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.eduABSTRACTThe four-dimensionalN = 1 supergravity theories arising in 
ompa
ti�
ations of type IIAand type IIB on generalized orientifold ba
kgrounds with ba
kground 
uxes are dis
ussed.The K�ahler potentials are derived for redu
tions on SU(3) stru
ture orientifolds andshown to 
onsist of the logarithm of the two Hit
hin fun
tionals. These are fun
tionsof even and odd forms parameterizing the geometry of the internal manifold, the B-�eldand the dilaton. The superpotentials indu
ed by ba
kground 
uxes and the non-Calabi-Yau geometry are determined by a redu
tion of the type IIA and type IIB fermioni
a
tions on SU(3) and generalized SU(3) � SU(3) manifolds. Mirror spa
es of Calabi-Yau orientifolds with ele
tri
 and part of the magneti
 NS-NS 
uxes are 
onje
tured tobe 
ertain SU(3)�SU(3) stru
ture manifolds. Eviden
e for this identi�
ation is providedby 
omparing the generalized type IIA and type IIB superpotentials.
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1 Introdu
tionThe 
onstru
tion of semi-realisti
 type II string va
ua for parti
le physi
s and 
osmologyattra
ted many e�orts within the last years [1, 2℄. Of parti
ular interest are s
enarioswith spa
e-time �lling D-branes, whi
h 
an provide for non-Abelian gauge groups ontheir world-volume. However, demanding the internal manifold to be 
ompa
t, 
onsistentsetups also need to in
lude orientifold planes 
arrying a negative tension. They arise instring theories modded out by a geometri
 symmetry of the ba
kground in addition tothe world-sheet parity operation [3, 4, 5℄.From a phenomenologi
al point of view orientifold 
ompa
ti�
ations resulting in afour-dimensional N = 1 supergravity theory are of importan
e. Prominent examplesare type II theories on Calabi-Yau orientifolds, sin
e redu
tions on Calabi-Yau manifoldsyield a four-dimensional N = 2 supergravity while the orientifold proje
tion breaks thesupersymmetry further down to N = 1 [6, 7, 8, 9, 10, 11℄. In general these theories admita large number of moduli �elds whi
h are 
at dire
tions of the potential and not �xed inthe va
uum. A possible me
hanism to generate a non-trivial potential for these �elds isthe in
lusion of ba
kground 
uxes arising as va
uum expe
tation values of �eld strengthsin the supergravity theory [11℄. This potential generi
ally possesses supersymmetri
va
ua in whi
h a part or all moduli are �xed [12, 7, 13, 14, 15, 16, 17, 18, 19, 20℄. Inorder to study the properties of these va
ua it is ne
essary to know the 
hara
teristi
 dataof the 
orresponding four-dimensional N = 1 supergravity theory. Using a Kaluza-Kleinredu
tion the four-dimensional N = 1 theories of type II Calabi-Yau orientifolds weredetermined in refs. [7, 22, 23, 24, 25℄ and reviewed, for example, in refs. [26, 11, 27, 28℄.In this paper we determine the N = 1 data for a more general 
lass of 
ompa
ti�-
ations arising if the internal manifoldM6 is no longer restri
ted to be Calabi-Yau. Inorder that the resulting four-dimensional theory still admits some supersymmetryM6
annot be 
hosen arbitrarily, but rather has to admit at least one globally de�ned spinor.In 
ase thatM6 has exa
tly one globally de�ned spinor the stru
ture group of the man-ifold redu
es to SU(3) [29, 30, 31℄. Equivalently, these manifolds are 
hara
terized bythe existen
e of two globally de�ned forms, a real two-form J and a 
omplex three-form
. These forms are in general not 
losed, whi
h indi
ates a deviation from the Calabi-Yau 
ase. This di�eren
e 
an also be en
oded by spe
ifying a new 
onne
tion on M6with torsion whi
h repla
es the ordinary Levi-Cevita 
onne
tion. The torsion 
an beinterpreted as a ba
kground 
ux of the metri
 
onne
tion. Compa
ti�
ations on SU(3)stru
ture manifolds were 
onsidered in the early works [32, 33, 34℄ and more re
entlyextended in refs. [35℄{[73℄. In spe
i�
 settings these `metri
 
uxes' arise as mirrors ofCalabi-Yau 
ompa
ti�
ations with ele
tri
 NS-NS 
uxes [36, 43℄.Compa
tifying type II string theory on an SU(3) stru
ture manifold leads to an ef-fe
tive four-dimensional N = 2 supergravity theory with a potential depending on thetorsion of M6. As we will dis
uss in more detail below, one 
an still impose an appro-priate orientifold proje
tion whi
h trun
ates this theory to an N = 1 supergravity. Forspe
i�
 set-ups this was also argued in the re
ent works [21, 74, 75, 76℄. Supersymmetri
orientifold proje
tions yield setups with O6 planes in type IIA while for type IIB re-du
tions two setups with O3 and O7 as well as O5 or O9 planes are en
ountered. Ouranalysis fo
uses on the e�e
tive N = 1 four-dimensional supergravity theory for the bulk�elds of these 
on�gurations, while freezing all moduli arising from the D-brane se
tor.1



In 
ontrast to the standard Calabi-Yau 
ompa
ti�
ations the redu
tion on SU(3)stru
ture manifolds is more subtle. This 
an be tra
ed ba
k to the fa
t that in thesegeneralized 
ompa
ti�
ations the distin
tion between massless or light modes and themassive Kaluza-Klein modes is not anymore straightforward. Re
all that in Calabi-Yau
ompa
ti�
ations the massless modes are in one-to-one 
orresponden
e with the harmoni
forms ofM6. Ba
kground 
uxes generate a potential for these modes and 
an lift themto an intermediate mass s
ale. In redu
tions on SU(3) stru
ture manifolds a potentialis indu
ed by the non-trivial torsion ofM6. However, the masses a
quired by the four-dimensional �elds need not be generated at an intermediate s
ale. The spe
i�
ation of adistinguished �nite set of modes 
orresponding to the light degrees of freedom is missingso far. It is therefore desirable to avoid a trun
ation to light modes by working withgeneral forms on the ten-dimensional ba
kground M3;1 �M6. Most of our 
al
ulationswill be performed within this general approa
h. We will argue that it remains possible todetermine the four-dimensional N = 1 spe
trum by imposing the orientifold proje
tion.Only in a se
ond step we spe
ify a redu
tion to a �nite set of modes in order to illustrateour results and to dis
uss mirror symmetry to Calabi-Yau orientifolds with ba
kground
uxes.In this paper we will fo
us mainly on the 
hiral �eld spa
e of the four-dimensionaltheory. We will determine the lo
al metri
 on this spa
e and show that it 
an be derivedfrom a K�ahler potential as demanded by N = 1 supersymmetry. Sin
e the orientifoldproje
tion indu
es a 
onsistent redu
tion of a four-dimensionalN = 2 supergravity theoryto N = 1 this K�ahler manifold is a subspa
e of the full N = 2 s
alar �eld spa
e [77, 78℄.Lo
ally it takes the formMK�MQ whereMK andMQ are the subspa
es of the N = 2spe
ial K�ahler and quaternioni
 manifolds respe
tively. MQ has half the dimension ofthe quaternioni
 spa
e. The K�ahler potentials for both manifolds are shown to be thelogarithms of the Hit
hin fun
tionals [79, 80, 81℄ for spe
i�
 even and odd forms onM6.In 
ompa
ti�
ations on SU(3) stru
ture manifolds a s
alar potential is indu
ed by thetorsion as well as possible ba
kground 
uxes. Due to the N = 1 supersymmetry it 
an been
oded by a holomorphi
 superpotential and D-terms arising due to non-trivial gaugings.In this work we derive the superpotentials for both type IIA and type IIB orientifoldsetups by evaluating appropriate fermioni
 mass terms. This extends and 
on�rms theresults already present in the literature [18, 19, 61, 64, 21, 11℄. The knowledge of thesuperpotential together with the K�ahler potential is ne
essary to determine the 
onditionson four-dimensional supersymmetri
 va
ua. It is readily 
he
ked that these 
onditionsevaluated for the orientifold set-ups are in a

ord with the N = 1 
onditions on ten-dimensional ba
kgrounds derived in ref. [63, 68℄.Re
ently, it was argued that more general four-dimensional supergravity theories 
anarise in 
ompa
ti�
ations of type II string theory on generalized manifolds with SU(3)�SU(3) stru
ture [32, 47, 48, 49, 63, 64℄. The notion of a generalized (
omplex) manifoldwas �rst introdu
ed by Hit
hin [80℄ and Gualtieri [84℄. An intensive dis
ussion of SU(3)�SU(3) stru
tures and their appli
ation in N = 2 
ompa
ti�
ations 
an be found inthe work of Witt [85℄ and Gra~na, Waldram and Louis [64℄. We will make some �rststeps in exploring N = 1 orientifold 
ompa
ti�
ations on manifolds with SU(3)�SU(3)stru
ture by extending the orientifold proje
tion to these spa
es and deriving the indu
edsuperpotential due to the non-Calabi-Yau nature of the internal spa
e. Our aim is to usethese extended superpotentials to dis
uss possible mirror geometries of type II Calabi-Yau2




ompa
ti�
ations with 
uxes.The 
ompletion of mirror symmetry in the presen
e of NS-NS ba
kground 
uxes is anarea of intense 
urrent resear
h [36, 43, 55, 82, 83, 64, 74, 67, 75℄. For 
ompa
ti�
ationswith ele
tri
 NS-NS 
uxes it was argued in refs. [36, 43℄ that the mirror geometry isa set of spe
i�
 SU(3) stru
ture manifolds known as half-
at manifolds. To extendthis 
onje
ture to the magneti
 NS-NS 
uxes various more drasti
 deviations from thestandard 
ompa
ti�
ations are expe
ted [82, 83, 64, 74℄. We will use our results on theorientifold superpotentials to 
onje
ture a possible mirror geometry of 
ompa
ti�
ationswith part of the ele
tri
 and magneti
 ba
kground 
uxes. These mirrors are extensionsof generalized manifolds with SU(3)�SU(3) stru
ture.1 Note however, that in order toa

ommodate the mirror of the magneti
 NS-NS 
uxes the mirror metri
 on the internalspa
e might no longer be well-de�ned. In our analysis it will be suÆ
ient to 
hara
terizethese generalized spa
es by the existen
e of spe
ial even and odd forms not making useof an asso
iated metri
.This paper is organized as follows. At the end of this introdu
tion we give a short sum-mary of our results. In se
tion 2 we brie
y review some mathemati
al fa
ts about SU(3)stru
ture manifolds and 
omment on the 
ompa
ti�
ations of the type II supergravityon these spa
es. We immediately turn to the de�nition of the orientifold proje
tions ofthe type IIA/B theories in se
tion 3.1. This allows us to determine the N = 1 spe
trumof the four-dimensional supergravity theories arising in the orientifold 
ompa
ti�
ationsin se
tion 3.2. The K�ahler potentials and their relation to the Hit
hin fun
tionals aredis
ussed in se
tion 3.3. In se
tion 3.4 we derive the superpotentials of type IIA andtype IIB orientifolds indu
ed by the ba
kground 
uxes and the torsion ofM6. In orderto fully identify these superpotentials under mirror symmetry the 
ompa
ti�
ations needto be performed on a more general 
lass of spa
esM~Y . In se
tion 4 we use our resultson the K�ahler and superpotentials to 
onje
ture a possible identi�
ation of part of themagneti
 NS-NS 
uxes with properties of the mirror spa
eM~Y .Summary of resultsFor the 
onvenien
e of the reader we will here brie
y summarize our results. In type IIAorientifolds with O6 planes, the globally de�ned three-form 
 is 
ombined into a normal-ized three-form �odd = C
, where C is proportional to the dilaton e��̂. The real part ofthis form is 
omplexi�ed with the R-R three-form Ĉ3 with indi
es entirely on M6 intothe 
ombination �odd
 = Ĉ3+ iRe(�odd). The globally de�ned two-form J is 
omplexi�edwith the NS-NS �eld B̂2 as J
 = �B̂2 + iJ . The 
hiral �elds of the four-dimensionaltheory arise by expanding the 
omplex forms J
 and �odd
 into an appropriate, not ne
-essarily �nite, set of real two- and three-forms of M6. The 
omplex s
alar 
oeÆ
ientsin this expansion are the bosoni
 �elds in the 
hiral multiplets. The K�ahler potential onthe 
hiral �eld spa
e is given byK�J
;�odd
 � = � ln �� iZM6 
�ev; ��ev��� 2 ln �iZM6 
�odd; ��odd�� ; (1.1)where �ev = eJ
. The anti-symmetri
 pairing 
�; �� is de�ned in (3.20) and repla
esthe wedge produ
t. The K�ahler potential 
an be identi�ed as the logarithm of the1A similar 
onje
ture was mentioned in ref. [64℄ and we are grateful to Jan Louis for dis
ussions onthat point. 3



Hit
hin fun
tionals for two- and three-forms on M6 [79℄. The superpotential for the
hiral multiplets is given by 2W �J
;�odd
 � = ZM6 
F ev + dH�odd
 ;�ev� (1.2)where F ev is the ba
kground 
ux of the even R-R �eld strengths. The NS-NS ba
kground
ux H3 of the NS-NS �eld strength dB̂2 arises through the exterior derivative dH =d �H3^. The superpotential is readily shown to be holomorphi
 in the 
omplex N = 1
hiral multiplets. In the expression (1.2) both d�odd
 and d�ev are linear in the 
omplex
oordinates and indi
ate a deviation from the Calabi-Yau 
ompa
ti�
ations where J and
 are 
losed.In type IIB orientifold 
ompa
ti�
ations the role of even and odd forms is inter-
hanged. One 
ombines the globally de�ned two-form J together with the B-�elds B̂2and the dilaton into the 
omplex even form �ev = e��̂e�B̂2+iJ . In orientifolds with O3=O7planes the real part of this form is 
omplexi�ed with the sum of even R-R potentials whileit 
ontains the imaginary part of �ev for O5=O9 orientifolds:O3=O7 : �ev
 = e�B̂2 ^ Ĉev + iRe(�ev) ; (1.3)O5=O9 : �ev
 = e�B̂2 ^ Ĉev + iIm(�ev) ; (1.4)where e�B̂2 ^ Ĉev 
ontains only forms with all indi
es on the internal manifold. The
omplex forms �ev
 are expanded into real even forms on the manifoldM6 with 
omplexs
alar 
oeÆ
ients in four spa
e-time dimensions. These 
omplex �elds are the bosoni

omponents of a set of 
hiral multiplets. The expansion is 
hosen in a

ord with theorientifold proje
tion whi
h di�ers for O3=O7 and O5=O9 orientifolds. Additional 
hiralmultiplets are 
omplex s
alars z parameterizing independent degrees of freedom of theglobally de�ned three-form �odd = 
. The K�ahler potential for all 
hiral multiplets isgiven by K�z;�ev
 � = � ln �� iZM6 
�odd; ��odd��� 2 ln �iZM6 
�ev; ��ev�� : (1.5)Non-trivial NS-NS and R-R ba
kground 
uxes H3 and F3 as well as the torsion of M6indu
e a superpotential for the 
hiral �elds. It di�ers for the two type IIB setups andreads 2WO3=O7 = ZM6 
F3 + dH�ev
 ;�odd� ; WO5=O9 = ZM6 
F3 + d�ev
 ;�odd� ; (1.6)where dH = d�H3^. In addition several D-terms arise due to 
uxes and torsion, whi
hare more 
arefully dis
ussed in a separate publi
ation [86℄. In both type IIA and type IIBdual linear multiplets 
an be
ome massive. The s
alar fun
tion en
oding their kineti
terms are the Legendre transforms of the K�ahler potentials given above.Note that in the large volume and large 
omplex stru
ture limit the type II K�ahlerpotentials are formally mirror symmetri
 under the ex
hange �ev=odd $ �odd=ev. The
omplex forms �odd
 and �ev
 are linear in the 
omplex �elds and identi�ed under the2See also refs. [18, 19, 61, 64, 21, 11℄. 4



mirror map. The type IIA and type IIB superpotentials 
annot be identi�ed undermirror symmetry. This is due to the fa
t that the dual of half of the NS-NS 
ux H3 hasno mirror parter. Choosing a symple
ti
 basis of harmoni
 three-forms on M6 ele
tri
and magneti
 NS-NS 
uxes 
an be distinguished. We propose that the mirror for part ofthe ele
tri
 and magneti
 NS-NS 
uxes HQ3 arises if one 
ompa
ti�es on a more general
lass of spa
es. In this 
onje
ture one 
an allow for all but one magneti
 and ele
tri
 
uxdire
tion.3 The dual spa
es are extensions of almost generalized 
omplex manifolds witha more generi
 globally de�ned odd form. More pre
isely, in addition to the three-form
 the globally de�ned odd forms �odd and �odd lo
ally 
ontain a one- and �ve-form 
1and 
5 as 4�odd = e�B̂2 ^ (C
1 + C
 + C
5) ; �odd = e�B̂2 ^ (
1 + 
+ 
5) : (1.7)For the general odd forms �odd and �odd the K�ahler potentials (1.1) and (1.5) are repla
edby the extended Hit
hin fun
tionals introdu
ed in refs. [80, 81℄. Furthermore, using afermioni
 redu
tion the superpotentials (1.2) and (1.6) are shown to naturally generalizeto the odd forms �odd and �odd. Also the 
omplex form �odd
 in
luding the R-R �elds isgeneralized to �odd
 = e�B̂2 ^ Ĉodd+ iRe(�odd) ; (1.8)where e�B̂2 ^ Ĉodd 
ontains only forms with all indi
es on the internal manifold.In a �nite redu
tion the magneti
 
uxes arise as the mirror of the torsion d
1 su
hthat dRe(
1 + 
+ 
5) $ HQ3 ; (1.9)where the ele
tri
 NS-NS 
uxes are identi�ed as the mirrors of d
 as proposed in ref. [36℄.Hen
e, `generalized half-
at' manifolds obeying dIm(
1 + 
 + 
5) = 0 and generi
allynon-zero dRe(
1 + 
 + 
5) are 
andidate mirrors of NS-NS 
ux 
ompa
ti�
ations. Weprovide eviden
e for the identi�
ation (1.9) by 
omparing the holomorphi
 superpoten-tials in
luding the 
orre
tions due to d
1. For these generalized spa
es the role of thetangent bundle TM6 is taken by the generalized tangent bundle E lo
ally given byTM6�T �M6 [81℄. Supersymmetry implies that E has a stru
ture group SU(3)�SU(3)[49, 64℄. These generalized geometries might not ne
essarily des
end to standard Rie-mannian manifolds with metri
 on TM6. It is expe
ted that they are more 
loselyresemble the non-geometri
 
ompa
ti�
ations introdu
ed in refs. [83℄. The relation tothe non-
ommutative ba
kground suggested in refs. [82℄ has to be 
lari�ed.2 Manifolds with SU(3) stru
tureIt is a well-known fa
t that type II supergravity 
ompa
ti�ed on a Calabi-Yau sixfoldleads to an N = 2 supergravity theory in four spa
e-time dimensions. In the absen
e of
uxes the e�e
tive four-dimensional theory 
ontains no potential for the s
alar �elds and3Interpreting mirror symmetry as three T-dualities [87℄, the forbidden magneti
 
ux is the one havingonly indi
es in the T-dualized dire
tions. Setting this 
ux quantum to zero, the dual spa
e was termedthe Q-spa
e in ref. [74℄. Hen
e, the index Q on HQ3 .4From a mathemati
al point of view, the forms �odd and �odd are expe
ted to undergo type 
hangeswhen moving along the internal manifold [84℄. 5



all va
ua are Minkowski preserving the full supersymmetry. This 
hanges as soon as wein
lude ba
kground 
uxes and lo
alized sour
es su
h as D-branes and orientifold planes.In these situations it is a non-trivial task to perform 
onsistent 
ompa
ti�
ations su
hthat the four-dimensional e�e
tive theory remains supersymmetri
. In parti
ular, thisis due to the fa
t, that the in
lusion of sour
es for
es the geometry to ba
k-rea
t. Forexample in orientifolds with D3 branes and 
uxes the spa
etime has to be non-triviallywarped over an internal 
onformally Calabi-Yau manifold [7℄. In other situations theinternal manifold is no longer dire
tly related to a Calabi-Yau manifold and a moregeneral 
lass of 
ompa
ti�
ation manifolds has to be taken into a

ount [11℄.In this se
tion we dis
uss su
h a more general set of six-manifolds whi
h yield upon
ompa
ti�
ation an N = 2 supergravity theory in four spa
e-time dimensions (see, forexample, [36, 37, 64℄). To start with we spe
ify the Kaluza-Klein Ansatz for the metri
ba
kground. Topologi
ally our ten-dimensional spa
e-time is taken to be a produ
tM3;1�M6, where M3;1 is a four-dimensional non-
ompa
t spa
e and M6 is a 
ompa
t six-dimensional manifold. The ba
kground metri
 is blo
k-diagonal and readsds2 = e2�(y)g��(x)dx�dx� + gmn(y)dymdyn ; (2.1)where x�; � = 0; : : : ; 3 are the 
oordinates on M3;1 while ym;m = 1; : : : ; 6 are the 
o-ordinates of M6. Here g�� is the metri
 on M3;1 and gmn is the metri
 on the internalmanifoldM6. Note that the metri
 (2.1) generi
ally in
ludes a non-trivial warp fa
tor�(y). However, in the following we restri
t our analysis to a large volume regime where� is approximately 
onstant.5The amount of supersymmetry preserved byM6 
an be obtained by 
ounting super-
harges. Type II theories admit 32 super
harges in D = 10 whi
h 
an be represented bytwo (Majorana-Weyl) spinors �(10)1;2 . In type IIA the two spinors have opposite 
hirality,while in type IIB they are of the same 
hirality. Demanding N = 2 supersymmetry infour spa
e-time dimensions the internal manifold has to admit one globally de�ned spinor�.6 We de
ompose the ten-dimensional spinors asIIA: �(10)1 = �1 
 �+ + ��1 
 �� IIB: �(10)1 = �1 
 �+ + ��1 
 �� ;�(10)2 = �2 
 �� + ��2 
 �+ �(10)2 = �2 
 �+ + ��2 
 �� ; (2.2)where �1;2 and ��1;2 are four-dimensional Weyl spinors whi
h label the preserved N = 2supersymmetry. The spinors are 
hosen su
h that �1;2 have positive four-dimensional
hiralities and ��1;2 have negative 
hiralities. We indi
ate the six-dimensional 
hirality ofthe globally de�ned spinor � by a subs
ript �. These spinors are related by 
omplex 
on-jugation (��)� = �� and normalized as �y��� = 12. We summarize our spinor 
onventionsin appendix A.The existen
e of one globally de�ned spinor � redu
es the stru
ture group of theinternal manifold from SO(6) to SU(3) [29, 30, 31℄. If this spinor is also 
ovariantly
onstant with respe
t to the Levi-Civita 
onne
tion the manifold has SU(3) holonomyand hen
e satis�es the Calabi Yau 
onditions. For a general SU(3) stru
ture manifold the5It would be desirable to extend our analysis to a general �(y) along the lines of [88, 89℄.6Note that in [64℄ it was argued that N = 2 supersymmetry 
an be obtained by 
ompa
tifying on amanifold with two globally de�ned spinors, whi
h may 
oin
ide at points inM6. We will 
ome ba
k tothis generalization in se
tion 4. 6



spinor � is not any more 
ovariantly 
onstant. The failure of the Levi-Civita 
onne
tionto annihilate the spinor � is measured by the 
ontorsion tensor � . Using � one de�nes anew 
onne
tion DTm su
h thatDTm� = �DLCm � 14�mnp
np�� = 0 ; (2.3)where 
mn = 12!
 [m
n℄ is the anti-symmetrized produ
t of six-dimensional gamma matri-
es. The spinor � is now 
ovariantly 
onstant with respe
t to the new 
onne
tion DTm,whi
h additionally 
ontains the information about the torsion � .Equivalently to the spinor language, SU(3) stru
ture manifolds 
an be 
hara
terizedby the existen
e of two no-where vanishing forms J and ��. The form J is a real two-formwhile �� is a real three-form onM6. We denote the spa
e of real n-forms onM6 by�nT � � �n(T �M6) ; (2.4)su
h that J 2 �2T � and �� 2 �3T �. The index � indi
ates a spe
i�
 normalization 
hosenas we de�ne J and �� in terms of the spinor �. Here we �rst give a 
hara
terizationindependent of � following the de�nition of Hit
hin [79℄. In this 
ase one demands thatJ and �� are stable forms, i.e. are elements of open orbits under the a
tion of generallinear transformations GL(6;R) at every point of the tangent bundle TM6. These formsde�ne a redu
tion of the stru
ture group from GL(6;R) to SU(3) if they furthermoresatisfy J ^ J ^ J = 32�� ^ �̂� ; J ^ �� = 0 ; (2.5)where �̂� = ��� is shown to be a fun
tion of �� only as we review in appendix B.The spinor and the form des
riptions of the SU(3) stru
ture are related by expressingthe 
omponents of the two-form J and the 
omplex three-form 
� = �� + i�̂� in terms ofthe spinor � asJmn = �2i�y�
mn�� ; 
mnp� = 2�y�
mnp�+ ; �
mnp� = 2�y+
mnp�� : (2.6)Later on we will relate 
� to the three-form 
 used in the 
ompa
ti�
ation by an appro-priate res
aling. In the normalization (2.6) one 
an apply Fierz identities to derive theSU(3) stru
ture 
onstraints equivalent to (2.5),J ^ J ^ J = 3i4 
� ^ �
� ; J ^ 
� = 0 : (2.7)Moreover, de�ning I nm = Jmpgpn by raising one of the indi
es on J by the metri
 gmn oneshows that I np I pm = �Ænm ; I pn I qm gpq = gmn : (2.8)This implies that Inm is an almost 
omplex stru
ture with respe
t to whi
h the metri
gmn is hermitian. The almost 
omplex stru
ture 
an be used to de�ne a (p; q) grading offorms. Within this de
omposition the form J is of type (1; 1) while 
� is of type (3; 0).The 
ondition (2.3) 
an be translated to the form language implying that neither Jnor 
� are 
losed. The non-
losedness is parameterized by the torsion � whi
h de
om-poses under SU(3) into irredu
ible representations. The representations are 
onvenientlyen
oded by �ve torsion 
lasses Wi de�ned as [29, 30, 37℄,dJ = �32Im(W1
�) +W4 ^ J +W3d
� = W1J ^ J +W2 ^ J +W5 ^ 
� ; (2.9)7



with 
onstraints J ^ J ^W2 = J ^W3 = 
� ^W3 = 0. The pattern of vanishing torsion
lasses de�nes the properties of the manifoldM6. For example,M6 is 
omplex in 
aseW1 = W2 = 0. Of parti
ular interest are half-
at manifolds, sin
e they are believed toarise as mirrors of 
ux 
ompa
ti�
ations [36℄. These are de�ned by W4 = W5 = 0 andImW1 = ImW2 = 0. Equivalently, by using (2.9), half-
at manifolds are de�ned by thetwo 
onditions dJ ^ J = 0 ; dIm
� = 0 ; (2.10)while dJ and dRe
� are not ne
essarily vanishing.As dis
ussed in the beginning of this se
tion, the 
ompa
ti�
ation on SU(3) stru
turemanifolds leads to an N = 2 supergravity theory. The supersymmetry is further redu
edto N = 1 by imposing an appropriate orientifold proje
tion. The aim of the next se
tion isto de�ne this proje
tion and to determine the 
hara
teristi
 data of the four-dimensionalsupergravity theory obtained by 
ompa
ti�
ation on an SU(3) stru
ture orientifold.3 Type II SU(3) stru
ture orientifoldsIn this se
tion we study 
ompa
ti�
ations of type IIA and type IIB supergravity on SU(3)stru
ture orientifolds. As reviewed in the previous se
tion 
ompa
ti�
ations on SU(3)stru
ture manifolds lead to four-dimensional theories with N = 2 supersymmetry. Thein
lusion of D-branes and orientifold planes further redu
ed the amount of supersymme-try. In order that the four-dimensional e�e
tive theory possesses N = 1 supersymmetrythe D-branes and orientifold planes 
an not be 
hosen arbitrarily but rather have to ful�ll
ertain supersymmetry 
onditions (BPS 
onditions).7 In this paper our main fo
us willbe the bulk theory. In se
tion 3.1 we spe
ify the orientifold proje
tions whi
h yield super-symmetri
 orientifold planes preserving half of the N = 2 supersymmetry. We show inse
tion 3.2 that the orientifold invariant spe
trum arranges into N = 1 supermultiplets.Performing a Kaluza-Klein redu
tion allows us to determine the K�ahler potential of thefour-dimensional theory in se
tion 3.3. The dis
ussion of the superpotential indu
ed bythe 
uxes and torsion will be presented in se
tion 3.4.3.1 The orientifold proje
tionIn this se
tion we spe
ify the orientifold proje
tions under 
onsideration. We start fromtype II string theory and 
ompa
tify on a SU(3) stru
ture manifoldM6. In addition wemod out by orientation reversal of the string world-sheet 
p together with an internalsymmetry � whi
h a
ts solely on M6 but leaves the D = 4 spa
e-time untou
hed. Wewill restri
t ourselves to involutive symmetries (�2 = 1) of M6. In a next step we haveto spe
ify additional properties of � in order that it provides a symmetry of the stringtheory under 
onsideration. The type IIA and type IIB 
ases are dis
ussed in turn.Type IIA orientifold proje
tionThe orientifold proje
tion for type IIA SU(3) stru
ture orientifolds 
an be obtained in7In addition, the 
on�gurations of D-branes, orientifold planes and 
uxes have to obey 
onsisten
y
onditions su
h as the 
an
ellation of tadpoles [19, 20, 21, 74, 75, 76℄.8




lose analogy to the Calabi-Yau 
ase. Re
all that for Calabi-Yau orientifolds the demandfor N = 1 supersymmetry implies that � has to be an anti-holomorphi
 and isometri
involution [8, 9, 10℄. This �xes the a
tion of � on the K�ahler form J as ��J = �J , where�� denotes the pull-ba
k of the map �. Furthermore, supersymmetry implies that � a
tsnon-trivially on the holomorphi
 three-form 
. This naturally generalizes to the SU(3)stru
ture 
ase, sin
e we 
an still assign a de�nite a
tion of � on the globally de�nedtwo-form J and three-form 
 de�ned in (2.6). Together the orientifold 
onstraints read��J = �J ; ��
 = e2i� �
 ; (3.1)where e2i� is a phase and we in
luded a fa
tor 2 for later 
onvenien
e. Note that these
ond 
ondition in (3.1) 
an be dire
tly inferred from the 
ompatibility of � with theSU(3) stru
ture 
ondition 
^ �
 / J ^J ^J given in (2.7). In order that � is a symmetryof type IIA string theory it is demanded to be an isometry. Hen
e, the �rst 
ondition in(3.1) implies that � yields a minus sign when applied to the almost 
omplex stru
tureImn = Jnpgpm introdu
ed in the previous se
tion. This redu
es to the anti-holomorphi
ityof � if Imn is integrable as in the Calabi-Yau 
ase. The 
omplete orientifold proje
tiontakes the form 8 O = (�1)FL
p� ; (3.2)where 
p is the world-sheet parity and FL is the spa
e-time fermion number in theleft-moving se
tor.The orientifold planes arise as the �x-points of �. Just as in the Calabi-Yau 
asesupersymmetri
 SU(3) stru
ture orientifolds generi
ally 
ontain O6 planes. This is dueto the fa
t, that the �xed point set of � in M6 are three-
y
les �O6 supporting theinternal part of the orientifold planes. These are 
alibrated with respe
t to the real formRe(e�i�
) su
h thatvol(�O6) / Re(e�i�
) ; Im(e�i�
)j�O6 = Jj�O6 = 0 (3.3)where vol(�O6) is the indu
ed volume form on �O6 and the overall normalization of 
 wasleft undetermined. The 
onditions (3.3) also allow us to give a more expli
it expressionfor the phase ei� as e�2i� = �Z(�O6)=Z(�O6) ; (3.4)where Z(�O6) is given by Z(�O6) = R�O6 
. This expression determines the transforma-tion behavior of � under 
omplex res
alings of 
. Later on we in
lude e�i� to de�ne as
ale invariant three-form C
.Type IIB orientifold proje
tionLet us turn to type IIB SU(3) stru
ture orientifolds. Re
all that for type IIB Calabi-Yauorientifolds 
onsisten
y requires � to be a holomorphi
 and isometri
 involution of M6[8, 10℄. A holomorphi
 isometry leaves both the metri
 and the 
omplex stru
ture of theCalabi-Yau manifold invariant, su
h that ��J = J . We generalize this 
ondition to theSU(3) stru
ture 
ase by demanding that the globally de�ned two-form J de�ned in (2.6)transforms as ��J = J : (3.5)8The fa
tor (�1)FL is in
luded in O to ensure that O2 = 1 on all states.9



On
e again we impose that � is an isometry of the manifoldM6, su
h that (3.5) translatesto the invarian
e of the almost 
omplex stru
ture Inm. Due to this fa
t the involutionrespe
ts the (p; q)-de
omposition of forms. Hen
e the (3; 0) form 
 de�ned in (2.6) willbe mapped to a (3; 0) form. Demanding the resulting form to be globally de�ned we havetwo possible 
hoi
es(1) O3=O7 : ��
 = �
 ; (2) O5=O9 : ��
 = +
 ; (3.6)where the dimensionality of the orientifold planes is determined by the dimension of the�x-point set of � [8℄. Correspondingly, depending on the transformation properties of 
two di�erent symmetry operations are possible [90, 91, 8, 10℄O(1) = (�1)FL
p � ; O(2) = 
p � (3.7)where 
p is the world-sheet parity and FL is the spa
e-time fermion number in theleft-moving se
tor. The type IIB analog of the 
alibration 
ondition (3.3) involves a
ontribution from the NS-NS two-form B̂2. It states that the even 
y
les of the orientifoldplanes inM6 are 
alibrated with respe
t to the real or imaginary parts of e�B̂2+iJ . Theexpli
it form of this 
ondition 
an be found, for example, in refs. [92, 93, 65℄.3.2 The orientifold spe
trumHaving spe
i�ed the orientifold proje
tions (3.2) and (3.7) of the type IIA and typeIIB orientifolds we 
an examine the invariant spe
trum. Re
all that the bosoni
 NS-NS�elds of both type IIA and type IIB supergravity are the s
alar dilaton �̂, the ten-dimensional metri
 ĜMN and the two-form B̂2.9 Considering the theory on the produ
tspa
e M3;1�M6 these �elds de
ompose into SU(3) representation as summarized in thetable 3.1 [64℄. We denote the SU(3) representation R with four-dimensional spin s byRs. For example, a triplet under SU(3) yielding a ve
tor in four-dimensions is denotedby 31. A four-dimensional tensor (or pseudo-s
alar) is indi
ated by an index T.Ĝ g�� 12g�m (3+ �3)1gmn 10 + (6+ �6)0 + 80B̂2 B�� 1TB�m (3+ �3)1Bmn 10 + (3+ �3)0 + 80�̂ � 10Table 3.1: De
omposition of the NS se
tor in SU(3) representationsIn the R-R se
tor type IIA 
onsists of odd forms Ĉ2n�1, while type IIB 
onsists ofeven forms Ĉ2n. Their de
omposition into SU(3) representations is displayed in tables9The hat on the �elds indi
ates ten-dimensional quantities.10



3.2 and 3.3 [64℄. We list only the de
ompositions of the Ĉ1 and Ĉ3 in type IIA andĈ0; Ĉ2; Ĉ4 in type IIB. The higher forms are related to these �elds via Hodge duality oftheir �eld strengths. The form Ĉ4 has a self-dual �eld strength and hen
e only half of its
omponents are physi
al.Ĉ1 C� 11Cm (3+ �3)0Ĉ3 C��p (3+ �3)TC�np 11 + (3+ �3)1 + 81Cmnp (1+ 1)0 + (3+ �3)0 + (6+ �6)0Table 3.2: Type IIA de
omposition of the RR se
tor in SU(3) representationsĈ0 C0 10Ĉ2 C�� 1TC�m (3+ �3)1Cmn 10 + (3+ �3)0 + 80Ĉ4 C�npq 12 [(1+ 1)1 + (3+ �3)1 + (6+ �6)1℄Cmnpq=C��mn 10 + (3+ �3)0 + 80Table 3.3: Type IIB de
omposition of the RR se
tor in SU(3) representationsThe �elds arising in this de
omposition 
an be arranged into one N = 8 gravitationalmultiplet. As dis
ussed in ref. [64℄, a possible redu
tion to standard N = 2 supergravitytheory with a gravity multiplet as well as some ve
tor, hyper and tensor multiplets isobtained by removing all the triplets from the spe
trum. In parti
ular, this amounts todis
arding all four-dimensional �elds whi
h arise in the expansion of the ten-dimensional�elds into one- and �ve-forms onM6.In a se
ond step we impose the orientifold proje
tion to further redu
e to an N = 1supergravity theory. Independent of the properties of the internal manifold we 
an givethe transformation behavior of all supergravity �elds under the world-sheet parity 
pand (�1)FL [4, 5℄. 
p a
ts on B̂2 with a minus sign, while leaving the dilaton �̂ and theten-dimensional metri
 Ĝ invariant. To display the transformation behavior of the R-R�elds we introdu
e the parity operator � by�(C2n) = (�1)nC2n ; �(C2n�1) = (�1)nC2n�1 ; (3.8)where C2n are even and C2n�1 are odd forms. Evaluated on the R-R forms � is minus theworld-sheet parity operator 
p su
h that
pĈk = ��(Ĉk) ; (3.9)11



where k is odd for type IIA and even for type IIB. Finally, (�1)FL a
ts on the R-Rbosoni
 �elds of the supergravity theories with a minus sign while leaving the NS-NS�elds invariant.The type IIA orientifold spe
trumLet us now determine the invariant spe
trum for type IIA orientifolds. It turns out tobe 
onvenient to 
ombine the odd R-R forms Ĉ2n+1 as [94℄Ĉodd = Ĉ1 + Ĉ3 + Ĉ5 + Ĉ7 + Ĉ9 : (3.10)Note that only half of the degrees of freedom in Ĉodd are physi
al, while the other half
an be eliminated by a duality 
onstraint [94℄. Invarian
e under the orientifold proje
tionO implies by using the transformation of the �elds under 
p and (�1)FL that the ten-dimensional �elds have to transform as��B̂2 = �B̂2 ; ���̂ = �̂ ; ��Ĉodd = ��Ĉodd� ; (3.11)where the parity operator � is de�ned in (3.8) and we used (3.9). It turns out to be
onvenient to 
ombine the forms 
 and J with the ten-dimensional dilaton �̂ and B̂2 intonew forms �ev=odd as �ev = e�B̂2+iJ ; �odd = C
 ; (3.12)whereC = e��̂�i�e(K
s�KK)=2 ; e�K
s = i
 ^ �
 ; e�KK = 43J ^ J ^ J : (3.13)In the expression for C the form 
ontributions pre
isely 
an
el su
h that C is a 
omplexs
alar onM6. It depends on the ten-dimensional dilaton �̂ and �xes the normalizationof 
 su
h that the 
ombination C
 stays invariant under 
omplex res
aling of 
.10 Thefour-dimensional dilaton is de�ned ase�2D = 43 ZM6 e�2�̂J ^ J ^ J ; (3.14)and redu
es to the de�nition e�D = e��̂pVol(M6) in 
ase �̂ is 
onstant along M6.Applied to the forms �ev=odd and Ĉodd the orientifold 
onditions (3.1) and (3.11) areexpressed as ���ev = ���ev� ; ���odd = ����odd� : (3.15)In order to perform the Kaluza-Klein redu
tion one needs to spe
ify the modes ofthe internal manifoldM6 used in the expansion of �ev=odd and Ĉodd. This implies thatone needs to spe
ify a set of forms on M6 whi
h upon expansion yields the light �eldsin the spe
trum of the four-dimensional theory. In general this issue is very hard toaddress and one 
an only hope to �nd an approximate answer in 
ertain limits wherethe torsion is `small'. Most of the diÆ
ulty is due to the fa
t that a non-trivial torsion10Note that also � depends on the three-form 
 as given in (3.4). Hen
e, using the s
aling behaviorof � and K
s one �nds C ! Ce�f as 
! ef
 for every 
omplex fun
tion f .12



may not generate an additional s
ale below the Kaluza-Klein s
ale.11 Hen
e, dis
ardingthe Kaluza-Klein modes needs some justi�
ation. Surprisingly, mu
h of the analysisperformed below does not expli
itly depend on the basis used in the expansion of �ev=oddand Ĉodd. We therefore only assume that the triplets in the SU(3) de
omposition areproje
ted out while otherwise keeping the analysis general [64℄. Later on we restri
t to aparti
ular �nite number of modes.To implement the orientifold proje
tion we note that the operator P6 = ��� squaresto the identity and thus splits the spa
e of two- and three-forms �2T � and �3T � onM6into two eigenspa
es as�2T � = �2+T � ��2�T � ; �3T � = �3+T � � �3�T � ; (3.16)where �2�T � 
ontains forms transforming with a � sign under P6.In performing the Kaluza-Klein redu
tion one expands the forms �ev=odd and Ĉodd intothe appropriate subset of �2T � and �3T � 
onsistent with the orientifold proje
tion. The
oeÆ
ients arising in these expansions 
orrespond to the �elds of the four-dimensionaltheory. In the 
ase at hand the 
ompa
ti�
ation has to result in an N = 1 supergravitytheory. The spe
trum of this theory 
onsists of a gravity multiplet a number of 
hiralmultiplets and ve
tor multiplets. Note that before the trun
ation to the light modesthe number of multiplets is not ne
essarily �nite, as the Kaluza-Klein tower 
onsist ofan in�nite number of modes. These modes 
an a
quire a mass via a generalized Higgsme
hanism. For example, a two-from 
an be
ome massive by `eating' a ve
tor [95℄. Inthe following we will dis
uss the massless �eld 
ontent before su
h a Higgsing takes pla
e.Let us �rst 
on
entrate on the N = 1 
hiral multiplets arising in the expansionof the forms �ev. Due to supersymmetry the bosoni
 
omponents of these multipletsspan a 
omplex K�ahler manifold. Its 
omplex stru
ture 
an be determined by spe
ifyingappropriate 
omplex 
ombinations of the forms J and B̂2 whi
h upon expansion intomodes of the internal manifold yield the 
omplex 
hiral 
oordinates. The globally de�nedtwo-form J 
ombines with the B-�eld into the 
omplex 
ombination 12J
 � �B̂2 + iJ 2 �2+T �C ; (3.17)where J is given in the string frame. The �eld B̂2 is only extended alongM6, sin
e dueto (3.11) the four-dimensional two-form in B̂2 transforms with the wrong sign under theorientifold symmetry �� and hen
e is proje
ted out. In 
omparison to the general SU(3)de
omposition of B̂2 given in table 3.1 we only kept the 10 + 80 representations while allother 
omponents left the spe
trum. The 
omplex form J
 is expanded in real elements of�2+T � 
onsistent with the orientifold proje
tion (3.1), (3.11) and the de�nition of � givenin (3.8).13 The 
oeÆ
ients of this expansion are 
omplex s
alar �elds in four spa
e-time11This is in 
ontrast to standard RR and NS 
uxes, whi
h 
orrespond to ba
kground values of the�eld strengths of Ĉodd and B̂2. The quantization 
ondition implies that these 
uxes 
an generate anintermediate s
ale. This allows to keep modes of the order of the 
ux s
ale, but dis
ard all massiveKaluza-Klein modes.12Note that the 
omplex 
ombination (3.17) pre
isely gives the 
orre
t 
oupling to the string world-sheet wrapped around supersymmetri
 two-
y
les inM6.13Note that the eigenspa
es �2�T � are obtained from the operator P6 = ��� and hen
e di�er by aminus sign from the eigenspa
es of ��. 13



dimensions parameterizing a manifoldMK and provide the bosoni
 
omponents of 
hiralmultiplets.Turning to the expansion of the R-R forms Ĉodd we �rst note that Ĉ1 (and hen
eĈ7) are 
ompletely proje
ted out from the spe
trum. The four-dimensional part of Ĉ1is in
ompatible with the orientifold symmetry as seen in (3.11). On the other hand theinternal part of Ĉ1 is a triplet under SU(3) and hen
e dis
arded following the assumptionsmade above. In 
ontrast the expansion of Ĉ3 yields four-dimensional s
alars, ve
tors andthree-forms. Therefore, we de
omposeĈ3 = C(0)3 + C(1)3 + C(3)3 ; (3.18)where C(n)3 are n-forms in M3;1 times (3 � n)-forms inM6. More pre
isely, in order toful�ll the orientifold 
ondition (3.11) the 
omponents C(0)3 ; C(1)3 and C(3)3 are expandedin forms �3+T �; �2�T � and �0T � of M6 respe
tively. The 
oeÆ
ients in this expansion
orrespond to four-dimensional real s
alars, ve
tors and three-forms. Let us note that weproje
t out �elds whi
h arise in the expansion into one-forms onM6 as well as all othertriplets. In summary the 
omponents kept, are the 11 + 81 and (1+ 1)0 + (6+ �6)0 whileall other representations in table 3.2 have left the spe
trum.The four-dimensional real s
alars in C(0)3 need to 
ombine with s
alars arising in theexpansion of �odd to form the 
omponents of 
hiral multiplets. The 
omplex stru
tureon the 
orresponding K�ahler �eld spa
e is de�ned through the 
omplex form 14�odd
 � C(0)3 + iRe(�odd) 2 �3+T �C : (3.19)where we used that Re(�odd) transforms with a plus sign as seen from eqn. (3.15). The
omplex 
oeÆ
ients of �odd
 expanded in real forms �3+T � are the bosoni
 
omponents of
hiral multiplets. Note that in the massless 
ase theses 
hiral multiplets 
an be dualizedto linear multiplets 
ontaining a s
alar from Re(�odd) and a two-form dual to the s
alarin C(0)3 [96℄. Due to the generality of our dis
ussion both 
hiral and linear multiplets
an be
ome massive. The full N = 1 spe
trum for type IIA orientifold is summarized intable 3.4. multiplet bosoni
 �elds M6-formsgravity multiplet g��
hiral multiplets J
 �2+T �
hiral/linear multiplets �odd
 �3+T �ve
tor multiplets C(1)3 �2�T �Table 3.4: N = 1 spe
trum of type IIA orientifoldsThe analysis so far was not restri
ted to a �nite set of �elds. Even though most of the
al
ulations 
an be performed in this more general setting we will also give a redu
tion14Note that the 
omplex 
ombination (3.19) pre
isely gives the 
orre
t 
oupling to D-branes wrappedaround supersymmetri
 
y
les inM6 [92, 93, 65℄. 14



to a four-dimensional theory with �nite number of �elds. This is parti
ularly useful inthe dis
ussion of mirror symmetry between SU(3) stru
ture orientifolds and Calabi-Yauorientifolds with ba
kground 
uxes. A �nite redu
tion is a
hieved by pi
king a �nitebasis of forms ��nite on the SU(3) stru
ture manifold slightly extending the Calabi-Yauredu
tions [36, 64℄. The expli
it 
onstru
tion of su
h a �nite set of forms is diÆ
ult,however, we 
an spe
ify its properties. Before turning to the orientifold 
onstraints letus brie
y re
all the 
onstru
tion of ref. [64℄.To de�ne the properties of ��nite we �rst need to introdu
e an additional stru
tureon �ev;oddT � known as Mukai pairings. These anti-symmetri
 forms are de�ned by
'; � = ��(') ^  �6 = ( '0 ^  6 � '2 ^  4 + '4 ^  2 � '6 ^  0 ;�'1 ^  5 + '3 ^  3 � '5 ^  1 ; (3.20)where � is given in eqn. (3.8) and [: : :℄6 denotes the forms of degree 6. Clearly 
'; �is proportional to a volume form on M6 and 
an be integrated over the manifoldM6.Demanding this integrated Mukai pairings to be non-degenerate on ��nite puts a �rst
onstraint on the possible set of forms. To make this more pre
ise, let us denote the �niteset of forms in �nT � by �n, with dimensions dim�n. As a �rst 
ondition we demandthat dim�0 = dim�6 = 1 and assume that �0 
onsists of the 
onstant fun
tions while�6 
ontains volume forms � / J ^ J ^ J . Moreover, demanding non-degenera
y of theintegrated Mukai pairings on �ev one de�nes a (
anoni
al) symple
ti
 basis on this spa
e.Denoting a basis of �0 ��2 by !Â = (1; !A) one de�nes its dual basis ~!Â = (~!A; �) of�4 ��6 by ZM6 
!Â; ~!B̂� = ÆB̂̂A ; Â; B̂ = 0; : : : ;dim�2 ; (3.21)with all other interse
tions vanishing. Turning to the odd forms �odd we follow a similarstrategy to de�ne a symple
ti
 basis. However, in a

ord with our assumption above, wewill set dim�1 = dim�5 = 0 su
h that no one- or �ve-forms are used in the expansionof the �elds.15 Hen
e, non-degenera
y of the integrated Mukai pairings implies that asymple
ti
 basis (�K̂; �K̂) of �3 
an be de�ned asZM6 
�L̂; �K̂� = ÆK̂̂L ; K̂; L̂ = 1; : : : ; 12 dim�3 ; (3.22)with all other interse
tions vanishing. Note that the non-degenera
y of the integratedMukai pairings implies that �ev=odd 
ontains the same number of exa
t and non-
losedforms. We will 
ome ba
k to this issue later on when we introdu
e torsion 
uxes.After this brief review let us now spe
ify how the orientifold symmetry a
ts on ��nite.Under the operator P6 = ��� the forms �n de
ompose into eigenspa
es as�n = �n+ ��n� : (3.23)Using the properties (3.1) and (3.8) one infers dim�0� = dim�6� = 0. Furthermore,under the split (3.23) the basis (!Â; ~!Â) introdu
ed in (3.21) de
omposes as(!Â; ~!Â) ! (1; !a; ~!�; �) 2 �ev+ ; (!�; ~!a) 2 �ev� ; (3.24)15In se
tion 4 we dis
uss a possible way to weaken this 
ondition.15



where � = 1; : : : ;dim�2� while a = 1; : : : ;dim�2+. Using the interse
tions (3.21) oneinfers that dim�2� = dim�4�. Turning to the odd forms 
onsisten
y requires thatZM6 
�3�;�3�� = 0 ; ��3� = �3� ; (3.25)where in the se
ond equality we used the fa
t that � is an orientation-reversing isometry.The �rst 
ondition is a 
onsequen
e of the fa
t that �3� ^�3� transforms with a minussign under P6 and hen
e is a subset of �6� up to an exa
t form. The equations (3.25)imply that �3� are Lagrangian subspa
es of �3 with respe
t to the integrated Mukaiparings. Hen
e, also the symple
ti
 basis (�K̂; �K̂) introdu
ed in (3.22) splits as(�K̂ ; �K̂) ! (�k; ��) 2 �3+ ; (��; �k) 2 �3� ; (3.26)where the numbers of �k and �� in �3+ equal to the numbers of �k and �� in �3�respe
tively. This is in a

ord with equation (3.22).We are now in the position to give an expli
it expansion of the �elds into the �niteform basis of ��nite. As dis
ussed in the general 
ase above the four-dimensional 
omplex
hiral �elds arise in the expansion of the forms J
 and �odd
 introdu
ed in eqn. (3.17) and(3.19). Restri
ted to �2+, �3+ and �2� one hasJ
 = ta!a ; �odd
 = Nk�k + T��� ; C(1)3 = A�!� ; (3.27)where the basis de
ompositions (3.24) and (3.26) were used. Hen
e, in the �nite redu
tionthe N = 1 spe
trum 
onsists of dim�2+ 
hiral multiplets ta and 12 dim�3 
hiral multipletsNk; T�. In addition one �nds dim�2� ve
tor multiplets, whi
h arise in the expansion ofĈ3. Moreover, one four-dimensional massless three-form arises in the expansion of C(3)3into the form 1 2 �0+. It 
arries no degrees of freedom and 
orresponds to an additional
ux parameter.The type IIB orientifold spe
trumLet us next turn to the spe
trum of type IIB SU(3) stru
ture orientifolds. To identify theinvariant spe
trum we �rst analyze the transformation properties of the ten-dimensional�elds. In 
ontrast to type IIA supergravity the type IIB theory 
onsists of even formsĈ2n in the R-R se
tor, whi
h we 
onveniently 
ombine as [94℄Ĉev = Ĉ0 + Ĉ2 + Ĉ4 + Ĉ6 + Ĉ8 : (3.28)Only half of the degrees of freedom in Ĉev are physi
al and related to the se
ond halfby a duality 
onstraint [94℄. Using the transformation properties of the �elds under 
pand (�1)FL the invarian
e under the orientifold proje
tions O(i) implies that the ten-dimensional �elds have to transform as 16��B̂2 = �B̂2 ; ���̂ = �̂ ; ��Ĉev = ���Ĉev� ; (3.29)16The transformation behavior of the R-R forms under the world-sheet parity operator 
p was givenin eqn. (3.9). 16



where the plus sign holds for orientifolds with O3=O7 planes, while the minus sign holdsfor O5=O9 orientifolds. The parity operator � was introdu
ed in eqn. (3.8). We 
ombinethe globally de�ned forms J and 
 with the �elds B̂2, �̂ and Ĉev as�odd = 
 ; �ev = e��̂e�B̂2+iJ ; Âev = e�B̂2 ^ Ĉev : (3.30)where in 
omparison to (3.12) one �nds that �odd takes the role of �ev and �ev repla
es�odd. Applied to these forms the orientifold 
onditions (3.5), (3.6) and (3.29) read���odd = ��(�odd) ; ���ev = �(��ev) ; ��Âev = ��(Âev) ; (3.31)where the upper sign 
orresponds to O3=O7 and the lower sign to O5=O9 orientifolds.In a next step we have to spe
ify the basis of forms onM6 used in the Kaluza-Kleinredu
tion. In doing so we will fa
e similar problems like in the type IIA 
ase. Followingthe strategy advan
ed above we �rst brie
y dis
uss the general 
ase and later simplifythe redu
tion to the �nite set of forms ��nite. The de
omposition of the ten-dimensional�elds into SU(3) representations is given in tables 3.1 and 3.3. Also in the type IIB 
asewe will remove all triplets of SU(3) from the spe
trum [64℄.In order to perform the redu
tion we �rst investigate the splitting of the spa
es offorms onM6 under the operator P6 = ���. Sin
e P6 squares to the identity operator itsplits the forms as in eqn. (3.16). More generally, we will need the de
omposition of alleven forms as �evT � = �ev+ T � � �ev� T � : (3.32)The four-dimensional �elds arising as the 
oeÆ
ients of �ev=odd and Âev expanded on�3�T � and �ev� T � �t into N = 1 supermultiplets.Firstly, we de
ompose the odd form �odd into the eigenspa
es of P6. In a

ord withthe orientifold 
onstraint (3.31) we �ndO3=O7 : �odd 2 �3�T �C ; O5=O9 : �odd 2 �3+T �C : (3.33)Note that the a
tual degrees of freedom of �odd = 
 are redu
ed by several 
onstraints.More pre
isely, one has to spe
ify forms �odd whi
h are asso
iated to di�erent redu
tionsof theM6 stru
ture group to SU(3). As already dis
ussed in se
tion 2 those redu
tions
an be parameterized by real three-forms � = Re(�odd) whi
h are in addition stable. Theimaginary part Im(�odd) 
an be expressed as a fun
tion of Re(�odd) su
h that only halfof the degrees of freedom in �odd are independent [79℄. Moreover, as in the 
ase of aCalabi-Yau manifold, di�erent 
omplex normalizations of �odd 
orrespond to the sameSU(3) stru
ture ofM6. Therefore, one additional 
omplex degree of freedom in �odd isunphysi
al and has to be removed from the D = 4 spe
trum.In the redu
tion also the ten-dimensional form Âev is expanded into a basis of formsonM6 while additionally satisfying the orientifold 
ondition (3.31). In analogy to (3.18)we de
ompose Âev = Aev(0)+Aev(1) +Aev(2) +Aev(3) ; (3.34)where the subs
ript (n) indi
ates the form degree in four dimensions. Note that in ageneral expansion of Âev in odd and even forms ofM6 as Âev = evj4�evj6+oddj4�oddj6it would be impossible to assign a four-dimensional form degree as done in eqn. (3.34).17



This is due to the fa
t that su
h a de
omposition only allows to distinguish even and oddforms in four dimensions. However, the orientifold imposes the 
onstraint (3.31) whi
hintrodu
es an additional splitting within the even and odd four-dimensional forms. Letus �rst make this more pre
ise in the 
ase of O3=O7 orientifolds where Âev transformsas ��Âev = �(Âev). Using the properties of the parity operator � one �nds that thes
alars in Aev(0) arise as 
oeÆ
ients of forms in �ev+ T � while the two-forms in Aev(2) arise as
oeÆ
ients of forms in �ev� T �. Similarly, one obtains the four-dimensional ve
tors in Aev(1)as 
oeÆ
ients of �3+T � and the three-forms in Aev(3) as 
oeÆ
ients of �3�T �. In the 
ase ofO5=O9 orientifolds the ten-dimensional form Âev transforms as ��Âev = ��(Âev) and allsigns in the O3=O7 expansions above are ex
hanged. For both 
ases the de
omposition(3.34) is well de�ned and we 
an analyze the multiplet stru
ture of the four-dimensionaltheory.In four dimensions massless s
alars are dual to massless two-forms, while masslessve
tors are dual to ve
tors. Using the duality 
ondition on the �eld strengths of the evenforms Âev one eliminates half of its degrees of freedom. Indeed it 
an be shown that inthe massless 
ase the s
alars in Aev(0) are dual to the two-forms Aev(2). However, due to thegenerality of our dis
ussion also massive s
alars, ve
tors, two-form and three-forms 
anarise in the expansion (3.34). In these 
ases the duality 
onstraint gives a 
ompli
atedrelation between these �elds. In the following we will �rst restri
t our attention to themassless 
ase and eliminate the two-forms in Aev(2) in favor of the s
alars in Aev(0).Let us start with the 
hiral multiplets. As the bosoni
 
omponents these multiplets
ontain the real s
alars in Aev(0) whi
h are 
omplexi�ed by the real s
alars arising in theexpansion of Re(�ev) or Im(�ev). From the orientifold 
onstraint (3.31) on infers thatRe(�ev) is expanded in forms of �ev+ T � while Im(�ev) is expanded in forms of �ev� T �.Therefore, one �nds the 
omplex forms 17O3=O7 : �ev
 = Aev(0)+ iRe(�ev) ; O5=O9 : �ev
 = Aev(0) + iIm(�ev) : (3.35)The 
omplex s
alars arising in the expansion of the forms �ev
 span a 
omplex manifoldMQ. This manifold is K�ahler as dis
ussed in the next se
tion. Here we 
on
lude ourgeneral analysis of the spe
trum of type IIB SU(3) stru
ture orientifolds by summarizingthe four-dimensional multiplets in table 3.5.To end this se
tion let us give a trun
ation to a �nite number of the four-dimensional�elds. As we have argued in the previous se
tion this is a
hieved by expanding the ten-dimensional �elds on the �nite set of forms on M6 denoted by ��nite. This is done ina

ord with the orientifold 
onstraints for O3=O7 and O5=O9 orientifolds. On
e again,the n-forms �n split as �n = �n+ ��n�, where �n� are the eigenspa
es of the operatorP6 = ���. However, sin
e �6 
ontains forms proportional to J ^ J ^ J one infers from
ondition (3.5) that dim�6+ = 0. Clearly, one has dim�0� = 0 sin
e �0 
ontains 
onstants
alars whi
h are invariant under P6. A further investigation of the even forms in �2and �4 shows that the basis introdu
ed in eqn. (3.21) de
omposes as(!Â; ~!Â) ! (1; !a; ~!�) 2 �ev+ ; (�; !�; ~!a) 2 �ev� ; (3.36)where � = 1; : : : ;dim�2� and a = 1; : : : ;dim�2+. Using J ^ J ^ J 2 �6� and eqn. (3.21)one �nds that �2� = �4�. Together with the fa
t that R 
�ev� ;�ev� � = 0 one 
on
ludes17Note that also in the type IIB 
ases the 
omplex forms �ev
 en
ode the 
orre
t 
ouplings to D-branesfully wrapped on supersymmetri
 
y
les inM6 [92, 93, 65℄.18



multiplet bosoni
 �elds M6-formsO3=O7 O5=O9gravity multiplet g��
hiral multiplets �odd �3�T � �3+T �
hiral/linear multiplets �ev
 �ev+ T � �ev� T �ve
tor multiplets Aev(1) �3+T � �3�T �Table 3.5: N = 1 spe
trum of type IIB orientifoldsthat �ev� are Lagrangian subspa
es of �ev. This is the analog of the Lagrangian 
ondition(3.25) found for the odd forms in type IIA. Let us turn to the odd forms �3 = �3+��3�.Due to the 
ondition (3.6) the three-form 
 is an element of �3� for O3=O7 orientifolds,while it is an element of �3+ for O5=O9 orientifolds. Note that in 
ontrast to the evenforms �ev� the spa
es �3� and �3+ have generi
ally di�erent dimensions. The basis ofthree-forms introdu
ed in (3.22) splits under the a
tion of P6 as(�K̂; �K̂) ! (��; ��) 2 �3+ ; (�k; �k) 2 �3� ; (3.37)where � = 1; :::; 12 dim�3+; k = 1; :::; 12�3�.Given the basis de
ompositions (3.36) and (3.37) we 
an expli
itly determine the�nite four-dimensional spe
trum of the type IIB orientifold theories. For orientifoldswith O3=O7 planes one expands �ev
 and Aev(1) into �ev+ and �3+ as�ev
 = � +Ga!a + T�~!� ; Aev(1) = A��� ; (3.38)where �;Ga; T� are 
omplex s
alars in four dimensions. The ve
tor 
oeÆ
ients of theforms �� in the expansion of Aev(1) are eliminated by the duality 
onstraint on the �eldstrength of Âev. In addition we �nd that �odd depends on 12(dim�3� � 2) 
omplexdeformations zk. Therefore the full N = 1 spe
trum 
onsists of 12(dim�3� � 2) 
hiralmultiplets zk as well as dim�2+1 
hiral multiplets �;Ga; T�. Moreover, we �nd 12 dim�3+ve
tor multiplets A�.The story slightly 
hanges for orientifolds with O5=O9 planes. In this 
ase the 
hiral
oordinates are obtained by expanding�ev
 = t�!� + ub ~!b + S � ; Aev(1) = Ak�k ; (3.39)where t�; ub; S are 
omplex four-dimensional s
alars and the volume form � is normalizedas RM6 � = 1. Moreover, the form �odd depends on 12(dim�3+� 2) 
omplex deformationsz�. In summary the 
ompleteN = 1 spe
trum 
onsists of 12(dim�3+�2) 
hiral multipletsz� as well as dim�2 + 1 
hiral multiplets t�; ub; S. Finally, the expansion of Aev(1) yields12 dim�3� independent ve
tor multiplets Ak.19



3.3 The K�ahler potentialIn this se
tion we determine the K�ahler potential en
oding the kineti
 terms of the 
hiralor dual linear multiplets. Re
all that the standard bosoni
 a
tion for 
hiral multipletswith bosoni
 
omponents M I 
ontains the kineti
 terms [97℄S
hiral = ZM3;1 GI �J dM I ^ �4 d �MJ ; (3.40)where d and �4 are the exterior derivative and the Hodge-star on M3;1. The metri
GI �J = �MI� �MJK is K�ahler and lo
ally given as the se
ond derivative of a real K�ahlerpotential K(M; �M ). In other words, the fun
tion K determines the dynami
s of thesystem of 
hiral multiplets. Similarly, one 
an derive the kineti
 terms for a set of linearmultiplets from a real fun
tion, the kineti
 potential ~K. Sin
e in the massless 
asethe linear multiplets are dual to 
hiral multiplets one 
an always translate ~K into anasso
iated K via a Legendre transformation [96℄.18 It therefore suÆ
es to derive theK�ahler potential. In the massive 
ase the duality between 
hiral and linear multipletsis no longer valid, however, the fun
tion ~K 
an still be formally related to a K�ahlerpotential K. In the following we will determine the K�ahler potential K for type IIA andtype IIB orientifolds in turn.The IIA K�ahler potential and the K�ahler metri
Let us start by dis
ussing the type IIA K�ahler potential �rst. As in se
tion 3.2 wewill keep our analysis general and only later spe
ify a �nite redu
tion. We found inthe previous se
tion that the 
omplex s
alars in the 
hiral multiplets are obtained byexpanding the 
omplex forms �ev and �odd
 into appropriate forms onM6. Lo
ally, the�eld spa
e takes the form MK �MQ ; (3.41)whereMK andMQ are spanned by the 
omplex s
alars arising in the expansion of �evand �odd
 respe
tively. N = 1 supersymmetry demands that both manifolds in (3.41) areK�ahler with metri
s lo
ally en
oded by K�ahler potentials KK and KQ. From the pointof view of an N = 2 to N = 1 redu
tion, the manifoldMK is a 
omplex submanifoldof the N = 2 spe
ial K�ahler manifold spanned by the 
omplex s
alars in the ve
tormultiplets. As we will dis
uss momentarily the manifoldMK dire
tly inherits its K�ahlerstru
ture from the underlying N = 2 theory. On the other hand, MQ is a submanifoldof the quaternioni
 spa
e spanned by the hyper multiplets and has half its dimension. Itis a non-trivial result that MQ is a K�ahler manifold sin
e the underlying quaternioni
manifold is not ne
essarily K�ahler.We analyze �rst the stru
ture of the �eld spa
e MK spanned by the 
omplex �eldsarising in the expansion of J
 = �B̂2 + iJ into forms �2+T �. Note that as in the originalN = 2 theory not all forms J are allowed and one restri
ts to the 
ases where J , J ^ Jand J ^ J ^ J measure positive volumes of two-, four and six-
y
les [98℄. We abbreviatethis 
ondition by writing J � 0. Hen
e, the 
oeÆ
ients of J
 de�ne the 
omplex 
oneMK = �J
 2 �2+T �C : J ^ J ^ J 6= 0 and J � 0	 : (3.42)18For a brief review, see also se
tion 4 of ref. [28℄.20



This manifold has the same 
omplex stru
ture as the underlying N = 2 spe
ial K�ahlermanifold. It also inherits its K�ahler stru
ture with a K�ahler potential given by [98, 64℄KK(J
) = � ln �� iZM6 
�ev; ��ev�� = � ln �43 ZM6 J ^ J ^ J� ; (3.43)where �ev = eJ
 is introdu
ed in (3.12) and the pairing 
�; �� is de�ned in (3.20).19 TheK�ahler metri
 is obtained as the se
ond derivative of KK given in (3.43) with respe
t toJ
 and �J
. More pre
isely, one �ndsGK(!; !0) = ��J
� �J
KK�(!; !0) = �2eKK ZM6 
!; �6 !0� ; (3.44)where �6 is the six-dimensional Hodge-star and !; !0 are two-forms in �2+T � . Notethat in this general approa
h the derivatives are taken with respe
t to two-forms onM6
ontaining the D = 4 s
alars su
h that the result needs to be evaluated on elements of�2+T �. The four-dimensional kineti
 terms (3.40) read 20S�ev = ZM3;1 GK(dJ
; �4 d �J
) (3.45)with four-dimensional derivative d. From (3.44) one 
on
ludes that the metri
 GK onlydepends on �ev. It is straight forward to evaluate (3.45) in the �nite basis !a 2 �2+introdu
ed in equation (3.24). On this basis the 
omplex form J
 de
omposes as J
 = ta!aand one �ndsS�ev = ZM3;1 GKa�b dta ^ �4d�tb ; GKa�b = 2eKK Z !a ^ �!b : (3.46)In the �nite basis the metri
 GK takes a form similar to the 
ase whereM6 is a Calabi-Yau orientifold [24℄. However, sin
e the forms !a are not ne
essarily harmoni
 a potentialfor the �elds ta is introdu
ed as we will dis
uss in se
tion 3.4.Let us now turn to the se
ond fa
tor in (3.41) and investigate the K�ahler stru
tureof the manifoldMQ. As introdu
ed in se
tion 3.2 the 
omplex 
oordinates on this spa
eare obtained by expanding the form �odd
 into elements of �3+T �. The metri
 on the �eldspa
eMQ is derived by inserting the expansion of �odd
 in the ten-dimensional e�e
tivea
tion of type IIA supergravity. For the form C(0)3 the redu
tion of the R-R se
tor yieldsthe term SC(0)3 = ZM3;1 GQ(dC(0)3 ; �4 dC(0)3 ) ; (3.47)where the metri
 GQ is de�ned asGQ(�;�0) = 2e2D ZM6 
�; �6 �0� ; (3.48)19Note that in 
ontrast to ref. [64℄ we in
luded an integration in the de�nition of KK su
h that it isindependent of the 
oordinates onM6. This implies that four-dimensional supergravity theory takes thestandard N = 1 form. However, this also implies that we have to ex
lude modes whi
h 
orrespond theres
alings of J by a fun
tionM6 (see also appendix B.3). We will 
ome ba
k to this issue in a separatepubli
ation [86℄.20The a
tion is given in the four-dimensional Einstein frame where the kineti
 term for the metri
takes the form 12R. 21



with �;�0 2 �3+T �. The four-dimensional dilaton D was de�ned in eqn. (3.14) and arisesin (3.47) due to a Weyl res
aling to the four-dimensional Einstein frame. The R-R �eldC(0)3 is 
omplexi�ed by Re(�odd) as given in eqn. (3.19). Therefore, the full kineti
 termsfor the 
omplex s
alars in �odd
 are given byS�odd
 = ZM3;1 GQ(d�odd
 ; �4 d��odd
 ) : (3.49)The metri
GQ is K�ahler on the manifoldMQ if we 
arefully spe
ify the forms used in theexpansion of �odd
 . As already explained in se
tion 2, the real three-forms � = Re(�odd)de�ning an SU(3) stru
ture manifold have to be `stable'.21 We denote all stable forms in�3+T � by U3+. Using this de�nition the �eld spa
e MQ spanned by the 
omplex s
alarsin �odd
 is lo
ally of the formMQ = �Re(�odd) 2 U3+	� �3+T � ; (3.50)where �3+T � is parameterized by the real s
alars in the R-R �eld C(0)3 .In appendix B.3 we show that the metri
GQ 
an be obtained as the se
ond derivativeof a K�ahler potential. Note however, that we have to impose an additional 
onstraint onthe forms in MQ in order to obtain a K�ahler potential independent of the 
oordinatesonM6. More pre
isely, we demand that all (3; 0) + (0; 3) forms inMQ are proportionalto � with a 
oeÆ
ient 
onstant onM6.22 On this the set of stable forms one shows thatthe metri
 GQ is K�ahler with a K�ahler potential given byKQ(�odd
 ) = �2 ln �iZM6 
�odd; ��odd�� = � ln �e�4D� ; (3.51)where in the se
ond equality we have used the de�nition of �odd = C
 given in equations(3.12) and (3.13) to express KQ in terms of the four-dimensional dilaton eD de�ned ineqn. (3.14). The fun
tional appearing in the logarithm of the K�ahler potential,H�Re(�odd)� = iZ 
�odd; ��odd� ; (3.52)was �rst introdu
ed by Hit
hin in refs. [79℄. A more expli
it de�nition ofH as a fun
tionalof Re(�odd) 
an be found in appendix B. The metri
 GQ de�ned in (3.48) is obtained bythe se
ond derivative GQ(�;�0) = ���odd
 ���odd
 KQ�(�;�0) : (3.53)Note thatKQ is a fun
tion of Re(�odd) and does not depend on the R-R �elds Re(�odd
 ) =C(0)3 . Hen
e, the metri
 GQ possesses various shift symmetries and the se
ond fa
tor in(3.50) is a ve
tor spa
e.Finally, we will restri
t the results obtained forMQ to the �nite basis ��nite. In orderto do so, one expands the 
omplex form �odd
 in the real basis �k; �� 2 �3+ as given in21The detailed de�nition of stable forms is given in appendix B.22This 
ondition 
an be weakened in 
ase the K�ahler potential is de�ned as a logarithm of a fun
tionvarying alongM6 as we also dis
uss in appendix B.3. In this 
ase, the orientifold theory is an N = 1reformulation of the ten-dimensional supergravity theory [86℄.22



eqn. (3.27). The 
oeÆ
ients of this expansion are 
omplex s
alars Nk; T�. The K�ahlermetri
 is the se
ond derivative of KQ given in eqn. (3.51) with respe
t to these 
omplex�elds. Expli
itly, it takes the form�Nk� �N lK = 2e2D ZM6 �k ^ �6 �l ; �Nk� �T�K = 2e2D ZM6 �k ^ �6 �� ; (3.54)�T�� �T�K = 2e2D ZM6 �� ^ �6 �� :This ends our dis
ussion of the K�ahler metri
 on the type IIA �eld spa
esMK�MQ.We found that the K�ahler potentials are the two Hit
hin fun
tionals depending on realtwo- and three-forms on M6. A similar result with odd and even forms ex
hanged isfound for type IIB orientifolds to whi
h we turn now.The IIB K�ahler potential and the K�ahler metri
In the following we investigate the K�ahler stru
ture of the s
alar �eld spa
e in type IIBorientifolds. The 
omplex s
alars in the 
hiral multiplets are obtained by expanding �oddand �ev
 into appropriate forms on M6 as introdu
ed in eqns. (3.33) and (3.35). These
omplex s
alars lo
ally span the produ
t manifoldMK �MQ, whereMK 
ontains theindependent s
alars in �odd whileMQ 
ontains the s
alars in �ev
 . Note that we are nowdealing with two type IIB setups 
orresponding to two trun
ations of the original N = 2theory.As in the type IIA orientifolds the 
omplex and K�ahler stru
ture of MK is dire
tlyinherited from the underlying N = 2 theory. Independent redu
tions of the stru
turegroup ofM6 are parameterized by a set of real stable forms � = Re(�odd) denoted by U3.In order to satisfy the orientifold 
onstraints (3.31) this �eld spa
e is redu
ed to U3� forO3=O7 orientifolds and to U3+ for O5=O9 orientifolds. Furthermore, 
omplex res
alingsof the 
omplex three-form �odd are unphysi
al. Hen
e, the moduli spa
e en
oded by �oddis obtained by dividing U3� by reparameterizations �odd ! 
�odd for 
omplex non-zero
 2 C � . The �eld spa
eMK is then de�ned asMK = �Re(�odd) 2 U3�	=C � ; (3.55)where the minus sign stands for O3=O7 and the plus sign for O5=O9 orientifolds. The�eld spa
e MK is a 
omplex K�ahler manifold. This is shown in analogy to the N = 2
ase dis
ussed in refs. [79, 64℄, sin
e the orientifold proje
tions preserve the 
omplexstru
ture and only redu
e the dimension ofMK. We denote the 
omplex s
alars parame-terizingMK by z's. The K�ahler potential as a fun
tion of these �elds and their 
omplex
onjugates is given byKK(z; �z) = � ln �� iZM6 
�odd; ��odd�� = � ln �� iZM6 
 ^ �
� ; (3.56)where in the se
ond equality we used the de�nitions (3.30) and (3.20) of �odd and thepairings 
�; ��. The manifoldMK possesses a spe
ial geometry 
ompletely analogous tothe N = 2 
ase, su
h that in parti
ular the three-form 
(z) is a holomorphi
 fun
tionin the 
omplex 
oordinates z on MK. This spe
ial geometry was used in ref. [64℄ to23



derive the K�ahler metri
 
orresponding to KK. We will not review the result here, butrather immediately turn to the �eld spa
eMQ whi
h is a K�ahler �eld spa
e in the N = 1theory.Let us now determine the K�ahler potential en
oding the metri
 on the �eld spa
eMQ. As dis
ussed in se
tion 3.2 the 
omplex 
oordinates spanningMQ are obtained byexpanding �ev
 into elements of �ev� depending on whether we are dealing with O3=O7 orO5=O9 orientifolds. The pre
ise de�nition of �ev
 was given in eqn. (3.35). Note that notevery form in �ev� 
orresponds to a redu
tion of the stru
ture group ofM6 to SU(3) andwe have additionally to impose 
onstraints on Im(�ev
 ) analog to the stability 
onditiondis
ussed above. Re
all that in the O3=O7 
ase Im(�ev
 ) = Re(e��̂e�B̂2+iJ ) and in theO5=O9 
ase Im(�ev
 ) = Im(e��̂e�B̂2+iJ ) as given in eqns. (3.30) and (3.35). In thesede�nitions the real two-from J has to satisfy J ^ J ^ J 6= 0 and J � 0 as in (3.42).Altogether the �eld spa
eMQ lo
ally takes the formMQ = �Im(�ev
 ) 2 �ev� : J ^ J ^ J 6= 0 and J � 0	 � �ev� T � ; (3.57)where the ve
tor spa
e �ev� T � is spanned by the �elds Aev(0). The plus sign in the expression(3.57) 
orresponds to orientifolds with O3=O7 planes while the minus sign stands forthe O5=O9 orientifolds. The metri
 on the manifold MQ is obtained by inserting theexpansion of the R-R form Aev(0) into the ten-dimensional a
tion of type IIB supergravity.Performing a Weyl res
aling to the four-dimensional Einstein frame one �ndsSAev(0) = ZM3;1 GQ(dAev(0); �4 dAev(0)) ; (3.58)where GQ is de�ned on forms �; � 0 2 �ev� T � asGQ(�; � 0) = 2e2D ZM6 
�; �B � 0� : (3.59)The reason for this simple form is that we have repla
ed the ordinary Hodge-star by theB-twisted Hodge star �B a
ting on an even form � as (see, for example, ref. [85℄)�B � = eB̂2 ^ ��(e�B̂2 ^ �) ; (3.60)where � is the parity operator introdu
ed in (3.8). In equation (3.59) the four-dimensionaldilaton D is de�ned as in the type IIA 
ase (3.14). In
luding the redu
tion of Im(�ev
 )the a
tion (3.58) is 
ompleted asS�ev
 = ZM3;1 GQ(d�ev
 ; �4 d��ev
 ) : (3.61)The metri
 GQ is shown to be the se
ond derivative of the K�ahler potential 23KQ(�ev
 ) = �2 ln �iZM6 
�ev; ��ev�� = � ln �e�4D� ; (3.62)23As in the type IIA 
ase we dis
ard the non-trivial modes proportional to Im(�ev
 ). These 
an bein
luded if the K�ahler potential is the logarithm of a volume form varying alongM6.24



where in the se
ond equality we have used the de�nition of �ev as given in (3.30). Notethat KQ is a fun
tion of Im(�ev
 ) only, su
h that it depends on Re(�ev) in O3=O7 orien-tifolds while it depends on Im(�ev) in O5=O9 orientifolds. The fun
tionals appearing inthe logarithm are the Hit
hin fun
tionals (see also appendix B) [80℄H[Re(�ev)℄ = iZM6 
�ev; ��ev� ; H[Im(�ev)℄ = iZM6 
�ev; ��ev� ; (3.63)depending on whether we are dealing with O3=O7 and O5=O9 orientifolds.24 The metri
GQ given in eqn. (3.59) is obtained by taking the se
ond derivative of KQ asGQ(�; � 0) = ���ev
 ���ev
 KQ�(�; � 0) : (3.64)Due to the independen
e of KQ of the R-R s
alars in Aev(0) the metri
 GQ possesses shiftsymmetries.It is straight forward to evaluate the K�ahler metri
 GQ for the �nite basis of �ev�introdu
ed in (3.36). The 
oeÆ
ients are 
omplex �elds M Â = (�;Ga; T�) for O3=O7orientifolds and M Â = (S; t�; Aa) for O5=O9 orientifolds as seen in eqns. (3.38) and(3.39). Expli
itly the metri
 GQ is given by�M Â� �M B̂K = e2D Z 
�Â; �B �B̂� ; (3.65)where �Â = (1; !a; ~!�) for O3=O7 orientifolds while �Â = (�; !�; ~!a) for O5=O9 orien-tifolds. These metri
s are identi
al to the ones derived for type IIB Calabi-Yau orien-tifolds [23℄ if the �nite basis ��nite is 
onsisting of harmoni
 forms only. Compared tothe expression given in ref. [23℄ we simpli�ed the result 
onsiderably by introdu
ing theB-twisted Hodge-star �B.To summarize we found that also in the type IIB setups the �eld spa
eMK�MQ is aK�ahler manifold with K�ahler potentials given by the logarithm of the Hit
hin fun
tionals.This �xes the kineti
 terms of the 
hiral or dual linear multiplets. Surprisingly, ouranalysis 
an be performed in a rather general setting without spe
ifying a �nite redu
tion.To illustrate the results we nevertheless gave the redu
tion to the �nite basis ��nite. Wewill now turn to the analysis of the superpotential terms indu
ed on SU(3) stru
tureorientifolds.3.4 The Superpotential of type II SU(3) stru
ture orientifoldsIn this se
tion we derive the superpotentials for type IIA and type IIB SU(3) stru
tureorientifolds in presen
e of 
uxes and torsion. The 
al
ulation is most easily done on thelevel of the fermioni
 e�e
tive a
tion. This is due to the fa
t that the superpotentialW appears linearly in a four-dimensional N = 1 supergravity theory as the mass of thegravitino  �. The 
orresponding mass term readsSmass = �ZM3;1 eK=2�W � ����� � � + �W ���� �� �4 1 ; (3.66)24In the �rst 
ase one obtains the fun
tional dependen
e of H by evaluating Im(�ev) as a fun
tion ofthe real part Re(�ev), while in the se
ond 
ase one needs do �nd Re(�ev)�Im(�ev)�.25



where �41 = p�g4 d4x is the four-dimensional volume element and K is the K�ahlerpotential on the 
hiral �eld spa
e. To determine (3.66) for the orientifold setups onedimensionally redu
es the fermioni
 part of the type IIA and type IIB a
tions. As inthe bosoni
 part, the orientifold proje
tions ensure that the resulting four-dimensionaltheories possess N = 1 supersymmetry.Let us start by re
alling the relevant fermioni
 terms for our dis
ussion in the ten-dimensional type IIA and type IIB supergravity theories. We 
onveniently 
ombine thetwo gravitinos into a two-ve
tor  ̂N = ( ̂1N ;  ̂2N). The e�e
tive a
tion for the gravitinosin string frame takes the form 25S = �ZM10 �e�2�̂ �̂ M�MNPDN  ̂P � 1+ 14e�2�̂Ĥ3 ^ �	+ 18 Xn F̂n ^ �	n� ; (3.67)where we are using the demo
rati
 formulation of ref. [94℄. The R-R �eld strengths F̂nare de�ned as F̂n = dĈn�1 � Ĥ3 ^ Ĉn�3 ; �F̂n = �(F̂10�n) ; (3.68)where n runs from 0 to 8 for type IIA and from 1 to 9 for type IIB and we set Ĥ3 = dB̂2.The self-duality 
ondition in eqn. (3.68) implies that half of the R-R �elds in Ĉev=odd
arry no extra degrees of freedom. Furthermore, 	 and 	n are ten-dimensional three-and n-forms whi
h are bilinear in  ̂M and have 
omponents(	)M1M2M3 = �̂ M�[M�M1M2M3�N ℄P ̂N ;(	n)M1:::Mn = e��̂ �̂ M�[M�M1:::Mn�N ℄Pn ̂N ; (3.69)where P = �11, Pn = (�11)n for type IIA while for type IIB one has P = ��3, Pn = �1for n+12 even and Pn = i�2 for n+12 odd.In a next step we dimensionally redu
e the a
tion (3.67) on the manifold M3;1�M6fo
using on the derivation of four-dimensional mass terms of the form (3.66). In order todo that we de
ompose the ten-dimensional gravitinos  ̂M into four-dimensional spinorsonM3;1 times six-dimensional spinors on the SU(3) stru
ture manifoldM6. Of parti
ularinterest is the redu
tion of  ̂� where � labels the four spa
e-time dire
tions on M3;1. Intype IIB both ten-dimensional gravitinos have the same 
hirality and split as ̂A� =  A� 
 �� + � A� 
 �+ A = 1; 2 ; (3.70)where � denotes the globally de�ned spinor introdu
ed in eqn. (2.2) with six-dimensional
hirality�. The four-dimensional spinors  1;2� and � 1;2� are Weyl spinors with positive andnegative 
hiralities respe
tively. In type IIA supergravity the gravitinos have di�erent
hiralities and hen
e de
ompose as ̂1� =  1� 
 �+ + � 1� 
 �� ;  ̂2� =  2� 
 �� + � 2� 
 �+ : (3.71)25We only display terms whi
h are quadrati
 in the gravitinos  ̂N sin
e we aim to 
al
ulate termsof the form (3.66). Moreover, note that the ten-dimensional fermions are Majorana-Weyl spinors andthe 
onjugate spinor �̂ M =  yM�0 is obtained by hermitian 
onjugation and multipli
ation with theten-dimensional gamma-matrix �0. 26



The spinor  1;2� appearing in (3.70) and (3.71) yield the four-dimensional gravitinoswhen appropriately 
ombined with four-dimensional spinors arising in the expansionof  ̂m; m = 1; : : : ; 6. However, sin
e they are 
ombined linearly the mass terms of  1;2�take the same form as the one for the four-dimensional gravitinos whi
h label the N = 2supersymmetry.The orientifold proje
tions redu
e the four-dimensional theory to an N = 1 super-gravity. Hen
e, the two four-dimensional gravitinos as well as the spinors  1;2� are notindependent, but rather 
ombine into one four-dimensional spinor  � whi
h parameterizesthe N = 1 supersymmetry. This spinor is 
hosen in su
h a way that its ten-dimensionalextension  ̂M is invariant under the proje
tions O and O(1;2) given in eqns. (3.2) and (3.7)respe
tively. To investigate the transformation behavior of ten-dimensional spinors, re-
all that the world-sheet parity 
p ex
hanges  ̂1M and  ̂2M . If the orientifold proje
tion
ontains the operator (�1)FL one �nds an additional minus sign when applied to  ̂2M . Inthis we asserted that  ̂2M is in the NS-R se
tor while  ̂1M is in the R-NS se
tor. The geo-metri
 symmetry � a
ts only on the internal spa
eM6 whi
h translates to a non-trivialtransformation of the globally de�ned spinor �. The pre
ise a
tion of �� is di�erent fortype IIA and type IIB orientifolds. In the following we will dis
uss the redu
tion of bothten-dimensional type II theories in turn and determine the indu
ed superpotentials.The type IIA superpotentialLet us �rst determine the superpotential for type IIA orientifolds indu
ed by non-trivialba
kground 
uxes and torsion. Ba
kground 
uxes are va
uum expe
tation values for theR-R and the NS-NS �eld strengths. We denote the ba
kground 
ux of dB̂2 by H3 whilethe 
uxes of the R-R forms dĈn are denoted by Fn+1. In order that the four-dimensionalba
kground M3;1 is maximally symmetri
 the 
uxes have to be extended in the internalmanifoldM6 or 
orrespond to a four-form on M3;1. In type IIA supergravity we addi-tionally allow for a s
alar parameter F0, whi
h 
orresponds to the mass in the massivetype IIA theory introdu
ed by Romans [99℄. In order that the ba
kground 
uxes respe
tthe orientifold 
ondition (3.11) they have to obey��H3 = �H3 ; ��Fn = �(Fn) : (3.72)It is 
onvenient to 
ombine the R-R ba
kground 
uxes into an even form F ev onM6 asF ev = F0 + F2 + F4 + F6 : (3.73)In addition to the ba
kground 
uxes also a non-vanishing intrinsi
 torsion of the SU(3)stru
ture manifold will indu
e terms 
ontributing to the N = 1 superpotential. Thesearise due to the non-
losedness of the globally de�ned two-form J and three-form 
� and
an be parameterized as given in eqn. (2.9).In order to a
tually perform the redu
tion we need to spe
ify the a
tion of the ori-entifold proje
tion O = (�1)FL
p�� on the spinors  ̂1� and  ̂2�. The transformationbehavior of the ten-dimensional gravitinos under (�1)FL
p was already dis
ussed above.We supplement this by the a
tion of �� on the globally de�ned spinor �. In a

ord with
ondition (3.1) one has ���+ = ei��� ; ���� = e�i��+ ; (3.74)27



where � is the phase introdu
ed in eqn. (3.1). Therefore, the invariant 
ombination of thefour-dimensional spinors is given by  � = 12(ei�=2  1��e�i�=2  2�) with a similar expressionfor the Weyl spinors � 1;2� . In order to ensure the 
orre
t form of the four-dimensionalkineti
 terms for  � we restri
t to the spe
i�
 
hoi
e � = ei�=2  1� = �e�i�=2  2� ; � � = e�i�=2 � 1� = �ei�=2 � 2� : (3.75)These 
onditions de�ne a redu
tion of a four-dimensionalN = 2 to an N = 1 supergravitytheory [77, 78, 64℄. Hen
e, the mass terms of the spinors  � take the standard N = 1form given in eqn. (3.66).Now we turn to the expli
it redu
tion of the ten-dimensional e�e
tive a
tion (3.67)fo
using on the mass terms of  � indu
ed by the ba
kground 
uxes H3 and Fn and thetorsion of M6. We use the de
omposition (3.71) together with (3.75) and the gamma-matrix 
onventions summarized in appendix A to deriveS = �ZM3;1 eK2 � ����� � � �4 1ZM6 h4e��̂+i��y+
mDm�� + 4e��̂�i��y�
mDm�++ 13! e��̂+i� (Ĥ3)mnp �y+
mnp�� � 13! e��̂�i� (Ĥ3)mnp �y�
mnp�+ (3.76)+12 Xk even 1k!�(�F̂k)m1:::mk�y+
m1:::mk�+ + (F̂k)m1:::mk�y�
m1:::mk���i �6 1+ : : : ;where eK=2 = e2DeKK=2 with KK as de�ned in eqn. (3.43). The four-dimensional dilatoneD is introdu
ed in (3.14). Note that after the redu
tion of the D = 10 string framea
tion to four spa
e-time dimensions we performed a Weyl-res
aling to obtain a standardEinstein-Hilbert term. More pre
isely, in the derivation of (3.76) we made the res
alingg�� ! e2Dg�� ; �� ! e�D�� ;  � ! eD=2 � : (3.77)The res
aling of  � ensures that the four-dimensional theory has a standard kineti
 termfor the gravitino. The superpotential 
an be obtained by 
omparing the a
tion (3.76)with the standard N = 1 mass term (3.66). We will dis
uss the arising terms in turn andrewrite them into the form language used in the previous se
tions.Let us next express the result (3.76) in terms of the globally de�ned two-form J and
� de�ned in (2.6). First note that 
� is related to the 
 used in analysis of the bosoni
terms (se
tions 3.2 and 3.3) by a res
aling
� = e(K
s�KK)=2
 ; (3.78)where e�K
s = i R 
 ^ �
 and KK is de�ned in (3.43). The three-form 
� is de�ned insu
h a way, that it satis�es automati
ally the �rst 
ondition in (2.7) when integratedoverM6. The quantities in the �rst line of (3.76) are expressed in terms of the forms 
�and J by using the identities 26ZM6 �y�
mDm�+ �6 1 = �18 ZM6 
� ^ dJ ; ZM6 �y+
mDm�� �6 1 = �18 ZM6 �
� ^ dJ ;(3.79)26The expression (3.79) 
an be shown by using the Fierz identity (A.13) and expression (A.14) for�1 = �2 = �. 28



where d is the six-dimensional exterior derivative. Using these integrals as well as (3.78)and the de�nition of �odd = C
 displayed in (3.12), (3.13) one �nds4ZM6 e��̂hei��y+
mDm�� + e�i��y�
mDm�+i �6 1 = �ZM6 
dRe(�odd); J� : (3.80)Similarly, one expresses the remaining terms in the a
tion (3.76) using the three-from�odd and the two-form J . More pre
isely, the terms in the se
ond line of eqn. (3.76) arerewritten by applying eqns. (2.6), (3.78), (3.12) and �
 = �i
 as13! ZM6 �e��̂+i�(Ĥ3)mnp�y+
mnp�� � e��̂�i�(Ĥ3)mnp�y�
mnp�+� �6 1 (3.81)= �iZM6 h
H3 ^ Re(�odd); 1�+ 
dRe(�odd); B̂2�i ;where we have used that Ĥ3 = dB̂2 +H3 with H3 being the ba
kground 
ux. Finally,we apply gamma-matrix identities and the de�nition (2.6) of J to rewrite the termsappearing in the last line of (3.76) as12 Xk even 1k! ZM6 h(�F̂k)m1:::mk�y+
m1:::mk�+ + (F̂k)m1:::mk�y�
m1:::mk��i �6 1 (3.82)= ZM6 h
F ev; e�B̂2+iJ�� 
H3 ^ C(0)3 ; 1�� 
dC(0)3 ; B̂2�+ i
dC(0)3 ; J�i ;where C(0)3 is de�ned in (3.18) as the part of Ĉ3 being a three-form onM6 yielding s
alar�elds in M3;1. In deriving this identity one uses the de�nition of F̂k given in eqn. (3.68)while eliminating half of the R-R �elds by the duality 
ondition (3.68) .In summary one 
an now read o� the 
omplete type IIA superpotential indu
ed byba
kground 
uxes and torsion. Introdu
ing the di�erential operator dH = d �H3^ one�nds (see also refs. [64, 11℄)WO6 = ZM6 
F ev + dH�odd
 ; eJ
� ; (3.83)where we used the de�nitions of J
 = �B̂2 + iJ and �odd
 = C(0)3 + iRe(�odd) given ineqns. (3.17) and (3.19). The superpotential extends the results of refs. [18, 19, 61, 64,21, 11℄ and together with the dis
ussions above it is readily 
he
ked to be holomorphi
in the N = 1 
oordinates. As dis
ussed in se
tion 3.2 the 
omplex forms J
 and �ev
 arelinear in the 
omplex N = 1 
oordinates. This is also the 
ase for their derivatives dJ
and d�ev
 , where d is the exterior derivative alongM6. Therefore we dedu
e that W is apolynomial of 
ubi
 order in J
 times a linear polynomial in �odd
 . Let us now determineW for the type IIB orientifold 
ompa
ti�
ations.The type IIB superpotentialIn the following we will determine the superpotential of the type IIB orientifolds indu
edby the ba
kground 
uxes and torsion. In the type IIB theory we allow for a non-trivialNS-NS 
ux H3 as well as odd R-R 
uxes. Due to the fa
t that we do not expand in29



one- or �ve-forms onM6 the only non-vanishing R-R is the three-form F3. The equation(3.29) implies that H3; F3 transform under the orientifold proje
tion as��H3 = �H3 ; ��F3 = �F3 ; (3.84)where the minus sign in the se
ond 
ondition applies to type IIB orientifolds with O3=O7planes while the plus sign is 
hosen for O5=O9 orientifolds. Sin
e, there are some quali-tative di�eren
es between both 
ases we will dis
uss them in the following separately.O3=O7 : Our analysis starts with the O3=O7 orientifolds. As in the type IIA 
asewe need to spe
ify the spinor invariant under the orientifold proje
tions O(1) de�ned ineqn. (3.7). We already gave the transformation of the ten-dimensional spinor under theworld-sheet parity 
p and (�1)FL. It remains to spe
ify how �� a
ts on the internalspinor ��. Using eqns. (3.5) and (3.6) one infers [100℄���+ = i�+ ; ���� = �i�� ; (3.85)su
h that (��)2�� = ��� 
onsistent with the fa
t the (�1)FL
p squares to �1 on the ten-dimensional gravitinos. With these identities at hand one de�nes the four-dimensionallinear 
ombinations  � = 12( 1� + i 2�) together with the 
onjugate expression for � �.Combining  �; � � into a ten-dimensional spinor  ̂� by multipli
ation with �� and �+respe
tively it is readily shown that  ̂� is invariant under O(1). It turns out to besuÆ
ient to determine W for a more simple 
hoi
e of the four-dimensional spinor  �given by  � =  1� = �i 2� ; � � = � 1� = i � 2� : (3.86)These 
onditions de�ne the redu
tion of the N = 2 theory to N = 1 indu
ed by theorientifold proje
tion. Inserting the de
ompositions (3.70) together with (3.86) into theten-dimensional a
tion (3.67) one determines the  � mass termsS = �ZM3;1 eK2 � ����� � � �4 1ZM6 13!h(e��̂(Ĥ3)mnp + i(F̂3)mnp)
mnpi �6 1+ : : : ; (3.87)where eK=2 = e2DeK
s=2 with K
s as de�ned in eqn. (3.56). In order to derive thisfour-dimensional a
tion we performed the Weyl-res
aling (3.77) to obtain a standardEinstein-Hilbert term. Moreover, we used the identities (2.6) and (3.78) to repla
e thegamma-matrix expressions �y�
mnp�+ with the 
omplex three-form 
mnp and absorbed afa
tor arising due to the Weyl-res
aling (3.77) into eK=2. It is interesting to note thatthere is no 
ontribution from the redu
tion of the ten-dimensional kineti
 term in thea
tion (3.67). This 
an be tra
ed ba
k to the fa
t that in type IIB orientifolds with O3=O7planes the globally de�ned three- and two-forms 
 and J transform with opposite signsunder the map ��. However, sin
e the volume form is positive under the orientationpreserving map � the integral over terms like d
 ^ J vanishes. The non-
losed forms dJand d
 nevertheless yield a potential for the four-dimensional s
alars whi
h is en
odedby non-trivial D-terms.Let us now express the a
tion (3.87) in terms of the globally de�ned three-form 
and the form �ev. Using the de�nition (3.30) of �ev one infers13! ZM6 � e��̂�i�(Ĥ3)mnp
mnp� �6 1 = �iZM6 e��̂�
H3;
�+ 
dB̂2;
�� (3.88)= �iZM6 �
H3 ^ Re(�ev);
�� 
dRe(�ev);
�� ;30



where we have used Re(�ev)0 = e��̂ and Re(�ev)2 = �e��̂B̂2 as simply dedu
ed from thede�nition (3.30). For the R-R term in (3.87) one derivesi3! ZM6(F̂3)mnp
mnp �6 1 = ZM6 �
F3;
�+ 
dA(0)2 ;
�� 
H3 ^A(0)0 ;
�� ; (3.89)where A(0)2 and A(0)0 denote the two- and zero- forms in Aev(0) de�ned in (3.34).27 Togetherthe two terms (3.88) and (3.89) 
ombine into the superpotentialWO3=O7 = ZM6 
F3 + dH�ev
 ;
� (3.90)where dH = d�H3^ and �ev
 is de�ned in eqn. (3.35). This superpotential 
ontains thewell-known Gukov-Vafa-Witten superpotential [101, 102℄ as well as 
ontributions due tonon-
losed two-forms B̂2 and Ĉ2. Also in this type IIB 
ase it is straight forward to
he
k the holomorphi
ity of W . As mentioned in se
tion 3.3 the form 
(z) is in general a
ompli
ated holomorphi
 fun
tion of the 
hiral 
oordinates z. On the other hand �ev
 aswell as d�ev
 depends linearly on the N = 1 
hiral 
oordinates. Hen
e, the superpotentialWO3=O7 is a linear fun
tion in �ev
 times a holomorphi
 fun
tion in the �elds z and
ontains no 
onjugate �elds. Let us 
omplete the dis
ussion of the type IIB orientifoldsby determining the O5=O9 superpotential.O5=O9 : To derive the superpotential for the O5=O9 orientifolds we �rst spe
ifythe 
ombination of the two ten-dimensional gravitinos invariant under O(2) de�ned ineqn. (3.7). We dedu
e the a
tion of �� on the globally de�ned spinor � by examining theexpressions (3.5) and (3.6), whi
h yield���+ = �+ ; ���� = �� : (3.91)The invariant 
ombination of the four-dimensional spinors is given by  � = 12( 1� +  2�)with a similar relation for � �. As a spe
i�
 
hoi
e for this 
ombination we simplify to � =  1� =  2� ; � � = � 1� = � 2� : (3.92)Together with the de
omposition (3.70) we redu
e the a
tion (3.67) to determine themass term of  � asS = �ZM3;1 eK2 � ����� � � �4 1ZM6 
� iF̂3 + d(e��̂J);
� �6 1+ : : : ; (3.93)where we have applied (3.79) and performed the Weyl res
aling (3.77). Note that theterm involving the NS-NS 
uxes vanishes in the 
ase of O5=O9 orientifolds sin
e 
 andĤ3 transform with an opposite sign under the symmetry �� as 
an be dedu
ed fromeqns. (3.6) and (3.29). Inserting the de�nition (3.68) of F̂3 into (3.93) one obtains thesuperpotential [11℄ WO5=O9 = �iZM6 
F3 + d�ev
 ;
� ; (3.94)where we have used Im(�ev)2 = e��̂J and the de�nition (3.35) of �ev
 . The superpotentialWO5=O9 is a linear fun
tion in the N = 1 �elds en
oded by �ev
 times a holomorphi
fun
tion of the �elds z. WO5=O9 is independent of the NS-NS 
ux H3 whi
h was shownin ref. [23℄ to 
ontribute a D-term potential to the four-dimensional theory.27Expanding Aev(0) in (3.34) one �nds A(0)2 = Ĉ2 � Ĉ0B̂2 and A(0)0 = Ĉ0.31



4 Generalized orientifolds and mirror symmetryIn this se
tion we dis
uss SU(3)�SU(3) stru
ture orientifolds and investigatemirror sym-metry of the type IIA and type IIB setups. More pre
isely, we aim to spe
ify setups dualto an orientifold 
ompa
ti�
ation on a Calabi-Yau manifold Y with ba
kground 
uxes.In doing that our main fo
us will be the identi�
ation of the N = 1 superpotentials.The superpotentials are holomorphi
 fun
tions of the 
hiral �elds of the four-dimensionaltheory and do not re
eive perturbative 
orre
tions. Hen
e, they yield a good testingground for the mirror relations we will propose below. Note however, that the poten-tial for Calabi-Yau orientifolds with O5 planes 
ontains in addition to a superpotential
ontribution also a D-term potential whi
h arises due to the presents of a gauged linearmultiplet [23, 95℄. We will therefore fo
us on the mirror identi�
ations between the typeIIA orientifolds and the type IIB orientifolds with O3=O7 planes. In general Calabi-Yauorientifolds with O3=O7 or O6 planes the potential indu
ed by non-trivial NS-NS andR-R ba
kground 
uxes is entirely en
oded by a superpotential and the K�ahler potential[23, 24, 11℄. We propose a possible mirror spa
eM~Y whi
h possesses a geometry dual topart of the ele
tri
 and magneti
 NS-NS 
uxes. In other words, we identify a spa
eM~Ysu
h that Typ IIBO3=7=Y with HQ3  mirror����! Typ IIAO(even)=M~Y : (4.1)where the pre
ise de�nition of the NS-NS 
ux HQ3 will be given shortly and the manifoldM~Y is spe
i�ed in se
tion 4.1. The eviden
e for the identi�
ation (4.1) is dis
ussed inse
tion 4.2, where we also 
he
k 
onsisten
y by analyzing the mirror relationTyp IIAO6=Y with HQ3  mirror����! Typ IIBO(odd)=M~Y ; (4.2)In both 
ases we 
on
entrate on the superpotentials indu
ed by the NS-NS 
ux HQ3 only.In order to make the mirror 
onje
tures (4.1) and (4.2) more pre
ise we have to de�nethe ba
kground 
ux HQ3 as well as the properties ofM~Y . Let us start with HQ3 . Re
allthat the ba
kground 
uxes in Calabi-Yau 
ompa
ti�
ations are demanded to be harmoni
forms in order to obey the equations of motion and Bian
hi identities. This implies thatbefore imposing the orientifold proje
tions the general expansion of the NS-NS 
ux H3reads H3 = mK̂�K̂ � eK̂�K̂ ; K̂ = 0; : : : ;dimH(2;1) ; (4.3)where (�K̂; �K̂) is a real symple
ti
 basis of H3(Y ) satisfying (3.22). We denoted themagneti
 and ele
tri
 
ux quanta of H3 by (mK̂; eK̂). Di�erent 
hoi
es of the symple
ti
basis (�K̂; �K̂) are related by a symple
ti
 rotation whi
h also a
ts on the ve
tor of 
uxquanta guaranteeing invarian
e ofH3. Note however, that due to the fa
t the supergravityredu
tion is only valid in the large volume limit the mirror symmetri
 theory has to beevaluated in the `large 
omplex stru
ture limit'. Around this point of the moduli spa
ethe holomorphi
 three-form 
 on Y admits a simple dependen
e on the 
omplex stru
turemoduli zK; K = 1; : : : ;dimH(2;1) expli
itly given by [103℄
(z) = �0 + zK�K + 12!zKzL�KLM�M � 13!zKzLzM�KLM�0 ; (4.4)where �KLM are interse
tion numbers on Y de�ned, for example, in ref. [98℄. The expres-sion (4.4) spe
i�es a 
ertain basis (�K̂; �K̂) of H(3)(Y ). In parti
ular it singles out the32



elements �0 and �0 with 
oeÆ
ients 
onstant and 
ubi
 in the 
omplex �elds zK. Usingthis spe
i�
ation we are now in the position to de�ne the NS-NS 
ux HQ3 by demandingthat the 
ux quanta e0; m0 along �0; �0 vanish. In other words we setHQ3 = mK�K � eK�K ; e0 = 0 ; m0 = 0 ; (4.5)where the index K runs from K = 1; : : : ;dimH(2;1). An equivalent de�nition of HQ3 
anbe given by interpreting mirror symmetry as T-duality along three dire
tions of Y [87℄.One demands that the 
omponents of the NS-NS 
ux (HQ3 )mnp have never zero or threeindi
es in the T-dualized dire
tions whi
h 
orresponds to e0 = m0 = 0.4.1 Generalized half-
at manifoldsLet us now turn to the de�nition of the manifoldM~Y . In referen
e [36, 43℄ it was arguedthat type II 
ompa
ti�
ations on Calabi-Yau manifolds with ele
tri
 NS-NS 
uxes arethe mirror symmetri
 duals of 
ompa
ti�
ations on half-
at manifolds (2.10). In orderto also in
lude magneti
 
uxes into this mirror identi�
ation it is inevitable to generalizeaway from the SU(3) stru
ture 
ompa
ti�
ations [82, 83, 64, 74℄. This might also lead tothe appli
ation of the generalized manifoldsM~Y with SU(3) � SU(3) stru
ture [64℄. Inthe remainder of this se
tion we dis
uss some of the properties of the spa
esM~Y , whi
hmight be mirror dual to Calabi-Yau manifolds with NS-NS 
uxes HQ3 . We term thesespa
es `generalized half-
at manifolds'. Some eviden
e for the mirror identi�
ations (4.1)and (4.2) will be provided in se
tion 4.2.To start with let us re
all the de�nition of a manifold with SU(3)� SU(3) stru
ture[80, 84℄. Clearly, the group SU(3) � SU(3) 
annot a
t on the tangent bundle alone andone has to introdu
e a generalized tangent bundle E. Following the work of Hit
hin[80, 81℄, the generalized tangent bundle E is given byEp �= TpM6 � T �pM6 ; p 2 M~Y ; (4.6)where E is lo
ally identi�ed with the sum of the tangent and 
otangent spa
e. Its globalde�nition is more involved, sin
e the spa
es Ep might be glued together non-triviallyalong M~Y [81℄. To make this more pre
ise one introdu
es a natural O(6; 6) metri
 onEp de�ned by (v + �; u + �) = 12(�(u) + �(v)), for v; u 2 Tp and �; � 2 T �p . Restri
tingfurther to transformations preserving the (natural) orientation of E redu
es the groupdown to SO(6; 6). A global de�nition 
an then be given by spe
ifying elements of thisgroup serving as transition fun
tion on overlapping pat
hes on M~Y . We are now inthe position to de�ne an SU(3)�SU(3) stru
ture manifold by demanding the stru
turegroup of the bundle E to redu
e to SU(3)� SU(3) � SO(6; 6). As in the 
ase of SU(3)stru
ture manifolds dis
ussed in se
tion 2, this redu
tion 
an be spe
i�ed in terms oftwo globally de�ned forms or two globally de�ned spinors onM~Y . We 
omment on thespinor pi
ture in se
tion 4.2, where it will also be
ome 
lear that the stru
ture groupSU(3) � SU(3) is di
tated by demanding that type II 
ompa
ti�
ations on M~Y yieldfour-dimensional N = 2 supergravity theories. Let us analyze here the 
hara
terizationin terms of globally de�ned forms [80, 84, 64℄.Note that the group SO(6; 6) naturally admits spin representations on even and oddforms of M~Y . More pre
isely, one �nds two irredu
ible Majorana-Weyl representations33



Sev and Sodd given bySev �= �evT � 
 jdet T j1=2 ; Sodd �= �oddT � 
 jdet T j1=2 ; (4.7)where detT �= �6T is �xed on
e a parti
ular volume form is 
hosen. On elements� 2 Sev=odd the group SO(6; 6) a
ts with the Cli�ord multipli
ation(v + �) �� = vy�+ � ^� ; (4.8)where vy indi
ates insertion of the ve
tor v 2 T and � 2 T � is a one-form. Using thesede�nitions an SU(3) � SU(3) stru
ture on M~Y is spe
i�ed by two 
omplex globallyde�ned even and odd forms �0 ev and �0odd whi
h are annihilated by half of the elementsin E.28 Furthermore, in order to ensure the redu
tion of SO(6; 6) to the dire
t produ
tSU(3) � SU(3) the globally de�ned forms also have to obey [84, 64℄
�0 ev; ��0 ev� = 34
�0odd; ��0odd� ; 
�0 ev; (v + �) ��0odd� = 0 ; (4.9)for all elements v + � 2 E. The pairing 
�; �� appearing in this expression is de�ned in(3.20). These 
onditions redu
e to the standard SU(3) stru
ture 
onditions (2.7) in 
asewe identify �0 ev = e��̂eiJ ; �0odd = C
 ; (4.10)where J and 
 are the globally de�ned two- and three-form. In this expressions theadditional degree of freedom in jdetT j1=2 is labeled by the ten-dimensional dilaton e��̂also linearly appearing in the de�nition (3.13) of C. Note however, that in the generalSU(3) � SU(3) stru
ture 
ase the odd form �odd also 
ontains a one- and �ve-form
ontribution su
h that �0odd = �01+�03+�05. It was shown in ref. [84℄ that ea
h of theseforms lo
ally admits the expression�odd = e�B̂2 ^�0odd = e�B̂2+iJ ^ C
k ; (4.11)where J is a real two-form and we also in
luded a possible B-�eld on the internal manifoldM~Y . The index k is the degree of the 
omplex form 
k. In the spe
ial 
ase that k = 3on all ofM~Y the form �0odd des
ends to the form (4.10). However, the degree of 
k 
an
hange when moving alongM~Y [84℄.29 In other words, the form �odd 
an lo
ally 
ontaina one-form C
1. The presents of this one-form in the expansion (4.11) will be the keyto en
ode the mirror of the magneti
 
uxes in HQ3 given in (4.5).To make this more pre
ise, one notes that the globally de�ned forms �0 ev and �0oddare not ne
essarily 
losed. This is already the 
ase for SU(3) stru
ture manifolds whi
hare half-
at and hen
e obey (2.10). For these manifolds the spe
ial forms (4.10) are nolonger 
losed, sin
e dRe(ei��0odd) and dIm(�0 ev) are non-vanishing. This obstru
tion ofthe internal manifoldM~Y to be Calabi-Yau is interpreted as mirror dual of the ele
tri
NS-NS 
uxes eK appearing in the expansion (4.5) of H3 [36℄.30 In order to also en
odedual magneti
 
uxes we generalize the half-
at 
onditions to the general odd form �odd28More pre
isely, ea
h form �0 ev and �0odd is demanded to be annihilated by a maximally isotropi
subspa
e Eev and Eodd of E. Isotropy implies that elements v+�; u+� 2 Eev=odd obey (v+�; u+�) = 0,while maximality 
orresponds to dimEev=odd = 6.29Interesting examples of manifolds allowing su
h transitions were re
ently 
onstru
ted in ref. [104℄.30The remaining 
ux parameter e0 in eqn. (4.5) indu
es a non-trivial H3 
ux on the mirrorM~Y .34



given in eqn. (4.11). These generalized half-
at manifolds are SU(3) � SU(3) stru
turemanifolds for whi
h dIm(ei��0odd) = 0 (4.12)where as above e�i� is the phase of C. The real part of ei��0odd and the form �0 ev arenon-
losed. We 
onje
ture that in a �nite redu
tion the di�erentials dRe(ei��0odd) andd�0 ev are identi�ed under mirror symmetry with the NS-NS 
uxes HQ3 .Let us now make the mirror map between the type II theories on a manifoldMY6 andthe Calabi-Yau 
ompa
ti�
ations with NS-NS 
uxes expli
it. In order to do that, weperform a �nite redu
tion by spe
ifying a set of forms ��nite. In 
ontrast to the SU(3)
ase dis
ussed in se
tion 3.2, the forms in the set ��nite 
annot anymore be distinguishedby their degree. In the generalized manifolds only a distin
tion of even and odd forms ispossible, su
h that ��nite = �odd ��ev ; (4.13)where �odd now 
ontains forms of all odd degrees. In parti
ular, the one-, three and�ve-form 
omponents of the form �odd given in eqn. (4.11) 
an mix on
e one moves alongM~Y . Nevertheless, we are able to spe
ify a basis of ��nite su
h that a Kaluza-Kleinredu
tion on these forms pre
isely yields the mirror theory obtained by a Calabi-Yauredu
tion with NS-NS 
uxes.To make this more pre
ise, we �rst spe
ify a �nite real symple
ti
 basis of �odd. Wedemand that it 
ontains the non-trivial odd forms (
K̂ ; ~
K̂) de�ned as
K̂ = �(�0 + �(1)); �K� ; ~
K̂ = �(�0 + �(5)); �K� ; ZM ~Y 

K̂; ~
L̂� = ÆL̂̂K ; (4.14)where �(1) and �(5) are a one-form and �ve-form respe
tively. Note that as remarkedabove, the basis elements (
K̂ ; ~
K̂) 
arry no de�nite form degree sin
e 
0 and ~
0 
onsistof a sum of one-, three- and �ve-forms. Using this basis the odd form �odd admits theexpansion 31�odd = C�
0 + zK
K + 12!zKzL�KLM~
M � 13!zKzLzM�KLM~
0� ; (4.15)whi
h generalizes the expansion (4.4) for the three-form 
. In order to identify the �eldszK under the mirror map with the 
omplexi�ed K�ahler stru
ture deformations of Y onehas K = 1; : : : ;dimH(1;1)(Y ), while K̂ takes an additional value 0. We also introdu
e abasis �ev of even forms on M~Y denoted by !Â = (1; !A) and ~!Â = (~!A; �), with inter-se
tions as in equation (3.21). Mirror symmetry imposes that A = 1; : : : ;dimH(2;1)(Y ).Note that due to the fa
t that �odd; �0 ev 2 ��nite are no longer 
losed not all basis ele-ments (
K̂; ~
K̂) and (!Â; ~!Â) are annihilated by the exterior di�erential. More pre
isely,we assign thatd
0 = �mA!A � eA~!A ; d!A = �eA�0 ; d~!A = �mA�(5) ; (4.16)whi
h is in a

ord with the non-vanishing interse
tions (3.21) and (4.14). It is now 
learfrom eqn. (4.16) that the existen
e of one- and �ve forms in 
0; ~
0 is essential to en
ode31Note that the pre
ise moduli dependen
e of the expansion (4.15) will be not relevant in the following.The essential part is that �odd 
ontains a part C
0 whi
h is linear in C. This 
an be always a
hievedby an appropriate res
aling of C. 35



non-vanishing magneti
 
uxes. In the 
ase, one evaluates (4.16) for �(1) = �(5) = 0 oneen
ounters set-ups with dual ele
tri
 
uxes only [36℄.In the �nite redu
tion onM~Y the equation (4.16) parameterizes the deviation ofM~Yto be Calabi-Yau. Using the expansion (4.15) of the globally de�ned forms �odd oneeasily applies (4.16) to derivedRe(ei��odd) = �jCj(mA!A + eA~!A) ; dIm(ei��odd) = 0 : (4.17)In order that the low energy theories of 
ompa
ti�
ations onM~Y 
oin
ide with the mirrorredu
tions on the Calabi-Yau spa
e Y with 
uxes the s
ale of torsion onM~Y has to bebelow the Kaluza-Klein s
ale. In other words, the generalized half-
at manifold should beunderstood as a `small' deviation from the Calabi-Yau spa
e ~Y whi
h is the mirror of Y inthe absen
e of 
uxes. Note however, that the topology ofM~Y di�ers from the one of theCalabi-Yau spa
e ~Y sin
e ��nite 
ontains various non-harmoni
 forms. This suggests thatan expli
it 
onstru
tion ofM~Y might involve the shrinking of 
y
les in homology, whi
hare later resolved with a non-trivial deformation. Unfortunately, an expli
it 
onstru
tionof the manifolds M~Y is still missing. Moreover, it remains 
hallenging to investigatethe geometri
 stru
ture of these manifolds in more detail. Despite of the fa
t that M~Ypossesses two globally de�ned forms �odd and �0ev it remains to be investigated if thisallows to de�ne the mirror of the Riemannian metri
. Note however, that from a four-dimensional point of view the globally de�ned even and odd forms are suÆ
ient to en
odethe N = 2 or N = 1 
hara
teristi
 data.In the �nal se
tion we provide some eviden
e for the 
onje
ture that the generalizedhalf-
at manifolds are the mirrors of Calabi-Yau 
ompa
ti�
ations with NS-NS 
uxes.We do this by deriving the superpotentials indu
ed by the general odd forms �odd. Thetype IIA and type IIB 
ases will be analyzed in turn.4.2 The mirrors of type II Calabi-Yau orientifolds with 
uxesIn this se
tion we dimensionally redu
e the fermioni
 a
tion (3.67) on a generalizedSU(3) � SU(3) stru
ture manifoldM~Y . In addition we will impose the orientifold pro-je
tions ensuring that the four-dimensional theory is an N = 1 supergravity. This willallow us to derive the superpotentials arising due to the non-
losed forms �odd and �evand the ba
kground 
uxes. These 
an be evaluated for the generalized half-
at manifoldsintrodu
ed in the previous se
tion. We use the �nite expansion (4.17) to 
ompare thesuperpotentials depending on d�odd to their mirror partners arising due to NS-NS 
ux.In order to perform the dimensional redu
tion of the fermioni
 a
tion (3.67) the twoten-dimensional gravitinos  1;2M are de
omposed on the ba
kground M3;1 �M~Y . Hen
e,we are looking for a generalization of the de
ompositions (3.70) and (3.71). Note however,that the internal manifoldM~Y possesses an SU(3)�SU(3) stru
ture implying that onegeneri
ally �nds two globally de�ned spinors �1 and �2 on this spa
e [84, 64℄. In termsof these two globally de�ned spinors �1;2 the globally de�ned forms �0ev and �0odd areexpressed as�0ev = 2e��̂ Xn even 1n!�y2+ 
p1:::pn�1+epn:::p1; �0odd = �2C Xn odd 1n!�y2� 
p1:::pn�1+epn:::p1;(4.18)36



where ep1:::pn = ep1 ^ : : : ^ epn is a basis of n-forms �nT � on the manifold M~Y . Thepresen
e of the two spinors �1;2 ensures that the four-dimensional theory obtained by
ompa
tifying on the spa
e M~Y possesses N = 2 supersymmetry. More pre
isely, thetype IIB ten-dimensional gravitinos de
ompose on M3;1 �M~Y as ̂A� =  A� 
 �A� + � A� 
 �A+ A = 1; 2 ; (4.19)while the type IIA de
omposition is given by ̂1� =  1� 
 �1+ + � 1� 
 �1� ;  ̂2� =  2� 
 �2� + � 2� 
 �2+ : (4.20)As in se
tion 3.4, the Weyl spinors  1;2� and � 1;2� yield the four-dimensional gravitinosparameterizing the N = 2 supersymmetry of the theory. Clearly, the de
ompositions(4.19), (4.20) redu
e on an SU(3) stru
ture manifold to the expressions (3.70), (3.71), if� = �1 = �2 is the only globally de�ned spinor. In general �1 and �2 are not ne
essarilyparallel along all ofM~Y . It is pre
isely this deviation whi
h allows the general odd forms(4.11) to lo
ally 
ontain a one-form 
omponent �1y
m�2.A dimensional redu
tion on ba
kgrounds M~Y with SU(3) � SU(3) stru
ture yieldsa four-dimensional N = 2 supergravity [64℄. The number of supersymmetries is furtherredu
ed to N = 1 by imposing appropriate orientifold proje
tions. To perform the four-dimensional N = 1 redu
tions we dis
uss the type IIA and type IIB 
ases in turn.The type IIA mirror of type IIB Calabi-Yau orientifolds with NS-NS 
uxLet us �rst derive the four-dimensional superpotential for type IIA orientifolds onM~Y .It is most 
onveniently read o� from the mass term (3.66) arising in the redu
tion ofthe fermioni
 a
tion (3.67). In this derivation we have to impose the type IIA orientifoldproje
tion (3.2). It is straight forward to extend the 
onditions (3.15) to the more generalodd and even forms�odd = e�B̂2 ^ �0odd ; �ev = e�̂e�B̂2 ^�0ev ; (4.21)where �0odd and �0ev are given in expression (4.18). One has���odd = �(��odd) ; ���ev = �(�ev) : (4.22)In 
omplete analogy to se
tion 3.4 the transformations (4.22) impose 
onstraints on thespinors �1;2 appearing in the 
omponent expansion (4.18). Eventually, this implies thatthe two four-dimensional spinors  1� and  2� are related as in eqn. (3.75).We are now in the position to perform the redu
tion of the a
tion (3.67). The ten-dimensional terms only depending on NS-NS �elds redu
e using (4.20) and (3.75) asS �NS = �ZM3;1 eK2 � ����� � � �4 1ZM6 
dRe(�0odd)� Ĥ3 ^ Re(�0odd);�0ev�+ : : := �ZM3;1 eK2 � ����� � � �4 1ZM6 
dHRe(�odd);�ev�+ : : : ; (4.23)where Ĥ3 = dB̂2+H3 and the dots indi
ate terms depending on the R-R �elds or not 
on-tributing to the mass term (3.66). The expression (4.23) is a generalization of eqn. (3.80)37



and (3.81) for the globally de�ned forms (4.18). However, the derivation of (4.23) isslightly more involved, sin
e terms proportional to �A y
mDm�A or Hmnp�A y
mnp�A forA = 1; 2 need to be 
onverted to the sum of forms (4.18). In order to do that one re-peatedly uses the Fierz identities (A.12) and (A.13) [105℄. Furthermore, the derivativeson the spinors �1;2 translate to di�erentials on the forms �ev=odd de�ned in eqn. (4.18)by using the identity (A.14). The K�ahler potential K appearing in the a
tion (4.23)takes the same form as the one for SU(3) stru
ture manifolds (1.1) if one substitutesthe general odd and even forms �ev and �odd. More pre
isely, the K�ahler potential K
onsists of the logarithms of the extended Hit
hin fun
tionals introdu
ed in ref. [80℄.32 Abrief review of the relevant mathemati
al de�nitions 
an be found in appendix B. As inse
tion 3.4, the fa
tor eK=2 in the expression (4.23) arises after a four-dimensional Weylres
aling (3.77).It is straight forward to in
lude the R-R �elds into the fermioni
 redu
tion in full anol-ogy to se
tion 3.4. Together with the terms (4.23) the four-dimensional superpotentialtakes the form W = ZM6 
F ev + dH�odd
 ;�ev� ; (4.24)where �odd
 = Aodd(0) + iRe(�odd) ; Âodd = e�B̂2 ^ Ĉodd : (4.25)The 
omplex form�odd
 
an lo
ally 
ontain a one- and �ve-form 
ontribution. The 
ompex
hiral multiplets parametrized by �odd
 arise as 
omplex 
oe�
ients of an expansion intoreal forms �odd+ .In order to 
ompare this result to the mirror result for type IIB Calabi-Yau orientifoldswithO3=O7 planes we perform the �nite redu
tion dis
ussed in the previous se
tion. Notethat we also have to impose the orientifold 
ondition, su
h that the expansion of �ev=oddin performed into the appropriate subset of ��nite = �+ � ��. As in eqn. (3.23) thissplitting is with respe
t to the geometri
 symmetry P6 = ���. Using the �nite basis(
K̂; 
K̂) introdu
ed in eqn. (4.14) one expands�odd
 = Nk
k + T�~
� ; (
k; ~
�) 2 �odd+ : (4.26)It is an important requirement that the form 
0 is an element of �odd+ in order that thetype IIA setups are mirror dual to type IIB setups with O3=O7 planes [24℄. The evenform �ev is expanded in a basis (1; !a; ~!b; �) of �ev+ as�ev = 1 + ta!a + 12!tatbKab
~!
 + 13!tatbt
Kab
� (4.27)where the Kab
 = R !a ^ !b ^ !
 are the interse
tion numbers on �2�. On the type IIAside the NS-NS and R-R 
uxes are set to be zero. Inserting the expressions (4.26), (4.27)and (4.16) into the superpotential (4.24) one �ndsW = �N0(ebtb + 12!tatbm
Kab
) : (4.28)The superpotential depends on the `ele
tri
' 
ux parameters e0; ea as well as the `mag-neti
' 
uxes ma. Under the mirror map these parameters are identi�ed with the NS-NS
ux quanta in HQ3 .32The relevan
e of the extended Hit
hin fun
tional as a spa
e-time a
tion for the topologi
al stringwas re
ently dis
ussed in ref. [57℄. 38



It is not hard to see, that the superpotential (4.28) is pre
isely the mirror super-potential to the well-known Gukov-Vafa-Witten superpotential for type IIB Calabi-Yauorientifolds with O3=O7 planes [101, 102℄. Denoting by � , the type IIB dilaton-axion theGukov-Vafa-Witten superpotential for vanishing R-R 
uxes reads 33W = �� ZY HQ3 ^ 
 = ���ekzk + 12!mkzlzm�klm� ; (4.29)where the NS-NS 
ux HQ3 is given in eqn. (4.5) and 
 takes the form (4.4) in the large
omplex stru
ture limit. Note that we additionally imposed the orientifold proje
tion onthe type IIB Calabi-Yau 
ompa
ti�
ation, su
h that HQ3 2 H3�(Y ) 
ontains 
ux quanta(ek;mk), while 
 2 H3�(Y ) is parameterized by �elds zk only. It is now straight forwardto identify the superpotentials (4.28) with (4.29) by applying the mirror map ta �= zk,N0 �= � and Kab
 �= �klm. The 
uxes are identi�ed asd�odd
 �= ��H3Q : (4.30)The fa
t that the two superpotentials 
an be identi�ed gives some eviden
e for the 
hosenmirror geometryM~Y . Next, we will perform a similar analysis for the type IIB theoriesonM~Y and 
he
k the 
onsisten
y of our assertions.The type IIB mirror of type IIA Calabi-Yau orientifolds with NS-NS 
uxLet us now give a brief 
he
k of the se
ond mirror identi�
ation displayed in eqn. (4.2) by
omparing the indu
ed superpotentials. In order to do that we perform a four-dimensionalredu
tion of the type IIB e�e
tive a
tion (3.67) on the generalized manifolds M~Y . Inaddition we impose the orientifold proje
tion O(1) given in eqn. (3.7) su
h that the four-dimensional theory has N = 1 supersymmetry. We de�ne the forms�ev = e�B̂2 ^ �0ev ; �odd = C�1e�B̂2 ^ �0odd ; (4.31)where �0ev and �0odd are de�ned in eqn. (4.18). The orientifold symmetry �� a
ts onthese forms as ���odd = ��(�odd) ; ���ev = �(��ev) ; (4.32)generalizing the 
onditions (3.31). These 
onstraints translate into 
onditions on thespinors �1;2. It is then 
onsistent to identify the four-dimensional gravitinos parameter-izing the original N = 2 supersymmetry as in eqn. (3.86). The single spinor  � a
quiresa mass term due to ba
kground 
uxes and the non-
losedness of the forms �ev and �odd.To derive the mass term (3.66) for the spinor  � we dimensionally redu
e the fermioni
a
tion (3.67) for type IIB supergravity. Using the Fierz identities (A.12), (A.13) and theexpression (A.14) one derives the superpotentialW = ZM ~Y 
F odd+ dH�ev
 ;�odd� ; (4.33)where the even form �ev
 = Aev(0) + iRe(�ev) is de�ned as in eqn. (3.35). The odd form�odd generi
ally 
ontains a one- and �ve-form.33The superpotential (4.29) is a spe
ial 
ase of the superpotential (1.6) derived in se
tion 3.4.39



This superpotential 
an be 
ompared with the NS-NS superpotential arising in typeIIA Calabi-Yau orientifolds when performing a �nite redu
tion outlined in se
tion 4.1.However, to also in
orporate the orientifold 
onstraints (4.32) the expansion of �ev
 and�odd is in forms of the appropriate eigenspa
e of ��nite = �+ ���. More pre
isely, wehave �ev
 = � +Ga!a + T�~!� ; (4.34)where (1; !a; ~!�) is a basis of �ev+ . The expansion of �odd is given in eqn. (4.15) andredu
es under the orientifold proje
tion to�odd = 
0 + zk
k + 12!zkzl�klm~
m � 13!zkzlzm�klm~
0 ; (4.35)where (
0; 
k; 
k; 
0) is a basis of �odd� . It is now straight forward to evaluate the generalsuperpotential (4.33) for the even and odd forms (4.34) and (4.35). Setting F odd = 0 andH3 = 0 and using the expression (4.16) we �ndWBM ~Y = �Gaea � T�m� : (4.36)Let us now re
all the superpotential for type IIA Calabi-Yau orientifolds with NS-NSba
kground 
ux HQ3 . It was shown in refs. [18, 24℄ that WAH3 takes the formWAH3 = �Z HQ3 ^�odd
 = �Nkek � T�m� ; (4.37)where the expansion of �odd
 = Nk�k + T��� is in harmoni
 three-forms (�k; ��) 2H3+(Y ). The de
omposition of HQ3 is given in eqn. (4.5) and we appropriately imposed theorientifold 
onstraint HQ3 2 H3�(Y ). The two superpotentials (4.36) and (4.37) 
oin
ideif applies the mirror map Ga �= Nk and T� �= T�.In summary, we 
on
lude that the mirror identi�
ations (4.1) and (4.2) might be
orre
t for the spe
ial generalized half 
at manifolds with �nite redu
tion (4.16). Clearly,this is only a �rst step and more involved 
he
ks are ne
essary to make the identi�
ations(4.1) and (4.2) more pre
ise. Moreover, it is a 
hallenging task to explore more generalorientifold 
ompa
ti�
ations on non-trivial SU(3)�SU(3) manifolds. Work along theselines is in progress.5 Con
lusions and Dis
ussionIn this paper we dis
ussed the four-dimensional N = 1 supergravity theories arising ingeneralized orientifold 
ompa
ti�
ations of type IIA and type IIB supergravities. Afterde�ning the orientifold proje
tion the N = 1 spe
trum of the four-dimensional theorywas determined. As we have argued, this 
an be done before spe
ifying a parti
ular�nite redu
tion. The degrees of freedom of the bosoni
 NS-NS �elds en
oded by theten-dimensional metri
, the B-�eld and the dilaton, de
ompose on M3;1 � M6 into afour-dimensional metri
 g4 and two 
omplex forms onM6,Type IIA: �ev ; �odd ; Type IIB: �ev ; �odd : (5.1)The normalization of �odd and �ev is set by the ten-dimensional dilaton, while the nor-malization of �ev; �odd is a unphysi
al s
aling freedom. The forms �ev=odd as well as40



�ev=odd obey various 
ompatibility 
onditions ensuring that the four-dimensional theoryis supersymmetri
. Moreover, the real and imaginary parts of these forms are not in-dependent su
h that, at least formally, the real part 
an be expressed as a fun
tion ofthe imaginary part and vi
e versa. In 
aseM6 is an SU(3) stru
ture manifold the oddforms �odd; �odd only 
ontain a three-form 
ontribution, while the forms �ev; �ev are ofgeneral even degree.From a four-dimensional point of view, the introdu
tion of the odd and even forms(5.1) is appropriate to en
ode the bosoni
 degrees of freedom in the NS-NS se
tor. Thebosoni
 �elds in the R-R se
tor are 
aptured by the ten-dimensional forms Âodd=ev =e�B̂2 ^ Ĉodd=ev for type IIA and type IIB respe
tively. On
e again, not all degrees offreedom in these forms are independent sin
e the duality 
ondition (3.68) on the �eldstrengths of Âodd=ev needs to be imposed. The four-dimensional spe
trum arises byexpanding these ten-dimensional �elds into forms on the internal manifoldM6. Despitethe fa
t that forms on M6 might only possess a grading into odd and even forms theorientifold proje
tion allows to distinguish four-dimensional s
alars and two-forms as wellas ve
tors and three-forms. Altogether, the �elds arrange into N = 1 supermultiplets.In determining the kineti
 terms of the four-dimensional supergravity theory we fo-
used on the metri
 on the 
hiral �eld spa
e. Supersymmetry implies that this metri
 isK�ahler and we argued that the K�ahler potential 
onsists of the two Hit
hin fun
tionalson M6. These are fun
tions of the odd and even forms listed in eqn. (5.1) respe
tively.The K�ahler potentials are independent of the R-R �elds whi
h are prote
ted by 
ontin-uous shift symmetries. This will no longer be the 
ase when D-instanton 
orre
tions arein
luded. Given the K�ahler potentials in the 
hiral des
ription, the kineti
 potentials forthe dual linear multiplets are determined by a Legendre transform [96℄. In general, thetheory 
onsists of a set of (possibly massive) 
hiral and linear multiplets. In this work wedid not analyze the ve
tor se
tor and three-form se
tor of the four-dimensional theory.In order to gain a full pi
ture of possible supergravity theories in four-dimensions it willbe ne
essary to 
arefully in
lude these �elds.Due to ba
kground 
uxes and torsion the 
hiral multiplets 
an a
quire a s
alar poten-tial. This s
alar potential 
onsists of an F-term 
ontribution en
oded by a holomorphi
superpotential and possible D-term 
ontributions due to non-trivial gaugings. Using afermioni
 redu
tion we derived the general form of the superpotential on SU(3) stru
-ture manifolds. Together with the K�ahler potential this allows to determine the 
hiralsupersymmetry 
onditions on four-dimensional va
ua and their 
osmologi
al 
onstant� = �3eKjW j2. In order to derive these data and to study moduli stabilization the ex-pli
itly 
onstru
tion of non-Calabi-Yau ba
kgrounds is essential. Moreover, the in
lusionof matter and moduli �elds due to spa
e-time �lling D-branes will be needed in attemptsto 
onstru
t spe
i�
 models for parti
le physi
s and 
osmology.We also presented some �rst results on type II 
ompa
ti�
ations on SU(3) � SU(3)stru
ture orientifolds. Even though many of the SU(3) stru
ture results naturally gener-alize to the SU(3)�SU(3) stru
ture 
ase the 
onsequen
es of this extension are enormous.The even and odd forms listed in eqn. (5.1) are in these generalized settings of generi
even and odd degree. Moreover, the notion of a spe
i�
 form degree is not anymore wellde�ned and 
an 
hange on di�erent pat
hes ofM6. This 
an be tra
ed ba
k to the fa
tthat the tangent and 
otangent bundles T , T � are no longer the 
entral geometri
 obje
ts,but rather get repla
ed with the generalized tangent bundle E lo
ally given by T �T �. A41



non-
losed NS-NS B-�eld has a natural interpretation in this formalism as a twisting ofthe forms �ev=odd and �ev=odd with a gerbe [80, 84, 81℄. At least from a four-dimensionalpoint of view one may attempt to formulate the supergravity in this generalized languageproviding a natural uni�
ation of all NS-NS �elds. However, it should be 
lear that thegeneralized set-ups are not anymore `geometri
' in the standard Riemannian sense. Themetri
 g6 on the tangent bundle is repla
ed by a metri
 on the extended tangent bundleE, whi
h supports higher symmetry group then di�eomorphisms ofM6. In general, thismight also imply that the metri
 g6 and the B-�eld mix as one moves along the internalmanifold.In this work we explored an interesting appli
ation of the generalized geometries asmirrors of Calabi-Yau 
ompa
ti�
ations with NS-NS 
uxes. We 
hara
terized propertiesof generalized half-
at manifolds whi
h might serve as a mirror of NS-NS 
uxes HQ.The superpotentials of SU(3)�SU(3) stru
ture 
ompa
ti�
ations were derived from theredu
tion of the fermioni
 type IIA and type IIB a
tions. In a spe
i�
 �nite trun
ationthe mirror 
uxes 
an be identi�ed as 
ontributions from non-
losed one- and three-formsin �odd and �odd. Clearly, this is only a �rst step in the study of 
ompa
ti�
ations ongeneralized manifolds with SU(3) � SU(3) stru
ture. It remains a 
hallenging task toexplore the pattern of 
uxes supported in generalized 
ompa
ti�
ations and to determinethe 
omplete 
lassi
al four-dimensional gauged supergravity.A
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hange Servi
e.AppendixA The Cli�ord Algebra in 4 and 6 dimensionsIn this appendix we assemble the spinor 
onventions used throughout the paper.In D = 10 the �-matri
es are hermitian and satisfy the Cli�ord algebraf�M ;�Ng = 2gMN ; M;N = 0; : : : ; 9 : (A.1)One de�nes [4℄ �11 = �0 : : :�9 ; (A.2)42



whi
h has the properties (�11)2 = 1 ; f�11;�Mg = 0 : (A.3)This implies that the Dira
 representation 
an be split into two Weyl representations32Dira
 = 16+ 160 (A.4)with eigenvalue +1 and �1 under �11.In ba
kgrounds of the form (2.1) the 10-dimensional Lorentz group de
omposes asSO(9; 1)! SO(3; 1) � SO(6) ; (A.5)implying a de
omposition of the spinor representations as16 = (2;4) + (�2;�4) : (A.6)Here 2;4 are the Weyl representations of SO(3; 1) and SO(6) respe
tively.In the ba
kground (2.1) the ten-dimensional �-matri
es 
an be 
hosen blo
k-diagonalas �M = (
� 
 1; 
5 
 
m); � = 0; : : : ; 3; m = 1; : : : ; 6 ; (A.7)where 
5 de�nes the Weyl representation in D = 4. In this basis �11 splits as [4℄�11 = �
5 
 
7 ; (A.8)where 
7 de�nes the Weyl representations in D = 6.Let us now turn to our spinor 
onvention in D = 6 and D = 4 respe
tively.A.1 Cli�ord algebra in 6 dimensionsIn D = 6 the gamma matri
es are 
hosen hermitian 
my = 
m and they obey the Cli�ordalgebra f
m; 
ng = 2gmn ; m; n = 1; : : : ; 6 : (A.9)The Majorana 
ondition on a spinor � reads�y = �TC ; (A.10)where C is the 
harge 
onjugation matrixCT = C ; 
Tm = �C
mC�1 : (A.11)The following Fierz identity holds for spinors onM6 [105℄M = 18 6Xk=0 1k!
p1:::pkTr(
pk :::p1M) ; (A.12)43



whereM is an arbitrary matrix in spinor spa
e. Relevant examples used in the 
al
ulationof (4.23) are M = �1 
 �y2, M = (
mDm�1)
 �y2, et
. Using eqn. (A.12) it is not hard toshow that �1y
mDm�1 = 18 6Xn=0 1n!�2y
p1:::pn
mDm�1 �1y
pn:::p1�2 ; (A.13)�1 y
mnp�1 = 18 6Xn=0 1n!�2y
p1:::pn
mnp�1 �1 y
pn:::p1�2 ;with similar expressions for �2. A se
ond important identity en
odes how derivatives onspinors translate into exterior derivatives on forms. Expli
itly one has (see for example[68℄) Xn 1n!�2yf
p1:::pn; 
mgDm�1epn:::p1 = (d+ d�)Xn 1n!�2y
p1:::pn�1epn:::p1 (A.14)where d� = ��6 d �6 is the formal adjoint of d, with �6 being the six-dimensional Hodge-star.A.2 Cli�ord algebra in 4 dimensionsIn D = 4 we adopt the 
onventions of [97℄ and 
hoose
� = �i� 0 ����� 0 � ; 
5 = � 1 00 �1 � (A.15)where the �� are the 2 � 2 Pauli matri
es�0 = � �i 00 �i � ; �1 = � 0 11 0 � ; �2 = � 0 �ii 0 � ; �3 = � 1 00 �1 � ;(A.16)and ��0 = �0; ��1;2;3 = ��1;2;3. We de�ne��� = 14(����� � �����) ; ���� = 14(����� � �����) : (A.17)B Stable forms and the Hit
hin fun
tionalIn this appendix we 
olle
t some basi
 fa
ts about the geometry of stable even and oddforms on a six-dimensional manifoldM6. The de�nition of the Hit
hin fun
tionals willbe re
alled. The 
ase of stable three-forms and the general de�nition of stable odd andeven forms will be reviewed in turn. A more exhaustive dis
ussion of these issues 
anbe found in refs. [79, 80, 84, 81℄. We also 
omment on the derivation of the expression(3.53). 44



B.1 Stable three-forms and the standard Hit
hin fun
tionalLet us �rst 
onsider a six-dimensional manifoldM6 with a real globally de�ned three-form � 2 �3T �. A natural notion of non-degenera
y is that the form � is stable. From anabstra
t point of view a stable form � is de�ned by demanding that the natural a
tionof GL(6) on � spans an open orbit in �3pT � at ea
h point p of M6. This 
ondition 
analso be formulated in terms of the map q : �3T � ! �6T � 
�6T � de�ned as [79℄q(�) = 
em ^ fny�; ��
en ^ fmy� ^ �� ; (B.1)where em is a basis of T �M6 and fm is a basis of TM6. The set of stable three-forms onM6 is then shown to be U3 = �� 2 �3T � : q(�) < 0	 ; (B.2)where q(�) < 0 holds if q(�) = �s 
 s for some s 2 �6T �. Clearly, sin
e �6T � �= R thismeans that the produ
t of the 
oeÆ
ients of the volume forms in (B.1) is negative.It was shown in ref. [79℄ that ea
h real stable form � 2 U3 is written as� = 12(
 + �
) ; (B.3)where 
 is a 
omplex three-form satisfying 

; �
� 6= 0. The imaginary part of 
 isunique up to ordering and we denote it by �̂ = Im(
). The real three-forms �̂(�) 
an alsobe de�ned by using the map q introdu
ed in eqn. (B.1). On forms � 2 U3 one de�nesthe Hit
hin fun
tion H(�) :=q�13q(�) 2 �6TY ; (B.4)whi
h is well de�ned sin
e q(�) < 0. The form �̂ is then de�ned to be the Hamiltonianve
tor �eld on TU3 �= �3T � 344
�̂; �� = �DH(�) ; 8� 2 �3T � ; (B.5)where D is the di�erential on TU3. Note that H(�) 
an be rewritten as H(�) = i

; �
�.In this paper we mostly use the integrated version of the Hit
hin fun
tion H(�). Sin
eH(�) is a volume form it is natural to de�ne the Hit
hin fun
tionalH[�℄ = ZM6 H(�) = iZM6 

; �
� : (B.6)Its �rst (variational) derivative is pre
isely the form �̂ su
h that��H = �4�̂ ; ��H(�) = �4ZM6 
�̂; �� : (B.7)Here we also displayed how ��H is evaluated on some real form � 2 �3T �. The se
ondderivative of H[�℄ is given by����H = �4I ; ����H(�; �) = �4ZM6 
�;I�� : (B.8)34The fa
tor 4 is not present in the 
orresponding expression in ref. [79℄. It arises due to the fa
t thatwe have set � = Re(
) and not �Hit
hin = 2Re(
) as in ref. [79℄45



The map I : �3T �! �3T � is shown to be an almost 
omplex stru
ture on U3. It is usedto prove that U3 is a
tually a rigid spe
ial K�ahler manifold [79℄. The real form � 
an bealso used to de�ne an almost 
omplex stru
ture I� onM6 itself by setting (see also thedis
ussion in se
tion 2) (I�)mn = 1H(�) (em ^ fny� ^ �) ; (B.9)where H(�) is de�ned in eqn. (B.4). With respe
t to I� one de
omposes 
omplex three-forms as �3T �C = �(3;0) � �(2;1)� �(1;2) � �(0;3) : (B.10)Using this de
omposition the 
omplex stru
ture I on U3 is evaluated to be I = i on�(3;0) � �(2;1) and I = �i on �(1;2) � �(0;3). Furthermore, assuming that M6 possessesa metri
 hermitian with respe
t to I� the six-dimensional Hodge-star obeys �6 = i on�(0;3) ��(2;1), while �6 = �i on �(3;0)� �(1;2). This implies the identi�
ationsI = �6 on �(2;1)� �(1;2) ; I = � �6 on �(3;0)� �(0;3) : (B.11)The identity (B.11) is essential to show eqn. (3.53) as we will see in appendix B.3.B.2 Stable odd/even forms and the extended Hit
hin fun
tionalLet us now brie
y review the de�nition of general odd and even stable forms and theirasso
iated Hit
hin fun
tional. Many of the identities for stable three-forms naturallygeneralize to the more generi
 
ase. We 
onsider real odd or even forms �ev=odd 2 Sev=odd,where Sev=odd = �ev=oddT �
 jdetT j1=2 was already de�ned in equation (4.7). In most ofthe dis
ussion a distin
tion between the odd and even 
ase is not needed and we simplifyour notation by writing �� 2 S�, where � = ev or � = odd. As in se
tion 4.1 the generalizedtangent bundle is denoted by E = T � T � (
f. equation (4.6)). A natural Cli�ord a
tionof elements of E on the forms �� is de�ned in eqn. (4.8). In this sense the elements S �are spinors of the group SO(6; 6). In analogy to the de�nition (B.1) one introdu
esq(��) = 
em ^ fny��; ���
en ^ fmy��; ��� ; (B.12)where em is a basis of T � and fm is a basis of T . The anti-symmetri
 Mukai pairing 
�; ��is de�ned in eqn. (3.20). The map q(��) 
an be evaluated for elements �� 2 S� yielding anumber. The set of stable spinors �� is then de�ned asU � = ��� 2 S� : q(��) < 0	 (B.13)All spinors in U � de�ne a redu
tion of the stru
ture group SO(6; 6) of E to U(3; 3).Furthermore, the elements of U � 
an be de
omposed as�� = 12��� + ���� ; (B.14)where as above the spinor �̂� = Im(��) is unique up to ordering. It was shown that the
omplex spinors �� are eliminated by half of the elements in E via the Cli�ord a
tion(4.8). Su
h spinors are 
alled pure spinors.46



In order to de�ne the Hit
hin fun
tional we un-twist S� ! ��T � and 
onsider q(��)on forms. In this 
ase p�q(��) is a volume form and we de�ne the extended Hit
hinfun
tional [80℄ H[��℄ = ZM6 q�13q(��) = iZM6 
��; ���� : (B.15)As in the three-form 
ase the �rst (variational) derivative is pre
isely the form �̂� su
hthat ���H = �4�̂� ; ���H(�) = �4ZM6 
�̂�; �� ; (B.16)where � 2 ��T �. The se
ond derivative of H is shown to de�ne a 
omplex stru
ture onthe spa
e U �. Moreover, the spa
e of stable spinors U � naturally admits a rigid spe
ialK�ahler stru
ture.B.3 Derivation of the K�ahler metri
In this appendix we give more details on the derivation of the expression (3.53) andbrie
y dis
uss its generalizations. We �rst show that���odd
 ���odd
 KQ�(�0; �) = 2e2D ZM6 
�0; �6 �� ; (B.17)where �;�0 2 �3+T � are real three-forms obeying an additional 
ondition and KQ is givenin eqn. (3.51). To begin with, noti
e that the K�ahler potential KQ is independent ofthe real part of �odd
 and only depends on � = Re(�odd) = Im(�odd
 ). Hen
e, one infers��odd
 ���odd
 KQ = 14�� ��KQ. Using the expressions (B.7), (B.8) and (3.51) it is straightforward to derive14��� ��KQ�(�0; �) = 2e2D ZM6 
�0;I ��+ 8e4D ZM6 
�̂; �0� ZM6 
�̂; �� ; (B.18)where �̂ = Im(�odd). Sin
eM6 admits an almost 
omplex stru
ture (B.9) asso
iated to�, ea
h form � 
an be de
omposed as� = �(3;0)+(0;3)+ �(2;1)+(1;2) 2 �3+T � : (B.19)Using the fa
t that �̂ is a (3; 0) + (0; 3)-form one has 
�̂; �(2;1)+(1;2)� = 0. Therefore it isan immediate 
onsequen
e of the identi�
ations (B.11) that (B.17) holds on �(2;1)+(1;2).It remains to show that it is also true for �(3;0)+(0;3). Sin
e we demand �(3;0)+(0;3) 2 �3+T �one has �(3;0)+(0;3) = f� for some fun
tion f onM6=�. Note that to show eqn. (B.17) weneed to pull f through the integral and hen
e demand that f is a
tually 
onstant. Withthis restri
tion it is straight forward to use RM6 
�̂; �� = 12e�2D to show that equation(B.17) holds on general (2; 1) + (1; 2)-forms and forms �(3;0)+(0;3) / �.35Let us also brie
y 
omment on the general 
ase. As we have just argued, the identity(B.17) is easily shown on (2; 1) + (1; 2) forms, while general (3; 0) + (0; 3) forms are35An alternative derivation of the 
ondition (B.17) might be performed by using de
ompositions intoSU (3) representations, as done for the G2 analog of (B.17), for example, in ref. [106, 107℄.47



problemati
. To also in
lude the generi
 (3; 0) + (0; 3) 
ase one de�nes the `K�ahlerpotential' �K = �2 ln �i
�odd; ��odd�� ; (B.20)where now �odd = (� + i�̂)
 ��1=2 is an element of S3 = �3T � 
 jdetT j1=2 and � is thevolume form i
�odd; ��odd�� = 2
�; �̂� : (B.21)Note that the produ
t 
�odd; ��odd� yields a number while 
�; �̂� is a volume form. Bothare depending on the 
oordinates ofM6. Furthermore, in 
ontrast to the K�ahler potential(3.51) there is no integration in the fun
tional (B.20) [64℄. The �rst derivative of �K isobtained from eqn. (B.7) to be12��Re(�odd) �K�(�) = 4e �K=2 
�̂; ��
 ��1=2 ; (B.22)for a three-form � 2 �3T �. Using eqn. (B.8) the se
ond derivative reads14��Re(�odd)�Re(�odd) �K�(�;�0) = 2e �K=2
�;I�0�+ 8e �K
�̂; ��
�̂; ����1 ; (B.23)for a three-forms �;�0 2 �3T �. This is pre
isely a volume form and integration overM6yields a metri
 on three-forms �;�0. Following the same reasoning as above, it is nowstraight forward to showZM6 ���odd
 ���odd
 �K�(�;�0) = 2ZM6 e2D
�; �6�0� ; (B.24)on all elements �;�0 2 �3T �+. We have used that �odd
 = C(0)3 + iRe(�odd) and that �K isindependent of the R-R �elds C(0)3 . In this general 
ase, the four-dimensional dilaton Dis de�ned as e�2D = i
�odd; ��odd� and 
an vary along M6. The equation (B.24) is thegeneralization of the identity (B.17).Referen
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