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tThe one-loop worldsheet quantum 
orre
tions to the energy of spinning strings on R�S3 withinAdS5�S5 are reexamined. The expli
it expansion in the e�e
tive 't Hooft 
oupling �0 = �=J2is rigorously derived. The expansion 
ontains both analyti
 and non-analyti
 terms in �0, aswell as exponential 
orre
tions. Furthermore, we pin down the origin of the terms that arenot 
aptured by the quantum string Bethe ansatz, whi
h only produ
es analyti
 terms in �0.It is shown that the analyti
 terms arise from string 
u
tuations within the S3, whereas thenon-analyti
 and exponential terms, whi
h are not 
aptured by the Bethe ansatz, originatefrom the 
u
tuations in all dire
tions within the supersymmetri
 sigma model on AdS5 � S5.We also 
omment on the 
ase of spinning string in AdS3 � S1.



1 Introdu
tion and SummaryThe world-sheet one-loop 
orre
tions to the energy of spinning strings in AdS5 � S5 has beenthe subje
t of vivid dis
ussions. A better understanding of these quantum string 
orre
tionswould not only elu
idate various aspe
ts of the AdS/CFT 
orresponden
e between string theoryon AdS5 � S5 and d = 4, N = 4 SU(N
) SYM theory, but would moreover provide valuableinsight into the stru
ture of quantum strings on 
urved, 
ux-supported ba
kgrounds, whi
h sofar are not amenable to standard quantization te
hniques.A bold and possibly very powerful 
onje
ture was put forward, pa
kaging the 
ompletequantum string spe
trum on AdS5�S5 into a Bethe ansatz [1, 2, 3℄. This proposal was partlyinspired by the Bethe ansatz des
ription of anomalous dimensions of gauge-invariant operatorsin SYM [4, 5, 6, 7, 2, 3, 8℄, and likewise the existen
e of a Bethe-ansatz-like stru
ture for the
lassi
al string on AdS5 � S5 [9, 10, 11, 12, 13, 14℄. Needless to say, testing this Bethe ansatzis of utmost importan
e.A parti
ularly restri
tive 
onstraint that has to be met by the Bethe ansatz are the world-sheet 
orre
tions to the Frolov-Tseytlin solutions that 
an be 
omputed semi-
lassi
ally [15,16, 17, 18, 19℄. The present status of these investigations is that the string Bethe ans�atze
apture these semi-
lassi
al results only partly [20, 21, 22, 23, 24℄. The subje
t of this letter isto pinpoint the problem whi
h is 
ausing the disagreement.The one-loop energy shift, i.e., the O(�0) 
orre
tions to the string energy, has been dis
ussedat leading order in the 't Hooft 
oupling �0 = �=J2 in [20, 21℄. In parti
ular, the analysis of[20℄ showed, that these 
orre
tions 
ould be 
omputed from the Landau-Lifs
hitz model, whi
harises from the S3 se
tor of the sigma model. In [22℄ a thorough investigation of the 
omparisonbetween Bethe ansatz and semi-
lassi
al strings was undertaken, 
on
luding, that under theassumption that a 
ertain zeta-fun
tion regularization is appli
able, there is agreement at leastup to order �03 and furthermore the string energy has an analyti
 expansion in �0. However, thesemi-
lassi
al strings and Bethe ansatz expressions were also shown to disagree when expandedfor large winding numbers. This was the �rst indi
ation that the Bethe ansatz may not entirelyreprodu
e the semi-
lassi
al result.In addition to the large winding number dis
repan
y, one 
an 
onvin
e oneself of the limita-tions of zeta-fun
tion regularization, whi
h 
an be pinned down already on the level of relativelysimple sums [24℄. Applying an integral approximation to the one-loop energy shift in the su(2)se
tor, i.e., spinning strings on S3 � R, it was argued that the �0-expansion 
ontains not onlythe analyti
 terms that arise from zeta-fun
tion regularization, but also 
ontains non-analyti
terms of order �0(2n+1)=2 [23, 24, 25℄ and possibly exponential 
orre
tions of order e��0 [24℄.Furthermore, neither of these are 
aptured by the string Bethe ansatz. In [23℄ a proposal wasput forward, whi
h 
orre
ts the Bethe ansatz in order to in
orporate the non-analyti
 terms.The purpose of this letter is to derive the exa
t expression for the 
oeÆ
ients in the �0-expansion of the one-loop worldsheet 
orre
tion in the su(2)-
ase as 
omputed from a semi-
lassi
al analysis in [15, 18℄.Before summarizing our �ndings, let us brie
y re
all the stru
ture of the one-loop energyshift. Consider the 
lassi
al spinning string solution to the supersymmetri
 sigma-model onAdS5�S5, whi
h is supported on S3�R and 
arries S3 angular momentum J . Classi
ally, thesystem is fully des
ribed by the �elds on S3�R, and the remaining dire
tions in the sigma-model1



de
ouple. This is however no longer the 
ase for the quantum 
orre
tions, whi
h are a sum over
hara
teristi
 frequen
ies with 
ontributions from all �elds within the supersymmetri
 AdS5 �S5 sigma-model (in the present 
ase there are two S3 
u
tuation modes, in addition to thetransverse six bosoni
 and eight fermioni
 
u
tuations). In parti
ular, the dire
t quantizationof the 
lassi
al redu
ed system need not lead to the 
orre
t quantum string spe
trum, as wase.g. observed in [26℄. Note that this is quite di�erent to the dual gauge theory, where e.g., thesu(2) subse
tor remains 
losed to all loops, see also [27℄.Expanding the sum over frequen
ies at O(�0) in a series in the e�e
tive 't Hooft 
oupling�0, we �nd the following:� Analyti
 terms �0n: S3 modes� Non-analyti
 terms �0(2n+1)=2: S3, transverse bosoni
 and fermioni
 modes� Exponential terms e��0: S3, transverse bosoni
 and fermioni
 modes.This in parti
ular 
on�rm the leading order in �0 result of [20℄, where it was shown that theanalyti
 terms 
an be reprodu
ed from the Landau-Lifs
hitz model, whi
h only sees the S3-part of the 
u
tuations. Furthermore this is in agreement with the analyti
 terms arising fromzeta-fun
tion regularization in [22, 24℄. The non-analyti
 terms 
on�rm the ones in [23, 25℄,where they were 
onstru
ted by means of an Euler-Ma
laurin type integral approximation tothe sum over 
u
tuation frequen
ies. The pro
edure whi
h we apply systemati
ally in
orporateall these results, and furthermore shows the existen
e of the exponentially suppressed terms.Some 
omments are in order: �rstly, one should keep in mind, that in the su(2) se
tor,whi
h we study here in detail, the solution is not stable for arbitrary 
hoi
es of the parameterk. In parti
ular, the 
u
tuation frequen
ies be
ome 
omplex for 2k > 1. One therefore has toanalyti
ally 
ontinue the expression for the energy in k. This instability 
an also be seen fromthe Bethe ansatz, as was dis
ussed in [20℄. Therefore, any dis
ussion of the su(2) se
tor needsto be taken with a grain of salt.Keeping this in mind, one 
an nevertheless investigate the 
omparison to the Bethe ansatz.The Bethe ansatz of [1℄ 
aptures pre
isely the analyti
 terms, however misses out the non-analyti
 and exponential 
orre
tions. Put di�erently, our �ndings suggest that the Bethe ansatzonly a

ounts for parts of the S3 
u
tuation modes, and in parti
ular misses out the transversebosoni
 and fermioni
 
u
tuations. This may well be not surprising, as the quantum stringBethe ansatz is stru
turally formulated in a similar way to the SYM Bethe ansatz, and hasthe same number of degrees of freedom. The 
orre
tions proposed in [23℄ a

ount for the non-analyti
 terms (at half-�lling), however, it remains un
lear, how to systemati
ally �nd these
orre
tion terms, and furthermore, how to in
orporate the exponential terms.Ideally the present analysis would be done for the stable solution in the sl(2) se
tor, whi
hwas explored and 
ompared to the Bethe ansatz in [22℄, again making use of the infamouszeta-fun
tion regularization. The semi-
lassi
ally 
omputed one-loop energy shift in this se
tor[19℄ is stru
turally more 
ompli
ated, however the method that we apply here 
an be expe
tedto also 
ompute the sl(2) 
ase exa
tly. We shall brie
y dis
uss this at the end of the letter.The plan of this note is as follows. An outline of the general stratagem in se
tion 2 isfollowed by the analysis for the su(2) se
tor energy shift in se
tion 3, for whi
h we derive the
omplete series in �0. We 
on
lude with 
omments on the sl(2) se
tor.2



2 The StrategyConsider the following often-posed problem: given a sum S(�0) = Pn2Zf(n; �0), �nd theexpansion in terms of the parameter �0 around zero. Unless the sum 
onverges uniformly,swapping the sum and expansion is not legitimate, wherefore in su
h an instant one is well-advised to �rst evaluate the sum and then perform the expansion in �0. In order to do so, weshall make use of a ni
e tri
k, whi
h relates the sum to a 
ontour integral in the 
omplex plane,and allows to evaluate it by means of 
omplex analyti
 methods, namely2�iXn2Zf(n; �0) = � ICr dz 
ot(�z)f(z; �0) ; (2.1)with the 
ontour Cr en
ir
ling the real axis. In 
ase f(z; �0) has bran
h-
uts inside the integra-tion 
ontour, the 
ontribution of the integrals around these needs to be subtra
ted on the LHS.Subsequently deforming the 
ontour to in�nity, one is left with the sum over residues or 
utintegrals of possible poles and bran
h-
uts of f(z; �0) in the 
omplex plane. This method wase.g., applied in the 
ontext of light-
one plane-wave string �eld theory [28, 29℄ and a version ofit is known and used in �eld-theory as the Sommerfeld-Watson transform. The advantage is,that in this way one either obtains a 
losed expression for the sum, or the limit �0 ! 0 
an beperformed dire
tly on the resulting 
ut-integrals.As a sample appli
ation 
onsider the simple 
ase of the folded string [16℄, the one-loopenergy shift of whi
h is�ÆEfold = �(p2� 3)� + 12Xn2Z�pn2 + 4�2 + 2pn2 + 2�2 + 5pn2 � 8pn2 + �2� : (2.2)To evaluate this in a series expansion for �!1, apply (2.1), then the integrand is made outof terms of the type pz2 + a2�2, with bran
h-
uts from �ia� to �i1. Deform the 
ontour toen
ir
le the respe
tive 
uts. One 
an formally do this by introdu
ing a 
uto� � for ea
h 
ut-integral, whi
h then drops out when summing over the 
ontributions of all the di�erent 
uts.If one is only interested in the non-exponential 
orre
tion terms, the integral 
an be 
omputedby 
hanging to z = iw� and setting 
oth(�w�) to one. Performing the integrals yields for ea
hvalue of a Ia = 14 �2�2 + a2�2(1 + log(4))� 2a2�2 (log(ia�) + log(1=�))� : (2.3)There is a subtlety for the integral with a = 0, as the bran
h-
ut in this 
ase is not along theimaginary axis, but extends from �1 to 0. The integral needs to be 
omputed separately inthis 
ase and yields (in a

ord with the analyti
 
ontinuation of the zeta-fun
tion)~I0 = �1=12 + �2=2 : (2.4)Adding the terms present in ÆE together, the divergen
es and log-terms 
an
el and we arriveat ÆEfold = 1� �I2 + 2Ip2 + 5~I0 � 8I1� = �3 log 2 �+ (3�p2)� 512� +O(e��) ; (2.5)whi
h indeed agrees with the �ndings in [16, 24℄.3



3 The 
ir
ular string on S3 � RLet us now apply this method to the 
ir
ular string in the su(2) \subse
tor" with two equalspins J1 = J2 = J=2. The one-loop energy shift was obtained to be [15, 18, 20℄ÆEsu(2) = ÆE(0) + 1Xn=1 ÆE(n) ; (3.1)whereÆE(0) = 2 +r1 � 2k2J 2 + k2 � 3r1 � k2J 2 + k2ÆE(n) = 2s1 + (n+pn2 � 4k2)24(J 2 + k2) + 2r1 + n2 � 2k2J 2 + k2 + 4r1 + n2J 2 + k2 � 8r1 + n2 � k2J 2 + k2 :(3.2)The various terms in ÆE(n) are in turn: two S3 
hara
teristi
 frequen
ies, six transverse bosoni
frequen
ies, and eight fermioni
 frequen
ies, whi
h enter with the opposite sign. Furthermore�0 = 1=J 2 and we wish to expand this for large J .To be pre
ise, (3.2) is the result for even winding. For odd winding the fermions are half-integer moded, the �eld being antiperiodi
 [15, 18℄. In this 
ase the fermioni
 
u
tuations areto be repla
ed as followsÆEfermi = �8r1 + n2 � k2J 2 + k2 ! �4r1 + (n+ 1=2)2 � k2J 2 + k2 � 4r1 + (n � 1=2)2 � k2J 2 + k2 : (3.3)We shall fo
us in the main part of the paper on the former and dis
uss the odd windingin appendix A. The frequen
ies appearing in ÆE are real for 2k < 1. We shall assume thisthroughout the 
omputation. The result 
an then be analyti
ally 
ontinued to other values ofk at the end.In order to make use of (2.1), let us �rst rewrite the 1-loop energy shift as a sum over allintegers: the summands are all dependent only on n2 so thatÆEsu(2)pJ 2 + k2 = 12 1Xn=�1 (!n + 
n) : (3.4)where !n and 
n denotes the S3 
u
tuations and transverse/fermioni
 
u
tuations, respe
tively.Note that the subtra
tion term from n = 0 is pre
isely ÆE(0)pJ 2 + k2. Applying (2.1) yieldsthe 
ontour integral representationXn2Z(!n + 
n) = 12i �ICr �IC2� dz 
ot(�z) (!z + 
z) : (3.5)The �rst term is simply the integral around the real axis. In order to understand the se
-ond integral, one needs to analyse the 
ut-stru
ture. Furthermore, the bran
h-
uts determine4
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Figure 1: Change of integration 
ontours. The bran
h-
uts are depi
ted by the yellow zig-zaglines.to whi
h 
ontour integrals we 
an deform the integration along Cr. The bran
h-
uts of thefermioni
 and transverse bosoni
 modes are between[�i1;�ipJ 2 � k2℄ [ [ipJ 2 � k2; i1℄ ; [�i1;�iJ ℄ [ [iJ ; i1℄ ; (3.6)respe
tively and thus extend all along the imaginary axis. The 
u
tuations along the S3 areessentially quarti
 roots, and the 
orresponding two bran
h-
uts 
an be aligned in the followingnon-interse
ting fashion��i1;�i J 2pJ 2 + k2� [ �i J 2pJ 2 + k2 ; i1� ; [�2k; 2k℄ : (3.7)The former is of the same type as the imaginary 
uts in (3.6). The latter is a real 
ut. Due tothis bran
h-
ut the 
orresponding integral around the 
ut (denoted by C2) has to be subtra
tedin (3.5) { see the LHS of �gure 1.The �rst 
ontour around the real axis in (3.5) 
an be deformed to en
ir
le the remainingbran
h-
uts that extend on the imaginary axis, i.e.Xn2Z(!n + 
n) = 12i �IC1 �IC2� dz 
ot(�z) (!z + 
z) ; (3.8)where the deformed 
ontours are depi
ted in �gure 1. Obviously the terms in 
z do not
ontribute to the integral C2. In order to evaluate these integrals for large J we analyse thetwo 
ontributions separately. In summary we will �nd the following 
ontributions:Consider �rst the integral along C1. As the integration is along the imaginary axis, the
otangent be
omes a hyperboli
 
otangent. Changing variables to w = z=J , and expandingfor large J we 
an set the 
otangent to one and evaluate the resulting line integrals. This5



approximation negle
ts exponentially small 
ontributions in J (
f. similar dis
ussion in thepp-wave literature [30, 28, 29℄). We shall see that the integrals along these 
uts yield thenon-analyti
 terms, i.e., of order 1=J 2n+1 = �0n+1=2.The evaluation of the integral along C2 has to be performed without su
h an approximationas the 
otangent 
learly 
annot be set to one. We evaluate these by expanding the integrandin 1=J and then integrating up ea
h term with 
ot(�z) expanded as
ot(x) = 1x + 2x 1Xm=1 1x2 � �2m2 : (3.9)This gives pre
isely the analyti
 terms as they were 
omputed using zeta-fun
tion regularization.A remark in view of the analysis of Beisert and Tseytlin [23℄ is in order. The split betweenregular parts and singular parts of the integral approximation and the sum there, is pre
isely thesplit between the 
ontours C1 and C2. The above argument makes the there-observed agreementbetween regular and singular parts of the integral and sum, respe
tively, pre
ise. Furthermoreour analysis shows that there are exponentially small 
ontributions to the sums, whi
h 
an be
omputed as in [30, 28, 29℄.3.1 Non-analyti
 termsThe integrals along C1 have 
ontributions from all 
u
tuations, i.e., transverse, fermioni
 andS3-modes. Computing the line integrals for the transverse and fermioni
modes, with an expli
it(�xed) 
ut-o� � the integral isItrans =IC�1 dw ÆEtrans(wJ )=� 8 log(J )J 2 + 2�2 + 2(J � k)(J + k) log(�)+ (J 2 � k2) log �J 2 � k2�+ 2 �J 2 + k2� log �J 2 + k2�+ (J 2 � k2)(1 + log(4)) :(3.10)The regulator dependen
e will drop out, on
e we add the 
ontributions from the S3 modes.Similarly the 
ase of the frequen
ies 
oming from the S3 
an be dis
ussed. Perform the
hange of variables suggested by appendix C of [25℄1. The line integral with 
ut-o� � isstraight forwardly 
omputedIS3 =IC�1 dw ÆEtrans(wJ )=� log(4)J 2 � J 2 � k2 � 2�2 � 2 �J 2 � k2� log(�) + �J 2 � k2� log �J 2 + k2�+ k2 log(4) :(3.11)ThusItrans+IS3 = �8 log(J )J 2+3 log �J 2 + k2�J 2�2k2+�J 2 � k2� log �J 2 � k2�+k2 log �J 2 + k2� :(3.12)1Namely, y = n+pn2 � 4k2 for n > 0 and y = n�pn2 � 4k2 for n < 0. Then the integral from n = �� � � ��extends from y = ���p�2 � 4k2 � � ��+p� � 4k2. 6



The 
ontribution of these terms to the energy areÆEna = 12pJ 2 + k2 �8 log(J )J 2 + 2k2 + �k2 �J 2� log �J 2 � k2�� �3J 2 + k2� log �J 2 + k2�� ;(3.13)and have the large J expansionÆEna = �13k6 1J 5 + 13k8 1J 7 � 49120k10 1J 9 +O� 1J 11� : (3.14)These are the non-analyti
 terms that were observed to be missed in the naive zeta-fun
tionregularization of the energy shift [23, 24, 25℄.3.2 Analyti
 termsFinally we are left with the 
ut-integral around C2. As remarked earlier, the integral remainsalong the real axis and thus the 
otangent gives non-trivial 
ontributions in the large J limit.Expanding the integrand ÆE(z) for large J yieldsÆE(z) =�k2 � 12z2 + 12zpz2 � 4k2� 1J 2+�z48 � 5k44 � 18z �2k2 + z2�pz2 � 4k2� 1J 4+� 116 �14k6 + 17z2k4 + 2z4k2 � z6�+ 116z �3k4 + z4�pz2 � 4k2� 1J 6 +O� 1J 8� :(3.15)Integrating ea
h order in J together with 
ot(�z) in the representation (3.9) yields pre
iselythe zeta-fun
tion regularized part, i.e., the analyti
 in �0 terms. Consider �rst the non-zeromode terms (i.e., the sum part of (3.9))1� IC2 dz 1Xn=1 2zz2 � n2! ÆE(z)= 1Xn=1 12 �2k2 + n�pn2 � 4k2 � n�� 1J 2+ 1Xn=1 18 �n4 � 6k4 � n �n2 � 2k2�pn2 � 4k2� 1J 4+ 1Xn=1 116 �10k6 � n2k4 + 2n4k2 � n6 + n �3k4 + n4�pn2 � 4k2� 1J 6 +O� 1J 8� :(3.16)We should emphasize, that at no time in this 
omputation we made use of zeta-fun
tion (orany other) regularization. This result simply provides a rigorous derivation of the energy shiftwithout any unjusti�ed assumptions. 7



Finally we need to address the zero mode terms. The 
ontribution from ÆE(0) in (3.1) hasalready been a

ounted for in (3.4). So the term that still needs to be a

ounted for is the 1=z\zero-mode" term in the expansion of the 
otangent (3.9), whi
h has a non-trivial residue at 0with the 
ontribution�Resz=0 
ot(�z)q4J 2 + 4k2 + (z +pz2 � 4k2)2 = 2J : (3.17)This is again analyti
 in �0 and the 
orresponding term has the expansionÆEzero = 1� k22 1J 2 + 3k48 1J 4 � 5k616 1J 6 +O� 1J 8� : (3.18)In summary we obtain the rather 
on
ise expressions for the energy in an expansion in 1=JÆEna = 12pJ 2 + k2 �8 log(J )J 2 + 2k2 + �k2 � J 2� log �J 2 � k2�� �3J 2 + k2� log �J 2 + k2��ÆEa = 1� 1Xi=1  1J 2i 1Xn=1 �IC2 dz 2zz2 � n2 ÆE(z)��J�2i�!ÆEzero = JpJ 2 + k2 : (3.19)Here, ÆE(z)��J�2i denotes the 
oeÆ
ient of 1=J 2i in the expansion of ÆE(z). Re
all also that inthe expression for the non-analyti
 terms ÆEna is exa
t up to exponential 
orre
tions O �e�J �.ÆEa + ÆEzero reprodu
e the terms that one obtains naively from zeta-fun
tion regularization.3.3 Exponential 
orre
tionsThe exponential 
orre
tions have so far been negle
ted in the 
ontour integral along C1 bysetting 
ot(�J z) for imaginary z and large J to one. Here, we wish to determine an exa
tformula for them. The strategy is to di�erentiate ÆE(n) twi
e with respe
t to J . By thispro
edure we 
an treat ea
h frequen
y separately, as ea
h separate sum 
onverges, althoughwe loose information about the polynomial dependen
e on 1=J . However as we have expli
itexpressions for these to all orders already we 
an safely ignore this issue. For the transverseand fermioni
 
u
tuations the relevant terms after a
ting with O = � 1J ��J �2 is, for a = a(J )S(a) = � 1Xn=1 1(a2 + n2)3=2 : (3.20)Applying (2.1) to this sum yields after integration by partsS(a) = � 1a2 + 12a3 � �a Z 11 dz zpz2 � 1 1sinh2(�az) : (3.21)8



The 
ombined expressions for the transverse modes, integrated up again isÆEtransjexp= 1pJ 2 + k2 O�1 �8S(J )� 4S(pJ 2 + k2)� 2S(pJ 2 � k2)����exp= 12�2pJ 2 + k2 Z 11 dzz2pz2 � 1�� Xl=0;k;ik�l h�2�zpJ 2 + l2 log�1� e�2pJ 2+l2�z�� Li2 �e�2pJ 2+l2�z��i :(3.22)where �0 = 8; �k = �4; �ik = �2 and the polylogs Lin = P1m=1 zmmn . Sin
e the dependen
e onJ is now only in the prefa
tor and the (poly)log-terms, the exponential 
orre
ts are obtainedby expanding the log in a power series in e�J .The remaining term from the S3-
u
tuations areÆES3 jexp = �4O�1p2 ZC2 dz 1(2J 2 + z(z +pz2 � 4k2))3=2 
ot(�z)����exp= 1�pJ 2 + k2 Z 11 dy ypy2 � 1 Z J dJ J(J 2 + k2)3=2 log 1� e� 2�((y2�1)k2+J 2y2)pJ 2+k2y ! : (3.23)The 
ombined expressions (3.22) and (3.23) are the exponentially suppressed terms in the stringenergy shift.3.4 Comments on the AdS3 � S1 se
torFrom the foregoing analysis we 
an learn various points about the spinning strings on AdS3�S1.This 
ase is of interest, as on does not require the analyti
 
ontinuation in the winding numberk that we had to make use of for the S3 � R 
ase. In parti
ular the solutions in this se
torare stable for all values of the winding numbers k and m (we refer the reader to [19, 22℄ forthe notation used). The AdS3 
u
tuations are the obstru
tion to exa
tly evaluating the sumin this 
ase, and they are given by P4I=1 �n;I!(I)n , where !(I)n are roots of a quarti
 polynomialPn(!), and �n;I are signs. As a fun
tion of n these are 
ompli
ated non-analyti
 fun
tions, andunfortunately we have nothing mu
h to say about these. However the stru
ture of the transverseand fermioni
 
u
tuations is similar to the ones in (3.2). In parti
ular, these 
ontribute onlythrough bran
h-
uts of the type C1 and 
an be treated in an identi
al fashion to se
tion 3.1.One �nds that these again 
ontribute with odd powers of 1=J and exponential terms, whi
hwhen 
ompared to [22℄ are again yet to be in
luded into the Bethe ansatz.A
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Appendix A Half-integral fermion frequen
iesIn this appendix we dis
uss the energy shift for the 
ir
ular string in the su(2) se
tor withthe half-integer moded fermion frequen
ies (3.3), whi
h arise for odd winding number. Weshall 
on�ne our analysis to the non-analyti
 terms. Needless to say, the analyti
 terms areun
hanged.The main 
hange to note is that the bran
h-
uts for the frequen
iesp(n� 1=2)2 + J 2 arelo
ated from[1=2�i1; 1=2�iJ ℄[[1=2+iJ ; 1=2+i1℄ ; [�1=2�i1;�1=2�iJ ℄[[�1=2+iJ ;�1=2+i1℄(A.1)Together with the remaining 
ut-integrals for the other transverse modes, these 
ontributeItrans =�2 � (J 2 � k2) log(�) + 12�8 log(J )J 2 + �k2 �J 2� log �J 2 � k2�� 2 �J 2 + k2� log �J 2 + k2�+ �k2 � J 2� (1 + log(4))� (A.2)� is again the 
ut-o�. The S3-
u
tuation frequen
ies are un
hanged (3.11) and joining thesewe arrive atÆEna = 12pJ 2 + k2 �8 log(J )J 2 + 2k2 + �k2 �J 2� log �J 2 � k2�� �3J 2 + k2� log �J 2 + k2��(A.3)This agrees with the 
orre
tion for the integer-moded fermion 
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