
*H
EP
-P
H/
06
04
2∣
5*

Revised Version  DESY 06-028
 DAMTP-2005-85

ar
X

iv
:h

ep
-p

h/
06

04
21

5 
v3

   
24

 J
ul

 2
00

6

Preprint typeset in JHEP style - HYPER VERSION DESY 06-028; DAMTP-2005-85Higher derivatives and brane-loalised kineti terms ingauge theories on orbifoldsDumitru M. Ghilenea�; � , Hyun Min Leey and Kai Shmidt-Hobergy�D.A.M.T.P., Centre for Mathematial Sienes, University of Cambridge,Wilberfore Road, Cambridge CB3 OWA, United Kingdom.yDeutshes Elektronen-Synhrotron DESY,Notkestra�e 85, 22607 Hamburg, Germany.e-mail: hyun.min.lee�desy.de, kai.shmidt.hoberg�desy.de�Rudolf Peierls Centre for Theoretial Physis, University of Oxford,1 Keble Road, Oxford, United Kingdom.e-mail: d.ghilenea1�physis.ox.a.ukAbstrat: We perform a detailed analysis of one-loop orretions to the self-energy ofthe (o�-shell) gauge bosons in six-dimensional N = 1 supersymmetri gauge theories onorbifolds. After disussing the Abelian ase in the standard Feynman diagram approah,we extend the analysis to the non-Abelian ase by employing the method of an orbifold-ompatible one-loop e�etive ation for a lassial bakground gauge �eld. We �nd thatbulk higher derivative and brane-loalised gauge kineti terms are required to anel one-loop divergenes of the gauge boson self energy. After their renormalisation we study themomentum dependene of both the higher derivative oupling h(k2) and the e�etive gaugeoupling ge�(k2). For momenta smaller than the ompati�ation sales, we obtain the 4Dlogarithmi running of ge�(k2), with suppressed power-like orretions, while the higherderivative oupling is onstant. We present in detail the threshold orretions to the lowenergy gauge oupling, due to the massive bulk modes. At momentum sales above theompati�ation sales, the higher derivative operator beomes important and leads to apower-like running of ge�(k2) with respet to the momentum sale. The oeÆient of thisrunning is at all sales equal to the renormalised oupling of the higher derivative operatorwhih ensures the quantum onsisteny of the model. We disuss the relation to the similarone-loop orretion in the heteroti string, to show that the higher derivative operators arerelevant in that ase too, sine the �eld theory limit of the one-loop string orretion doesnot ommute with the infrared regularisation of the (on-shell) string result.Keywords: Extra Dimensions, Orbifolds, Supersymmetry, Higher Derivatives, E�etiveAtion.�New address after 1 Marh 2006.
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and may even apture e�ets not seen by the on-shell string. Sine no additional spaedimensions are observed at low energies, these have to be ompati�ed at suÆiently highsales1. In �eld theory approahes only simple overing spaes are usually onsidered,suh as S1, T 2:::, suÆient however to apture the main e�ets investigated. To obtain4D hiral fermions from bulk �elds disrete symmetries must at (non-freely) upon theextra dimensions, resulting in orbifolds suh as S1=Z2 or T 2=ZN (N = 2; 3; 4; 6). Theseorbifolds have �xed points, invariant under subgroups of the disrete group ation. Sinethe bulk �elds satisfy boundary onditions at the orbifold �xed points, momentum on-servation does not hold in the extra dimensions. Ultimately, brane-loalised (either 4D orhigher derivative) interations are required as ounterterms [3{7℄, to ensure the quantumonsisteny of the models. New bulk interations, in addition to the original ones, are alsogenerated dynamially [7{12℄ as higher dimensional (derivative) terms.In this paper we onsider the one-loop orretion to the self-energy of gauge bosons in6D N = 1 supersymmetri Abelian and non-Abelian gauge theories oupled to hypermulti-plets on the T 2=Z2 orbifold, within the omponent �eld formulation. We �nd that one-loopdivergenes are generated whih require the addition of new ounterterms. These involvenew, brane-loalised 4D interations as well as higher derivative, bulk gauge interations,not present in the original ation. We provide a areful study of the role of these operatorsin the running of the gauge oupling at high and low momentum sales. We also disussthe link between these one-loop orretions and those in string theory. These are the mainpurposes of this paper. Reent work on this topi an be found in [9, 10℄ in the super�eldformalism (for related studies see also [13℄).In the Abelian ase, we use the Feynman diagram approah to onsider bulk salar andfermion ontributions to the self-energy of the gauge bosons. We �nd that the fermionsgive rise to a bulk divergene only, requiring a bulk higher derivative ounterterm. Atthe tehnial level, the origin of this divergene is the presene of in�nite double sumsover the modes and a re-summation of their individual divergent ontributions [5{7, 9{11,14℄. In ontrast, bulk omplex salars bring in both bulk and brane orretions. Theirdivergent part must be anelled by bulk higher derivative and brane-loalised gauge kinetiounterterms, respetively. Both fermioni and bosoni ontributions also ontain �niteLorentz violating mass terms in the bulk. For a hypermultiplet there are neither braneontributions nor bulk Lorentz violating mass terms. Thus, even after ompati�ation,the Lorentz invariane in these mass orretions is proteted by the initial supersymmetry.Nonetheless, one still needs a bulk higher derivative ounterterm, whih reets the non-renormalisable nature of the initial, higher dimensional �eld theory.The above analysis is extended to the non-Abelian ase by employing a bakground �eldmethod whih is made onsistent with the orbifold boundary onditions. This formalisman be generalised to other orbifold ations, suh as Wilson lines. The results show that ahypermultiplet generates only a bulk loop orretion, just like in the Abelian ase, while avetor multiplet generates both bulk and brane-loalised ontributions. These ontributionsontain divergent terms whih are anelled by bulk higher derivative and brane-loalised1Non-ompat, in�nite extra dimensions are also possible [2℄.{ 2 {



gauge kineti ounterterms. After the renormalisation of these operators, the running of theone-loop e�etive oupling ge�(k2), whih is the oupling of the zero mode gauge bosons,is ontrolled by �nite terms oming from both bulk and branes. This will be disussed indetail.In the limit of external momenta k2 smaller than the ompati�ation sale(s), thehigher derivative gauge kineti term is suppressed. In this ase, after onsidering bothbulk and brane one-loop e�ets, we show that the e�etive gauge oupling has a 4D log-arithmi running with respet to the momentum k2, with the 4D N = 1 beta funtion.This is an interesting result and a onsisteny hek of our alulation. The logarithmirunning in momentum originates from both bulk and brane ontributions. We also estab-lish a relation between the high sale physis (gtree) and ge�(k2� 1=R25;6), whih involvesre-summing threshold orretions due to in�nitely many massive Kaluza-Klein modes. Weprovide detailed expressions of these orretions inluding �nite terms. This relation islittle dependent on the role of the higher derivative operator, strongly suppressed at suhlow momentum sales. The running of the e�etive oupling with respet to k2 an be ex-tended to larger values of k2, loser to ompati�ation sales (k2 � 1=R25;6), to reah theregime of dimensional ross-over [15℄. In this ase the higher derivative operator brings inan important ontribution to the e�etive gauge oupling. After its renormalisation, thereare non-negligible power-like orretions in momentum sale to ge�(k2). The oeÆient ofthe power-like running is the renormalised oupling h(k2) of the higher derivative operator,whih below the ompati�ation sales is onstant while far above them it runs logarithmi-ally with respet to the momentum sale. At even higher momentum sales k2 � 1=R25;6we show that ge�(k2) has a power-like running with respet to the high momentum sale,with a oeÆient equal to the renormalised oupling of the higher derivative operator.The link of these orretions to similar results from string theory is addressed. Wedisuss the relation of our result to string orretions in the type I strings [16℄ and het-eroti toroidal orbifolds [17,18℄ with N = 2 sub-setors. Although the on-shell (heteroti)string alulation to the gauge boson self-energy misses ontributions assoiated with higherderivative operators, we show that there are remnant e�ets of their presene, even in the(on-shell) string result. These e�ets are related to the fat that the infrared regularisationof the (heteroti) string loop orretions and their �0 ! 0 limit do not ommute, leavinga troublesome UV-IR mixing in the e�etive �eld theory regime of the (heteroti) string(�0 ! 0). This stresses the importane of investigating the role of suh operators in stringtheory, too.The results for the self-energy of the gauge bosons in our omponent �eld formulationare fully onsistent with those obtained in the super�eld formulation. Nevertheless, thegauge �xing term and the assoiated ghost Lagrangian onsidered are not invariant underthe original supersymmetry transformation. This is related to the well-known fat thatthe Wess-Zumino gauge is not onsistent with a super-ovariant gauge �xing [19℄. Thisproblem is very ommon in similar works, and beomes manifest in the fat that theanomalous dimensions of salar and fermion matter �elds in a hiral multiplet are notequal at one-loop level [20℄. However, for our ase of the self-energy of the gauge bosons,additional auxiliary multiplets required by a manifestly supersymmetri quantisation will{ 3 {



not hange the result, as disussed for the holomorphi anomaly to the gauge oupling in4D supersymmetri gauge theory [21℄.The paper is organised as follows. We start with a 6D N = 1 supersymmetri Abeliangauge theory where the one-loop orretion to the gauge bosons is omputed. Then weemploy the higher dimensional bakground �eld method to �nd the one-loop e�etive ationof non-Abelian gauge theories and apply this formalism to T 2=Z2, using orbifold-ompatiblefuntional di�erentiations. Finally we disuss the running of the e�etive gauge oupling.Tehnial details of our alulations are given in the Appendix.2. One-loop vauum polarisation to U(1) gauge bosons on orbifoldsWe onsider the one-loop vauum polarisation in a 6D N = 1 supersymmetri Abeliangauge theory oupled to hypermultiplets. The two extra dimensions are denoted by theomplex oordinate z = x5+ ix6, and are ompati�ed on the orbifold T 2=Z2 with the tworadii R5 and R6. The torus is modded out by the Z2 reetion, whih identi�es oordinatesof extra dimensions under z ! �z. Under this Z2 ation, there appear four �xed pointswhih transform into themselves.In a 6D N = 1 supersymmetri gauge theory, a vetor multiplet is omposed of gaugebosons AM and (right-handed) sympleti Majorana gauginos � while a hypermultipletis omposed of two omplex hypersalars �� with opposite harges and a (left-handed)hyperino  . The supersymmetri ation is given in omponent �elds2 by [22℄S = Svetor+ ShyperwithSvetor = 12 Z d6X�� 12FMNFMN+��iM�M�+��iM�M�+��D1 + iD2��2+(D3)2�;(2.1)Shyper = Z d6X�X� jDM��j2 + � i�MDM +p2g� � ���� + � ��+ + ::��g�(D1 + iD2)�+�� + :�+ gD3���+�+ � �������; (2.2)where � = C5��T is the �ve-dimensional harge onjugate of �, DM�� = (�M � igAM)��,and DM = (�M � igAM) . Details on our onventions are given in Appendix A.To promote the Z2-symmetry of the orbifold to a symmetry of our theory, we have tospeify the Z2 parities of the bulk �elds. These parities are given byA�(x;�z) = A�(x; z); A5;6(x;�z) = �A5;6(x; z); �(x;�z) = i5�(x; z);��(x;�z) = �� ��(x; z);  (x;�z) = i� 5 (x; z) (2.3)where � an be hosen +1 or �1. Within this framework, we evaluate the ontributions tothe 4D one-loop self-energy of the gauge bosons indued by bulk �elds running in the loop.2We also inluded the auxiliary �elds ~D = (D1;D2;D3) for ompleteness. We have written gaugino andhyperino in 4D Dira representations. { 4 {



2.1 A bulk fermion ontributionWe onsider the one-loop ontribution of a 6D left-handed bulk fermion to the self-energyof the 4D omponents of the gauge �eld. The Feynman diagram given in Fig. 1 an be A� A�Figure 1: The Feynman diagram with a bulk fermion  ontributing to ��� at one-loop order.evaluated as�f��(k;~k;~k0) = g2�4�dX~p;~p0 Z ddp(2�)d Tr�� i2� Æ~p;~p0p=+ 5p5 + p6 � � Æ~p;�~p0p=+ 5p5 + p6 i5��� i2� Æ~k0+~p0 ;~k+~pp=+ k=+ 5(k05 + p05) + k06 + p06 � � Æ~k0+~p0;�~k�~pp=+ k=+ 5(k05 + p05) + k06 + p06 i5�� (2.4)where we used eq. (B.4) for the fermion propagator in the loop. Here a sum over disretemomenta ~p is to be understood as a double sum over integers n1;2 suh that for an arbitraryfuntion f X~p f(~p) = � Xn1;22Z f(n1=R1; n2=R6); � � [(2�)2R5R6℄�1 (2.5)where ~p � (p5; p6) = (n1=R5; n2=R6). Moreover, we use the Kroneker delta symbol fordisrete momenta, whose ation and normalisation areX~p Æ~p;~p0f(~p) = f(~p0); Æ~p;~p0 � (2�)2Æp5 ;p05Æp6;p06 = 1� Æn1;n01Æn2;n02 (2.6)The integral in (2.4) is ontinued to d � 4 � � dimensions, with � ! 0 after performingthe double sum; � is the �nite sale of the DR sheme. Note that both the 4D integraland the double sum over the momenta are regularised by the same regulator �. That is, �ats essentially as a 6D regulator, as it should be the ase. These onventions will be usedthroughout the paper. After some standard alulations, we rewrite expression (2.4) as�f�� = �14g2X~p;~p0 Z ddp(2�)d �4�d(p2 � p25)[(p+ k)2 � (~p0 + ~k0)2℄��(1)�� (~p0;~k0)Æ~k0;~k+�(1)�� (�~p0;�~k0)Æ~k0;�~k � ��(2)�� (~p0;~k0)Æ�2~p0;~k0�~k � ��(2)�� (�~p0;�~k0)Æ�2~p0;~k0+~k� (2.7){ 5 {



with �(1)�� (~p0;~k0) = 4[2p�p� + p�k� + p�k� + g��(�p(p+ k) + ~p0 � (~p0 + ~k0))℄;�(2)�� (~p0;~k0) = �4ip�k������ : (2.8)Here we note that terms proportional to Æ~k;~k0 or Æ~k;�~k0 onserve the external extra mo-mentum j~kj. Therefore these terms orrespond to bulk terms. On the ontrary, termsmultiplied by Æ�2~p0;~k0�~k or Æ�2~p0;~k0+~k hange the external disrete momentum in the om-pat dimensions, and therefore orrespond to brane-loalised terms [3℄. These momentumnon-onserving terms are due to the breaking of translational invariane along the extradimensions in the presene of orbifold �xed points. Although the momentum is onservedat eah vertex in Feynman diagrams, extra momenta of ingoing and outgoing gauge bosonsan be di�erent due to the momentum non-onserving part Æ~p;�~p0 in the propagator of abulk �eld running in loops.After performing the 4D momentum integral, the ontribution involving �(2)�� vanishes.Therefore no orretion to the loalised gauge oupling is generated by the bulk fermion.Finally, after introduing a Feynman parameter and shifting the integration momentum asin Appendix C.1, we obtain the orretion�f�� [k;~k;~k0℄ = �2 g2 Æ~k;~k0 �4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2��2x(1� x)[(k2 � ~k02)g�� � k�k� ℄ + (1� 2x)~k0 � (~p0 + x~k0)g��� (2.9)with � � �x(1�x)(k2�~k02)+(~p0+x~k0)2. The �rst part of this result ontains the familiartensor struture oming from 6D gauge and Lorentz invariane and an be fatorised outof the momentum integration and the Kaluza-Klein summation. The seond part of (2.9)however orresponds to a Lorentz violating mass term, sine 6D Lorentz invariane isbroken by the ompati�ation. This term leads to radiative orretions to the nonzeroKaluza-Klein masses [4℄.The urrent form of the result in eq. (2.9) is all we need for our purpose of investigatingthe one-loop orretions to gauge ouplings in supersymmetri models. It is neverthelessimportant to simplify eq. (2.9) to identify its divergenes3. After some algebra we �nd, inEulidean spae4�f�� [k;~k;~k0℄ = �2g2i�2(2�)d � Æ~k;~k0 h[(k2 + ~k02)Æ�� + k�k� ℄ �f0 � Æ�� �f1i; (2.10)�f0 � Z 10 dx �0(x)J0[x(1� x)(k2 + ~k02); xk05R5; xk06R6℄; (2.11)�f1 � k05R5 Z 10 dx �1(x)J1[x(1� x)(k2 + ~k02); xk05R5; xk06R6℄+�k05$k06;R5$R6�; (2.12)3The non-zero external momenta (k;~k;~k0) in the Green funtions ensure infrared-onvergent integrals.4Denoting by �E the Eulidean form of � we used that: R ddp (p2 ��)�2 = i�2 R10 dt t1�d=2 e�� t�E .Unless stated otherwise, our formulae are always written using the Minkowskian metri; the distintion isalso obvious by the presene of either g�� or Æ�� . { 6 {



with �0(x) � 2x(1� x) and �1(x) � (1� 2x). The funtions J0;1[; 1; 2℄ are de�ned andstudied in detail in Appendix D, eqs. (D.1), (D.20) to (D.24) and they an be integratedover x, yielding ompat �nal expressions. Sine these expressions are rather long, we donot present them here. However, it is important for our purpose to notie that J0 has apole, while J1 is atually �nite. Using this information, the pole struture in � of the �nalresult is obtained�f0 = �15(k2 + ~k02)R5R6��2� �+ O(�0); �f1 = O(�0) (2.13)with momentum again in Eulidean spae. The onsequene of this 6D divergene in �f0and thus in �f�� is that a higher derivative ounterterm is neessary. This is a dimension-six bulk ounterterm, and its struture would be, in a non-susy ase, R5R6FMN26FMN .Although eah bulk mode brings a pole for the usual gauge kineti term, the resummation ofin�nitely many bulk mode ontributions leads only to a pole for the higher derivative term5.A similar result has been obtained in a 6D Abelian gauge theory without ompati�ationin [8℄. We postpone a further disussion on suh operators to Setions 2.3 and 3 wheretheir role will be investigated in detail.2.2 A bulk salar ontributionNow we onsider the one-loop ontribution of a omplex bulk salar with parity � to theself-energy of the gauge boson. In this ase, there are two Feynman diagrams (see Fig.2)ontributing to the one-loop vauum polarisation.��A� A� + ��A� A�Figure 2: The Feynman diagrams with the bulk salar � ontributing to ��� at one-loop order.Then the one-loop salar ontribution is�s��;�[k;~k;~k0℄ = �(1)�� [k;~k;~k0℄ + �(2)�� [k;~k;~k0℄ (2.14)5As will be disussed in detail in setion 5, in a regularisation sheme with a momentum uto�, notethat there is no logarithmially divergent orretion to the FMNFMN operator and this is onsistent withthe absene of a 1=� pole to this operator in DR. In suh uto� regularisation, however, there exists aquadratially divergent orretion to the FMNFMN operator (unlike in the 4D gauge theory), disussed insetion 5. { 7 {



with �(1)�� [k;~k;~k0℄ = (�ig)2�4�dX~p;~p0 Z ddp(2�)d (2p+ k)�(2p+ k)� i2�Æ~p;~p0 � �Æ~p;�~p0p2 � ~p2 �� i2�Æ~p0+~k0 ;~p+~k � �Æ~p0+~k0;�~p�~k(p+ k)2 � (~p0 + ~k0)2 �; (2.15)�(2)�� [k;~k;~k0℄ = (2ig2) g�� �4�d X~p;~p0=~p+~k�~k0 Z ddp(2�)d i2�Æ~p;~p0 � �Æ~p;�~p0p2 � ~p2 � (2.16)where we used eq. (B.7) for the salar propagator in the loop. After re-arranging the result,we obtain the one-loop vauum polarisation as�s��;�[k;~k;~k0℄ = �g22 �4�dX~p0 Z ddp(2�)d Æ~k;~k0 � �Æ�2~p0;~k0�~k(p2 � (~p0)2)[(p+ k)2 � (~p0 + ~k0)2℄�n � (2p+ k)�(2p+ k)� + 2g��h(p+ k)2 � (~p0 + ~k0)2io� �bulk�� [k;~k;~k0℄� ��brane�� [k;~k;~k0℄ (2.17)with the bulk and brane terms easily identi�ed by whether they do or do not onserve thedisrete momenta assoiated with the two ompat dimensions. After using a Feynmanparameter and a shift of the integration momentum we obtain the bulk orretion, wherea 6D Lorentz violating mass term is present again, due to ompati�ation:�bulk�� [k;~k;~k0℄ = �g22 Æ~k;~k0 �4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2�h(1� 2x)2[(k2 � ~k02)g�� � k�k� ℄ + 2(2x� 1)~k0 � (~p0 + x~k0)g��i: (2.18)As in the fermioni ase, the form of the result in (2.18) is all we need for our purpose ofinvestigating one-loop orretions to the gauge ouplings in supersymmetri models. Thisresult an however be evaluated expliitly as done in the fermioni ase, to identify itsdivergenes and �nite parts6. One �nds, using an Eulidean metri�bulk�� [k;~k;~k0℄ = �g22 i�2(2�)d � Æ~k;~k0 h[(k2 + ~k02)Æ�� + k�k� ℄ �bulk0 � Æ�� �bulk1 i�bulk0 = �30(k2 + ~k02)R5R6��2� �+ O(�0); �bulk1 = O(�0) (2.19)Here �bulk0 and �bulk1 have an expression idential to that of �f0 of (2.11) and �f1 of(2.12) respetively, but with �0(x) = (1 � 2x)2, �1(x) = 2(2x � 1). The divergene of6This is partiularly relevant in non-supersymmetri models, where similar orretions are present.{ 8 {



�bulk�� requires a higher derivative ounterterm, of struture idential to that for fermions:R5R6FMN26FMN . We return to disuss the role of suh operators in Setions 2.3, 3.For the brane orretion the Kaluza-Klein loop momentum ~p0 is �xed by the di�er-ene between ingoing and outgoing Kaluza-Klein momenta ~k and ~k0. After introduing aFeynman parameter and shifting the 4D momentum, we also �nd the brane orretion as�brane�� [k;~k;~k0℄=�g22 �4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2�2(1� 3x+ 2x2)(k2 � ~k02)g��� (1� 2x)2k�k� + 4(x� 1)~k0 � (~p0 + x~k0)g��� � Æ�2~p0;~k0�~k (2.20)= �ig22(4�)2�13�2� +ln 4��2e�E�(g��k2�k�k��3~k:~k0g��)�Z 10dxs(x) ln��withs(x) = 2(1�3x+2x2)(k2�~k02)g���(1�2x)2k�k�+4(x� 1)(~k=2 + (x� 1=2)~k0)2g�� : (2.21)Therefore, to anel the one-loop divergene of the brane orretion, brane-loalised gaugekineti terms ontaining the derivatives with respet to the extra dimensions are required.The remaining integral over x is �nite. In onlusion, a bulk salar in 6D leads to bothbulk higher derivative and brane-loalised gauge kineti terms.2.3 A hypermultiplet ontributionWe onsider the ontribution of a hypermultiplet to the vauum polarisation. A hypermul-tiplet is omposed of one Dira fermion and two omplex salars with opposite harges.Using eqs. (2.9) and (2.17) with (2.18), we easily obtain the ontribution in a simple formas �hyper�� = �f�� + �s��;+ + �s��;�= �g2Æ~k;~k0 [(k2 � ~k02)g�� � k�k� ℄�4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2 : (2.22)As indiated, the salars take opposite Z2 parities. Consequently, we note that the would-be mass orretions to Kaluza-Klein modes of gauge bosons that we referred to earlierin the salar and fermioni ontributions are anelled out due to supersymmetry. Alsothe two would-be brane ontributions of the salars are anelled out. The above resultobtained in the omponent �eld formalism is in agreement with that obtained in a similaralulation using instead the super�eld approah [9℄.The expliit evaluation of �hyper is rather tehnial and we provide the details inAppendix D. Essentially one performs the momentum integral in (2.22) in the DR sheme,then re-writes that result in proper-time representation and �nally performs the double sumover the disrete momenta ~p � (p5; p6). Using eqs. (D.20), (D.21) for J0, with a1 � 1=R25and a2 � 1=R26, one �nds the ontribution of a hypermultiplet in Eulidean spae7:7The term ln �2 is made dimensionless by additional logarithmi terms in J �nite0 , not shown expliitly.{ 9 {



�hyper(k;~k0) = i �4�d(4�)d=2X~p0 Z 10 dx�[2� d=2℄hx(1� x)(k2 + ~k02) + (~p0 + x~k0)2id=2�2= i�2�4�d(2�)d X~p0 Z 10 dx Z 10 dttd=2�1 e��t�x(1�x)(k2+~k02)+(~p0+x~k0)2�= i�2� �4�d(2�)d Z 10 dx J0hx(1� x)(k2 + ~k02); xk05R5; xk06R6i= i�(4�)2��R5R66 (k2+~k02)��2� � ln 4�2�2�+Z 10 dxJ �nite0 i� (2.23)with J �nite0 [; 1; 2℄ � J0[; 1; 2℄� �R5R6 �� 2��: (2.24)The above de�nition of J �nite0 together with (D.20), (D.21) shows that J �nite0 ontains nopole in �. Here  = x(1� x)(k2 + ~k02), 1 = xk05R5, 2 = xk06R6.Eq. (2.23) is an important result of this paper. The presene of the momentum-dependent divergene (k2+~k02)=� in �hyper(k;~k0) suggests the need for a higher derivativeoperator as a ounterterm to the one-loop orretion. Note that the ounterterm requiredis atually a bulk operator sine it is of 6D Lorentz invariant form. Its form is the super-symmetri version of that already enountered for bulk salar and fermion ontributions.The need for suh an operator is ultimately a reetion of the fat that the initial theory isnon-renormalisable. The divergene found is due to re-summing the in�nitely many bulkmode ontributions in J0, eah of them bringing a pole 1=�, to obtain instead a k2=� pole.This means the k2=� pole is of non-perturbative origin. Note that alulations in the past,performed for vanishing external momenta, k2+~k02 = 0, missed the presene of suh higherderivative operators, sine the oeÆient of the pole is then formally8 set to zero.If one also introdues a non-trivial omplex struture for the underlying torus, U =R6=R5ei� (in our ase � = �=2), then the oeÆient of the pole in eq. (2.23) beomesproportional to R5R6 sin �. For � = 0, when the two dimensions ollapse onto eah other,one obtains the 5D limit [7℄ as expeted, and no pole is present anymore in that ase.This is onsistent with the fat that suh operators are not generated by one-loop gaugeorretions in the 5D ase where only a single sum over modes is present. However, at twoloop order, two sums over the modes are present and higher derivative operators will againbe generated, even in 5D. In onlusion suh higher derivative operators are usually present8Stritly speaking this should not be the ase: even in suh limiting ases, mathematial onsistenywould require one to introdue an infrared regulator �IR (here replaed by (k2+~k02)) to �nd a term whih\mixes" the IR (�IR) and UV (�) regulators/terms; suh unwelome UV-IR mixing [11, 14℄ would signala non-deoupling of high sale physis from its IR region. This would lead one to onlude that higherderivative ounterterms are required, if one remembers that the IR regulator an be equivalently replaedby non-zero momentum inow. { 10 {



in ompati�ations, being dynamially generated at the loop level. These operators analso be boundary-loalised, in the ase of loalised superpotential interations [5{7℄.Returning to eq. (2.23), the integral over x ontains no poles and an be evaluatednumerially, using our detailed expressions for J0 in Appendix D. In spei� ases furthersimpli�ations an our, for example when ~k0 = 0. The analysis of the higher derivativeoperator and of �hyper will be further extended to the ase of non-Abelian theories, whereits expression and properties will be disussed in greater detail.3. The e�etive ation for non-Abelian gauge theories on orbifoldsSo far we have onsidered the ase of Abelian gauge theories. In this setion we ontinue ouranalysis of one-loop orretions and derive the e�etive ation for a non-Abelian gauge the-ory in higher dimensions by developing an approah outlined by Peskin and Shroeder [24℄.To this purpose we employ a bakground �eld method appliable to orbifold ompati�a-tions. First we present the method and derive the general form of the one-loop e�etiveation, then we apply it to the ase of the T 2=Z2 orbifold.3.1 Bakground �eld method for gauge theories in higher dimensionsLet us start with the relevant terms of the 6D supersymmetri ation with a hypermultipletin a representation of the bulk gauge groupS = Z d6X� 1g2Tr�� 12FMNFMN + 2�� iMDM��+ � i�MDM +X� jDM��j2� (3.1)where FMN = �MAN��NAM�i[AM ; AN ℄, DM� = �M��i[AM ; �℄,DM = (�M�iAM ) andDM�� = (�M�iAM)��. To introdue the bakground �eld method, we split the gauge�eld into a lassial bakground and a quantum utuation:AaM ! AaM + AaM : (3.2)Then, � i�MDM ! � i�MDM +AaM � �M ta ; (3.3)where DM is the ovariant derivative with respet to the bakground gauge �eld.Likewise, the gauge �eld strength is deomposed asF aMN ! F aMN +DMAaN �DNAaM + fabAbMAN : (3.4)Considering the higher dimensional generalisation of the Faddeev-Popov proedure for thegauge-�xing, the 6D Lagrangian in the Feynman-'t Hooft gauge is given by{ 11 {



LFP = � 14g2�F aMN +DMAaN �DNAaM + fabAbMAN�2 � 12g2 (DMAaM )2+ 1g2 h2Tr���iMDM��+ i��afabAbMM�i + � �i�MDM + AaM �Mta� +X� �jDM��j2 � (DM��)�iAaM ta�� � i���AaM taDM�� + ���(AaM ta)2���+�a�� (D2)a �DMfabAbM�; (3.5)where a are ghost �elds and D2 = DMDM .In order to ompute the e�etive ation at one-loop order, we shall ignore terms linearin AaM and integrate over the terms whih are quadrati in the gauge �elds AaM , gauginos�, hyperinos  , hypersalars � and ghost �elds . After integration by parts, the quadratiterms in AaM are simpli�ed toLA = � 12g2nAaMh� (D2)agMN � 2fabF bMNiANo: (3.6)By using the generator of 6D Lorentz transformations on 6-vetors,�J PQ�MN = i�ÆPMÆQN � ÆQMÆPN� (3.7)satisfying tr�J PQJMN� = 2�gPMgQN � gPNgQM�; (3.8)we an rewrite the above Lagrangian asLA = � 12g2nAaMh � (D2)agMN + 2�12F bPQJ PQ�MN(tbG)aiANo (3.9)with (tbG)a � ifab. Further, the quadrati terms in fermion �elds areLf = 1g2Tr�2��iMDM��+ � i�MDM : (3.10)Integrating over the fermion �elds, we obtain the funtional determinant of the operator(iMDM) for the gaugino and (i�MDM) for the hyperino. Finally, the quadrati terms inhypersalars (Ls) and ghost �elds (Lg) areLs = X� (�a�)�[�(D2)a℄��; (3.11)Lg = �a[�(D2)a℄: (3.12)With these �ndings, after performing the path integral for the terms quadrati in quantumutuations, we obtain the e�etive ation for the lassial �eld AaM at one-loop order as{ 12 {



ei�[A℄ = exp�i Z d6X�� 14g2 (F aMN)2 + L:t:�� (3.13)�(det�G;1)� 12 (detDG)+1[det(��G;0)℄+1(detDr)+1[det(��r;0)℄�1[det(��r�;0)℄�1with �G;1 = 1g2h��D21gMN + 2 �12F bPQ1J PQ�MN tbG� ÆAN12 i;�G;0 = �D21 Æ12; �r;0 = �D21 Æ�r12 ;DG = 1g2�iM�M1 + AaM1taGM� Æ�12;Dr = �i�M�M1 + AaM1tar �M� Æ 12; (3.14)where r denotes the orresponding representation and an extra index "1" as in f1 denotesf(X1) while the Æ12's are de�ned as funtional di�erentiations presented below. Finally, asthe upper letter on the Æ12's imply, the above expressions are ontributions of the gaugebosons, ghosts, hypersalars, gaugino and hyperino �elds respetively. Further(ÆAM12 )a b � ÆAaM(X1)ÆAbM(X2) ; (Æ�r12 )a b � Æ�ar(X1)Æ�br(X2) ; (3.15)and similar for the remaining �elds. Note that as long as there is no orbifold ation presentÆAM12 = Æ�r12 = Æ�12 = Æ 12 = Æ6(X1�X2). With these observations, we have the full one-loope�etive ation�[A℄ = Z d6X�� 14g2 (F aMN)2 + L:t:�+ i2� ln det�G;1 � 2 ln detDG � 2 ln det(��G;0)�2 ln detDr + 2 ln det(��r;0) + 2 ln det(��r�;0)�: (3.16)This is the general formula for the one-loop e�etive ation in higher dimensions with our�eld ontent. It an be applied to spei� ases, by omputing the above determinants,after speifying the boundary onditions for the �elds involved.3.2 The e�etive ation on the T 2=Z2 orbifoldWe an now apply the method presented in the previous setion to the ase of orbifoldompati�ations, where important hanges appear due to the presene of the assoiatedboundary onditions with respet to the ompat dimensions. On the orbifold T 2=Z2, the{ 13 {



orbifold boundary onditions are given byAa�(x;�z) = Aa�(x; z); Aa5;6(x;�z) = �Aa5;6(x; z);a(x;�z) = a(x; z); �(x;�z) = i5�(x; z); (3.17) (x;�z) = i5 �  (x; z); ��(x;�z) = ����(x; z)where � an be hosen either +1 or �1. Taking into aount these boundary onditions,the funtional di�erentiations de�ned in (3.15) an be made orbifold-ompatible as follows:ÆA�12 = 12�Æ6(X1 �X2) + Æ6(X1 +X2)� = Æ12 � Æ+12;ÆAn12 = 12�Æ6(X1 �X2)� Æ6(X1 +X2)� � Æ�12;Æ��12 = 12�Æ6(X1 �X2)� � Æ6(X1 +X2)� (3.18)Æ�12 = 12�Æ6(X1 �X2)� i5Æ6(X1 +X2)�Æ 12 = 12�Æ6(X1 �X2)� i� 5Æ6(X1 +X2)�where Æ6(X1 � X2) � Æ4(x1 � x2)Æ2(z1 � z2). We an now evaluate the determinants in(3.16) giving the ontributions of various �elds to the one-loop e�etive ation. To seondorder in the bakground gauge �eld we have from eq. (3.16)�(2)[AM ℄ = 12g2 X~k Z d4k(2�)4AaM (�k;�~k)AbN (k;~k)(�(k2 � ~k2)gMN + kMkN)+ i2 hWG;1 � 2WG;0 � 2Wgaugino+ 2Whypers� 2Whyperinoi (3.19)where eah W is the quadrati term of the orresponding log determinant in (3.16).3.2.1 Gauge �eld ontribution WG;1We start with the ontribution of the gauge bosons and �rst introdue the notation:M� ��21g��Æ+12 00 ��21gmnÆ�12! ; N � (�Gg�� +���)1Æ+12 ��n1 Æ�12�m�1 Æ+12 (�Ggmn +�mn)1Æ�12! (3.20)where �G � �(1)G +�(2)G�(1)G � ih�MAaM taG +AaM taG�Mi; �(2)G � AaM taGAbM tbG; (3.21)�MN � 2�12F bPQJ PQ�MN tbG:{ 14 {



With this notation and (3.14) we obtainln det�G;1 = ln det 1g2hM+N i = ln det 1g2M� 1Xn=1 1n trh(OM N )ni= ln det 1g2M� tr(O� �)� tr(Om n)� 12�tr(O� �O� �) + tr(Om lOl n) + tr(O� lOl �) + tr(Om �O� n)�+ � � � ; (3.22)where we introduedOM N�� Æ+12i(��22)�1g�� 00 Æ�12i(��22 )�1gml �0� i(�Gg��+���)2Æ+23 i��n2 Æ�23i�l�2 Æ+23 i(�Ggln+�ln)2Æ�231A (3.23)Therefore, the terms in ln det�G;1 quadrati in the bakground gauge �eld areWG;1[AM ℄ = 4 (TG+1 + TG+2 ) + 2 (TG�1 + TG�2 ) + TG3 + TG4 + TG5 + TG6 : (3.24)Their origin is as follows: 4(TG+1 +TG+2 ) aounts for part of the term tr(O� �O� �) and forthe term tr(O� �), while 2(TG�1 +TG�2 ) aounts for similar terms but with matries entrieswith extra dimensional Lorentz indies. The di�erent fators multiplying them (4 and 2)arise from the di�erent metri ontrations. Further, TG3 aounts for (the remaining partof) tr(O� �O� �) while TG4 aounts for similar ontribution but with all Lorentz indiesextra dimensional. Finally, TG5;6 aount for the \mixed" indies ontributions, the last twoterms in the last line of (3.22), respetively. All these ontributions an be easily identi�edby realling that Æ+ij (Æ�ij) arise with ontributions from 4D (extra dimensional) Lorentzindies, respetively, as seen from the de�nition of OM N . The results of evaluating theterms in (3.24) are thenTG�1 + TG�2 � �12 trh�Æ�12 i(��22)�1 (i�(1)G;2 Æ�23)��Æ�34i(��24)�1 (i�(1)G;4 Æ�41)�i�trhÆ�12i(��22)�1(i�(2)G;2Æ�21)i= �12 C2(G)X~k;~k0 Z d4k(2�)4AaM(�k;�~k0)AaN(k;~k) �sMN;�: (3.25)One should onsider in (3.25) either the upper or the lower signs only. Further TG3 is{ 15 {



generated by parity-even gauge �elds, as the presene of Æ+ij shows and equalsTG3 � �12trh�Æ+12 i(��22)�1 (i(�� �)2 Æ+23)��Æ+34i(��24)�1 (i(�� �)4 Æ+41)�i= 2 trhJ ��taGJ ��tbGiX~k;~k0 Z d4k(2�)4 Aa�(�k;�~k0)Ab�(k;~k) k� g�� k� g���X~p;~p0 Z d4p(2�)4 ~G+(p; ~p; ~p0) ~G+(p+ k; ~p0 + ~k0; ~p+ ~k)= 4C2(G)X~k;~k0 Z d4k(2�)4Aa�(�k;�~k0)Aa�(k;~k)�k2g�� � k�k���G++; (3.26)TG4 has similar form, but involves only parity-odd �elds (notie the presene of Æ�ij):TG4 � �12trh�Æ�12 i(��22)�1 (i(�m l)2 Æ�23)��Æ�34i(��24)�1 (i(�l n)4 Æ�41)�i= 2trhJ ijtaGJ kltbGiX~k;~k0 Z d4k(2�)4 Aam(�k;�~k0)Abn(k;~k) k0i gmj kk gnl�X~p;~p0 Z d4p(2�)4 ~G�(p; ~p; ~p0) ~G�(p+ k; ~p0 + ~k0; ~p+ ~k);= 4C2(G)X~k;~k0 Z d4k(2�)4Aam(�k;�~k0)Aan(k;~k)�� ~k0 � ~kgmn � kmk0n��G��; (3.27)Finally TG5 and TG6 have similar struture, involving parity-odd and -even omponent �elds:TG5 � �12trh�Æ+12 i(��22)�1 (i(�� l)2 Æ�23)��Æ�34 i(��24)�1 (i(�l �)4 Æ+41)�i= 2 trh(J �k)� ltaG(J �n)l �tbGi�k�Aak(�k;�~k0)� k0kAa�(�k;�~k0)��k�Abn(k;~k)� knAb�(k;~k)�X~p;~p0 Z d4p(2�)4 ~G�(p; ~p; ~p0) ~G+(p+ k; ~p0 + ~k0; ~p+ ~k)= �2C2(G)X~k;~k0 Z d4k(2�)4�k�Aak(�k;�~k0)� k0kAa�(�k;�~k0)���k�Aan(k;~k)� knAa�(k;~k)� g��gkn�G�+ ; (3.28){ 16 {



and TG6 � �12trh�Æ�12 i(��22)�1 (i(�n �)2 Æ+23)��Æ+34 i(��24)�1 (i(�� m)4 Æ�41)�i= 2 trh(J �k)n �taG(J �l)� mtbGiX~k;~k0 Z d4k(2�)4�k�Aak(�k;�~k0)� k0kAa�(�k;�~k0)��k�Abl (k;~k)� klAb�(k;~k)�X~p;~p0 Z d4p(2�)4 ~G+(p; ~p; ~p0) ~G�(p+ k; ~p0 + ~k0; ~p+ ~k)= �2C2(G)X~k;~k0 Z d4k(2�)4�k�Aak(�k;�~k0)� k0kAa�(�k;�~k0)���k�Aan(k;~k)� knAa�(k;~k)� g��gkn�G+�: (3.29)In the equations above we used the notation C2(G) de�ned by tr(taGtbG) = C2(G)Æab. Interms of the bulk propagator for bosons (See also eq. (B.7)),~G�(p; ~p; ~p0) = i2 Æ~p;~p0 � Æ~p;�~p0p2 � ~p2 ; (3.30)one has the following expressions for �sMN;� and �G�� used previously�sMN;� = X~p;~p0 Z d4p(2�)4h � (2p0 + k0)M(2p+ k)N ~G�(p+ k; ~p0 + ~k0; ~p+ ~k)+2igMNÆ~p0;~p+~k�~k0i � ~G�(p; ~p; ~p0)= �12X~p0 Z d4p(2�)4 �(2p0 + k0)M(2p+ k)N + 2gMN [(p+ k)2 � (~p0 + ~k0)2℄(p2 � ~p02)[(p+ k)2 � (~p0 + ~k0)2℄��Æ~k;~k0 � Æ�2~p0;~k0�~k�; (3.31)�G�� = X~p;~p0 Z d4p(2�)4 ~G�(p; ~p; ~p0) ~G�(p+ k; ~p+ ~k; ~p0 + ~k0)= �12X~p0 Z d4p(2�)4 Æ~k;~k0 � Æ�2~p0;~k0�~k(p2 � ~p02)[(p+ k)2 � (~p0 + ~k0)2℄ (3.32)and �G�� = X~p;~p0 Z d4p(2�)4 ~G�(p; ~p; ~p0) ~G�(p+ k; ~p+ ~k; ~p0+ ~k0) = �G�;�: (3.33)To obtain the above results for TG5 and TG6 we had to hange the order of operators in anappropriate way, by using O2Æ�23 = Æ�23O3 for the Z2-even operator O while eO2Æ�23 = Æ�23 eO3for the Z2-odd operator eO. Further, to simplify the Kroneker deltas, we have taken intoaount the Z2-parity onditions: Aa�(k;~k0) = Aa�(k;�~k0) and Aam(k;~k0) = �Aam(k;�~k0).This onludes the evaluation of the gauge �elds ontribution WG;1 of (3.24).{ 17 {



3.2.2 Ghost �eld ontribution WG;0Next we evaluate the determinant of the ghost �eld ontribution (3.14) with (3.18)ln det(��G;0) = ln det�(�2 ��G)1Æ+12�= ln det(�21Æ+12)� 1Xn=1 1ntrh�Æ+12i(��22)�1i(�G)2Æ+23�ni: (3.34)from whih, upon expansion, we isolate the quadrati terms for the bakground �eld asWG;0[AM ℄ = TG+1 + TG+2 : (3.35)The sum on the right-hand side was already omputed in (3.25).3.2.3 Hypersalar ontribution WhypersLikewise, the quadrati terms from the determinant for hypersalars are, with (3.14), (3.18)ln det(��r;0) = ln det�(�2 ��r)1Æ�12�= ln det(�21Æ�12)� 1Xn=1 1ntrh�Æ�12i(��22)�1i(�r)2Æ�23�ni: (3.36)with the notation of � as in eq. (3.21) with G! r. One �nds from (3.36)Whypers[AM ℄ = (T r+1 + T r+2 ) + (T r�1 + T r�2 ) (3.37)where T r�1;2 = �C(r)=C2(G)�TG�1;2 and with TG�1 + TG�2 already evaluated in eq. (3.25).Here C(r) is de�ned by tr(tartbr) = C(r)Æab.3.2.4 Gaugino and hyperino ontributions Wgaugino and WhyperinoFinally, we evaluate the determinants for the fermion �elds, whih are expanded as (usingagain (3.14), (3.18))ln detDG = ln det h 1g2 (iM�M1 +AaM1taGM)Æ�12i= ln det h 1g2 iM�M1Æ�12i� 1Xn=1 1ntr��Æ�12 iiP�P2 (iAaM2taGMÆ�23)�n�;(3.38)ln detDr = ln det h(i�M�M1 + AaM1tar �M)Æ 12i= ln det hi�M�M1Æ 12i � 1Xn=1 1n tr��Æ 12 ii�P�P2 (iAaM2tar �MÆ 23)�n�: (3.39){ 18 {



with the former (latter) for gaugino (hyperino) �elds, respetively. From these eqs. thequadrati terms oming from the determinants of gaugino and hyperino are evaluated toWgaugino[AM ℄ = �12tr�Æ�12 iiP�P2 (iAaM2taGMÆ�23) Æ�34 iiQ�Q4 (iAbN4tbGNÆ�41)�= 12tr(taGtbG)X~k;~k0 Z d4k(2�)4AaM(�k;�~k0)AbN(k;~k) ~�fMN ; (3.40)Whyperino[AM ℄ = �12tr�Æ 12 ii�P�P2 (iAaM2tar �MÆ 23) Æ 34 ii�Q�Q4 (iAaN4tar �NÆ 41)�= 12tr(tar tbr)X~k;~k0 Z d4k(2�)4AaM(�k;�~k0)AbN (k;~k) �fMN (3.41)Here we introdued the following self-energies~�fMN �X~p;~p0 Z d4p(2�)4Trh ~D�(p; ~p; ~p0)M ~D�(p+ k; ~p0 + ~k0; ~p+ ~k)Ni; (3.42)�fMN �X~p;~p0 Z d4p(2�)4Trh ~D (p; ~p; ~p0)�M ~D (p+ k; ~p0 + ~k0; ~p+ ~k)�Ni; (3.43)and used the propagators on T 2=Z2 (for details see the Appendix, eq. (B.4))~D�(p; ~p; ~p0) = i2 � Æ~p;~p0p=+ 5p5 � p6 � Æ~p;�~p0p=+ 5p5 � p6 i5� ; (3.44)~D (p; ~p; ~p0) = i2 � Æ~p;~p0p=+ 5p5 + p6 � �Æ~p;�~p0p=+ 5p5 + p6 i5� : (3.45)This onludes the identi�ation of all omponent �eld ontributions to the e�etive ation.We now have the neessary tehnial results eqs. (3.24), (3.35), (3.37), (3.40), (3.41), toanalyse the one-loop e�etive ation of non-Abelian gauge theories on T 2=Z2.3.2.5 The one-loop e�etive ation on T 2=Z2, its poles and ountertermsIn the following we onentrate on the 4D gauge �eld part of the e�etive ation. In thisase, we note that �f�� and �s��;� are the same as the ones in (2.9), (2.17), respetively,whih were obtained by using the Feynman diagram approah in the U(1) ase. Therefore,using (3.19), the 4D gauge �eld part of the e�etive ation an be written as�(2)[A�℄ = 12g2 X~k Z d4k(2�)4Aa�(�k;�~k)Aa�(k;~k)�� (k2 � ~k2)g�� + k�k��+ i2X~k;~k0 Z d4k(2�)4Aa�(�k;�~k0)Aa�(k;~k) (3.46)��C2(G)h��hyper�� +4(k2g���k�k�)�G++ � 2~k � ~k0g��(�G+�+�G�+)i�C(r)�hyper�� �{ 19 {



where �hyper�� � �s��;+ + �s��;� + �f�� : (3.47)Then, by deomposing this e�etive ation into bulk and brane parts, we reah the mainresult of Setion 3.2: �(2)[A�℄ = �bulk + �brane (3.48)with�bulk = 12X~k;~k0 Z d4k(2�)4Aa�(�k;�~k0)Aa�(k;~k)�(k2 � ~k2)g�� � k�k����� 1g2 � i�C2(G)� C(r)��hyper(k;~k0)�Æ~k;~k0 ; (3.49)�brane = 12X~k;~k0Z d4k(2�)4Aa�(�k;�~k0)Aa�(k;~k)�k2g���k�k��h�4iC2(G)�loal(k;~k;~k0)i(3.50)where �hyper(k;~k0) � �4�dX~p0 Z ddp(2�)d 1(p2 � ~p02)[(p+ k)2 � (~p0 + ~k0)2℄ ; (3.51)�loal(k;~k;~k0) � �4�d2 X~p0 Z ddp(2�)d Æ�2~p0;~k0�~k(p2 � (~p0)2)[(p+ k)2 � (~p0 + ~k0)2℄ : (3.52)From the expression of �bulk we see that the bulk orretion omes with the standardbeta funtion oeÆient9 in 6D whih is given by C(r) � C2(G). Note also that, as inthe Abelian ase disussed previously, a hypermultiplet does not generate a boundary-loalised gauge oupling. However, a 6D bulk ounterterm an be present as we alreadysaw in the Abelian ase (2.23), when evaluating �hyper. Unlike the hypermultiplet, a vetormultiplet does generate boundary-loalised gauge ouplings, see eqs. (3.50), (3.52). Theorresponding (4D) ounterterm that we disuss shortly must then be loalised at the �xedpoints.The divergent nature of �hyper of eq. (3.51) was already presented and disussed tosome extent in the Abelian ase, Setion 2, eq. (2.23). Sine �hyper also appears in thebulk orretion in the ase of non-Abelian gauge theories, eq. (3.51), we analyse this infurther detail. From eq. (2.23), let us reall the following,�hyper(k;~k0) = i�(4�)2(2��)� Z 10 dxJ0hx(1� x)(k2 + ~k02); xk05R5; xk06R6i: (3.53)The exat expression of J0 is needed for studying the �nite e�ets and the dependeneof the zero-mode gauge oupling on the momentum k2. This expression would also be9Beause the number of modes is redued due to orbifolding, the beta funtion oeÆient is 1=2 timesthat for a torus ompati�ation. { 20 {



needed to study dimensional rossover e�ets [15℄ of the oupling at k2 � 1=R25;6. Sine J0is rather ompliated, we present J0 below, for a somewhat simpler ase of k05 = k06 = 0.From eqs. (D.1), (D.20), (D.21), (D.22) and with the following notations � x(1� x)k2; a1 � 1R25 ; a2 � 1R26 ; s~n1 � 2�~n1r a1 ; (n1) � (+ a1n21 ) 12pa2 ; (3.54)one has, if 0 � =a1 < 1:J0[; 0; 0℄ = �pa1a2��2� +ln h4� a1 e�Ei�� Xn12Z ln ���1� e�2� (n1)���2 + �3ra1a2 � 2�r a2�2  � 12pa1a2 Xp�1 �[p+1=2℄(p+1)! ��a1 �p�[2p+ 1℄ (3.55)with E = 0:577216:::. If =a1 > 1, thenJ0[; 0; 0℄ = �pa1a2��2� +ln h�  eE�1i��Xn12Zln ���1�e�2� (n1)���2+4r a2 X~n1>0 K1(s~n1)~n1 :(3.56)Here �[x℄ is the Riemann Zeta funtion; K1 is the modi�ed Bessel funtion, see Appendix Efor de�nitions. The pole struture is the same for both expressions of J0. Regarding the�nite terms, J0 of eq. (3.55) has power-like terms in  � k2 but these are suppressed bythe radii/area of the ompati�ation. These terms are the ounterpart of the term10  ln of eq. (3.56) in the ase =a1 � 1. Note that in the �rst square braket, J0 in (3.56) has apower-like dependene on  � k2 whereas the last two terms in J0 are exponentially sup-pressed at large =a1�k2R25 and (given the symmetry a1$a2) also at large =a2�k2R26.The above expressions are important when we disuss the running of the e�etive gaugeoupling and of the oupling of the higher derivative operator, after anelling the diver-gene in eq. (3.53).Let us onsider some limiting ases. If k2�min(1=R25; 1=R26), eqs. (3.53), (3.55) give:�hyper(k; 0)� i�(4�)2��6R5R6k2��2� � ln h�eE�2R25���(iR6=R5)���4i��ln h4�2e�2���(iR6=R5)��4R26 k2i� (3.57)where we used the Dedekind � funtion, see eq. (E.6). This result shows that after theaddition of the higher derivative ounterterm whih will anel the pole, the hypermultipletonly brings in a logarithmi dependene with respet to the momentum k2, at values ofk2 muh smaller than 1=R25;6. Note that this is a low-energy logarithm, originating frombulk ontributions! If one evaluated instead �hyper(k2 = 0; 0), an IR mass regulator �2IR10This term ( ln ) will be important for the running of the higher derivative operator oupling, see later.{ 21 {



(replaing k2) would still be required for mathematial onsisteny. This would then leadto a troublesome UV-IR mixing of type �2IR=� in (3.57), on whih the limits �IR! 0 and�! 0 do not ommute. This would simply mean that the UV physis does not deouplein the low energy limit. This shows, even in the on-shell result for �hyper, that there is aneed for a higher derivative ounterterm, for quantum onsisteny. We return to this issuein Setion 5.In the ase k2 � max(1=R25; 1=R26), eqs. (3.53) and (3.56) give:�hyper(k; 0) � i�(4�)2��6R5R6k2��2� � ln �2k2 � ln �4�e8=3�E���: (3.58)Finally, the brane orretion �loal of (3.52) also has a divergene. For any 6Dmomenta�loal(k;~k;~k0)= i32�2 �2�+ln 4��2e�E�Z 10 dxln hx(1� x)(k2+~k02)+�~k2+�x� 12�~k0�2i�(3.59)whih if ~k = ~k0 = 0 simpli�es to:�loal�k; 0; 0�= i32�2�2� + ln 4�e2�E + ln �2k2�; (3.60)where � is the arbitrary (�nite) sale introdued by the regularisation sheme.The poles in �hyper and �loal that we identi�ed an be anelled by introduing thefollowing ounterterms in the ation:L:t= Z d2z d2� � 12h2TrW�26W�+12 4Xi=1 1g2brane;iTrW�W�Æ(2)(z�zi0)�+ h:: (3.61)Here zi0(i = 1; � � � ; 4) are the �xed points of the T 2=Z2 orbifold onsidered. Further, h2 isan additional dimensionless bulk oupling while gbrane;i is a dimensionless brane ouplingat the �xed point zi0. The introdution of suh ounterterms to anel the poles is done upto an overall �nite, unknown oeÆient. As a result new parameters (ouplings) emerge inthe theory. For small ompati�ation volume (or k2R25;6 � 1), the bulk higher derivativeoperator is suppressed; however, for large radii (or k2R25;6 � 1) it is relevant and importantfor the overall running of the zero-mode gauge oupling. The e�et of this operator is largelyignored in the literature, both in e�etive �eld theory and string theory approahes. Therenormalisation and the running of the oupling h(k2) will be onsidered in the next setion.Regarding the oupling gbrane;i, after its renormalisation there will be one additionalparameter for the gauge kineti term loalised at eah �xed point. If one onsiders suhorretions in GUT models ompati�ed on orbifolds [25℄, brane-loalised gauge ouplingsrespeting a gauge symmetry smaller than that in the bulk may be present. In that asethe brane ouplings are not universal and an a�et the gauge oupling uni�ation in suhmodels [26℄. { 22 {



4. \Running" of the e�etive gauge oupling as indued by the 6D theoryIn this setion we onsider the one-loop renormalisation and running of the oeÆients ofthe higher derivative operator and of the gauge kineti term of the zero-mode gauge �eld.To begin with, we onsider the running of the bulk oupling h in (3.61) for the zeromode of the gauge �eld. After subtrating the divergene of the bulk term eq. (3.49)with eqs. (3.57) and (3.58) by a bulk higher derivative ounterterm, one has the followingmomentum dependene of the renormalised h:k2 � 1R25;6 : 4�h2(k2) � 4�h2tree + h� C2(G) + C(r)i 196�2 ln h�eE�2R25���(iR6=R5)���4i;k2 � 1R25;6 : 4�h2(k2) � 4�h2tree + h� C2(G) + C(r)i 196�2� ln �2k2 + ln 4�e8=3�E�: (4.1)After writing eah of these equations at two di�erent momentum sales (for the same renor-malisation sale �) and subtrating them, we �nd that above the ompati�ation sales thebulk oupling of the higher derivative operator runs logarithmially in k2 while below theompati�ation sales it does not run. The running of h(k2) above the ompati�ationsales is a just a bulk e�et, little dependent on the details of loalised singularities assoi-ated with the orbifold ation11. Note that the higher derivative ounterterm in eq. (3.61)\absorbed" all linear dependene on k2 in eqs. (3.57) and (3.58), arising from eq. (3.55),(3.56), and this is relevant for the disussion below. For k2R25;6 � 1 the oupling h is notsuppressed, and this has impliations for the running of the e�etive gauge oupling of thezero-mode gauge boson above the ompati�ation sales.Let us now investigate the running of the e�etive gauge oupling ge�(k2) whih isde�ned as the oeÆient of the gauge kineti term of zero-mode gauge boson. The treelevel value of the e�etive gauge oupling has ontributions from both bulk and branes,inluding the bulk higher derivative term. It an be read o� from the following gaugekineti term: � 12Tr�F��� 1g2tree + 1�h2tree24�F��� (4.2)where 1g2tree � 1�g2 + 4Xi=1 1g2brane;i ; � � 14�2R5R6 : (4.3)Here g2 and g2brane;i are the tree-level gauge ouplings in the bulk and at the �xed points,respetively. Note that, although the brane loalised ouplings gbrane;i are new parametersintrodued in the theory, the oupling gtree only depends on their overall ombinationwith the bulk gauge oupling g. Moreover, due to the new parameter htree of the higherderivative ounterterm, ultimately, there is a momentum dependent ontribution to thee�etive gauge oupling even at tree level.11See also the disussion in [8℄. { 23 {



After taking into aount the radiative orretions (see (3.49), (3.50)) the zero-modegauge oupling ge�(k2) is, at one-loop12:1g2e�(k2) = 1g2tree � k2�h2tree + ihC2(G)� C(r)i 1� �hyper� (k; 0) + 4iC2(G)�loal� (k; 0; 0): (4.4)The subsript � in the self-energy �loal� means that only the �nite part of �loal should beonsidered, beause its singularity (the pole 2=�) was anelled by the tree level ouplinggtree in eq. (3.61). For the self-energy �hyper� the subsript � refers to the �nite part of�hyper after the renormalisation of the oeÆient of the higher derivative ounterterm(4.1); therefore �hyper� does not inlude the divergene k2=� in �hyper whih orresponds tothe renormalisation of htree in eq. (4.1). With these onsiderations, note that gtree and htreein (4.4) and in the equations to follow denote only the �nite part of tree level ouplings.Let us now address the running of ge�(k2) and the relation onneting it to the tree leveloupling gtree. To begin with, onsider �rst the ase of k2 � 1=R25;6. To obtain the runningof ge�(k2) for this region one writes (4.4) at two di�erent momentum sales q2; k2 � 1=R25;6for the same renormalisation sale � and subtrats them, then uses eqs. (3.57) and (3.60)to �nd: 4�g2e�(q2) � 4�g2e�(k2) + 14�h � 3C2(G) + C(r)i ln k2q2 ; if q2; k2 � 1R25;6 : (4.5)This is an interesting result: we have obtained the familiar 4D logarithmi running ofthe e�etive gauge oupling with the usual 4D N = 1 beta funtion oeÆient given byb1 = �3C2(G) + C(r). Note that this running was derived from the full 6D theory, bytaking into aount both bulk and boundary loop e�ets. This is interesting beause partof the above logarithmi running omes from the bulk13, assoiated with the massless states.More expliitly, the logarithmi orretion in (4.5) ontains a \bulk" part C(r) lnk2 due tothe hypermultiplet, while the vetor multiplet provides a \bulk" part �C2(G) lnk2 as wellas a \brane" part �2C2(G) lnk2, whih added together give the beta funtion in (4.5). Wenote that the running of the e�etive oupling ge� as shown in eq. (4.5) is una�eted bythe higher derivative operators as long as we are in the region k2 � 1=R25;6.The next step in our analysis is to establish a onnetion between the tree level ouplinggtree and the gauge oupling at low momentum sales well below the ompati�ationsales (k2 � 1=R25;6), after integrating out all massive Kaluza-Klein modes14. Using again12Eq. (4.4) an be written in a form whih separates massive from massless modes' ontributions:1g2e� (k2) = 1g2tree � k2�h2tree � ih �C2(G) +C(r)i 1� �hyperm;� (k; 0)� ih � 3C2(G) + C(r)i2�loal� (k; 0; 0)where �hyperm;� � �hyper� �hyper0;0 , with �hyper0;0 the (0,0) mode ontribution and we used �hyper0;0 =� = 2�loal.On this form we see the emergene of 4D N =2 and N =1 beta funtions of massive and massless setors.13See �hyper of (3.57).14Early studies on this topi an be found in [35℄, but using instead an on-shell approah.{ 24 {



eq. (4.4) together with (3.57), (3.60), we have4�g2e�(k2) � 4�g2tree� b24� ln h4�e�E ���(i u)��4 u (4�2R5R6 �2)i��+ b14� ln �1�2k2 ; k2� 1R25;6 ;with � � 4�2k2R5R6� 4�h2tree + b296�2 ln h�eE�2R5R6u�1���(iu)���4i�� 1:(4.6)Here u � R6=R5 and �1 = 4�e2�E . Further b1 = �3C2(G) + C(r) is the N = 1 betafuntion while b2 = �C2(G) + C(r) is 1/2 of the N = 2 beta funtion oeÆient on thetorus, with 1/2 to aount for the fat that the number of modes is redued on T 2=Z2. Aswritten, eq. (4.6) onnets ge�(k2�1=R25;6) to the tree level oupling gtree, after integratingout the massive Kaluza-Klein modes. The e�et of these modes is aounted for by theterm multiplied by b2 in (4.6), as an overall threshold orretion. It is important to notefrom (4.6) that the dominant ontribution is of logarithmi dependene on k2 and thisis assoiated with the massless states only. Any power-like dependene of ge�(k2) on themomentum sale is suppressed by the ompati�ation volume, � � 1, (i.e. the higherderivative operator is also suppressed.) This is the ase after the renormalisation of theoupling h of the higher derivative gauge kineti term, eqs. (3.61) and (4.1).Eq. (4.6) an be used to study whether the low energy measurements of the ouplings,e.g. eletroweak sale values of the ouplings are onsistent with a ommon value gtree,regarded in this ase as the \uni�ed" oupling. The DR renormalisation sale � is in thispiture regarded as the uni�ation sale. Eq. (4.6) is the ounterpart of that omputed inthe (on-shell) string, in various models [16{18℄ (see also [35℄). As we shall detail later, ourresult in (4.6) is more in agreement with that of the 4D ZN orientifold models of type Istrings [16℄, rather than that of the heteroti string [17,18℄.We have so far onsidered the behaviour of ge�(k2) at momentum sales k2� 1=R25;6and its relation to the tree level oupling. At higher momentum sales, the higher derivativeoperator beomes more important and one annot neglet the presene of its oupling h(k2),eq. (4.1). The regime k2 � 1=R25;6 is that of dimensional rossover [15℄ and is the mostdiÆult to investigate tehnially. In this ase eqs. (3.57), (3.58) provide a rather poorapproximation when used in eq. (4.4) to �nd ge� . One must use instead the full expressionsof the funtions J0, eqs. (3.55) and (3.56), integrated over x as in (3.53). These expressionsonverge even in the ase k2 � 1=R25;6 and an be used to �nd the running of ge� in thisregime. These expressions are somewhat ompliated and this prevents an intuitive, simplepiture for this regime. In this ase a full numerial approah based on (3.55), (3.56) maybe more suitable.Finally, let us onsider the ase of even higher momenta, k2 � 1=R25;6. In this ase we�nd that the oupling h(k2) gives a substantial ontribution to the running of the e�etivegauge oupling. From eq. (4.4) together with eqs. (3.58) and (3.60), we obtain the followingresult:4�g2e�(k2) � 4�g2tree � 4�2k2R5R6� 4�h2tree + b296�2 ln �2�2k2 �� C2(G)2� ln �2�1k2 ; if k2� 1R25;6 (4.7){ 25 {



where �2 = 4�e8=3�E , �1 = 4�e2�E are subtration sheme dependent onstants for thedivergenes of the bulk and brane ontributions respetively15. The sale � is the familiarrenormalisation sale in the DR sheme, at whih a \boundary" value of the oupling isprovided.Eq. (4.7) desribes the running of the e�etive gauge oupling well above the om-pati�ation sales. The last term in eq. (4.7) is due to massless states (brane part only),whih ontribute to the running. Further, the square braket aounts for the ontributionoming from the running oeÆient of the higher derivative term. Sine the square braketinvolves k2R5R6 whih essentially ounts the number of exited Kaluza-Klein modes, weobtain a power-like running with respet to the momentum sale, valid above the om-pati�ation sales. Note, however, that the power dependene on k2 is ontrolled by theparameter h2tree whih multiplies it (and is also a�eted by the presene of ln �2 whih is asubtration sheme dependent oeÆient). We therefore need a deeper understanding ofthis oeÆient.To this purpose, let us address the origin of the power-like term and explain whatultimately ontrols it. To do so we rewrite eq. (4.4) as4�g2e�(k2) = 4�g2tree � 4�h2(k2) (4�2k2R5R6) + b24� Æ � C2(G)2� ln �2�1k2 : (4.8)This equation is valid at all values of k2, large or small relative to 1=R25;6, provided thatother higher dimension operators are negligible. Here Æ is the integral over x as in (3.53)of the part in J0 of either (3.55) or (3.56) whih does not ontain the �rst square braketin these two equations. If k2 � 1=R25;6 then Æ gives a log running given by the last termin (3.57) while if k2 � 1=R25;6 then Æ � 0. With these values of Æ and with the running ofh(k2) as in (4.1) one reovers the limiting ases of large and small momenta disussed in(4.6) and (4.7).The interpretation of the result in (4.8) is as follows: the oeÆient of the power-like term k2R5R6 is ultimately ontrolled by the renormalised oupling h(k2) of the higherderivative term in the ation and by its running. In some works the notion "power running"refers to power-like (threshold) orretions in the UV uto� regulator as opposed to thepower-like dependene with respet to the momentum sale that we obtained here, andthese are not to be onfused. Our result above lari�es that the power running withrespet to the momentum sale is ontrolled by the one-loop orreted oupling of thehigher derivative gauge kineti term in the ation.In general, in theories with higher derivative operators additional e�ets are present.One should essentially start with the full ation inluding at the tree level the higherderivative gauge kineti term, and quantise the theory in its presene. This is a ratherdiÆult problem. Further, in the presene of the higher derivative operator, the propagatorof the zero-mode gauge boson hanges into a sum of two terms: one partile-like propagator15Remember that these are in the minimal subtration sheme, i.e. only the poles in � were anelled bygtree and htree. { 26 {



and one ghost-like propagator, respetively16:G(k) = �ig��k2� k2h2 + 1g2� = �ig2g��� 1k2 � 1k2 + h2g2 �: (4.9)From the oeÆient of eah term, one an see that both partile and ghost have the sameoupling g to matter �elds. Although the ghost pole is loated around the 6D fundamentalsale, the ghost state may give an additional non-vanishing threshold orretion to thegauge oupling. Further, there are many other ompliations, spei� to higher derivativetheories, suh as unitarity violation, non-loality, et, see [27℄- [33℄, whih made the studyof these theories less popular. Another diÆulty that arises is that one must also take intoaount the e�et of brane-loalised terms on the spetrum of the Kaluza-Klein modes [34℄,not onsidered in this paper. Therefore, a detailed investigation of models with higherderivative operators is far more ompliated and beyond the purpose of the present work.To onlude, the higher derivative operator must be inluded to ensure the quantumonsisteny of the model with extra dimensions, and therefore plays an important role inthe running of the e�etive gauge oupling. After the renormalisation of its oupling hthere is only a logarithmi dependene on the momentum sale of the 4D e�etive gaugeoupling ge�(k2 � 1=R25;6). At a higher momentum sale power-like terms in k2R5R6 < 1are present. At even higher momentum sales k2 � 1=R25;6, the higher derivative operatoris important and its oupling h(k2) has a logarithmi running with respet to k2. In thisase the e�etive gauge oupling has, after renormalisation of h, a power-like dependeneon the momentum sale. The oeÆient of this power-like term in momentum is equalto the running oupling of the higher derivative operator. These �ndings provide a learexplanation of the power-like running (with respet to the momentum sale) of the gaugeouplings in models with extra dimensions.5. Higher derivative operators in other shemes and in string theoryIt is interesting to investigate how higher derivative ounterterms emerge in other regu-larisation shemes and in string theory as well. This is important beause their role inensuring the quantum onsisteny of the models was largely ignored in the literature. Tothis purpose, we onsider the e�ets of the massive Kaluza-Klein modes in a regularisationwith a momentum uto�, i.e. the proper-time uto� regularisation. Note that a proper-time uto� is less suitable as a regulator, sine it breaks 4D Lorentz invariane and Wardidentities. Nevertheless, its use provides a more intuitive piture and will help our physialunderstanding of the important role of higher derivative operators.Let us introdue a uto� regulator 1=�2 in �hyper of (3.53) and onsider this equationfor the massive mode ontributions only, denoted �hyperm , i.e. we exlude the (0; 0) mode17.16See Setion 4 in [6℄ for a similar disussion for the ase of a massive salar �eld.17The (0; 0) mode ombines with the ontribution of �loal to give 4D N =1 beta funtion, see footnote [12℄{ 27 {



One has �hyperm (k2; 0) = i�2�(2�)4 Z 10 dx Xn1;22Z0 Z 11=�2 dtt e�� t [k2x(1�x)+n21=R25+n22=R26℄ (5.1)= i�(4�)2��2R5R6 � ln h4�e�E j�(i u)j4u ��2R5R6�i��6 k2R5R6 ln h(4�)�1eE�2R5R6u�1���(iu)���4i�whih is valid only if k2�1=R25;6��2. The prime on the double sum marks the absene ofthe (0; 0) mode. The ln � term in the square braket is the ounterpart of the �2=� pole inthe DR sheme18, �rst term in (5.2). The k2 ln � term orresponds the k2=� term in the DRsheme, assoiated with higher derivative operator. These divergenes are anelled by thebulk kineti term and the higher derivative operator, respetively. In addition we obtain aquadrati divergene in the regulator � (5.1) whih annot appear in the DR sheme.To see in more detail the need for a higher derivative operator in this regularisation,remember that the momentum k2 may be regarded as an IR regulator, to ensure the�niteness (at t ! 1) of �hyper in (5.1) when the massless mode (n1; n2) = (0; 0) isinluded. One noties that in the last term of (5.1) the limits k2 ! 0 and �2 !1 do notommute [14℄: hk2 ! 0;�2 !1i 6= 0: (5.3)We therefore have a rather troublesome UV-IR mixing term (UV divergent, IR �nite)meaning that the two setors of the theory are not deoupled at the quantum level ! As wereall from the omment following (3.57), a similar UV-IR mixing in the DR sheme wasanelled by the renormalisation of a higher derivative ounterterm. In a similar way, therenormalisation of this operator anels the log divergene in the last term of (5.1) so that itenables the deoupling of the IR from the UV regime. Finally, the logarithmi and quadratidivergenes in the �rst two terms of (5.1) have to be subtrated by the gauge kinetiounterterm at a renormalisation point. However, there remains a orretion �2R5R6 witharbitrary oeÆient19, whih may eventually be identi�ed from a more fundamental theory,e.g. from the �eld theory limit of the heteroti string [14,36℄.What does string theory say about these problems or about the need for higher deriva-tive operators at the quantum level? To begin with, it is interesting to observe that in 4D18In the DR sheme, the massive setor (this exludes the (0,0) mode) gives for k2 � 1=R25;6 (eq. (3.57))�hyperm (k2; 0) = i�2���(2�)4�� Z 10 dx Xn1;22Z0 Z 10 dtt1��=2 e�� t [k2x(1�x)+n21=R25+n22=R26℄= i�(4�)2��2� �ln h4�e�E j�(i u)j4 u �4�2�2R5R6�i+�6 k2R5R6��2� � ln h�eE�2R5R6u�1���(iR6=R5)���4i��: (5.2)19One must not forget that � is atually a regulator and 100� � is equally good a hoie!{ 28 {



ZN orientifold models of type I strings [16℄, the one loop threshold orretions assoiatedwith the massive N = 2 setor are exatly of the type in (4.6) after the tadpole anel-lation ondition. Note that this ondition \removes" any power-like dependene on thestring sale. This similarity of the results is interesting, although there does not seem toexist a lear �eld theoreti understanding of this tadpole anellation ondition and whatthat means for the higher derivative operator that we found. This also raises intriguingissues suh as whether the higher derivative ounterterm that emerged and is relevant atlarge radii may be related to the non-perturbative e�ets of D-branes.Next, let us onsider the ase of the heteroti string toroidal orbifolds T 6=ZN , N even,with \�xed" two-torus under the orbifold ation. This brings one-loop string thresholdorretions due to the N = 2 massive setor of Kaluza-Klein and winding modes [17, 18℄.In the limit of large radii (in units �0) non-perturbative e�ets (world-sheet instantone�ets) are suppressed to give in the �eld theory regime:�hyper(k2 = 0; 0) � � ln h4�e�E j�(iu)j4u T2i+ �3 T2 + �IR ln �0; (5.4)where T2 = R5R6=�0; u is the usual omplex struture (assuming an orthogonal �xed two-torus). This result is similar to that in (5.1) for k2 = 0, as disussed in detail in [14,36℄.Although the string provides only an on-shell result (k2 = 0), the one-loop stringnevertheless requires an infrared regulator denoted �IR, whih plays a role similar to asmall momentum k2 ! 0. The last term in (5.4) vanishes when the infrared regulator instring is removed �IR ! 0, assuming �0 non-zero. However, �0�1 � M2string is the stringsale, whih is the ounterpart to our UV momentum uto� regulator �2 [14, 36℄. Oneimmediately observes from the last term in (5.4) that the limit of removing the infraredregulator �IR ! 0 and the limit of largeMstring or �0 ! 0 whih is the e�etive �eld theoryregime, do not ommute: h�IR ! 0; �0! 0i 6= 0: (5.5)This is the same problem we enountered in the proper-time uto� regularisation sheme,if we regard �IR as k2 ! 0 and Mstring ! 1 as the ounterpart of �2. Therefore there isagain a UV-IR mixing and a non-deoupling of the high sale physis i.e. of massive modesfrom the 4D low energy limit [14℄, also enountered in the DR sheme (see omment after(3.57)). The reason why suh e�ets are usually not disussed in string theory is ultimatelyrelated to the underlying on-shell approah, whih \obsures" the need for higher derivativeounterterms. The last term in (5.4) is then a \remnant" of suh e�ets, and a reminder ofthis issue in the heteroti string. This non-deoupling of massive modes in the low-energy(4D) raises questions on the onsisteny of attempts to math string uni�ation sale (inthe presene of suh thresholds) with MSSM-like uni�ation senarios. This underlines theneed for a study of the higher derivative operators in string theory20.20For more details on this matter see [14℄ and Setion 3 in [11℄.{ 29 {



6. ConlusionsIn this paper we performed a general analysis of the one-loop orretions to the self-energy of gauge bosons in the framework of 6D N = 1 supersymmetri gauge theorieson orbifolds. We �rst onsidered an Abelian gauge theory using the Feynman diagramapproah in the omponent �eld formalism. The analysis was then extended to the aseof non-Abelian gauge theories on orbifolds. By employing the bakground �eld methodin higher dimensions, we established the general setup for the one-loop e�etive ation forgauge bosons and then applied it to the ase of the orbifold T 2=Z2. As a onsequene, wehave shown that our omponent �eld approah is onsistent with and omplementary tothe super�eld alulation [9, 10℄. Moreover, the additional bene�t of our omponent �eldapproah is that our �ndings an be easily used in a non-supersymmetri setup.In the ase of Abelian theories on T 2=Z2 we omputed the divergent and �nite parts ofthe one-loop orretion to the vauum polarisation tensor. For the ase of a bulk fermion itwas shown that only bulk orretions are present. The bulk orretions ontained a diver-gene whih had to be anelled by the introdution of a 6D higher derivative ounterterm.The loop orretions of a bulk salar to the gauge boson self-energy were also omputedto show that there is a bulk (6D) higher derivative as well as brane loalised (4D) gaugekineti ounterterms. The former is absent in the limit when the two ompat dimensionsollapse onto eah other (similar for the bulk fermion), in agreement with the result thatthere is no higher derivative ounterterm from the gauge interations at one loop in 5D21.Combining the bulk salar and fermion ontributions, we showed that a hypermultipletonly gives a bulk orretion whih requires a higher derivative ounterterm, in agreementwith other reent studies [10℄.The above one-loop results were generalised to the ase of non-Abelian gauge theorieson the T 2=Z2 orbifold and many of our results are expeted to apply to other 6D orbifoldsas well. This generalisation was done by �rst onstruting the e�etive ation with abakground �eld method in higher dimensions, whih was then applied to 6D orbifolds. Tothis purpose, we introdued funtional di�erentiations ompatible with the orbifold ationson the �elds. We found that hypermultiplets provide only bulk orretions, while vetormultiplets bring in both bulk and boundary-loalised orretions. The divergene of thebulk orretion is anelled by a 6D higher derivative ounterterm while the divergene ofthe brane orretion requires 4D boundary-loalised gauge kineti ounterterms. Therefore,after subtration of divergenes, there are unknown new parameters (ouplings) omingfrom these operators in the theory. The bulk orretion has a non-perturbative originsine we re-summed in�nitely many individual (divergent) loop ontributions of the bulkmodes. At the tehnial level this is related, in part, to a singularity (simple pole) of theHurwitz-Riemann Zeta funtion in the re-summed orretion. We also omputed the �nitepart of the bulk orretion whih gives the momentum dependene of the self energy of thegauge boson. After renormalisation of the higher derivative operator, the �nite part of thebulk orretion has, at k2 � 1=R25;6, a familiar, logarithmi dependene on k2 due to themassless states only. There are in addition power-like terms (in k2R5R6 � 1), strongly21Loalised superpotential interations do bring in one-loop higher derivative ounterterms in 5D [5,6℄.{ 30 {



suppressed in this regime, and due to integrated massive modes. At higher sales the �nitepart ontains power-like and exponentially suppressed terms in k2R5R6.We then studied the behaviour of the e�etive 4D gauge oupling ge�(k2), whih wasde�ned as the oupling of the zero-mode gauge boson. After renormalisation of the higherderivative operator oupling, we disussed in detail the running of the e�etive gaugeoupling with respet to the momentum sale. In the limit of momenta muh smaller thanthe ompati�ation sales, the e�etive oupling runs logarithmially with the 4D N = 1beta funtion and this low-sale running is indued by both bulk and brane terms.We also analysed in detail the threshold orretions to the low energy gauge ouplings,due to massive Kaluza Klein modes with N = 2 beta funtion oeÆient. The relationof the low energy e�etive oupling to the tree level oupling shows that there is onlya logarithmi dependene of ge�(k2) on the momentum sale, while power-like terms arestrongly suppressed in the regime k2R5R6 � 1. This �nding has potentially interestingonsequenes for phenomenology, suh as the uni�ation of the gauge ouplings. This isthe result after the renormalisation of the higher derivative oupling, whih below om-pati�ation sale is essentially onstant (no running). It was observed that this result wasin agreement with that of the 4D ZN orientifolds of the type I string, where no power-liketerms are present in the one-loop threshold orretion to the low-energy oupling.At higher momentum sales, the higher derivative gauge kineti term is more impor-tant. After renormalisation, its oupling has a logarithmi running with respet to themomentum sale. At k2 � 1=R25;6 we provided tehnial formulae whih allow the studyof the dimensional ross-over regime of the e�etive gauge oupling. At larger momen-tum sales (k2 � 1=R25;6), the initially negligible ontribution of the higher derivative termto the oupling ge� beomes signi�ant and starts to hange the running of the e�etiveoupling with respet to momentum sale from the logarithmi one to the power-like one.This behaviour was studied in detail. At all momentum sales the oeÆient of the power-like term is equal to the running oupling of the higher derivative gauge kineti term.This is an interesting �nding whih lari�es the physial meaning of power-like running (inmomentum) in models with extra dimensions.Finally, the importane of the higher derivative operator was emphasised by showingthe need for them as ounterterms in other regularisation shemes and in (heteroti) stringtheory. In partiular, it was shown that in these ases there is a UV-IR mixing (UVdivergent, IR �nite) at the quantum level, due to ignoring the quantum role of the higherderivative operator. In the (on-shell) heteroti string this an be seen from the fat thatthe �eld theory limit of the one-loop orretion from massive states does not ommutewith the infrared regularisation of the one-loop string. This underlines the need for theinvestigation of the role of higher derivative operators in string theory too.Aknowledgements: The authors aknowledge very interesting and useful disussionswith W. Buhm�uller, S. Y. Choi, E. Dudas, S. Groot Nibbelink, M. Hillenbah andF.Quevedo. The work of D. Ghilenea was supported by a post-dotoral researh fel-lowship from the Partile Physis and Astronomy Researh Counil (PPARC), U.K.. D.G.aknowledges a visiting fellowship from CERN where this work was ompleted.{ 31 {



7. AppendixA Notations and ConventionsThe metri has the signature gMN = diag(+ � � � ��); M;N = 0; 1; 2; 3; 5; 6 are six-dimensional indies and �; � = 0; 1; 2; 3 are four-dimensional ones. The Cli�ord algebra insix dimensions is haraterised byf�M ;�Ng = 2gMN ; (�M)T = �C�MC�1; CT = C; Cy = C�1: (A.1)An expliit representation for the 8� 8 gamma-matries is�� =  0 �� 0 ! ; �5 =  0 55 0 ! ; �6 =  0 �1414 0 ! (A.2)where � and 5 are the four-dimensional gamma matries, with5 = �0123 = �i 12 00 �12! : (A.3)In this basis, the six-dimensional hirality operator is diagonal:�7 = �0�1�2�3�5�6 =  �14 00 14 ! : (A.4)The harge onjugation is then C =  0 �C5C5 0 ! (A.5)where C5 is the �ve-dimensional harge onjugation.After imposing the hirality onstraint in six dimensions, the gamma matries atingon right-handed or left-handed 6D spinors are redued to the following 4 � 4 matries,respetively, M � (�; 5;�14) and �M � (�; 5;14): (A.6)In �ve dimensions, the gamma matries �a(a = 0; 1; 2; 3; 5) are given by�� = �; �5 = 5 (A.7)satisfying the following relations:(�a)T = �C5�aC�15 ; CT5 = �C5; Cy5 = C�15 : (A.8)We note some useful formulae for the traes, used in the textTr[�� ℄ = 4g�� ;Tr[����℄ = 4(g��g�� � g��g�� + g��g��);Tr[��5��℄ = �4i����� ;Tr[���℄ = Tr[��5℄ = Tr[���5℄ = 0: (A.9){ 32 {



In the text we also used the following relations on Casimir operators for a representationr (denoted G (N) in the ase of the adjoint (fundamental) representation) of the group G:tr(taGtbG) = C2(G)Æab; tr(tar tbr) = C(r)Æab: (A.10)with C2(G) = C(G) = N , C(N) = 1=2 and C2(N) = (N2 � 1)=2N , in the ase of SU(N).B Propagators of bulk �elds on orbifoldsWe present in the following the propagators on the T 2=Z2 orbifold used in the text. Onthe orbifold T 2=Z2, the positions z � (x5; x6) in the extra dimensions are identi�ed byz !�z. For a bulk fermion, we impose the boundary onditions asP (x; z) � i�f5 (x;�z) =  (x; z); (x; z) =  (x; z+ 2�R5) =  (x; z+ i2�R6) (B.1)with �f = �1. Then, the fermion on the orbifold is written in terms of a fermion on T 2 as (x; z) = 12(1 + P )�(x; z)= 12(�(x; z) + i�f5�(x;�z)): (B.2)By using the fermion propagator on T 2 given byD(x; z; x0; z0) � h�(x; z)�(x0; z0)i ! ~D(p; ~p; ~p0) � iÆ~p;~p0p=+ 5p5 + p6 ; (B.3)we �nd the fermion propagator on the T 2=Z2 orbifold asD�f (x; z; x0; z0) � h (x; z) (x0; z0)i! ~D�f (p; ~p; ~p0) � i2 � Æ~p;~p0p=+ 5p5 � p6 � �f Æ~p;�~p0p= + 5p5 � p6 i5� : (B.4)Here � depends on the 6D hirality. Now we onsider a bulk salar �eld satisfying theboundary onditions on the orbifold asP�(x; z) � �s�(x;�z) = �(x; z);�(x; z) = �(x; z + 2�R5) = �(x; z + i2�R6) (B.5)with �s = �1. Similarly to the fermion ase, we an write down the salar on the orbifoldin terms of a salar on the overing spae as�(x; z) = 12(1 + P )'(x; z)= 12('(x; z) + �s'(x;�z)): (B.6)Then, we obtain the salar �eld propagator on the orbifold asG�s(x; z; x0; z0) � h�(x; z)�(x0; z0)i ! ~G�s(p; ~p; ~p0) � i2 Æ~p;~p0 + �sÆ~p;�~p0p2 � p25 � p26 : (B.7){ 33 {



C Details of the one-loop vauum polarisation to U(1) gauge bosonsWe disuss in the following the detailed derivation of the one-loop vauum polarisation ofU(1) gauge bosons due to the fermioni and bosoni ontributions.C.1 A bulk fermion ontributionAfter introduing a Feynman parameter and shifting the integration momentum, we obtainthe fermioni orretion (2.9) as�f�� = �2g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2n2p�p� � 2x(1� x)k�k�+g�� [�p2 + x(1� x)k2 + ~p0 � (~p0 + ~k0)℄o (C.1)with � � �x(1� x)(k2 � ~k02) + (~p0 + x~k0)2: (C.2)After re-writing the terms proportional to g�� as�p2 + x(1� x)k2 + ~p0 � (~p0 + ~k0) = �(p2 ��)+ 2x(1� x)(k2 � ~k02)+(1� 2x)~k0 � (~p0 + x~k0); (C.3)the orretion beomes�f�� = �2g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d�� 2p�p�(p2 ��)2 � g��p2 ���+ 1(p2 ��)2�2x(1� x)[(k2 � ~k02)g�� � k�k� ℄ + (1� 2x)~k0 � (~p0 + x~k0)g����:(C.4)By using Z ddp(2�)d� 2p�p�(p2 ��)2 � g��p2 ��� = 0;we end up with the result�f�� = �2g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2��2x(1� x)[(k2 � ~k02)g�� � k�k� ℄ + (1� 2x)~k0 � (~p0 + x~k0)g���: (C.5)used in the text, eq. (2.9). { 34 {



C.2 A bulk salar ontributionAfter using a Feynman parameter and a shift of integration momentum, the bosoni bulkontribution (2.17) is given by�bulk�� � �12g2Æ~k;~k0�4�dX~p0 Z ddp(2�)d 1(p2 ��)2n� 4p�p� � (1� 2x)2k�k�+2g�� [p2 + (1� x)2k2 � (~p0 + ~k0)2℄o: (C.6)Rewriting the terms proportional to g�� asp2 + (1� x)2k2 � (~p0 + ~k0)2 = (p2 ��) + (1� 3x+ 2x2)(k2 � ~k02)+2(x� 1)~k0(~p0 + x~k0); (C.7)the bulk orretion beomes�bulk�� = �12g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d� � 2� 2p�p�(p2 ��)2 � g��p2 ���+ 1(p2 ��)2�2(1� 3x+ 2x2)(k2 � ~k02)g�� � (1� 2x)2k�k�+4(x� 1)~k0 � (~p0 + x~k0)g����: (C.8)Then, after 4D momentum integration with eq. (C.5), the �rst two terms anel. Nowobserve that (1� 2x)(k2 � ~k02)(p2 ��)2 = � ��x� 1p2 ���+ 2~k0 � (~p0 + x~k0)(p2 ��)2 :Then from the x-integrationZ 10 dx ��x� 1p2 ��� = 1p2 � (~p0 + ~k0)2 � 1p2 � ~p02 ;we note that the surfae term for the Feynman parameter vanishes after the Kaluza-Kleinsummation with the disrete shift in ~p0. Therefore, we obtain the orretion as�bulk�� = �12g2Æ~k;~k0�4�dX~p0 Z 10 dx Z ddp(2�)d 1(p2 ��)2��(1� 2x)2[(k2 � ~k02)g�� � k�k� ℄ + 2(2x� 1)~k0(~p0 + x~k0)g���: (C.9)used in the text, eq. (2.18). { 35 {



D Results and evaluation of series J0;1 for 6D orbifoldsWe evaluate (with  � 0, a1;2 > 0, 0 � 1;2 < 1):Jv[; 1; 2℄� �[�=2℄ Xn1;n22Z(n1 + 1)vh�[+ a1(n1 + 1)2 + a2(n2 + 2)2℄i��=2= Xn1;n22Z(n1 + 1)vZ 10 dtt1��=2 e�� t [+a1(n1+1)2+a2(n2+2)2℄; v=0; 1:::; (D.1)This expression was used in the text for v = 0 and v = 1 in eqs. (2.10), (2.11), (2.12), (2.22),(2.23), (3.51). In these eqs we assumed ai = 1=R2i+4, i = 1; 2, 1 = xR5k05, 2 = xR6k06 and = x(1�x)(k2+~k02) in Eulidean metri. Sine we an always shift i by an integer, onlytheir frational part will enter the �nal result.The �nal value of J0 was given in [6℄ but in the text we also need to evaluate J1however. Sine the proof is similar, and to be general, we present the generi steps toevaluate Jv. The ounterpart of Jv with a fator (n2 + 2)v in front of the integral isobtained from the replaements 1$ 2 and a1$a2. Most important for us is to identifythe poles of Jv , (to �nd the ounterterms) but we also evaluate the �nite part whih requireus ompute the O(�) term in the double sum in the �rst line in (D.1). Notation used:(n1) � pz(n1)pa2 � i 2; z(n1) � + a1(n1 + 1)2; u �pa1=a2 (D.2)Keeping the sum over n1 �xed, we re-sum (see (E.4)) over n2, so thatXn1;22Ze��t [a2(n2+2)2+a1(n1+1)2℄ = Xn22Ze�� t [a2(n2+2)2+a121℄ + 0Xn12ZXn22Ze�� t [a2(n2+2)2+a1(n1+1)2℄= Xn22Z e�� t [a2(n2+2)2+a121℄ + 1pt a2 0Xn12Z e��t a1 (n1+1)2+ 1pt a2 0Xn12Z 0X~n22Z e��~n22t a2 ��t a1 (n1+1)2+2�i~n22 (D.3)The �rst term has n1=0, the last two have n1 6=0. ThenJv = K(v)1 + K(v)2 + K(v)3 (D.4)K(v)i , are obtained by integrating term-wise (D.3) with appropriate oeÆients and extran1 dependene, see eqs. (D.5), (D.6), (D.18) below. Their evaluation follows:- Calulation of K(v)1 :K(v)1 � v1Xn22ZZ 10 dtt1��=2 e�� t [a2(n2+2)2+a121℄��t = �v1 ln ���2 sin(�i(0))���2 (D.5){ 36 {



whih was omputed by �rst performing a re-summation (E.4) over n2, and then used theintegral representation (E.1) of the Bessel funtion K 12 its expression (E.2), and (D.2).- Calulation of K(v)2 :Here we distinguish two ases: if 0 < =a1 < 1 one has:K(v)2 � 1pa2 0Xn12Z(n1 + 1)v Z 10 dtt3=2��=2 e��t a1 (n1+1)2��t = � 12� �2pa2 �[�1=2 + �=2℄ 0Xn12Z(n1 + 1)vh+ a1(n1 + 1)2i 12� �2= (�a1) 12� �2pa2 Xk�0 ��a1 �k�[k�1=2+�=2℄k! h�[2k�q; 1+1℄+(�1)v�[2k�q; 1�1℄i����q=v+1��(D.6)where, in the seond line above we used the binomial expansion[a(n+ )2 + q℄�s = a�sXk�0 �[k + s℄k ! �[s℄ ��qa �k[(n+ )2℄�s�k (D.7)We employed the Hurwitz Zeta funtion, �[z; a℄ = Pn�0(a + n)�z , a 6= 0;�1;�2; � � � forRe(z)> 1. One has �[z; 1℄ = �[z℄ where �[z℄ is the Riemann zeta funtion. Hurwitz zeta-funtion has one singularity (simple pole) at z = 1. Therefore, in the last line in (D.6),under the sum, a singularity in Zeta funtions is present for those k with 2k � v � 1 = 1.When present, this singularity is taken are of by the presene of � in the argument of Zetafuntions. The presene of suh singularity depends on the values of the parameter v. Wetherefore distinguish below two situations:(i) v = �2; 0; 2; 4; 6; 8; :::: when suh a singularity is present in the term with k = v=2 + 1.(ii) when v is di�erent from these values.In ase (ii) the result is already that given by (D.6) where one (is allowed to) sets � = 0sine the series does not develop any singularity and onverges rapidly under our initialassumption for the ratio 0 � =a1 < 1. For ase (i), when a singularity develops, we isolatethe orresponding term in the series from the rest, by using�[1 + �; 1� 1℄ = 1� �  (1� 1) + O(�)�[v + 1=2 + �=2℄ = �[v + 1=2℄ �1 + (�=2) (v+ 1=2)�+ O(�2)x� = 1+ � ln x+ O(�) (D.8)with  (z) = (d=dz) ln�[z℄ the Digamma funtion. In the remaining terms in the series weare allowed to take �! 0. We �nd that for v = �2; 0; 2; 4; 6; � � �{ 37 {



K(v)2 =p�uXk�0 �[k�1=2℄k! ��a1 �kh�[2k�v�1; 1+1℄+�[2k�v�1; 1�1℄i����k 6=v=2+1 (D.9)�p� u �[v=2+1=2℄(v=2+1)! ��a1 �v=2+1��2� + ln h�a1e� (v=2+1=2)+ (1)+ (�1)i�; u �pa1=a2where the series onverges quikly if j=a1j < 1, whih justi�es our (stronger) initial as-sumption 0 � =a1 < 1. This onludes the disussion for ase (i).Replaing now v = 0; 1; 2 in the above result, one obtains the appropriate expressionsfor K(0), K(1) and K(2), that we need for our purposes. One hasK(0)2 = � pa1a2��2� + ln h4� a1 eE+ (1)+ (�1)��+ 2� u�16 + 21�+p� uXp�1 �[p+1=2℄(p+ 1)! ��a1 �p+1��[2p+1; 1+1℄+�[2p+1; 1�1℄�; u � �a1a2� 12 (D.10)and K(1)2 = p� uXp�0 �[p+ 3=2℄(p+ 2)! ��a1 �p+2��[2p+ 2; 1+ 1℄� �[2p+ 2; 1� 1℄�+ 2� u 1h13 (1 + 221) + a1 i; u �pa1=a2 (D.11)FinallyK(2)2 =�u h�130 +21 + 41i+ � pa1a2 h16+21i� � 24a1pa1a2��2� +ln h4�a1 eE�2+ (1)+ (�1)i�+ p� uXp>0 �[p+ 3=2℄(p+ 2)! ��a1 �p+2��[2p+ 1; 1 + 1℄ + �[2p+ 1; 1� 1℄�; (D.12)In the remaining ase 1 � =a1 we examine separately the ases v = 0; 1; 2. One shows:K(0)2 � 0Xn12Z 1pa2 Z 10 dtt3=2��=2 e��ta1(n1+1)2�� t  (D.13)= �pa1a2h�2� +ln(�  eE�1)i+4� a2� 12 X~n1>0 os(2�~n11)~n1 K1�2�~n1r a1�+ 2�pa2 (+ a121) 12This expression was obtained by �rstly adding and subtrating a zero mode, whih enabledus to then re-sum (see (E.4)) the series over n1 2 Z. We then used the integral represen-tation of the modi�ed Bessel funtions K1 (E.1). The pole present is that of the initial{ 38 {



\missing" zero mode. The presene of the Bessel funtion K1[z℄ whih is exponentiallysuppressed (E.2) ensures that the result above onverges rapidly in this ase too.One also has, for v = 1 (again 1 � =a1):K(1)2 � 1pa1 0Xn12Z(n1 + 1) Z 10 dtt3=2��=2 e��ta1(n1+1)2��t  (D.14)= � 12a1� 1pa2 ��1 0Xn12ZZ 10 dtt5=2��=2 e��ta1(n1+1)2�� t = � 12a1� 1pa2 ��1� � �222pa1h�2� + ln ��  eE�3=2�i+ 4 pa1 X~n1>0 os(2�~n11)~n21 K2(s~n1)� 4�23 (+ a121) 32�= 4pa1a2 X~n1>0 sin(2�~n11)~n1 K2(s~n1)+ 2�1pa2 (+ a11) 12 ; s~n1�2�~n1p=a1 (D.15)where the series onverges rapidly, due to exponential suppression of the Bessel funtionK2. To evaluate the integral over t with denominator t5=2��=2 one uses steps idential tothose for K(0)2 with the only di�erene that we enountered an integral representation ofK2 rather than K1.Finally, for the remaining ase v = 2 (1 � =a1):K(2)2 � 1pa1 0Xn12Z(n1 + 1)2 Z 10 dtt3=2��=2 e��ta1(n1+1)2�� t  (D.16)= � 1� 1pa2 ��a1 0Xn12ZZ 10 dtt5=2��=2 e��ta1(n1+1)2�� t  = � 1� 1pa2 ��a1��4�23 (+ a121) 32� �222pa1 h�2� + ln ��  eE� 32 �i � 4�23 (+ a121) 32 + 4pa1 X~n1>0 os(2�~n11)~n21 K2(s~n1)�= �� 24a1pa1a2h�2� +ln ��  eE� 32�i� 2�pa1a2 X~n1>0os(2�~n11)~n21 h3K2(s~n1)+s~n1K1(s~n1)i+ 2�21pa2 (+ a121) 12 ; s~n1 � 2�~n1p=a1; =a1 � 1: (D.17)with intermediate steps similar to those for K(1)2 .- Calulation of K(v)3 :Finally, we evaluate the remaining: { 39 {



K(v)3 � 1pa2 0Xn12Z 0X~n22Z(n1 + 1)v Z 10 dtt3=2��=2 e��~n22t a2 ��t a1 (n1+1)2+2�i~n2 2�� t  (D.18)= 1pa2 0Xn12Z X~n2>0(n1 + 1)v 1~n2 e�2�~n2 (n1) + ::= � 0Xn12Z(n1 + 1)v ln ���1� e�2�(n1)���2= � Xn12Z(n1 + 1)v ln ���1� e�2�(n1)���2 � 2�v1pa2 (+ a121) 12 + v1 ln ���2 sin(�i(0))���2(D.19)using the notations in eq. (D.2). In the last line we re-wrote the result in a form whihmakes expliit the anellations whih our in the sum of Jv = K(v)1 +K(v)2 + K(v)3 .The steps in the alulation of K(v)3 are similar to those so far: we used the integralrepresentation of the Bessel funtion K1=2 eq. (E.1), then its expliit expression (E.2) andthen the series expansion of the logarithm. The result for K(v)3 is valid for real v, not onlyfor our ases of interest v = 0; 1; 2, regardless of the value =a1 (larger/smaller than 1).We an now add the intermediate eqs to obtain J0;1;2 using eq. (D.4). J0 quoted belowin (D.20) and (D.21) is found from eqs. (D.5), (D.10), (D.13), (D.19). Further, J1 quotedin (D.23) and (D.24) is found using eqs. (D.5), (D.11),(D.15), (D.19). Finally J2 quotedin (D.25) and (D.26) is obtained by using (D.5), (D.12), (D.17), (D.19). In onlusion wehave the following:Results: If 0 � =a1 < 1 and with notations (D.2), (n1) � pz(n1)=pa2 � i 2; andz(n1) � +a1(n1+1)2, u �pa1=a2, s~n1�2�~n1p=a1, E = 0:577216::: we obtain (in thetext a1 = 1=R25, a2 = 1=R26J0[; 1; 2℄ = �pa1a2��2� +ln h4� a1 eE+ (1)+ (�1)i�+ 2� u �16 + 21 � �=a1 + 21� 12��Xn12Z ln ���1�e�2� (n1)���2+p� uXp�1 �[p+1=2℄(p+1)! ��a1 �p+1��[2p+1; 1+1℄+�[2p+1; 1�1℄�(D.20)while if we have =a1 > 1, thenJ0[; 1; 2℄ = �pa1a2��2� +ln h�  eE�1i��Xn12Zln ���1�e�2� (n1)���2+ 4ppa2 X~n1>0 os(2�~n1 1)~n1 K1(s~n1) (D.21){ 40 {



The pole struture is the same for both ases; if =a1 > 1 and exept the �rst squarebraket, no power-like terms in  are present (the last one being suppressed due to K1).Finally, we quote here a limiting ase for the behaviour of the funtion J0J0[� 1; 0; 0℄ = �pa1a2��2� + ln h4�e�Ea1���(ipa1=a2)��4i�� ln h4�2 j�(ipa1=a2)j4 a�12 i� ln  (D.22)and this was used in the text in eq. (3.57).Further, if 0 � =a1 < 1J1[; 1; 2℄ = 2�1 u � a1 � (=a1 + 21) 12 + 13(1 + 221)��Xn12Z(n1 + 1) ln ���1� e�2�n1 ���2+ p� uXp�0 �(p+ 3=2)(p+ 2)! ��a1 �p+2��[2p+ 2; 1 + 1℄� �[2p+ 2; 1� 1℄� (D.23)while if =a1 > 1, thenJ1[; 1; 2℄ =� Xn12Z(n1+1) ln ���1� e�2�(n1)���2+ 4 pa1a2 X~n1>0 sin(2�~n11)~n1 K2(s~n1) (D.24)where s~n1 � 2�~n1p=a1. Note that J1 has no poles in �, unlike the ase of J0;2. K1 isexponentially suppressed at large argument.Finally, if 0 � =a1 < 1J2[; 1; 2℄ = � �24 a1pa1a2��2� + ln h4� a1 eE+ (1)+ (�1)�2i�� � u � 130 � 6a1�21�1� (=a1 + 21) 12�2�� Xn12Z(n1 + 1)2 ln ���1� e�2�(n1)���2+p� uXp�1 �[p+3=2℄(p+2)! ��a1 �p+2��[2p+1; 1+1℄+�[2p+1; 1�1℄�: (D.25)while if =a1 > 1 then:J2[; 1; 2℄ = � �24a1pa1a2��2� + ln h�  eE�3=2i�� Xn12Z(n1 + 1)2 ln ���1� e2�(n1)���2� 2 �pa1a2 X~n1>0 os(2� ~n11)~n21 h3K2(s~n1) + s~n1K1(s~n1)i; (D.26){ 41 {



where s~n1 � 2�~n1p=a1.The series with zeta funtions onverge under the assumption 0 � =a1 < 1. The pres-ene of Bessel funtions K1;2 (see (E.2)) whih are exponentially suppressed with respet totheir argument (larger than unity) ensures a rapid onvergene of the orresponding series.Similar expressions exist for Iv = Jv j1$2;a1$a2 ; and are obtained from those above withreplaements a1 $ a2, 1 $ 2.E De�nitions of speial funtionsThe modi�ed Bessel funtionsKn(z) used above have the integral representation/de�nition:Z 10 dx x��1e�bxp�ax�p = 2p �ab� �2pK �p (2pa b); Re(b); Re(a) > 0 (E.1)with K1[x℄ = e�xr �2x �1 + 38x � 15128x2 +O(1=x3)�K2[x℄ = e�xr �2x�1 + 158x + 105128 1x2 + O(1=x3)�K 12 [x℄ = e�xr �2xK 32 [x℄ = e�xr �2x�1 + 1x� (E.2)The de�nition of the poly-logarithm funtion used aboveLi�(x) =Xx�1 xnn� (E.3)The one-dimensional Poisson re-summation used in the appendix:Xn2Z e��A(n+�)2 = 1pAX~n2Z e��A�1~n2+2i�~n� (E.4)The Hurwitz Zeta funtion used in this paper is de�ned as�[z; a℄ =Xn�0(a+ n)�z (E.5)where a 6= 0;�1;�2; � � � for Re(z)> 1. One has �[z; 1℄ = �[z℄ where �[z℄ is the Riemannzeta funtion. Hurwitz zeta-funtion has one singularity (simple pole) at z = 1.We also used the Dedekind funtion�(�) � e�i�=12Yn�1(1� e2i�� n);�(�1=�) = p�i � �(�); �(� + 1) = ei�=12�(�): (E.6){ 42 {
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