
*H
EP
-P
H/
06
03
07
3*

 DESY 06-025
ar

X
iv

:h
ep

-p
h/

06
03

07
3 

v1
   

9 
M

ar
 2

00
6

BFKL Pomeron in string modelsG. S. Danilov� 1 and L. N. Lipatovyz 1; 21 Petersburg Nulear Physis Institute,Gathina, 188300, St.-Petersburg, Russia2 II. Institut f�ur Theoretishe Physik,Universit�at Hamburg, Luruper Chausse 149,22761, Hamburg, GermanyMarh 9, 2006AbstratWe onsider sattering amplitudes in string models in the Regge limit of high energiesand �xed momentum transfers with the use of the unitarity in diret hannels. Interme-diate states are taken in the multi-Regge kinematis orresponding to the prodution ofresonanes with �xed invariant masses and large relative rapidities. In QCD suh kinemat-is leads to the BFKL equation for the Pomeron wave funtion in the leading logarithmiapproximation. We derive a similar equation in the string theory and disuss its proper-ties. The purpose of this investigation is to �nd a generalization of the BFKL approah tothe region of small momentum transfers where non-perturbative orretions to the gluonRegge trajetory and reggeon ouplings are essential. The BFKL equation in the stringtheory ontains additional ontributions oming from a linear part of the Regge trajetoryand from the soft Pomeron singularity appearing already in the tree approximation. Inhigher dimensions in addition, a non-multi-Regge kinematis orresponding to produtionof partiles with large masses is important. We solve the equation for the Pomeron wavefuntion in the string theory for D = 4 and disuss integrability properties of analogousequations for omposite states of several reggeised gluons in the multi-olour limit.�E-mail address: danilov�thd.pnpi.spb.ruyE-mail address: lipatov�thd.pnpi.spb.ruzMarie Curie Exellene Chair 1



1 IntrodutionThe derivation of the BFKL equation for QCD sattering amplitudes in the Regge regime ofhigh energies E = ps and �xed momentum transfers q = p�t [1℄ is based on the fat thatgluon is reggeized in perturbation theory. In the leading logarithmi approximation (LLA)the Pomeron singularity in the j-plane of the t-hannel partial waves appears as a ompositestate of two reggeized gluons. The gluon Regge trajetory is known in two �rst orders ofperturbation theory and the integral kernel for the BFKL equation is alulated in the next-to-leading approximation [2℄, whih is important for the phenomenologial appliations [3℄.It is reasonable to believe, that the gluon reggeization has a physial meaning even beyondthe QCD perturbation theory, although up to now its Regge trajetory is alulated only atsuÆiently large momentum transfers q where the e�etive oupling onstant is small. For lowmomentum transfers we should use non-perturbative methods. For example, one an assumethat the gluon trajetory in this region is approximately linear, as it takes plae for the hadrontrajetories. The linearity of the Regge trajetories was an important property in onstrutingthe dual model by G. Veneziano [4℄. Later a string interpretation of the dual amplitudes wasdeveloped [5℄. In the Born approximation the dual hadron models inlude only partiles lyingon the seondary Regge trajetories. The Pomeron-like singularity appearing in the open stringsattering amplitudes in one loop approximation was identi�ed with a leading Regge trajetoryfor the losed setor. Later it was found that four dimensional string theories meet withdiÆulties, whih were avoided in their superstring generalizations to spae-time dimensionsD = 10 [5℄. Now these superstring models are onsidered as andidates for an uni�ed theory ofall elementary partile interations inluding the gravity. Moreover, all of them are supposedto be various realizations of the same M -theory.In the modern interpretation the losed string setor is assoiated with the graviton Reggefamily rather than with the Pomeron singularity1, and so the Pomeron does not diretly presentin the string theory. In a line with the Maldaena proposal [7℄ for the N = 4 super-Yang-Millsmodel one might expet an appearane of a olorless omposite state beoming a graviton inthe t'Hooft limit g2N !1, where g is a oupling onstant and N is the number of olors. ThePomeron singularity seems to be a andidate for suh graviton state [8℄. However, in this paperwe treat the Pomeron similar to the ase of perturbative QCD where it is a omposite state oftwo reggeized gluons. Namely, this singularity should appear in the diagrams where two openstrings are exhanged in the t hannel. Suh Feynman graphs lead to the Mandelstam ut inthe j-plane of the t-hannel partial wave 'j(t). The sum of ontributions from the ladder-typediagrams in the string theory orresponds to the BFKL-like equation. We hope that its stringmodi�ation is a reasonable model for non-perturbative e�ets in the region of small momentumtransfers. Indeed, the string models in extra dimensions an lead to a dual desription of gaugetheories inluding QCD [7℄.Note, that in the ritial dimensions D = 10 the multi-Regge kinematis for intermediatepartiles in the s-hannel is not unique even for small oupling onstants. Namely, one shouldtake into aount also the prodution of resonanes having large masses at high energies, whihleads in partiular to the graviton ontribution appearing in one loop. In the last ase the1Note that the Regge asymptotis was investigated also in the pure (super) gravity [6℄.



imaginary part of the orresponding non-planar diagram with the graviton Regge pole in thet-hannel appears from the prodution of two resonanes with masses m � ps. Below we doesnot disuss this problem in details and onsider mainly the D = 4 ase.We use the superstring 4d model in the Ramond-Neveu-Shwarz version [5℄, but the su-persymmetry is involved only to remove the tahion from the spetrum. It is known, thatnon-ritial string models have diÆulties related to the absene of the S-matrix unitarity inhigher loops. In partiular, to restore the unitarity in one loop approximation it is needed tointrodue an additional 2D gravity �eld [5℄. This �eld provides the onformal symmetry onthe tree and one-loop levels, and restores the modular invariane of the one-loop losed stringamplitudes [9℄. Nevertheless, the modular invariane of higher loop losed string amplitudesremains to be broken [10℄. Thus, the higher loop amplitudes for non-ritial string models annot be onstruted in a self-onsistent way.The diÆulties of non-ritial string models are related mainly to the losed string setor. Inthe perturbation theory with respet to the losed string oupling onstant gl the ontributionsfrom this setor grow with energy very rapidly � s2g2n lnn(s). Suh behavior in the ase ofhadron-hadron interations is not ompatible with the s -hannel unitarity. So one expets thatone a relevant summation over n being performed, the high asymptotis of the amplitude isredued to A � s. It is reasonable to omit initially the losed string setor taking into aountalso, that gl is quadrati in the Yang-Mills oupling onstant g and for N ! 1 the openstring terms in the amplitude are enhaned omparing to losed string ones. Thus, we onsiderhere the ontributions to the prodution amplitude only from the open string states in rossinghannels leading to the Mandelstam uts for the elasti t -hannel partial wave 'j(t) in theangular momentum plane j = 1 + !.In the disussed model the gluon trajetory !(t) is given by the perturbative expansion!(t) = �0t+ !1(t) + ::: : (1)where !n(t) � g2n are radiative orretions, and the Regge slope �0 is a reversed square of anharateristi mass sale. Below the orretion !1(t) � g2 to the trajetory is also taken intoaount. This orretion is alulated from one-loop diagrams for the sattering amplitude.One-loop non-planar diagrams ontain also a ontribution destroying the unitarity, but theorretion to the Regge trajetory appears only from the planar graphs, where the problemwith the losed string setor does not exist. Providing that ��0t � 1, the loop orretionin the D = 4 ase has the infrared divergeny � g2N ln(t=�2) whih is anelled with theontribution from the massless partile prodution. For ��0t � 1 the radiative orretion tothe Regge trajetory has a ompliated form.An important di�erene between QCD and the string model is related to the role of in-termediate states with relatively large masses: (�0)�1 � M2 � s for produed resonanes.These states are absent in QCD. In the string theory the large mass states are responsible forthe appearane of the graviton ontribution to the elasti sattering amplitude in the one-loopapproximation. Further, the impat fators for the reggeon-partile sattering vanish for planardiagrams as a result of integration over large masses. In partiular, it leads to the absene ofthe Mandelstam uts in the olor otet hannel. In QCD the anellation of these uts for2



the t-hannel with gluon quantum numbers is provided by another mehanism related to theso-alled bootstrap relations for sattering amplitudes [11℄.The large mass kinematis is responsible also for the additional term in the kernel of theBFKL equation orresponding to the soft pomeron ontribution. It is important, that in theonsidered string model even in the tree approximation there is a olorless state in the t-hannelwith vauum quantum numbers and a positive signature. In upper orders of the perturbationtheory its Regge trajetory is renormalized. At small t this state mixes with the Mandelstam utonstruted from two reggeized gluons. The radiative orretions to its trajetory are alulatedfrom ladder diagrams in the t-hannel. The s-hannel imaginary part of sattering amplitudesappears from the intermediate states in the above onsidered kinematis with relatively largemasses: (�0)�1 �M2 � s for produed resonanes. Physially the j-plane singularity with thevauum quantum numbers in the tree approximation orresponds to the soft Pomeron whihan exist together with the hard BFKL Pomeron.Similar to the perturbative QCD, we restrit ourselves to the region g2N ln(s=M2) � 1.However, in the string ase, the region j!(t)j ln(s=M2) � 1 is possible also beause the Reggeslope �0 = 1=M2 has no g2 smallness. Some important properties of the BFKL equation arerelated to this fat. In partiular, we obtain that for ��0t� g2N its solution is onentratednear the saddle point q?=2 for the reggeon transverse momenta k?. For D > 4 the utuationsof this momentumare small �(k?�q?=2)2 � 1=(�0 ln�0s) and therefore the transverse momentaof the emitted gluons are also small jkg?j2 � �0(ln�0s)�1. In the same time there are no similarrestritions on transverse momenta of the virtual gluons entering in the loop orretions tothe gluon Regge trajetories. It means, that the ontribution from the multiple saddle pointski? � q=2 is suppressed by the reggeization e�ets.The paper is organized as follows. In Se. 2 the BFKL approah to the perturbative QCDis briey reviewed. In Se. 3 the superstring model whih will be used later is introdued. InSe. 4 the alulation of the multi-Regge asymptotis of prodution amplitudes is presented.In Se. 5 the BFKL-like equation for the superstring model is derived. Also the vanishingof the impat fators for planar diagrams is demonstrated. In more details this problem isonsidered in Appendix D. In Se. 6 the alulation of the BFKL kernel is performed. InSe. 7 the equation for the ase D = 4 is disussed. Among other things, it is explained whyin the spae-time D = 10 the non-Regge kinematis ontributes to the Regge asymptotis ofamplitudes. In Se. 8 the solution of the BFKL equation at small values of �0t is onstruted.In Se. 9 an algebrai approah to this problem is developed and integrability properties ofsimilar equations for omposite states of several open strings in the multi-olour limit inludinga relation with the Heisenberg spin model are disussed. Appendies A, B and C ontain somedetails of alulations.2 BFKL approah in the perturbation QCDAs it was mentioned already, in the perturbative QCD the BFKL Pomeron appears as a om-posite state of two reggeized gluons [1℄. The gluon is reggeized as a result of summing radiativeorretions to the Born amplitude ABorn for the olored partile sattering AB ! A0B0 in the3



Regge kinematis of large energies ps and �xed momentum transfers q = p�tA(s; t) = ABorn s!(t) ; (2)where ABorn is given belowABorn = 2 s g T A0A Æ�A0�A 1t g T B0B Æ�B0�B ; [T ; T 0℄ = i f0d T d (3)and j = 1 + !(t) is the gluon Regge trajetory known in two �rst orders of the perturbationtheory !(t) = !1(t) + !2(t) + ::: : (4)The trajetory ontains logarithmi divergenies anelled in the total ross setions withthe ontributions from the prodution of soft gluons. For example, in one loop approximationwe have !1(�q2) = � g216�3 N Z d2k q2 + �2(k2 + �2)((q � k)2 + �2) � � g28�2 N ln q2�2 ; (5)where � is a gluon mass introdued for the regularization of the infraredly divergent integral.On the other hand, the amplitude for the prodution of n gluons with momenta kr in themulti-Regge kinematis s� sr = (kr�1 + kr)2 � q2r ; (6)has the fatorized formA = 2 s gT 1A0A Æ�A0�A s!(t1)1t1 g T d121C(q2; q1)s!(t2)2t2 g T d232C(q3; q2):::gT B0B Æ�B0�B ; (7)where the e�etive vertex C(q2; q1) for an emission of the gluon with a de�nite heliity isC(q2; q1) = q1 q�2k1 ; k1 = q1 � q2 : (8)Here we introdued the omplex oordinatesqr = qxr + i qyr ; kr = kxr + i kyr (9)for transverse omponents q?r ; k?r of gluon momenta. The ontribution to the elasti satteringamplitude from the intermediate state having a gluon with the momentum k1 is proportionalto the expression C(q2; q1)C�(q02; q01) + C�(q2; q1)C(q02; q01) (10)and ontains the pole 1=jk1j2. The integration over k1 anels the infrared divergeny in thegluon Regge trajetory appearing in the virtual orretions to the prodution amplitudes.It is onvenient to present the elasti amplitude for the olorless partile sattering in theform of the Mellin representationA(s; t) = i s Z a+i1a�i1 d!2� i s! f!(t) ; (11)4



where f!(t) is the t-hannel partial wave analytially ontinued to the omplex values j = 1+!of the angular momentum. The amplitude A(s; t) ontains only the ontribution from the t-hannel state with vauum quantum numbers and the positive signature, orresponding to theBFKL Pomeron. A positive value of the parameter a in the above representation is hosenfrom the ondition, that all singularities of f!(t) are situated to the left from the integrationontour.The t-hannel partial wave f!(t) an be expressed in terms of the gluon-gluon satteringamplitude f!(q1; q2; q) integrated with the impat-fators �(qi; q � qi)f!(�q2) = Z d2q1(2�)2 �(q1; q � q1)q21 (q � q1)2 Z d2q2(2�)2 �(q2; q � q2)q22 (q � q2)2 f!(q1; q2; q) : (12)The impat-fators of olorless partiles vanish at small gluon momenta�(0; q) = �(q; 0) = 0 ; (13)whih leads to an infrared stability of f!(�q2). The partial wave f!(q1; q2; q) satis�es theBFKL equation [1℄ ! f!(q1; q2; q) = ! f0!(q1; q2; q) � g2N8�2 H f!(q1; q2; q) : (14)Here f0! is a non-homogeneous term orresponding to the impat fator. The hamiltonian H isan integral operator, whih an be de�ned by its ation on the Pomeron wave funtion f(~�1; ~�10)in the oordinate representation [14℄H = ln j�1j2 + ln j�2j2 + 1�1��2 ln j�12j2 �1��2 + 1��1�2 ln j�12j2 ��1�2 � 4	(1) ; (15)where 	(x) = (ln �(x))0 and we introdued the omplex oordinates and momenta�r = xr + iyr ; �r = ���r ; �12 = �1 � �2 : (16)The hamiltonian has the property of the M�obius invariane, whih allows us to �nd itseigenfuntions [22℄ Em;em(~�1; ~�2; ~�0) =  �12�10 �20!m  ��12��10 ��20!em ; (17)where m = 12 + i� + n2 ; fm = 12 + i� � n2 (18)are onformal weights.The high energy asymptotis of the total ross-setion is parametrized by the Pomeroninterept � �t � s� (19)5



In the leading logarithmi approximation we have� = �g2N8�2 E; (20)where E = �8 ln 2 is the ground state energy of the Hamiltonian H. Therefore the ross-setion �t violates the Froissart theorem �t <  ln2(s). In the next-to-leading approximationthe ross-setion grows also, but not so rapidly (see [3℄).To verify the gluon reggeization one an use the s and u-hannel unitarity onstraints anddispersion relations to alulate by iterations the sattering amplitude with the olor otetquantum numbers in the t-hannel [1℄. In LLA it is enough to onsider only the multi-Reggekinematis for intermediate partiles in the diret hannels. In this kinematis the produtionamplitude has the multi-Regge form (7 ). The reggeization hypothesis should be in an agreementwith the s- and u- hannel unitarity. This requirement leads to the so-alled bootstrap relations.The simplest bootstrap relation orresponds to the statement, that the sattering amplitude,obtained from the solution of the Bethe-Salpeter equation for the wave funtion of the ompositestate of two reggeized gluons in the otet hannel should oinide with the Regge pole anzatz forthe amplitude onstruted in terms of the reggeized gluon exhange. In the momentum spaethe equation for the t-hanel partial wave fG! (�!k ;�!q � �!k ) with the gluon quantum numbershas the form [1℄! fG! (�!k ;�!q ��!k ) = 1�!q 2 + �2 � g28�2 N Z d2k02� �!q 2 + �2�!k0 2 + �2 fG! (�!k0 ;�!q ��!k0 )(�!q ��!k0 )2 + �2+g28�2 N Z d2k02� 0��!k 2 + �2�!k0 2 + �2 + (�!q ��!k )2 + �2(�!q ��!k0 )2 + �21A fG! (�!k0 ;�!q ��!k0 )� fG! (�!k ;�!q ��!k )(�!k ��!k0 )2 + �2 ; (21)where the gluon mass � is introdued with the use of the Higgs mehanism to regularize theinfrared divergenies.It is obvious, that in an aordane with the bootstrap requirement the solution of the aboveequation orresponds to the Regge pole anzatzfG! (�!k ;�!q ��!k ) = 1�!q 2 + �2 1! � !(��!q 2) ; (22)where !(��!q 2) is the gluon Regge trajetory.3 String modelIn the string and superstring models the sattering amplitude in the tree approximation satis�esthe duality requirement: namely, the sum over the resonanes in the t-hannel related to itsRegge asymptotis in the s-hannel is equal to the (analytially ontinued) sum of resonanesin the s and u-hannels:A(s; t; u) = A(s; t) +A(u; t) +A(s; u) ; A(s; t) =Xi i(s)t� ti =Xi i(t)s� si : (23)6



The partiles with squared masses equal to ti and integer spins j = ji lie on the linear Reggetrajetories j = j0 + �0t ; (24)where j0 and �0 are their interept and slope, respetively. The slope �0 is universal for allexitations of the open string. For the losed strings it is equal to �0=2. As for interepts, inthe ritial dimensions D = 26 for the bosoni string and D = 10 for the superstrings, they areinteger or half-integer numbers. In partiular, for the interepts of the leading bosoni Reggetrajetories, orresponding to the massless vetor (V ) partile - "gluon" and tensor (T ) partile- "graviton" we have respetively jV0 = 1 ; jT0 = 2 : (25)We put jV0 = 1 also for the D = 4 model to leave the gluon on the trajetory. The "graviton"is absent in this ase, instead one has a non-physial ut in the j -plane.The Regge asymptotis of A(s; t) in the dual models appears as a result of summing overthe poles in the s-hannel. Really at large s the ontributions � s�k with integer values of kare anelled and we an substitute approximately the sum over i by the dispersion integralA(s; t) � 1� Z 10 ds0s� s0 =A(s0; t) ; s0 = s(i) ; =A(s0; t) = �i(t) :It agrees with the Regge asymptotis A(s; t) � (�s)j(t) providing that =A(s; t) � sj(t).In the Born approximation there are only stable partiles in the intermediate state, butwith taking into aount loop orretions these partiles aquire the widths due to their deayinto lower mass states. As a result, =A(s; t) has the Æ-like singularities only for a �nite numberof stable states and the amplitude is a smooth funtion for large values of s. The funtionA(s; t) � s1+�0t an be expanded in the series over the parameter �0t and one an interpret theorresponding term of the expansion � s (ln s)n(�0t)n=n! as a ontribution from the produtionof n partiles in a multi-Regge kinematis. In QCD suh a non-perturbative ontribution!(t) � �0t to the Regge trajetory ould appear from the integration region k2 � �2QCD in theloop orretions of the type of (5). In this ase the ommon fator t would lead to the linearityof the trajetory at small t.To begin with, let us onsider the Born amplitude for the tahyon-tahyon sattering am-plitude in the bosoni string theoryA(s; t) = g2 �(��(s)) �(��(t))�(��(t) � �(s)) ; �(t) = 1 + �0t ; (26)where for simpliity we omitted the Chan-Paton fators. Asymptotially one obtainslims!1A(s; t) = �g2 �0s�(��(t)) (��0s)�0t : (27)This result orresponds to the Regge asymptotis desribed by the reggeized gluon exhangein the t-hannel. For other olliding partiles there are additional fators depending on theirspins. They are related to di�erent residues for the orresponding Regge pole. Note, that the7



e�etive verties for reggeized gluon interations in QCD were obtained also from the stringamplitudes in the limit �0! 0 [12℄.For the superstring models the multiplier �(��(t)) in (26) is replaed by �(��0t), whihleads to the absene of the tahyon pole at �0t = �1. At small momentum transfers bothmodels give the same amplitude for the massless vetor boson sattering. Taking, however,into aount that one should sum over other intermediate t-hannel states for the satteringamplitude with arbitrary momentum transfers, it is natural to onsider only the superstringmodel where the tahyon disappears from the spetrum. The Regge limit of the superstringsattering amplitude is given in the end of this setion (see [5℄).As it was said in Introdution, we use the Ramond-Neveu-Shwarz version of the opensuperstring model. In this model the interation verties are alulated in terms of the salarsuper�eld XM (z; #) where z is a world-sheet oordinate and # is its superpartner. Here Mlabels the spae-time oordinates, M = 0; 1; : : : ; (D � 1). The vertex V (z; #; k; �) for theemission of a massless vetor boson with its momentum k = fkMg and polarization vetor� = f�Mg is given below [5, 13℄ V (z; #; k; �) = � DX e�ikX (28)where kX � kMXM (z; #) and � DX � �M D(z; #)XM (z; #) are salar produts of the orre-sponding D-dimensional vetors. As usually, the relation k� = 0 is valid for polarizations ofexternal vetor bosons. In the ontrast to the string tradition, in this paper we use the "mostlyminus metris" ab = a0b0 ��!a �!b . The ovariant super-derivative D(z; #) appearing in (28) isgiven below D(z; #) = �z + #�# ; (29)where �# is the "left" derivative in #. Note, that the gauge invariane � ! � + k of theamplitudes is valid due to the relationZ dzd#De�ikX = 0 : (30)The super�eld vauum orrelator �XM(z; #)XN (z0; #0)� in super-oordinates for z > z0equals�XM(z; #)XN (z0; #0)�= 2�0�MN ln(z � z0 � ##0) = 2�0�MN�ln(z � z0)� ##0z � z0 � ; (31)where �MN is the spae-time metris. The massless boson tree amplitude is obtained by inte-grating the vauum expetation of the produt of the verties Vj (28) over (zj; #j). The variables(zj; #j) are assigned to the vertex for an emission of the boson arrying the momentum kj andpolarization �j. In the amplitude we do not integrate over three of oordinates zj using theintegrand invariane under SL(2; R)-transformation. To onserve this symmetry after �xingthe variables (z(1); z(2); z(3)) one should inlude in the �nal expression the additional multiplierr(z(1); z(2); z(3)) = (z(1) � z(2))(z(1) � z(3))(z(2) � z(3)) ; (32)8



leading to an independene of the Born amplitude from the hoie of these variables.Thus, the open string amplitude An(fkj; �jg) for the interation of n massless bosons in atree approximation is given byAn(fkj; �jg) =X(r) T(r)A(r)n (fkj ; �jg) ; (33)where eah a term orresponds to an ordering of the parameters zj : f(r) : zj1 > zj2 > : : : >zjng and the sum is taken over the on�gurations, whih are non-equivalent under the ylitransmutations of indies jr. The oeÆient T(r) is the Chan-Paton fator [5℄ for the givenolor group. Further, the expression A(r)(fkj ; �jg) is the integral over (zj; #j) from the vauumexpetation of the produt of interation verties multiplied by the fator r(zj1 ; zj2; zjn):A(r)n (fkj ; �jg) = gn�2(zj1 � zj2)(zj1 � zjn)(zj2 � zjn) Z �(zj2 � zj3) n�1Ys=3 �(zjs � zjs+1)dzjs��d#j1V (zj1; #j1; kj1 ; �j1) : : : d#jnV (zjn; #jn; kjn ; �jn)� ; (34)where �(x) is the step funtion: �(x) = 1 for x > 0 and �(x) = 0 for x < 0.Sine the orrelator (31) is singular at z = z0, the integral (34) is onvergent only in aertain region of invariants onstruted from external partile momenta. Eah of the termsA(r)n in (33) is alulated for suh signs of the invariants where it is onvergent, and the resultis analytially ontinued to their physial values for the prodution kinematis. The integrandin (34) ontains some ontributions whih do not ontribute to the �nal result beause they aretotal derivatives in integration variables. One an make their anelation expliit using the fat,that the integrand in the superstring ase is invariant under the SL(2; R)-SUSY transformation[13, 15℄: z = f(~z) ; # = s�f(ẑ)�ẑ �#̂+ "(ẑ)� 1� �Æ2 ! ; ~z = ẑ + #̂"(ẑ) ; (35)where "(z) and f(z) are given below"(z) = �z + Æ ; f(z) = az + bz + d ; s�f(ẑ)�ẑ = 1z + d : (36)Here a, b, , d are bosoni parameters and �, Æ are their Grassmann partners. Note, that thesuperinterval is transformed in a simpler wayz � z0 � ##0 = Q�1(ẑ; #̂)Q�1(ẑ0; #̂0)�ẑ � ẑ0 � #̂#̂0� ; (37)where Q�1(ẑ; #̂) = D(ẑ; #̂)# : (38)Also, one an verify that D(z; #) = Q(ẑ; #̂)D(ẑ; #̂): (39)9



An appropriate transformation (35) of the integration variables in (34) allows us to extratan expliit dependene from two #j, whih gives a possibility to perform the integration overthese variables. This symmetry is non-splitted beause it mixes the Grassmann variables tobosoni ones. Note, that the step funtion fators in (34) lead after the symmetry transfor-mation to the Æ -funtion type terms whih are multiplied by expressions vanishing in thekinematial region where the integral is onvergent. To avoid the onsideration of suh terms,one an expliitly �x 5 variables (3j2) among all oordinates (zjj#j) using the super-SL(2; R) in-variane. After that the integrand is multiplied by a supersymmetri generalization of the abovefator r(zj1; zj2; zjn) [16℄ (for details see Appendix A). It is onvenient to put #j1 = #j2 = 0. Inthis ase the generalized fator r is (zj1 � zjn)(zj2 � zjn). Thus, expression (34) is replaed byA(r)n (fkj ; �jg) = gn�2(zj1 � zjn)(zj2 � zjn) Z �(zj2 � zj3) n�1Ys=3 �(zjs � zjs+1)dzjs��V (zj1 ; 0; kj1 ; �j1)V (zj2; 0; kj2 ; �j2)d#j3V (zj3; #j3; kj3 ; �j3) : : : d#jnV (zjn; #jn; kjn ; �jn)� : (40)Using relation (31) for the vauum expetation of the produt of verties (28), one �nds�nally A(r)n (fkj ; �jg) = gn�2(zj1 � zjn)(zj2 � zjn) Z �(zj2 � zj3)d�j1d�j2d�jnd#jn �� n�1Ys=3 �(zjs � zjs+1)dzjsd�jsd#js!� exp�2�0 Xm>n[�jm�jmD(zjm ; #jm)� ikjm℄[�jn�jnD(zjn ; #jn)� ikjn ℄ ln(zjm � zjn � #jm#jn)�; (41)where #j1 = #j2 = 0. The additional Grassmann variables �js are introdued for eah of theverties V (z; #; k; �) = Z d�e(��D�ik)X : (42)So, the tree amplitude is presented by expression (33), where A(r)n (fkj ; �jg) is given in eq.(41). Note, that under an anti-yli permutation the amplitudeA(r)n (fkj ; �jg) reeives only thefator (�1)n. Provided that three variables are �xed as zj1 =1, zj2 = 1 and zjn = 0, one anverify this property with the use of transformation (35) for the integrand in (41) hoosing thefuntions f(ẑ) = ẑjn�1=ẑ and "(ẑ) = �#̂jn � ẑ(#̂jn�1 � #̂jn)=ẑjn�1 .The Chan-Paton fator in (33) is given byT(r) = trae[�j1 : : : �jn ℄ ; (43)where �s is a olor matrix for the orresponding group generator in the fundamental represen-tation. Below we disuss the oriented string, for whih �s are U(n)-matries in the fundamentalrepresentation. In this asetrae(�r�s) = Ærs; Xj (�j)ab(�j)d = ÆadÆb : (44)10



Hene �r�s =Xj trae(�r�s�j)�j : (45)We take �1 = I=pn as the U(1)-generator and the matries �2; : : : ; �n as generators of theSU(n) group. They satisfy the following relations12 [�r�s � �s�r℄ =Xj frsj�j ; 12[�r�s + �s�r℄ = Ærsn�1 +Xj drsj�j ; Xj djjs = 0 : (46)Obviously, the tensor d is symmetri in two �rst indies drsj = dsrj and the strutureonstants frsj are ompletely anti-symmetri. Furthermore, f1sj = 0, d11j = djr1 = 0, and, inaddition, drsj is symmetri in all indies provided that both s 6= 1, r 6= 1 and j 6= 1. Besides,ds1j = q1=nÆsj when s 6= 1 and j 6= 1. We obtain alsoXr;s drsjdrsl =Xr;s frsjfsrl = n2 [Æjl � Æj1Æl1℄ : (47)Below in the Regge kinematis (s� �t � m2) we alulate the amplitude A(23)(14) desribingthe sattering a+b! a0+b0 of the vetor massless partiles (gluons) with momenta pi (p2i = 0).The orresponding kinematial invariants are s = (pa+ pb)2 = (pa0 + pb0)2 and t = (pa� pa0)2 =(pb�pb0)2. The gauge is hosen to be �0i = 0 for i = a; a0; b; b0. In the Regge limit the amplitudeA(a0b0)(ab) is (f. (27))lims!1A(a0b0)(ab) = �2g2�0s�(��0t)(�0s)�0t(�a�a0)(�b�b0)(Xs fjaja0 sfsjbjb0 (e��i�0t + 1)+(e��i�0t � 1)"Æjaja0 Æjbjb0n +Xs djaja0 sdsjbjb0#) ; (48)where the olor index ji refers to U(n)-quantum numbers of the partile arrying the momentumpi. The spin struture desribed by the polarization vetors �i (i = a; a0; b; b0) orresponds tothe onservation of heliities for eah of olliding partiles. Various terms in (48) are assoiatedwith di�erent Regge ontributions. Their quantum numbers are the SU(n) singlet (with thesignature "+") and two adjoint SU(n)-representations (having the dimension n2�1 and the sig-natures "+" and "-"). Note, that in QCD the Regge asymptotis of the sattering amplitude inthe Born approximation ontains only a ontribution with the negative signature, orrespondingto an exhange of the reggeized gluon. The ontribution from the positive signature with otetquantum numbers appears only in upper orders of perturbation theory. Nevertheless, for largeN the Regge trajetories with opposite signatures oinide eah with another. The degenerayof these t-hannel states is important for the duality symmetry between the olorless ompositestates with di�erent signatures [17℄. As for the Regge ontribution with vauum quantum num-bers, it also takes plae in QCD only in upper orders of perturbation theory and orresponds tothe BFKL Pomeron. Its appearane in the superstring model already in a tree approximationan be onsidered as a manifestation of the soft Pomeron having a non-perturbative nature.When n = N is large, one an neglet this soft Pomeron ontribution in expression (48).11



To derive the above asymptoti behavior of the sattering amplitudes in the superstringtheory we used the relation�ri�rje�i�(�0tij+1) + �rj�ri = 1nÆrirj (e�i�(�0tij+1) + 1) +Xs drirjs�s(e�i�(�0tij+1) + 1)+Xs frirjs�s(e�i�(�0tij+1) � 1) ; (49)whih follows from (46). Note, that the soft pomeron ontribution appears also for the Chan-Paton fators orresponding to the olour group O(n). Moreover, in the one-loop approximationits Regge trajetory does not ontain ultraviolet divergenies for n = 32 and D = 10 [18℄. Inthis model the gluon Regge trajetory !1(t) is �nite is given below (see Appendix B)!1(t) = �8g2n Z 1�1 d�� Z 10 d�2 (sin��2)2 � L21 + L1���0t (1 + L1)�1 ; (50)where N = 32, and L1 = �2 1Xn=1 �n (1� �n)2(1� 2�n os 2��2 + �2n)2 ;L2 = 1Yn=1 (1� �n)4(1� 2�n os 2��2 + �2n)2 : (51)If we onsider only a ontribution of the planar diagram, the low limit of integration over� in the above expression is zero and the gluon Regge trajetory ontains the logarithmidivergeny at small �, whih an be removed by a renormalization of the slope �0 in the Bornamplitude [18℄. In a similar way for the SU(n) group we have!1(t) = �8g2N Z 10 d�� Z 10 d�2(sin��2)2 �� L21 + L1���0t (1 + L1)�1 � 1� ; (52)where n = N is the number of olors.4 Partile prodution in the multi-Regge kinematisSimilar to the QCD ase for string models the ontribution of the ladder diagrams Fig.1 isfatorized in the multi-Regge kinematis. This fatorization was veri�ed for the boson stringtheory [19℄ and it is valid also for the superstring models. We are going to alulate the kernelof the BFKL equation with the use of the s-hannel unitarity by integrating the square ofinelasti amplitudes over the intermediate partiles in the multi-Regge kinematis.In partiular the diagram Fig.1b desribes the prodution of one additional resonane witha �xed mass and momentum k � k0. In this diagram the initial partiles have non-vanishingolor quantum numbers whereas usually the solution of the BFKL equation for the gluon-gluonsattering should be sandwihed between the impat fators for the olorless olliding objetsto avoid infrared divergenies. Note, however, that the integral kernel of the BFKL equation12



for the Pomeron wave funtion does not depend on quantum numbers of initial partiles. Totake into aount a tower of the intermediate string states for the middle line on Fig.1b we�nd in this setion the multi-Regge asymptotis of the amplitude for the tree diagram Fig.2.Then we alulate the sum over residues in the poles over the partile invariant mass k2 andintegrate over other kinemati variables to obtain the BFKL kernel.As far as a large number of olors n is onsidered, only planar diagram ontributions areimportant and the kernel is proportional to n = N. In the multi-Regge kinematis the momentak1; k2; k7; k8 on Fig.2 are almost ollinear. Their spae omponents are opposite in sign to theorresponding omponents of the momenta k4; k3; k6; k5.To eah partile with the momentum kj , the string oordinates zj; #j and the olor matrix�j are assigned. It is assumed that z8 < z7 < z6 < z5 < z4 < z3 < z2 < z1. We �x �vevariables: z1 =1; z2 = 1; z8 = 0 and #1 = #2 = 0. In amplitude (33) one should sum over theontributions of the diagrams whih an not be obtained from one on�guration by yli oranti-yli transmutations of gluon indies. We should take into aount also the Chan-Patonfators T (+) T (+) = trae[�r8�r7�r6�r5�r4�r3�r2�r1 + �r5�r6�r7�r8�r1�r2�r3�r4 ℄ : (53)To alulate the kernel from Fig.2 only ontributions having poles in the invariant k2 areessential. There are 16 diagrams of suh type orresponding to the on�guration(k1 = q01 ; k2 = �pa0) ; (k3 = �pb0 ; k4 = q02) ; (k5 = �q2 ; k6 = pb) ; (k7 = pa ; k8 = �q1)(54)and those obtained by the interhange (kj *) kl) inside eah of the above brakets, whihleads to the signature fators. As it was pointed out already, pa, pb and pa0 , pb0 are momentaof the initial and �nal partiles, respetively. The momenta q1, q2, q01 and q02 orrespond tointermediate partiles. Obviously, for the alulation of a disontinuity of the elasti amplitudethe relations q01 = �q1 and q02 = �q2 are valid, but temporally we distinguish between qi and�q0i performing later an analytial ontinuation in the invariants (k + q1)2, (k + q2)2, (k � q01)2and (k � q02)2 to their physial values. In the multi-Regge on�guration the momentum k onFig.2 obeys some kinematial onstraints. Namely, the quantities k2; k2? and (k0)2 in the .m.system are assumed to be muh smaller than the energy invariants s; s1 and s2. Integral (41)for eah of 16 diagrams is alulated in the kinematis where it is onvergent, and subsequentlythe result is analytially ontinued to the physial region of the reation.In expression (41) several polarization strutures arise, but only the termAs � (�1�2)(�3�4)(�5�6)(�7�8)ontributes to the multi-Regge asymptotis of the tree amplitude for Fig.2As = g6 eAT (+)(�1�2)(�3�4)(�5�6)(�7�8) ; (55)where the polarization vetor �j is assoiated with the momentum kj and the Chan-Patonfator T (+) is given in eq. (53). Fixing the parameters as follows: z1 =1, z2 = 1, z8 = 0 and13



#1 = #2 = 0, one obtains from eq. (41)eA = Z ~BB�(1� z3)�(z7)d#7d#8 dz7(z3 � z4 � #3#4)(z5 � z6 � #5#6)(z7 � #7#8) 6Ys=3 �(zs � zs+1)dzs d#s : (56)Here the pre-fator ~B is given below~B = �1 + 2�0(k3k4)z3 � z4 #3#4 + 2�0(k3k5)z3 � z5 #3#5 + 2�0(k3k6)z3 � z6 #3#6 + 2�0(k3k7)z3 � z7 #3#7+2�0(k3k8)z3 � z8 #3#8#�1 + 2�0(k4k5)z4 � z5 #4#5 + 2�0(k4k6)z4 � z6 #4#6 + 2�0(k4k7)z4 � z7 #4#7+2�0(k4k8)z4 � z8 #4#8#"1 + 2�0(k5k6)z5 � z6 #5#6 + 2�0(k5k7)z5 � z7 #5#7 + 2�0(k5k8)z5 � z8 #5#8#�"1 + 2�0(k6k7)z6 � z7 #6#7 + 2�0(k6k8)z6 � z8 #6#8#"1 + 2�0(k7k8)z7 � z8 #7#8# (57)and the expression B oinides with the integrand for a multi-tahyon sattering amplitude ofthe boson string theory: B = Y2�m<n�8(zm � zn)�2�0kmkn : (58)Similar to the ase of bosoni strings [20℄ one onludes from eq. (58) that in the multi-Reggekinematis the essential values of parameters arez3 ! 0; z3 = z4 + x ; z5 = z6 + y ; x=z6 ! 0 ; y=z6 ! 0 ; z7=z6 ! 0 : (59)In this on�guration of variables the expression for B is simpli�ed as followsB � x�2�0k3k4y�2�0k5k6z�2�0k7k87 z�2�0(k3+k4)(k7+k8)4 z�2�0(k5+k6)(k7+k8)6�(z4 � z6)�2�0(k3+k4)(k5+k6) exp�2�0k2k3x+ 2�0k2k5y + 2�0k2(k3 + k4)z4+2�0k2(k5 + k6)z6 � 2�0k3k7 z7xz24 + 2�0k7(k3 + k4)z7z4 � 2�0k5k7 z7yz26+2�0k7(k5 + k6)z7z6 � 2�0k3(k7 + ke8) xz4 � 2�0k5(k7 + k8) yz6� : (60)In the multi-Regge limit we havek2(k3 + k4) ! �k2(k5 + k6)! k1k ; k7(k3 + k4)!�k7(k5 + k6)! k8k ;k3(k7 + k8) ! �k4k ; k5(k7 + k8)! �k6k : (61)The integral is onvergent in the following kinematial region of invariantsk2k3 < 0; k2k5 < 0; k3k7 > 0; k5k7 > 0; k2(k3 + k4) < 0 ;k7(k5 + k6) < 0 ; k3(k7 + k8) > 0 ; k5(k7 + k8) > 0 : (62)14



We rede�ne the variables as followsz4 ! z4�2�0k2(k3 + k4) ; z6 ! z62�0k2(k5 + k6) ; z7 ! z7[2�0k2(k3 + k4)℄[2�0k7(k5 + k6)℄ ;x ! x�2�0(k2k3) ; y ! y�2�0(k2k5) : (63)The asymptotis of eA in expression (55) an be written as followseA = GA(t5678; �2; t3478; t34; t56; t12; t78) ; (64)where the fator G ollets all large energy invariants, and A(t5678; �2; t3478; t34; t56; t12; t78) de-pends only on �xed transverse momenta. We de�ne the energy invariants si and sjk as followssi = ((k1 + k)2 � 2(k1k) ; s23 = �2(k2k3) ; s25 = �2(k2k5) : (65)Then the expression for G in (64) has the fatorized formG = (��0s1)�0t12+1(��0s7)�0t78+1(��0s4)�0t34+1(��0s6)�0t56+1 ; (66)where the �xed invariants areti = (k1 + kj)2 ; tijlm = �(ki + kj + kl + km)2 : (67)Note, that we have the kinematial onstraintt3456 + t3478+ t5678 = t12 + t34 + t56 + t78 : (68)The �xed invariant �2 in (64) is given below�2 = �0s1s4=s23 = �0s1s6=s25 = �0[(k0)2 � k2k) ; (69)where kk is the longitudinal omponent of the momentum k. To simplify the last fator in (64)one an use the following relations valid in the multi-Regge kinematis due to eqs. (61)(k5k7)(k6k8)� (k5k8)(k6k7) = 12�((k5 + k6)k7)((k6 � k5)k8))+((k5 � k6)k7)((k6 + k5)k8))� = 12(k6k8)[t5678� t56 � t78 � �2℄ (70)and (k4k7)(k3k8)� (k4k8)(k3k7) = 12(k3k8)[t4378� t43 � t78 + �2℄ : (71)After rede�nition (63) of variables in expression (56) with the use of above simpli�ationsone an perform the Grassmann integrations. As a result, the last fator in (64) turns out tobe A(t5678; �2; t3478; t34; t56; t12; t78) = Z 10 dx Z 10 dy Z 10 dz4 Z z40 BsVb dz6 ; (72)15



where both Bs and Vb depend on integration parameters and external variables. The expressionfor Vb is the same as in the bosoni string model, and the pre-fator Bs arises due to thesuperstring modi�ations. Expliitly,Vb = x��0t34y��0t56z��0t787 z��0[t3478�t34�t78℄4 z��0[t5678�t56�t78℄6 (z4 � z6)��0[t3456�t34�t56℄[xyz7℄�2� exp���x+ y + z7xz24 + z7yz26 ���z4 � z6 + z7z6 � z7z4�+�2� xz4 + yz6�� : (73)The integrals in (72) are de�ned for �2 < 0, andBs = (�0t34 + 1)(�0t56 + 1)(�0t78 + 1) + xyz27z24z26 [�0t35 + �0t36 + �0t45 + �0t46℄�y2z27(�0t34 + 1)"�0[t5678� t56 � t78℄� �2yz7z26 � 1z46 #�x2z27(�0t56 + 1)"�0[t3478� t34 � t78℄ + �2xz7z24 � 1z44 # : (74)In expression (72) one an perform easily the integration over the variables x and yA(t5678; �2; t3478; t34; t56; t12; t78) = �(��0t34)�(��0t56)�e�i(�0t34+�0t56)I(t5678; �2; t3478; t34; t56; t12; t78) ; (75)where the fator I(t5678; �2; t3478; t34; t56; t12; t78) is obtained from eq. (72). Its form an beessentially simpli�ed as it is shown in Appendix C. Below we present the �nal result using inaddition the fat that the alulated amplitude is symmetri under an interhange between theleft and right parts of the onsidered diagram (see Setion 3). Thus, taking into aount therelation t1256 = t3478 eq. (75) an be written as followsA(t5678; �2; t3478; t34; t56; t12; t78) = �(��0t12)�(��0t78)e�i(�0t12+�0t78)�I(t5678; �2; t3478; t12; t78; t34; t56) ; (76)whereI(t5678; �2; t3478; t12; t78; t34; t56) = (�2)��0t12��0t78�2 Z dydzdfe�f�yf��0t34�1y��0t56�1�z��0t5678�1(1� z)��0t3456+�0t34+�0t56[f + yz � �2(1 � z)℄�0t12[y + fz � �2(1� z)℄�0t78�"�0t12 + �0t78 � �0t3478(1 � z) + �0t12y(1� z)f + yz � �2(1� z)+ �0t78f(1 � z)y + fz � �2(1� z) + z � (f + y)# : (77)Here all integrations are performed from 0 to1. The above expression is onvergent at �2 < 0.For the fator in a front of the integral we hoose the ondition arg �2 = ��. Really the phasearising in this ase, is ompensated by a similar phase in (76) and A is real for � < 0.16



The �nal result is obtained by summing the ontributions of 16 diagrams listed in thebeginning of this Setion, every term being analytially ontinued from the kinematial regionwhere the orresponding integral (41) is onvergent. Taking into aount the spin struture(55) for eah diagram and relations (64), (66) and (76), we derive the following expression forA(f)A(f) = g6s�0t12+�0t78+21 s�0t34+�0t56+24 (�1�2)(�3�4)(�5�6)(�7�8)�(��0t12)�(��0t78)e�i(�0t12+�0t78)� Xj1;j2;j3;j4Fr1;r2;j1(t12)Fr3;r4;j2(t34) F r5;r6;j3(t56)Fr7;r8;j3(t78)�T (+)j1;j2 ;j3;j4I(t5678; �2; t3478; t12; t78; t34; t56) ; (78)where Frs;rl;j(tsl) = trae[(�rs�rle��i(�0tsl+1) + �rs�rl)�j ℄ (79)and T (+)j1;j2;j3;j4 = trae[�j4�j3�j2�j1 + �j1�j2�j3�j4 ℄ : (80)For the group U(n) the index ri enumerates olor states of the partile arrying the mo-mentum ki de�ned in (54). After an analytial ontinuation we put s1 = �s7 and s4 = �s6.In a similar way, I(t5678; �2; t3478; t12; t78; t34; t56) in (78 ) is alulated using a similar ontinua-tion of expression (77) to the region �2 > 0. This proedure is performed by the replaement�2 ! �2 + iÆ with Æ ! +0. We have also the ondition k(0) > 0, and therefore due to (69),our presription orresponds to the Feynman rule for going around the singularity. After theanalyti ontinuation the fator in front of the integral turns out to be positive.5 BFKL equation in the string modelOmitting the impat fators of olored partiles in the left and right hand sides of the ontri-bution of the diagram Fig1.b one an obtain expressions for higher order ladder diagrams byiterating its interior part. To �nd the BFKL kernel in the onsidered string model, one shouldalulate from expression (78) its ontribution to the t-hannel partial wave for the sattering ofmassless partiles. Also one-loop orretion !1(t) � g2N to the trajetory (1) should be takeninto aount (see (50)). Thus, �0tjl in (78) is replaed by the expression �0tjl + !1(tjl). Due tothe presene of non-planar diagrams, the one-loop orretion to the singlet trajetory di�ersfrom that for the otet ase. However, assuming that the number of olors is large, below weneglet this di�erene.The ontribution to the t-hannel partial wave from the diagram Fig1.b is given by theMellin transformation in ln s applied to the imaginary part of the amplitude. To alulate itone should �nd in eq. (78) the sum of residues for the poles in the variable �0k2 and integratethe result over a relevant phase volume. Initially we put q01 = �q1; q02 = �q2, r1 = r8, r4 = r5,�1 = �8, �4 = �5 summing subsequently over indies r1, r4 and polarization states �1 and �4.The poles are situated at �0k2 = m, where m is an integer number hanging from 0 to 1.17



Below we denote by l, l0 the transverse momenta of two neighboring reggeons and by q thetotal momentum transfer related to the orresponding invariants as followsl2 = �t12; (l0)2 = �t34; (q � l)2 = �t78; (q � l0)2 = �t56 : (81)With these de�nitions, �2 in (78) is given below (f. (69))�2 = �0[k2 + (l � l0)2℄ ; k2 = t1234 = t5678 : (82)The multi-Regge kinematis implies, that the inequalities s1=k2 � 1 and s4=k2 � 1 areful�lled. The integration over this region leads to the singularities of the t -hannel partialwave at ! = j � 1. Here j is the total angular momentum. The ontribution F (b)(!; q2) to thet-hannel partial wave from the diagram Fig1.b inluding the orretion to the trajetory !1(t)(1) is given belowF (b)(!; q2) = Xr1;r2;r3;r4 Z dD�2l e�ra;ra0 ;r1;r4(q; l)�(�0l2)�(�0(q � l)2)e��i(�0l2+�0(q�l)2)� g24(2�)D�1T (+)r1r2r3r4 1Xm=0 Z 1s(m) s�j�1ds Z 1s(m) ds1 ds4s2 (�0s1)��(l2)��((q�l)2)+2� Z dD�2l0 eIm(q; l; l0)(�0s4)��((l0)2)��((q�l0)2)+2Æ(�0s1s4=s� �0k2? �m)e�rb;rb0 ;r2;r3(q; l0) : (83)Here �(q2) = �0q2 � !1(�q2) ; (84)and D is the number of spae-time dimensions. The quantity eIm(q; l; l0) is the residue of thepole at �0k2 = m in the integral I(t5678; �2; t3478; t12; t78; t34; t56) appearing in expression (78)(see also de�nitions (81)). Further, s(m) is the low energy ut-o�: s(0) = s0 for m = 0 ands(m) = s0�2m for m � 1. In this ase �2m = m + �0k2?. We impose the ondition �0s0 � 1beause the prodution amplitude is known only in the multi-Regge kinematis. The ut-o� isintrodued to have a possibility to verify that the non-multi-Regge kinematis is not essential.The fator T (+)r1r2r3r4 is presented in eq. (80) ande�ra;ra0 ;r1;r4(q; l) = (�a�a0) 2g2(2�)D�1 Xr Fra0 ;r;r1(t12)Fra;r;r4(t78) ;e�rb;rb0 ;r2;r3(q; l0) = (�b�b0) 2g2(2�)D�1 Xr Frb0 ;r;r2(t34)Frb;r;r3(t56) ; (85)where the funtion F is de�ned in (79). Expressions (85) are massless state ontributions to theimpat fators. The total impat fator for the planar diagram Fig1b being the sum of a tower ofstring states is equal to zero, whih an be veri�ed with the use of the quasi-elasti asymptotisof the prodution amplitude (for more details see Appendix D). Its vanishing ensures theanellation of the Amati-Fubini-Stangelini uts in the j-plane for the planar diagrams.18



One the integration over s, s1 and s4 being performed, eq.(83) is represented as followsF (b)(!; q2) = Xr1;r2;r3;r4 Z dD�2l e�ra;ra0;r1;r4(q; l)�(�0l2)�(�0(q � l)2)e��i(�0l2+�0(q�l)2)� g2(�0)!4(2�)D�1 Z dD�2l0T (+)r1r2r3r4 (�0s0)�!��0l2��0(q�l)2(�0s0)�!��0(l0)2��0(q�l0)2[! + �(l2) + �((q � l)2)℄[! + �((l0)2)� �((q � l0)2)℄� bI(q; l; l0)e�rb;rb0 ;r2;r3(q; l0) : (86)Here bI(q; l; l0) = S(0)! (q; l; l0) + S!(q; l; l0) (87)and, in turn, S!(q; l; l0) = 1Xm=1(�2m)�!��0l2��0(q�l)2��0(l0)2��0(q�l0)2+2 eIm(q : l; l0) ;S(0)! (q; l; l0) = �0(�20)!+2 eI0(q; l; l0) : (88)In this expression the fator eIm(q; l; l0) is the same as in eq. (83). We remind, that thequantity �2m = m + �0k2? oinides with �2 on the mass shell �0k2 = m (m is an integernumber). Expression (86) is orret only in the domain where it does not depend on the ut-o�s0, whih means, that the power of s0 in this expression should be muh smaller than unity. Inan aordane with eq. (86), it is onvenient to present the ontribution F (!; q2) to the partialwave as a sum of ontributions of the diagrams Fig.1 starting from Fig.1b written in the formF (!; q2) = g24(2�)D�1 Xr1;r2;r3;r4 Z dD�2l Z dD�2l0 e�ra;ra0 ;r1;r2(q; l)�(�0l2)�(�0(q � l)2)�e��i(�0l2+�0(q�l)2) Rr1r2r3r4(!; q; l; l0)! + �((l0)2) + �((q � l0)2) e�rb;rb0 ;r3;r4(q; l0) : (89)The partile-partile-reggeon verties e� ontained in eq.(89) an be extrated from eq.(48).Omitting these verties in eq. (89), one an verify that the amplitude Rr1r2r3r4(!; q; l; l1) forFig.1 obeys the BFKL-like equation(! + �(l2) + �(q � l)2)Rr1;r2;r3;r4(!; q; l; l1) = bI(q : l; l1)T (+)r1;r4;r3;r2+ �0g24(2�)D�1 Z dD�2l0 bI(q; l; l0)Xr;r0 T (+)r1r0rr2Rrr0r3r4(!; q; l0; l1)�"X�;�0[e�i(�0(l0)2+1) + (�1)�℄[ei�(�0(q�l0)2+1) + (�1)�0℄e��i(�0(l0)2+�0(q�l0)2# ; (90)where the summation over (�; �0) is assoiated with the signatures for the orresponding tra-jetories having their olor group quantum numbers denoted, respetively, by (r; r0). So, �; �0are 0 for a positive signature and 1 for the negative one.The number of olors is onsidered to be large and therefore one an neglet the olor-singletreggeons in (89). In this ase ri; r; r0 oinide with olor indies of the orresponding adjoint19



representations. Beause � and �0 take values 0 and 1, the expression inside the large squarebrakets in eq. (90) is equal to 4. Using eqs. (46) and (80) one �nds thatT (+)r1r0rr2 = ~T (+)r1r0rr2 + 2Ær1r2Ærr0=n ; Xr ~T (+)r1rrr2 = 0 : (91)So, ~T (+)r1;r0;r;r2 annihilates the singlet state. Furthermore,Rr1r2r3r4(!; q; l; l1) = 2f (0)! (q; l; l1)Ær1r2Ærr0=n + f (1)! (q; l; l1) ~T (+)r1r0rr2 ; (92)where f (0)! (q; l; l1) and f (1)! (q; l; l1) are partial waves for the vauum hannel and for the statebelonging to the adjoint representation of the SU(N) group, respetively.Using expression (90) one an derive, that the partial waves f (s)! (q; l; l1) with s = 0; 1 obeythe BFKL-like equation[! + �0l2 + �0(q � l)2 � !1(�l2)� !1(�(q � l)2)℄f (s)! (!; q; l; l1)= bI(q; l; l1) + g2Ns(2�)D�1 Z bI(q; l; l0)f (s)! (q; l0; l1)dD�2l0 ; (93)where 0 = 1 and 1 = 1=2. The integral kernel bI(q; l; l1) is alulated in the next Setion.6 Integral kernelWith the use of (88) one an verify, that the massless state ontribution to I (77) is given byS(0)! (q; l; l0)=�0 = [�0(l� l0)2℄!+�0l2+�0(q�l)2 Z dfdye�(y+f)f�0(l0)2�1y�0(q�l0)2�1�[f � �0(l � l0)2 � i�℄��0l2 [y � �0(l� l0)2 � i�℄��0(q�l)2"��0q2 + �0(l0)2 + �0(q � l0)2� �0l2y[f � �0(l � l0)2 � i�℄ � �0(q � l)2f[y � �0(l� l0)2 � i�℄ � (f + y)# : (94)The integral in the above expression an be written in terms of the Whittaker funtionW�;�(��2 � i�) de�ned as followsJ(a; b; z) � Z 10 e�tta(z + t)bdt = z(a+b)=2ez=2�(b+ 1)W(b�a)=2;(a�b+1)=2(z) (95)whih has the following representationJ(a; b; z) = za+b+1�(a+1)�(�a� b� 1)�(�b) �(a+1; a+b+2; z)+�(a+b+1)�(�b;�a�b; z) (96)as a linear ombination of the onuent hypergeometri funtion �(a; b; z)�(a; b; z) = 1 + ab z + a(a+ 1)2b(b+ 1)z2 + : : : : (97)20



Indeed, we obtain for eI0 (88)(�20)!+2 eI0(q; l; l0) = [�0(l � l0)2℄!+�0l2+�0(q�l)2"[��0q2 + �0(l0)2 + �0(q � l0)2℄�J(�0(l0)2 � 1;��0l2;��0(l � l0)2)J(�0(q � l0)2 � 1;��0(q � l)2;��0(l � l0)2)��0l2J(�0(l0)2 � 1;��0l2 � 1;��0(l � l0)2)J(�0(q � l0)2;��0(q � l)2;��0(l � l0)2)��0(q � l)2J(�0(l0)2;��0l2;��0(l� l0)2)J(�0(q � l0)2 � 1;��0(q � l)2 � 1;��0(l � l0)2)�J(�0(l0)2;��0l2;��0(l � l0)2)J(�0(q � l0)2 � 1;��0(q � l)2;��0(l � l0)2)�J(�0(l0)2 � 1;��0l2;��0(l � l0)2)J(�0(q � l0)2;��0(q � l)2;��0(l � l0)2)# : (98)To alulate the massive state ontribution S(q; l; l0) to the kernel (87) it is onvenient tohange the integration variables f ! �2f; y ! �2y in expression (77). As a result, the fatorbeing a power of �2m is extrated from the integral(�2)�!��0l2+�0(q�l)2��0(l0)2��0(q�l0)2+2I(t5678; �2; t3478; t12; t78; t34; t56)�0= 1�(! + �0l2 + �0(q � l)2) Z dfdydvv!+�0l2+�0(q�l)2�1e��2(y+f+v)z��0k2�1�"V1(z; f; y; q; l; l0) + 1v [! + �0l2 + �0(q � l)2 � 1℄V2(z; f; y; q; l; l0)# ; (99)where Vi(z; f; y; q; l; l0) does not depend on �2V1(z; f; y; q; l; l0) = f�0(l0)2�1y�0(q�l0)2�1(1� z)�0q2��0(l0)2��0(q�l0)2q��0l21 q��0(q�l)22�"[��0q2 + �0(l0)2 + �0(q � l0)2 + �0l2 + �0(q � l)2 � �0(l � l0)2℄(1� z)� �0l2��0(q � l)2 � �0l2 yq1 (1 � z)� �0(q � l)2 fq2 (1� z) + z# ; (100)V2(z; f; y; q; l; l0) = f�0(l0)2�1y�0(q�l0)2�1(1� z)�0q2��0(l0)2��0(q�l0)2q��0l21 q��0(q�l)22�[(1� z)� (f + y)℄ : (101)In these expressions we denotedq1 = f + yz � (1 � z)� i� ; q2 = y + fz � (1 � z)� i� ; �! 0 ; (102)where �! +0. In integral (99) the residue in the pole at k2 = m depends on m only throughthe exponent exp[�m(f + y + v)℄ multiplied by the derivative �m�1z V(i)(z; f; y; q; l; l0)=(m� 1)!alulated at z = 0. Therefore after summing the residues over m we obtain1Xm=1 e�m(f+y+v)�m�1z V(i)(z; f; y; q; l; l0)=(m� 1)!����z=0 = Vi(e�(f+y+v); f; y; q; l; l0)�Vi(0; f; y; q; l; l0) : (103)21



Thus, the quantity S!(q; l; l0) an be written as followsS!(q; l; l0)=�0 = 1�(! + �0l2 + �0(q � l)2) Z dfdydvv!+�0l2+�0(q�l)2�1 ��e��0(l�l0)2(y+f+v)"[V1(e�(f+y+v); f; y; q; l; l0)� V1(0; f; y; q; l; l0)℄+1v [! + �0l2 + �0(q � l)2 � 1℄[V2(e�(f+y+v); f; y; q; l; l0)� V2(0; f; y; q; l; l0)℄#: (104)Integrating the last term in (104) over v by parts we obtainS!(q; l; l0)=�0 = 1�(! + �0l2 + �0(q � l)2) Z dfdydvv!+�0l2+�0(q�l)2�1e��0(l�l0)2(y+f+v)�"f�0(l0)2�1y�0(q�l0)2�1(1� e�f�y�v)�0q2��0(l0)2��0(q�l0)2�[f + ye�f�y�v � (1 � e�f�y�v)� i�℄��0l2[y + fe�f�y�v � (1 � e�f�y�v)� i�℄��0(q�l)2�B(e�f�y�v; f; y; q; l; l0)� V1(0; f; y; q; l; l0)� �0(l� l0)2V2(0; f; y; q; l; l0)# ; (105)where B(z; f; y; q; l; l0) = ��0(l � l0)2(f + y) + �0l2y + �0(q � l)2f + [�0(q � l0)2+�0(l0)2 � �0q2℄�1� z(f + y)1� z �� �0l2fy(1 � z)f + yz � (1 � z)� i� � �0(q � l)2fy(1 � z)y + fz � (1 � z)� i� : (106)Really the leading ontribution to (105) arises from the region of small integration variables.In partiular, it results in a pole at ! = �0q2, as well as in a Mandelstam ut term. To �ndthe main part of (105) we ut from below the integration variables in eq. (105) by a parameter� � 1. Then from eq. (106), one an obtain, that the leading ontribution to S! is given bythe expressionS!(q; l; l0)=�0 ! �e�0l2+�0(q�l)2 [�0q2 � �0(l0)2 � �0(q � l0)2℄�(! + �0l2 + �0(q � l)2) "Z �0 dfdydvv!f�0(l0)2�1�y�0(q�l0)2�1(v + f + y)�0q2��0(l0)2��0(q�l0)2�1 � 1�0(l0)2�0(q � l0)2(! + �0l2 + �0(q � l)2)# ; (107)where the pole term arises from two last terms in (106).To alulate the integral (107) the integration region is divided into 6 domains: v > f > y,v > y > f , f > v > y, f > y > v, y > v > f and y > f > v. In the �rst domain we replaeinitially y ! fy and then f ! vf . As a result, the v-dependene of the integrand turns out tobe v!+�0q2. Integrating it over v we observe the pole at ! = ��0q2. The similar proedure isperformed in eah of the rest domains. As far as, in addition, the expression !+�0l2+�0(q�l)2 isimplied to be small� 1= ln s, the fator exp[�0l2+�0(q�l)2℄ in (107) should be replaed by unity.22



For the same reason �(!+�0l2+�0(q� l)2) = �(1+!+�0l2+�0(q� l)2)=(!+�0l2+�0(q� l)2) �1=(! + �0l2 + �0(q � l)2). Using these simpli�ations expression (107) is given belowS!(q; l; l0)=�0 � 1(! + �0q2) [�0q2 � �0l2 � �0(q � l)2℄[�0q2 � �0(l0)2 � �0(q � l0)2℄�" ~F (�0(l0)2; �0(q � l0)2;�0q2 � �0(l0)2 � �0(q � l0)2)+ ~F (1� �0q2; �0(q � l0)2;�0q2 � �0(l0)2 � �0(q � l0)2)+ ~F (1� �0q2; �0(l0)2;�0q2 � �0(l0)2 � �0(q � l0)2)# ; (108)where ~F (a; b; ) = Z 10 df Z 10 dyfa+b�1(1 + f + fy)�1[yb�1 + ya�1℄ == 1Xn;m=0 �()�(�m� n)�(m+ 1)�(n + 1)(a+m)(b+ n) : (109)One an verify that at small momenta �0q2 � �0l2 � �0l0� 1 the �rst term in the large squarebrakets of eq. (108) gives the main ontributionSsing! (q; l; l0) = [�0q2 � �0l2 � �0(q � l)2℄[�0q2 � �0(l0)2 � �0(q � l0)2℄�0(! + �0q2)(l0)2(q � l0)2 : (110)Expressions (108) and (110) are orret in a neighbourhood of the pole and of zeros of thenumerator with the deviations being � 1= ln s � Ng2. As far as the numerator does not vanishat !+�0l2+�0(q� l)2 = !+�0l02+�0(q� l0)2 = 0, it ontributes to both the Mandelstam utsand the pole at ! = ��0q2.The pole at ! = ��0q2 orresponds to the soft Pomeron whih exists already in the Bornexpression (48) for the elasti amplitude. Relatively large masses 1� �0M2 � �0s of produedresonanes ontribute to this pole. Therefore in the box diagram Fig.1a we expet a pole of theseond order from the integration over large masses of two intermediate s-hannel resonanes.This seond order pole appears as a result of the perturbative expansion of the Pomeron Reggepole over the one-loop orretion !1(t) � g2. In the two-loop approximation, orrespondingto Fig.1b, we should have the third order pole with the residue proportional to !21(t). In thisdiagram, apart from the pole (110) there is a produt of two pole singularities 1=(!+�0q2) fromthe integration over the large masses of resonanes produed in the fragmentation regions ofinitial partiles. In the multi-Regge kinematis one obtains also the poles 1=(!+�0l2+�0(q�l)2)and 1=(!+�0l02+�0(q� l0)2) leading after the integration over l and l0 to the Mandelstam uts(we put here l = k? and l0 = k0?). Beause the residue of the pole (110) in the BFKL kernel issmall due to the smallness of the expressions in the square brakets, it anels approximatelythe neighboring poles depending on l and l0 and therefore one an attempt to extrat from theontribution for Fig.1b the third order pole being the seond order term in the expansion ofthe soft Pomeron pole in !1(t). 23



Indeed, let us present the numerator of the pole in eq. (110) in the form[�0q2��0l2��0(q� l)2℄[�0q2��0(l0)2��0(q� l0)2℄ = [!+�0l2+�0(q� l)2℄[!+�0(l0)2+�0(q� l0)2℄� [! + �0q2℄ h! � �0q2 + �0l2 + �0(q � l)2 + �0l02 + �0(q � l0)2i : (111)Then the seond term in the right hand side of this equality, killing the pole 1=(! + �0q2) in(110), ontributes only to the Mandelstam uts. As for the �rst term in (111), it orrespondsto the seond term of expansion for the soft Pomeron pole. Indeed, its numerator anelsthe neighboring propagators for Mandelstam uts. Therefore the orresponding integrals overthe relative rapidities ln s12 and ln s23 are onvergent for the large invariants s12 and s23. So,we should alulate these integrals exatly without simpli�ations orresponding to the multi-Regge kinematis. It is plausible, that as a result of suh alulation the pole in expression(110) together with additional poles 1=(!+�0q2) from two impat fators would reprodue thetotal one-loop orretion � !21 from Fig.1b in the seond order expansion of the Pomeron pole.The �rst term in (111) is important also for a anellation of the singularities in (110) at(l; l0)! 0 and (l; l0)! q leading to a onvergene of the orresponding integrals over the multi-Regge region. In addition, it has a non-trivial funional dependene ontaining both poles anduts in !. So, for the investigation of the BFKL equation in the D = 4 model we use the wholeexpression (110) without negleting the soft Pomeron pole. Simultaneously, we add a pieefrom the non-multi-Regge kinematis.For a general ase of the ladder Fig.1 one an perform a deompositions similar to (111)for eah kernel. The ontributions appearing from the �rst terms in the right hand sides of(111) orrespond to the partiles produed in a non-multi-Regge kinematis. The form ofprodution amplitudes in this region an not be extrated from our above results. Probablythis ontribution orresponds to a geometri progression appearing from an expansion of thesoft Pomeron pole in !1(t).Presumably one an represent the partial wave as follows f!(�q2) asf!(�q2) = f (p)! (�q2) + fmr! (�q2) ; (112)where the �rst term orresponds to the soft Pomeron ontribution in the form of the geometrialprogression and the term fmr! (�q2) results from the multi-Regge kinematis. In priniple therean be a more ompliated situation with an interferene between the Regge pole and ut.7 BFKL equation in the D = 4 string modelIt follows from the above disussion that the singularities of the t=hannel partial waves arisefrom the region where ! + �0l02 + �0(q � l0)2 � 1= ln s. For D > 4 after the integrationover the region �0l02 the orresponding ontribution is suppressed by powers of logarithms� (ln s)�(D�4)=2 for eah produed partile, whih leads to a possibility to �nd the solution ofthe BFKL equation as a series in this small parameter. In priniple, it is not exluded thatfor very large energies the number of produed partiles grows so rapidly, that the averagedpair energies sk;k+1 for these partiles are not so large to justify the saddle-point method of24



alulations of the integrals. In this ase the BFKL equation whih sums ontributions fromthe multi-Regge kinematis ould have non-trivial solutions even for D > 4. Here, however,we restrit ourselves to the D = 4 ase hoping to return to the disussion of other values ofD in future publiations. Moreover, only the amplitude with vauum quantum numbers in therossing hannel is onsidered.At D = 4 the BFKL equation has a non-trivial solution in terms of the funtion f (0)! (q; l)de�ned by the relation f (0)! (q; l) = Z f (0)! (q; l; l1)�(q; l1)d2l1 ; (113)where �(q; l1) is an impat fator. Generally the solution ontains ontributions from non-planar diagrams.One loop orretion !1(t) to the gluon trajetory for D = 4 (1) has the form!1(t) = �g2N8�2 ln(q2=�2) + !(m)1 (q2) (114)where the �rst ontribution orresponds to massless states in the t -hannel and the seondterm non-singular at q2 = 0 appears from the massive string exitations (f. expression (5) inQCD).To begin with, let us disuss the region of small t, where �0q2 � g2N. In this ase for D = 4the small gluon virtualities �0l2 � g2N � �0(l0)2 � g2N are important. For suh momenta land l0 the pole ontribution (110) dominates in S!(q : l; l0) and the singularities of the t-hannelpartial wave are situated for small g2 at ! � g2. Beause the infra-red divergenies in theintegral kernel are anelled between the ontribution from the real partile emission and one-loop orretion to the Regge trajetories, the fator [(l� l0)2℄!+�0l2+�0(q�l)2 in the right hand sideof eq. (98) an be omitted. Hene, from expression (94) we obtain the following ontributionto the kernel (77) orresponding to the massless state produtionS(0)! (q : l; l0) = � q2(l0)2(q � l0)2 + l2(l � l0)2(l0)2 + (q � l)2(l � l0)2(q � l0)2 : (115)Expression (115) oinides with the orresponding result [11℄ in QCD. The massive stateterm in (114) is expeted to vanish at t! 0. So, the radiative orretion to the gluon trajetoryfor small momentum transfers l and q � l also an be approximated by the QCD expression(5). As a result, the BFKL equation (93) for the vauum hannel at D = 4 and �0q2 � g2N isdrastially simpli�ed[! + �0l2 + �0(q � l)2℄f (0)! (q; l) = �(q; l) + g2N8�3 Z (S(0)! (q : l; l0)f (0)! (q; ; l0)� 1(l� l0)2" l2[(l � l0)2 + (l0)2℄ + (q � l)2[(l� l0)2 + (q � l0)2℄#f (0)! (q; ; l))d2l0+g2N8�3 Z [�0q2 � �0l2 � �0(q � l)2℄[q2 � (l0)2 � (q � l0)2℄(! + �0q2)(l0)2(q � l0)2 f (0)! (q; ; l0)d2l0 ; (116)where the ontribution from Fig.1a is also taken into aount.25



In eq. (116) we performed a relevant subtration of the Regge trajetory ontribution toobtain the integral kernel in the BFKL form (f. [1℄), and the expression for S(0)! (q : l; l0) isgiven in (115). Equation (116) di�ers from the BFKL equation in QCD only by terms linearin squared gluon momenta at its left hand side and by an additional pole term � 1=(! + �0q2)in the kernel. The terms � l2 and � (q � l)2 improve the properties of its kernel at l ! 1.As a result, unlike the QCD ase in LLA, eq.(116) is expeted to have a disrete spetrum atnonzero values of q2.Comparing the large-l behaviour of the left and right hand sides of eq.(116) we onlude,that the linear terms in the gluon trajetories in eq. (116) lead to a onstant behaviour off (0)! (q; l) at l!1. As a result, the integralh!(q) = Z [q2 � (l0)2 � (q � l0)2℄(l0)2(q � l0)2 f (0)! (q; ; l0)d2l0 (117)in the last term on its right hand side is divergent. Taking into aount, that this term playsrole of an additional inhomogenious ontribution to eq.(116) we present f (0)! (q; l) in the formf (0)! (q; l) = g2N[�0q2 � �0l2 � �0(q � l)2℄8�3(! + �0q2)[! + �0l2 + �0(q � l)2℄h!(q) + g2Nh!(q)8�3(! + �0q2) f̂ (0)! (q; l) + ~f (0)! (q; l) ;(118)where h!(q) is given by (117), while f̂ (0)! (q; l) and ~f (0)! (q; l) are determined from the equation(below F (0)! (q; l) is denoted either by f̂ (0)! (q; l) or ~f (0)! (q; l))[! + �0l2 + �0(q � l)2℄F (0)! (q; l) = ~�(q; l) + g2N8�3 Z (S(0)! (q : l; l0)F (0)! (q; ; l0)� 1(l � l0)2" l2[(l� l0)2 + (l0)2℄ + (q � l)2[(l� l0)2 + (q � l0)2℄#F (0)! (q; ; l))d2l0 : (119)Here for F (0)! (q; l) = f̂ (0)! (q; l) we have~�(q; l) = Z S(0)! (q : l; l0) [�0q2 � �0(l0)2 � �0(q � l0)2℄! + �0(l0)2 + �0(q � l0)2 d2l0 �Z d2l0(l � l0)2" l2[(l� l0)2 + (l0)2℄ + (q � l)2[(l� l0)2 + (q � l0)2℄# [�0q2 � �0l2 � �0(q � l)2℄! + �0l2 + �0(q � l)2 ; (120)and for F (0)! (q; l) = ~f (0)! (q; l), ~�(q; l) = �(q; l) : (121)Using (118) and (117) one obtains h!(q) as the solution of a linear equationh!(q) = ! + �0q2! + �0q2 � ~�(!; q2) Z [q2� l2 � (q � l)2℄l2(q � l)2 ~f (0)! (q; ; l)d2l ; (122)where~�(!; q2) = g2N8�3 "~�0 + �Zl2<�2 �0[q2 � l2 � (q � l)2℄2[! + �0l2 + �0(q � l)2℄l2(q � l)2d2l� � ln�2��2!1+ Z [q2 � l2 � (q � l)2℄l2(q � l)2 f̂ (0)! (q; ; l)d2l# : (123)26



We subtrated the logarithmi divergeny from the seond term in the brakets assumingthat subtration term is added to the quantity ~�0 determined by the integration region �0k2 � 1.So, �0 depends also on the non-multi-Regge on�gurations, leading to the renormalisation !1of the soft Pomeron Regge trajetory. This onlusion follows from expression (86) for theprodution ross-setion, where the kernel dependene from the ut-o� s0 is essential, and fromour disussion of eq. (111). It is natural to expet that ~�0 � 1. So, the solution of eq. (116)depends on the additional parameter ~�0. The equation ! + �0q2 = ~�(!; q2) allows to �ndthe Regge trajetories . In addition, one an onlude from (123) that ~�(!; q2) ontains theMandelstam uts in the !-plane.In the region g2N � �0q2 � 1 the asymptoti behaviour of the sattering amplitude isrelated to singularities of the integral R f (0)! (q; ; l0; l1)d2l0 near ! � �q2=2. They appear fromthe kinematis, in whih the solution of eq. (116) is onentrated at l = q=2. Let us introduethe new momenta v and v0 aording to the de�nitionl = q=2 + v ; l0 = q=2 + v0 ; v2 � q2 ; (v0)2 � q2 : (124)Leaving only leading terms, eq. (94) is simpli�ed as followsS(0)! (q : l; l0) = 2 [�0(l � l0)2℄!+�0q2=2(l� l0)2 ; (125)where l � l0 = v � v0. The numerator in (125) is di�erent from unity only in the region�0r2 = �0(l � l0)2 � s0=s. Due to eq. (69) for a massless intermediate state the value of r2 inthe multi-Regge kinematis s1; s2 > s0 � 1=�0 is restrited by the ondition r2 � s20=s.However, aording to the generalized Gribov theorem the gluon prodution amplitude forthe momenta r2 � 1=�0 is also large in the quasi-elasti regions s1 � 1=�0 and s2 � 1=�0 andequals to the elasti amplitude multiplied by a bremstrahlung fator (see for example [21℄).Therefore the integral over r2 is not bounded from below by s20=s being infraredly divergent.As usually, this divergeny is anelled with the ontribution from the virtual orretions pro-portional to the gluon Regge trajetories. Thus, we substitute by unity the numerator in (125)and represent the massless ontribution to the gluon trajetory orretion as followsg2N ln(l2=�2) = Z d2l0(l� l0)2" l2[(l � l0)2 + (l0)2℄ + (q � l)2[(l� l0)2 + (q � l0)2℄ � 4v2(v2 + (v0)2)#+ Z 4v2d2l0(v2 + (v0)2)(v � v0)2 : (126)Here l and v are related aording to eqs. (124). Performing the expansion in v in the righthand side of eq. (93) one an write it as follows[! + �0q2=2 + 2�0v2 + g2N4�2 ln(q2=64v2)℄f (0)! (q; v; v1) = �(q; q=2)+g2N8�3 Z 2(v � v0)2"f (0)! (q; ; v0; v1) � 2v2(v2 + (v0)2)f (0)! (q; ; v; v1)#d2l0 : (127)27



The impat fator in (127) is taken at l = q=2 beause it is expeted to be a smooth funtionof l near l = q=2. For �0q2 � 1 the radiative orretion (5) to the gluon trajetory at a smallmomentum transfer should be replaed by !1(t) taken at t = �q2=4. Thus, the �nal equationvalid for both restritions g2N � �0q2 � 1 and �0q2 � 1 is obtained from (127) by thesubstitution ! ! !0(q2) where!0(q2) = ! + 2��!(m)1 (�q2=4) + g2N8�2 ln(q2=4�2)� : (128)The orresponding quantities are de�ned in eqs. (1) and (114). Note, that the infra-reddivergeny at � ! 0 in the last term is anelled with a similar divergeny in the right handside of eq. (126) at v0! v.8 Solution of the equation at small momentum transfersAt q 6= 0 the integral kernel of the BFKL equation for the string theory at D = 4 is non-singular at small momenta. In this ase one an expet that for the t-hannel partial wave theut at ! = !0 disappears, and instead of a �xed singularity of f!(q2) in the !-plane there areonly Regge poles. Here we demonstrate this phenomenon in the ase of small values of �0~q2,where there exists an analyti solution of the equation in the D = 4 string theory. The poleontribution to the kernel orresponding to the soft Pomeron will be negleted.In the domain of relatively small ~q 2 �0~q 2 � g2N : (129)one an divide the region of possible values of ~� 2 � ~k�2 into two subregions ~�2 � ~q�2 and ~� 2 ��0(g2N)�1, where � = �12. In the �rst subregion one an use the onformal (M�obius) invarianeand the eigenfuntion in the mixed representation oinides with the Fourrie transformation inthe .m. oordinate ~�0 from the funtion Em;em(~�1; ~�2; ~�0) (17). Its asymptotis at small ~�2 hasthe form [22℄ Em;em(~q; ~�) � �m (��)em + ei Æm;em(~q) �1�m (��)1�em ; (130)where ei Æm;em(~q) = (�1)n  jqj4 !�4i�  qq�!n �(m+ 12) �(fm+ 12)�(�m+ 32) �(�fm+ 32) : (131)For simpliity we onsider the ase n = 0, whereei Æm;m(~q) =  jqj4 !�4i� �2(1 + i�)�2(1 � i�) (132)and the wave funtion for small j�jEm;m(~q; ~�) � j~�j1+2i� + ei Æm;m(~q) j~�j1�2i� : (133)28



After the Fourrie transformation to the momentum spae we obtain	(~q;~k) = Z d2� ei~�~k Em;m(~q; ~�) � jk=qj�3�2i� + ei Æ(�) jk=qj�3+2i� ; (134)where ei Æ(�) = 24i� �2(1 + i�) �(�12 � i�) �(32 � i�)�2(1 � i�) �(�12 + i�) �(32 + i�) : (135)On the other hand, in the region ~�2 � ~k�2�0(g2N)�1 one an put ~q = 0 and after therede�nition of the wave funtion and its argument	(~q;~k) = jkj�3 �(z) ; z = ln(�0~k2) (136)the BFKL homogeneous equation in the string model an be written as the Shr�odinger equationE� = H� ; ! = �g2N4�2 E ; H = HBFKL(i�=�z) + �ez ; (137)where HBFKL(�) =  (i� + 1=2) +  (�i� + 1=2) � 2 (1) ; � = 4�2g2N : (138)The analogy with the Shr�odinger equation is espeially fruitful in the di�usion approxima-tion, where HBFKL(i�=�z) = �4 ln 2� 14 �(3) (�=�z)2 (139)has the form of the non-relativisti kineti energy. The potential energy �ez grows rapidly atlarge positive z and therefore the wave funtion � should tend to zero in this regionlimz!1 �(z) � exp �2s �14 �(3) ez=2! : (140)For z !�1 the potential energy vanishes, whih agrees with a possibility to neglet the stringe�ets at small ~k2. In the momentum representation�(p) = Z 1�1 eipz �(z) dz; (141)where p = i�=�z, the BFKL equation is redued to the equation in �nite di�erenes(E �HBFKL(p))�(p) = ��(p� i) : (142)The funtion �(p) an have the singularities (poles) only in the upper semi-plane. It is analytiin the lower semi-plane to provide a rapidly dereasing behaviour of �(z) at z ! +1. Thepositions of the poles is given belowpr = p0 + ir ; (r = 0; 1; 2; :::) ; (143)29



where the possible values of p0 satisfy the equationHBFKL(p0) = E : (144)For example, in the di�usion approximation, whereE �HBFKL(p) = E + 4 ln 2� 14 �(3) p2 ; (145)the solution of the above reurrent relation is�(p) = �0(p)  7 �(3) g2N2�2 !ip � i p� isE + 4 ln 214 �(3) ! � i p + isE + 4 ln 214 �(3) ! (146)up to a periodi funtion satisfying the relation �0(p) = �0(p + i). We should substitute thisfuntion by a onstant �0(p) = onst ; (147)beause in an opposite ase for p ! �i1 the wave funtion does not derease suÆientlyrapidly due to the additional fators � exp(�2�ip). Indeed, for �0(p) = 1 the normalizationintegral Z 1�1 dp j�(p)j2 = Z 1�1 dp �2= �p2 � E+4 ln 214 �(3) �sinh �� p � �qE+4 ln 214 �(3) � sinh �� p+ �qE+4 ln214 �(3) � (148)is onvergent at p ! �1. Moreover, for �0(p) = 1 the wave funtions �(p) with di�erentE are orthogonal. Note, that the integrand (148) ontains the poles. After their appropriateregularization it leads to the Æ-funtion � Æ(E � E0) in the orthonormality onditions.Let us go to the z representation�(z) = Z 1�i0�1�i0 dp2� e�ip z �(p) : (149)For large positive z the ontour of the integration over p should be shifted in the lower semi-plane up to the saddle point situated atz =   i p � isE + 4 ln 214 �(3) !+   i p+ isE + 4 ln 214 �(3) !+ ln 7 �(3) g2N2�2 !� ln (ip)2 7 �(3) g2N2�2 ! : (150)We an estimate �(z) by the value of the integrand in (149) at this point�(z) � e�ip z �(p) � exp0��2vuut 2�27 �(3) g2N ez=21A (151)in an aordane with eq. (140). 30



At small E + 4 ln 2, where the di�usion approximation is valid, the solution near the polesat small values of p is �(p) � (7�(3) g2N=(2�2))ipE + 4 ln 2� 14 �(3) p2 : (152)Thus, �(z) at z = ln(�0~k2)!�1 behaves as follows�(z) �  7�(3) g2N2�2�0~k2 !iqE+4 ln 214 �(3) �  7�(3) g2N2�2�0~k2 !�iqE+4 ln 214 �(3) : (153)By omparing this result with expressions (134) and (135) for small � in the intermediateregion �0=(g2N)� ~�2 � 1=~q2 we obtain the quantization of the Regge trajetories2sEr + 4 ln 214 �(3) ln 7�(3) g2 N2�2�0~q2 ! = 2�(r + 1=2) ; r = 0; 1; 2; ::: (154)for n = 0 and small E + 4 ln 2 = 4 !0 � !g2N � 1 : (155)For omparatively large energies E in the di�usion approximation one an use the semilas-sial approximation near the turning point z = z0, where�ez0 = E + 4 ln 2 ; � = 4�2g2N ; (156)orresponding to the following simpli�ation of the solution (146) at p �pE + 4 ln 2�(p) �  (E + 4 ln 2) g2N4�2 !ip exp �i 14�(3)E + 4 ln 2 p33 ! : (157)The Fourrie transformation to the z-representation an be performed with the use of the saddle-point method�(z) � exp i (��z)3=223sE + 4 ln 214�(3) � i�4!+exp �i (��z)3=223sE + 4 ln 214�(3) + i�4! ; (158)where �z = z � z0. Therefore in the di�usion approximation of small � the wave funtion atz! �1 equals�(z) � e�i�=4  7�(3) g2N2�2�0~k2 !iqE+4 ln 214 �(3) + ei�=4  7�(3) g2 N2�2�0~k2 !�iqE+4 ln 214 �(3) (159)and the quantization ondition for energies is2sEr + 4 ln 214 �(3) ln 7�(3) g2N2�2�0~q2 ! = 2�(r + 1=4) (160)31



for large integer r.We investigate below a general ase of arbitrary � for small �0t without using the di�usionapproximation. To begin with, one an verify, that here in the semilassial approah expression(157) for the wave funtion is also valid near the returning point z = z0, where p = 0. The onlydi�erene with the di�usion approximation is an additional �-dependene of the phase Æ(�) in(135), whih leads to the modi�ed quantization ondition2 j�rj ln 7�(3) g2N2�2�0~q2 ! = Æ(�r) + 2�(r + 1=4) ; r = 0; 1; 2; ::: (161)and the orresponding quantized energies an be obtained from the relation E = HBFKL(�)(see (138)).To derive an exat solution of the BFKL equation for small �0~q2 let us introdue the newvariables x = 2�0l2 ; x0 = 2�0(l0)2 ; x1 = 2�0l21 : (162)In these variables the inhomogeneous BFKL equation has the form[! + x℄f(x) = �̂(x) +  Z 10 " f(x0)jx� x0j � � 1jx� x0j � 1px2 + 4x02� xx0f(x)#dx0 ;  = g2N4�2 :(163)Here f(x) � �(x)=px is F (0)! (0; l)=x averaged over the angle ' between l and l0, and �̂(x) is~�(0; l)=x averaged over '. We expet that ~�(0; l)! 0 at x! 0 and �̂(x) is �nite at x = 0.The above BFKL equation di�ers from that in QCD [11℄ by the presene of an additionalterm proportional to x in its left hand side. As in the QCD ase, we searh the solution in theform of the Mellin transformationf(x) = Z i1�i1(x)��1=2C(�) d�2�i ; � = i� : (164)Similarly, the inhomogeneous term is presented as follows�̂(x) = Z i1�i1(x)��1=2�̂1(�) d�2�i : (165)To obtain an equation for C(�) one ollets the terms proportional to x�. For the ontri-bution xf(x) the integration ontour should be moved to the line <� = �1 and therefore thefuntion C(�) an not have any singularities inside the strip �1 < <� < 0. If this ondition isful�lled, we have C(� � 1) = �1(�)� [ b(�) + !℄C(�) ; (166)where b(�) =  (� + 1=2) +  (�� + 1=2) � 2 (1) (167)and  (x) = d ln �(x)=dx is the derivative of the logarithm of the gamma-funtion.It is onvenient to introdue the new variable � aording to the de�nition� = � ln �2�i : (168)32



In the new variables eq. (166) an be written as follows~C(�e�2�i) = b�1(�)� [ b(�) + !℄ ~C(�) ; (169)where ~C(�) � C(�(�)). The alulation of C(�) is redued to the known mathematial problemof �nding a funtion satisfying the requirement, that its disontinuity is proportional to thesame funtion. Let us de�ne an auxiliary funtion �(�; b�1) being a solution of the homogeneousequation �(� � 1; b�1) = [ b(�) + !℄�(�; b�1) : (170)with b�1 being an arbitrary subtration point, where � = 1. Note, that the sign in the righthand side of eq. (170) is opposite in omparison with the sign in front of the orrespondingterm in eq. (166).The expliit expression for suh funtion is given below�(�; b�1) = exp"Z i1�i1 sin �(b�1 � �) ln[ b(�0) + !℄sin �(�0� b�1) sin�(�0 � �) d�02i # (171)where it is implied that <� < 0 and <b�1 < 0. At <� > 0 the result is obtained by an analytiontinuation of (171) from the region <� < 0. Furthermore, it is implied, that the solutionfor ! < !0 = (g2N ln 2)=�2 an be derived also by an analyti ontinuation from the region! > !0, where the argument of the logarithm has two zeros situated on the imaginary axes andpinhing the integration ontour at ! ! !0.The integral over �0 is onvergent at large �0 sine from (167) one obtainsln b(�)! ln ln j=�j (172)at =� !�1.Let us show, that indeed expression (171) is a solution of eq. (170). The pole at �0 = �is situated to the left of the integration ontour and an pinh only the right singularity ofthe logarithm situated at the zero of its argument. The pole at �0 = � � 1 being to the rightfrom the ontour pinhes with the left singularity of the logarithm. It means, that the funtion�(�; b�1) has no singularities in the strip �1 � <� � 0. To verify that solution (172) satis�eseq. (170) it is enough to note that after the shift � ! � � 1 the pole at �0 = � + 1 of theintegrand moves to the point �0 = � whih was earlier to the left from the integration ontour.The initial and �nal expressions di�er eah from another by an additional term in the exponent.This term is obtained by taking the residue in the pole at �0 = �. As a result, relation (170) isful�lled.It is useful to investigate the positions of zeroes and poles of �(�; b�1). Both of them areobtained due to pinhing the poles 1= sin �(�0��) with the singularities of the logarithm situatedat zeros and poles of its argument [ b(�0) + !℄. The poles are situated at �0 = �(n+1), wheren = 0; 1; 2; :::. The zeros are situated between these poles. We denote their position by �(+)m for<�m > 0 and �(�)m for <�m < 0. It is obvious, that j<�(�)m j < j<�(�)n j for m < n. The funtion�(�; b�1) has zeroes at � = �(�)m � r, where r is an integer or zero for m = 1; 2; ::: and r 6= 0for m = 0. Indeed, due to the above disussion � = �(�)0 is not a singularity of the exponent.33



Furthermore, �(�; b�1) has zeros in the right half-plane at � = n+1=2, where n is an integer orzero. The poles are situated in the right half-plane at � = �(+)m + n and in the left half-planeat � = �(n + 3=2) for n = 0; 1; 2; :::. Similar to the ase �(�)0 the point � = �1=2 does notorresponds to a singularity of the exponent. In the above disussion we used the relationsin �(b�1� �)sin�(b�1 � �0) sin �(� � �0) = ot�(�0 � b�1)� ot�(�0 � �) : (173)Using expression (171) one an �nd for large � = r + iy�(�; b�1)! exp"�(ln ln jyj)[iy+ r + 1=2℄# (174)up to a phase independent from �. Here in the essential region of integration �0 � � we replaedthe logarithmi funtion  b(�0) + ! by its asymptoti value at �0 = �.In a similar way one an hek that for ! > !0 the solution C(�) of the inhomogeneousequation is given by C(�) = Z i1�i1 �(�0; b�1)�̂1(�0)d�02i�(�0; b�1)[ b(�0) + !℄ sin�(�0 � �) : (175)In an agreement with general arguments the ontinuation of the partial wave in the omplexplane from the integer points is performed from the region ! > !0. Similar to (171) in (175)the onditions <� < 0 and b�1 < 0 are assumed to be ful�lled and the expression in the region<� > 0 are obtained by an analyti ontinuation. It an be written in the equivalent formC(�) = Z i1�i1 b�1(�0)�(�0; �)d�02i[ b(�0) + !℄ sin �(�0� �) (176)with the same onventions onerning the signs of <� and !.As in the ase of QCD [11℄, the leading singularity in the !-plane is situated at ! =!0 = (g2N ln 2)=�2. It is obtained from the region �0 � � ! 0 in eq. (176). In this limitthe orresponding denominator is approximated by the di�usion expression ! � !0 � a(�0)2.Calulating the integral at �! 0, one obtainsC(�) � 1=(� �p! � !0) ; (177)where the omitted fator has no singularity at small �. Thus, at x ! 0 the solution is �xp!�!0�1=2. In QCD there are singularities in both points � = �p! � !0, but in the stringmodel only the singularity at � = p! � !0 survives. Another singularity is absent beause atlarge momenta the kernel of the equation is non-singular due to the linear term in the trajetoryon the left hand side of eq. (163).In the important ase of the leading singularity, where the di�usion approximation b(�) + ! � a(�20 � �2) ; a = �7�(3) g22�2 ; �20 = �4 ln 2� !=[g2 7�(3)=2�2℄ (178)34



is valid, the funtion �(�) is given by�(�) = a���(�0 � �)[�(�0 + � + 1)℄�1 : (179)It is related to the solution ~�(�) of the homogenious equation as follows~�(�) = ���(�)= sin�(� + �0) : (180)At ! < 0, as it was disussed above, ~� desribes the wave funtion of the partile with anenergy equal to �!, whih is rejeted from the potential barrier ez. In this ase z = lnx, and�i� is the momentum of the olliding partile.Aording to (176), the funtion C(�) in (164) determining the solution of eq. (163) is givenbelow C(�) = a���(�0 � �)�(�0 + � + 1) Z +i1�i1 a�0�1�̂(�0)�(�0 + �0) d�02i�(�0 � �0 + 1) sin �(�0 � �) : (181)In (181) it is implied that <� < 0, and so that the pole at �0 = � is twisted with the rightside. At <� > 0 the result is obtained by an analyti ontinuation in �. Furthermore, in(164) the pole at � = �0 is on the right hand side from the integration ontour. It is solely thesolution at �0 > 0 beause in this ase (180) determines a funtion of x inreasing at x!1.At �0 < 0 the solution is not unique beause (180) might be added to (181). In an agreementwith general arguments one should hose the solution whih is an analytial ontinuation of thesolution (181) to the region �0 < 0. The result is presented by eq. (181) where the integrationontour is de�ned in an aordane with these arguments.9 Heisenberg spin model and integrabilityTo investigate the region of �0~q2 � g2N it is onvenient to use the onformal invariane ofthe BFKL kernel in QCD (see [22℄). In the oordinate representation for the wave funtiondesribing the omposite state of two reggeized gluons with the impat parameters ~�1 and ~�2we have the expression [22℄ (see (17))Em;em(~�1; ~�2; ~�0) =  �12�10�20!m  ��12��10��20!em ; �12 = �1 � �2 ; (182)where ~�0 is the oordinate of the Pomeron, �r = xr+ iyr and ��r = xr � iyr are respetively theholomorphi and anti-holomorphi variables, �rs = �r � �s andm = 12 + i� + n2 ; fm = 12 + i� � n2 (183)are onformal weights related to the eigenvalues of the Casimir operators of the M�obius group~M2Em;em = m(m� 1)Em;em ; ~M� 2Em;em = fm(fm� 1)Em;em ; ~M2 = ��212 ���1 ���2 : (184)35



Note, that in (183) the onformal spin n is integer n = 0;�1;�2; ::: and the parameter � is areal number for the prinipal series of the unitary representations.The operator ~M2 is related to the generators of the M�obius group ~M~M = ~M1 + ~M2 ; M zr = �r ���r ; M�r = ���r ; M+r = ��2r ���r : (185)The generators satisfy the following ommutation relations[M z;M�℄ = �M� ; [M+;M�℄ = 2M z ; [M� z;M��℄ = �M�� ; [M�+;M��℄ = 2M� z : (186)For the solution of the BFKL equation in the string theory it is onvenient to introdue alsothe generators ~N = ~M1 � ~M2 : (187)Together with the operators ~M they produe the Lie algebra for the Lorentz group[M z; N�℄ = �N� ; [M+; N�℄ = 2N z ; [M�; N z℄ = �N� ; [M�; N+℄ = �2N z ; (188)[N z; N�℄ = �M� ; [N+; N�℄ = 2M z : (189)We an �nd the representation of this algebra in the spae of the funtions EmEm(�1; �2; �0) =  �12�10�20!m (190)as followsM zEm = (��0�0 �m)Em ; M+Em = (�20�0 + 2m�0)Em ; M�Em = ��0Em ;N�Em = m(m� 1)2m� 1  Em+1 + �20(m� 1)2Em�1! ; (N z � �0N�)Em = mm� 1�0Em�1 ;(N+ + 2�0N z � �20N�)Em = �2mEm�1 (191)and analogously for the representation of �!M� and �!N� on funtions E�em.The BFKL integral operator KBFKL is diagonal in the (m;fm)-representation and its eigen-value has the property of the holomorphi separability!BFKL = � g28�2 N �m;em ; �m;em = �m + �em ; (192)where the holomorphi energies are the following funtions of the onformal weights m and fm�m =  (m) +  (1�m)� 2 (1) ; �em =  (fm) +  (1�fm)� 2 (1) : (193)In the ase of the string theory in the eigenvalue equation for the Pomeron wave funtionf in the dimension D = 4 we have the additional ontribution �KBFKL (negleting the poleterm from the soft Pomeron)! f = K f ; K = KBFKL +�K ; �K = ��0~p21 � �0~p22 : (194)36



It is onvenient to use the mixed representation (~q = ~p1 + ~p2; ~� = ~�12), where the additionalstring ontribution to K has the form�K = ��0  ~q22 � 2 �2(���)2! ; �2(���)2 = N�N�� ; N� = �1 � �2 ; � = �1 � �2 : (195)In this representation the Pomeron wave funtion in QCD an be obtained by the FourrietransformationEm;em(~q; ~�) = Z d2Rei ~q ~R  �(R+ �2)(R � �2 )!m  ��(R� + ��2 )(R� � ��2 !em ; R = �1 + �22 : (196)Let us present the solution of the BFKL homogenious equation in the string theory as asuperposition of the above funtionsf(~q; ~�) = Z 1�1 d� 1Xn=�1Cm;em(~q) �(m) �(fm)Em;em(~q; ~�) : (197)Here we extrated the fator �(m) �(fm) from oeÆients Cm;em(~q) to simplify the relationsbetween them. The operators N� and N�� at on the funtions Em;em(~q; ~�) as followsN�Em;em = m(m� 1)2m� 1  Em+1;em � q�24(m� 1)2Em�1;em! ; (198)N��Em;em = fm(fm� 1)2fm� 1  Em;em+1 � q24(fm� 1)2Em;em�1! : (199)Therefore the funtion f(~q; ~�) is a solution of the homogeneous BFKL equation in the stringtheory if the oeÆients Cm;em(~q) in (197) satisfy the following reurrent relation ! + g28�2 N (�m + �em) + �0~q22 ! Cm;em(~q) =2�0  m� 22m� 3 fm� 22fm� 3 Cm�1;em�1(~q)� m+ 12m+ 1 fm� 22fm� 3 q�24 Cm+1;em�1(~q)� m� 22m� 3 fm+ 12fm+ 1 q24 Cm�1;em+1(~q) + m+ 12m + 1 fm+ 12fm+ 1 q�24 q24 Cm+1;em+1(~q)! : (200)By introduing the new funtion�m;em(~q) = (2m� 1)�1(2fm� 1)�1 (q=2)em(q�=2)m Cm;em(~q) (201)one an write this reurrent relation in a simpler form ! + g28�2 N (�m + �em) + �0~q22 ! (2m� 1)(2fm� 1)�m;em(~q) =37



�0~q22 �(m� 2) (fm� 2)�m�1;em�1(~q)� (m+ 1) (fm� 2)�m+1;em�1(~q)� (m� 2) (fm+ 1)�m�1;em+1(~q) + (m+ 1) (fm+ 1)�m+1;em+1(~q)� : (202)One should add to this reurrent relation the information about the asymptoti behavior of theoeÆients Cm;em(~q) at large m and fm orresponding to jkj � jqj investigated above. Note, thatontrary to the ase of small �0~q2, onsidered in the previous setion, now the eigenfuntionsontain a mixture of states with di�erent onformal spins. Expanding �m;em in the basis of thefuntions xmx� em one an redue the reurrent relation (202) in the di�usion approximation toa di�erential equation, whih an be solved, for example, by the semi-lassial methods similarto those used in the previous setion.In the ase of the olourless state onstruted from several reggeized gluons [23℄ the homo-geneous equation for its wave funtion in the string theory is given in the multi-olour limitN !1 below (f. [14℄)E �(~�1; ~�2; :::; ~�n) = H �(~�1; ~�2; :::; ~�n) ; ! = �g2N8�2 E ; (203)where H = H(n)BFKL + l2 nXr=1(~pr)2 ; l2 = �0 8�2g2N ; p�r = i ����r : (204)Here H(n)BFKL has the property of the holomorphi separabilityH(n)BFKL = h(n)BFKL + h(n) �BFKL ; h(n)BFKL = nXr=1h(r;r+1)BFKL ; (205)h(r;r+1)BFKL =  (m̂r;r+1) +  (1� m̂r;r+1)� 2 (1) ; m̂r;r+1(m̂r;r+1 � 1) = ��2r;r+1�r�r+1 (206)and hnBFKL is the loal hamiltonian for the integrable XXX model [24℄ with the spins oinidingwith the generators of the M�obius group (185). Really we have two independent spin hainsfor holomorphi and anti-holomorphi subspaes. The term � l2 in eq. (204) desribes anadditional interation between these two spin hains beause aording to (185)(~pr)2 = �4M�r M� �r : (207)This term violates the M�obius symmetry for H and leaves only its invariane under translationsand rotations. Therefore the eigenvalues of H an depend on ~q2, whih leads to the Reggetrajetories for omposite states of reggeized gluons. We do not know, if the orrespondingHeisenberg spin model is integrable or not. But in the region �0~q2 � g2N it is possible toapply the integrability of the QCD hamiltonian for alulating the Regge trajetories. Indeed,as in the previous setion, one an divide the essential momenta in two regions ~k2r � ~q2r and~k2r � 1=�0. In the �rst region we an use the integrability of the BFKL hamiltonian to obtainthe wave funtion of the omposite state. For the leading singularity the integrals of motion38



are quantised and depend only on the onformal weights m;fm [14, 24, 25℄. Therefore theorresponding energy EBFKL for this leading singularity is a funtion of these variablesEBFKL = E(m;fm) : (208)It means, that for the solution of the equation in the seond region ~k2 � 1=�0 we an usethe same methods whih were used in the previous setion for the alulation of the Pomerontrajetory. We hope to return to the problem of �nding the Regge trajetories for the Odderonand other gluon omposite states in our future publiations.AknowledgmentsThe work is partially supported by the Russian State Grant Sienti� Shool RSGSS{1124.2003.2, the RFBR Grant 04-02-17094 and the Marie Curie Grant. We thank J. Bartels,V. Fadin, V. Kudryavtsev, A. Sabio Vera and other partiipants of the PNPI Winter Shoolfor helpful disussions.A Conformal fator for SL(2)-SUSY transformationsIf the �xed variables are (z(0)1 j#(0)1 ), (z(0)2 j#(0)2 ) and z(0)3 while the superpartner # of z(0)3 is not�xed, then the disussed fator H(z(0)1 ; z(0)2 ; z(0)3 ; #(0)1 ; #(0)2 ; #) turns out to be [16℄H(z(0)1 ; z(0)2 ; z(0)3 ; #(0)1 ; #(0)2 ; #) = (z(0)1 �z(0)3 )(z(0)2 �z(0)3 )241� #(0)1 #2(z(0)1 � z(0)3 ) � #(0)2 #2(z(0)2 � z(0)3 )35 : (1)When #(0)1 = #(0)2 = 0 this fator is redued to the expression given in Se.3 of the paper.Re�xing the above variables to the new values (ẑ(0)1 ; ẑ(0)2 ; ẑ(0)3 ; #̂(0)1 ; #̂(0)2 ) an be ahieved by thefollowing transformations.Firstly, both #(0)1 and #(0)2 are pushed to vanishing values. The supersymmetri SL(2)transformation (35), whih preserves the variables z1, z2 and z3 but adjustes to #1 and #2 thezero values, is given byf(ẑ) = ẑ � (ẑ � z1)(ẑ � z2)(z3 � z1)(z3 � z2) #̂3"0(z3) ; "(ẑ) = #1(ẑ � z2)(z1 � z2)qf 0(z1) � #2(ẑ � z1)(z1 � z2)qf 0(z2) ; (2)where "0(z) = [#1(z� z2)�#2(z� z1)℄=(z1� z2). Evidently, we have f 0(z1)f 0(z2) = 1. Seondly,by the usual L(2) transformation one hanges (z(0)1 ; z(0)2 ; z(0)3 ) to new values (ẑ(0)1 ; ẑ(0)2 ; ẑ(0)3 ).Finally, using the hange of variables inversed to transformation (2) with preserving the values(ẑ(0)1 ; ẑ(0)2 ; ẑ(0)3 ) one an give the new values (ẑ(0)1 ; ẑ(0)2 ) to the vanishing superpartners of the39



bosoni oordinates (#̂(0)1 ; #̂(0)2 ). To verify that with the fator (1) the amplitude is independentof the values (z(0)1 ; z(0)2 ; z(0)3 ; #(0)1 ; #(0)2 ) of the �xed world-sheet variables, one should take intoaount that under the � -transformation (35) the integrand being SL(2) ovariant, reeivesthe fator Q�(ẑ; #̂) for eah world sheet variable (zj#), see eqs. (38) and (39). The above fatoris anelled by the fator 1=Q�(ẑ; #̂) from the orresponding transformation jaobian for allvariables (zj#) exept the �xed ones together with the superpartner # of z(0)3 , beause the lastjaobian is di�erent from 1=Q�(ẑ(0s)3 ; #̂). One an verify, that these additional extra-fatorsare just ompensated by the orresponding hange of fator (1). One an also hek that theamplitude is not hanged when another set of variables is �xed.B One-loop Regge trajetory for the ritial superstringThe integral for the one-loop amplitude, orresponding to the sum of the planar and non-oriented diagrams for the gluon-gluon satteringApl;no = 8K Z 1�1 d�� Z 10  3YI=1 �(�I+1 � �I)d�I! R ; (1)is onvergent at � = 0 [18℄. In the above expression the integrand isR =  B(�1 � �2; �)B(�3 � 1; �)B(�1 � �3; �)B(�2 � 1; �)!��0s  B(�1 � 1; �)B(�2 � �3; �)B(�1 � �3; �)B(�2 � 1; �)!��0t (2)and the funtion B is given belowB(�; �) = sin �� 1Yn=1 1� 2�n os 2�� + �2n(1 � �n)2 : (3)The fator K inludes the olour matries T and the produts of polarization vetors. In theRegge limit �s� �t it equals (f.(48))K = �3g4N T (�0s)2(�a�a0)(�b�b0) (4)where N = 32 is the dimension of the SO(32) group. In the same limit the region �32 =�3 � �2 � 1=(�0s)� 1 is essential and we have the following simpli�ationsB(�12; �)B(�3 � 1; �)B(�13; �)B(�2 � 1; �) � 1 � sin ��1 sin ��32sin ��2 sin ��31 � 4��32 l1 ; (5)B(�1 � 1; �)B(�23 � 1; �)B(�13; �)B(�2 � 1; �) � sin ��1 sin ��32sin ��2 sin ��31 l2 ; (6)where l1 = 1Xn=1 �n sin 2��211� 2�n os 2��21 + �2n � �n sin 2��21� 2�n os 2��2 + �2n! ; (7)40



l2 = 1Yn=1 (1� 2�n os 2��1 + �2n)(1� �n)2(1 � 2�n os 2��31 + �2n)(1� 2�n os 2��2 + �2n) : (8)Instead of �1 it is onvenient to introdue the new integration variabley = sin��1 sin��32sin��2 sin��31 ; x = 1� y = sin��3 sin ��21sin��2 sin ��31 (9)with the inverse transformationtan ��1 = (1 � x) sin��2 sin ��3os ��2 sin��3 � x os ��3 sin��2 : (10)Then the integral an be written as followsA = 8K Z 1�1 d�� Z 10 dx� Z 1�1 d�2 Z 1�2 d�3 sin ��2 sin ��3 sin ��23� ((1 � x)l2)��0t (x� 4��32l1)��0s(sin��3 � x sin ��2)2 + 4x sin ��2 sin ��3 sin2 ��322 : (11)In the Regge limit the essential region of integration over �32 is1 � x = y � (�0s)�1 � �32 � 1 ; �1 � y�32 � 1 (12)where the integral is simpli�ed as followsA = 8K Z 1�1 d�� �(1 � �0t)�2 Z 10 d�2 (sin��2)2� ln(�1=�0s)(��0s)�1+�0t�� L21 + L1���0t (1 + L1)�1: (13)Here both L1 = 4(sin��2)2 �l1�(��1) j�1=�32=0and L2 are given expliitly by (51). As the result we obtain for the Regge trajetory eq.(50) inthe text.C Multi-Regge prodution amplitudesIn integral (72) we rede�ne z7 ! z7z4z6=(z4 � z6) and introdue f = z4 � z6 instead of z4. Inaddition, we replae z6 ! f z6. Then the integral I(t5678; �2; t3478; t34; t56; t12; t78) in ( 75) isgiven by expressionI(t5678; �2; t3478; t34; t56; t12; t78) = (�2)��0t34��0t56�2 Z dz7 dz6 df e�f�z7f��0t12�2�z��0t787 z��0t56786 (1 + z6)��0t3478 q̂�0t341 q̂�0t562�"(�0t78 + 1)q̂1q̂2z26(1 + z6)2z27 + (�0t5678� �0t56 � �0t78 � �2)q̂1(1 + z6)z26z7 + �0t56q̂1z26 q̂2+(�0t3478� �0t34 � �0t78 + �2)q̂2(1 + z6)2z6z7 + �0t34q̂2(1 + z6)2q̂1 + �0t35 + �0t36 + �0t45 + �0t46z6(1 + z6) #; (1)41



where q̂1 = f(1 + z6) + z7z6 � �2 � i� ; q̂2 = fz6 + z7(1 + z6)� �2 � i� ; �! 0 : (2)Integrating it by parts, one obtain the following resultI(t5678; �2; t3478; t34; t56; t12; t78) = (�2)��0t34��0t56�2 Z dz7dz6dfe�f�z7f��0t12�1�z��0t78�17 (1 + z6)��0t3478z��0t56786 q̂�0t341 q̂�0t562 "(�0t5678 + 1)z26 + �0t3478+ 1(1 + z6)2� �2z6(1 + z6) �0t34q̂1 + �0t56q̂2 !� f + z7z6(1 + z6)# : (3)To derive eq. (3), one integrates the �rst term in the brakets in eq. (1) over z7 by parts. Asa result, we obtain the expression similar to eq. (3) but the terms inside the brakets turn outto be � q̂1q̂2z26(1 + z6)2z7 + (�0t5678+ 1 � �0t78 � �2)q̂1(1 + z6)z26z7 + �0t56q̂1z26 q̂2+(�0t3478+ 1 � �0t78 + �2)q̂2(1 + z6)2z6z7 + �0t34q2(1 + z6)2q̂1 + �0t35 + �0t36 + �0t45 + �0t46z6(1 + z6) : (4)This expression is the same asfz7 �0t5678+ 1 � �2 � �0t78z26 + �0t3478+ 1 + �2 � �0t78(1 + z6)2 !+�0t12 � �0t78 + 2z6(1 + z6) � �2z7 �0t5678+ 1z26(1 + z6) + �0t3478+ 1z6(1 + z6)2!� q̂1q̂2z26(1 + z6)2z7+�0t78�2z7  1z26(1 + z6) + 1z6(1 + z6)2!� (��2)2z26(1 + z6)2z7 + �0t56q̂1z26 q̂2 + �0t34q̂2(1 + z6)2q̂1 : (5)Further, the terms proportional to t78 are integrated by parts over z7 to remove this fatort78. Analogously the term� t12 is integrated by parts over f to remove the fator t12. The thirdterm is integrated by parts over z6 to remove both nominators (�0t5678 + 1) and (�0t3478 + 1)in the orresponding ontributions. After these transformations we obtain (3). If we shallintegrate by parts the �rst term in eq. (5) over z6 is possible to redue eq. (3) to the expressionI(t5678; �2; t3478; t34; t56; t12; t78) = (�2)��0t34��0t56�2 Z dz7dz6dfe�f�z7f��0t12�1�z��0t78�17 (1 + z6)��0t3478z��0t5678�16 q̂�0t341 q̂�0t562 "� �0t3478(1 + z6)2 + �0t34 + �0t56(1 + z6) + z7�0t34(1 + z6)q̂1+ f�0t56(1 + z6)q̂2 + z6(1 + z6)2 � f + z7(1 + z6)# : (6)One an introdue the variable z instead of z6 aording to the relationz6 = z=(1� z) ; (7)42



and redenote z7 = y. After it (6) an be presented as followsI(t5678; �2; t3478; t34; t56; t12; t78) = (�2)��0t34��0t56�2 Z dydzdfe�f�yf��0t12�1y��0t78�1 ��z��0t5678�1(1� z)��0t3456+�0t12+�0t78(f + yz � �2(1� z)� i�)�0t34�(y + fz � �2(1 � z)� i�)�0t56"��0t3478(1� z) + �0t34 + �0t56+ �0t34y(1� z)f + yz � �2(1� z)� i� + �0t56f(1� z)y + fz � �2(1� z)� i� + z � (f + y)# : (8)D Vanishing of impat fators for planar diagramsThe impat fator for the vetor partile sattering an be alulated from the asymptotis ofFig1b in the region where s1 = �s7 !1 while s3, s4, s5 and s6 are �nite. The impat fatorsfor the states with the masses �0t34 = n1 and �0t56 = n2 are just proportional to the resudies inthe poles at �0t34 = n1 and �0t56 = n2. One an see from expression (58) that for the disussedasymptotis the essential values of the integration variables arez3 ! 0; z7=z6 ! 0 : (1)while x and y being de�ned by the relations z3 = z4 + x and z5 = z6 + y are now omparablein their values with z4 and z6. However, the poles �0t34 = n1 and �0t56 = n2 appear from theregions x=z4 ! 0 and y=z6 ! 0. In this kinematis one an expand the integrand in powers of xand y to obtain the poles at �0t34 = n1 and �0t56 = n2. It an be veri�ed that the orrespondingintegral vanishes, and, so, the impat fator for the planar diagram is equal to zero.For the sake of simpliity we give the orresponding proof for the boson string theory,assuming, that the external interation states are tahyons. In this ase only the leadingterm in x and y is needed and expression (58) an be simpli�ed as it was done in eq. (60).Furthermore, similar to the multi-Regge limit we obtaink2(k3 + k4)!�k2(k5 + k6)! k1k ; k7(k3 + k4)! �k7(k5 + k6)! k8k; (2)but relations (61) for k3(k7+k8) and for k5(k7+k8) are not valid. It is helpfull to rede�ne againthe variables aording to eq. (63). After alulating integrals over x and y the asymptotis ofA(0) turns out to beA(0) = Tp(��0s1)�0t12+�0t78��0t34��0t56(��0s)�0t34+�0t56+2I(0)�(��0t34 � 1)�(��0t56 � 1) (3)where �(x) is the gamma funtion andI(0) = Z dz7 dzz27z df exp��f � z7�z��0t787 (1 � z)��0[t3456�t12�t78℄z��0t5678�1f��0t12�2��f + z7z � �s1s �0k3(k7 + k8)(1 � z)��0t34+1�z7 + fz � �s1s �0k5(k7 + k8)(1� z)��0t56+1 : (4)43



In the alulation of I(0) we performed the hange of the integration variables as it wasdone in Appendix B: z7 ! z7z4z6=(z4 � z6), z4 ! f = z4 � z6 and z6 ! f z6 = f z=(1 � z)(see eq.(7)). The impat fator is proportional to the sum over the residues of I(0) in the poles�0t5678 = n for �xed values �0t34 = �0t56 = �1. The parameter n = m� 1 takes integer valuesfrom n = �1 up n =1. The result ontains the fator1Xm=0 dmm!dzm (1� z)��0[t3456�t12�t78℄ : (5)The sum is alulated in the region t3456� t12 � t78 > 0 where the series is overgent. Then itis ontinued analytially to physial values for t3456 � t12 � t78. For z ! 1 this sum is equalto (1 � z)��0[t3456�t12�t78℄ = 0. Thus, the impat fator for the planar diagram is zero. Thevanishing of the impat fator for the higher mass states �0t34 = n1 and �0t56 = n2 is veri�edin a similar way. For the superstring theory one an prove also the vanishing of the impatfators for the planar diagrams.Referenes[1℄ V.S. Fadin, E.A. Kuraev and L.N. Lipatov, Phys. Lett. 60B (1975) 50; Ya.Ya. Balitskyand L.N. Lipatov, Sov. J. Nul.Phys. 28 (1978) 822.[2℄ V.S. Fadin, L.N. Lipatov, Phys. Lett. B429 (1998) 349; G. Camii and M. Ciafaloni, Phys.Lett. B430 (1998) 349; A.V. Kotikov, L.N. Lipatov, Nul.Phys. B582 (2000) 19.[3℄ S.J. Brodsky, V.S. Fadin, V.T. Kim, L.N. Lipatov, G.V. Pivovarov, JETP Letters, B70(1999) 155; B76 (2002) 306.[4℄ G. Veneziano, Nuovo Cim 57A (1968) 190.[5℄ M. B. Green, J. H. Shwarz and E. Witten, Superstring Theory, vols.I and II ( CambridgeUnivesity Press, England, 1987), and referenes herein.[6℄ L.N. Lipatov, Phys. Lett. 116B (1982) 411.[7℄ J. M. Maldaena, Adv. Theor, Math. Phys. 2 (1998) 231; S. S. Gubser, I. R. Klebanov, A.M. Polyakov, Nul. Phys. B 428 (1998) 105; E. Witten, Adv. Theor. Math. Phys. 2 (1998)253.[8℄ J. Polhinski, M. J. Strassler, JHEP 0305 (2003) 012.[9℄ J. Distler and H. Kawai, Nul. Phys. B 235 (1989) 509; A. Gupta, S. P. Trivedi and M. B.Wise, Nul. Phys. B 340 (1990) 475.[10℄ G. S. Danilov, Phys. Lett. B 342 (1995) 73.[11℄ E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45 (1977) 641 [ZhETF 71(1977) 840. 44
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CaptionsFig. 1. The ladder ut determining the BFKL Pomeron in the a+ b! a0+ b0 proess. Thedotted line denotes a reggion, the solid one denotes a partile.Fig. 2. The diagram for the alulation of the BFKL kernel. The dotted line denotesmassless state; the solide one denotes the tower of string states.
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