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hep-th/0602214DESY-06-018ZMP-HH/06-02Exat expressions for quantum orretions tospinning stringsSakura Sh�afer-NamekiII. Institut f�ur Theoretishe Physik der Universit�at HamburgLuruper Chaussee 149, 22761 Hamburg, GermanyandZentrum f�ur Mathematishe Physik, Universit�at HamburgBundesstrasse 55, 20146 Hamburg, Germanysakura.shafer-nameki at desy.deAbstratThe one-loop worldsheet quantum orretions to the energy of spinning strings on R�S3 withinAdS5�S5 are reexamined. The expliit expansion in the e�etive 't Hooft oupling �0 = �=J2is rigorously derived. The expansion ontains both analyti and non-analyti terms in �0, aswell as exponential orretions. Furthermore, we pin down the origin of the terms that arenot aptured by the quantum string Bethe ansatz, whih only produes analyti terms in �0.It is shown that the analyti terms arise from string utuations within the S3, whereas thenon-analyti and exponential terms, whih are not aptured by the Bethe ansatz, originatefrom the utuations in all diretions within the supersymmetri sigma model on AdS5 � S5.We also omment on the ase of spinning string in AdS3 � S1.



1 Introdution and SummaryThe world-sheet one-loop orretions to the energy of spinning strings in AdS5 � S5 has beenthe subjet of vivid disussions. A better understanding of these quantum string orretionswould not only eluidate various aspets of the AdS/CFT orrespondene between string theoryon AdS5 � S5 and d = 4, N = 4 SU(N) SYM theory, but would moreover provide valuableinsight into the struture of quantum strings on urved, ux-supported bakgrounds, whih sofar are not amenable to standard quantization tehniques.A bold and possibly very powerful onjeture was put forward, pakaging the ompletequantum string spetrum on AdS5�S5 into a Bethe ansatz [1, 2, 3℄. This proposal was partlyinspired by the Bethe ansatz desription of anomalous dimensions of gauge-invariant operatorsin SYM [4, 5, 6, 7, 2, 3, 8℄, and likewise the existene of a Bethe-ansatz-like struture for thelassial string on AdS5 � S5 [9, 10, 11, 12, 13, 14℄. Needless to say, testing this Bethe ansatzis of utmost importane.A partiularly restritive onstraint that has to be met by the Bethe ansatz are the world-sheet orretions to the Frolov-Tseytlin solutions that an be omputed semi-lassially [15,16, 17, 18, 19℄. The present status of these investigations is that the string Bethe ans�atzeapture these semi-lassial results only partly [20, 21, 22, 23, 24℄. The subjet of this letter isto pinpoint the problem whih is ausing the disagreement.The one-loop energy shift, i.e., the O(�0) orretions to the string energy, has been disussedat leading order in the 't Hooft oupling �0 = �=J2 in [20, 21℄. In partiular, the analysis of[20℄ showed, that these orretions ould be omputed from the Landau-Lifshitz model, whiharises from the S3 setor of the sigma model. In [22℄ a thorough investigation of the omparisonbetween Bethe ansatz and semi-lassial strings was undertaken, onluding, that under theassumption that a ertain zeta-funtion regularization is appliable, there is agreement at leastup to order �03 and furthermore the string energy has an analyti expansion in �0. However, thesemi-lassial strings and Bethe ansatz expressions were also shown to disagree when expandedfor large winding numbers. This was the �rst indiation that the Bethe ansatz may not entirelyreprodue the semi-lassial result.In addition to the large winding number disrepany, one an onvine oneself of the limita-tions of zeta-funtion regularization, whih an be pinned down already on the level of relativelysimple sums [24℄. Applying an integral approximation to the one-loop energy shift in the su(2)setor, i.e., spinning strings on S3 � R, it was argued that the �0-expansion ontains not onlythe analyti terms that arise from zeta-funtion regularization, but also ontains non-analytiterms of order �0(2n+1)=2 [23, 24, 25℄ and possibly exponential orretions of order e��0 [24℄.Furthermore, neither of these are aptured by the string Bethe ansatz. In [23℄ a proposal wasput forward, whih orrets the Bethe ansatz in order to inorporate the non-analyti terms.The purpose of this letter is to derive the exat expression for the oeÆients in the �0-expansion of the one-loop worldsheet orretion in the su(2)-ase as omputed from a semi-lassial analysis in [15, 18℄.Before summarizing our �ndings, let us briey reall the struture of the one-loop energyshift. Consider the lassial spinning string solution to the supersymmetri sigma-model onAdS5�S5, whih is supported on S3�R and arries S3 angular momentum J . Classially, thesystem is fully desribed by the �elds on S3�R, and the remaining diretions in the sigma-model1



deouple. This is however no longer the ase for the quantum orretions, whih are a sum overharateristi frequenies with ontributions from all �elds within the supersymmetri AdS5 �S5 sigma-model (in the present ase there are two S3 utuation modes, in addition to thetransverse six bosoni and eight fermioni utuations). In partiular, the diret quantizationof the lassial redued system need not lead to the orret quantum string spetrum, as wase.g. observed in [26℄. Note that this is quite di�erent to the dual gauge theory, where e.g., thesu(2) subsetor remains losed to all loops, see also [27℄.Expanding the sum over frequenies at O(�0) in a series in the e�etive 't Hooft oupling�0, we �nd the following:� Analyti terms �0n: S3 modes� Non-analyti terms �0(2n+1)=2: S3, transverse bosoni and fermioni modes� Exponential terms e��0: S3, transverse bosoni and fermioni modes.This in partiular on�rm the leading order in �0 result of [20℄, where it was shown that theanalyti terms an be reprodued from the Landau-Lifshitz model, whih only sees the S3-part of the utuations. Furthermore this is in agreement with the analyti terms arising fromzeta-funtion regularization in [22, 24℄. The non-analyti terms on�rm the ones in [23, 25℄,where they were onstruted by means of an Euler-Malaurin type integral approximation tothe sum over utuation frequenies. The proedure whih we apply systematially inorporateall these results, and furthermore shows the existene of the exponentially suppressed terms.Some omments are in order: �rstly, one should keep in mind, that in the su(2) setor,whih we study here in detail, the solution is not stable for arbitrary hoies of the parameterk. In partiular, the utuation frequenies beome omplex for 2k > 1. One therefore has toanalytially ontinue the expression for the energy in k. This instability an also be seen fromthe Bethe ansatz, as was disussed in [20℄. Therefore, any disussion of the su(2) setor needsto be taken with a grain of salt.Keeping this in mind, one an nevertheless investigate the omparison to the Bethe ansatz.The Bethe ansatz of [1℄ aptures preisely the analyti terms, however misses out the non-analyti and exponential orretions. Put di�erently, our �ndings suggest that the Bethe ansatzonly aounts for parts of the S3 utuation modes, and in partiular misses out the transversebosoni and fermioni utuations. This may well be not surprising, as the quantum stringBethe ansatz is struturally formulated in a similar way to the SYM Bethe ansatz, and hasthe same number of degrees of freedom. The orretions proposed in [23℄ aount for the non-analyti terms (at half-�lling), however, it remains unlear, how to systematially �nd theseorretion terms, and furthermore, how to inorporate the exponential terms.Ideally the present analysis would be done for the stable solution in the sl(2) setor, whihwas explored and ompared to the Bethe ansatz in [22℄, again making use of the infamouszeta-funtion regularization. The semi-lassially omputed one-loop energy shift in this setor[19℄ is struturally more ompliated, however the method that we apply here an be expetedto also ompute the sl(2) ase exatly. We shall briey disuss this at the end of the letter.The plan of this note is as follows. An outline of the general stratagem in setion 2 isfollowed by the analysis for the su(2) setor energy shift in setion 3, for whih we derive theomplete series in �0. We onlude with omments on the sl(2) setor.2



2 The StrategyConsider the following often-posed problem: given a sum S(�0) = Pn2Zf(n; �0), �nd theexpansion in terms of the parameter �0 around zero. Unless the sum onverges uniformly,swapping the sum and expansion is not legitimate, wherefore in suh an instant one is well-advised to �rst evaluate the sum and then perform the expansion in �0. In order to do so, weshall make use of a nie trik, whih relates the sum to a ontour integral in the omplex plane,and allows to evaluate it by means of omplex analyti methods, namely2�iXn2Zf(n; �0) = � ICr dz ot(�z)f(z; �0) ; (2.1)with the ontour Cr enirling the real axis. In ase f(z; �0) has branh-uts inside the integra-tion ontour, the ontribution of the integrals around these needs to be subtrated on the LHS.Subsequently deforming the ontour to in�nity, one is left with the sum over residues or utintegrals of possible poles and branh-uts of f(z; �0) in the omplex plane. This method wase.g., applied in the ontext of light-one plane-wave string �eld theory [28, 29℄ and a version ofit is known and used in �eld-theory as the Sommerfeld-Watson transform. The advantage is,that in this way one either obtains a losed expression for the sum, or the limit �0 ! 0 an beperformed diretly on the resulting ut-integrals.As a sample appliation onsider the simple ase of the folded string [16℄, the one-loopenergy shift of whih is�ÆEfold = �(p2� 3)� + 12Xn2Z�pn2 + 4�2 + 2pn2 + 2�2 + 5pn2 � 8pn2 + �2� : (2.2)To evaluate this in a series expansion for �!1, apply (2.1), then the integrand is made outof terms of the type pz2 + a2�2, with branh-uts from �ia� to �i1. Deform the ontour toenirle the respetive uts. One an formally do this by introduing a uto� � for eah ut-integral, whih then drops out when summing over the ontributions of all the di�erent uts.If one is only interested in the non-exponential orretion terms, the integral an be omputedby hanging to z = iw� and setting oth(�w�) to one. Performing the integrals yields for eahvalue of a Ia = 14 �2�2 + a2�2(1 + log(4))� 2a2�2 (log(ia�) + log(1=�))� : (2.3)There is a subtlety for the integral with a = 0, as the branh-ut in this ase is not along theimaginary axis, but extends from �1 to 0. The integral needs to be omputed separately inthis ase and yields (in aord with the analyti ontinuation of the zeta-funtion)~I0 = �1=12 + �2=2 : (2.4)Adding the terms present in ÆE together, the divergenes and log-terms anel and we arriveat ÆEfold = 1� �I2 + 2Ip2 + 5~I0 � 8I1� = �3 log 2 �+ (3�p2)� 512� +O(e��) ; (2.5)whih indeed agrees with the �ndings in [16, 24℄.3



3 The irular string on S3 � RLet us now apply this method to the irular string in the su(2) \subsetor" with two equalspins J1 = J2 = J=2. The one-loop energy shift was obtained to be [15, 18, 20℄ÆEsu(2) = ÆE(0) + 1Xn=1 ÆE(n) ; (3.1)whereÆE(0) = 2 +r1 � 2k2J 2 + k2 � 3r1 � k2J 2 + k2ÆE(n) = 2s1 + (n+pn2 � 4k2)24(J 2 + k2) + 2r1 + n2 � 2k2J 2 + k2 + 4r1 + n2J 2 + k2 � 8r1 + n2 � k2J 2 + k2 :(3.2)The various terms in ÆE(n) are in turn: two S3 harateristi frequenies, six transverse bosonifrequenies, and eight fermioni frequenies, whih enter with the opposite sign. Furthermore�0 = 1=J 2 and we wish to expand this for large J .To be preise, (3.2) is the result for even winding. For odd winding the fermions are half-integer moded, the �eld being antiperiodi [15, 18℄. In this ase the fermioni utuations areto be replaed as followsÆEfermi = �8r1 + n2 � k2J 2 + k2 ! �4r1 + (n+ 1=2)2 � k2J 2 + k2 � 4r1 + (n � 1=2)2 � k2J 2 + k2 : (3.3)We shall fous in the main part of the paper on the former and disuss the odd windingin appendix A. The frequenies appearing in ÆE are real for 2k < 1. We shall assume thisthroughout the omputation. The result an then be analytially ontinued to other values ofk at the end.In order to make use of (2.1), let us �rst rewrite the 1-loop energy shift as a sum over allintegers: the summands are all dependent only on n2 so thatÆEsu(2)pJ 2 + k2 = 12 1Xn=�1 (!n + 
n) : (3.4)where !n and 
n denotes the S3 utuations and transverse/fermioni utuations, respetively.Note that the subtration term from n = 0 is preisely ÆE(0)pJ 2 + k2. Applying (2.1) yieldsthe ontour integral representationXn2Z(!n + 
n) = 12i �ICr �IC2� dz ot(�z) (!z + 
z) : (3.5)The �rst term is simply the integral around the real axis. In order to understand the se-ond integral, one needs to analyse the ut-struture. Furthermore, the branh-uts determine4
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Figure 1: Change of integration ontours. The branh-uts are depited by the yellow zig-zaglines.to whih ontour integrals we an deform the integration along Cr. The branh-uts of thefermioni and transverse bosoni modes are between[�i1;�ipJ 2 � k2℄ [ [ipJ 2 � k2; i1℄ ; [�i1;�iJ ℄ [ [iJ ; i1℄ ; (3.6)respetively and thus extend all along the imaginary axis. The utuations along the S3 areessentially quarti roots, and the orresponding two branh-uts an be aligned in the followingnon-interseting fashion��i1;�i J 2pJ 2 + k2� [ �i J 2pJ 2 + k2 ; i1� ; [�2k; 2k℄ : (3.7)The former is of the same type as the imaginary uts in (3.6). The latter is a real ut. Due tothis branh-ut the orresponding integral around the ut (denoted by C2) has to be subtratedin (3.5) { see the LHS of �gure 1.The �rst ontour around the real axis in (3.5) an be deformed to enirle the remainingbranh-uts that extend on the imaginary axis, i.e.Xn2Z(!n + 
n) = 12i �IC1 �IC2� dz ot(�z) (!z + 
z) ; (3.8)where the deformed ontours are depited in �gure 1. Obviously the terms in 
z do notontribute to the integral C2. In order to evaluate these integrals for large J we analyse thetwo ontributions separately. In summary we will �nd the following ontributions:Consider �rst the integral along C1. As the integration is along the imaginary axis, theotangent beomes a hyperboli otangent. Changing variables to w = z=J , and expandingfor large J we an set the otangent to one and evaluate the resulting line integrals. This5



approximation neglets exponentially small ontributions in J (f. similar disussion in thepp-wave literature [30, 28, 29℄). We shall see that the integrals along these uts yield thenon-analyti terms, i.e., of order 1=J 2n+1 = �0n+1=2.The evaluation of the integral along C2 has to be performed without suh an approximationas the otangent learly annot be set to one. We evaluate these by expanding the integrandin 1=J and then integrating up eah term with ot(�z) expanded asot(x) = 1x + 2x 1Xm=1 1x2 � �2m2 : (3.9)This gives preisely the analyti terms as they were omputed using zeta-funtion regularization.A remark in view of the analysis of Beisert and Tseytlin [23℄ is in order. The split betweenregular parts and singular parts of the integral approximation and the sum there, is preisely thesplit between the ontours C1 and C2. The above argument makes the there-observed agreementbetween regular and singular parts of the integral and sum, respetively, preise. Furthermoreour analysis shows that there are exponentially small ontributions to the sums, whih an beomputed as in [30, 28, 29℄.3.1 Non-analyti termsThe integrals along C1 have ontributions from all utuations, i.e., transverse, fermioni andS3-modes. Computing the line integrals for the transverse and fermionimodes, with an expliit(�xed) ut-o� � the integral isItrans =IC�1 dw ÆEtrans(wJ )=� 8 log(J )J 2 + 2�2 + 2(J � k)(J + k) log(�)+ (J 2 � k2) log �J 2 � k2�+ 2 �J 2 + k2� log �J 2 + k2�+ (J 2 � k2)(1 + log(4)) :(3.10)The regulator dependene will drop out, one we add the ontributions from the S3 modes.Similarly the ase of the frequenies oming from the S3 an be disussed. Perform thehange of variables suggested by appendix C of [25℄1. The line integral with ut-o� � isstraight forwardly omputedIS3 =IC�1 dw ÆEtrans(wJ )=� log(4)J 2 � J 2 � k2 � 2�2 � 2 �J 2 � k2� log(�) + �J 2 � k2� log �J 2 + k2�+ k2 log(4) :(3.11)ThusItrans+IS3 = �8 log(J )J 2+3 log �J 2 + k2�J 2�2k2+�J 2 � k2� log �J 2 � k2�+k2 log �J 2 + k2� :(3.12)1Namely, y = n+pn2 � 4k2 for n > 0 and y = n�pn2 � 4k2 for n < 0. Then the integral from n = �� � � ��extends from y = ���p�2 � 4k2 � � ��+p� � 4k2. 6



The ontribution of these terms to the energy areÆEna = 12pJ 2 + k2 �8 log(J )J 2 + 2k2 + �k2 �J 2� log �J 2 � k2�� �3J 2 + k2� log �J 2 + k2�� ;(3.13)and have the large J expansionÆEna = �13k6 1J 5 + 13k8 1J 7 � 49120k10 1J 9 +O� 1J 11� : (3.14)These are the non-analyti terms that were observed to be missed in the naive zeta-funtionregularization of the energy shift [23, 24, 25℄.3.2 Analyti termsFinally we are left with the ut-integral around C2. As remarked earlier, the integral remainsalong the real axis and thus the otangent gives non-trivial ontributions in the large J limit.Expanding the integrand ÆE(z) for large J yieldsÆE(z) =�k2 � 12z2 + 12zpz2 � 4k2� 1J 2+�z48 � 5k44 � 18z �2k2 + z2�pz2 � 4k2� 1J 4+� 116 �14k6 + 17z2k4 + 2z4k2 � z6�+ 116z �3k4 + z4�pz2 � 4k2� 1J 6 +O� 1J 8� :(3.15)Integrating eah order in J together with ot(�z) in the representation (3.9) yields preiselythe zeta-funtion regularized part, i.e., the analyti in �0 terms. Consider �rst the non-zeromode terms (i.e., the sum part of (3.9))1� IC2 dz 1Xn=1 2zz2 � n2! ÆE(z)= 1Xn=1 12 �2k2 + n�pn2 � 4k2 � n�� 1J 2+ 1Xn=1 18 �n4 � 6k4 � n �n2 � 2k2�pn2 � 4k2� 1J 4+ 1Xn=1 116 �10k6 � n2k4 + 2n4k2 � n6 + n �3k4 + n4�pn2 � 4k2� 1J 6 +O� 1J 8� :(3.16)We should emphasize, that at no time in this omputation we made use of zeta-funtion (orany other) regularization. This result simply provides a rigorous derivation of the energy shiftwithout any unjusti�ed assumptions. 7



Finally we need to address the zero mode terms. The ontribution from ÆE(0) in (3.1) hasalready been aounted for in (3.4). So the term that still needs to be aounted for is the 1=z\zero-mode" term in the expansion of the otangent (3.9), whih has a non-trivial residue at 0with the ontribution�Resz=0 ot(�z)q4J 2 + 4k2 + (z +pz2 � 4k2)2 = 2J : (3.17)This is again analyti in �0 and the orresponding term has the expansionÆEzero = 1� k22 1J 2 + 3k48 1J 4 � 5k616 1J 6 +O� 1J 8� : (3.18)In summary we obtain the rather onise expressions for the energy in an expansion in 1=JÆEna = 12pJ 2 + k2 �8 log(J )J 2 + 2k2 + �k2 � J 2� log �J 2 � k2�� �3J 2 + k2� log �J 2 + k2��ÆEa = 1� 1Xi=1  1J 2i 1Xn=1 �IC2 dz 2zz2 � n2 ÆE(z)��J�2i�!ÆEzero = JpJ 2 + k2 : (3.19)Here, ÆE(z)��J�2i denotes the oeÆient of 1=J 2i in the expansion of ÆE(z). Reall also that inthe expression for the non-analyti terms ÆEna is exat up to exponential orretions O �e�J �.ÆEa + ÆEzero reprodue the terms that one obtains naively from zeta-funtion regularization.3.3 Exponential orretionsThe exponential orretions have so far been negleted in the ontour integral along C1 bysetting ot(�J z) for imaginary z and large J to one. Here, we wish to determine an exatformula for them. The strategy is to di�erentiate ÆE(n) twie with respet to J . By thisproedure we an treat eah frequeny separately, as eah separate sum onverges, althoughwe loose information about the polynomial dependene on 1=J . However as we have expliitexpressions for these to all orders already we an safely ignore this issue. For the transverseand fermioni utuations the relevant terms after ating with O = � 1J ��J �2 is, for a = a(J )S(a) = � 1Xn=1 1(a2 + n2)3=2 : (3.20)Applying (2.1) to this sum yields after integration by partsS(a) = � 1a2 + 12a3 � �a Z 11 dz zpz2 � 1 1sinh2(�az) : (3.21)8



The ombined expressions for the transverse modes, integrated up again isÆEtransjexp= 1pJ 2 + k2 O�1 �8S(J )� 4S(pJ 2 + k2)� 2S(pJ 2 � k2)����exp= 12�2pJ 2 + k2 Z 11 dzz2pz2 � 1�� Xl=0;k;ik�l h�2�zpJ 2 + l2 log�1� e�2pJ 2+l2�z�� Li2 �e�2pJ 2+l2�z��i :(3.22)where �0 = 8; �k = �4; �ik = �2 and the polylogs Lin = P1m=1 zmmn . Sine the dependene onJ is now only in the prefator and the (poly)log-terms, the exponential orrets are obtainedby expanding the log in a power series in e�J .The remaining term from the S3-utuations areÆES3 jexp = �4O�1p2 ZC2 dz 1(2J 2 + z(z +pz2 � 4k2))3=2 ot(�z)����exp= 1�pJ 2 + k2 Z 11 dy ypy2 � 1 Z J dJ J(J 2 + k2)3=2 log 1� e� 2�((y2�1)k2+J 2y2)pJ 2+k2y ! : (3.23)The ombined expressions (3.22) and (3.23) are the exponentially suppressed terms in the stringenergy shift.3.4 Comments on the AdS3 � S1 setorFrom the foregoing analysis we an learn various points about the spinning strings on AdS3�S1.This ase is of interest, as on does not require the analyti ontinuation in the winding numberk that we had to make use of for the S3 � R ase. In partiular the solutions in this setorare stable for all values of the winding numbers k and m (we refer the reader to [19, 22℄ forthe notation used). The AdS3 utuations are the obstrution to exatly evaluating the sumin this ase, and they are given by P4I=1 �n;I!(I)n , where !(I)n are roots of a quarti polynomialPn(!), and �n;I are signs. As a funtion of n these are ompliated non-analyti funtions, andunfortunately we have nothing muh to say about these. However the struture of the transverseand fermioni utuations is similar to the ones in (3.2). In partiular, these ontribute onlythrough branh-uts of the type C1 and an be treated in an idential fashion to setion 3.1.One �nds that these again ontribute with odd powers of 1=J and exponential terms, whihwhen ompared to [22℄ are again yet to be inluded into the Bethe ansatz.AknowledgmentsI thank S. Frolov, A. Tseytlin, M. Zamaklar and K. Zarembo for disussions and for ommentson the draft. This work was partially supported by the DFG, DAAD, and European RTNProgram MRTN-CT-2004-503369. 9



Appendix A Half-integral fermion frequeniesIn this appendix we disuss the energy shift for the irular string in the su(2) setor withthe half-integer moded fermion frequenies (3.3), whih arise for odd winding number. Weshall on�ne our analysis to the non-analyti terms. Needless to say, the analyti terms areunhanged.The main hange to note is that the branh-uts for the frequeniesp(n� 1=2)2 + J 2 areloated from[1=2�i1; 1=2�iJ ℄[[1=2+iJ ; 1=2+i1℄ ; [�1=2�i1;�1=2�iJ ℄[[�1=2+iJ ;�1=2+i1℄(A.1)Together with the remaining ut-integrals for the other transverse modes, these ontributeItrans =�2 � (J 2 � k2) log(�) + 12�8 log(J )J 2 + �k2 �J 2� log �J 2 � k2�� 2 �J 2 + k2� log �J 2 + k2�+ �k2 � J 2� (1 + log(4))� (A.2)� is again the ut-o�. The S3-utuation frequenies are unhanged (3.11) and joining thesewe arrive atÆEna = 12pJ 2 + k2 �8 log(J )J 2 + 2k2 + �k2 �J 2� log �J 2 � k2�� �3J 2 + k2� log �J 2 + k2��(A.3)This agrees with the orretion for the integer-moded fermion ase in the main part of thepaper.Referenes[1℄ G. Arutyunov, S. Frolov, and M. Staudaher, Bethe ansatz for quantum strings, JHEP10 (2004) 016, [hep-th/0406256℄.[2℄ M. Staudaher, The fatorized S-matrix of CFT/AdS, JHEP 05 (2005) 054,[hep-th/0412188℄.[3℄ N. Beisert and M. Staudaher, Long-range PSU(2,2j4) Bethe ansaetze for gauge theoryand strings, hep-th/0504190.[4℄ J. A. Minahan and K. Zarembo, The bethe-ansatz for N = 4 super yang-mills, JHEP 03(2003) 013, [hep-th/0212208℄.[5℄ N. Beisert and M. Staudaher, The N = 4 SYM integrable super spin hain, Nul. Phys.B670 (2003) 439{463, [hep-th/0307042℄.[6℄ D. Serban and M. Staudaher, Planar N = 4 gauge theory and the Inozemtsev long rangespin hain, JHEP 06 (2004) 001, [hep-th/0401057℄.10
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