ouplings, see eqs. (3.50), (3.52). The
orresponding (4D) 
ounterterm that we dis
uss shortly must then be lo
alised at the �xedpoints.The divergent nature of �hyper of eq. (3.51) was already presented and dis
ussed tosome extent in the Abelian 
ase, Se
tion 2, eq. (2.23). Sin
e �hyper also appears in thebulk 
orre
tion in the 
ase of non-Abelian gauge theories, eq. (3.51), we analyse this infurther detail. From eq. (2.23), let us re
all the following,�hyper(k;~k0) = i�(4�)2(2��)� Z 10 dxJ0hx(1� x)(k2 + ~k02); xk05R5; xk06R6i: (3.53)The exa
t expression of J0 is needed for studying the �nite e�e
ts and the dependen
eof the zero-mode gauge 
oupling on the momentum k2. This expression would also be9Be
ause the number of modes is redu
ed due to orbifolding, the beta fun
tion 
oeÆ
ient is 1=2 timesthat for a torus 
ompa
ti�
ation. { 20 {



needed to study dimensional 
rossover e�e
ts [15℄ of the 
oupling at k2 � 1=R25;6. Sin
e J0is rather 
ompli
ated, we present J0 below, for a somewhat simpler 
ase of k05 = k06 = 0.From eqs. (D.1), (D.20), (D.21), (D.22) and with the following notations
 � x(1� x)k2; a1 � 1R25 ; a2 � 1R26 ; s~n1 � 2�~n1r 
a1 ; 
(n1) � (
+ a1n21 ) 12pa2 ; (3.54)one has, if 0 � 
=a1 < 1:J0[
; 0; 0℄ = �
pa1a2��2� +ln h4� a1 e�
Ei�� Xn12Z ln ���1� e�2� 
(n1)���2 + �3ra1a2 � 2�r 
a2�2 
 � 12pa1a2 Xp�1 �[p+1=2℄(p+1)! ��
a1 �p�[2p+ 1℄ (3.55)with 
E = 0:577216:::. If 
=a1 > 1, thenJ0[
; 0; 0℄ = �
pa1a2��2� +ln h� 
 e
E�1i��Xn12Zln ���1�e�2� 
(n1)���2+4r 
a2 X~n1>0 K1(s~n1)~n1 :(3.56)Here �[x℄ is the Riemann Zeta fun
tion; K1 is the modi�ed Bessel fun
tion, see Appendix Efor de�nitions. The pole stru
ture is the same for both expressions of J0. Regarding the�nite terms, J0 of eq. (3.55) has power-like terms in 
 � k2 but these are suppressed bythe radii/area of the 
ompa
ti�
ation. These terms are the 
ounterpart of the term10 
 ln 
of eq. (3.56) in the 
ase 
=a1 � 1. Note that in the �rst square bra
ket, J0 in (3.56) has apower-like dependen
e on 
 � k2 whereas the last two terms in J0 are exponentially sup-pressed at large 
=a1�k2R25 and (given the symmetry a1$a2) also at large 
=a2�k2R26.The above expressions are important when we dis
uss the running of the e�e
tive gauge
oupling and of the 
oupling of the higher derivative operator, after 
an
elling the diver-gen
e in eq. (3.53).Let us 
onsider some limiting 
ases. If k2�min(1=R25; 1=R26), eqs. (3.53), (3.55) give:�hyper(k; 0)� i�(4�)2��6R5R6k2��2� � ln h�e
E�2R25���(iR6=R5)���4i��ln h4�2e�2���(iR6=R5)��4R26 k2i� (3.57)where we used the Dedekind � fun
tion, see eq. (E.6). This result shows that after theaddition of the higher derivative 
ounterterm whi
h will 
an
el the pole, the hypermultipletonly brings in a logarithmi
 dependen
e with respe
t to the momentum k2, at values ofk2 mu
h smaller than 1=R25;6. Note that this is a low-energy logarithm, originating frombulk 
ontributions! If one evaluated instead �hyper(k2 = 0; 0), an IR mass regulator �2IR10This term (
 ln 
) will be important for the running of the higher derivative operator 
oupling, see later.{ 21 {



(repla
ing k2) would still be required for mathemati
al 
onsisten
y. This would then leadto a troublesome UV-IR mixing of type �2IR=� in (3.57), on whi
h the limits �IR! 0 and�! 0 do not 
ommute. This would simply mean that the UV physi
s does not de
ouplein the low energy limit. This shows, even in the on-shell result for �hyper, that there is aneed for a higher derivative 
ounterterm, for quantum 
onsisten
y. We return to this issuein Se
tion 5.In the 
ase k2 � max(1=R25; 1=R26), eqs. (3.53) and (3.56) give:�hyper(k; 0) � i�(4�)2��6R5R6k2��2� � ln �2k2 � ln �4�e8=3�
E���: (3.58)Finally, the brane 
orre
tion �lo
al of (3.52) also has a divergen
e. For any 6Dmomenta�lo
al(k;~k;~k0)= i32�2 �2�+ln 4��2e�
E�Z 10 dxln hx(1� x)(k2+~k02)+�~k2+�x� 12�~k0�2i�(3.59)whi
h if ~k = ~k0 = 0 simpli�es to:�lo
al�k; 0; 0�= i32�2�2� + ln 4�e2�
E + ln �2k2�; (3.60)where � is the arbitrary (�nite) s
ale introdu
ed by the regularisation s
heme.The poles in �hyper and �lo
al that we identi�ed 
an be 
an
elled by introdu
ing thefollowing 
ounterterms in the a
tion:L
:t= Z d2z d2� � 12h2TrW�26W�+12 4Xi=1 1g2brane;iTrW�W�Æ(2)(z�zi0)�+ h:
: (3.61)Here zi0(i = 1; � � � ; 4) are the �xed points of the T 2=Z2 orbifold 
onsidered. Further, h2 isan additional dimensionless bulk 
oupling while gbrane;i is a dimensionless brane 
ouplingat the �xed point zi0. The introdu
tion of su
h 
ounterterms to 
an
el the poles is done upto an overall �nite, unknown 
oeÆ
ient. As a result new parameters (
ouplings) emerge inthe theory. For small 
ompa
ti�
ation volume (or k2R25;6 � 1), the bulk higher derivativeoperator is suppressed; however, for large radii (or k2R25;6 � 1) it is relevant and importantfor the overall running of the zero-mode gauge 
oupling. The e�e
t of this operator is largelyignored in the literature, both in e�e
tive �eld theory and string theory approa
hes. Therenormalisation and the running of the 
oupling h(k2) will be 
onsidered in the next se
tion.Regarding the 
oupling gbrane;i, after its renormalisation there will be one additionalparameter for the gauge kineti
 term lo
alised at ea
h �xed point. If one 
onsiders su
h
orre
tions in GUT models 
ompa
ti�ed on orbifolds [25℄, brane-lo
alised gauge 
ouplingsrespe
ting a gauge symmetry smaller than that in the bulk may be present. In that 
asethe brane 
ouplings are not universal and 
an a�e
t the gauge 
oupling uni�
ation in su
hmodels [26℄. { 22 {



4. \Running" of the e�e
tive gauge 
oupling as indu
ed by the 6D theoryIn this se
tion we 
onsider the one-loop renormalisation and running of the 
oeÆ
ients ofthe higher derivative operator and of the gauge kineti
 term of the zero-mode gauge �eld.To begin with, we 
onsider the running of the bulk 
oupling h in (3.61) for the zeromode of the gauge �eld. After subtra
ting the divergen
e of the bulk term eq. (3.49)with eqs. (3.57) and (3.58) by a bulk higher derivative 
ounterterm, one has the followingmomentum dependen
e of the renormalised h:k2 � 1R25;6 : 4�h2(k2) � 4�h2tree + h� C2(G) + C(r)i 196�2 ln h�e
E�2R25���(iR6=R5)���4i;k2 � 1R25;6 : 4�h2(k2) � 4�h2tree + h� C2(G) + C(r)i 196�2� ln �2k2 + ln 4�e8=3�
E�: (4.1)After writing ea
h of these equations at two di�erent momentum s
ales (for the same renor-malisation s
ale �) and subtra
ting them, we �nd that above the 
ompa
ti�
ation s
ales thebulk 
oupling of the higher derivative operator runs logarithmi
ally in k2 while below the
ompa
ti�
ation s
ales it does not run. The running of h(k2) above the 
ompa
ti�
ations
ales is a just a bulk e�e
t, little dependent on the details of lo
alised singularities asso
i-ated with the orbifold a
tion11. Note that the higher derivative 
ounterterm in eq. (3.61)\absorbed" all linear dependen
e on k2 in eqs. (3.57) and (3.58), arising from eq. (3.55),(3.56), and this is relevant for the dis
ussion below. For k2R25;6 � 1 the 
oupling h is notsuppressed, and this has impli
ations for the running of the e�e
tive gauge 
oupling of thezero-mode gauge boson above the 
ompa
ti�
ation s
ales.Let us now investigate the running of the e�e
tive gauge 
oupling ge�(k2) whi
h isde�ned as the 
oeÆ
ient of the gauge kineti
 term of zero-mode gauge boson. The treelevel value of the e�e
tive gauge 
oupling has 
ontributions from both bulk and branes,in
luding the bulk higher derivative term. It 
an be read o� from the following gaugekineti
 term: � 12Tr�F��� 1g2tree + 1�h2tree24�F��� (4.2)where 1g2tree � 1�g2 + 4Xi=1 1g2brane;i ; � � 14�2R5R6 : (4.3)Here g2 and g2brane;i are the tree-level gauge 
ouplings in the bulk and at the �xed points,respe
tively. Note that, although the brane lo
alised 
ouplings gbrane;i are new parametersintrodu
ed in the theory, the 
oupling gtree only depends on their overall 
ombinationwith the bulk gauge 
oupling g. Moreover, due to the new parameter htree of the higherderivative 
ounterterm, ultimately, there is a momentum dependent 
ontribution to thee�e
tive gauge 
oupling even at tree level.11See also the dis
ussion in [8℄. { 23 {



After taking into a

ount the radiative 
orre
tions (see (3.49), (3.50)) the zero-modegauge 
oupling ge�(k2) is, at one-loop12:1g2e�(k2) = 1g2tree � k2�h2tree + ihC2(G)� C(r)i 1� �hyper� (k; 0) + 4iC2(G)�lo
al� (k; 0; 0): (4.4)The subs
ript � in the self-energy �lo
al� means that only the �nite part of �lo
al should be
onsidered, be
ause its singularity (the pole 2=�) was 
an
elled by the tree level 
ouplinggtree in eq. (3.61). For the self-energy �hyper� the subs
ript � refers to the �nite part of�hyper after the renormalisation of the 
oeÆ
ient of the higher derivative 
ounterterm(4.1); therefore �hyper� does not in
lude the divergen
e k2=� in �hyper whi
h 
orresponds tothe renormalisation of htree in eq. (4.1). With these 
onsiderations, note that gtree and htreein (4.4) and in the equations to follow denote only the �nite part of tree level 
ouplings.Let us now address the running of ge�(k2) and the relation 
onne
ting it to the tree level
oupling gtree. To begin with, 
onsider �rst the 
ase of k2 � 1=R25;6. To obtain the runningof ge�(k2) for this region one writes (4.4) at two di�erent momentum s
ales q2; k2 � 1=R25;6for the same renormalisation s
ale � and subtra
ts them, then uses eqs. (3.57) and (3.60)to �nd: 4�g2e�(q2) � 4�g2e�(k2) + 14�h � 3C2(G) + C(r)i ln k2q2 ; if q2; k2 � 1R25;6 : (4.5)This is an interesting result: we have obtained the familiar 4D logarithmi
 running ofthe e�e
tive gauge 
oupling with the usual 4D N = 1 beta fun
tion 
oeÆ
ient given byb1 = �3C2(G) + C(r). Note that this running was derived from the full 6D theory, bytaking into a

ount both bulk and boundary loop e�e
ts. This is interesting be
ause partof the above logarithmi
 running 
omes from the bulk13, asso
iated with the massless states.More expli
itly, the logarithmi
 
orre
tion in (4.5) 
ontains a \bulk" part C(r) lnk2 due tothe hypermultiplet, while the ve
tor multiplet provides a \bulk" part �C2(G) lnk2 as wellas a \brane" part �2C2(G) lnk2, whi
h added together give the beta fun
tion in (4.5). Wenote that the running of the e�e
tive 
oupling ge� as shown in eq. (4.5) is una�e
ted bythe higher derivative operators as long as we are in the region k2 � 1=R25;6.The next step in our analysis is to establish a 
onne
tion between the tree level 
ouplinggtree and the gauge 
oupling at low momentum s
ales well below the 
ompa
ti�
ations
ales (k2 � 1=R25;6), after integrating out all massive Kaluza-Klein modes14. Using again12Eq. (4.4) 
an be written in a form whi
h separates massive from massless modes' 
ontributions:1g2e� (k2) = 1g2tree � k2�h2tree � ih �C2(G) +C(r)i 1� �hyperm;� (k; 0)� ih � 3C2(G) + C(r)i2�lo
al� (k; 0; 0)where �hyperm;� � �hyper� �hyper0;0 , with �hyper0;0 the (0,0) mode 
ontribution and we used �hyper0;0 =� = 2�lo
al.On this form we see the emergen
e of 4D N =2 and N =1 beta fun
tions of massive and massless se
tors.13See �hyper of (3.57).14Early studies on this topi
 
an be found in [35℄, but using instead an on-shell approa
h.{ 24 {



eq. (4.4) together with (3.57), (3.60), we have4�g2e�(k2) � 4�g2tree� b24� ln h4�e�
E ���(i u)��4 u (4�2R5R6 �2)i��+ b14� ln �1�2k2 ; k2� 1R25;6 ;with � � 4�2k2R5R6� 4�h2tree + b296�2 ln h�e
E�2R5R6u�1���(iu)���4i�� 1:(4.6)Here u � R6=R5 and �1 = 4�e2�
E . Further b1 = �3C2(G) + C(r) is the N = 1 betafun
tion while b2 = �C2(G) + C(r) is 1/2 of the N = 2 beta fun
tion 
oeÆ
ient on thetorus, with 1/2 to a

ount for the fa
t that the number of modes is redu
ed on T 2=Z2. Aswritten, eq. (4.6) 
onne
ts ge�(k2�1=R25;6) to the tree level 
oupling gtree, after integratingout the massive Kaluza-Klein modes. The e�e
t of these modes is a

ounted for by theterm multiplied by b2 in (4.6), as an overall threshold 
orre
tion. It is important to notefrom (4.6) that the dominant 
ontribution is of logarithmi
 dependen
e on k2 and thisis asso
iated with the massless states only. Any power-like dependen
e of ge�(k2) on themomentum s
ale is suppressed by the 
ompa
ti�
ation volume, � � 1, (i.e. the higherderivative operator is also suppressed.) This is the 
ase after the renormalisation of the
oupling h of the higher derivative gauge kineti
 term, eqs. (3.61) and (4.1).Eq. (4.6) 
an be used to study whether the low energy measurements of the 
ouplings,e.g. ele
troweak s
ale values of the 
ouplings are 
onsistent with a 
ommon value gtree,regarded in this 
ase as the \uni�ed" 
oupling. The DR renormalisation s
ale � is in thispi
ture regarded as the uni�
ation s
ale. Eq. (4.6) is the 
ounterpart of that 
omputed inthe (on-shell) string, in various models [16{18℄ (see also [35℄). As we shall detail later, ourresult in (4.6) is more in agreement with that of the 4D ZN orientifold models of type Istrings [16℄, rather than that of the heteroti
 string [17,18℄.We have so far 
onsidered the behaviour of ge�(k2) at momentum s
ales k2� 1=R25;6and its relation to the tree level 
oupling. At higher momentum s
ales, the higher derivativeoperator be
omes more important and one 
annot negle
t the presen
e of its 
oupling h(k2),eq. (4.1). The regime k2 � 1=R25;6 is that of dimensional 
rossover [15℄ and is the mostdiÆ
ult to investigate te
hni
ally. In this 
ase eqs. (3.57), (3.58) provide a rather poorapproximation when used in eq. (4.4) to �nd ge� . One must use instead the full expressionsof the fun
tions J0, eqs. (3.55) and (3.56), integrated over x as in (3.53). These expressions
onverge even in the 
ase k2 � 1=R25;6 and 
an be used to �nd the running of ge� in thisregime. These expressions are somewhat 
ompli
ated and this prevents an intuitive, simplepi
ture for this regime. In this 
ase a full numeri
al approa
h based on (3.55), (3.56) maybe more suitable.Finally, let us 
onsider the 
ase of even higher momenta, k2 � 1=R25;6. In this 
ase we�nd that the 
oupling h(k2) gives a substantial 
ontribution to the running of the e�e
tivegauge 
oupling. From eq. (4.4) together with eqs. (3.58) and (3.60), we obtain the followingresult:4�g2e�(k2) � 4�g2tree � 4�2k2R5R6� 4�h2tree + b296�2 ln �2�2k2 �� C2(G)2� ln �2�1k2 ; if k2� 1R25;6 (4.7){ 25 {



where �2 = 4�e8=3�
E , �1 = 4�e2�
E are subtra
tion s
heme dependent 
onstants for thedivergen
es of the bulk and brane 
ontributions respe
tively15. The s
ale � is the familiarrenormalisation s
ale in the DR s
heme, at whi
h a \boundary" value of the 
oupling isprovided.Eq. (4.7) des
ribes the running of the e�e
tive gauge 
oupling well above the 
om-pa
ti�
ation s
ales. The last term in eq. (4.7) is due to massless states (brane part only),whi
h 
ontribute to the running. Further, the square bra
ket a

ounts for the 
ontribution
oming from the running 
oeÆ
ient of the higher derivative term. Sin
e the square bra
ketinvolves k2R5R6 whi
h essentially 
ounts the number of ex
ited Kaluza-Klein modes, weobtain a power-like running with respe
t to the momentum s
ale, valid above the 
om-pa
ti�
ation s
ales. Note, however, that the power dependen
e on k2 is 
ontrolled by theparameter h2tree whi
h multiplies it (and is also a�e
ted by the presen
e of ln �2 whi
h is asubtra
tion s
heme dependent 
oeÆ
ient). We therefore need a deeper understanding ofthis 
oeÆ
ient.To this purpose, let us address the origin of the power-like term and explain whatultimately 
ontrols it. To do so we rewrite eq. (4.4) as4�g2e�(k2) = 4�g2tree � 4�h2(k2) (4�2k2R5R6) + b24� Æ � C2(G)2� ln �2�1k2 : (4.8)This equation is valid at all values of k2, large or small relative to 1=R25;6, provided thatother higher dimension operators are negligible. Here Æ is the integral over x as in (3.53)of the part in J0 of either (3.55) or (3.56) whi
h does not 
ontain the �rst square bra
ketin these two equations. If k2 � 1=R25;6 then Æ gives a log running given by the last termin (3.57) while if k2 � 1=R25;6 then Æ � 0. With these values of Æ and with the running ofh(k2) as in (4.1) one re
overs the limiting 
ases of large and small momenta dis
ussed in(4.6) and (4.7).The interpretation of the result in (4.8) is as follows: the 
oeÆ
ient of the power-like term k2R5R6 is ultimately 
ontrolled by the renormalised 
oupling h(k2) of the higherderivative term in the a
tion and by its running. In some works the notion "power running"refers to power-like (threshold) 
orre
tions in the UV 
uto� regulator as opposed to thepower-like dependen
e with respe
t to the momentum s
ale that we obtained here, andthese are not to be 
onfused. Our result above 
lari�es that the power running withrespe
t to the momentum s
ale is 
ontrolled by the one-loop 
orre
ted 
oupling of thehigher derivative gauge kineti
 term in the a
tion.In general, in theories with higher derivative operators additional e�e
ts are present.One should essentially start with the full a
tion in
luding at the tree level the higherderivative gauge kineti
 term, and quantise the theory in its presen
e. This is a ratherdiÆ
ult problem. Further, in the presen
e of the higher derivative operator, the propagatorof the zero-mode gauge boson 
hanges into a sum of two terms: one parti
le-like propagator15Remember that these are in the minimal subtra
tion s
heme, i.e. only the poles in � were 
an
elled bygtree and htree. { 26 {



and one ghost-like propagator, respe
tively16:G(k) = �ig��k2� k2h2 + 1g2� = �ig2g��� 1k2 � 1k2 + h2g2 �: (4.9)From the 
oeÆ
ient of ea
h term, one 
an see that both parti
le and ghost have the same
oupling g to matter �elds. Although the ghost pole is lo
ated around the 6D fundamentals
ale, the ghost state may give an additional non-vanishing threshold 
orre
tion to thegauge 
oupling. Further, there are many other 
ompli
ations, spe
i�
 to higher derivativetheories, su
h as unitarity violation, non-lo
ality, et
, see [27℄- [33℄, whi
h made the studyof these theories less popular. Another diÆ
ulty that arises is that one must also take intoa

ount the e�e
t of brane-lo
alised terms on the spe
trum of the Kaluza-Klein modes [34℄,not 
onsidered in this paper. Therefore, a detailed investigation of models with higherderivative operators is far more 
ompli
ated and beyond the purpose of the present work.To 
on
lude, the higher derivative operator must be in
luded to ensure the quantum
onsisten
y of the model with extra dimensions, and therefore plays an important role inthe running of the e�e
tive gauge 
oupling. After the renormalisation of its 
oupling hthere is only a logarithmi
 dependen
e on the momentum s
ale of the 4D e�e
tive gauge
oupling ge�(k2 � 1=R25;6). At a higher momentum s
ale power-like terms in k2R5R6 < 1are present. At even higher momentum s
ales k2 � 1=R25;6, the higher derivative operatoris important and its 
oupling h(k2) has a logarithmi
 running with respe
t to k2. In this
ase the e�e
tive gauge 
oupling has, after renormalisation of h, a power-like dependen
eon the momentum s
ale. The 
oeÆ
ient of this power-like term in momentum is equalto the running 
oupling of the higher derivative operator. These �ndings provide a 
learexplanation of the power-like running (with respe
t to the momentum s
ale) of the gauge
ouplings in models with extra dimensions.5. Higher derivative operators in other s
hemes and in string theoryIt is interesting to investigate how higher derivative 
ounterterms emerge in other regu-larisation s
hemes and in string theory as well. This is important be
ause their role inensuring the quantum 
onsisten
y of the models was largely ignored in the literature. Tothis purpose, we 
onsider the e�e
ts of the massive Kaluza-Klein modes in a regularisationwith a momentum 
uto�, i.e. the proper-time 
uto� regularisation. Note that a proper-time 
uto� is less suitable as a regulator, sin
e it breaks 4D Lorentz invarian
e and Wardidentities. Nevertheless, its use provides a more intuitive pi
ture and will help our physi
alunderstanding of the important role of higher derivative operators.Let us introdu
e a 
uto� regulator 1=�2 in �hyper of (3.53) and 
onsider this equationfor the massive mode 
ontributions only, denoted �hyperm , i.e. we ex
lude the (0; 0) mode17.16See Se
tion 4 in [6℄ for a similar dis
ussion for the 
ase of a massive s
alar �eld.17The (0; 0) mode 
ombines with the 
ontribution of �lo
al to give 4D N =1 beta fun
tion, see footnote [12℄{ 27 {



One has �hyperm (k2; 0) = i�2�(2�)4 Z 10 dx Xn1;22Z0 Z 11=�2 dtt e�� t [k2x(1�x)+n21=R25+n22=R26℄ (5.1)= i�(4�)2��2R5R6 � ln h4�e�
E j�(i u)j4u ��2R5R6�i��6 k2R5R6 ln h(4�)�1e
E�2R5R6u�1���(iu)���4i�whi
h is valid only if k2�1=R25;6��2. The prime on the double sum marks the absen
e ofthe (0; 0) mode. The ln � term in the square bra
ket is the 
ounterpart of the �2=� pole inthe DR s
heme18, �rst term in (5.2). The k2 ln � term 
orresponds the k2=� term in the DRs
heme, asso
iated with higher derivative operator. These divergen
es are 
an
elled by thebulk kineti
 term and the higher derivative operator, respe
tively. In addition we obtain aquadrati
 divergen
e in the regulator � (5.1) whi
h 
annot appear in the DR s
heme.To see in more detail the need for a higher derivative operator in this regularisation,remember that the momentum k2 may be regarded as an IR regulator, to ensure the�niteness (at t ! 1) of �hyper in (5.1) when the massless mode (n1; n2) = (0; 0) isin
luded. One noti
es that in the last term of (5.1) the limits k2 ! 0 and �2 !1 do not
ommute [14℄: hk2 ! 0;�2 !1i 6= 0: (5.3)We therefore have a rather troublesome UV-IR mixing term (UV divergent, IR �nite)meaning that the two se
tors of the theory are not de
oupled at the quantum level ! As were
all from the 
omment following (3.57), a similar UV-IR mixing in the DR s
heme was
an
elled by the renormalisation of a higher derivative 
ounterterm. In a similar way, therenormalisation of this operator 
an
els the log divergen
e in the last term of (5.1) so that itenables the de
oupling of the IR from the UV regime. Finally, the logarithmi
 and quadrati
divergen
es in the �rst two terms of (5.1) have to be subtra
ted by the gauge kineti

ounterterm at a renormalisation point. However, there remains a 
orre
tion �2R5R6 witharbitrary 
oeÆ
ient19, whi
h may eventually be identi�ed from a more fundamental theory,e.g. from the �eld theory limit of the heteroti
 string [14,36℄.What does string theory say about these problems or about the need for higher deriva-tive operators at the quantum level? To begin with, it is interesting to observe that in 4D18In the DR s
heme, the massive se
tor (this ex
ludes the (0,0) mode) gives for k2 � 1=R25;6 (eq. (3.57))�hyperm (k2; 0) = i�2���(2�)4�� Z 10 dx Xn1;22Z0 Z 10 dtt1��=2 e�� t [k2x(1�x)+n21=R25+n22=R26℄= i�(4�)2��2� �ln h4�e�
E j�(i u)j4 u �4�2�2R5R6�i+�6 k2R5R6��2� � ln h�e
E�2R5R6u�1���(iR6=R5)���4i��: (5.2)19One must not forget that � is a
tually a regulator and 100� � is equally good a 
hoi
e!{ 28 {



ZN orientifold models of type I strings [16℄, the one loop threshold 
orre
tions asso
iatedwith the massive N = 2 se
tor are exa
tly of the type in (4.6) after the tadpole 
an
el-lation 
ondition. Note that this 
ondition \removes" any power-like dependen
e on thestring s
ale. This similarity of the results is interesting, although there does not seem toexist a 
lear �eld theoreti
 understanding of this tadpole 
an
ellation 
ondition and whatthat means for the higher derivative operator that we found. This also raises intriguingissues su
h as whether the higher derivative 
ounterterm that emerged and is relevant atlarge radii may be related to the non-perturbative e�e
ts of D-branes.Next, let us 
onsider the 
ase of the heteroti
 string toroidal orbifolds T 6=ZN , N even,with \�xed" two-torus under the orbifold a
tion. This brings one-loop string threshold
orre
tions due to the N = 2 massive se
tor of Kaluza-Klein and winding modes [17, 18℄.In the limit of large radii (in units �0) non-perturbative e�e
ts (world-sheet instantone�e
ts) are suppressed to give in the �eld theory regime:�hyper(k2 = 0; 0) � � ln h4�e�
E j�(iu)j4u T2i+ �3 T2 + �IR ln �0; (5.4)where T2 = R5R6=�0; u is the usual 
omplex stru
ture (assuming an orthogonal �xed two-torus). This result is similar to that in (5.1) for k2 = 0, as dis
ussed in detail in [14,36℄.Although the string provides only an on-shell result (k2 = 0), the one-loop stringnevertheless requires an infrared regulator denoted �IR, whi
h plays a role similar to asmall momentum k2 ! 0. The last term in (5.4) vanishes when the infrared regulator instring is removed �IR ! 0, assuming �0 non-zero. However, �0�1 � M2string is the strings
ale, whi
h is the 
ounterpart to our UV momentum 
uto� regulator �2 [14, 36℄. Oneimmediately observes from the last term in (5.4) that the limit of removing the infraredregulator �IR ! 0 and the limit of largeMstring or �0 ! 0 whi
h is the e�e
tive �eld theoryregime, do not 
ommute: h�IR ! 0; �0! 0i 6= 0: (5.5)This is the same problem we en
ountered in the proper-time 
uto� regularisation s
heme,if we regard �IR as k2 ! 0 and Mstring ! 1 as the 
ounterpart of �2. Therefore there isagain a UV-IR mixing and a non-de
oupling of the high s
ale physi
s i.e. of massive modesfrom the 4D low energy limit [14℄, also en
ountered in the DR s
heme (see 
omment after(3.57)). The reason why su
h e�e
ts are usually not dis
ussed in string theory is ultimatelyrelated to the underlying on-shell approa
h, whi
h \obs
ures" the need for higher derivative
ounterterms. The last term in (5.4) is then a \remnant" of su
h e�e
ts, and a reminder ofthis issue in the heteroti
 string. This non-de
oupling of massive modes in the low-energy(4D) raises questions on the 
onsisten
y of attempts to mat
h string uni�
ation s
ale (inthe presen
e of su
h thresholds) with MSSM-like uni�
ation s
enarios. This underlines theneed for a study of the higher derivative operators in string theory20.20For more details on this matter see [14℄ and Se
tion 3 in [11℄.{ 29 {



6. Con
lusionsIn this paper we performed a general analysis of the one-loop 
orre
tions to the self-energy of gauge bosons in the framework of 6D N = 1 supersymmetri
 gauge theorieson orbifolds. We �rst 
onsidered an Abelian gauge theory using the Feynman diagramapproa
h in the 
omponent �eld formalism. The analysis was then extended to the 
aseof non-Abelian gauge theories on orbifolds. By employing the ba
kground �eld methodin higher dimensions, we established the general setup for the one-loop e�e
tive a
tion forgauge bosons and then applied it to the 
ase of the orbifold T 2=Z2. As a 
onsequen
e, wehave shown that our 
omponent �eld approa
h is 
onsistent with and 
omplementary tothe super�eld 
al
ulation [9, 10℄. Moreover, the additional bene�t of our 
omponent �eldapproa
h is that our �ndings 
an be easily used in a non-supersymmetri
 setup.In the 
ase of Abelian theories on T 2=Z2 we 
omputed the divergent and �nite parts ofthe one-loop 
orre
tion to the va
uum polarisation tensor. For the 
ase of a bulk fermion itwas shown that only bulk 
orre
tions are present. The bulk 
orre
tions 
ontained a diver-gen
e whi
h had to be 
an
elled by the introdu
tion of a 6D higher derivative 
ounterterm.The loop 
orre
tions of a bulk s
alar to the gauge boson self-energy were also 
omputedto show that there is a bulk (6D) higher derivative as well as brane lo
alised (4D) gaugekineti
 
ounterterms. The former is absent in the limit when the two 
ompa
t dimensions
ollapse onto ea
h other (similar for the bulk fermion), in agreement with the result thatthere is no higher derivative 
ounterterm from the gauge intera
tions at one loop in 5D21.Combining the bulk s
alar and fermion 
ontributions, we showed that a hypermultipletonly gives a bulk 
orre
tion whi
h requires a higher derivative 
ounterterm, in agreementwith other re
ent studies [10℄.The above one-loop results were generalised to the 
ase of non-Abelian gauge theorieson the T 2=Z2 orbifold and many of our results are expe
ted to apply to other 6D orbifoldsas well. This generalisation was done by �rst 
onstru
ting the e�e
tive a
tion with aba
kground �eld method in higher dimensions, whi
h was then applied to 6D orbifolds. Tothis purpose, we introdu
ed fun
tional di�erentiations 
ompatible with the orbifold a
tionson the �elds. We found that hypermultiplets provide only bulk 
orre
tions, while ve
tormultiplets bring in both bulk and boundary-lo
alised 
orre
tions. The divergen
e of thebulk 
orre
tion is 
an
elled by a 6D higher derivative 
ounterterm while the divergen
e ofthe brane 
orre
tion requires 4D boundary-lo
alised gauge kineti
 
ounterterms. Therefore,after subtra
tion of divergen
es, there are unknown new parameters (
ouplings) 
omingfrom these operators in the theory. The bulk 
orre
tion has a non-perturbative originsin
e we re-summed in�nitely many individual (divergent) loop 
ontributions of the bulkmodes. At the te
hni
al level this is related, in part, to a singularity (simple pole) of theHurwitz-Riemann Zeta fun
tion in the re-summed 
orre
tion. We also 
omputed the �nitepart of the bulk 
orre
tion whi
h gives the momentum dependen
e of the self energy of thegauge boson. After renormalisation of the higher derivative operator, the �nite part of thebulk 
orre
tion has, at k2 � 1=R25;6, a familiar, logarithmi
 dependen
e on k2 due to themassless states only. There are in addition power-like terms (in k2R5R6 � 1), strongly21Lo
alised superpotential intera
tions do bring in one-loop higher derivative 
ounterterms in 5D [5,6℄.{ 30 {



suppressed in this regime, and due to integrated massive modes. At higher s
ales the �nitepart 
ontains power-like and exponentially suppressed terms in k2R5R6.We then studied the behaviour of the e�e
tive 4D gauge 
oupling ge�(k2), whi
h wasde�ned as the 
oupling of the zero-mode gauge boson. After renormalisation of the higherderivative operator 
oupling, we dis
ussed in detail the running of the e�e
tive gauge
oupling with respe
t to the momentum s
ale. In the limit of momenta mu
h smaller thanthe 
ompa
ti�
ation s
ales, the e�e
tive 
oupling runs logarithmi
ally with the 4D N = 1beta fun
tion and this low-s
ale running is indu
ed by both bulk and brane terms.We also analysed in detail the threshold 
orre
tions to the low energy gauge 
ouplings,due to massive Kaluza Klein modes with N = 2 beta fun
tion 
oeÆ
ient. The relationof the low energy e�e
tive 
oupling to the tree level 
oupling shows that there is onlya logarithmi
 dependen
e of ge�(k2) on the momentum s
ale, while power-like terms arestrongly suppressed in the regime k2R5R6 � 1. This �nding has potentially interesting
onsequen
es for phenomenology, su
h as the uni�
ation of the gauge 
ouplings. This isthe result after the renormalisation of the higher derivative 
oupling, whi
h below 
om-pa
ti�
ation s
ale is essentially 
onstant (no running). It was observed that this result wasin agreement with that of the 4D ZN orientifolds of the type I string, where no power-liketerms are present in the one-loop threshold 
orre
tion to the low-energy 
oupling.At higher momentum s
ales, the higher derivative gauge kineti
 term is more impor-tant. After renormalisation, its 
oupling has a logarithmi
 running with respe
t to themomentum s
ale. At k2 � 1=R25;6 we provided te
hni
al formulae whi
h allow the studyof the dimensional 
ross-over regime of the e�e
tive gauge 
oupling. At larger momen-tum s
ales (k2 � 1=R25;6), the initially negligible 
ontribution of the higher derivative termto the 
oupling ge� be
omes signi�
ant and starts to 
hange the running of the e�e
tive
oupling with respe
t to momentum s
ale from the logarithmi
 one to the power-like one.This behaviour was studied in detail. At all momentum s
ales the 
oeÆ
ient of the power-like term is equal to the running 
oupling of the higher derivative gauge kineti
 term.This is an interesting �nding whi
h 
lari�es the physi
al meaning of power-like running (inmomentum) in models with extra dimensions.Finally, the importan
e of the higher derivative operator was emphasised by showingthe need for them as 
ounterterms in other regularisation s
hemes and in (heteroti
) stringtheory. In parti
ular, it was shown that in these 
ases there is a UV-IR mixing (UVdivergent, IR �nite) at the quantum level, due to ignoring the quantum role of the higherderivative operator. In the (on-shell) heteroti
 string this 
an be seen from the fa
t thatthe �eld theory limit of the one-loop 
orre
tion from massive states does not 
ommutewith the infrared regularisation of the one-loop string. This underlines the need for theinvestigation of the role of higher derivative operators in string theory too.A
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7. AppendixA Notations and ConventionsThe metri
 has the signature gMN = diag(+ � � � ��); M;N = 0; 1; 2; 3; 5; 6 are six-dimensional indi
es and �; � = 0; 1; 2; 3 are four-dimensional ones. The Cli�ord algebra insix dimensions is 
hara
terised byf�M ;�Ng = 2gMN ; (�M)T = �C�MC�1; CT = C; Cy = C�1: (A.1)An expli
it representation for the 8� 8 gamma-matri
es is�� =  0 
�
� 0 ! ; �5 =  0 
5
5 0 ! ; �6 =  0 �1414 0 ! (A.2)where 
� and 
5 are the four-dimensional gamma matri
es, with
5 = �
0
1
2
3 = �i 12 00 �12! : (A.3)In this basis, the six-dimensional 
hirality operator is diagonal:�7 = �0�1�2�3�5�6 =  �14 00 14 ! : (A.4)The 
harge 
onjugation is then C =  0 �C5C5 0 ! (A.5)where C5 is the �ve-dimensional 
harge 
onjugation.After imposing the 
hirality 
onstraint in six dimensions, the gamma matri
es a
tingon right-handed or left-handed 6D spinors are redu
ed to the following 4 � 4 matri
es,respe
tively, 
M � (
�; 
5;�14) and �
M � (
�; 
5;14): (A.6)In �ve dimensions, the gamma matri
es �a(a = 0; 1; 2; 3; 5) are given by�� = 
�; �5 = 
5 (A.7)satisfying the following relations:(�a)T = �C5�aC�15 ; CT5 = �C5; Cy5 = C�15 : (A.8)We note some useful formulae for the tra
es, used in the textTr[
�
� ℄ = 4g�� ;Tr[
�
�
�
�℄ = 4(g��g�� � g��g�� + g��g��);Tr[
�
�
5
�
�℄ = �4i����� ;Tr[
�
�
�℄ = Tr[
�
�
5℄ = Tr[
�
�
�
5℄ = 0: (A.9){ 32 {



In the text we also used the following relations on Casimir operators for a representationr (denoted G (N) in the 
ase of the adjoint (fundamental) representation) of the group G:tr(taGtbG) = C2(G)Æab; tr(tar tbr) = C(r)Æab: (A.10)with C2(G) = C(G) = N , C(N) = 1=2 and C2(N) = (N2 � 1)=2N , in the 
ase of SU(N).B Propagators of bulk �elds on orbifoldsWe present in the following the propagators on the T 2=Z2 orbifold used in the text. Onthe orbifold T 2=Z2, the positions z � (x5; x6) in the extra dimensions are identi�ed byz !�z. For a bulk fermion, we impose the boundary 
onditions asP (x; z) � i�f
5 (x;�z) =  (x; z); (x; z) =  (x; z+ 2�R5) =  (x; z+ i2�R6) (B.1)with �f = �1. Then, the fermion on the orbifold is written in terms of a fermion on T 2 as (x; z) = 12(1 + P )�(x; z)= 12(�(x; z) + i�f
5�(x;�z)): (B.2)By using the fermion propagator on T 2 given byD(x; z; x0; z0) � h�(x; z)�(x0; z0)i ! ~D(p; ~p; ~p0) � iÆ~p;~p0p=+ 
5p5 + p6 ; (B.3)we �nd the fermion propagator on the T 2=Z2 orbifold asD�f (x; z; x0; z0) � h (x; z) (x0; z0)i! ~D�f (p; ~p; ~p0) � i2 � Æ~p;~p0p=+ 
5p5 � p6 � �f Æ~p;�~p0p= + 
5p5 � p6 i
5� : (B.4)Here � depends on the 6D 
hirality. Now we 
onsider a bulk s
alar �eld satisfying theboundary 
onditions on the orbifold asP�(x; z) � �s�(x;�z) = �(x; z);�(x; z) = �(x; z + 2�R5) = �(x; z + i2�R6) (B.5)with �s = �1. Similarly to the fermion 
ase, we 
an write down the s
alar on the orbifoldin terms of a s
alar on the 
overing spa
e as�(x; z) = 12(1 + P )'(x; z)= 12('(x; z) + �s'(x;�z)): (B.6)Then, we obtain the s
alar �eld propagator on the orbifold asG�s(x; z; x0; z0) � h�(x; z)�(x0; z0)i ! ~G�s(p; ~p; ~p0) � i2 Æ~p;~p0 + �sÆ~p;�~p0p2 � p25 � p26 : (B.7){ 33 {



C Details of the one-loop va
uum polarisation to U(1) gauge bosonsWe dis
uss in the following the detailed derivation of the one-loop va
uum polarisation ofU(1) gauge bosons due to the fermioni
 and bosoni
 
ontributions.C.1 A bulk fermion 
ontributionAfter introdu
ing a Feynman parameter and shifting the integration momentum, we obtainthe fermioni
 
orre
tion (2.9) as�f�� = �2g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2n2p�p� � 2x(1� x)k�k�+g�� [�p2 + x(1� x)k2 + ~p0 � (~p0 + ~k0)℄o (C.1)with � � �x(1� x)(k2 � ~k02) + (~p0 + x~k0)2: (C.2)After re-writing the terms proportional to g�� as�p2 + x(1� x)k2 + ~p0 � (~p0 + ~k0) = �(p2 ��)+ 2x(1� x)(k2 � ~k02)+(1� 2x)~k0 � (~p0 + x~k0); (C.3)the 
orre
tion be
omes�f�� = �2g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d�� 2p�p�(p2 ��)2 � g��p2 ���+ 1(p2 ��)2�2x(1� x)[(k2 � ~k02)g�� � k�k� ℄ + (1� 2x)~k0 � (~p0 + x~k0)g����:(C.4)By using Z ddp(2�)d� 2p�p�(p2 ��)2 � g��p2 ��� = 0;we end up with the result�f�� = �2g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2��2x(1� x)[(k2 � ~k02)g�� � k�k� ℄ + (1� 2x)~k0 � (~p0 + x~k0)g���: (C.5)used in the text, eq. (2.9). { 34 {



C.2 A bulk s
alar 
ontributionAfter using a Feynman parameter and a shift of integration momentum, the bosoni
 bulk
ontribution (2.17) is given by�bulk�� � �12g2Æ~k;~k0�4�dX~p0 Z ddp(2�)d 1(p2 ��)2n� 4p�p� � (1� 2x)2k�k�+2g�� [p2 + (1� x)2k2 � (~p0 + ~k0)2℄o: (C.6)Rewriting the terms proportional to g�� asp2 + (1� x)2k2 � (~p0 + ~k0)2 = (p2 ��) + (1� 3x+ 2x2)(k2 � ~k02)+2(x� 1)~k0(~p0 + x~k0); (C.7)the bulk 
orre
tion be
omes�bulk�� = �12g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d� � 2� 2p�p�(p2 ��)2 � g��p2 ���+ 1(p2 ��)2�2(1� 3x+ 2x2)(k2 � ~k02)g�� � (1� 2x)2k�k�+4(x� 1)~k0 � (~p0 + x~k0)g����: (C.8)Then, after 4D momentum integration with eq. (C.5), the �rst two terms 
an
el. Nowobserve that (1� 2x)(k2 � ~k02)(p2 ��)2 = � ��x� 1p2 ���+ 2~k0 � (~p0 + x~k0)(p2 ��)2 :Then from the x-integrationZ 10 dx ��x� 1p2 ��� = 1p2 � (~p0 + ~k0)2 � 1p2 � ~p02 ;we note that the surfa
e term for the Feynman parameter vanishes after the Kaluza-Kleinsummation with the dis
rete shift in ~p0. Therefore, we obtain the 
orre
tion as�bulk�� = �12g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2��(1� 2x)2[(k2 � ~k02)g�� � k�k� ℄ + 2(2x� 1)~k0(~p0 + x~k0)g���: (C.9)used in the text, eq. (2.18). { 35 {



D Results and evaluation of series J0;1 for 6D orbifoldsWe evaluate (with 
 � 0, a1;2 > 0, 0 � 
1;2 < 1):Jv[
; 
1; 
2℄� �[�=2℄ Xn1;n22Z(n1 + 
1)vh�[
+ a1(n1 + 
1)2 + a2(n2 + 
2)2℄i��=2= Xn1;n22Z(n1 + 
1)vZ 10 dtt1��=2 e�� t [
+a1(n1+
1)2+a2(n2+
2)2℄; v=0; 1:::; (D.1)This expression was used in the text for v = 0 and v = 1 in eqs. (2.10), (2.11), (2.12), (2.22),(2.23), (3.51). In these eqs we assumed ai = 1=R2i+4, i = 1; 2, 
1 = xR5k05, 
2 = xR6k06 and
 = x(1�x)(k2+~k02) in Eu
lidean metri
. Sin
e we 
an always shift 
i by an integer, onlytheir fra
tional part will enter the �nal result.The �nal value of J0 was given in [6℄ but in the text we also need to evaluate J1however. Sin
e the proof is similar, and to be general, we present the generi
 steps toevaluate Jv. The 
ounterpart of Jv with a fa
tor (n2 + 
2)v in front of the integral isobtained from the repla
ements 
1$ 
2 and a1$a2. Most important for us is to identifythe poles of Jv , (to �nd the 
ounterterms) but we also evaluate the �nite part whi
h requireus 
ompute the O(�) term in the double sum in the �rst line in (D.1). Notation used:
(n1) � pz(n1)pa2 � i 
2; z(n1) � 
+ a1(n1 + 
1)2; u �pa1=a2 (D.2)Keeping the sum over n1 �xed, we re-sum (see (E.4)) over n2, so thatXn1;22Ze��t [a2(n2+
2)2+a1(n1+
1)2℄ = Xn22Ze�� t [a2(n2+
2)2+a1
21℄ + 0Xn12ZXn22Ze�� t [a2(n2+
2)2+a1(n1+
1)2℄= Xn22Z e�� t [a2(n2+
2)2+a1
21℄ + 1pt a2 0Xn12Z e��t a1 (n1+
1)2+ 1pt a2 0Xn12Z 0X~n22Z e��~n22t a2 ��t a1 (n1+
1)2+2�i~n2
2 (D.3)The �rst term has n1=0, the last two have n1 6=0. ThenJv = K(v)1 + K(v)2 + K(v)3 (D.4)K(v)i , are obtained by integrating term-wise (D.3) with appropriate 
oeÆ
ients and extran1 dependen
e, see eqs. (D.5), (D.6), (D.18) below. Their evaluation follows:- Cal
ulation of K(v)1 :K(v)1 � 
v1Xn22ZZ 10 dtt1��=2 e�� t [a2(n2+
2)2+a1
21℄��
t = �
v1 ln ���2 sin(�i
(0))���2 (D.5){ 36 {



whi
h was 
omputed by �rst performing a re-summation (E.4) over n2, and then used theintegral representation (E.1) of the Bessel fun
tion K 12 its expression (E.2), and (D.2).- Cal
ulation of K(v)2 :Here we distinguish two 
ases: if 0 < 
=a1 < 1 one has:K(v)2 � 1pa2 0Xn12Z(n1 + 
1)v Z 10 dtt3=2��=2 e��t a1 (n1+
1)2��t 
= � 12� �2pa2 �[�1=2 + �=2℄ 0Xn12Z(n1 + 
1)vh
+ a1(n1 + 
1)2i 12� �2= (�a1) 12� �2pa2 Xk�0 ��
a1 �k�[k�1=2+�=2℄k! h�[2k�q; 1+
1℄+(�1)v�[2k�q; 1�
1℄i����q=v+1��(D.6)where, in the se
ond line above we used the binomial expansion[a(n+ 
)2 + q℄�s = a�sXk�0 �[k + s℄k ! �[s℄ ��qa �k[(n+ 
)2℄�s�k (D.7)We employed the Hurwitz Zeta fun
tion, �[z; a℄ = Pn�0(a + n)�z , a 6= 0;�1;�2; � � � forRe(z)> 1. One has �[z; 1℄ = �[z℄ where �[z℄ is the Riemann zeta fun
tion. Hurwitz zeta-fun
tion has one singularity (simple pole) at z = 1. Therefore, in the last line in (D.6),under the sum, a singularity in Zeta fun
tions is present for those k with 2k � v � 1 = 1.When present, this singularity is taken 
are of by the presen
e of � in the argument of Zetafun
tions. The presen
e of su
h singularity depends on the values of the parameter v. Wetherefore distinguish below two situations:(i) v = �2; 0; 2; 4; 6; 8; :::: when su
h a singularity is present in the term with k = v=2 + 1.(ii) when v is di�erent from these values.In 
ase (ii) the result is already that given by (D.6) where one (is allowed to) sets � = 0sin
e the series does not develop any singularity and 
onverges rapidly under our initialassumption for the ratio 0 � 
=a1 < 1. For 
ase (i), when a singularity develops, we isolatethe 
orresponding term in the series from the rest, by using�[1 + �; 1� 
1℄ = 1� �  (1� 
1) + O(�)�[v + 1=2 + �=2℄ = �[v + 1=2℄ �1 + (�=2) (v+ 1=2)�+ O(�2)x� = 1+ � ln x+ O(�) (D.8)with  (z) = (d=dz) ln�[z℄ the Digamma fun
tion. In the remaining terms in the series weare allowed to take �! 0. We �nd that for v = �2; 0; 2; 4; 6; � � �{ 37 {



K(v)2 =p�uXk�0 �[k�1=2℄k! ��
a1 �kh�[2k�v�1; 1+
1℄+�[2k�v�1; 1�
1℄i����k 6=v=2+1 (D.9)�p� u �[v=2+1=2℄(v=2+1)! ��
a1 �v=2+1��2� + ln h�a1e� (v=2+1=2)+ (
1)+ (�
1)i�; u �pa1=a2where the series 
onverges qui
kly if j
=a1j < 1, whi
h justi�es our (stronger) initial as-sumption 0 � 
=a1 < 1. This 
on
ludes the dis
ussion for 
ase (i).Repla
ing now v = 0; 1; 2 in the above result, one obtains the appropriate expressionsfor K(0), K(1) and K(2), that we need for our purposes. One hasK(0)2 = � 
pa1a2��2� + ln h4� a1 e
E+ (
1)+ (�
1)��+ 2� u�16 + 
21�+p� uXp�1 �[p+1=2℄(p+ 1)! ��
a1 �p+1��[2p+1; 1+
1℄+�[2p+1; 1�
1℄�; u � �a1a2� 12 (D.10)and K(1)2 = p� uXp�0 �[p+ 3=2℄(p+ 2)! ��
a1 �p+2��[2p+ 2; 1+ 
1℄� �[2p+ 2; 1� 
1℄�+ 2� u 
1h13 (1 + 2
21) + 
a1 i; u �pa1=a2 (D.11)FinallyK(2)2 =�u h�130 +
21 + 
41i+ � 
pa1a2 h16+
21i� � 
24a1pa1a2��2� +ln h4�a1 e
E�2+ (
1)+ (�
1)i�+ p� uXp>0 �[p+ 3=2℄(p+ 2)! ��
a1 �p+2��[2p+ 1; 1 + 
1℄ + �[2p+ 1; 1� 
1℄�; (D.12)In the remaining 
ase 1 � 
=a1 we examine separately the 
ases v = 0; 1; 2. One shows:K(0)2 � 0Xn12Z 1pa2 Z 10 dtt3=2��=2 e��ta1(n1+
1)2�� t 
 (D.13)= �
pa1a2h�2� +ln(� 
 e
E�1)i+4� 
a2� 12 X~n1>0 
os(2�~n1
1)~n1 K1�2�~n1r 
a1�+ 2�pa2 (
+ a1
21) 12This expression was obtained by �rstly adding and subtra
ting a zero mode, whi
h enabledus to then re-sum (see (E.4)) the series over n1 2 Z. We then used the integral represen-tation of the modi�ed Bessel fun
tions K1 (E.1). The pole present is that of the initial{ 38 {



\missing" zero mode. The presen
e of the Bessel fun
tion K1[z℄ whi
h is exponentiallysuppressed (E.2) ensures that the result above 
onverges rapidly in this 
ase too.One also has, for v = 1 (again 1 � 
=a1):K(1)2 � 1pa1 0Xn12Z(n1 + 
1) Z 10 dtt3=2��=2 e��ta1(n1+
1)2��t 
 (D.14)= � 12a1� 1pa2 ��
1 0Xn12ZZ 10 dtt5=2��=2 e��ta1(n1+
1)2�� t 
= � 12a1� 1pa2 ��
1� � �2
22pa1h�2� + ln �� 
 e
E�3=2�i+ 4 
pa1 X~n1>0 
os(2�~n1
1)~n21 K2(s~n1)� 4�23 (
+ a1
21) 32�= 4
pa1a2 X~n1>0 sin(2�~n1
1)~n1 K2(s~n1)+ 2�
1pa2 (
+ a1
1) 12 ; s~n1�2�~n1p
=a1 (D.15)where the series 
onverges rapidly, due to exponential suppression of the Bessel fun
tionK2. To evaluate the integral over t with denominator t5=2��=2 one uses steps identi
al tothose for K(0)2 with the only di�eren
e that we en
ountered an integral representation ofK2 rather than K1.Finally, for the remaining 
ase v = 2 (1 � 
=a1):K(2)2 � 1pa1 0Xn12Z(n1 + 
1)2 Z 10 dtt3=2��=2 e��ta1(n1+
1)2�� t 
 (D.16)= � 1� 1pa2 ��a1 0Xn12ZZ 10 dtt5=2��=2 e��ta1(n1+
1)2�� t 
 = � 1� 1pa2 ��a1��4�23 (
+ a1
21) 32� �2
22pa1 h�2� + ln �� 
 e
E� 32 �i � 4�23 (
+ a1
21) 32 + 4
pa1 X~n1>0 
os(2�~n1
1)~n21 K2(s~n1)�= �� 
24a1pa1a2h�2� +ln �� 
 e
E� 32�i� 2
�pa1a2 X~n1>0
os(2�~n1
1)~n21 h3K2(s~n1)+s~n1K1(s~n1)i+ 2�
21pa2 (
+ a1
21) 12 ; s~n1 � 2�~n1p
=a1; 
=a1 � 1: (D.17)with intermediate steps similar to those for K(1)2 .- Cal
ulation of K(v)3 :Finally, we evaluate the remaining: { 39 {



K(v)3 � 1pa2 0Xn12Z 0X~n22Z(n1 + 
1)v Z 10 dtt3=2��=2 e��~n22t a2 ��t a1 (n1+
1)2+2�i~n2 
2�� t 
 (D.18)= 1pa2 0Xn12Z X~n2>0(n1 + 
1)v 1~n2 e�2�~n2 
(n1) + 
:
:= � 0Xn12Z(n1 + 
1)v ln ���1� e�2�
(n1)���2= � Xn12Z(n1 + 
1)v ln ���1� e�2�
(n1)���2 � 2�
v1pa2 (
+ a1
21) 12 + 
v1 ln ���2 sin(�i
(0))���2(D.19)using the notations in eq. (D.2). In the last line we re-wrote the result in a form whi
hmakes expli
it the 
an
ellations whi
h o

ur in the sum of Jv = K(v)1 +K(v)2 + K(v)3 .The steps in the 
al
ulation of K(v)3 are similar to those so far: we used the integralrepresentation of the Bessel fun
tion K1=2 eq. (E.1), then its expli
it expression (E.2) andthen the series expansion of the logarithm. The result for K(v)3 is valid for real v, not onlyfor our 
ases of interest v = 0; 1; 2, regardless of the value 
=a1 (larger/smaller than 1).We 
an now add the intermediate eqs to obtain J0;1;2 using eq. (D.4). J0 quoted belowin (D.20) and (D.21) is found from eqs. (D.5), (D.10), (D.13), (D.19). Further, J1 quotedin (D.23) and (D.24) is found using eqs. (D.5), (D.11),(D.15), (D.19). Finally J2 quotedin (D.25) and (D.26) is obtained by using (D.5), (D.12), (D.17), (D.19). In 
on
lusion wehave the following:Results: If 0 � 
=a1 < 1 and with notations (D.2), 
(n1) � pz(n1)=pa2 � i 
2; andz(n1) � 
+a1(n1+
1)2, u �pa1=a2, s~n1�2�~n1p
=a1, 
E = 0:577216::: we obtain (in thetext a1 = 1=R25, a2 = 1=R26J0[
; 
1; 
2℄ = �
pa1a2��2� +ln h4� a1 e
E+ (
1)+ (�
1)i�+ 2� u �16 + 
21 � �
=a1 + 
21� 12��Xn12Z ln ���1�e�2� 
(n1)���2+p� uXp�1 �[p+1=2℄(p+1)! ��
a1 �p+1��[2p+1; 1+
1℄+�[2p+1; 1�
1℄�(D.20)while if we have 
=a1 > 1, thenJ0[
; 
1; 
2℄ = �
pa1a2��2� +ln h� 
 e
E�1i��Xn12Zln ���1�e�2� 
(n1)���2+ 4p
pa2 X~n1>0 
os(2�~n1 
1)~n1 K1(s~n1) (D.21){ 40 {



The pole stru
ture is the same for both 
ases; if 
=a1 > 1 and ex
ept the �rst squarebra
ket, no power-like terms in 
 are present (the last one being suppressed due to K1).Finally, we quote here a limiting 
ase for the behaviour of the fun
tion J0J0[
� 1; 0; 0℄ = �
pa1a2��2� + ln h4�e�
Ea1���(ipa1=a2)��4i�� ln h4�2 j�(ipa1=a2)j4 a�12 i� ln 
 (D.22)and this was used in the text in eq. (3.57).Further, if 0 � 
=a1 < 1J1[
; 
1; 
2℄ = 2�
1 u � 
a1 � (
=a1 + 
21) 12 + 13(1 + 2
21)��Xn12Z(n1 + 
1) ln ���1� e�2�
n1 ���2+ p� uXp�0 �(p+ 3=2)(p+ 2)! ��
a1 �p+2��[2p+ 2; 1 + 
1℄� �[2p+ 2; 1� 
1℄� (D.23)while if 
=a1 > 1, thenJ1[
; 
1; 
2℄ =� Xn12Z(n1+
1) ln ���1� e�2�
(n1)���2+ 4 
pa1a2 X~n1>0 sin(2�~n1
1)~n1 K2(s~n1) (D.24)where s~n1 � 2�~n1p
=a1. Note that J1 has no poles in �, unlike the 
ase of J0;2. K1 isexponentially suppressed at large argument.Finally, if 0 � 
=a1 < 1J2[
; 
1; 
2℄ = � �
24 a1pa1a2��2� + ln h4� a1 e
E+ (
1)+ (�
1)�2i�� � u � 130 � 
6a1�
21�1� (
=a1 + 
21) 12�2�� Xn12Z(n1 + 
1)2 ln ���1� e�2�
(n1)���2+p� uXp�1 �[p+3=2℄(p+2)! ��
a1 �p+2��[2p+1; 1+
1℄+�[2p+1; 1�
1℄�: (D.25)while if 
=a1 > 1 then:J2[
; 
1; 
2℄ = � �
24a1pa1a2��2� + ln h� 
 e
E�3=2i�� Xn12Z(n1 + 
1)2 ln ���1� e2�
(n1)���2� 2 
�pa1a2 X~n1>0 
os(2� ~n1
1)~n21 h3K2(s~n1) + s~n1K1(s~n1)i; (D.26){ 41 {



where s~n1 � 2�~n1p
=a1.The series with zeta fun
tions 
onverge under the assumption 0 � 
=a1 < 1. The pres-en
e of Bessel fun
tions K1;2 (see (E.2)) whi
h are exponentially suppressed with respe
t totheir argument (larger than unity) ensures a rapid 
onvergen
e of the 
orresponding series.Similar expressions exist for Iv = Jv j
1$
2;a1$a2 ; and are obtained from those above withrepla
ements a1 $ a2, 
1 $ 
2.E De�nitions of spe
ial fun
tionsThe modi�ed Bessel fun
tionsKn(z) used above have the integral representation/de�nition:Z 10 dx x��1e�bxp�ax�p = 2p �ab� �2pK �p (2pa b); Re(b); Re(a) > 0 (E.1)with K1[x℄ = e�xr �2x �1 + 38x � 15128x2 +O(1=x3)�K2[x℄ = e�xr �2x�1 + 158x + 105128 1x2 + O(1=x3)�K 12 [x℄ = e�xr �2xK 32 [x℄ = e�xr �2x�1 + 1x� (E.2)The de�nition of the poly-logarithm fun
tion used aboveLi�(x) =Xx�1 xnn� (E.3)The one-dimensional Poisson re-summation used in the appendix:Xn2Z e��A(n+�)2 = 1pAX~n2Z e��A�1~n2+2i�~n� (E.4)The Hurwitz Zeta fun
tion used in this paper is de�ned as�[z; a℄ =Xn�0(a+ n)�z (E.5)where a 6= 0;�1;�2; � � � for Re(z)> 1. One has �[z; 1℄ = �[z℄ where �[z℄ is the Riemannzeta fun
tion. Hurwitz zeta-fun
tion has one singularity (simple pole) at z = 1.We also used the Dedekind fun
tion�(�) � e�i�=12Yn�1(1� e2i�� n);�(�1=�) = p�i � �(�); �(� + 1) = ei�=12�(�): (E.6){ 42 {
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