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.eduAbstra
tWe �rst determine and then study the 
omplete set of non-vanishing A-model 
orrelationfun
tions asso
iated with the \long-diagonal branes" on the ellipti
 
urve. We verify thatthey satisfy the relevant A1 
onsisten
y relations at both 
lassi
al and quantum levels. Inparti
ular we �nd that the A1 relation for the annulus provides a re
onstru
tion of annulusinstantons out of disk instantons. We note in passing that the naive appli
ation of the Cardy-
onstraint does not hold for our 
orrelators, 
on�rming expe
tations. Moreover, we analyzevarious analyti
al properties of the 
orrelators, in
luding instanton 
ops and the mixing of
orrelators with di�erent numbers of legs under monodromy. The 
lassi
al and quantum A1relations turn out to be 
ompatible with su
h homotopy transformations. They lead to anon-invarian
e of the e�e
tive a
tion under modular transformations, unless 
ompensatedby suitable 
onta
t terms whi
h amount to rede�nitions of the ta
hyon �elds.
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1. Introdu
tionBy now, topologi
al open string amplitudes, whi
h determine important terms su
h as thesuperpotential in the low-energy e�e
tive a
tion, have been well understood for single ormultiple parallel D-branes. However, more general 
on�gurations, su
h as ones des
ribed byquiver diagrams based on interse
ting branes, have not yet been investigated in 
omparabledetail, despite their potential importan
e in phenomenologi
al appli
ations (see e.g. [1℄ foran overview).For su
h 
on�gurations, the underlying TFT has a mu
h ri
her stru
ture, whi
h is dueto the boundary 
hanging operators that des
ribe open strings lo
alized on interse
ting D-branes. In fa
t, the sophisti
ated mathemati
al ma
hinery of homologi
al mirror symmetry[2, 3℄, whi
h a
ts between 
ertain 
ategories of A- and B-type D-branes, gears up to fullpower only for this kind of geometries. However, so far there have been few appli
ations inphysi
s that make use of this stru
ture, whi
h involves new types of open string instantons,or Gromov-Witten invariants.Indeed just a few expli
it 
omputations of boundary 
hanging 
orrelation fun
tions havebeen presented so far (we mean here moduli-dependent, exa
t TFT 
orrelators). One reasonis that only two- or three-point fun
tions 
an be easily 
omputed; for example, for B-typebranes via wavefun
tion overlaps [4℄ or boundary LG models based on matrix fa
torizations[5℄. Correlators for A-type branes 
an then be obtained from this via mirror symmetry, orsimply by dire
tly summing up instantons [6℄.On the other hand, just like in the bulk theory, 
orrelators with more than three �elds arediÆ
ult to evaluate dire
tly, be
ause of the presen
e of integrated insertions whi
h lead tosingularities that need to be regularized and may lead to 
onta
t terms. In the bulk se
tor,however, the situation is favorable in that the moduli spa
e is 
at and is governed by anintegrable spe
ial geometry. This implies that all higher-point 
orrelators 
an be obtainedas derivatives from a generating fun
tion, the prepotential F(t) [7℄. The 
onta
t terms areimpli
itly determined by requiring the vanishing of the Gau�-Manin 
onne
tion [8℄. One
an rephrase this also in terms of the WDVV equations whi
h are imposed as di�erentialequations on F(t).The situation is far more involved for the boundary se
tor, where in general the mod-uli spa
e is obstru
ted and there is no notion of 
atness (and 
orrespondingly no a prioripreferred 
oordinates). The rôle of the bulk WDVV equations is repla
ed by a set of gener-alized, open-
losed WDVV equations [9℄, whi
h follow from various fa
torization and sewing
onstraints of world-sheets with boundaries. The simplest ones take the form of A1 rela-tions [10℄ between disk 
orrelators; in the presen
e of bulk deformations, there are 
ertainother 
onditions, following from bulk-boundary 
rossing symmetry and the fa
torization ofthe annulus amplitude. Very re
ently, a generalization of the A1 relations to general Rie-mann surfa
es with h boundaries and g holes have been formulated in ref. [11℄ and dubbed\quantum A1 relations".The purpose of this note is to gain insight in the interplay of the various quantum A1relations, instanton sums and regularization ambiguities, by 
onsidering A-model 
orrelatorsfor the simplest brane geometry with moduli, namely for 
ertain D1-branes on the ellipti

urve. The point is, of 
ourse, that the ellipti
 
urve being 
at is very simple, and indeed one2




an solve the A1 relations in a 
ompletely geometri
 manner and determine the 
orrelationfun
tions (as well as their ambiguities) in terms of instanton sums. That is, 
orrelatorsinvolving N boundary 
hanging operators 
an be obtained by summing over the (modulidependent) areas of N -gons, s
hemati
ally:Ca1;:::;aN(� ) = XN�gons e�Area(�)whi
h 
orrespond to world-sheet instantons whose boundaries lie on the interse
ting branesunder 
onsideration.1 This te
hnique has been pioneered in [12{16℄, where it was used toprove the mirror symmetry between the Fukaya 
ategory of Lagrangian submanifolds, andthe derived 
ategory of 
oherent sheaves on the ellipti
 
urve.More 
on
retely, we will �rst determine the 
omplete set of non-vanishing 
orrelatorspertaining to the \long-diagonal" branes, whi
h have already been dis
ussed from variousperspe
tives in refs. [5, 17, 18℄. While the three-point fun
tions have been expli
itly 
om-puted before in refs. [4{6, 12℄ and generi
 four-point 
orrelators dis
ussed in [13{15, 19℄, wewill evaluate the remaining non-vanishing, higher-point disk and annulus 
orrelators by in-stanton 
ounting and verify 
onsisten
y with the 
lassi
al and quantum A1 
onstraints (fortransversal as well as 
ertain non-transversal brane 
on�gurations).Moreover, we will dis
uss the analyti
al properties of 
orrelators in non-te
hni
al terms,most notably singularities, \instanton 
ops" and \homotopy" regularization ambiguities,all of whi
h we give a simple geometri
al interpretation. Su
h homotopies are indu
ed asmonodromies from moving branes around the 
urve, and lead to a non-trivial �bration ofthe A1 stru
ture over the open/
losed string moduli spa
e. The e�e
tive superpotentialis thus modular only up to homotopies, whi
h may be 
ompensated by simultaneous �eldrede�nitions of the ta
hyons, or equivalently, by adding suitable 
onta
t terms. We willalso verify that homotopy transformations are 
ompatible with both the 
lassi
al and thequantum A1 
onstraints.One of the most interesting results of this note 
on
erns the annulus quantum A1 rela-tion, for whi
h we show that it maps 
ertain disk instantons to annulus instantons, essentiallyby pat
hing up the latter in terms of the former. This is a spe
i�
 feature of open stringinstantons as it requires the fusion of boundaries.Finally, in an appendix we address the question of whether the Cardy-type fa
torizationrelation (whi
h is di�erent to the annulus quantum A1 relation) holds or not. Although thefamiliar fa
torization of the annulus diagram into 
losed or open string 
hannels is one ofthe fundamental axioms of open string TFT [20{22℄, it stri
tly speaking needs to apply onlyto 
orrelators without integrated insertions [9℄. We show, by providing a 
ounter-example,that the Cardy-
onstraint does indeed not hold for general 
ylinder 
orrelators on the ellipti

urve.We hope that our �ndings will be useful for the understanding of more 
ompli
atedD-brane geometries, notably ones on Calabi-Yau threefolds.1We will denote the 
losed string modulus, i.e., the 
omplexi�ed K�ahler parameter of the 
urve, by � .The open string moduli, whi
h 
orrespond to brane positions and Wilson lines and whi
h are suppressed inthe above formula, will be generi
ally denoted by u. 3



2. Disk instantons and tree-level 
orrelators2.1. Re
apitulation: 3-point fun
tions for long-diagonal branesWe will fo
us on the A-model and 
onsider 
ertainD1-branes wrapped around the homology
y
les of the ellipti
 
urve, �. More spe
i�
ally, in order to make 
onta
t with previouswork [5℄, we will 
onsider a spe
i�
 triplet of branes Li with RR 
harges, or wrappingnumbers (n;m) given byL1 � (2; 1) ; L2 � (�1; 1) ; L3 � (�1;�2) : (1)These branes are usually referred to as \long-diagonals", whi
h is self-explaining upon draw-ing the branes on the 
overing spa
e of � (see Fig.1 below). Ea
h brane Li interse
ts theother ones three times within a fundamental domain. This means that every boundary
hanging, open string vertex operator that maps between a given pair of branes, 
arries anindex a that labels the spe
i�
 interse
tion at whi
h it is lo
ated. The analysis of the 
oho-mology (in the mirror LG-orbifold model) [5℄ reveals that for an open string mapping froma brane Li to a brane Lj at the interse
tion a, there is a fermioni
 operator with R-
hargeq = 1=3, whi
h we denote by 	(i;j)a . Moreover, there is a \Serre dual" bosoni
 operator �(j;i)�aof 
harge q = 2=3 for an open string going the other way. Finally, apart from the identityoperator, there are fermioni
, boundary preserving operators 
(i;i) of 
harge q = 1, whi
h aretied to single branes Li and whi
h are the marginal operators 
oupling to the brane moduli,ui. The simplest 
orrelators of these operators give the topologi
al open string metri
:�11
 := 
 11 (i;i)11 (i;i)
(i;i)�disk = 1 (2)�a�a := 
 11 (i1;i1)	(i1;i2)a �(i2;i1)�a �disk = Æa�a :On the other hand, the simplest non-trivial 
orrelation fun
tions are the following three-pointfun
tions: �(i3i1i2)ab
 (�; ui) = 
	(i3;i1)a 	(i1;i2)b 	(i2;i3)
 �disk ; (3)whi
h have been evaluated in the B-model using wavefun
tion overlaps in [4℄ or using theLG model based on matrix fa
torization [5℄. The result, when expressed in terms of the 
at
oordinates � , ui (whi
h 
oin
ide with the natural variables of the mirror A-model), looks:�(i3i1i2)ab
 (�; ui) = Æ(3)a+b+
;0� � [b� 
℄3 � 3=2�3=2 � � 3� j 3(u1 + u2 + u3) � ; (4)where Æ(3) is the Krone
ker fun
tion de�ned modulo three, and [a℄3 denotes the mod 3redu
tion of a 2Zto the range f1; 2; 3g. Furthermore,� � ab � � 3� j 3u � = 1Xn=�1 q 16 (a+3n)2e2�i(u+b=9)(a+3n) ; (5)4
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Figure 1: On the right we have drawn the long-diagonal branes L1;2;3 on the 
overing spa
e ofthe ellipti
 
urve, as well as some examples of polygon instantons bounded by these branes.On the left we have drawn a world-sheet disk with three boundary 
hanging operator in-sertions, whi
h gets mapped into 
ertain triangle shaped instantons on the right. In our
onventions, red, blue and green dots 
orrespond to operators 	(i;j)a for a = 1; 2; 3, respe
-tively. Moreover, the shown brane lo
ations 
orrespond to our 
hoi
e of origin in the openstring moduli spa
e.is a standard theta-fun
tion whose expansion in q � e2�i� sums up the 
ontributions of allthe triangular world-sheet instantons that are bounded by the three branes Li (with moduliui).2 This is 
ompletely in line with the �ndings of ref. [12℄. We visualize the situation inFig.1, whi
h also serves to de�ne our 
onventions for labeling branes and boundary �elds.2.2. Polygon instantons and higher-point amplitudesThe three-point fun
tions (3) are only the �rst terms of the e�e
tive superpotential, and oneof our purposes is to determine the 
omplete superpotential that 
an be asso
iated with thethree types of branes Li of (1). Due to R-
harge sele
tion rules, there is only a �nite numberof terms, and in our situation the maximal number of external \ta
hyon" legs is N = 6.3S
hemati
ally, the e�e
tive superpotential 
an be written in the following form:Weff (�; ui; ta; ��a) = 13�ab
(�; u)tatbt
 + 12Pa�b
 �d(�; u)ta��bt
��
 + Tab�
 �d(�; u)tatb��
� �d (6)+ }a�b�
 �d�e(�; u)ta��b��
� �d��e + 16H�a�b�
 �d�e �f (�; u)��a��b��
� �d��e� �f :2To properly des
ribe the u-dependen
e of the areas, one would need to multiply these 
orrelators withsimple non-holomorphi
 \quantum" prefa
tors [4℄, whi
h may be viewed as arising from a holomorphi
anomaly (indeed these 
an be tra
ed ba
k to the holomorphi
 anomaly of the annulus amplitude). However,sin
e TFT 
omputations naturally yield holomorphi
 expressions, we suppress su
h fa
tors here. They 
ouldbe easily reinstated by requiring modular 
ovarian
e, if one wished to do so.3Allowing for general branes would involve an in�nite number of terms, be
ause the 
harge of the boundary
hanging operators is 
orrelated with the angle of the interse
ting branes, and this 
an be
ome arbitrarysmall for generi
 wrapping numbers (m;n). 5



Note that for a given brane 
on�guration, not all terms may 
ontribute. (E.g., if all D-braneswrap the same homology 
lass then all terms vanish, re
e
ting that there is no obstru
tionto move the branes around; if the D-branes wrap only two homology 
lasses then only these
ond term in the superpotential is non-trivial. We will see in a moment that the latter isasso
iated with parallelogram instantons.) Above, ta are the bosoni
 deformation parametersthat 
ouple to the fermioni
 open string ta
hyons 	a, while the ��a are fermioni
 parameters
oupling to the bosoni
 operators, ��a.4 Note that we suppressed the labels i of the branes.More spe
i�
ally, the various inequivalent, 
y
li
ally symmetri
 disk 
orrelators withN � 4 legs are de�ned as follows:T (i4i1i2i3)ab�
 �d = 
	(i4;i1)a 	(i1;i2)b �(i2;i3)�
 �(i3;i4)�d �disk (7)P(i4i1i2i3)a�b
 �d = 
	(i4;i1)a �(i1;i2)�b 	(i2;i3)
 �(i3;i4)�d �disk}(i5i1i2i3i4)a�b�
 �d�e = 
	(i5;i1)a �(i1;i2)�b �(i2;i3)�
 �(i3;i4)�d �(i4;i5)�e �diskH(i6i1i2i3i4i5)�a�b�
 �d�e �f = 
�(i6;i1)�a �(i1;i2)�b �(i2;i3)�
 �(i3;i4)�d �(i4;i5)�e �(i5;i6)�f �disk ;where it is impli
itly understood that (N � 3) operators are integrated as topologi
al de-s
endants.Correlators with N boundary 
hanging insertions will generi
ally get 
ontributions ofworld-sheet instantons that end on N interse
ting branes Li, whi
h thus 
an be depi
ted asN -gons on the 
overing spa
e of the 
urve; there are two di�erent geometries for N = 4,namely given by trapezoids (T ) and parallelograms (P). Sin
e two branes 
an always be�xed using translational invarian
e, N -point 
orrelators involving N branes will depend ononly N � 2 independent 
ombinations of the brane moduli ui. Note, moreover, that theangles ' at the 
orners of an N -gon are related to the R-
harge q of the boundary 
hanging�eld, i.e., ' = q�.In addition to the �elds in the boundary 
hanging se
tors, we allow for an arbitrarynumber of marginal operator insertions, 
(i;i). Sin
e these are asso
iated with the 
at 
oor-dinates ui [5℄ whi
h are integrable, we 
an obtain su
h 
orrelators simply by taking partialderivatives �ui � ��ui , e.g.,1(6�i)n�n1ui1�n2ui2�n3ui3�(i3i1i2)ab
 = 
	(i3;i1)a �
(i1;i1)�n1 	(i1;i2)b �
(i2;i2)�n2 	(i2;i3)
 �
(i3;i3)�n3�disk ;where n = n1 + n2 + n3. This readily generalizes to all the other amplitudes in (7).The evaluation of the 
orrelators (7) pro
eeds by identifying the smallest N -gon on the
overing spa
e that 
an be asso
iated with the given boundary 
onditions and determiningthe area of it as well as of all other N -gons obtained by latti
e translations from it. Summingall areas up we 
ount instantons and anti-instantons with opposite orientations. The resultwill have the form of a generalized, inde�nite theta-fun
tion [16℄; this will be a se
tion ofsome ve
tor bundle over �, mu
h like the ordinary theta-fun
tion (5) is a se
tion of a linebundle, L
3.For example, let us 
onsider a trapezoid asso
iated with the 
orrelator Tab�
 �d, and labelthe boundary �elds in a manner as shown in Fig.1. The shorter of the two parallel sides then4One 
an view (t; �) as 
oordinates of a non-
ommutative superspa
e, see e.g., [23℄.6



has length lshort = [ �d� �
+3=2℄3+3m, where m 2Za

ounts for latti
e shifts. Similarly, thetwo sides of equal length have ldiag = [b��
℄3+3n, and the longer side has llong = lshort+ ldiag.The area of the trapezoid is thus A = 1=2([b� �
℄3+3n)(2[ �d� �
+3=2℄3+ [b� �
℄3+3n+6m).All-in-all, when allowing for 
ontinuous translations parametrized by ui,5 we obtain:T (i4i1i2i3)ab�
 �d (�; ui) = Æ(3)a+b;�
+�d�trap � [b� �
℄3[ �d� �
+ 3=2℄3 � (3� j3(u1 + u2 + u4); 3(u1 � u3)) ; (8)where the trapezoidal theta-fun
tion is de�ned by the following inde�nite series:�trap � ab � (3� j3u; 3v) = indef:Xm;n2Zq 16 (a+3n)(a+3n+2(b+3m))e2�i�(a+3n)(u�1=6)+(b+3m)v� ; (9)with indef:Xm;n2Z� 1Xm;n=0� �1Xm;n=�1 : (10)In a similar way, one �nds for the parallelogram 
orrelators:P(i4i1i2i3)a�b
 �d (�; ui) = Æ(3)a+
;�b+ �d �para � [
� �b℄3[ �d� 
℄3 � (3� j3(u1 � u3); 3(u4 � u2)) ; (11)�para � ab � (3� j3u; 3v) � indef:Xm;n2Zq 13 (a+3n)(b+3m)e2�i�(b+3m)u+(a+3n)v� :The �ve-point fun
tion looks more diÆ
ult to determine, but we use a tri
k in order tomake life simpler: there is one side of the pentagon that is not parallel to any other one -when we atta
h a triangle to it, the pentagon turns into a parallelogram. So we 
an des
ribethe area of the pentagon as the di�eren
e of a parallelogram and a triangle (taking of 
ourseall latti
e translations into a

ount). Taking everything together, we obtain:}(i5i1i2i3i4)a�b�
 �d�e (�; ui) = Æ(3)a;�b+�
+�d+�e �penta24 [�b�
�d℄3[e+
+d℄3[
�d+ 32℄3 35(3� j3(u5�u2); 3(u1�u4); 3(u3+u2+u4)) ;(12)where�penta24 ab
 35 (3� j3u; 3v; 3w) �� indef:Xm;n;k2Zq 13 (a>+3(n+k))(b>+3(m+k))� 16 (
+3k)2e2�i�(a>+3(n+k))u+(b>+3(m+k))v+(
+3k)(w�1=6)� ;5Note that this expression and analogous ones dis
ussed below are de�ned only for appropriate ui; wewill address this issue in the next se
tion. Also note, just as for the three-point fun
tion, that in order todes
ribe the 
orre
t area dependen
e on the ui, we would need to add a simple non-holomorphi
 prefa
torthat we suppress here. 7



where a> = a + 3 for a < 
 and a> = a for a > 
, and similarly for b>. The shifts in a>and b> ensure that the sides of the parallelogram are longer than the side of the subtra
tedtriangle. The inde�nite sum is de�ned asindef:Xm;n;k2Z= 1Xm;n;k�0+ �1Xm;n;k��1Finally, we �nd the six-point fun
tions by subtra
ting two triangles from the a
ute-angled
orners of a parallelogram:H(i6i1i2i3i4i5)�a�b�
 �d�e �f (�; ui) = Æ(3)0;�a+�b+�
+ �d+�e+ �f � (13)��hexa 2664[�b� 
� d℄3[
+d+e℄3[
�d+ 32 ℄3[a�f + 32 ℄3 3775(3� j3(u5�u2); 3(u1�u4); 3(u3+u2+u4); 3(�u6�u1�u5)) ;where�hexa264 ab
d 375 (3� j3u; 3v; 3w; 3z) �� indef:Xm;n;k;l2Zq 13 (a+3n)(b+3m)� 16 (
+3k)2� 16 (d+3l)2e2�i�(a+3n)u+(b+3m)v+(
+3k)(w�1=6)+(d+3l)(z+1=6)�:The inde�nite sum is given byindef:Xm;n;k;l2Z= 1Xm;n�0 <kmaxXk�0 <lmaxXl�0 � �1Xm;n��1 >kminXk��1 >lminXl��1with kmax = min(a=3 + n; b=3 +m)� 
=3 and lmax = min(a=3 + n; b=3 +m)� d=3 as well askmin = max(a=3+n; b=3+m)�
=3 and lmin = max(a=3+n; b=3+m)�d=3. The restri
tionsin the sums ensure that the subtra
ted triangles are not larger than the parallelogram.We have so far de�ned all topologi
al A-model disk amplitudes in terms of instanton sumsfor the D-brane 
on�guration as shown in Fig.1. In the following we pro
eed investigatingtheir analyti
 properties.2.3. Analyti
al properties of the disk amplitudesThe 
orrelation fun
tions we wrote down in the previous se
tion are not 
ompletely well-de�ned. There are the following three inter-related issues that we need to dis
uss: i) sin-gularities from 
olliding branes; ii) analyti
 
ontinuation over the open string moduli spa
e;iii) modular anomalies; and iv) 
onta
t term ambiguities intrinsi
 to the de�nition of the
orrelators. Most of these aspe
ts have been, in one form or the other, already dis
ussed in8
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al literature (see [13{15, 19℄), although they have not yet been exhibited inthe string physi
s literature. We found it instru
tive to work out, as a 
ase study, some ofthese aspe
ts for our spe
i�
 brane geometry, and in order to aid the non-expert, we willpresent them in simple non-te
hni
al terms. We will fo
us on the trapezoid 
orrelator, as it
aptures the relevant features, with the understanding that the other, higher-point fun
tions
an be dealt with analogously.One basi
 point is that the trapezoid sum (9), as well as the other higher-point fun
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h as shifts u! u� k� , v ! v � `� , we may formally produ
enegative areas and so leave the domain of support; this is similar to the phenomenon ofleaving the K�ahler 
one of a Calabi-Yau manifold. We thus expe
t that some suitableanalyti
 
ontinuation, des
ribing the analog of a 
op transition to a di�erent geometry6 withpositive instanton areas, will be ne
essary.To pro
eed, let us rewrite the trapezoid sum (9) in a form similar to an Appell-fun
tion[19℄ as follows:�trap � ab � (3� j3u; 3v) = e2�ivbXn2Zq 16 (a+3n)(a+2b+3n)e2�i(a+3n)(u�1=6)1 � qa+3ne6�iv : (14)This way of representing it makes the singularity manifest whi
h o

urs when the parallelsides move on top of ea
h other (and the Wilson line is tuned appropriately), i.e., for 3v+�a 2Z+ 3�Z. The 1=(1 � x) singularity results from summing in�nitely many instantons thatdegenerate to zero area, and signals the appearan
e of extra physi
al states [18℄.However we 
an go on and further 
ontinue v1 to negative values (thereby avoiding thesingularity by swit
hing on v2, i.e., a Wilson line), by making use of the identity xx�1 =� 1(1=x)�1 in (14). We �nd:�trap � ab � (3� j3u;�3v) = �e�2�ia=3e6�iv �trap � �a�b � (3� j3(� � u); 3v) : (15)6Or \di�erent phase" in the language of ref. [24, 25℄, where similar phenomena were 
onsidered for non-
ompa
t branes. 9



This shows how resummation of the instanton series maps ba
k to a well-de�ned, howeverdi�erent geometry (the rôles of the boundary �elds 
an formally 
hange, i.e., 	's transmuteinto �'s and vi
e versa); one might 
all this phenomenon an \instanton 
op". See Fig.2 fora sket
h of this.More generally, from (14) we 
an dedu
e the following behavior under shifts of the openstring moduli:�trap� ab �(3� j 3u; 3v) = e�2�ia�trap� ab �(3� j 3(u � 1); 3v)= e�2�ib�trap� ab �(3� j 3u; 3(v � 1)) ; (16)�trap� ab �(3� j 3u; 3(v � � )) = e�6�i(u�1=6)q3=2�trap� ab �(3� j 3(u� � ); 3v) ;�trap� ab �(3� j 3(u� � ); 3v) = e�6�iv�trap� ab �(3� j 3u; 3v)� e�2�i(u� 16 )(b� 32� 32 )e2�iv(b� 32� 32 )q� 16 (b� 32� 32 )2�� a+b�3=2 �(3� j 3u):The ordinary theta fun
tion in the last equation may be viewed as an anomaly or obstru
-tion for the trapezoid fun
tion against being (quasi-)periodi
, and re
e
ts that the Appellfun
tion, together with �, forms a se
tion of a non-split rank two ve
tor bundle. In physi
alterms, this simply means that the trapezoid fun
tion does not extend ni
ely over the 
overingspa
e, but rather gets an extra 
ontribution in the form of a three-point fun
tion when wetranslate a brane around the torus.The mixing of di�erent 
orrelation fun
tions under monodromy renders the e�e
tive su-perpotential (6) ambiguous and non-modular. One may remedy this by de�ning an invariant
orrelator in the following manner:��trap�ab�(3� j3u; 3v) � �trap�ab� (3� j3u; 3v)� Pb(q; u�v�1=6)��a+ b�3=2�(3� j 3u); (17)where Pb(x) is a pie
ewise polynomial fun
tion in e2�ix that is designed [13℄ to 
an
el the �fun
tion terms in (16). Expli
itly, we �nd for our geometry (x1 � ImxIm� ):Pb(q; x) = ( �q� 16 b2 Pmn=1 q� 32n2+3mn+b(n�m)e2�i(3n�b)x; m = [x1℄ for x1 � 0q� 16 (b�3)2 P�mn=1 q� 32n2�3mn+(3�b)(n+m)e�2�i(3n+b�3)x; m = �[�x1℄ for x1 < 0: (18)The 
orrelator (17) then has indeed the desired global properties over the full open stringmoduli spa
e, i.e., is (quasi-)periodi
:��trap � ab � (3� j3(u+ n+m� ); 3v) = e2�inae�6�imv ��trap � ab � (3� j3u; 3v) (19)��trap � ab � (3� j3u; 3(v + n+m� )) = e2�inbq 32m2e�6�im(u�v�1=6) ��trap � ab � (3� j3u; 3v) ;10
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Figure 3: At top: the 
onta
t term of a trapezoid 
orrelator is given by a fermioni
 insertion,generated by the 
ollision of two bosoni
 operators (of whi
h one is integrated). It gets
ontributions of triangular instantons as sket
hed on the right hand side. At bottom: thepossible 
onta
t terms of the pentagon fun
tion are 
hara
terized by a parallelogram (B),two kinds of trapezoids (A or C), and a triangle (A plus C).and always 
ounts instantons with positive areas, but it does not extend to a meromorphi
se
tion of a line bundle over �2.One may wonder about the signi�
an
e of the extra term in (17), and more generally,about ambiguities in the de�nition of the 
orrelators. As noted in the introdu
tion, ingeneral there are 
onta
t terms arising from 
olliding operators whi
h lead to regularizationambiguities. In the 
losed string se
tor, 
onta
t term ambiguities were no great deal be
ausethey were impli
itly �xed by the 
at stru
ture of the moduli spa
e. In the open stringse
tor, no su
h 
at stru
ture exists for the boundary 
hanging deformations, but we see herethat we may impose other 
onstraints to �x potential ambiguities, e.g., by insisting on the(quasi-)periodi
ity of the 
orrelators.To see the relevan
e of 
onta
t terms, 
onsider a rede�nition of the trapezoidal 
orrelatorof the general form �trap � ab � �! �trap � ab � + f � � a+ b�3=2 � (20)for some unspe
i�ed, in general moduli-dependent fun
tion f . It 
an be given a simplephysi
al interpretation as follows. A 
onta
t term arises when two boundary operators 
ollideand form a single node. The 
onta
t term must thus behave like a three-point fun
tion,whi
h by itself is governed by triangular instantons that are spanned between the threeverti
es. Con
retely, the only possible 
onta
t term of a trapezoid 
orrelator 
orrespondsto the triangle that arises when we follow the two 
onverging edges all the way to theirinterse
tion point (see Fig.3, upper part). From the relative angle this must 
orrespondto a fermioni
 insertion, and indeed the 
harges are su
h that the 
ollision of two bosoni
11



operators 
an generate a 
onta
t term C(�;�) of pre
isely the 
harge of a fermion; that is,C(�;�) � �(�1) R�1 d�2G��(�2) � 	(�1).This simple physi
al pi
ture ties ni
ely together with results in the mathemati
al liter-ature. As was shown in [16℄, the origin of the trapezoidal fun
tion being multi-valued andnon-modular lies in the existen
e of a homomorphism lo
ated at the interse
tion of thosetwo 
onverging edges. This homomorphism 
orresponds pre
isely to the physi
al operator
ontent of the 
onta
t term, i.e., in our situation, to 	.Consequently, the parallelogram 
orrelator (11), for whi
h there are no 
onverging edges,does not su�er from 
onta
t term ambiguities and modular anomalies. This is re
e
ted bythe fa
t that it 
an be written in terms of modular theta fun
tions in the form7 �0(0)�(u+v)�(�u)�(�v) ,and so 
orresponds to a well-de�ned, meromorphi
 Ja
obi form [13℄.The rede�nition (20) has a very simple des
ription also in terms of the e�e
tive lagrangian(6), Weff . It just 
orresponds to the reparametrization, ta ! ta + f�b�
a ��b��
, of the ta
hyondeformation parameters, whi
h is 
ompatible with 
harges and statisti
s. Inserting this intoWeff (ta; ��a) trivially reprodu
es (20), i.e.:Tab�
 �d ! Tab�
 �d + f�
 �de�abe : (21)This implies, of 
ourse, 
orresponding simultaneous rede�nitions of the higher point 
orrela-tion fun
tions as well. For example, the pentagon fun
tion will be modi�ed in the followingmanner: }a�b�
�e �f ! }a�b�
�e �f + f�b�
dTad�e �f + f�e �f dTad�b�
 + f�
�edPa�bd �f + f�b�
bf�e �f 
�ab
 : (22)The origin of these terms 
an be visualized by means of Fig.3, lower part. On the otherhand, the parallelogram fun
tion won't be modi�ed, and this is 
onsistent with the geometri
pi
ture as well.Whether su
h a 
orrelated rede�nition of all the 
orrelation fun
tions is 
ompatible withthe various A1 
onsisten
y 
onstraints, may at this point not be entirely obvious, and we willverify this below by dire
t 
omputation. However, at tree (disk) level, its 
onsisten
y followsalso more dire
tly from the stru
ture of homologi
al perturbation theory (as reviewed in[10,26,27℄); basi
ally, a rede�nition of 
orrelators by 
onta
t terms with less legs is 
onsistentif the 
onta
t terms satisfy A1 relations by themselves. In this language, it is a homotopytransformation whi
h by its very de�nition is 
ompatible with the A1 stru
ture.To our knowledge, the 
orresponding statement has however not been proven for the A1
onsisten
y 
onstraints at the quantum level, and we will verify it for the annulus by dire
t
omputation further below.3. Classi
al A1 relationsAs it was shown in [9℄, the topologi
al disk amplitudes that we determined in the previousse
tions by instanton 
ounting, should ful�ll 
ertain algebrai
 equations, the (
lassi
al) A17From this we see, similar as for the trapezoid, that a singularity o

urs if either pair of the parallel edgesmoves on top of ea
h other, i.e., if u = 0 or v = 0. 12



relations. These take the form:mXk<l=1(�)~a1+:::+~akF0;1a1:::ak
al+1:::am�
dF0;1dak+1 :::al = 0 for m � 1 : (23)Here F0;1a1:::an denotes any one of the disk amplitudes given in (3) or (7). We suppress theboundary 
ondition labels for a moment and understand that the ai's 
an take values in theindex set f11 ; a; �a;
g. Let us assume for what follows that the `external' �elds are only 
hosenfrom the index subset 
orresponding to boundary 
hanging operators, i.e., ai 2 fa; �ag. TheremainingA1 relations, with `external' 
 insertions, 
an be obtained by di�erentiation withrespe
t to ui's. The ~ai's denote the suspended Z2-gradings of the boundary �elds [9℄. Here,we have ~a = 0 and ~�a = 1.From the di�erent types of amplitudes that 
an appear in our spe
i�
 setup it is 
learthat the relations (23) are non-trivial only for level m 2 f4; : : : ; 9g; for m = 4 they justexpress asso
iativity of the 3-point 
orrelators. Apart from the splitting in di�erent levels,m, we 
an further distinguish two 
lasses of A1 relations a

ording to the parti
ular D-brane
on�guration:(i) The number of D-branes that are involved in the A1 relation is maximal, i.e., equalto the level m. We assume furthermore that parallel D-branes are all separated, whi
hmeans that uk 6= ul whenever Lik and Lil are in the same homology 
lass. This is thetransversality 
ondition of ref. [15℄, and we will verify the A1 relations for su
h transversalD-brane 
on�gurations in the next se
tion.(ii) The number of D-branes is not maximal. This implies that at least two of theboundary 
ondition labels ik that appear in the A1 relations represent the same D-brane.Su
h situations lead to singular 
orrelation fun
tions in view of degenerate instantons, andwe will have to introdu
e an appropriate regularization pro
edure. This 
on�guration is nottransversal in the sense of ref. [15℄, and we will see that it leads to new results on the A1stru
ture on the ellipti
 
urve.3.1. A1 relations for transversal D-brane 
on�gurationsThe simplest non-trivial A1 relation is at level m = 5 and involves �ve D-branes Li fori = 1; : : : ; 5. We pi
k the �eld 
on�guration in (23) to befa1; a2; a3; a4; a5g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;	(i3;i4)a3 ;	(i4;i5)a4 ;�(i5;i1)�a5 g ; (24)where we assume ui 6= uj for i 6= j. Naively, for m = 5 the sum over k and l in (23)involves �ve terms. Charge sele
tion di
tates, however, that two of them should involve
-insertions, whi
h however are not present be
ause of the assumption of separated branes,i.e., transversality. The A1 relations thus read:3X
=1 P(i1i2i4i5)a1�
a4�a5 �(i4i2i3)
a2a3 + 3X
=1 T (i1i2i3i5)a1a2�
�a5 �(i5i3i4)
a3a4 + 3X
=1 �(i1i2i3)a1a2
 T (i1i3i4i5)�
a3a4�a5 = 0 : (25)Insertion of all the disk amplitudes as given in Se
tion 2 shows that these relations are indeedsatis�ed; this transversal situation has already been studied in [13℄. One also readily veri�es13



that (25) is 
ompatible with homotopy reparametrizations (21) that re
e
t the 
onta
t termambiguity. Indeed, while the parallelogram fun
tion does not allow for a 
onta
t term, the
ontributions from the trapezoid fun
tions just sum up to:X
;e �f�
�a5e�a1a2e�
a3a4 � f�a5�
e�a1a2
�a3a4e� (26)and thus 
an
el for 
y
li
 
oeÆ
ients, f�a�b
 = f�b�
a. The latter 
ondition ensures that the
y
li
 invarian
e of disk amplitudes is preserved (a

ordingly, the transformations (21) and(22) satisfying this 
ondition are 
alled 
y
li
 homotopies [15,27℄).Let us 
onsider the next level, m = 6. A generi
 A1 relation will then involve alsopentagon amplitudes. We will 
ome to those in a moment, but �rst ask whether there existrelations at level m = 6 that do not involve pentagon amplitudes. Indeed, there are, andthey 
orrespond to the �eld 
on�guration:fa1; a2; a3; a4; a5; a6g �= f	(i1;i2)a1 ;�(i2;i3)�a2 ;	(i3;i4)a3 ;�(i4;i5)�a4 ;	(i5;i6)a5 ;�(i6;i1)�a6 g ;where all Lik for odd k belong to the same homology 
lass. The same is true for all Likfor even k. The A1 relation takes an intriguing form that involves only parallelogramamplitudes:3X
=1 P(i1i2i5i6)a1�
a5�a6 P(i5i2i3i4)
�a2a3�a4 � 3X
=1 P(i1i2i3i6)a1�a2
�a6 P(i6i3i4i5)�
a3�a4a5 � 3X
=1 P(i1i2i3i4)a1�a2a3�
 P(i1i4i5i6)
�a4a5�a6 = 0 : (27)Noti
e that it is manifestly homotopy invariant. In fa
t, this relation was interpreted in [28℄as an asso
iative Yang{Baxter equation, for whi
h the R-matrix is essentially given by theparallelogram amplitude. In parti
ular, this link was used to 
onstru
t ellipti
 solutions tothe 
lassi
al Yang{Baxter equation for sln(C ). The integer n is an interse
tion number, inour situation given by n = �(Li2k ;Li2k0+1) = 3.There are three further 
hoi
es for the external �elds in equations (23) for level m = 6.Two of them, i.e.,fa1; a2; a3; a4; a5; a6g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;�(i3;i4)�a3 ;	(i4;i5)a4 ;�(i5;i6)�a5 ;�(i6;i1)�a6 g ;f	(i1;i2)a1 ;�(i2;i3)�a2 ;	(i3;i4)a3 ;	(i4;i5)a4 ;�(i5;i6)�a5 ;�(i6;i1)�a6 g ;give rise to similar A1 relations that in
lude pentagon as well as lower-point amplitudes.We present only one of them here:3X
=1 �(i1i2i3)a1a2
 }(i1i3i4i5i6)�
�a3a4�a5�a6 + 3X
=1 T (i1i2i5i6)a1
�a5�a6 P(i5i2i3i4)�
a2�a3a4 ++ 3X
=1 T (i1i2i3i6)a1a2�
�a6 P(i6i3i4i5)
�a3a4�a5 � 3X
=1 T (i1i2i3i4)a1a2�a3�
 T (i1i4i5i6)
a4�a5�a6 = 0 : (28)The �nal A1 relation at level m = 6 
orresponds to the �eldsfa1; a2; a3; a4; a5; a6g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;	(i3;i4)a3 ;�(i4;i5)�a4 ;�(i5;i6)�a5 ;�(i6;i1)�a6 g ;14



and reads: 3X
=1 �(i1i2i3)a1a2
 }(i1i3i4i5i6)�
a3�a4�a5�a6 + 3X
=1 }(i1i2i4i5i6)a1�
�a4�a5�a6 �(i4i2i3)
a2a3+ 3X
=1 T (i1i2i5i6)a1
�a5�a6 T (i5i2i3i4)�
a2a3�a4 + 3X
=1 T (i1i2i3i6)a1a2�
�a6 T (i6i3i4i5)
a3�a4�a5 = 0 : (29)Plugging in the instanton sums we veri�ed that all three relations are indeed satis�ed. We
an also easily verify invarian
e of the levelm = 6 relations (28) and (29) under the 
ombinedhomotopy transformations (21) and (22); these map the equations into A1 relations at lowerlevels, (26) and (25), that we have already 
he
ked to vanish before.We 
on
lude this se
tion by presenting the A1 relation at level m = 7 that 
ontainshexagon amplitudes (13). For the �eldsfa1; a2; a3; a4; a5; a6; a7g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;�(i3;i4)�a3 ;�(i4;i5)�a4 ;�(i5;i6)�a5 ;�(i6;i7)�a6 ;�(i7;i1)�a7 g ;we get: 3X
=1 �(i1i2i3)a1a2
 H(i1i3i4i5i6i7)�
�a3�a4�a5�a6�a6 + 3X
=1 }(i1i2i5i6i7)a1�
�a5�a6�a7 T (i5i2i3i4)
a2�a3�a4 + (30)+ 3X
=1 T (i1i2i6i7)a1
�a6�a7 }(i6i2i3i4i5)�
a2�a3�a4�a5 + 3X
=1 T (i1i2i3i7)a1a2�
�a7 }(i7i3i4i5i6)
�a3�a4�a5�a6 � 3X
=1 T (i1i2i3i4)a1a2�a3�
 }(i1i4i5i6i7)
�a4�a5�a6�a7 = 0 :The other two A1 relations at level m = 7 involve only four- and �ve-point amplitudes.These relations as well as the missing ones at level m = 8 and 9 
an easily be dedu
ed from(23).3.2. A1 relations for non-transversal D-brane 
on�gurationsLet us 
onsider situation (ii) where the number of D-branes is not maximal, that is, smallerthan m. Take an A1 relation (23) at level m = 5 for four boundary 
ondition labels, sayLi1 , Li2 , Li3 and Li5 , and the 
olle
tion of �elds:fa1; a2; a3; a4; a5g �= f	(i1;i2)a1 ;	(i2;i3)a2 ;	(i3;i1)a3 ;	(i1;i5)a4 ;�(i5;i1)�a5 g ;where we assume ui 6= uj for i 6= j.8TheA1 relations look similar to (25), but now we do not have a transversal 
on�guration,so that an additional term appears, where a disk with the �elds h 11 (i1;i1)	(i1;i5)a4 �(i5;i1)�a5 i bubbleso� and gives rise to an amplitude with an insertion of the boundary 
ondition preserving�eld 
i1i1. Naively we get:3X
=1 P(i1i2i1i5)a1�
a4�a5 �(i1i2i3)
a2a3 + 3X
=1 T (i1i2i3i5)a1a2�
�a5 �(i5i3i1)
a3a4 + 3X
=1 �(i1i2i3)a1a2
 T (i1i3i1i5)�
a3a4�a5 = ��a4�a56�i �u1�(i1i2i3)a1a2a3 :8Note that this 
on�guration is similar to (24), only the label i4 was substituted by i1.15



There is however an important subtlety. The 4-point fun
tions on the left-hand side thatbear the boundary 
ondition Li1 twi
e 
an be
ome singular due to an in�nite sum overdegenerate instantons. This happens for instan
e in the amplitude P(i1i2~{1i5)a1�
a4�a5 when oppositesides of a parallelogram 
ollide in the limit ~u1 ! u1. We therefore need to regularize thesingular 4-point fun
tions. We do this by point-splitting in the following way. Whenevertwo sides of a parallelogram (or a trapezoid) bear the same D-brane Li1 at position u1, weformally set one of the two sides at position ~u1 and take the limit ~u1 ! u1. In order to tra
kthe (formal) ~u1-dependen
e of the four-point 
orrelators in the A1 relation, we introdu
ethe index ~{1 and denote the amplitudes with point-splitting regularization by eP(i1i2~{1i5)a1�
a4�a5 andeT (i1i3~{1i5)�
a3a4�a5 . The A1 relations then be
ome:lim~u1!u1 3X
=1 � eP(i1i2~{1i5)a1�
a4�a5 �(i1i2i3)
a2a3 + T (i1i2i3i5)a1a2�
�a5 �(i5i3i1)
a3a4 +�(i1i2i3)a1a2
 eT (i1i3~{1i5)�
a3a4�a5 � = ��a4�a56�i �u1�(i1i2i3)a1a2a3 :(31)Using the transversal A1 relation (25) with i4 = ~{1 we see that the singularities of the right-hand side of (31) mutually 
an
el. So we 
an safely take the limit ~u1 ! u1 and verify therelation.Analogously, there is a non-transversal version of the level m = 6 relation (27) thatin
ludes only parallelograms. For this, let us 
onsider the �eld 
on�guration:fa1; a2; a3; a4; a5; a6g �= f	(i1;i2)a1 ;�(i2;i1)�a2 ;	(i1;i4)a3 ;�(i4;i5)�a4 ;	(i5;i6)a5 ;�(i6;i1)�a6 g ;Following the same regularization pro
edure as above we obtain the A1 relations:lim~u1!u1 3X
=1 �P(i1i2i5i6)a1�
a5�a6 P(i5i2i1i4)
�a2a3�a4 � eP(i1i2~{1i6)a1�a2
�a6 P(i6i1i4i5)�
a3�a4a5 � eP(i1i2~{1i4)a1�a2a3�
 P(i1i4i5i6)
�a4a5�a6 �= �a1�a26�i �u1P(i1i4i5i6)a3�a4a5�a6 ;whi
h are manifestly homotopy invariant.We refrain from going through the list of remaining non-transversal A1 relations here,the general pi
ture should be 
lear from the 
ases that we presented so far.4. Quantum A1 relations: the annulusIn order to get a handle on higher genus topologi
al string amplitudes with multiple boundary
omponents, we 
an take advantage of the quantum A1 relations of [11℄ whi
h follow fromfa
torizations of higher genus amplitudes. For the ellipti
 
urve, the 
harges of the boundaryoperators are su
h that the only non-vanishing open topologi
al string amplitudes beyondtree level appear at one loop, i.e., for annulus world-sheets. The 
harge sele
tion rule forthe topologi
al amplitude is quite restri
tive and implies for the D-brane geometry at handthat there are only two non-trivial fa
torization relations for the annulus. All others 
an beobtained by di�erentiation with respe
t to the boundary moduli ui.The �rst non-trivial relation is diagrammati
ally depi
ted in Fig.4. Expli
itly, denotingby F0;1 and F0;2 the generi
 topologi
al string amplitude on the disk and annulus, respe
-16
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al representation of the quantum A1 relation, given in (32).tively, this quantum A1 relation takes the form [11℄:X
;d �(�)~a1+~d~a2 F0;1a1
a2 �
d F0;2dj b1 + (�)~a1+~a2 F0;1a1a2
 �
d F0;2dj b1�= X
;d �(�)~a1+~b1( ~d+~a2)�
dF0;1a1
b1da2 + (�)~a1+~a2+~b1 ~d�
dF0;1a1a2
b1d� : (32)Here, the labels ai subsume both �eld and boundary 
ondition labels, and �ab denotes theinner produ
t of the boundary �elds (2). Without loss of generality we pi
k the following
hoi
e of boundary operators in (32):a1 � 	(i1;i2)a a2 � �(i2;i1)�b b1 � 
(i3;i3) :The reason why we insert the boundary preserving modulus 
(i3;i3) on the se
ond boundary,is that the fa
torization problem of open higher genus amplitudes is well-de�ned only ifthere is at least one topologi
al observable on ea
h boundary 
omponent [11℄. Otherwise theboundary without insertions bubbles o� in the 
losed string 
hannel and gives rise to a non-stable disk amplitude. This 
orresponds to a non
ompa
t dire
tion in the moduli spa
e ofthe Riemann surfa
e and, as we will dis
uss below, indi
ates divergen
es in the amplitudes.From the �eld 
on�guration it is 
lear that Li1 and Li2 wrap di�erent homology 
lasses.Introdu
ing the following notation for annulus 
orrelators:A(i1i1:::ji2i2:::)
:::j
::: = 

(i1;i1) : : : j
(i2;i2) : : :�ann ; (33)the annulus A1 relation (32) then simpli�es to�a�b �A(i1i1ji3i3)
j 
 �A(i2i2ji3i3)
j 
 � = 3X
=1�T i1i2i3i3i2a

�
�b �P i1i2i1i3i3a�b

�
 �+ (34)+ 3X
=1�P i1i2i3i3i2a�


�b � T i3i1i2i1i3
a�b�

 � :Note that this equation is 
ompatible with homotopy transformations, i.e., 
onta
t termrede�nitions of the trapezoid amplitudes as given in (21). Spe
i�
ally, a homotopy transfor-mation adds �u3�X
;e (f�
�be�a
e � f�b�
e�
ae)�17



to the right-hand side of (34), whi
h vanishes for 
y
li
 
oeÆ
ients, i.e., f�a�b
 = f�b�
a.For the third homology 
lass i3 we have two 
hoi
es: (i) either Li3 wraps a homology
lass di�erent from both, Li1 and Li2 , or (ii) it wraps the same 
lass as Li1 (or Li2). We willnow dis
uss these two 
ases separately:(i) When all three D-branes wrap di�erent homology 
lasses, the quantum A1 relationsbe
ome:�a�b ��u3A(i1i1ji3)
j � � �u3A(i2i2ji3)
j � � = 3X
=1��u3T i1i2i3i2a
�
�b � �u3T i3i1i2i1
a�b�
 � = (35)= 3X
=1 �a�b��u3T i1i2i3i2a
�
�a � �u3T i3i1i2i1
a�a�
 � = 0 :Here we wrote the �eld insertion 
(i3i3) in terms of derivatives with respe
t to u3. In these
ond line we used the Krone
ker deltas from (8) and (11). The last step follows fromexpli
itly inserting the trapezoid amplitudes (8). By 
onsidering analogous relations forother 
hoi
es for the Li's it follows readily thatA(i1i1ji2i2)
j 
 = A(i2i2ji3i3)
j 
 = A(i3i3ji1i1)
j 
 = 1(6�i)2fA(� ) ;for some fA(� ). Sin
e this fun
tion is ui-independent, it 
annot be an instanton series andso must be simple. This fa
t is also 
lear from the geometri
 pi
ture, i.e., it is not possibleto span an annulus between non-parallel D-branes. In prin
iple, we 
ould determine fA(� )via imposing modular invarian
e, but we will identify it below by 
omparison with a knownresult.(ii) If, say, Li1 and Li3 wrap the same homology 
lass, then the annulus fa
torization
ondition (34) simpli�es to�a�b��u3A(i1i1ji3)
j � � fA(� )6�i � = 3X
=1 �a�b�u3P i1i2i3i2a�

�a ; (36)whi
h is manifestly homotopy invariant. The fun
tion �u3A(i2i2ji3)
j � = 1=(6�i)fA(� ) appearshere be
ause Li2 and Li3 wrap di�erent homology 
lasses.Noti
e that in the disk 
orrelators on the right-hand side of (36), one pair of parallelsides of the parallelograms 
orresponds to the same D-brane, Li2; we thus en
ounter a non-transversal 
on�guration and need to regularize the 
orrelators in order to evaluate the sum.Its divergent part is, however, u3-independent and gets annihilated by the u3-derivative, sothat the right-hand side of (36) is well-de�ned. Had we not inserted the boundary modulus
(i3;i3) in the �rst pla
e and thus had 
onsidered the integrated version of (36), the (non-
an
elling) divergent pie
es of the parallelogram 
orrelators would not have been killed; thisdivergen
e re
e
ts the non-stable 
losed string degeneration 
hannel where a disk with a\bare" boundary bubbles o� [11℄.99In a sense, in�nitely many degenerate parallelogram instantons on the right hand side of (36) 
onspire to18



Li2

Li3
Li1

ΣFigure 5: Shown is how annulus instantons 
an be obtained from disk instantons via thefusion of boundary 
omponents. This is what underlies geometri
ally the quantum A1relation (36). The divergen
e arising from 
oin
iding boundary 
omponents disappears if we
onsider a well-de�ned stable degeneration limit, by 
hoosing suitable operator insertions.Sin
e L1 and L3 are parallel, we expe
t world-sheet instantons with the topology ofan annulus to 
ontribute to A(i1i1ji3)
j � . Indeed, if we insert in (36) the parallelogram seriesP � �para as given in (11), we get�u3A(i1i1ji3)
j � = fA(� )6�i + 3X
=1 �u3�para � 3[a� 
℄3� (3� j0; 3(u1 � u3))= fA(� )6�i + 3Xb=1 �u3�para �3b� (3� j0; 3(u1 � u3))= fA(� )6�i + 3Xb=1 �u3 indef :Xn6=�1;m2Zq(n+1)(b+3m)e6�i(n+1)(u1�u3)= fA(� )6�i + �u3 indef :Xn6=0;m2Zqnme6�in(u1�u3) :The interpretation of this series is obvious: it should des
ribe the se
ond derivative of theannulus instanton sum for parallel D-branes, Lik and Lil. Up to an integration 
onstant, we
an read it o� as follows:A(ikjil)�j� = �12fA(� )(uk � ul)2 + indef :Xn6=0;m2Z1nqnme6�in(uk�ul) : (37)This indeed 
oin
ides with the result given in [3℄ for the annulus partition fun
tion in theholomorphi
 limit, F (0;2), provided we identify:fA(� ) = 
onst:� :This term is thus a remnant of the holomorphi
 anomaly of the annulus amplitude.reprodu
e the singularity arising from a non-stable degeneration, i.e., from not having �xed the isometriesof a disk that pin
hes o�. 19
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QFigure 6: A graphi
al realization of the quantum A1 relation that leads to (38). In oursituation only two diagrams on the right-hand side are asso
iated with non-vanishing ampli-tudes.Note that the annulus instanton series (37) was obtained, via the A1 fa
torization re-lation (32), from disk 
orrelators, whi
h by themselves were determined by 
ounting diskinstantons. Geometri
ally, this implies that the annulus instanton 
ontributions 
an bepat
hed together in terms of disk instantons, in a similar spirit as the A1 relations on thedisk imply the pat
hing up of higher N -gons in terms of smaller N -gons. Indeed, there is avery simple geometri
al pi
ture that des
ribes the instanton geometry underlying eq. (36),and this is s
hemati
ally shown in Fig.5.The se
ond non-trivial annulus fa
torization 
ondition on the torus is s
hemati
ally de-pi
ted in Fig.6. Before we present the expli
it quantumA1 relation, let us pi
k the boundaryoperators to be:a1 � �(i1;i2)�a1 a2 � �(i2;i3)�a2 a2 � �(i3;i1)�a3 b1 � 
(i4;i4) :From the 
harge sele
tion rule it is quite straightforward to see that all fa
torization 
hannels,where disks bubble o� from the annulus, must vanish. Another immediate 
onsequen
e ofthe �eld 
on�guration at hand is that Lik for k = 1; 2; 3 must wrap three di�erent homology
lasses. Let us 
hoose the fourth D-brane Li4 to be parallel to, say, Li1 .Then the algebrai
 relation asso
iated to Fig.6 simpli�es 
onsiderably and we get thefollowing 
onstraint on pentagon 
orrelation fun
tions:X
 ��u4}(i1i2i3i4i3i1)�a1�a2�

�a3 � �u4}(i1i2i4i2i3i1)�a1
�
�a2�a3 � = 0 ; (38)where we have already substituted the proper labels for the operators in question. Insertingthe instanton sum (12) for the �ve-point amplitudes we learn that relation (38) is indeedsatis�ed. Moreover, it is easily shown to be homotopy invariant for 
y
li
 
oeÆ
ients f�a�b
,provided we use the annulus relations (35) and (36).20
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ussions.A. Heat equation from the Cardy relation?In [9℄ another kind of annulus fa
torization was dis
ussed, in the spirit of the topologi
al\Cardy-
onstraint". It essentially equates open and 
losed string 
hannels of the annulusdiagram, and reads, in the notation introdu
ed above:�iF0a0:::an�ij�jF0b0:::bm = (39)= X0 � n1 � n2 � n0 � m1 � m2 �m(�1)(~
1+~a0)(~
2+~b0)+~
1+~
2�
1d1�
2d2F0;1a0:::an1d1bm1+1 :::bm2 
2an2+1:::an F0;1b0:::bm1 
1an1+1:::an2d2bm2+1:::bm ;where F0 and �ij are prepotential and metri
 of the 
losed string se
tor, respe
tively. How-ever, as already pointed out in [9℄, while the topologi
al Cardy 
ondition is one of the basi
axioms of boundary TFT [20{22℄, it needs to apply only to 
orrelators without integratedinsertions (for example, to the topologi
al interse
tion amplitude). Whenever there are inte-grated insertions, so that we deal with topologi
al strings rather than with TFT, the proofof the independen
e of the 
orrelator of the annulus metri
 does not ne
essarily go through,and so it may be somewhat un
lear whether the Cardy 
onstraint should be imposed in su
ha situation or not.In fa
t, there are results pointing in either way: it was shown in [29℄ that for boundaryLG models with arbitrarily deformed univariate superpotentials, the Cardy 
onstraint issatis�ed. Moreover, it was shown in [9℄ that the Cardy 
onstraint 
an be imposed on the
orrelators of the A-series of boundary minimal models and this does in fa
t lead pre
iselyto the 
orre
t e�e
tive a
tion [30℄. On the other hand, re
ent results [31℄ indi
ate that theCardy 
ondition 
annot be 
onsistently imposed on 
orrelators of minimal models other thanthe A-series.One of the original motivations for our present work was to see whether the Cardy
ondition 
an be imposed on 
orrelators on the ellipti
 
urve. This question appeared to bepotentially interesting also from a di�erent perspe
tive, namely from the heat equation thatis satis�ed by the three-point 
orrelators:10� ��� + i12� �2�ui2 � �ab
(� jui) = 0 : (40)The question is, whether, as dis
ussed in [5℄, this equation simply re
e
ts the underlyingoperator algebra of the model, or whether there is a deeper reason behind it { su
h as someform of ba
kground (in-)dependen
e. From this point of view, one may interpret (40) as10This is one of the de�ning equations for the ordinary theta-fun
tions; analogous equations hold for thehigher point 
orrelators whi
h are given in terms of inde�nite theta-fun
tions.21



telling how a 
hange of open string ba
kground (ui) 
an be 
ompensated by a 
hange of
losed string ba
kground (� ), or vi
e versa.Our initial observation was that the heat equation (40) may be linked to the Cardy
ondition (39) as follows. Consider relation (39) with n = 2, m = 0, andfa0; a1; a2; b0g �= f	(i1;i2)a ;	(i2;i3)b ;	(i3;i1)
 ;
(i1;i1)g :Note that the boundary 
ondition Li1 appears on both sides of the annulus; we en
ountera non-transversal 
on�guration as in Se
tion 3.2, whi
h will require some regularization.Taking everything together, the Cardy 
ondition (39) then redu
es to the following equation:� 23�i ����ab
(u1 + u2 + u3) + 2�ab


(u1 + u2 + u3) (41)= Xe;f �eTab �d�e(u1 + u2 + u3; u1 � ~u1)�d
e
(u2 + u3 + u1) ;with the understanding that we need to take the limit ~u1 ! u1. Converting the 
-insertionsinto u-derivatives, we see that the LHS of this equation indeed 
oin
ides with the heatequation, provided the RHS vanishes. By inserting the expli
it expressions for the 
orrelators,it however turns out that the RHS does not vanish. One may be tempted to make useof homotopy transformations of the form (21) to remove it, but by their nature as theta-fun
tions they 
annot 
an
el the singularity of the trapezoidal instanton sum, i.e., the Appellfun
tion. Thus, by presenting a 
ounter-example, we 
on
lude that the Cardy 
onstraint (39)does not hold for the ellipti
 
urve, and spe
i�
ally that the heat equation (40) is not impliedby it.Referen
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