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1. IntrodutionBy now, topologial open string amplitudes, whih determine important terms suh as thesuperpotential in the low-energy e�etive ation, have been well understood for single ormultiple parallel D-branes. However, more general on�gurations, suh as ones desribed byquiver diagrams based on interseting branes, have not yet been investigated in omparabledetail, despite their potential importane in phenomenologial appliations (see e.g. [1℄ foran overview).For suh on�gurations, the underlying TFT has a muh riher struture, whih is dueto the boundary hanging operators that desribe open strings loalized on interseting D-branes. In fat, the sophistiated mathematial mahinery of homologial mirror symmetry[2, 3℄, whih ats between ertain ategories of A- and B-type D-branes, gears up to fullpower only for this kind of geometries. However, so far there have been few appliations inphysis that make use of this struture, whih involves new types of open string instantons,or Gromov-Witten invariants.Indeed just a few expliit omputations of boundary hanging orrelation funtions havebeen presented so far (we mean here moduli-dependent, exat TFT orrelators). One reasonis that only two- or three-point funtions an be easily omputed; for example, for B-typebranes via wavefuntion overlaps [4℄ or boundary LG models based on matrix fatorizations[5℄. Correlators for A-type branes an then be obtained from this via mirror symmetry, orsimply by diretly summing up instantons [6℄.On the other hand, just like in the bulk theory, orrelators with more than three �elds arediÆult to evaluate diretly, beause of the presene of integrated insertions whih lead tosingularities that need to be regularized and may lead to ontat terms. In the bulk setor,however, the situation is favorable in that the moduli spae is at and is governed by anintegrable speial geometry. This implies that all higher-point orrelators an be obtainedas derivatives from a generating funtion, the prepotential F(t) [7℄. The ontat terms areimpliitly determined by requiring the vanishing of the Gau�-Manin onnetion [8℄. Onean rephrase this also in terms of the WDVV equations whih are imposed as di�erentialequations on F(t).The situation is far more involved for the boundary setor, where in general the mod-uli spae is obstruted and there is no notion of atness (and orrespondingly no a prioripreferred oordinates). The rôle of the bulk WDVV equations is replaed by a set of gener-alized, open-losed WDVV equations [9℄, whih follow from various fatorization and sewingonstraints of world-sheets with boundaries. The simplest ones take the form of A1 rela-tions [10℄ between disk orrelators; in the presene of bulk deformations, there are ertainother onditions, following from bulk-boundary rossing symmetry and the fatorization ofthe annulus amplitude. Very reently, a generalization of the A1 relations to general Rie-mann surfaes with h boundaries and g holes have been formulated in ref. [11℄ and dubbed\quantum A1 relations".The purpose of this note is to gain insight in the interplay of the various quantum A1relations, instanton sums and regularization ambiguities, by onsidering A-model orrelatorsfor the simplest brane geometry with moduli, namely for ertain D1-branes on the elliptiurve. The point is, of ourse, that the ellipti urve being at is very simple, and indeed one2



an solve the A1 relations in a ompletely geometri manner and determine the orrelationfuntions (as well as their ambiguities) in terms of instanton sums. That is, orrelatorsinvolving N boundary hanging operators an be obtained by summing over the (modulidependent) areas of N -gons, shematially:Ca1;:::;aN(� ) = XN�gons e�Area(�)whih orrespond to world-sheet instantons whose boundaries lie on the interseting branesunder onsideration.1 This tehnique has been pioneered in [12{16℄, where it was used toprove the mirror symmetry between the Fukaya ategory of Lagrangian submanifolds, andthe derived ategory of oherent sheaves on the ellipti urve.More onretely, we will �rst determine the omplete set of non-vanishing orrelatorspertaining to the \long-diagonal" branes, whih have already been disussed from variousperspetives in refs. [5, 17, 18℄. While the three-point funtions have been expliitly om-puted before in refs. [4{6, 12℄ and generi four-point orrelators disussed in [13{15, 19℄, wewill evaluate the remaining non-vanishing, higher-point disk and annulus orrelators by in-stanton ounting and verify onsisteny with the lassial and quantum A1 onstraints (fortransversal as well as ertain non-transversal brane on�gurations).Moreover, we will disuss the analytial properties of orrelators in non-tehnial terms,most notably singularities, \instanton ops" and \homotopy" regularization ambiguities,all of whih we give a simple geometrial interpretation. Suh homotopies are indued asmonodromies from moving branes around the urve, and lead to a non-trivial �bration ofthe A1 struture over the open/losed string moduli spae. The e�etive superpotentialis thus modular only up to homotopies, whih may be ompensated by simultaneous �eldrede�nitions of the tahyons, or equivalently, by adding suitable ontat terms. We willalso verify that homotopy transformations are ompatible with both the lassial and thequantum A1 onstraints.One of the most interesting results of this note onerns the annulus quantum A1 rela-tion, for whih we show that it maps ertain disk instantons to annulus instantons, essentiallyby pathing up the latter in terms of the former. This is a spei� feature of open stringinstantons as it requires the fusion of boundaries.Finally, in an appendix we address the question of whether the Cardy-type fatorizationrelation (whih is di�erent to the annulus quantum A1 relation) holds or not. Although thefamiliar fatorization of the annulus diagram into losed or open string hannels is one ofthe fundamental axioms of open string TFT [20{22℄, it stritly speaking needs to apply onlyto orrelators without integrated insertions [9℄. We show, by providing a ounter-example,that the Cardy-onstraint does indeed not hold for general ylinder orrelators on the elliptiurve.We hope that our �ndings will be useful for the understanding of more ompliatedD-brane geometries, notably ones on Calabi-Yau threefolds.1We will denote the losed string modulus, i.e., the omplexi�ed K�ahler parameter of the urve, by � .The open string moduli, whih orrespond to brane positions and Wilson lines and whih are suppressed inthe above formula, will be generially denoted by u. 3



2. Disk instantons and tree-level orrelators2.1. Reapitulation: 3-point funtions for long-diagonal branesWe will fous on the A-model and onsider ertainD1-branes wrapped around the homologyyles of the ellipti urve, �. More spei�ally, in order to make ontat with previouswork [5℄, we will onsider a spei� triplet of branes Li with RR harges, or wrappingnumbers (n;m) given byL1 � (2; 1) ; L2 � (�1; 1) ; L3 � (�1;�2) : (1)These branes are usually referred to as \long-diagonals", whih is self-explaining upon draw-ing the branes on the overing spae of � (see Fig.1 below). Eah brane Li intersets theother ones three times within a fundamental domain. This means that every boundaryhanging, open string vertex operator that maps between a given pair of branes, arries anindex a that labels the spei� intersetion at whih it is loated. The analysis of the oho-mology (in the mirror LG-orbifold model) [5℄ reveals that for an open string mapping froma brane Li to a brane Lj at the intersetion a, there is a fermioni operator with R-hargeq = 1=3, whih we denote by 	(i;j)a . Moreover, there is a \Serre dual" bosoni operator �(j;i)�aof harge q = 2=3 for an open string going the other way. Finally, apart from the identityoperator, there are fermioni, boundary preserving operators 
(i;i) of harge q = 1, whih aretied to single branes Li and whih are the marginal operators oupling to the brane moduli,ui. The simplest orrelators of these operators give the topologial open string metri:�11
 := 
 11 (i;i)11 (i;i)
(i;i)�disk = 1 (2)�a�a := 
 11 (i1;i1)	(i1;i2)a �(i2;i1)�a �disk = Æa�a :On the other hand, the simplest non-trivial orrelation funtions are the following three-pointfuntions: �(i3i1i2)ab (�; ui) = 
	(i3;i1)a 	(i1;i2)b 	(i2;i3) �disk ; (3)whih have been evaluated in the B-model using wavefuntion overlaps in [4℄ or using theLG model based on matrix fatorization [5℄. The result, when expressed in terms of the atoordinates � , ui (whih oinide with the natural variables of the mirror A-model), looks:�(i3i1i2)ab (�; ui) = Æ(3)a+b+;0� � [b� ℄3 � 3=2�3=2 � � 3� j 3(u1 + u2 + u3) � ; (4)where Æ(3) is the Kroneker funtion de�ned modulo three, and [a℄3 denotes the mod 3redution of a 2Zto the range f1; 2; 3g. Furthermore,� � ab � � 3� j 3u � = 1Xn=�1 q 16 (a+3n)2e2�i(u+b=9)(a+3n) ; (5)4
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Figure 1: On the right we have drawn the long-diagonal branes L1;2;3 on the overing spae ofthe ellipti urve, as well as some examples of polygon instantons bounded by these branes.On the left we have drawn a world-sheet disk with three boundary hanging operator in-sertions, whih gets mapped into ertain triangle shaped instantons on the right. In ouronventions, red, blue and green dots orrespond to operators 	(i;j)a for a = 1; 2; 3, respe-tively. Moreover, the shown brane loations orrespond to our hoie of origin in the openstring moduli spae.is a standard theta-funtion whose expansion in q � e2�i� sums up the ontributions of allthe triangular world-sheet instantons that are bounded by the three branes Li (with moduliui).2 This is ompletely in line with the �ndings of ref. [12℄. We visualize the situation inFig.1, whih also serves to de�ne our onventions for labeling branes and boundary �elds.2.2. Polygon instantons and higher-point amplitudesThe three-point funtions (3) are only the �rst terms of the e�etive superpotential, and oneof our purposes is to determine the omplete superpotential that an be assoiated with thethree types of branes Li of (1). Due to R-harge seletion rules, there is only a �nite numberof terms, and in our situation the maximal number of external \tahyon" legs is N = 6.3Shematially, the e�etive superpotential an be written in the following form:Weff (�; ui; ta; ��a) = 13�ab(�; u)tatbt + 12Pa�b �d(�; u)ta��bt�� + Tab� �d(�; u)tatb��� �d (6)+ }a�b� �d�e(�; u)ta��b��� �d��e + 16H�a�b� �d�e �f (�; u)��a��b��� �d��e� �f :2To properly desribe the u-dependene of the areas, one would need to multiply these orrelators withsimple non-holomorphi \quantum" prefators [4℄, whih may be viewed as arising from a holomorphianomaly (indeed these an be traed bak to the holomorphi anomaly of the annulus amplitude). However,sine TFT omputations naturally yield holomorphi expressions, we suppress suh fators here. They ouldbe easily reinstated by requiring modular ovariane, if one wished to do so.3Allowing for general branes would involve an in�nite number of terms, beause the harge of the boundaryhanging operators is orrelated with the angle of the interseting branes, and this an beome arbitrarysmall for generi wrapping numbers (m;n). 5



Note that for a given brane on�guration, not all terms may ontribute. (E.g., if all D-braneswrap the same homology lass then all terms vanish, reeting that there is no obstrutionto move the branes around; if the D-branes wrap only two homology lasses then only theseond term in the superpotential is non-trivial. We will see in a moment that the latter isassoiated with parallelogram instantons.) Above, ta are the bosoni deformation parametersthat ouple to the fermioni open string tahyons 	a, while the ��a are fermioni parametersoupling to the bosoni operators, ��a.4 Note that we suppressed the labels i of the branes.More spei�ally, the various inequivalent, ylially symmetri disk orrelators withN � 4 legs are de�ned as follows:T (i4i1i2i3)ab� �d = 
	(i4;i1)a 	(i1;i2)b �(i2;i3)� �(i3;i4)�d �disk (7)P(i4i1i2i3)a�b �d = 
	(i4;i1)a �(i1;i2)�b 	(i2;i3) �(i3;i4)�d �disk}(i5i1i2i3i4)a�b� �d�e = 
	(i5;i1)a �(i1;i2)�b �(i2;i3)� �(i3;i4)�d �(i4;i5)�e �diskH(i6i1i2i3i4i5)�a�b� �d�e �f = 
�(i6;i1)�a �(i1;i2)�b �(i2;i3)� �(i3;i4)�d �(i4;i5)�e �(i5;i6)�f �disk ;where it is impliitly understood that (N � 3) operators are integrated as topologial de-sendants.Correlators with N boundary hanging insertions will generially get ontributions ofworld-sheet instantons that end on N interseting branes Li, whih thus an be depited asN -gons on the overing spae of the urve; there are two di�erent geometries for N = 4,namely given by trapezoids (T ) and parallelograms (P). Sine two branes an always be�xed using translational invariane, N -point orrelators involving N branes will depend ononly N � 2 independent ombinations of the brane moduli ui. Note, moreover, that theangles ' at the orners of an N -gon are related to the R-harge q of the boundary hanging�eld, i.e., ' = q�.In addition to the �elds in the boundary hanging setors, we allow for an arbitrarynumber of marginal operator insertions, 
(i;i). Sine these are assoiated with the at oor-dinates ui [5℄ whih are integrable, we an obtain suh orrelators simply by taking partialderivatives �ui � ��ui , e.g.,1(6�i)n�n1ui1�n2ui2�n3ui3�(i3i1i2)ab = 
	(i3;i1)a �
(i1;i1)�n1 	(i1;i2)b �
(i2;i2)�n2 	(i2;i3) �
(i3;i3)�n3�disk ;where n = n1 + n2 + n3. This readily generalizes to all the other amplitudes in (7).The evaluation of the orrelators (7) proeeds by identifying the smallest N -gon on theovering spae that an be assoiated with the given boundary onditions and determiningthe area of it as well as of all other N -gons obtained by lattie translations from it. Summingall areas up we ount instantons and anti-instantons with opposite orientations. The resultwill have the form of a generalized, inde�nite theta-funtion [16℄; this will be a setion ofsome vetor bundle over �, muh like the ordinary theta-funtion (5) is a setion of a linebundle, L
3.For example, let us onsider a trapezoid assoiated with the orrelator Tab� �d, and labelthe boundary �elds in a manner as shown in Fig.1. The shorter of the two parallel sides then4One an view (t; �) as oordinates of a non-ommutative superspae, see e.g., [23℄.6



has length lshort = [ �d� �+3=2℄3+3m, where m 2Zaounts for lattie shifts. Similarly, thetwo sides of equal length have ldiag = [b��℄3+3n, and the longer side has llong = lshort+ ldiag.The area of the trapezoid is thus A = 1=2([b� �℄3+3n)(2[ �d� �+3=2℄3+ [b� �℄3+3n+6m).All-in-all, when allowing for ontinuous translations parametrized by ui,5 we obtain:T (i4i1i2i3)ab� �d (�; ui) = Æ(3)a+b;�+�d�trap � [b� �℄3[ �d� �+ 3=2℄3 � (3� j3(u1 + u2 + u4); 3(u1 � u3)) ; (8)where the trapezoidal theta-funtion is de�ned by the following inde�nite series:�trap � ab � (3� j3u; 3v) = indef:Xm;n2Zq 16 (a+3n)(a+3n+2(b+3m))e2�i�(a+3n)(u�1=6)+(b+3m)v� ; (9)with indef:Xm;n2Z� 1Xm;n=0� �1Xm;n=�1 : (10)In a similar way, one �nds for the parallelogram orrelators:P(i4i1i2i3)a�b �d (�; ui) = Æ(3)a+;�b+ �d �para � [� �b℄3[ �d� ℄3 � (3� j3(u1 � u3); 3(u4 � u2)) ; (11)�para � ab � (3� j3u; 3v) � indef:Xm;n2Zq 13 (a+3n)(b+3m)e2�i�(b+3m)u+(a+3n)v� :The �ve-point funtion looks more diÆult to determine, but we use a trik in order tomake life simpler: there is one side of the pentagon that is not parallel to any other one -when we attah a triangle to it, the pentagon turns into a parallelogram. So we an desribethe area of the pentagon as the di�erene of a parallelogram and a triangle (taking of ourseall lattie translations into aount). Taking everything together, we obtain:}(i5i1i2i3i4)a�b� �d�e (�; ui) = Æ(3)a;�b+�+�d+�e �penta24 [�b��d℄3[e++d℄3[�d+ 32℄3 35(3� j3(u5�u2); 3(u1�u4); 3(u3+u2+u4)) ;(12)where�penta24 ab 35 (3� j3u; 3v; 3w) �� indef:Xm;n;k2Zq 13 (a>+3(n+k))(b>+3(m+k))� 16 (+3k)2e2�i�(a>+3(n+k))u+(b>+3(m+k))v+(+3k)(w�1=6)� ;5Note that this expression and analogous ones disussed below are de�ned only for appropriate ui; wewill address this issue in the next setion. Also note, just as for the three-point funtion, that in order todesribe the orret area dependene on the ui, we would need to add a simple non-holomorphi prefatorthat we suppress here. 7



where a> = a + 3 for a <  and a> = a for a > , and similarly for b>. The shifts in a>and b> ensure that the sides of the parallelogram are longer than the side of the subtratedtriangle. The inde�nite sum is de�ned asindef:Xm;n;k2Z= 1Xm;n;k�0+ �1Xm;n;k��1Finally, we �nd the six-point funtions by subtrating two triangles from the aute-angledorners of a parallelogram:H(i6i1i2i3i4i5)�a�b� �d�e �f (�; ui) = Æ(3)0;�a+�b+�+ �d+�e+ �f � (13)��hexa 2664[�b� � d℄3[+d+e℄3[�d+ 32 ℄3[a�f + 32 ℄3 3775(3� j3(u5�u2); 3(u1�u4); 3(u3+u2+u4); 3(�u6�u1�u5)) ;where�hexa264 abd 375 (3� j3u; 3v; 3w; 3z) �� indef:Xm;n;k;l2Zq 13 (a+3n)(b+3m)� 16 (+3k)2� 16 (d+3l)2e2�i�(a+3n)u+(b+3m)v+(+3k)(w�1=6)+(d+3l)(z+1=6)�:The inde�nite sum is given byindef:Xm;n;k;l2Z= 1Xm;n�0 <kmaxXk�0 <lmaxXl�0 � �1Xm;n��1 >kminXk��1 >lminXl��1with kmax = min(a=3 + n; b=3 +m)� =3 and lmax = min(a=3 + n; b=3 +m)� d=3 as well askmin = max(a=3+n; b=3+m)�=3 and lmin = max(a=3+n; b=3+m)�d=3. The restritionsin the sums ensure that the subtrated triangles are not larger than the parallelogram.We have so far de�ned all topologial A-model disk amplitudes in terms of instanton sumsfor the D-brane on�guration as shown in Fig.1. In the following we proeed investigatingtheir analyti properties.2.3. Analytial properties of the disk amplitudesThe orrelation funtions we wrote down in the previous setion are not ompletely well-de�ned. There are the following three inter-related issues that we need to disuss: i) sin-gularities from olliding branes; ii) analyti ontinuation over the open string moduli spae;iii) modular anomalies; and iv) ontat term ambiguities intrinsi to the de�nition of theorrelators. Most of these aspets have been, in one form or the other, already disussed in8
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This shows how resummation of the instanton series maps bak to a well-de�ned, howeverdi�erent geometry (the rôles of the boundary �elds an formally hange, i.e., 	's transmuteinto �'s and vie versa); one might all this phenomenon an \instanton op". See Fig.2 fora sketh of this.More generally, from (14) we an dedue the following behavior under shifts of the openstring moduli:�trap� ab �(3� j 3u; 3v) = e�2�ia�trap� ab �(3� j 3(u � 1); 3v)= e�2�ib�trap� ab �(3� j 3u; 3(v � 1)) ; (16)�trap� ab �(3� j 3u; 3(v � � )) = e�6�i(u�1=6)q3=2�trap� ab �(3� j 3(u� � ); 3v) ;�trap� ab �(3� j 3(u� � ); 3v) = e�6�iv�trap� ab �(3� j 3u; 3v)� e�2�i(u� 16 )(b� 32� 32 )e2�iv(b� 32� 32 )q� 16 (b� 32� 32 )2�� a+b�3=2 �(3� j 3u):The ordinary theta funtion in the last equation may be viewed as an anomaly or obstru-tion for the trapezoid funtion against being (quasi-)periodi, and reets that the Appellfuntion, together with �, forms a setion of a non-split rank two vetor bundle. In physialterms, this simply means that the trapezoid funtion does not extend niely over the overingspae, but rather gets an extra ontribution in the form of a three-point funtion when wetranslate a brane around the torus.The mixing of di�erent orrelation funtions under monodromy renders the e�etive su-perpotential (6) ambiguous and non-modular. One may remedy this by de�ning an invariantorrelator in the following manner:��trap�ab�(3� j3u; 3v) � �trap�ab� (3� j3u; 3v)� Pb(q; u�v�1=6)��a+ b�3=2�(3� j 3u); (17)where Pb(x) is a pieewise polynomial funtion in e2�ix that is designed [13℄ to anel the �funtion terms in (16). Expliitly, we �nd for our geometry (x1 � ImxIm� ):Pb(q; x) = ( �q� 16 b2 Pmn=1 q� 32n2+3mn+b(n�m)e2�i(3n�b)x; m = [x1℄ for x1 � 0q� 16 (b�3)2 P�mn=1 q� 32n2�3mn+(3�b)(n+m)e�2�i(3n+b�3)x; m = �[�x1℄ for x1 < 0: (18)The orrelator (17) then has indeed the desired global properties over the full open stringmoduli spae, i.e., is (quasi-)periodi:��trap � ab � (3� j3(u+ n+m� ); 3v) = e2�inae�6�imv ��trap � ab � (3� j3u; 3v) (19)��trap � ab � (3� j3u; 3(v + n+m� )) = e2�inbq 32m2e�6�im(u�v�1=6) ��trap � ab � (3� j3u; 3v) ;10
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Figure 3: At top: the ontat term of a trapezoid orrelator is given by a fermioni insertion,generated by the ollision of two bosoni operators (of whih one is integrated). It getsontributions of triangular instantons as skethed on the right hand side. At bottom: thepossible ontat terms of the pentagon funtion are haraterized by a parallelogram (B),two kinds of trapezoids (A or C), and a triangle (A plus C).and always ounts instantons with positive areas, but it does not extend to a meromorphisetion of a line bundle over �2.One may wonder about the signi�ane of the extra term in (17), and more generally,about ambiguities in the de�nition of the orrelators. As noted in the introdution, ingeneral there are ontat terms arising from olliding operators whih lead to regularizationambiguities. In the losed string setor, ontat term ambiguities were no great deal beausethey were impliitly �xed by the at struture of the moduli spae. In the open stringsetor, no suh at struture exists for the boundary hanging deformations, but we see herethat we may impose other onstraints to �x potential ambiguities, e.g., by insisting on the(quasi-)periodiity of the orrelators.To see the relevane of ontat terms, onsider a rede�nition of the trapezoidal orrelatorof the general form �trap � ab � �! �trap � ab � + f � � a+ b�3=2 � (20)for some unspei�ed, in general moduli-dependent funtion f . It an be given a simplephysial interpretation as follows. A ontat term arises when two boundary operators ollideand form a single node. The ontat term must thus behave like a three-point funtion,whih by itself is governed by triangular instantons that are spanned between the threeverties. Conretely, the only possible ontat term of a trapezoid orrelator orrespondsto the triangle that arises when we follow the two onverging edges all the way to theirintersetion point (see Fig.3, upper part). From the relative angle this must orrespondto a fermioni insertion, and indeed the harges are suh that the ollision of two bosoni11



operators an generate a ontat term C(�;�) of preisely the harge of a fermion; that is,C(�;�) � �(�1) R�1 d�2G��(�2) � 	(�1).This simple physial piture ties niely together with results in the mathematial liter-ature. As was shown in [16℄, the origin of the trapezoidal funtion being multi-valued andnon-modular lies in the existene of a homomorphism loated at the intersetion of thosetwo onverging edges. This homomorphism orresponds preisely to the physial operatorontent of the ontat term, i.e., in our situation, to 	.Consequently, the parallelogram orrelator (11), for whih there are no onverging edges,does not su�er from ontat term ambiguities and modular anomalies. This is reeted bythe fat that it an be written in terms of modular theta funtions in the form7 �0(0)�(u+v)�(�u)�(�v) ,and so orresponds to a well-de�ned, meromorphi Jaobi form [13℄.The rede�nition (20) has a very simple desription also in terms of the e�etive lagrangian(6), Weff . It just orresponds to the reparametrization, ta ! ta + f�b�a ��b��, of the tahyondeformation parameters, whih is ompatible with harges and statistis. Inserting this intoWeff (ta; ��a) trivially reprodues (20), i.e.:Tab� �d ! Tab� �d + f� �de�abe : (21)This implies, of ourse, orresponding simultaneous rede�nitions of the higher point orrela-tion funtions as well. For example, the pentagon funtion will be modi�ed in the followingmanner: }a�b��e �f ! }a�b��e �f + f�b�dTad�e �f + f�e �f dTad�b� + f��edPa�bd �f + f�b�bf�e �f �ab : (22)The origin of these terms an be visualized by means of Fig.3, lower part. On the otherhand, the parallelogram funtion won't be modi�ed, and this is onsistent with the geometripiture as well.Whether suh a orrelated rede�nition of all the orrelation funtions is ompatible withthe various A1 onsisteny onstraints, may at this point not be entirely obvious, and we willverify this below by diret omputation. However, at tree (disk) level, its onsisteny followsalso more diretly from the struture of homologial perturbation theory (as reviewed in[10,26,27℄); basially, a rede�nition of orrelators by ontat terms with less legs is onsistentif the ontat terms satisfy A1 relations by themselves. In this language, it is a homotopytransformation whih by its very de�nition is ompatible with the A1 struture.To our knowledge, the orresponding statement has however not been proven for the A1onsisteny onstraints at the quantum level, and we will verify it for the annulus by diretomputation further below.3. Classial A1 relationsAs it was shown in [9℄, the topologial disk amplitudes that we determined in the previoussetions by instanton ounting, should ful�ll ertain algebrai equations, the (lassial) A17From this we see, similar as for the trapezoid, that a singularity ours if either pair of the parallel edgesmoves on top of eah other, i.e., if u = 0 or v = 0. 12



relations. These take the form:mXk<l=1(�)~a1+:::+~akF0;1a1:::akal+1:::am�dF0;1dak+1 :::al = 0 for m � 1 : (23)Here F0;1a1:::an denotes any one of the disk amplitudes given in (3) or (7). We suppress theboundary ondition labels for a moment and understand that the ai's an take values in theindex set f11 ; a; �a;
g. Let us assume for what follows that the `external' �elds are only hosenfrom the index subset orresponding to boundary hanging operators, i.e., ai 2 fa; �ag. TheremainingA1 relations, with `external' 
 insertions, an be obtained by di�erentiation withrespet to ui's. The ~ai's denote the suspended Z2-gradings of the boundary �elds [9℄. Here,we have ~a = 0 and ~�a = 1.From the di�erent types of amplitudes that an appear in our spei� setup it is learthat the relations (23) are non-trivial only for level m 2 f4; : : : ; 9g; for m = 4 they justexpress assoiativity of the 3-point orrelators. Apart from the splitting in di�erent levels,m, we an further distinguish two lasses of A1 relations aording to the partiular D-braneon�guration:(i) The number of D-branes that are involved in the A1 relation is maximal, i.e., equalto the level m. We assume furthermore that parallel D-branes are all separated, whihmeans that uk 6= ul whenever Lik and Lil are in the same homology lass. This is thetransversality ondition of ref. [15℄, and we will verify the A1 relations for suh transversalD-brane on�gurations in the next setion.(ii) The number of D-branes is not maximal. This implies that at least two of theboundary ondition labels ik that appear in the A1 relations represent the same D-brane.Suh situations lead to singular orrelation funtions in view of degenerate instantons, andwe will have to introdue an appropriate regularization proedure. This on�guration is nottransversal in the sense of ref. [15℄, and we will see that it leads to new results on the A1struture on the ellipti urve.3.1. A1 relations for transversal D-brane on�gurationsThe simplest non-trivial A1 relation is at level m = 5 and involves �ve D-branes Li fori = 1; : : : ; 5. We pik the �eld on�guration in (23) to befa1; a2; a3; a4; a5g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;	(i3;i4)a3 ;	(i4;i5)a4 ;�(i5;i1)�a5 g ; (24)where we assume ui 6= uj for i 6= j. Naively, for m = 5 the sum over k and l in (23)involves �ve terms. Charge seletion ditates, however, that two of them should involve
-insertions, whih however are not present beause of the assumption of separated branes,i.e., transversality. The A1 relations thus read:3X=1 P(i1i2i4i5)a1�a4�a5 �(i4i2i3)a2a3 + 3X=1 T (i1i2i3i5)a1a2��a5 �(i5i3i4)a3a4 + 3X=1 �(i1i2i3)a1a2 T (i1i3i4i5)�a3a4�a5 = 0 : (25)Insertion of all the disk amplitudes as given in Setion 2 shows that these relations are indeedsatis�ed; this transversal situation has already been studied in [13℄. One also readily veri�es13



that (25) is ompatible with homotopy reparametrizations (21) that reet the ontat termambiguity. Indeed, while the parallelogram funtion does not allow for a ontat term, theontributions from the trapezoid funtions just sum up to:X;e �f��a5e�a1a2e�a3a4 � f�a5�e�a1a2�a3a4e� (26)and thus anel for yli oeÆients, f�a�b = f�b�a. The latter ondition ensures that theyli invariane of disk amplitudes is preserved (aordingly, the transformations (21) and(22) satisfying this ondition are alled yli homotopies [15,27℄).Let us onsider the next level, m = 6. A generi A1 relation will then involve alsopentagon amplitudes. We will ome to those in a moment, but �rst ask whether there existrelations at level m = 6 that do not involve pentagon amplitudes. Indeed, there are, andthey orrespond to the �eld on�guration:fa1; a2; a3; a4; a5; a6g �= f	(i1;i2)a1 ;�(i2;i3)�a2 ;	(i3;i4)a3 ;�(i4;i5)�a4 ;	(i5;i6)a5 ;�(i6;i1)�a6 g ;where all Lik for odd k belong to the same homology lass. The same is true for all Likfor even k. The A1 relation takes an intriguing form that involves only parallelogramamplitudes:3X=1 P(i1i2i5i6)a1�a5�a6 P(i5i2i3i4)�a2a3�a4 � 3X=1 P(i1i2i3i6)a1�a2�a6 P(i6i3i4i5)�a3�a4a5 � 3X=1 P(i1i2i3i4)a1�a2a3� P(i1i4i5i6)�a4a5�a6 = 0 : (27)Notie that it is manifestly homotopy invariant. In fat, this relation was interpreted in [28℄as an assoiative Yang{Baxter equation, for whih the R-matrix is essentially given by theparallelogram amplitude. In partiular, this link was used to onstrut ellipti solutions tothe lassial Yang{Baxter equation for sln(C ). The integer n is an intersetion number, inour situation given by n = �(Li2k ;Li2k0+1) = 3.There are three further hoies for the external �elds in equations (23) for level m = 6.Two of them, i.e.,fa1; a2; a3; a4; a5; a6g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;�(i3;i4)�a3 ;	(i4;i5)a4 ;�(i5;i6)�a5 ;�(i6;i1)�a6 g ;f	(i1;i2)a1 ;�(i2;i3)�a2 ;	(i3;i4)a3 ;	(i4;i5)a4 ;�(i5;i6)�a5 ;�(i6;i1)�a6 g ;give rise to similar A1 relations that inlude pentagon as well as lower-point amplitudes.We present only one of them here:3X=1 �(i1i2i3)a1a2 }(i1i3i4i5i6)��a3a4�a5�a6 + 3X=1 T (i1i2i5i6)a1�a5�a6 P(i5i2i3i4)�a2�a3a4 ++ 3X=1 T (i1i2i3i6)a1a2��a6 P(i6i3i4i5)�a3a4�a5 � 3X=1 T (i1i2i3i4)a1a2�a3� T (i1i4i5i6)a4�a5�a6 = 0 : (28)The �nal A1 relation at level m = 6 orresponds to the �eldsfa1; a2; a3; a4; a5; a6g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;	(i3;i4)a3 ;�(i4;i5)�a4 ;�(i5;i6)�a5 ;�(i6;i1)�a6 g ;14



and reads: 3X=1 �(i1i2i3)a1a2 }(i1i3i4i5i6)�a3�a4�a5�a6 + 3X=1 }(i1i2i4i5i6)a1��a4�a5�a6 �(i4i2i3)a2a3+ 3X=1 T (i1i2i5i6)a1�a5�a6 T (i5i2i3i4)�a2a3�a4 + 3X=1 T (i1i2i3i6)a1a2��a6 T (i6i3i4i5)a3�a4�a5 = 0 : (29)Plugging in the instanton sums we veri�ed that all three relations are indeed satis�ed. Wean also easily verify invariane of the levelm = 6 relations (28) and (29) under the ombinedhomotopy transformations (21) and (22); these map the equations into A1 relations at lowerlevels, (26) and (25), that we have already heked to vanish before.We onlude this setion by presenting the A1 relation at level m = 7 that ontainshexagon amplitudes (13). For the �eldsfa1; a2; a3; a4; a5; a6; a7g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;�(i3;i4)�a3 ;�(i4;i5)�a4 ;�(i5;i6)�a5 ;�(i6;i7)�a6 ;�(i7;i1)�a7 g ;we get: 3X=1 �(i1i2i3)a1a2 H(i1i3i4i5i6i7)��a3�a4�a5�a6�a6 + 3X=1 }(i1i2i5i6i7)a1��a5�a6�a7 T (i5i2i3i4)a2�a3�a4 + (30)+ 3X=1 T (i1i2i6i7)a1�a6�a7 }(i6i2i3i4i5)�a2�a3�a4�a5 + 3X=1 T (i1i2i3i7)a1a2��a7 }(i7i3i4i5i6)�a3�a4�a5�a6 � 3X=1 T (i1i2i3i4)a1a2�a3� }(i1i4i5i6i7)�a4�a5�a6�a7 = 0 :The other two A1 relations at level m = 7 involve only four- and �ve-point amplitudes.These relations as well as the missing ones at level m = 8 and 9 an easily be dedued from(23).3.2. A1 relations for non-transversal D-brane on�gurationsLet us onsider situation (ii) where the number of D-branes is not maximal, that is, smallerthan m. Take an A1 relation (23) at level m = 5 for four boundary ondition labels, sayLi1 , Li2 , Li3 and Li5 , and the olletion of �elds:fa1; a2; a3; a4; a5g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;	(i3;i1)a3 ;	(i1;i5)a4 ;�(i5;i1)�a5 g ;where we assume ui 6= uj for i 6= j.8TheA1 relations look similar to (25), but now we do not have a transversal on�guration,so that an additional term appears, where a disk with the �elds h 11 (i1;i1)	(i1;i5)a4 �(i5;i1)�a5 i bubbleso� and gives rise to an amplitude with an insertion of the boundary ondition preserving�eld 
i1i1. Naively we get:3X=1 P(i1i2i1i5)a1�a4�a5 �(i1i2i3)a2a3 + 3X=1 T (i1i2i3i5)a1a2��a5 �(i5i3i1)a3a4 + 3X=1 �(i1i2i3)a1a2 T (i1i3i1i5)�a3a4�a5 = ��a4�a56�i �u1�(i1i2i3)a1a2a3 :8Note that this on�guration is similar to (24), only the label i4 was substituted by i1.15



There is however an important subtlety. The 4-point funtions on the left-hand side thatbear the boundary ondition Li1 twie an beome singular due to an in�nite sum overdegenerate instantons. This happens for instane in the amplitude P(i1i2~{1i5)a1�a4�a5 when oppositesides of a parallelogram ollide in the limit ~u1 ! u1. We therefore need to regularize thesingular 4-point funtions. We do this by point-splitting in the following way. Whenevertwo sides of a parallelogram (or a trapezoid) bear the same D-brane Li1 at position u1, weformally set one of the two sides at position ~u1 and take the limit ~u1 ! u1. In order to trakthe (formal) ~u1-dependene of the four-point orrelators in the A1 relation, we introduethe index ~{1 and denote the amplitudes with point-splitting regularization by eP(i1i2~{1i5)a1�a4�a5 andeT (i1i3~{1i5)�a3a4�a5 . The A1 relations then beome:lim~u1!u1 3X=1 � eP(i1i2~{1i5)a1�a4�a5 �(i1i2i3)a2a3 + T (i1i2i3i5)a1a2��a5 �(i5i3i1)a3a4 +�(i1i2i3)a1a2 eT (i1i3~{1i5)�a3a4�a5 � = ��a4�a56�i �u1�(i1i2i3)a1a2a3 :(31)Using the transversal A1 relation (25) with i4 = ~{1 we see that the singularities of the right-hand side of (31) mutually anel. So we an safely take the limit ~u1 ! u1 and verify therelation.Analogously, there is a non-transversal version of the level m = 6 relation (27) thatinludes only parallelograms. For this, let us onsider the �eld on�guration:fa1; a2; a3; a4; a5; a6g �= f	(i1;i2)a1 ;�(i2;i1)�a2 ;	(i1;i4)a3 ;�(i4;i5)�a4 ;	(i5;i6)a5 ;�(i6;i1)�a6 g ;Following the same regularization proedure as above we obtain the A1 relations:lim~u1!u1 3X=1 �P(i1i2i5i6)a1�a5�a6 P(i5i2i1i4)�a2a3�a4 � eP(i1i2~{1i6)a1�a2�a6 P(i6i1i4i5)�a3�a4a5 � eP(i1i2~{1i4)a1�a2a3� P(i1i4i5i6)�a4a5�a6 �= �a1�a26�i �u1P(i1i4i5i6)a3�a4a5�a6 ;whih are manifestly homotopy invariant.We refrain from going through the list of remaining non-transversal A1 relations here,the general piture should be lear from the ases that we presented so far.4. Quantum A1 relations: the annulusIn order to get a handle on higher genus topologial string amplitudes with multiple boundaryomponents, we an take advantage of the quantum A1 relations of [11℄ whih follow fromfatorizations of higher genus amplitudes. For the ellipti urve, the harges of the boundaryoperators are suh that the only non-vanishing open topologial string amplitudes beyondtree level appear at one loop, i.e., for annulus world-sheets. The harge seletion rule forthe topologial amplitude is quite restritive and implies for the D-brane geometry at handthat there are only two non-trivial fatorization relations for the annulus. All others an beobtained by di�erentiation with respet to the boundary moduli ui.The �rst non-trivial relation is diagrammatially depited in Fig.4. Expliitly, denotingby F0;1 and F0;2 the generi topologial string amplitude on the disk and annulus, respe-16
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(i3;i3) :The reason why we insert the boundary preserving modulus 
(i3;i3) on the seond boundary,is that the fatorization problem of open higher genus amplitudes is well-de�ned only ifthere is at least one topologial observable on eah boundary omponent [11℄. Otherwise theboundary without insertions bubbles o� in the losed string hannel and gives rise to a non-stable disk amplitude. This orresponds to a nonompat diretion in the moduli spae ofthe Riemann surfae and, as we will disuss below, indiates divergenes in the amplitudes.From the �eld on�guration it is lear that Li1 and Li2 wrap di�erent homology lasses.Introduing the following notation for annulus orrelators:A(i1i1:::ji2i2:::)
:::j
::: = 

(i1;i1) : : : j
(i2;i2) : : :�ann ; (33)the annulus A1 relation (32) then simpli�es to�a�b �A(i1i1ji3i3)
j 
 �A(i2i2ji3i3)
j 
 � = 3X=1�T i1i2i3i3i2a
��b �P i1i2i1i3i3a�b
� �+ (34)+ 3X=1�P i1i2i3i3i2a�
�b � T i3i1i2i1i3a�b�
 � :Note that this equation is ompatible with homotopy transformations, i.e., ontat termrede�nitions of the trapezoid amplitudes as given in (21). Spei�ally, a homotopy transfor-mation adds �u3�X;e (f��be�ae � f�b�e�ae)�17



to the right-hand side of (34), whih vanishes for yli oeÆients, i.e., f�a�b = f�b�a.For the third homology lass i3 we have two hoies: (i) either Li3 wraps a homologylass di�erent from both, Li1 and Li2 , or (ii) it wraps the same lass as Li1 (or Li2). We willnow disuss these two ases separately:(i) When all three D-branes wrap di�erent homology lasses, the quantum A1 relationsbeome:�a�b ��u3A(i1i1ji3)
j � � �u3A(i2i2ji3)
j � � = 3X=1��u3T i1i2i3i2a��b � �u3T i3i1i2i1a�b� � = (35)= 3X=1 �a�b��u3T i1i2i3i2a��a � �u3T i3i1i2i1a�a� � = 0 :Here we wrote the �eld insertion 
(i3i3) in terms of derivatives with respet to u3. In theseond line we used the Kroneker deltas from (8) and (11). The last step follows fromexpliitly inserting the trapezoid amplitudes (8). By onsidering analogous relations forother hoies for the Li's it follows readily thatA(i1i1ji2i2)
j 
 = A(i2i2ji3i3)
j 
 = A(i3i3ji1i1)
j 
 = 1(6�i)2fA(� ) ;for some fA(� ). Sine this funtion is ui-independent, it annot be an instanton series andso must be simple. This fat is also lear from the geometri piture, i.e., it is not possibleto span an annulus between non-parallel D-branes. In priniple, we ould determine fA(� )via imposing modular invariane, but we will identify it below by omparison with a knownresult.(ii) If, say, Li1 and Li3 wrap the same homology lass, then the annulus fatorizationondition (34) simpli�es to�a�b��u3A(i1i1ji3)
j � � fA(� )6�i � = 3X=1 �a�b�u3P i1i2i3i2a��a ; (36)whih is manifestly homotopy invariant. The funtion �u3A(i2i2ji3)
j � = 1=(6�i)fA(� ) appearshere beause Li2 and Li3 wrap di�erent homology lasses.Notie that in the disk orrelators on the right-hand side of (36), one pair of parallelsides of the parallelograms orresponds to the same D-brane, Li2; we thus enounter a non-transversal on�guration and need to regularize the orrelators in order to evaluate the sum.Its divergent part is, however, u3-independent and gets annihilated by the u3-derivative, sothat the right-hand side of (36) is well-de�ned. Had we not inserted the boundary modulus
(i3;i3) in the �rst plae and thus had onsidered the integrated version of (36), the (non-anelling) divergent piees of the parallelogram orrelators would not have been killed; thisdivergene reets the non-stable losed string degeneration hannel where a disk with a\bare" boundary bubbles o� [11℄.99In a sense, in�nitely many degenerate parallelogram instantons on the right hand side of (36) onspire to18
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telling how a hange of open string bakground (ui) an be ompensated by a hange oflosed string bakground (� ), or vie versa.Our initial observation was that the heat equation (40) may be linked to the Cardyondition (39) as follows. Consider relation (39) with n = 2, m = 0, andfa0; a1; a2; b0g �= f	(i1;i2)a ;	(i2;i3)b ;	(i3;i1) ;
(i1;i1)g :Note that the boundary ondition Li1 appears on both sides of the annulus; we enountera non-transversal on�guration as in Setion 3.2, whih will require some regularization.Taking everything together, the Cardy ondition (39) then redues to the following equation:� 23�i ����ab(u1 + u2 + u3) + 2�ab

(u1 + u2 + u3) (41)= Xe;f �eTab �d�e(u1 + u2 + u3; u1 � ~u1)�de
(u2 + u3 + u1) ;with the understanding that we need to take the limit ~u1 ! u1. Converting the 
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