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he Physik,Universit�at Hamburg, Luruper Chausse 149,22761, Hamburg, GermanyMar
h 9, 2006Abstra
tWe 
onsider s
attering amplitudes in string models in the Regge limit of high energiesand �xed momentum transfers with the use of the unitarity in dire
t 
hannels. Interme-diate states are taken in the multi-Regge kinemati
s 
orresponding to the produ
tion ofresonan
es with �xed invariant masses and large relative rapidities. In QCD su
h kinemat-i
s leads to the BFKL equation for the Pomeron wave fun
tion in the leading logarithmi
approximation. We derive a similar equation in the string theory and dis
uss its proper-ties. The purpose of this investigation is to �nd a generalization of the BFKL approa
h tothe region of small momentum transfers where non-perturbative 
orre
tions to the gluonRegge traje
tory and reggeon 
ouplings are essential. The BFKL equation in the stringtheory 
ontains additional 
ontributions 
oming from a linear part of the Regge traje
toryand from the soft Pomeron singularity appearing already in the tree approximation. Inhigher dimensions in addition, a non-multi-Regge kinemati
s 
orresponding to produ
tionof parti
les with large masses is important. We solve the equation for the Pomeron wavefun
tion in the string theory for D = 4 and dis
uss integrability properties of analogousequations for 
omposite states of several reggeised gluons in the multi-
olour limit.�E-mail address: danilov�thd.pnpi.spb.ruyE-mail address: lipatov�thd.pnpi.spb.ruzMarie Curie Ex
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1 Introdu
tionThe derivation of the BFKL equation for QCD s
attering amplitudes in the Regge regime ofhigh energies E = ps and �xed momentum transfers q = p�t [1℄ is based on the fa
t thatgluon is reggeized in perturbation theory. In the leading logarithmi
 approximation (LLA)the Pomeron singularity in the j-plane of the t-
hannel partial waves appears as a 
ompositestate of two reggeized gluons. The gluon Regge traje
tory is known in two �rst orders ofperturbation theory and the integral kernel for the BFKL equation is 
al
ulated in the next-to-leading approximation [2℄, whi
h is important for the phenomenologi
al appli
ations [3℄.It is reasonable to believe, that the gluon reggeization has a physi
al meaning even beyondthe QCD perturbation theory, although up to now its Regge traje
tory is 
al
ulated only atsuÆ
iently large momentum transfers q where the e�e
tive 
oupling 
onstant is small. For lowmomentum transfers we should use non-perturbative methods. For example, one 
an assumethat the gluon traje
tory in this region is approximately linear, as it takes pla
e for the hadrontraje
tories. The linearity of the Regge traje
tories was an important property in 
onstru
tingthe dual model by G. Veneziano [4℄. Later a string interpretation of the dual amplitudes wasdeveloped [5℄. In the Born approximation the dual hadron models in
lude only parti
les lyingon the se
ondary Regge traje
tories. The Pomeron-like singularity appearing in the open strings
attering amplitudes in one loop approximation was identi�ed with a leading Regge traje
toryfor the 
losed se
tor. Later it was found that four dimensional string theories meet withdiÆ
ulties, whi
h were avoided in their superstring generalizations to spa
e-time dimensionsD = 10 [5℄. Now these superstring models are 
onsidered as 
andidates for an uni�ed theory ofall elementary parti
le intera
tions in
luding the gravity. Moreover, all of them are supposedto be various realizations of the same M -theory.In the modern interpretation the 
losed string se
tor is asso
iated with the graviton Reggefamily rather than with the Pomeron singularity1, and so the Pomeron does not dire
tly presentin the string theory. In a line with the Malda
ena proposal [7℄ for the N = 4 super-Yang-Millsmodel one might expe
t an appearan
e of a 
olorless 
omposite state be
oming a graviton inthe t'Hooft limit g2N
 !1, where g is a 
oupling 
onstant and N
 is the number of 
olors. ThePomeron singularity seems to be a 
andidate for su
h graviton state [8℄. However, in this paperwe treat the Pomeron similar to the 
ase of perturbative QCD where it is a 
omposite state oftwo reggeized gluons. Namely, this singularity should appear in the diagrams where two openstrings are ex
hanged in the t 
hannel. Su
h Feynman graphs lead to the Mandelstam 
ut inthe j-plane of the t-
hannel partial wave 'j(t). The sum of 
ontributions from the ladder-typediagrams in the string theory 
orresponds to the BFKL-like equation. We hope that its stringmodi�
ation is a reasonable model for non-perturbative e�e
ts in the region of small momentumtransfers. Indeed, the string models in extra dimensions 
an lead to a dual des
ription of gaugetheories in
luding QCD [7℄.Note, that in the 
riti
al dimensions D = 10 the multi-Regge kinemati
s for intermediateparti
les in the s-
hannel is not unique even for small 
oupling 
onstants. Namely, one shouldtake into a

ount also the produ
tion of resonan
es having large masses at high energies, whi
hleads in parti
ular to the graviton 
ontribution appearing in one loop. In the last 
ase the1Note that the Regge asymptoti
s was investigated also in the pure (super) gravity [6℄.



imaginary part of the 
orresponding non-planar diagram with the graviton Regge pole in thet-
hannel appears from the produ
tion of two resonan
es with masses m � ps. Below we doesnot dis
uss this problem in details and 
onsider mainly the D = 4 
ase.We use the superstring 4d model in the Ramond-Neveu-S
hwarz version [5℄, but the su-persymmetry is involved only to remove the ta
hion from the spe
trum. It is known, thatnon-
riti
al string models have diÆ
ulties related to the absen
e of the S-matrix unitarity inhigher loops. In parti
ular, to restore the unitarity in one loop approximation it is needed tointrodu
e an additional 2D gravity �eld [5℄. This �eld provides the 
onformal symmetry onthe tree and one-loop levels, and restores the modular invarian
e of the one-loop 
losed stringamplitudes [9℄. Nevertheless, the modular invarian
e of higher loop 
losed string amplitudesremains to be broken [10℄. Thus, the higher loop amplitudes for non-
riti
al string models 
annot be 
onstru
ted in a self-
onsistent way.The diÆ
ulties of non-
riti
al string models are related mainly to the 
losed string se
tor. Inthe perturbation theory with respe
t to the 
losed string 
oupling 
onstant g
l the 
ontributionsfrom this se
tor grow with energy very rapidly � s2g2n
 lnn(s). Su
h behavior in the 
ase ofhadron-hadron intera
tions is not 
ompatible with the s -
hannel unitarity. So one expe
ts thaton
e a relevant summation over n being performed, the high asymptoti
s of the amplitude isredu
ed to A � s. It is reasonable to omit initially the 
losed string se
tor taking into a

ountalso, that g
l is quadrati
 in the Yang-Mills 
oupling 
onstant g and for N
 ! 1 the openstring terms in the amplitude are enhan
ed 
omparing to 
losed string ones. Thus, we 
onsiderhere the 
ontributions to the produ
tion amplitude only from the open string states in 
rossing
hannels leading to the Mandelstam 
uts for the elasti
 t -
hannel partial wave 'j(t) in theangular momentum plane j = 1 + !.In the dis
ussed model the gluon traje
tory !(t) is given by the perturbative expansion!(t) = �0t+ !1(t) + ::: : (1)where !n(t) � g2n are radiative 
orre
tions, and the Regge slope �0 is a reversed square of an
hara
teristi
 mass s
ale. Below the 
orre
tion !1(t) � g2 to the traje
tory is also taken intoa

ount. This 
orre
tion is 
al
ulated from one-loop diagrams for the s
attering amplitude.One-loop non-planar diagrams 
ontain also a 
ontribution destroying the unitarity, but the
orre
tion to the Regge traje
tory appears only from the planar graphs, where the problemwith the 
losed string se
tor does not exist. Providing that ��0t � 1, the loop 
orre
tionin the D = 4 
ase has the infrared divergen
y � g2N
 ln(t=�2) whi
h is 
an
elled with the
ontribution from the massless parti
le produ
tion. For ��0t � 1 the radiative 
orre
tion tothe Regge traje
tory has a 
ompli
ated form.An important di�eren
e between QCD and the string model is related to the role of in-termediate states with relatively large masses: (�0)�1 � M2 � s for produ
ed resonan
es.These states are absent in QCD. In the string theory the large mass states are responsible forthe appearan
e of the graviton 
ontribution to the elasti
 s
attering amplitude in the one-loopapproximation. Further, the impa
t fa
tors for the reggeon-parti
le s
attering vanish for planardiagrams as a result of integration over large masses. In parti
ular, it leads to the absen
e ofthe Mandelstam 
uts in the 
olor o
tet 
hannel. In QCD the 
an
ellation of these 
uts for2



the t-
hannel with gluon quantum numbers is provided by another me
hanism related to theso-
alled bootstrap relations for s
attering amplitudes [11℄.The large mass kinemati
s is responsible also for the additional term in the kernel of theBFKL equation 
orresponding to the soft pomeron 
ontribution. It is important, that in the
onsidered string model even in the tree approximation there is a 
olorless state in the t-
hannelwith va
uum quantum numbers and a positive signature. In upper orders of the perturbationtheory its Regge traje
tory is renormalized. At small t this state mixes with the Mandelstam 
ut
onstru
ted from two reggeized gluons. The radiative 
orre
tions to its traje
tory are 
al
ulatedfrom ladder diagrams in the t-
hannel. The s-
hannel imaginary part of s
attering amplitudesappears from the intermediate states in the above 
onsidered kinemati
s with relatively largemasses: (�0)�1 �M2 � s for produ
ed resonan
es. Physi
ally the j-plane singularity with theva
uum quantum numbers in the tree approximation 
orresponds to the soft Pomeron whi
h
an exist together with the hard BFKL Pomeron.Similar to the perturbative QCD, we restri
t ourselves to the region g2N
 ln(s=M2) � 1.However, in the string 
ase, the region j!(t)j ln(s=M2) � 1 is possible also be
ause the Reggeslope �0 = 1=M2 has no g2 smallness. Some important properties of the BFKL equation arerelated to this fa
t. In parti
ular, we obtain that for ��0t� g2N
 its solution is 
on
entratednear the saddle point q?=2 for the reggeon transverse momenta k?. For D > 4 the 
u
tuationsof this momentumare small �(k?�q?=2)2 � 1=(�0 ln�0s) and therefore the transverse momentaof the emitted gluons are also small jkg?j2 � �0(ln�0s)�1. In the same time there are no similarrestri
tions on transverse momenta of the virtual gluons entering in the loop 
orre
tions tothe gluon Regge traje
tories. It means, that the 
ontribution from the multiple saddle pointski? � q=2 is suppressed by the reggeization e�e
ts.The paper is organized as follows. In Se
. 2 the BFKL approa
h to the perturbative QCDis brie
y reviewed. In Se
. 3 the superstring model whi
h will be used later is introdu
ed. InSe
. 4 the 
al
ulation of the multi-Regge asymptoti
s of produ
tion amplitudes is presented.In Se
. 5 the BFKL-like equation for the superstring model is derived. Also the vanishingof the impa
t fa
tors for planar diagrams is demonstrated. In more details this problem is
onsidered in Appendix D. In Se
. 6 the 
al
ulation of the BFKL kernel is performed. InSe
. 7 the equation for the 
ase D = 4 is dis
ussed. Among other things, it is explained whyin the spa
e-time D = 10 the non-Regge kinemati
s 
ontributes to the Regge asymptoti
s ofamplitudes. In Se
. 8 the solution of the BFKL equation at small values of �0t is 
onstru
ted.In Se
. 9 an algebrai
 approa
h to this problem is developed and integrability properties ofsimilar equations for 
omposite states of several open strings in the multi-
olour limit in
ludinga relation with the Heisenberg spin model are dis
ussed. Appendi
es A, B and C 
ontain somedetails of 
al
ulations.2 BFKL approa
h in the perturbation QCDAs it was mentioned already, in the perturbative QCD the BFKL Pomeron appears as a 
om-posite state of two reggeized gluons [1℄. The gluon is reggeized as a result of summing radiative
orre
tions to the Born amplitude ABorn for the 
olored parti
le s
attering AB ! A0B0 in the3



Regge kinemati
s of large energies ps and �xed momentum transfers q = p�tA(s; t) = ABorn s!(t) ; (2)where ABorn is given belowABorn = 2 s g T 
A0A Æ�A0�A 1t g T 
B0B Æ�B0�B ; [T 
; T 
0℄ = i f

0d T d (3)and j = 1 + !(t) is the gluon Regge traje
tory known in two �rst orders of the perturbationtheory !(t) = !1(t) + !2(t) + ::: : (4)The traje
tory 
ontains logarithmi
 divergen
ies 
an
elled in the total 
ross se
tions withthe 
ontributions from the produ
tion of soft gluons. For example, in one loop approximationwe have !1(�q2) = � g216�3 N
 Z d2k q2 + �2(k2 + �2)((q � k)2 + �2) � � g28�2 N
 ln q2�2 ; (5)where � is a gluon mass introdu
ed for the regularization of the infraredly divergent integral.On the other hand, the amplitude for the produ
tion of n gluons with momenta kr in themulti-Regge kinemati
s s� sr = (kr�1 + kr)2 � q2r ; (6)has the fa
torized formA = 2 s gT 
1A0A Æ�A0�A s!(t1)1t1 g T d1
2
1C(q2; q1)s!(t2)2t2 g T d2
3
2C(q3; q2):::gT 
B0B Æ�B0�B ; (7)where the e�e
tive vertex C(q2; q1) for an emission of the gluon with a de�nite heli
ity isC(q2; q1) = q1 q�2k1 ; k1 = q1 � q2 : (8)Here we introdu
ed the 
omplex 
oordinatesqr = qxr + i qyr ; kr = kxr + i kyr (9)for transverse 
omponents q?r ; k?r of gluon momenta. The 
ontribution to the elasti
 s
atteringamplitude from the intermediate state having a gluon with the momentum k1 is proportionalto the expression C(q2; q1)C�(q02; q01) + C�(q2; q1)C(q02; q01) (10)and 
ontains the pole 1=jk1j2. The integration over k1 
an
els the infrared divergen
y in thegluon Regge traje
tory appearing in the virtual 
orre
tions to the produ
tion amplitudes.It is 
onvenient to present the elasti
 amplitude for the 
olorless parti
le s
attering in theform of the Mellin representationA(s; t) = i s Z a+i1a�i1 d!2� i s! f!(t) ; (11)4



where f!(t) is the t-
hannel partial wave analyti
ally 
ontinued to the 
omplex values j = 1+!of the angular momentum. The amplitude A(s; t) 
ontains only the 
ontribution from the t-
hannel state with va
uum quantum numbers and the positive signature, 
orresponding to theBFKL Pomeron. A positive value of the parameter a in the above representation is 
hosenfrom the 
ondition, that all singularities of f!(t) are situated to the left from the integration
ontour.The t-
hannel partial wave f!(t) 
an be expressed in terms of the gluon-gluon s
atteringamplitude f!(q1; q2; q) integrated with the impa
t-fa
tors �(qi; q � qi)f!(�q2) = Z d2q1(2�)2 �(q1; q � q1)q21 (q � q1)2 Z d2q2(2�)2 �(q2; q � q2)q22 (q � q2)2 f!(q1; q2; q) : (12)The impa
t-fa
tors of 
olorless parti
les vanish at small gluon momenta�(0; q) = �(q; 0) = 0 ; (13)whi
h leads to an infrared stability of f!(�q2). The partial wave f!(q1; q2; q) satis�es theBFKL equation [1℄ ! f!(q1; q2; q) = ! f0!(q1; q2; q) � g2N
8�2 H f!(q1; q2; q) : (14)Here f0! is a non-homogeneous term 
orresponding to the impa
t fa
tor. The hamiltonian H isan integral operator, whi
h 
an be de�ned by its a
tion on the Pomeron wave fun
tion f(~�1; ~�10)in the 
oordinate representation [14℄H = ln j�1j2 + ln j�2j2 + 1�1��2 ln j�12j2 �1��2 + 1��1�2 ln j�12j2 ��1�2 � 4	(1) ; (15)where 	(x) = (ln �(x))0 and we introdu
ed the 
omplex 
oordinates and momenta�r = xr + iyr ; �r = ���r ; �12 = �1 � �2 : (16)The hamiltonian has the property of the M�obius invarian
e, whi
h allows us to �nd itseigenfun
tions [22℄ Em;em(~�1; ~�2; ~�0) =  �12�10 �20!m  ��12��10 ��20!em ; (17)where m = 12 + i� + n2 ; fm = 12 + i� � n2 (18)are 
onformal weights.The high energy asymptoti
s of the total 
ross-se
tion is parametrized by the Pomeroninter
ept � �t � s� (19)5



In the leading logarithmi
 approximation we have� = �g2N
8�2 E; (20)where E = �8 ln 2 is the ground state energy of the Hamiltonian H. Therefore the 
ross-se
tion �t violates the Froissart theorem �t < 
 ln2(s). In the next-to-leading approximationthe 
ross-se
tion grows also, but not so rapidly (see [3℄).To verify the gluon reggeization one 
an use the s and u-
hannel unitarity 
onstraints anddispersion relations to 
al
ulate by iterations the s
attering amplitude with the 
olor o
tetquantum numbers in the t-
hannel [1℄. In LLA it is enough to 
onsider only the multi-Reggekinemati
s for intermediate parti
les in the dire
t 
hannels. In this kinemati
s the produ
tionamplitude has the multi-Regge form (7 ). The reggeization hypothesis should be in an agreementwith the s- and u- 
hannel unitarity. This requirement leads to the so-
alled bootstrap relations.The simplest bootstrap relation 
orresponds to the statement, that the s
attering amplitude,obtained from the solution of the Bethe-Salpeter equation for the wave fun
tion of the 
ompositestate of two reggeized gluons in the o
tet 
hannel should 
oin
ide with the Regge pole anzatz forthe amplitude 
onstru
ted in terms of the reggeized gluon ex
hange. In the momentum spa
ethe equation for the t-
hanel partial wave fG! (�!k ;�!q � �!k ) with the gluon quantum numbershas the form [1℄! fG! (�!k ;�!q ��!k ) = 1�!q 2 + �2 � g28�2 N
 Z d2k02� �!q 2 + �2�!k0 2 + �2 fG! (�!k0 ;�!q ��!k0 )(�!q ��!k0 )2 + �2+g28�2 N
 Z d2k02� 0��!k 2 + �2�!k0 2 + �2 + (�!q ��!k )2 + �2(�!q ��!k0 )2 + �21A fG! (�!k0 ;�!q ��!k0 )� fG! (�!k ;�!q ��!k )(�!k ��!k0 )2 + �2 ; (21)where the gluon mass � is introdu
ed with the use of the Higgs me
hanism to regularize theinfrared divergen
ies.It is obvious, that in an a

ordan
e with the bootstrap requirement the solution of the aboveequation 
orresponds to the Regge pole anzatzfG! (�!k ;�!q ��!k ) = 1�!q 2 + �2 1! � !(��!q 2) ; (22)where !(��!q 2) is the gluon Regge traje
tory.3 String modelIn the string and superstring models the s
attering amplitude in the tree approximation satis�esthe duality requirement: namely, the sum over the resonan
es in the t-
hannel related to itsRegge asymptoti
s in the s-
hannel is equal to the (analyti
ally 
ontinued) sum of resonan
esin the s and u-
hannels:A(s; t; u) = A(s; t) +A(u; t) +A(s; u) ; A(s; t) =Xi 
i(s)t� ti =Xi 
i(t)s� si : (23)6



The parti
les with squared masses equal to ti and integer spins j = ji lie on the linear Reggetraje
tories j = j0 + �0t ; (24)where j0 and �0 are their inter
ept and slope, respe
tively. The slope �0 is universal for allex
itations of the open string. For the 
losed strings it is equal to �0=2. As for inter
epts, inthe 
riti
al dimensions D = 26 for the bosoni
 string and D = 10 for the superstrings, they areinteger or half-integer numbers. In parti
ular, for the inter
epts of the leading bosoni
 Reggetraje
tories, 
orresponding to the massless ve
tor (V ) parti
le - "gluon" and tensor (T ) parti
le- "graviton" we have respe
tively jV0 = 1 ; jT0 = 2 : (25)We put jV0 = 1 also for the D = 4 model to leave the gluon on the traje
tory. The "graviton"is absent in this 
ase, instead one has a non-physi
al 
ut in the j -plane.The Regge asymptoti
s of A(s; t) in the dual models appears as a result of summing overthe poles in the s-
hannel. Really at large s the 
ontributions � s�k with integer values of kare 
an
elled and we 
an substitute approximately the sum over i by the dispersion integralA(s; t) � 1� Z 10 ds0s� s0 =A(s0; t) ; s0 = s(i) ; =A(s0; t) = �
i(t) :It agrees with the Regge asymptoti
s A(s; t) � (�s)j(t) providing that =A(s; t) � sj(t).In the Born approximation there are only stable parti
les in the intermediate state, butwith taking into a

ount loop 
orre
tions these parti
les a
quire the widths due to their de
ayinto lower mass states. As a result, =A(s; t) has the Æ-like singularities only for a �nite numberof stable states and the amplitude is a smooth fun
tion for large values of s. The fun
tionA(s; t) � s1+�0t 
an be expanded in the series over the parameter �0t and one 
an interpret the
orresponding term of the expansion � s (ln s)n(�0t)n=n! as a 
ontribution from the produ
tionof n parti
les in a multi-Regge kinemati
s. In QCD su
h a non-perturbative 
ontribution!(t) � �0t to the Regge traje
tory 
ould appear from the integration region k2 � �2QCD in theloop 
orre
tions of the type of (5). In this 
ase the 
ommon fa
tor t would lead to the linearityof the traje
tory at small t.To begin with, let us 
onsider the Born amplitude for the ta
hyon-ta
hyon s
attering am-plitude in the bosoni
 string theoryA(s; t) = g2 �(��(s)) �(��(t))�(��(t) � �(s)) ; �(t) = 1 + �0t ; (26)where for simpli
ity we omitted the Chan-Paton fa
tors. Asymptoti
ally one obtainslims!1A(s; t) = �g2 �0s�(��(t)) (��0s)�0t : (27)This result 
orresponds to the Regge asymptoti
s des
ribed by the reggeized gluon ex
hangein the t-
hannel. For other 
olliding parti
les there are additional fa
tors depending on theirspins. They are related to di�erent residues for the 
orresponding Regge pole. Note, that the7



e�e
tive verti
es for reggeized gluon intera
tions in QCD were obtained also from the stringamplitudes in the limit �0! 0 [12℄.For the superstring models the multiplier �(��(t)) in (26) is repla
ed by �(��0t), whi
hleads to the absen
e of the ta
hyon pole at �0t = �1. At small momentum transfers bothmodels give the same amplitude for the massless ve
tor boson s
attering. Taking, however,into a

ount that one should sum over other intermediate t-
hannel states for the s
atteringamplitude with arbitrary momentum transfers, it is natural to 
onsider only the superstringmodel where the ta
hyon disappears from the spe
trum. The Regge limit of the superstrings
attering amplitude is given in the end of this se
tion (see [5℄).As it was said in Introdu
tion, we use the Ramond-Neveu-S
hwarz version of the opensuperstring model. In this model the intera
tion verti
es are 
al
ulated in terms of the s
alarsuper�eld XM (z; #) where z is a world-sheet 
oordinate and # is its superpartner. Here Mlabels the spa
e-time 
oordinates, M = 0; 1; : : : ; (D � 1). The vertex V (z; #; k; �) for theemission of a massless ve
tor boson with its momentum k = fkMg and polarization ve
tor� = f�Mg is given below [5, 13℄ V (z; #; k; �) = � DX e�ikX (28)where kX � kMXM (z; #) and � DX � �M D(z; #)XM (z; #) are s
alar produ
ts of the 
orre-sponding D-dimensional ve
tors. As usually, the relation k� = 0 is valid for polarizations ofexternal ve
tor bosons. In the 
ontrast to the string tradition, in this paper we use the "mostlyminus metri
s" ab = a0b0 ��!a �!b . The 
ovariant super-derivative D(z; #) appearing in (28) isgiven below D(z; #) = �z + #�# ; (29)where �# is the "left" derivative in #. Note, that the gauge invarian
e � ! � + 
k of theamplitudes is valid due to the relationZ dzd#De�ikX = 0 : (30)The super�eld va
uum 
orrelator �XM(z; #)XN (z0; #0)� in super-
oordinates for z > z0equals�XM(z; #)XN (z0; #0)�= 2�0�MN ln(z � z0 � ##0) = 2�0�MN�ln(z � z0)� ##0z � z0 � ; (31)where �MN is the spa
e-time metri
s. The massless boson tree amplitude is obtained by inte-grating the va
uum expe
tation of the produ
t of the verti
es Vj (28) over (zj; #j). The variables(zj; #j) are assigned to the vertex for an emission of the boson 
arrying the momentum kj andpolarization �j. In the amplitude we do not integrate over three of 
oordinates zj using theintegrand invarian
e under SL(2; R)-transformation. To 
onserve this symmetry after �xingthe variables (z(1); z(2); z(3)) one should in
lude in the �nal expression the additional multiplierr(z(1); z(2); z(3)) = (z(1) � z(2))(z(1) � z(3))(z(2) � z(3)) ; (32)8



leading to an independen
e of the Born amplitude from the 
hoi
e of these variables.Thus, the open string amplitude An(fkj; �jg) for the intera
tion of n massless bosons in atree approximation is given byAn(fkj; �jg) =X(r) T(r)A(r)n (fkj ; �jg) ; (33)where ea
h a term 
orresponds to an ordering of the parameters zj : f(r) : zj1 > zj2 > : : : >zjng and the sum is taken over the 
on�gurations, whi
h are non-equivalent under the 
y
li
transmutations of indi
es jr. The 
oeÆ
ient T(r) is the Chan-Paton fa
tor [5℄ for the given
olor group. Further, the expression A(r)(fkj ; �jg) is the integral over (zj; #j) from the va
uumexpe
tation of the produ
t of intera
tion verti
es multiplied by the fa
tor r(zj1 ; zj2; zjn):A(r)n (fkj ; �jg) = gn�2(zj1 � zj2)(zj1 � zjn)(zj2 � zjn) Z �(zj2 � zj3) n�1Ys=3 �(zjs � zjs+1)dzjs��d#j1V (zj1; #j1; kj1 ; �j1) : : : d#jnV (zjn; #jn; kjn ; �jn)� ; (34)where �(x) is the step fun
tion: �(x) = 1 for x > 0 and �(x) = 0 for x < 0.Sin
e the 
orrelator (31) is singular at z = z0, the integral (34) is 
onvergent only in a
ertain region of invariants 
onstru
ted from external parti
le momenta. Ea
h of the termsA(r)n in (33) is 
al
ulated for su
h signs of the invariants where it is 
onvergent, and the resultis analyti
ally 
ontinued to their physi
al values for the produ
tion kinemati
s. The integrandin (34) 
ontains some 
ontributions whi
h do not 
ontribute to the �nal result be
ause they aretotal derivatives in integration variables. One 
an make their 
an
elation expli
it using the fa
t,that the integrand in the superstring 
ase is invariant under the SL(2; R)-SUSY transformation[13, 15℄: z = f(~z) ; # = s�f(ẑ)�ẑ �#̂+ "(ẑ)� 1� �Æ2 ! ; ~z = ẑ + #̂"(ẑ) ; (35)where "(z) and f(z) are given below"(z) = �z + Æ ; f(z) = az + b
z + d ; s�f(ẑ)�ẑ = 1
z + d : (36)Here a, b, 
, d are bosoni
 parameters and �, Æ are their Grassmann partners. Note, that thesuperinterval is transformed in a simpler wayz � z0 � ##0 = Q�1(ẑ; #̂)Q�1(ẑ0; #̂0)�ẑ � ẑ0 � #̂#̂0� ; (37)where Q�1(ẑ; #̂) = D(ẑ; #̂)# : (38)Also, one 
an verify that D(z; #) = Q(ẑ; #̂)D(ẑ; #̂): (39)9



An appropriate transformation (35) of the integration variables in (34) allows us to extra
tan expli
it dependen
e from two #j, whi
h gives a possibility to perform the integration overthese variables. This symmetry is non-splitted be
ause it mixes the Grassmann variables tobosoni
 ones. Note, that the step fun
tion fa
tors in (34) lead after the symmetry transfor-mation to the Æ -fun
tion type terms whi
h are multiplied by expressions vanishing in thekinemati
al region where the integral is 
onvergent. To avoid the 
onsideration of su
h terms,one 
an expli
itly �x 5 variables (3j2) among all 
oordinates (zjj#j) using the super-SL(2; R) in-varian
e. After that the integrand is multiplied by a supersymmetri
 generalization of the abovefa
tor r(zj1; zj2; zjn) [16℄ (for details see Appendix A). It is 
onvenient to put #j1 = #j2 = 0. Inthis 
ase the generalized fa
tor r is (zj1 � zjn)(zj2 � zjn). Thus, expression (34) is repla
ed byA(r)n (fkj ; �jg) = gn�2(zj1 � zjn)(zj2 � zjn) Z �(zj2 � zj3) n�1Ys=3 �(zjs � zjs+1)dzjs��V (zj1 ; 0; kj1 ; �j1)V (zj2; 0; kj2 ; �j2)d#j3V (zj3; #j3; kj3 ; �j3) : : : d#jnV (zjn; #jn; kjn ; �jn)� : (40)Using relation (31) for the va
uum expe
tation of the produ
t of verti
es (28), one �nds�nally A(r)n (fkj ; �jg) = gn�2(zj1 � zjn)(zj2 � zjn) Z �(zj2 � zj3)d�j1d�j2d�jnd#jn �� n�1Ys=3 �(zjs � zjs+1)dzjsd�jsd#js!� exp�2�0 Xm>n[�jm�jmD(zjm ; #jm)� ikjm℄[�jn�jnD(zjn ; #jn)� ikjn ℄ ln(zjm � zjn � #jm#jn)�; (41)where #j1 = #j2 = 0. The additional Grassmann variables �js are introdu
ed for ea
h of theverti
es V (z; #; k; �) = Z d�e(��D�ik)X : (42)So, the tree amplitude is presented by expression (33), where A(r)n (fkj ; �jg) is given in eq.(41). Note, that under an anti-
y
li
 permutation the amplitudeA(r)n (fkj ; �jg) re
eives only thefa
tor (�1)n. Provided that three variables are �xed as zj1 =1, zj2 = 1 and zjn = 0, one 
anverify this property with the use of transformation (35) for the integrand in (41) 
hoosing thefun
tions f(ẑ) = ẑjn�1=ẑ and "(ẑ) = �#̂jn � ẑ(#̂jn�1 � #̂jn)=ẑjn�1 .The Chan-Paton fa
tor in (33) is given byT(r) = tra
e[�j1 : : : �jn ℄ ; (43)where �s is a 
olor matrix for the 
orresponding group generator in the fundamental represen-tation. Below we dis
uss the oriented string, for whi
h �s are U(n)-matri
es in the fundamentalrepresentation. In this 
asetra
e(�r�s) = Ærs; Xj (�j)ab(�j)
d = ÆadÆb
 : (44)10



Hen
e �r�s =Xj tra
e(�r�s�j)�j : (45)We take �1 = I=pn as the U(1)-generator and the matri
es �2; : : : ; �n as generators of theSU(n) group. They satisfy the following relations12 [�r�s � �s�r℄ =Xj frsj�j ; 12[�r�s + �s�r℄ = Ærsn�1 +Xj drsj�j ; Xj djjs = 0 : (46)Obviously, the tensor d is symmetri
 in two �rst indi
es drsj = dsrj and the stru
ture
onstants frsj are 
ompletely anti-symmetri
. Furthermore, f1sj = 0, d11j = djr1 = 0, and, inaddition, drsj is symmetri
 in all indi
es provided that both s 6= 1, r 6= 1 and j 6= 1. Besides,ds1j = q1=nÆsj when s 6= 1 and j 6= 1. We obtain alsoXr;s drsjdrsl =Xr;s frsjfsrl = n2 [Æjl � Æj1Æl1℄ : (47)Below in the Regge kinemati
s (s� �t � m2) we 
al
ulate the amplitude A(23)(14) des
ribingthe s
attering a+b! a0+b0 of the ve
tor massless parti
les (gluons) with momenta pi (p2i = 0).The 
orresponding kinemati
al invariants are s = (pa+ pb)2 = (pa0 + pb0)2 and t = (pa� pa0)2 =(pb�pb0)2. The gauge is 
hosen to be �0i = 0 for i = a; a0; b; b0. In the Regge limit the amplitudeA(a0b0)(ab) is (
f. (27))lims!1A(a0b0)(ab) = �2g2�0s�(��0t)(�0s)�0t(�a�a0)(�b�b0)(Xs fjaja0 sfsjbjb0 (e��i�0t + 1)+(e��i�0t � 1)"Æjaja0 Æjbjb0n +Xs djaja0 sdsjbjb0#) ; (48)where the 
olor index ji refers to U(n)-quantum numbers of the parti
le 
arrying the momentumpi. The spin stru
ture des
ribed by the polarization ve
tors �i (i = a; a0; b; b0) 
orresponds tothe 
onservation of heli
ities for ea
h of 
olliding parti
les. Various terms in (48) are asso
iatedwith di�erent Regge 
ontributions. Their quantum numbers are the SU(n) singlet (with thesignature "+") and two adjoint SU(n)-representations (having the dimension n2�1 and the sig-natures "+" and "-"). Note, that in QCD the Regge asymptoti
s of the s
attering amplitude inthe Born approximation 
ontains only a 
ontribution with the negative signature, 
orrespondingto an ex
hange of the reggeized gluon. The 
ontribution from the positive signature with o
tetquantum numbers appears only in upper orders of perturbation theory. Nevertheless, for largeN
 the Regge traje
tories with opposite signatures 
oin
ide ea
h with another. The degenera
yof these t-
hannel states is important for the duality symmetry between the 
olorless 
ompositestates with di�erent signatures [17℄. As for the Regge 
ontribution with va
uum quantum num-bers, it also takes pla
e in QCD only in upper orders of perturbation theory and 
orresponds tothe BFKL Pomeron. Its appearan
e in the superstring model already in a tree approximation
an be 
onsidered as a manifestation of the soft Pomeron having a non-perturbative nature.When n = N
 is large, one 
an negle
t this soft Pomeron 
ontribution in expression (48).11



To derive the above asymptoti
 behavior of the s
attering amplitudes in the superstringtheory we used the relation�ri�rje�i�(�0tij+1) + �rj�ri = 1nÆrirj (e�i�(�0tij+1) + 1) +Xs drirjs�s(e�i�(�0tij+1) + 1)+Xs frirjs�s(e�i�(�0tij+1) � 1) ; (49)whi
h follows from (46). Note, that the soft pomeron 
ontribution appears also for the Chan-Paton fa
tors 
orresponding to the 
olour group O(n). Moreover, in the one-loop approximationits Regge traje
tory does not 
ontain ultraviolet divergen
ies for n = 32 and D = 10 [18℄. Inthis model the gluon Regge traje
tory !1(t) is �nite is given below (see Appendix B)!1(t) = �8g2n Z 1�1 d�� Z 10 d�2 (sin��2)2 � L21 + L1���0t (1 + L1)�1 ; (50)where N = 32, and L1 = �2 1Xn=1 �n (1� �n)2(1� 2�n 
os 2��2 + �2n)2 ;L2 = 1Yn=1 (1� �n)4(1� 2�n 
os 2��2 + �2n)2 : (51)If we 
onsider only a 
ontribution of the planar diagram, the low limit of integration over� in the above expression is zero and the gluon Regge traje
tory 
ontains the logarithmi
divergen
y at small �, whi
h 
an be removed by a renormalization of the slope �0 in the Bornamplitude [18℄. In a similar way for the SU(n) group we have!1(t) = �8g2N
 Z 10 d�� Z 10 d�2(sin��2)2 �� L21 + L1���0t (1 + L1)�1 � 1� ; (52)where n = N
 is the number of 
olors.4 Parti
le produ
tion in the multi-Regge kinemati
sSimilar to the QCD 
ase for string models the 
ontribution of the ladder diagrams Fig.1 isfa
torized in the multi-Regge kinemati
s. This fa
torization was veri�ed for the boson stringtheory [19℄ and it is valid also for the superstring models. We are going to 
al
ulate the kernelof the BFKL equation with the use of the s-
hannel unitarity by integrating the square ofinelasti
 amplitudes over the intermediate parti
les in the multi-Regge kinemati
s.In parti
ular the diagram Fig.1b des
ribes the produ
tion of one additional resonan
e witha �xed mass and momentum k � k0. In this diagram the initial parti
les have non-vanishing
olor quantum numbers whereas usually the solution of the BFKL equation for the gluon-gluons
attering should be sandwi
hed between the impa
t fa
tors for the 
olorless 
olliding obje
tsto avoid infrared divergen
ies. Note, however, that the integral kernel of the BFKL equation12



for the Pomeron wave fun
tion does not depend on quantum numbers of initial parti
les. Totake into a

ount a tower of the intermediate string states for the middle line on Fig.1b we�nd in this se
tion the multi-Regge asymptoti
s of the amplitude for the tree diagram Fig.2.Then we 
al
ulate the sum over residues in the poles over the parti
le invariant mass k2 andintegrate over other kinemati
 variables to obtain the BFKL kernel.As far as a large number of 
olors n is 
onsidered, only planar diagram 
ontributions areimportant and the kernel is proportional to n = N
. In the multi-Regge kinemati
s the momentak1; k2; k7; k8 on Fig.2 are almost 
ollinear. Their spa
e 
omponents are opposite in sign to the
orresponding 
omponents of the momenta k4; k3; k6; k5.To ea
h parti
le with the momentum kj , the string 
oordinates zj; #j and the 
olor matrix�j are assigned. It is assumed that z8 < z7 < z6 < z5 < z4 < z3 < z2 < z1. We �x �vevariables: z1 =1; z2 = 1; z8 = 0 and #1 = #2 = 0. In amplitude (33) one should sum over the
ontributions of the diagrams whi
h 
an not be obtained from one 
on�guration by 
y
li
 oranti-
y
li
 transmutations of gluon indi
es. We should take into a

ount also the Chan-Patonfa
tors T (+) T (+) = tra
e[�r8�r7�r6�r5�r4�r3�r2�r1 + �r5�r6�r7�r8�r1�r2�r3�r4 ℄ : (53)To 
al
ulate the kernel from Fig.2 only 
ontributions having poles in the invariant k2 areessential. There are 16 diagrams of su
h type 
orresponding to the 
on�guration(k1 = q01 ; k2 = �pa0) ; (k3 = �pb0 ; k4 = q02) ; (k5 = �q2 ; k6 = pb) ; (k7 = pa ; k8 = �q1)(54)and those obtained by the inter
hange (kj *) kl) inside ea
h of the above bra
kets, whi
hleads to the signature fa
tors. As it was pointed out already, pa, pb and pa0 , pb0 are momentaof the initial and �nal parti
les, respe
tively. The momenta q1, q2, q01 and q02 
orrespond tointermediate parti
les. Obviously, for the 
al
ulation of a dis
ontinuity of the elasti
 amplitudethe relations q01 = �q1 and q02 = �q2 are valid, but temporally we distinguish between qi and�q0i performing later an analyti
al 
ontinuation in the invariants (k + q1)2, (k + q2)2, (k � q01)2and (k � q02)2 to their physi
al values. In the multi-Regge 
on�guration the momentum k onFig.2 obeys some kinemati
al 
onstraints. Namely, the quantities k2; k2? and (k0)2 in the 
.m.system are assumed to be mu
h smaller than the energy invariants s; s1 and s2. Integral (41)for ea
h of 16 diagrams is 
al
ulated in the kinemati
s where it is 
onvergent, and subsequentlythe result is analyti
ally 
ontinued to the physi
al region of the rea
tion.In expression (41) several polarization stru
tures arise, but only the termAs � (�1�2)(�3�4)(�5�6)(�7�8)
ontributes to the multi-Regge asymptoti
s of the tree amplitude for Fig.2As = g6 eAT (+)(�1�2)(�3�4)(�5�6)(�7�8) ; (55)where the polarization ve
tor �j is asso
iated with the momentum kj and the Chan-Patonfa
tor T (+) is given in eq. (53). Fixing the parameters as follows: z1 =1, z2 = 1, z8 = 0 and13



#1 = #2 = 0, one obtains from eq. (41)eA = Z ~BB�(1� z3)�(z7)d#7d#8 dz7(z3 � z4 � #3#4)(z5 � z6 � #5#6)(z7 � #7#8) 6Ys=3 �(zs � zs+1)dzs d#s : (56)Here the pre-fa
tor ~B is given below~B = �1 + 2�0(k3k4)z3 � z4 #3#4 + 2�0(k3k5)z3 � z5 #3#5 + 2�0(k3k6)z3 � z6 #3#6 + 2�0(k3k7)z3 � z7 #3#7+2�0(k3k8)z3 � z8 #3#8#�1 + 2�0(k4k5)z4 � z5 #4#5 + 2�0(k4k6)z4 � z6 #4#6 + 2�0(k4k7)z4 � z7 #4#7+2�0(k4k8)z4 � z8 #4#8#"1 + 2�0(k5k6)z5 � z6 #5#6 + 2�0(k5k7)z5 � z7 #5#7 + 2�0(k5k8)z5 � z8 #5#8#�"1 + 2�0(k6k7)z6 � z7 #6#7 + 2�0(k6k8)z6 � z8 #6#8#"1 + 2�0(k7k8)z7 � z8 #7#8# (57)and the expression B 
oin
ides with the integrand for a multi-ta
hyon s
attering amplitude ofthe boson string theory: B = Y2�m<n�8(zm � zn)�2�0kmkn : (58)Similar to the 
ase of bosoni
 strings [20℄ one 
on
ludes from eq. (58) that in the multi-Reggekinemati
s the essential values of parameters arez3 ! 0; z3 = z4 + x ; z5 = z6 + y ; x=z6 ! 0 ; y=z6 ! 0 ; z7=z6 ! 0 : (59)In this 
on�guration of variables the expression for B is simpli�ed as followsB � x�2�0k3k4y�2�0k5k6z�2�0k7k87 z�2�0(k3+k4)(k7+k8)4 z�2�0(k5+k6)(k7+k8)6�(z4 � z6)�2�0(k3+k4)(k5+k6) exp�2�0k2k3x+ 2�0k2k5y + 2�0k2(k3 + k4)z4+2�0k2(k5 + k6)z6 � 2�0k3k7 z7xz24 + 2�0k7(k3 + k4)z7z4 � 2�0k5k7 z7yz26+2�0k7(k5 + k6)z7z6 � 2�0k3(k7 + ke8) xz4 � 2�0k5(k7 + k8) yz6� : (60)In the multi-Regge limit we havek2(k3 + k4) ! �k2(k5 + k6)! k1k ; k7(k3 + k4)!�k7(k5 + k6)! k8k ;k3(k7 + k8) ! �k4k ; k5(k7 + k8)! �k6k : (61)The integral is 
onvergent in the following kinemati
al region of invariantsk2k3 < 0; k2k5 < 0; k3k7 > 0; k5k7 > 0; k2(k3 + k4) < 0 ;k7(k5 + k6) < 0 ; k3(k7 + k8) > 0 ; k5(k7 + k8) > 0 : (62)14



We rede�ne the variables as followsz4 ! z4�2�0k2(k3 + k4) ; z6 ! z62�0k2(k5 + k6) ; z7 ! z7[2�0k2(k3 + k4)℄[2�0k7(k5 + k6)℄ ;x ! x�2�0(k2k3) ; y ! y�2�0(k2k5) : (63)The asymptoti
s of eA in expression (55) 
an be written as followseA = GA(t5678; �2; t3478; t34; t56; t12; t78) ; (64)where the fa
tor G 
olle
ts all large energy invariants, and A(t5678; �2; t3478; t34; t56; t12; t78) de-pends only on �xed transverse momenta. We de�ne the energy invariants si and sjk as followssi = ((k1 + k)2 � 2(k1k) ; s23 = �2(k2k3) ; s25 = �2(k2k5) : (65)Then the expression for G in (64) has the fa
torized formG = (��0s1)�0t12+1(��0s7)�0t78+1(��0s4)�0t34+1(��0s6)�0t56+1 ; (66)where the �xed invariants areti = (k1 + kj)2 ; tijlm = �(ki + kj + kl + km)2 : (67)Note, that we have the kinemati
al 
onstraintt3456 + t3478+ t5678 = t12 + t34 + t56 + t78 : (68)The �xed invariant �2 in (64) is given below�2 = �0s1s4=s23 = �0s1s6=s25 = �0[(k0)2 � k2k) ; (69)where kk is the longitudinal 
omponent of the momentum k. To simplify the last fa
tor in (64)one 
an use the following relations valid in the multi-Regge kinemati
s due to eqs. (61)(k5k7)(k6k8)� (k5k8)(k6k7) = 12�((k5 + k6)k7)((k6 � k5)k8))+((k5 � k6)k7)((k6 + k5)k8))� = 12(k6k8)[t5678� t56 � t78 � �2℄ (70)and (k4k7)(k3k8)� (k4k8)(k3k7) = 12(k3k8)[t4378� t43 � t78 + �2℄ : (71)After rede�nition (63) of variables in expression (56) with the use of above simpli�
ationsone 
an perform the Grassmann integrations. As a result, the last fa
tor in (64) turns out tobe A(t5678; �2; t3478; t34; t56; t12; t78) = Z 10 dx Z 10 dy Z 10 dz4 Z z40 BsVb dz6 ; (72)15



where both Bs and Vb depend on integration parameters and external variables. The expressionfor Vb is the same as in the bosoni
 string model, and the pre-fa
tor Bs arises due to thesuperstring modi�
ations. Expli
itly,Vb = x��0t34y��0t56z��0t787 z��0[t3478�t34�t78℄4 z��0[t5678�t56�t78℄6 (z4 � z6)��0[t3456�t34�t56℄[xyz7℄�2� exp���x+ y + z7xz24 + z7yz26 ���z4 � z6 + z7z6 � z7z4�+�2� xz4 + yz6�� : (73)The integrals in (72) are de�ned for �2 < 0, andBs = (�0t34 + 1)(�0t56 + 1)(�0t78 + 1) + xyz27z24z26 [�0t35 + �0t36 + �0t45 + �0t46℄�y2z27(�0t34 + 1)"�0[t5678� t56 � t78℄� �2yz7z26 � 1z46 #�x2z27(�0t56 + 1)"�0[t3478� t34 � t78℄ + �2xz7z24 � 1z44 # : (74)In expression (72) one 
an perform easily the integration over the variables x and yA(t5678; �2; t3478; t34; t56; t12; t78) = �(��0t34)�(��0t56)�e�i(�0t34+�0t56)I(t5678; �2; t3478; t34; t56; t12; t78) ; (75)where the fa
tor I(t5678; �2; t3478; t34; t56; t12; t78) is obtained from eq. (72). Its form 
an beessentially simpli�ed as it is shown in Appendix C. Below we present the �nal result using inaddition the fa
t that the 
al
ulated amplitude is symmetri
 under an inter
hange between theleft and right parts of the 
onsidered diagram (see Se
tion 3). Thus, taking into a

ount therelation t1256 = t3478 eq. (75) 
an be written as followsA(t5678; �2; t3478; t34; t56; t12; t78) = �(��0t12)�(��0t78)e�i(�0t12+�0t78)�I(t5678; �2; t3478; t12; t78; t34; t56) ; (76)whereI(t5678; �2; t3478; t12; t78; t34; t56) = (�2)��0t12��0t78�2 Z dydzdfe�f�yf��0t34�1y��0t56�1�z��0t5678�1(1� z)��0t3456+�0t34+�0t56[f + yz � �2(1 � z)℄�0t12[y + fz � �2(1� z)℄�0t78�"�0t12 + �0t78 � �0t3478(1 � z) + �0t12y(1� z)f + yz � �2(1� z)+ �0t78f(1 � z)y + fz � �2(1� z) + z � (f + y)# : (77)Here all integrations are performed from 0 to1. The above expression is 
onvergent at �2 < 0.For the fa
tor in a front of the integral we 
hoose the 
ondition arg �2 = ��. Really the phasearising in this 
ase, is 
ompensated by a similar phase in (76) and A is real for � < 0.16



The �nal result is obtained by summing the 
ontributions of 16 diagrams listed in thebeginning of this Se
tion, every term being analyti
ally 
ontinued from the kinemati
al regionwhere the 
orresponding integral (41) is 
onvergent. Taking into a

ount the spin stru
ture(55) for ea
h diagram and relations (64), (66) and (76), we derive the following expression forA(f)A(f) = g6s�0t12+�0t78+21 s�0t34+�0t56+24 (�1�2)(�3�4)(�5�6)(�7�8)�(��0t12)�(��0t78)e�i(�0t12+�0t78)� Xj1;j2;j3;j4Fr1;r2;j1(t12)Fr3;r4;j2(t34) F r5;r6;j3(t56)Fr7;r8;j3(t78)�T (+)j1;j2 ;j3;j4I(t5678; �2; t3478; t12; t78; t34; t56) ; (78)where Frs;rl;j(tsl) = tra
e[(�rs�rle��i(�0tsl+1) + �rs�rl)�j ℄ (79)and T (+)j1;j2;j3;j4 = tra
e[�j4�j3�j2�j1 + �j1�j2�j3�j4 ℄ : (80)For the group U(n) the index ri enumerates 
olor states of the parti
le 
arrying the mo-mentum ki de�ned in (54). After an analyti
al 
ontinuation we put s1 = �s7 and s4 = �s6.In a similar way, I(t5678; �2; t3478; t12; t78; t34; t56) in (78 ) is 
al
ulated using a similar 
ontinua-tion of expression (77) to the region �2 > 0. This pro
edure is performed by the repla
ement�2 ! �2 + iÆ with Æ ! +0. We have also the 
ondition k(0) > 0, and therefore due to (69),our pres
ription 
orresponds to the Feynman rule for going around the singularity. After theanalyti
 
ontinuation the fa
tor in front of the integral turns out to be positive.5 BFKL equation in the string modelOmitting the impa
t fa
tors of 
olored parti
les in the left and right hand sides of the 
ontri-bution of the diagram Fig1.b one 
an obtain expressions for higher order ladder diagrams byiterating its interior part. To �nd the BFKL kernel in the 
onsidered string model, one should
al
ulate from expression (78) its 
ontribution to the t-
hannel partial wave for the s
attering ofmassless parti
les. Also one-loop 
orre
tion !1(t) � g2N
 to the traje
tory (1) should be takeninto a

ount (see (50)). Thus, �0tjl in (78) is repla
ed by the expression �0tjl + !1(tjl). Due tothe presen
e of non-planar diagrams, the one-loop 
orre
tion to the singlet traje
tory di�ersfrom that for the o
tet 
ase. However, assuming that the number of 
olors is large, below wenegle
t this di�eren
e.The 
ontribution to the t-
hannel partial wave from the diagram Fig1.b is given by theMellin transformation in ln s applied to the imaginary part of the amplitude. To 
al
ulate itone should �nd in eq. (78) the sum of residues for the poles in the variable �0k2 and integratethe result over a relevant phase volume. Initially we put q01 = �q1; q02 = �q2, r1 = r8, r4 = r5,�1 = �8, �4 = �5 summing subsequently over indi
es r1, r4 and polarization states �1 and �4.The poles are situated at �0k2 = m, where m is an integer number 
hanging from 0 to 1.17



Below we denote by l, l0 the transverse momenta of two neighboring reggeons and by q thetotal momentum transfer related to the 
orresponding invariants as followsl2 = �t12; (l0)2 = �t34; (q � l)2 = �t78; (q � l0)2 = �t56 : (81)With these de�nitions, �2 in (78) is given below (
f. (69))�2 = �0[k2 + (l � l0)2℄ ; k2 = t1234 = t5678 : (82)The multi-Regge kinemati
s implies, that the inequalities s1=k2 � 1 and s4=k2 � 1 areful�lled. The integration over this region leads to the singularities of the t -
hannel partialwave at ! = j � 1. Here j is the total angular momentum. The 
ontribution F (b)(!; q2) to thet-
hannel partial wave from the diagram Fig1.b in
luding the 
orre
tion to the traje
tory !1(t)(1) is given belowF (b)(!; q2) = Xr1;r2;r3;r4 Z dD�2l e�ra;ra0 ;r1;r4(q; l)�(�0l2)�(�0(q � l)2)e��i(�0l2+�0(q�l)2)� g24(2�)D�1T (+)r1r2r3r4 1Xm=0 Z 1s(m) s�j�1ds Z 1s(m) ds1 ds4s2 (�0s1)��(l2)��((q�l)2)+2� Z dD�2l0 eIm(q; l; l0)(�0s4)��((l0)2)��((q�l0)2)+2Æ(�0s1s4=s� �0k2? �m)e�rb;rb0 ;r2;r3(q; l0) : (83)Here �(q2) = �0q2 � !1(�q2) ; (84)and D is the number of spa
e-time dimensions. The quantity eIm(q; l; l0) is the residue of thepole at �0k2 = m in the integral I(t5678; �2; t3478; t12; t78; t34; t56) appearing in expression (78)(see also de�nitions (81)). Further, s(m) is the low energy 
ut-o�: s(0) = s0 for m = 0 ands(m) = s0�2m for m � 1. In this 
ase �2m = m + �0k2?. We impose the 
ondition �0s0 � 1be
ause the produ
tion amplitude is known only in the multi-Regge kinemati
s. The 
ut-o� isintrodu
ed to have a possibility to verify that the non-multi-Regge kinemati
s is not essential.The fa
tor T (+)r1r2r3r4 is presented in eq. (80) ande�ra;ra0 ;r1;r4(q; l) = (�a�a0) 2g2(2�)D�1 Xr Fra0 ;r;r1(t12)Fra;r;r4(t78) ;e�rb;rb0 ;r2;r3(q; l0) = (�b�b0) 2g2(2�)D�1 Xr Frb0 ;r;r2(t34)Frb;r;r3(t56) ; (85)where the fun
tion F is de�ned in (79). Expressions (85) are massless state 
ontributions to theimpa
t fa
tors. The total impa
t fa
tor for the planar diagram Fig1b being the sum of a tower ofstring states is equal to zero, whi
h 
an be veri�ed with the use of the quasi-elasti
 asymptoti
sof the produ
tion amplitude (for more details see Appendix D). Its vanishing ensures the
an
ellation of the Amati-Fubini-Stangelini 
uts in the j-plane for the planar diagrams.18



On
e the integration over s, s1 and s4 being performed, eq.(83) is represented as followsF (b)(!; q2) = Xr1;r2;r3;r4 Z dD�2l e�ra;ra0;r1;r4(q; l)�(�0l2)�(�0(q � l)2)e��i(�0l2+�0(q�l)2)� g2(�0)!4(2�)D�1 Z dD�2l0T (+)r1r2r3r4 (�0s0)�!��0l2��0(q�l)2(�0s0)�!��0(l0)2��0(q�l0)2[! + �(l2) + �((q � l)2)℄[! + �((l0)2)� �((q � l0)2)℄� bI(q; l; l0)e�rb;rb0 ;r2;r3(q; l0) : (86)Here bI(q; l; l0) = S(0)! (q; l; l0) + S!(q; l; l0) (87)and, in turn, S!(q; l; l0) = 1Xm=1(�2m)�!��0l2��0(q�l)2��0(l0)2��0(q�l0)2+2 eIm(q : l; l0) ;S(0)! (q; l; l0) = �0(�20)!+2 eI0(q; l; l0) : (88)In this expression the fa
tor eIm(q; l; l0) is the same as in eq. (83). We remind, that thequantity �2m = m + �0k2? 
oin
ides with �2 on the mass shell �0k2 = m (m is an integernumber). Expression (86) is 
orre
t only in the domain where it does not depend on the 
ut-o�s0, whi
h means, that the power of s0 in this expression should be mu
h smaller than unity. Inan a

ordan
e with eq. (86), it is 
onvenient to present the 
ontribution F (!; q2) to the partialwave as a sum of 
ontributions of the diagrams Fig.1 starting from Fig.1b written in the formF (!; q2) = g24(2�)D�1 Xr1;r2;r3;r4 Z dD�2l Z dD�2l0 e�ra;ra0 ;r1;r2(q; l)�(�0l2)�(�0(q � l)2)�e��i(�0l2+�0(q�l)2) Rr1r2r3r4(!; q; l; l0)! + �((l0)2) + �((q � l0)2) e�rb;rb0 ;r3;r4(q; l0) : (89)The parti
le-parti
le-reggeon verti
es e� 
ontained in eq.(89) 
an be extra
ted from eq.(48).Omitting these verti
es in eq. (89), one 
an verify that the amplitude Rr1r2r3r4(!; q; l; l1) forFig.1 obeys the BFKL-like equation(! + �(l2) + �(q � l)2)Rr1;r2;r3;r4(!; q; l; l1) = bI(q : l; l1)T (+)r1;r4;r3;r2+ �0g24(2�)D�1 Z dD�2l0 bI(q; l; l0)Xr;r0 T (+)r1r0rr2Rrr0r3r4(!; q; l0; l1)�"X�;�0[e�i(�0(l0)2+1) + (�1)�℄[ei�(�0(q�l0)2+1) + (�1)�0℄e��i(�0(l0)2+�0(q�l0)2# ; (90)where the summation over (�; �0) is asso
iated with the signatures for the 
orresponding tra-je
tories having their 
olor group quantum numbers denoted, respe
tively, by (r; r0). So, �; �0are 0 for a positive signature and 1 for the negative one.The number of 
olors is 
onsidered to be large and therefore one 
an negle
t the 
olor-singletreggeons in (89). In this 
ase ri; r; r0 
oin
ide with 
olor indi
es of the 
orresponding adjoint19



representations. Be
ause � and �0 take values 0 and 1, the expression inside the large squarebra
kets in eq. (90) is equal to 4. Using eqs. (46) and (80) one �nds thatT (+)r1r0rr2 = ~T (+)r1r0rr2 + 2Ær1r2Ærr0=n ; Xr ~T (+)r1rrr2 = 0 : (91)So, ~T (+)r1;r0;r;r2 annihilates the singlet state. Furthermore,Rr1r2r3r4(!; q; l; l1) = 2f (0)! (q; l; l1)Ær1r2Ærr0=n + f (1)! (q; l; l1) ~T (+)r1r0rr2 ; (92)where f (0)! (q; l; l1) and f (1)! (q; l; l1) are partial waves for the va
uum 
hannel and for the statebelonging to the adjoint representation of the SU(N
) group, respe
tively.Using expression (90) one 
an derive, that the partial waves f (s)! (q; l; l1) with s = 0; 1 obeythe BFKL-like equation[! + �0l2 + �0(q � l)2 � !1(�l2)� !1(�(q � l)2)℄f (s)! (!; q; l; l1)= bI(q; l; l1) + g2N

s(2�)D�1 Z bI(q; l; l0)f (s)! (q; l0; l1)dD�2l0 ; (93)where 
0 = 1 and 
1 = 1=2. The integral kernel bI(q; l; l1) is 
al
ulated in the next Se
tion.6 Integral kernelWith the use of (88) one 
an verify, that the massless state 
ontribution to I (77) is given byS(0)! (q; l; l0)=�0 = [�0(l� l0)2℄!+�0l2+�0(q�l)2 Z dfdye�(y+f)f�0(l0)2�1y�0(q�l0)2�1�[f � �0(l � l0)2 � i�℄��0l2 [y � �0(l� l0)2 � i�℄��0(q�l)2"��0q2 + �0(l0)2 + �0(q � l0)2� �0l2y[f � �0(l � l0)2 � i�℄ � �0(q � l)2f[y � �0(l� l0)2 � i�℄ � (f + y)# : (94)The integral in the above expression 
an be written in terms of the Whittaker fun
tionW�;�(��2 � i�) de�ned as followsJ(a; b; z) � Z 10 e�tta(z + t)bdt = z(a+b)=2ez=2�(b+ 1)W(b�a)=2;(a�b+1)=2(z) (95)whi
h has the following representationJ(a; b; z) = za+b+1�(a+1)�(�a� b� 1)�(�b) �(a+1; a+b+2; z)+�(a+b+1)�(�b;�a�b; z) (96)as a linear 
ombination of the 
on
uent hypergeometri
 fun
tion �(a; b; z)�(a; b; z) = 1 + ab z + a(a+ 1)2b(b+ 1)z2 + : : : : (97)20



Indeed, we obtain for eI0 (88)(�20)!+2 eI0(q; l; l0) = [�0(l � l0)2℄!+�0l2+�0(q�l)2"[��0q2 + �0(l0)2 + �0(q � l0)2℄�J(�0(l0)2 � 1;��0l2;��0(l � l0)2)J(�0(q � l0)2 � 1;��0(q � l)2;��0(l � l0)2)��0l2J(�0(l0)2 � 1;��0l2 � 1;��0(l � l0)2)J(�0(q � l0)2;��0(q � l)2;��0(l � l0)2)��0(q � l)2J(�0(l0)2;��0l2;��0(l� l0)2)J(�0(q � l0)2 � 1;��0(q � l)2 � 1;��0(l � l0)2)�J(�0(l0)2;��0l2;��0(l � l0)2)J(�0(q � l0)2 � 1;��0(q � l)2;��0(l � l0)2)�J(�0(l0)2 � 1;��0l2;��0(l � l0)2)J(�0(q � l0)2;��0(q � l)2;��0(l � l0)2)# : (98)To 
al
ulate the massive state 
ontribution S(q; l; l0) to the kernel (87) it is 
onvenient to
hange the integration variables f ! �2f; y ! �2y in expression (77). As a result, the fa
torbeing a power of �2m is extra
ted from the integral(�2)�!��0l2+�0(q�l)2��0(l0)2��0(q�l0)2+2I(t5678; �2; t3478; t12; t78; t34; t56)�0= 1�(! + �0l2 + �0(q � l)2) Z dfdydvv!+�0l2+�0(q�l)2�1e��2(y+f+v)z��0k2�1�"V1(z; f; y; q; l; l0) + 1v [! + �0l2 + �0(q � l)2 � 1℄V2(z; f; y; q; l; l0)# ; (99)where Vi(z; f; y; q; l; l0) does not depend on �2V1(z; f; y; q; l; l0) = f�0(l0)2�1y�0(q�l0)2�1(1� z)�0q2��0(l0)2��0(q�l0)2q��0l21 q��0(q�l)22�"[��0q2 + �0(l0)2 + �0(q � l0)2 + �0l2 + �0(q � l)2 � �0(l � l0)2℄(1� z)� �0l2��0(q � l)2 � �0l2 yq1 (1 � z)� �0(q � l)2 fq2 (1� z) + z# ; (100)V2(z; f; y; q; l; l0) = f�0(l0)2�1y�0(q�l0)2�1(1� z)�0q2��0(l0)2��0(q�l0)2q��0l21 q��0(q�l)22�[(1� z)� (f + y)℄ : (101)In these expressions we denotedq1 = f + yz � (1 � z)� i� ; q2 = y + fz � (1 � z)� i� ; �! 0 ; (102)where �! +0. In integral (99) the residue in the pole at k2 = m depends on m only throughthe exponent exp[�m(f + y + v)℄ multiplied by the derivative �m�1z V(i)(z; f; y; q; l; l0)=(m� 1)!
al
ulated at z = 0. Therefore after summing the residues over m we obtain1Xm=1 e�m(f+y+v)�m�1z V(i)(z; f; y; q; l; l0)=(m� 1)!����z=0 = Vi(e�(f+y+v); f; y; q; l; l0)�Vi(0; f; y; q; l; l0) : (103)21



Thus, the quantity S!(q; l; l0) 
an be written as followsS!(q; l; l0)=�0 = 1�(! + �0l2 + �0(q � l)2) Z dfdydvv!+�0l2+�0(q�l)2�1 ��e��0(l�l0)2(y+f+v)"[V1(e�(f+y+v); f; y; q; l; l0)� V1(0; f; y; q; l; l0)℄+1v [! + �0l2 + �0(q � l)2 � 1℄[V2(e�(f+y+v); f; y; q; l; l0)� V2(0; f; y; q; l; l0)℄#: (104)Integrating the last term in (104) over v by parts we obtainS!(q; l; l0)=�0 = 1�(! + �0l2 + �0(q � l)2) Z dfdydvv!+�0l2+�0(q�l)2�1e��0(l�l0)2(y+f+v)�"f�0(l0)2�1y�0(q�l0)2�1(1� e�f�y�v)�0q2��0(l0)2��0(q�l0)2�[f + ye�f�y�v � (1 � e�f�y�v)� i�℄��0l2[y + fe�f�y�v � (1 � e�f�y�v)� i�℄��0(q�l)2�B(e�f�y�v; f; y; q; l; l0)� V1(0; f; y; q; l; l0)� �0(l� l0)2V2(0; f; y; q; l; l0)# ; (105)where B(z; f; y; q; l; l0) = ��0(l � l0)2(f + y) + �0l2y + �0(q � l)2f + [�0(q � l0)2+�0(l0)2 � �0q2℄�1� z(f + y)1� z �� �0l2fy(1 � z)f + yz � (1 � z)� i� � �0(q � l)2fy(1 � z)y + fz � (1 � z)� i� : (106)Really the leading 
ontribution to (105) arises from the region of small integration variables.In parti
ular, it results in a pole at ! = �0q2, as well as in a Mandelstam 
ut term. To �ndthe main part of (105) we 
ut from below the integration variables in eq. (105) by a parameter� � 1. Then from eq. (106), one 
an obtain, that the leading 
ontribution to S! is given bythe expressionS!(q; l; l0)=�0 ! �e�0l2+�0(q�l)2 [�0q2 � �0(l0)2 � �0(q � l0)2℄�(! + �0l2 + �0(q � l)2) "Z �0 dfdydvv!f�0(l0)2�1�y�0(q�l0)2�1(v + f + y)�0q2��0(l0)2��0(q�l0)2�1 � 1�0(l0)2�0(q � l0)2(! + �0l2 + �0(q � l)2)# ; (107)where the pole term arises from two last terms in (106).To 
al
ulate the integral (107) the integration region is divided into 6 domains: v > f > y,v > y > f , f > v > y, f > y > v, y > v > f and y > f > v. In the �rst domain we repla
einitially y ! fy and then f ! vf . As a result, the v-dependen
e of the integrand turns out tobe v!+�0q2. Integrating it over v we observe the pole at ! = ��0q2. The similar pro
edure isperformed in ea
h of the rest domains. As far as, in addition, the expression !+�0l2+�0(q�l)2 isimplied to be small� 1= ln s, the fa
tor exp[�0l2+�0(q�l)2℄ in (107) should be repla
ed by unity.22



For the same reason �(!+�0l2+�0(q� l)2) = �(1+!+�0l2+�0(q� l)2)=(!+�0l2+�0(q� l)2) �1=(! + �0l2 + �0(q � l)2). Using these simpli�
ations expression (107) is given belowS!(q; l; l0)=�0 � 1(! + �0q2) [�0q2 � �0l2 � �0(q � l)2℄[�0q2 � �0(l0)2 � �0(q � l0)2℄�" ~F (�0(l0)2; �0(q � l0)2;�0q2 � �0(l0)2 � �0(q � l0)2)+ ~F (1� �0q2; �0(q � l0)2;�0q2 � �0(l0)2 � �0(q � l0)2)+ ~F (1� �0q2; �0(l0)2;�0q2 � �0(l0)2 � �0(q � l0)2)# ; (108)where ~F (a; b; 
) = Z 10 df Z 10 dyfa+b�1(1 + f + fy)
�1[yb�1 + ya�1℄ == 1Xn;m=0 �(
)�(
�m� n)�(m+ 1)�(n + 1)(a+m)(b+ n) : (109)One 
an verify that at small momenta �0q2 � �0l2 � �0l0� 1 the �rst term in the large squarebra
kets of eq. (108) gives the main 
ontributionSsing! (q; l; l0) = [�0q2 � �0l2 � �0(q � l)2℄[�0q2 � �0(l0)2 � �0(q � l0)2℄�0(! + �0q2)(l0)2(q � l0)2 : (110)Expressions (108) and (110) are 
orre
t in a neighbourhood of the pole and of zeros of thenumerator with the deviations being � 1= ln s � N
g2. As far as the numerator does not vanishat !+�0l2+�0(q� l)2 = !+�0l02+�0(q� l0)2 = 0, it 
ontributes to both the Mandelstam 
utsand the pole at ! = ��0q2.The pole at ! = ��0q2 
orresponds to the soft Pomeron whi
h exists already in the Bornexpression (48) for the elasti
 amplitude. Relatively large masses 1� �0M2 � �0s of produ
edresonan
es 
ontribute to this pole. Therefore in the box diagram Fig.1a we expe
t a pole of these
ond order from the integration over large masses of two intermediate s-
hannel resonan
es.This se
ond order pole appears as a result of the perturbative expansion of the Pomeron Reggepole over the one-loop 
orre
tion !1(t) � g2. In the two-loop approximation, 
orrespondingto Fig.1b, we should have the third order pole with the residue proportional to !21(t). In thisdiagram, apart from the pole (110) there is a produ
t of two pole singularities 1=(!+�0q2) fromthe integration over the large masses of resonan
es produ
ed in the fragmentation regions ofinitial parti
les. In the multi-Regge kinemati
s one obtains also the poles 1=(!+�0l2+�0(q�l)2)and 1=(!+�0l02+�0(q� l0)2) leading after the integration over l and l0 to the Mandelstam 
uts(we put here l = k? and l0 = k0?). Be
ause the residue of the pole (110) in the BFKL kernel issmall due to the smallness of the expressions in the square bra
kets, it 
an
els approximatelythe neighboring poles depending on l and l0 and therefore one 
an attempt to extra
t from the
ontribution for Fig.1b the third order pole being the se
ond order term in the expansion ofthe soft Pomeron pole in !1(t). 23



Indeed, let us present the numerator of the pole in eq. (110) in the form[�0q2��0l2��0(q� l)2℄[�0q2��0(l0)2��0(q� l0)2℄ = [!+�0l2+�0(q� l)2℄[!+�0(l0)2+�0(q� l0)2℄� [! + �0q2℄ h! � �0q2 + �0l2 + �0(q � l)2 + �0l02 + �0(q � l0)2i : (111)Then the se
ond term in the right hand side of this equality, killing the pole 1=(! + �0q2) in(110), 
ontributes only to the Mandelstam 
uts. As for the �rst term in (111), it 
orrespondsto the se
ond term of expansion for the soft Pomeron pole. Indeed, its numerator 
an
elsthe neighboring propagators for Mandelstam 
uts. Therefore the 
orresponding integrals overthe relative rapidities ln s12 and ln s23 are 
onvergent for the large invariants s12 and s23. So,we should 
al
ulate these integrals exa
tly without simpli�
ations 
orresponding to the multi-Regge kinemati
s. It is plausible, that as a result of su
h 
al
ulation the pole in expression(110) together with additional poles 1=(!+�0q2) from two impa
t fa
tors would reprodu
e thetotal one-loop 
orre
tion � !21 from Fig.1b in the se
ond order expansion of the Pomeron pole.The �rst term in (111) is important also for a 
an
ellation of the singularities in (110) at(l; l0)! 0 and (l; l0)! q leading to a 
onvergen
e of the 
orresponding integrals over the multi-Regge region. In addition, it has a non-trivial fun
ional dependen
e 
ontaining both poles and
uts in !. So, for the investigation of the BFKL equation in the D = 4 model we use the wholeexpression (110) without negle
ting the soft Pomeron pole. Simultaneously, we add a pie
efrom the non-multi-Regge kinemati
s.For a general 
ase of the ladder Fig.1 one 
an perform a de
ompositions similar to (111)for ea
h kernel. The 
ontributions appearing from the �rst terms in the right hand sides of(111) 
orrespond to the parti
les produ
ed in a non-multi-Regge kinemati
s. The form ofprodu
tion amplitudes in this region 
an not be extra
ted from our above results. Probablythis 
ontribution 
orresponds to a geometri
 progression appearing from an expansion of thesoft Pomeron pole in !1(t).Presumably one 
an represent the partial wave as follows f!(�q2) asf!(�q2) = f (p)! (�q2) + fmr! (�q2) ; (112)where the �rst term 
orresponds to the soft Pomeron 
ontribution in the form of the geometri
alprogression and the term fmr! (�q2) results from the multi-Regge kinemati
s. In prin
iple there
an be a more 
ompli
ated situation with an interferen
e between the Regge pole and 
ut.7 BFKL equation in the D = 4 string modelIt follows from the above dis
ussion that the singularities of the t=
hannel partial waves arisefrom the region where ! + �0l02 + �0(q � l0)2 � 1= ln s. For D > 4 after the integrationover the region �0l02 the 
orresponding 
ontribution is suppressed by powers of logarithms� (ln s)�(D�4)=2 for ea
h produ
ed parti
le, whi
h leads to a possibility to �nd the solution ofthe BFKL equation as a series in this small parameter. In prin
iple, it is not ex
luded thatfor very large energies the number of produ
ed parti
les grows so rapidly, that the averagedpair energies sk;k+1 for these parti
les are not so large to justify the saddle-point method of24




al
ulations of the integrals. In this 
ase the BFKL equation whi
h sums 
ontributions fromthe multi-Regge kinemati
s 
ould have non-trivial solutions even for D > 4. Here, however,we restri
t ourselves to the D = 4 
ase hoping to return to the dis
ussion of other values ofD in future publi
ations. Moreover, only the amplitude with va
uum quantum numbers in the
rossing 
hannel is 
onsidered.At D = 4 the BFKL equation has a non-trivial solution in terms of the fun
tion f (0)! (q; l)de�ned by the relation f (0)! (q; l) = Z f (0)! (q; l; l1)�(q; l1)d2l1 ; (113)where �(q; l1) is an impa
t fa
tor. Generally the solution 
ontains 
ontributions from non-planar diagrams.One loop 
orre
tion !1(t) to the gluon traje
tory for D = 4 (1) has the form!1(t) = �g2N
8�2 ln(q2=�2) + !(m)1 (q2) (114)where the �rst 
ontribution 
orresponds to massless states in the t -
hannel and the se
ondterm non-singular at q2 = 0 appears from the massive string ex
itations (
f. expression (5) inQCD).To begin with, let us dis
uss the region of small t, where �0q2 � g2N
. In this 
ase for D = 4the small gluon virtualities �0l2 � g2N
 � �0(l0)2 � g2N
 are important. For su
h momenta land l0 the pole 
ontribution (110) dominates in S!(q : l; l0) and the singularities of the t-
hannelpartial wave are situated for small g2 at ! � g2. Be
ause the infra-red divergen
ies in theintegral kernel are 
an
elled between the 
ontribution from the real parti
le emission and one-loop 
orre
tion to the Regge traje
tories, the fa
tor [(l� l0)2℄!+�0l2+�0(q�l)2 in the right hand sideof eq. (98) 
an be omitted. Hen
e, from expression (94) we obtain the following 
ontributionto the kernel (77) 
orresponding to the massless state produ
tionS(0)! (q : l; l0) = � q2(l0)2(q � l0)2 + l2(l � l0)2(l0)2 + (q � l)2(l � l0)2(q � l0)2 : (115)Expression (115) 
oin
ides with the 
orresponding result [11℄ in QCD. The massive stateterm in (114) is expe
ted to vanish at t! 0. So, the radiative 
orre
tion to the gluon traje
toryfor small momentum transfers l and q � l also 
an be approximated by the QCD expression(5). As a result, the BFKL equation (93) for the va
uum 
hannel at D = 4 and �0q2 � g2N
 isdrasti
ally simpli�ed[! + �0l2 + �0(q � l)2℄f (0)! (q; l) = �(q; l) + g2N
8�3 Z (S(0)! (q : l; l0)f (0)! (q; ; l0)� 1(l� l0)2" l2[(l � l0)2 + (l0)2℄ + (q � l)2[(l� l0)2 + (q � l0)2℄#f (0)! (q; ; l))d2l0+g2N
8�3 Z [�0q2 � �0l2 � �0(q � l)2℄[q2 � (l0)2 � (q � l0)2℄(! + �0q2)(l0)2(q � l0)2 f (0)! (q; ; l0)d2l0 ; (116)where the 
ontribution from Fig.1a is also taken into a

ount.25



In eq. (116) we performed a relevant subtra
tion of the Regge traje
tory 
ontribution toobtain the integral kernel in the BFKL form (
f. [1℄), and the expression for S(0)! (q : l; l0) isgiven in (115). Equation (116) di�ers from the BFKL equation in QCD only by terms linearin squared gluon momenta at its left hand side and by an additional pole term � 1=(! + �0q2)in the kernel. The terms � l2 and � (q � l)2 improve the properties of its kernel at l ! 1.As a result, unlike the QCD 
ase in LLA, eq.(116) is expe
ted to have a dis
rete spe
trum atnonzero values of q2.Comparing the large-l behaviour of the left and right hand sides of eq.(116) we 
on
lude,that the linear terms in the gluon traje
tories in eq. (116) lead to a 
onstant behaviour off (0)! (q; l) at l!1. As a result, the integralh!(q) = Z [q2 � (l0)2 � (q � l0)2℄(l0)2(q � l0)2 f (0)! (q; ; l0)d2l0 (117)in the last term on its right hand side is divergent. Taking into a

ount, that this term playsrole of an additional inhomogenious 
ontribution to eq.(116) we present f (0)! (q; l) in the formf (0)! (q; l) = g2N
[�0q2 � �0l2 � �0(q � l)2℄8�3(! + �0q2)[! + �0l2 + �0(q � l)2℄h!(q) + g2N
h!(q)8�3(! + �0q2) f̂ (0)! (q; l) + ~f (0)! (q; l) ;(118)where h!(q) is given by (117), while f̂ (0)! (q; l) and ~f (0)! (q; l) are determined from the equation(below F (0)! (q; l) is denoted either by f̂ (0)! (q; l) or ~f (0)! (q; l))[! + �0l2 + �0(q � l)2℄F (0)! (q; l) = ~�(q; l) + g2N
8�3 Z (S(0)! (q : l; l0)F (0)! (q; ; l0)� 1(l � l0)2" l2[(l� l0)2 + (l0)2℄ + (q � l)2[(l� l0)2 + (q � l0)2℄#F (0)! (q; ; l))d2l0 : (119)Here for F (0)! (q; l) = f̂ (0)! (q; l) we have~�(q; l) = Z S(0)! (q : l; l0) [�0q2 � �0(l0)2 � �0(q � l0)2℄! + �0(l0)2 + �0(q � l0)2 d2l0 �Z d2l0(l � l0)2" l2[(l� l0)2 + (l0)2℄ + (q � l)2[(l� l0)2 + (q � l0)2℄# [�0q2 � �0l2 � �0(q � l)2℄! + �0l2 + �0(q � l)2 ; (120)and for F (0)! (q; l) = ~f (0)! (q; l), ~�(q; l) = �(q; l) : (121)Using (118) and (117) one obtains h!(q) as the solution of a linear equationh!(q) = ! + �0q2! + �0q2 � ~�(!; q2) Z [q2� l2 � (q � l)2℄l2(q � l)2 ~f (0)! (q; ; l)d2l ; (122)where~�(!; q2) = g2N
8�3 "~�0 + �Zl2<�2 �0[q2 � l2 � (q � l)2℄2[! + �0l2 + �0(q � l)2℄l2(q � l)2d2l� � ln�2��2!1+ Z [q2 � l2 � (q � l)2℄l2(q � l)2 f̂ (0)! (q; ; l)d2l# : (123)26



We subtra
ted the logarithmi
 divergen
y from the se
ond term in the bra
kets assumingthat subtra
tion term is added to the quantity ~�0 determined by the integration region �0k2 � 1.So, �0 depends also on the non-multi-Regge 
on�gurations, leading to the renormalisation !1of the soft Pomeron Regge traje
tory. This 
on
lusion follows from expression (86) for theprodu
tion 
ross-se
tion, where the kernel dependen
e from the 
ut-o� s0 is essential, and fromour dis
ussion of eq. (111). It is natural to expe
t that ~�0 � 1. So, the solution of eq. (116)depends on the additional parameter ~�0. The equation ! + �0q2 = ~�(!; q2) allows to �ndthe Regge traje
tories . In addition, one 
an 
on
lude from (123) that ~�(!; q2) 
ontains theMandelstam 
uts in the !-plane.In the region g2N
 � �0q2 � 1 the asymptoti
 behaviour of the s
attering amplitude isrelated to singularities of the integral R f (0)! (q; ; l0; l1)d2l0 near ! � �q2=2. They appear fromthe kinemati
s, in whi
h the solution of eq. (116) is 
on
entrated at l = q=2. Let us introdu
ethe new momenta v and v0 a

ording to the de�nitionl = q=2 + v ; l0 = q=2 + v0 ; v2 � q2 ; (v0)2 � q2 : (124)Leaving only leading terms, eq. (94) is simpli�ed as followsS(0)! (q : l; l0) = 2 [�0(l � l0)2℄!+�0q2=2(l� l0)2 ; (125)where l � l0 = v � v0. The numerator in (125) is di�erent from unity only in the region�0r2 = �0(l � l0)2 � s0=s. Due to eq. (69) for a massless intermediate state the value of r2 inthe multi-Regge kinemati
s s1; s2 > s0 � 1=�0 is restri
ted by the 
ondition r2 � s20=s.However, a

ording to the generalized Gribov theorem the gluon produ
tion amplitude forthe momenta r2 � 1=�0 is also large in the quasi-elasti
 regions s1 � 1=�0 and s2 � 1=�0 andequals to the elasti
 amplitude multiplied by a bremstrahlung fa
tor (see for example [21℄).Therefore the integral over r2 is not bounded from below by s20=s being infraredly divergent.As usually, this divergen
y is 
an
elled with the 
ontribution from the virtual 
orre
tions pro-portional to the gluon Regge traje
tories. Thus, we substitute by unity the numerator in (125)and represent the massless 
ontribution to the gluon traje
tory 
orre
tion as followsg2N
 ln(l2=�2) = Z d2l0(l� l0)2" l2[(l � l0)2 + (l0)2℄ + (q � l)2[(l� l0)2 + (q � l0)2℄ � 4v2(v2 + (v0)2)#+ Z 4v2d2l0(v2 + (v0)2)(v � v0)2 : (126)Here l and v are related a

ording to eqs. (124). Performing the expansion in v in the righthand side of eq. (93) one 
an write it as follows[! + �0q2=2 + 2�0v2 + g2N
4�2 ln(q2=64v2)℄f (0)! (q; v; v1) = �(q; q=2)+g2N
8�3 Z 2(v � v0)2"f (0)! (q; ; v0; v1) � 2v2(v2 + (v0)2)f (0)! (q; ; v; v1)#d2l0 : (127)27



The impa
t fa
tor in (127) is taken at l = q=2 be
ause it is expe
ted to be a smooth fun
tionof l near l = q=2. For �0q2 � 1 the radiative 
orre
tion (5) to the gluon traje
tory at a smallmomentum transfer should be repla
ed by !1(t) taken at t = �q2=4. Thus, the �nal equationvalid for both restri
tions g2N
 � �0q2 � 1 and �0q2 � 1 is obtained from (127) by thesubstitution ! ! !0(q2) where!0(q2) = ! + 2��!(m)1 (�q2=4) + g2N
8�2 ln(q2=4�2)� : (128)The 
orresponding quantities are de�ned in eqs. (1) and (114). Note, that the infra-reddivergen
y at � ! 0 in the last term is 
an
elled with a similar divergen
y in the right handside of eq. (126) at v0! v.8 Solution of the equation at small momentum transfersAt q 6= 0 the integral kernel of the BFKL equation for the string theory at D = 4 is non-singular at small momenta. In this 
ase one 
an expe
t that for the t-
hannel partial wave the
ut at ! = !0 disappears, and instead of a �xed singularity of f!(q2) in the !-plane there areonly Regge poles. Here we demonstrate this phenomenon in the 
ase of small values of �0~q2,where there exists an analyti
 solution of the equation in the D = 4 string theory. The pole
ontribution to the kernel 
orresponding to the soft Pomeron will be negle
ted.In the domain of relatively small ~q 2 �0~q 2 � g2N
 : (129)one 
an divide the region of possible values of ~� 2 � ~k�2 into two subregions ~�2 � ~q�2 and ~� 2 ��0(g2N
)�1, where � = �12. In the �rst subregion one 
an use the 
onformal (M�obius) invarian
eand the eigenfun
tion in the mixed representation 
oin
ides with the Fourrie transformation inthe 
.m. 
oordinate ~�0 from the fun
tion Em;em(~�1; ~�2; ~�0) (17). Its asymptoti
s at small ~�2 hasthe form [22℄ Em;em(~q; ~�) � �m (��)em + ei Æm;em(~q) �1�m (��)1�em ; (130)where ei Æm;em(~q) = (�1)n  jqj4 !�4i�  qq�!n �(m+ 12) �(fm+ 12)�(�m+ 32) �(�fm+ 32) : (131)For simpli
ity we 
onsider the 
ase n = 0, whereei Æm;m(~q) =  jqj4 !�4i� �2(1 + i�)�2(1 � i�) (132)and the wave fun
tion for small j�jEm;m(~q; ~�) � j~�j1+2i� + ei Æm;m(~q) j~�j1�2i� : (133)28



After the Fourrie transformation to the momentum spa
e we obtain	(~q;~k) = Z d2� ei~�~k Em;m(~q; ~�) � jk=qj�3�2i� + ei Æ(�) jk=qj�3+2i� ; (134)where ei Æ(�) = 24i� �2(1 + i�) �(�12 � i�) �(32 � i�)�2(1 � i�) �(�12 + i�) �(32 + i�) : (135)On the other hand, in the region ~�2 � ~k�2�0(g2N
)�1 one 
an put ~q = 0 and after therede�nition of the wave fun
tion and its argument	(~q;~k) = jkj�3 �(z) ; z = ln(�0~k2) (136)the BFKL homogeneous equation in the string model 
an be written as the S
hr�odinger equationE� = H� ; ! = �g2N
4�2 E ; H = HBFKL(i�=�z) + �ez ; (137)where HBFKL(�) =  (i� + 1=2) +  (�i� + 1=2) � 2 (1) ; � = 4�2g2N
 : (138)The analogy with the S
hr�odinger equation is espe
ially fruitful in the di�usion approxima-tion, where HBFKL(i�=�z) = �4 ln 2� 14 �(3) (�=�z)2 (139)has the form of the non-relativisti
 kineti
 energy. The potential energy �ez grows rapidly atlarge positive z and therefore the wave fun
tion � should tend to zero in this regionlimz!1 �(z) � exp �2s �14 �(3) ez=2! : (140)For z !�1 the potential energy vanishes, whi
h agrees with a possibility to negle
t the stringe�e
ts at small ~k2. In the momentum representation�(p) = Z 1�1 eipz �(z) dz; (141)where p = i�=�z, the BFKL equation is redu
ed to the equation in �nite di�eren
es(E �HBFKL(p))�(p) = ��(p� i) : (142)The fun
tion �(p) 
an have the singularities (poles) only in the upper semi-plane. It is analyti
in the lower semi-plane to provide a rapidly de
reasing behaviour of �(z) at z ! +1. Thepositions of the poles is given belowpr = p0 + ir ; (r = 0; 1; 2; :::) ; (143)29



where the possible values of p0 satisfy the equationHBFKL(p0) = E : (144)For example, in the di�usion approximation, whereE �HBFKL(p) = E + 4 ln 2� 14 �(3) p2 ; (145)the solution of the above re
urrent relation is�(p) = �0(p)  7 �(3) g2N
2�2 !ip � i p� isE + 4 ln 214 �(3) ! � i p + isE + 4 ln 214 �(3) ! (146)up to a periodi
 fun
tion satisfying the relation �0(p) = �0(p + i). We should substitute thisfun
tion by a 
onstant �0(p) = 
onst ; (147)be
ause in an opposite 
ase for p ! �i1 the wave fun
tion does not de
rease suÆ
ientlyrapidly due to the additional fa
tors � exp(�2�ip). Indeed, for �0(p) = 1 the normalizationintegral Z 1�1 dp j�(p)j2 = Z 1�1 dp �2= �p2 � E+4 ln 214 �(3) �sinh �� p � �qE+4 ln 214 �(3) � sinh �� p+ �qE+4 ln214 �(3) � (148)is 
onvergent at p ! �1. Moreover, for �0(p) = 1 the wave fun
tions �(p) with di�erentE are orthogonal. Note, that the integrand (148) 
ontains the poles. After their appropriateregularization it leads to the Æ-fun
tion � Æ(E � E0) in the orthonormality 
onditions.Let us go to the z representation�(z) = Z 1�i0�1�i0 dp2� e�ip z �(p) : (149)For large positive z the 
ontour of the integration over p should be shifted in the lower semi-plane up to the saddle point situated atz =   i p � isE + 4 ln 214 �(3) !+   i p+ isE + 4 ln 214 �(3) !+ ln 7 �(3) g2N
2�2 !� ln (ip)2 7 �(3) g2N
2�2 ! : (150)We 
an estimate �(z) by the value of the integrand in (149) at this point�(z) � e�ip z �(p) � exp0��2vuut 2�27 �(3) g2N
 ez=21A (151)in an a

ordan
e with eq. (140). 30



At small E + 4 ln 2, where the di�usion approximation is valid, the solution near the polesat small values of p is �(p) � (7�(3) g2N
=(2�2))ipE + 4 ln 2� 14 �(3) p2 : (152)Thus, �(z) at z = ln(�0~k2)!�1 behaves as follows�(z) �  7�(3) g2N
2�2�0~k2 !iqE+4 ln 214 �(3) �  7�(3) g2N
2�2�0~k2 !�iqE+4 ln 214 �(3) : (153)By 
omparing this result with expressions (134) and (135) for small � in the intermediateregion �0=(g2N
)� ~�2 � 1=~q2 we obtain the quantization of the Regge traje
tories2sEr + 4 ln 214 �(3) ln 7�(3) g2 N
2�2�0~q2 ! = 2�(r + 1=2) ; r = 0; 1; 2; ::: (154)for n = 0 and small E + 4 ln 2 = 4 !0 � !g2N
 � 1 : (155)For 
omparatively large energies E in the di�usion approximation one 
an use the semi
las-si
al approximation near the turning point z = z0, where�ez0 = E + 4 ln 2 ; � = 4�2g2N
 ; (156)
orresponding to the following simpli�
ation of the solution (146) at p �pE + 4 ln 2�(p) �  (E + 4 ln 2) g2N
4�2 !ip exp �i 14�(3)E + 4 ln 2 p33 ! : (157)The Fourrie transformation to the z-representation 
an be performed with the use of the saddle-point method�(z) � exp i (��z)3=223sE + 4 ln 214�(3) � i�4!+exp �i (��z)3=223sE + 4 ln 214�(3) + i�4! ; (158)where �z = z � z0. Therefore in the di�usion approximation of small � the wave fun
tion atz! �1 equals�(z) � e�i�=4  7�(3) g2N
2�2�0~k2 !iqE+4 ln 214 �(3) + ei�=4  7�(3) g2 N
2�2�0~k2 !�iqE+4 ln 214 �(3) (159)and the quantization 
ondition for energies is2sEr + 4 ln 214 �(3) ln 7�(3) g2N
2�2�0~q2 ! = 2�(r + 1=4) (160)31



for large integer r.We investigate below a general 
ase of arbitrary � for small �0t without using the di�usionapproximation. To begin with, one 
an verify, that here in the semi
lassi
al approa
h expression(157) for the wave fun
tion is also valid near the returning point z = z0, where p = 0. The onlydi�eren
e with the di�usion approximation is an additional �-dependen
e of the phase Æ(�) in(135), whi
h leads to the modi�ed quantization 
ondition2 j�rj ln 7�(3) g2N
2�2�0~q2 ! = Æ(�r) + 2�(r + 1=4) ; r = 0; 1; 2; ::: (161)and the 
orresponding quantized energies 
an be obtained from the relation E = HBFKL(�)(see (138)).To derive an exa
t solution of the BFKL equation for small �0~q2 let us introdu
e the newvariables x = 2�0l2 ; x0 = 2�0(l0)2 ; x1 = 2�0l21 : (162)In these variables the inhomogeneous BFKL equation has the form[! + x℄f(x) = �̂(x) + 
 Z 10 " f(x0)jx� x0j � � 1jx� x0j � 1px2 + 4x02� xx0f(x)#dx0 ; 
 = g2N
4�2 :(163)Here f(x) � �(x)=px is F (0)! (0; l)=x averaged over the angle ' between l and l0, and �̂(x) is~�(0; l)=x averaged over '. We expe
t that ~�(0; l)! 0 at x! 0 and �̂(x) is �nite at x = 0.The above BFKL equation di�ers from that in QCD [11℄ by the presen
e of an additionalterm proportional to x in its left hand side. As in the QCD 
ase, we sear
h the solution in theform of the Mellin transformationf(x) = Z i1�i1(x)��1=2C(�) d�2�i ; � = i� : (164)Similarly, the inhomogeneous term is presented as follows�̂(x) = Z i1�i1(x)��1=2�̂1(�) d�2�i : (165)To obtain an equation for C(�) one 
olle
ts the terms proportional to x�. For the 
ontri-bution xf(x) the integration 
ontour should be moved to the line <� = �1 and therefore thefun
tion C(�) 
an not have any singularities inside the strip �1 < <� < 0. If this 
ondition isful�lled, we have C(� � 1) = �1(�)� [
 b(�) + !℄C(�) ; (166)where b(�) =  (� + 1=2) +  (�� + 1=2) � 2 (1) (167)and  (x) = d ln �(x)=dx is the derivative of the logarithm of the gamma-fun
tion.It is 
onvenient to introdu
e the new variable � a

ording to the de�nition� = � ln �2�i : (168)32



In the new variables eq. (166) 
an be written as follows~C(�e�2�i) = b�1(�)� [
 b(�) + !℄ ~C(�) ; (169)where ~C(�) � C(�(�)). The 
al
ulation of C(�) is redu
ed to the known mathemati
al problemof �nding a fun
tion satisfying the requirement, that its dis
ontinuity is proportional to thesame fun
tion. Let us de�ne an auxiliary fun
tion �(�; b�1) being a solution of the homogeneousequation �(� � 1; b�1) = [
 b(�) + !℄�(�; b�1) : (170)with b�1 being an arbitrary subtra
tion point, where � = 1. Note, that the sign in the righthand side of eq. (170) is opposite in 
omparison with the sign in front of the 
orrespondingterm in eq. (166).The expli
it expression for su
h fun
tion is given below�(�; b�1) = exp"Z i1�i1 sin �(b�1 � �) ln[
 b(�0) + !℄sin �(�0� b�1) sin�(�0 � �) d�02i # (171)where it is implied that <� < 0 and <b�1 < 0. At <� > 0 the result is obtained by an analyti

ontinuation of (171) from the region <� < 0. Furthermore, it is implied, that the solutionfor ! < !0 = (g2N
 ln 2)=�2 
an be derived also by an analyti
 
ontinuation from the region! > !0, where the argument of the logarithm has two zeros situated on the imaginary axes andpin
hing the integration 
ontour at ! ! !0.The integral over �0 is 
onvergent at large �0 sin
e from (167) one obtainsln b(�)! ln ln j=�j (172)at =� !�1.Let us show, that indeed expression (171) is a solution of eq. (170). The pole at �0 = �is situated to the left of the integration 
ontour and 
an pin
h only the right singularity ofthe logarithm situated at the zero of its argument. The pole at �0 = � � 1 being to the rightfrom the 
ontour pin
hes with the left singularity of the logarithm. It means, that the fun
tion�(�; b�1) has no singularities in the strip �1 � <� � 0. To verify that solution (172) satis�eseq. (170) it is enough to note that after the shift � ! � � 1 the pole at �0 = � + 1 of theintegrand moves to the point �0 = � whi
h was earlier to the left from the integration 
ontour.The initial and �nal expressions di�er ea
h from another by an additional term in the exponent.This term is obtained by taking the residue in the pole at �0 = �. As a result, relation (170) isful�lled.It is useful to investigate the positions of zeroes and poles of �(�; b�1). Both of them areobtained due to pin
hing the poles 1= sin �(�0��) with the singularities of the logarithm situatedat zeros and poles of its argument [
 b(�0) + !℄. The poles are situated at �0 = �(n+1), wheren = 0; 1; 2; :::. The zeros are situated between these poles. We denote their position by �(+)m for<�m > 0 and �(�)m for <�m < 0. It is obvious, that j<�(�)m j < j<�(�)n j for m < n. The fun
tion�(�; b�1) has zeroes at � = �(�)m � r, where r is an integer or zero for m = 1; 2; ::: and r 6= 0for m = 0. Indeed, due to the above dis
ussion � = �(�)0 is not a singularity of the exponent.33



Furthermore, �(�; b�1) has zeros in the right half-plane at � = n+1=2, where n is an integer orzero. The poles are situated in the right half-plane at � = �(+)m + n and in the left half-planeat � = �(n + 3=2) for n = 0; 1; 2; :::. Similar to the 
ase �(�)0 the point � = �1=2 does not
orresponds to a singularity of the exponent. In the above dis
ussion we used the relationsin �(b�1� �)sin�(b�1 � �0) sin �(� � �0) = 
ot�(�0 � b�1)� 
ot�(�0 � �) : (173)Using expression (171) one 
an �nd for large � = r + iy�(�; b�1)! exp"�(ln ln jyj)[iy+ r + 1=2℄# (174)up to a phase independent from �. Here in the essential region of integration �0 � � we repla
edthe logarithmi
 fun
tion 
 b(�0) + ! by its asymptoti
 value at �0 = �.In a similar way one 
an 
he
k that for ! > !0 the solution C(�) of the inhomogeneousequation is given by C(�) = Z i1�i1 �(�0; b�1)�̂1(�0)d�02i�(�0; b�1)[
 b(�0) + !℄ sin�(�0 � �) : (175)In an agreement with general arguments the 
ontinuation of the partial wave in the 
omplexplane from the integer points is performed from the region ! > !0. Similar to (171) in (175)the 
onditions <� < 0 and b�1 < 0 are assumed to be ful�lled and the expression in the region<� > 0 are obtained by an analyti
 
ontinuation. It 
an be written in the equivalent formC(�) = Z i1�i1 b�1(�0)�(�0; �)d�02i[
 b(�0) + !℄ sin �(�0� �) (176)with the same 
onventions 
on
erning the signs of <� and !.As in the 
ase of QCD [11℄, the leading singularity in the !-plane is situated at ! =!0 = (g2N
 ln 2)=�2. It is obtained from the region �0 � � ! 0 in eq. (176). In this limitthe 
orresponding denominator is approximated by the di�usion expression ! � !0 � a(�0)2.Cal
ulating the integral at �! 0, one obtainsC(�) � 1=(� �p! � !0) ; (177)where the omitted fa
tor has no singularity at small �. Thus, at x ! 0 the solution is �xp!�!0�1=2. In QCD there are singularities in both points � = �p! � !0, but in the stringmodel only the singularity at � = p! � !0 survives. Another singularity is absent be
ause atlarge momenta the kernel of the equation is non-singular due to the linear term in the traje
toryon the left hand side of eq. (163).In the important 
ase of the leading singularity, where the di�usion approximation
 b(�) + ! � a(�20 � �2) ; a = �7�(3) g22�2 ; �20 = �4 ln 2� !=[g2 7�(3)=2�2℄ (178)34



is valid, the fun
tion �(�) is given by�(�) = a���(�0 � �)[�(�0 + � + 1)℄�1 : (179)It is related to the solution ~�(�) of the homogenious equation as follows~�(�) = ���(�)= sin�(� + �0) : (180)At ! < 0, as it was dis
ussed above, ~� des
ribes the wave fun
tion of the parti
le with anenergy equal to �
!, whi
h is reje
ted from the potential barrier ez. In this 
ase z = lnx, and�i� is the momentum of the 
olliding parti
le.A

ording to (176), the fun
tion C(�) in (164) determining the solution of eq. (163) is givenbelow C(�) = a���(�0 � �)�(�0 + � + 1) Z +i1�i1 a�0�1�̂(�0)�(�0 + �0) d�02i�(�0 � �0 + 1) sin �(�0 � �) : (181)In (181) it is implied that <� < 0, and so that the pole at �0 = � is twisted with the rightside. At <� > 0 the result is obtained by an analyti
 
ontinuation in �. Furthermore, in(164) the pole at � = �0 is on the right hand side from the integration 
ontour. It is solely thesolution at �0 > 0 be
ause in this 
ase (180) determines a fun
tion of x in
reasing at x!1.At �0 < 0 the solution is not unique be
ause (180) might be added to (181). In an agreementwith general arguments one should 
hose the solution whi
h is an analyti
al 
ontinuation of thesolution (181) to the region �0 < 0. The result is presented by eq. (181) where the integration
ontour is de�ned in an a

ordan
e with these arguments.9 Heisenberg spin model and integrabilityTo investigate the region of �0~q2 � g2N
 it is 
onvenient to use the 
onformal invarian
e ofthe BFKL kernel in QCD (see [22℄). In the 
oordinate representation for the wave fun
tiondes
ribing the 
omposite state of two reggeized gluons with the impa
t parameters ~�1 and ~�2we have the expression [22℄ (see (17))Em;em(~�1; ~�2; ~�0) =  �12�10�20!m  ��12��10��20!em ; �12 = �1 � �2 ; (182)where ~�0 is the 
oordinate of the Pomeron, �r = xr+ iyr and ��r = xr � iyr are respe
tively theholomorphi
 and anti-holomorphi
 variables, �rs = �r � �s andm = 12 + i� + n2 ; fm = 12 + i� � n2 (183)are 
onformal weights related to the eigenvalues of the Casimir operators of the M�obius group~M2Em;em = m(m� 1)Em;em ; ~M� 2Em;em = fm(fm� 1)Em;em ; ~M2 = ��212 ���1 ���2 : (184)35



Note, that in (183) the 
onformal spin n is integer n = 0;�1;�2; ::: and the parameter � is areal number for the prin
ipal series of the unitary representations.The operator ~M2 is related to the generators of the M�obius group ~M~M = ~M1 + ~M2 ; M zr = �r ���r ; M�r = ���r ; M+r = ��2r ���r : (185)The generators satisfy the following 
ommutation relations[M z;M�℄ = �M� ; [M+;M�℄ = 2M z ; [M� z;M��℄ = �M�� ; [M�+;M��℄ = 2M� z : (186)For the solution of the BFKL equation in the string theory it is 
onvenient to introdu
e alsothe generators ~N = ~M1 � ~M2 : (187)Together with the operators ~M they produ
e the Lie algebra for the Lorentz group[M z; N�℄ = �N� ; [M+; N�℄ = 2N z ; [M�; N z℄ = �N� ; [M�; N+℄ = �2N z ; (188)[N z; N�℄ = �M� ; [N+; N�℄ = 2M z : (189)We 
an �nd the representation of this algebra in the spa
e of the fun
tions EmEm(�1; �2; �0) =  �12�10�20!m (190)as followsM zEm = (��0�0 �m)Em ; M+Em = (�20�0 + 2m�0)Em ; M�Em = ��0Em ;N�Em = m(m� 1)2m� 1  Em+1 + �20(m� 1)2Em�1! ; (N z � �0N�)Em = mm� 1�0Em�1 ;(N+ + 2�0N z � �20N�)Em = �2mEm�1 (191)and analogously for the representation of �!M� and �!N� on fun
tions E�em.The BFKL integral operator KBFKL is diagonal in the (m;fm)-representation and its eigen-value has the property of the holomorphi
 separability!BFKL = � g28�2 N
 �m;em ; �m;em = �m + �em ; (192)where the holomorphi
 energies are the following fun
tions of the 
onformal weights m and fm�m =  (m) +  (1�m)� 2 (1) ; �em =  (fm) +  (1�fm)� 2 (1) : (193)In the 
ase of the string theory in the eigenvalue equation for the Pomeron wave fun
tionf in the dimension D = 4 we have the additional 
ontribution �KBFKL (negle
ting the poleterm from the soft Pomeron)! f = K f ; K = KBFKL +�K ; �K = ��0~p21 � �0~p22 : (194)36



It is 
onvenient to use the mixed representation (~q = ~p1 + ~p2; ~� = ~�12), where the additionalstring 
ontribution to K has the form�K = ��0  ~q22 � 2 �2(���)2! ; �2(���)2 = N�N�� ; N� = �1 � �2 ; � = �1 � �2 : (195)In this representation the Pomeron wave fun
tion in QCD 
an be obtained by the FourrietransformationEm;em(~q; ~�) = Z d2Rei ~q ~R  �(R+ �2)(R � �2 )!m  ��(R� + ��2 )(R� � ��2 !em ; R = �1 + �22 : (196)Let us present the solution of the BFKL homogenious equation in the string theory as asuperposition of the above fun
tionsf(~q; ~�) = Z 1�1 d� 1Xn=�1Cm;em(~q) �(m) �(fm)Em;em(~q; ~�) : (197)Here we extra
ted the fa
tor �(m) �(fm) from 
oeÆ
ients Cm;em(~q) to simplify the relationsbetween them. The operators N� and N�� a
t on the fun
tions Em;em(~q; ~�) as followsN�Em;em = m(m� 1)2m� 1  Em+1;em � q�24(m� 1)2Em�1;em! ; (198)N��Em;em = fm(fm� 1)2fm� 1  Em;em+1 � q24(fm� 1)2Em;em�1! : (199)Therefore the fun
tion f(~q; ~�) is a solution of the homogeneous BFKL equation in the stringtheory if the 
oeÆ
ients Cm;em(~q) in (197) satisfy the following re
urrent relation ! + g28�2 N
 (�m + �em) + �0~q22 ! Cm;em(~q) =2�0  m� 22m� 3 fm� 22fm� 3 Cm�1;em�1(~q)� m+ 12m+ 1 fm� 22fm� 3 q�24 Cm+1;em�1(~q)� m� 22m� 3 fm+ 12fm+ 1 q24 Cm�1;em+1(~q) + m+ 12m + 1 fm+ 12fm+ 1 q�24 q24 Cm+1;em+1(~q)! : (200)By introdu
ing the new fun
tion�m;em(~q) = (2m� 1)�1(2fm� 1)�1 (q=2)em(q�=2)m Cm;em(~q) (201)one 
an write this re
urrent relation in a simpler form ! + g28�2 N
 (�m + �em) + �0~q22 ! (2m� 1)(2fm� 1)�m;em(~q) =37



�0~q22 �(m� 2) (fm� 2)�m�1;em�1(~q)� (m+ 1) (fm� 2)�m+1;em�1(~q)� (m� 2) (fm+ 1)�m�1;em+1(~q) + (m+ 1) (fm+ 1)�m+1;em+1(~q)� : (202)One should add to this re
urrent relation the information about the asymptoti
 behavior of the
oeÆ
ients Cm;em(~q) at large m and fm 
orresponding to jkj � jqj investigated above. Note, that
ontrary to the 
ase of small �0~q2, 
onsidered in the previous se
tion, now the eigenfun
tions
ontain a mixture of states with di�erent 
onformal spins. Expanding �m;em in the basis of thefun
tions xmx� em one 
an redu
e the re
urrent relation (202) in the di�usion approximation toa di�erential equation, whi
h 
an be solved, for example, by the semi-
lassi
al methods similarto those used in the previous se
tion.In the 
ase of the 
olourless state 
onstru
ted from several reggeized gluons [23℄ the homo-geneous equation for its wave fun
tion in the string theory is given in the multi-
olour limitN
 !1 below (
f. [14℄)E �(~�1; ~�2; :::; ~�n) = H �(~�1; ~�2; :::; ~�n) ; ! = �g2N
8�2 E ; (203)where H = H(n)BFKL + l2 nXr=1(~pr)2 ; l2 = �0 8�2g2N
 ; p�r = i ����r : (204)Here H(n)BFKL has the property of the holomorphi
 separabilityH(n)BFKL = h(n)BFKL + h(n) �BFKL ; h(n)BFKL = nXr=1h(r;r+1)BFKL ; (205)h(r;r+1)BFKL =  (m̂r;r+1) +  (1� m̂r;r+1)� 2 (1) ; m̂r;r+1(m̂r;r+1 � 1) = ��2r;r+1�r�r+1 (206)and hnBFKL is the lo
al hamiltonian for the integrable XXX model [24℄ with the spins 
oin
idingwith the generators of the M�obius group (185). Really we have two independent spin 
hainsfor holomorphi
 and anti-holomorphi
 subspa
es. The term � l2 in eq. (204) des
ribes anadditional intera
tion between these two spin 
hains be
ause a

ording to (185)(~pr)2 = �4M�r M� �r : (207)This term violates the M�obius symmetry for H and leaves only its invarian
e under translationsand rotations. Therefore the eigenvalues of H 
an depend on ~q2, whi
h leads to the Reggetraje
tories for 
omposite states of reggeized gluons. We do not know, if the 
orrespondingHeisenberg spin model is integrable or not. But in the region �0~q2 � g2N
 it is possible toapply the integrability of the QCD hamiltonian for 
al
ulating the Regge traje
tories. Indeed,as in the previous se
tion, one 
an divide the essential momenta in two regions ~k2r � ~q2r and~k2r � 1=�0. In the �rst region we 
an use the integrability of the BFKL hamiltonian to obtainthe wave fun
tion of the 
omposite state. For the leading singularity the integrals of motion38



are quantised and depend only on the 
onformal weights m;fm [14, 24, 25℄. Therefore the
orresponding energy EBFKL for this leading singularity is a fun
tion of these variablesEBFKL = E(m;fm) : (208)It means, that for the solution of the equation in the se
ond region ~k2 � 1=�0 we 
an usethe same methods whi
h were used in the previous se
tion for the 
al
ulation of the Pomerontraje
tory. We hope to return to the problem of �nding the Regge traje
tories for the Odderonand other gluon 
omposite states in our future publi
ations.A
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ussions.A Conformal fa
tor for SL(2)-SUSY transformationsIf the �xed variables are (z(0)1 j#(0)1 ), (z(0)2 j#(0)2 ) and z(0)3 while the superpartner # of z(0)3 is not�xed, then the dis
ussed fa
tor H(z(0)1 ; z(0)2 ; z(0)3 ; #(0)1 ; #(0)2 ; #) turns out to be [16℄H(z(0)1 ; z(0)2 ; z(0)3 ; #(0)1 ; #(0)2 ; #) = (z(0)1 �z(0)3 )(z(0)2 �z(0)3 )241� #(0)1 #2(z(0)1 � z(0)3 ) � #(0)2 #2(z(0)2 � z(0)3 )35 : (1)When #(0)1 = #(0)2 = 0 this fa
tor is redu
ed to the expression given in Se
.3 of the paper.Re�xing the above variables to the new values (ẑ(0)1 ; ẑ(0)2 ; ẑ(0)3 ; #̂(0)1 ; #̂(0)2 ) 
an be a
hieved by thefollowing transformations.Firstly, both #(0)1 and #(0)2 are pushed to vanishing values. The supersymmetri
 SL(2)transformation (35), whi
h preserves the variables z1, z2 and z3 but adjustes to #1 and #2 thezero values, is given byf(ẑ) = ẑ � (ẑ � z1)(ẑ � z2)(z3 � z1)(z3 � z2) #̂3"0(z3) ; "(ẑ) = #1(ẑ � z2)(z1 � z2)qf 0(z1) � #2(ẑ � z1)(z1 � z2)qf 0(z2) ; (2)where "0(z) = [#1(z� z2)�#2(z� z1)℄=(z1� z2). Evidently, we have f 0(z1)f 0(z2) = 1. Se
ondly,by the usual L(2) transformation one 
hanges (z(0)1 ; z(0)2 ; z(0)3 ) to new values (ẑ(0)1 ; ẑ(0)2 ; ẑ(0)3 ).Finally, using the 
hange of variables inversed to transformation (2) with preserving the values(ẑ(0)1 ; ẑ(0)2 ; ẑ(0)3 ) one 
an give the new values (ẑ(0)1 ; ẑ(0)2 ) to the vanishing superpartners of the39



bosoni
 
oordinates (#̂(0)1 ; #̂(0)2 ). To verify that with the fa
tor (1) the amplitude is independentof the values (z(0)1 ; z(0)2 ; z(0)3 ; #(0)1 ; #(0)2 ) of the �xed world-sheet variables, one should take intoa

ount that under the � -transformation (35) the integrand being SL(2) 
ovariant, re
eivesthe fa
tor Q�(ẑ; #̂) for ea
h world sheet variable (zj#), see eqs. (38) and (39). The above fa
toris 
an
elled by the fa
tor 1=Q�(ẑ; #̂) from the 
orresponding transformation ja
obian for allvariables (zj#) ex
ept the �xed ones together with the superpartner # of z(0)3 , be
ause the lastja
obian is di�erent from 1=Q�(ẑ(0s)3 ; #̂). One 
an verify, that these additional extra-fa
torsare just 
ompensated by the 
orresponding 
hange of fa
tor (1). One 
an also 
he
k that theamplitude is not 
hanged when another set of variables is �xed.B One-loop Regge traje
tory for the 
riti
al superstringThe integral for the one-loop amplitude, 
orresponding to the sum of the planar and non-oriented diagrams for the gluon-gluon s

atteringApl;no = 8K Z 1�1 d�� Z 10  3YI=1 �(�I+1 � �I)d�I! R ; (1)is 
onvergent at � = 0 [18℄. In the above expression the integrand isR =  B(�1 � �2; �)B(�3 � 1; �)B(�1 � �3; �)B(�2 � 1; �)!��0s  B(�1 � 1; �)B(�2 � �3; �)B(�1 � �3; �)B(�2 � 1; �)!��0t (2)and the fun
tion B is given belowB(�; �) = sin �� 1Yn=1 1� 2�n 
os 2�� + �2n(1 � �n)2 : (3)The fa
tor K in
ludes the 
olour matri
es T and the produ
ts of polarization ve
tors. In theRegge limit �s� �t it equals (
f.(48))K = �3g4N T (�0s)2(�a�a0)(�b�b0) (4)where N = 32 is the dimension of the SO(32) group. In the same limit the region �32 =�3 � �2 � 1=(�0s)� 1 is essential and we have the following simpli�
ationsB(�12; �)B(�3 � 1; �)B(�13; �)B(�2 � 1; �) � 1 � sin ��1 sin ��32sin ��2 sin ��31 � 4��32 l1 ; (5)B(�1 � 1; �)B(�23 � 1; �)B(�13; �)B(�2 � 1; �) � sin ��1 sin ��32sin ��2 sin ��31 l2 ; (6)where l1 = 1Xn=1 �n sin 2��211� 2�n 
os 2��21 + �2n � �n sin 2��21� 2�n 
os 2��2 + �2n! ; (7)40



l2 = 1Yn=1 (1� 2�n 
os 2��1 + �2n)(1� �n)2(1 � 2�n 
os 2��31 + �2n)(1� 2�n 
os 2��2 + �2n) : (8)Instead of �1 it is 
onvenient to introdu
e the new integration variabley = sin��1 sin��32sin��2 sin��31 ; x = 1� y = sin��3 sin ��21sin��2 sin ��31 (9)with the inverse transformationtan ��1 = (1 � x) sin��2 sin ��3
os ��2 sin��3 � x 
os ��3 sin��2 : (10)Then the integral 
an be written as followsA = 8K Z 1�1 d�� Z 10 dx� Z 1�1 d�2 Z 1�2 d�3 sin ��2 sin ��3 sin ��23� ((1 � x)l2)��0t (x� 4��32l1)��0s(sin��3 � x sin ��2)2 + 4x sin ��2 sin ��3 sin2 ��322 : (11)In the Regge limit the essential region of integration over �32 is1 � x = y � (�0s)�1 � �32 � 1 ; �1 � y�32 � 1 (12)where the integral is simpli�ed as followsA = 8K Z 1�1 d�� �(1 � �0t)�2 Z 10 d�2 (sin��2)2� ln(�1=�0s)(��0s)�1+�0t�� L21 + L1���0t (1 + L1)�1: (13)Here both L1 = 4(sin��2)2 �l1�(��1) j�1=�32=0and L2 are given expli
itly by (51). As the result we obtain for the Regge traje
tory eq.(50) inthe text.C Multi-Regge produ
tion amplitudesIn integral (72) we rede�ne z7 ! z7z4z6=(z4 � z6) and introdu
e f = z4 � z6 instead of z4. Inaddition, we repla
e z6 ! f z6. Then the integral I(t5678; �2; t3478; t34; t56; t12; t78) in ( 75) isgiven by expressionI(t5678; �2; t3478; t34; t56; t12; t78) = (�2)��0t34��0t56�2 Z dz7 dz6 df e�f�z7f��0t12�2�z��0t787 z��0t56786 (1 + z6)��0t3478 q̂�0t341 q̂�0t562�"(�0t78 + 1)q̂1q̂2z26(1 + z6)2z27 + (�0t5678� �0t56 � �0t78 � �2)q̂1(1 + z6)z26z7 + �0t56q̂1z26 q̂2+(�0t3478� �0t34 � �0t78 + �2)q̂2(1 + z6)2z6z7 + �0t34q̂2(1 + z6)2q̂1 + �0t35 + �0t36 + �0t45 + �0t46z6(1 + z6) #; (1)41



where q̂1 = f(1 + z6) + z7z6 � �2 � i� ; q̂2 = fz6 + z7(1 + z6)� �2 � i� ; �! 0 : (2)Integrating it by parts, one obtain the following resultI(t5678; �2; t3478; t34; t56; t12; t78) = (�2)��0t34��0t56�2 Z dz7dz6dfe�f�z7f��0t12�1�z��0t78�17 (1 + z6)��0t3478z��0t56786 q̂�0t341 q̂�0t562 "(�0t5678 + 1)z26 + �0t3478+ 1(1 + z6)2� �2z6(1 + z6) �0t34q̂1 + �0t56q̂2 !� f + z7z6(1 + z6)# : (3)To derive eq. (3), one integrates the �rst term in the bra
kets in eq. (1) over z7 by parts. Asa result, we obtain the expression similar to eq. (3) but the terms inside the bra
kets turn outto be � q̂1q̂2z26(1 + z6)2z7 + (�0t5678+ 1 � �0t78 � �2)q̂1(1 + z6)z26z7 + �0t56q̂1z26 q̂2+(�0t3478+ 1 � �0t78 + �2)q̂2(1 + z6)2z6z7 + �0t34q2(1 + z6)2q̂1 + �0t35 + �0t36 + �0t45 + �0t46z6(1 + z6) : (4)This expression is the same asfz7 �0t5678+ 1 � �2 � �0t78z26 + �0t3478+ 1 + �2 � �0t78(1 + z6)2 !+�0t12 � �0t78 + 2z6(1 + z6) � �2z7 �0t5678+ 1z26(1 + z6) + �0t3478+ 1z6(1 + z6)2!� q̂1q̂2z26(1 + z6)2z7+�0t78�2z7  1z26(1 + z6) + 1z6(1 + z6)2!� (��2)2z26(1 + z6)2z7 + �0t56q̂1z26 q̂2 + �0t34q̂2(1 + z6)2q̂1 : (5)Further, the terms proportional to t78 are integrated by parts over z7 to remove this fa
tort78. Analogously the term� t12 is integrated by parts over f to remove the fa
tor t12. The thirdterm is integrated by parts over z6 to remove both nominators (�0t5678 + 1) and (�0t3478 + 1)in the 
orresponding 
ontributions. After these transformations we obtain (3). If we shallintegrate by parts the �rst term in eq. (5) over z6 is possible to redu
e eq. (3) to the expressionI(t5678; �2; t3478; t34; t56; t12; t78) = (�2)��0t34��0t56�2 Z dz7dz6dfe�f�z7f��0t12�1�z��0t78�17 (1 + z6)��0t3478z��0t5678�16 q̂�0t341 q̂�0t562 "� �0t3478(1 + z6)2 + �0t34 + �0t56(1 + z6) + z7�0t34(1 + z6)q̂1+ f�0t56(1 + z6)q̂2 + z6(1 + z6)2 � f + z7(1 + z6)# : (6)One 
an introdu
e the variable z instead of z6 a

ording to the relationz6 = z=(1� z) ; (7)42



and redenote z7 = y. After it (6) 
an be presented as followsI(t5678; �2; t3478; t34; t56; t12; t78) = (�2)��0t34��0t56�2 Z dydzdfe�f�yf��0t12�1y��0t78�1 ��z��0t5678�1(1� z)��0t3456+�0t12+�0t78(f + yz � �2(1� z)� i�)�0t34�(y + fz � �2(1 � z)� i�)�0t56"��0t3478(1� z) + �0t34 + �0t56+ �0t34y(1� z)f + yz � �2(1� z)� i� + �0t56f(1� z)y + fz � �2(1� z)� i� + z � (f + y)# : (8)D Vanishing of impa
t fa
tors for planar diagramsThe impa
t fa
tor for the ve
tor parti
le s
attering 
an be 
al
ulated from the asymptoti
s ofFig1b in the region where s1 = �s7 !1 while s3, s4, s5 and s6 are �nite. The impa
t fa
torsfor the states with the masses �0t34 = n1 and �0t56 = n2 are just proportional to the resudies inthe poles at �0t34 = n1 and �0t56 = n2. One 
an see from expression (58) that for the dis
ussedasymptoti
s the essential values of the integration variables arez3 ! 0; z7=z6 ! 0 : (1)while x and y being de�ned by the relations z3 = z4 + x and z5 = z6 + y are now 
omparablein their values with z4 and z6. However, the poles �0t34 = n1 and �0t56 = n2 appear from theregions x=z4 ! 0 and y=z6 ! 0. In this kinemati
s one 
an expand the integrand in powers of xand y to obtain the poles at �0t34 = n1 and �0t56 = n2. It 
an be veri�ed that the 
orrespondingintegral vanishes, and, so, the impa
t fa
tor for the planar diagram is equal to zero.For the sake of simpli
ity we give the 
orresponding proof for the boson string theory,assuming, that the external intera
tion states are ta
hyons. In this 
ase only the leadingterm in x and y is needed and expression (58) 
an be simpli�ed as it was done in eq. (60).Furthermore, similar to the multi-Regge limit we obtaink2(k3 + k4)!�k2(k5 + k6)! k1k ; k7(k3 + k4)! �k7(k5 + k6)! k8k; (2)but relations (61) for k3(k7+k8) and for k5(k7+k8) are not valid. It is helpfull to rede�ne againthe variables a

ording to eq. (63). After 
al
ulating integrals over x and y the asymptoti
s ofA(0) turns out to beA(0) = Tp(��0s1)�0t12+�0t78��0t34��0t56(��0s)�0t34+�0t56+2I(0)�(��0t34 � 1)�(��0t56 � 1) (3)where �(x) is the gamma fun
tion andI(0) = Z dz7 dzz27z df exp��f � z7�z��0t787 (1 � z)��0[t3456�t12�t78℄z��0t5678�1f��0t12�2��f + z7z � �s1s �0k3(k7 + k8)(1 � z)��0t34+1�z7 + fz � �s1s �0k5(k7 + k8)(1� z)��0t56+1 : (4)43



In the 
al
ulation of I(0) we performed the 
hange of the integration variables as it wasdone in Appendix B: z7 ! z7z4z6=(z4 � z6), z4 ! f = z4 � z6 and z6 ! f z6 = f z=(1 � z)(see eq.(7)). The impa
t fa
tor is proportional to the sum over the residues of I(0) in the poles�0t5678 = n for �xed values �0t34 = �0t56 = �1. The parameter n = m� 1 takes integer valuesfrom n = �1 up n =1. The result 
ontains the fa
tor1Xm=0 dmm!dzm (1� z)��0[t3456�t12�t78℄ : (5)The sum is 
al
ulated in the region t3456� t12 � t78 > 0 where the series is 
overgent. Then itis 
ontinued analyti
ally to physi
al values for t3456 � t12 � t78. For z ! 1 this sum is equalto (1 � z)��0[t3456�t12�t78℄ = 0. Thus, the impa
t fa
tor for the planar diagram is zero. Thevanishing of the impa
t fa
tor for the higher mass states �0t34 = n1 and �0t56 = n2 is veri�edin a similar way. For the superstring theory one 
an prove also the vanishing of the impa
tfa
tors for the planar diagrams.Referen
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CaptionsFig. 1. The ladder 
ut determining the BFKL Pomeron in the a+ b! a0+ b0 pro
ess. Thedotted line denotes a reggion, the solid one denotes a parti
le.Fig. 2. The diagram for the 
al
ulation of the BFKL kernel. The dotted line denotesmassless state; the solide one denotes the tower of string states.
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