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1 IntrodutionThe onstrution of semi-realisti type II string vaua for partile physis and osmologyattrated many e�orts within the last years [1, 2℄. Of partiular interest are senarioswith spae-time �lling D-branes, whih an provide for non-Abelian gauge groups ontheir world-volume. However, demanding the internal manifold to be ompat, onsistentsetups also need to inlude orientifold planes arrying a negative tension. They arise instring theories modded out by a geometri symmetry of the bakground in addition tothe world-sheet parity operation [3, 4, 5℄.From a phenomenologial point of view orientifold ompati�ations resulting in afour-dimensional N = 1 supergravity theory are of importane. Prominent examplesare type II theories on Calabi-Yau orientifolds, sine redutions on Calabi-Yau manifoldsyield a four-dimensional N = 2 supergravity while the orientifold projetion breaks thesupersymmetry further down to N = 1 [6, 7, 8, 9, 10, 11℄. In general these theories admita large number of moduli �elds whih are at diretions of the potential and not �xed inthe vauum. A possible mehanism to generate a non-trivial potential for these �elds isthe inlusion of bakground uxes arising as vauum expetation values of �eld strengthsin the supergravity theory [11℄. This potential generially possesses supersymmetrivaua in whih a part or all moduli are �xed [12, 7, 13, 14, 15, 16, 17, 18, 19, 20℄. Inorder to study the properties of these vaua it is neessary to know the harateristi dataof the orresponding four-dimensional N = 1 supergravity theory. Using a Kaluza-Kleinredution the four-dimensional N = 1 theories of type II Calabi-Yau orientifolds weredetermined in refs. [7, 22, 23, 24, 25℄ and reviewed, for example, in refs. [26, 11, 27, 28℄.In this paper we determine the N = 1 data for a more general lass of ompati�-ations arising if the internal manifoldM6 is no longer restrited to be Calabi-Yau. Inorder that the resulting four-dimensional theory still admits some supersymmetryM6annot be hosen arbitrarily, but rather has to admit at least one globally de�ned spinor.In ase thatM6 has exatly one globally de�ned spinor the struture group of the man-ifold redues to SU(3) [29, 30, 31℄. Equivalently, these manifolds are haraterized bythe existene of two globally de�ned forms, a real two-form J and a omplex three-form
. These forms are in general not losed, whih indiates a deviation from the Calabi-Yau ase. This di�erene an also be enoded by speifying a new onnetion on M6with torsion whih replaes the ordinary Levi-Cevita onnetion. The torsion an beinterpreted as a bakground ux of the metri onnetion. Compati�ations on SU(3)struture manifolds were onsidered in the early works [32, 33, 34℄ and more reentlyextended in refs. [35℄{[73℄. In spei� settings these `metri uxes' arise as mirrors ofCalabi-Yau ompati�ations with eletri NS-NS uxes [36, 43℄.Compatifying type II string theory on an SU(3) struture manifold leads to an ef-fetive four-dimensional N = 2 supergravity theory with a potential depending on thetorsion of M6. As we will disuss in more detail below, one an still impose an appro-priate orientifold projetion whih trunates this theory to an N = 1 supergravity. Forspei� set-ups this was also argued in the reent works [21, 74, 75, 76℄. Supersymmetriorientifold projetions yield setups with O6 planes in type IIA while for type IIB re-dutions two setups with O3 and O7 as well as O5 or O9 planes are enountered. Ouranalysis fouses on the e�etive N = 1 four-dimensional supergravity theory for the bulk�elds of these on�gurations, while freezing all moduli arising from the D-brane setor.1



In ontrast to the standard Calabi-Yau ompati�ations the redution on SU(3)struture manifolds is more subtle. This an be traed bak to the fat that in thesegeneralized ompati�ations the distintion between massless or light modes and themassive Kaluza-Klein modes is not anymore straightforward. Reall that in Calabi-Yauompati�ations the massless modes are in one-to-one orrespondene with the harmoniforms ofM6. Bakground uxes generate a potential for these modes and an lift themto an intermediate mass sale. In redutions on SU(3) struture manifolds a potentialis indued by the non-trivial torsion ofM6. However, the masses aquired by the four-dimensional �elds need not be generated at an intermediate sale. The spei�ation of adistinguished �nite set of modes orresponding to the light degrees of freedom is missingso far. It is therefore desirable to avoid a trunation to light modes by working withgeneral forms on the ten-dimensional bakground M3;1 �M6. Most of our alulationswill be performed within this general approah. We will argue that it remains possible todetermine the four-dimensional N = 1 spetrum by imposing the orientifold projetion.Only in a seond step we speify a redution to a �nite set of modes in order to illustrateour results and to disuss mirror symmetry to Calabi-Yau orientifolds with bakgrounduxes.In this paper we will fous mainly on the hiral �eld spae of the four-dimensionaltheory. We will determine the loal metri on this spae and show that it an be derivedfrom a K�ahler potential as demanded by N = 1 supersymmetry. Sine the orientifoldprojetion indues a onsistent redution of a four-dimensionalN = 2 supergravity theoryto N = 1 this K�ahler manifold is a subspae of the full N = 2 salar �eld spae [77, 78℄.Loally it takes the formMK�MQ whereMK andMQ are the subspaes of the N = 2speial K�ahler and quaternioni manifolds respetively. MQ has half the dimension ofthe quaternioni spae. The K�ahler potentials for both manifolds are shown to be thelogarithms of the Hithin funtionals [79, 80, 81℄ for spei� even and odd forms onM6.In ompati�ations on SU(3) struture manifolds a salar potential is indued by thetorsion as well as possible bakground uxes. Due to the N = 1 supersymmetry it an beenoded by a holomorphi superpotential and D-terms arising due to non-trivial gaugings.In this work we derive the superpotentials for both type IIA and type IIB orientifoldsetups by evaluating appropriate fermioni mass terms. This extends and on�rms theresults already present in the literature [18, 19, 61, 64, 21, 11℄. The knowledge of thesuperpotential together with the K�ahler potential is neessary to determine the onditionson four-dimensional supersymmetri vaua. It is readily heked that these onditionsevaluated for the orientifold set-ups are in aord with the N = 1 onditions on ten-dimensional bakgrounds derived in ref. [63, 68℄.Reently, it was argued that more general four-dimensional supergravity theories anarise in ompati�ations of type II string theory on generalized manifolds with SU(3)�SU(3) struture [32, 47, 48, 49, 63, 64℄. The notion of a generalized (omplex) manifoldwas �rst introdued by Hithin [80℄ and Gualtieri [84℄. An intensive disussion of SU(3)�SU(3) strutures and their appliation in N = 2 ompati�ations an be found inthe work of Witt [85℄ and Gra~na, Waldram and Louis [64℄. We will make some �rststeps in exploring N = 1 orientifold ompati�ations on manifolds with SU(3)�SU(3)struture by extending the orientifold projetion to these spaes and deriving the induedsuperpotential due to the non-Calabi-Yau nature of the internal spae. Our aim is to usethese extended superpotentials to disuss possible mirror geometries of type II Calabi-Yau2



ompati�ations with uxes.The ompletion of mirror symmetry in the presene of NS-NS bakground uxes is anarea of intense urrent researh [36, 43, 55, 82, 83, 64, 74, 67, 75℄. For ompati�ationswith eletri NS-NS uxes it was argued in refs. [36, 43℄ that the mirror geometry isa set of spei� SU(3) struture manifolds known as half-at manifolds. To extendthis onjeture to the magneti NS-NS uxes various more drasti deviations from thestandard ompati�ations are expeted [82, 83, 64, 74℄. We will use our results on theorientifold superpotentials to onjeture a possible mirror geometry of ompati�ationswith part of the eletri and magneti bakground uxes. These mirrors are extensionsof generalized manifolds with SU(3)�SU(3) struture.1 Note however, that in order toaommodate the mirror of the magneti NS-NS uxes the mirror metri on the internalspae might no longer be well-de�ned. In our analysis it will be suÆient to haraterizethese generalized spaes by the existene of speial even and odd forms not making useof an assoiated metri.This paper is organized as follows. At the end of this introdution we give a short sum-mary of our results. In setion 2 we briey review some mathematial fats about SU(3)struture manifolds and omment on the ompati�ations of the type II supergravityon these spaes. We immediately turn to the de�nition of the orientifold projetions ofthe type IIA/B theories in setion 3.1. This allows us to determine the N = 1 spetrumof the four-dimensional supergravity theories arising in the orientifold ompati�ationsin setion 3.2. The K�ahler potentials and their relation to the Hithin funtionals aredisussed in setion 3.3. In setion 3.4 we derive the superpotentials of type IIA andtype IIB orientifolds indued by the bakground uxes and the torsion ofM6. In orderto fully identify these superpotentials under mirror symmetry the ompati�ations needto be performed on a more general lass of spaesM~Y . In setion 4 we use our resultson the K�ahler and superpotentials to onjeture a possible identi�ation of part of themagneti NS-NS uxes with properties of the mirror spaeM~Y .Summary of resultsFor the onveniene of the reader we will here briey summarize our results. In type IIAorientifolds with O6 planes, the globally de�ned three-form 
 is ombined into a normal-ized three-form �odd = C
, where C is proportional to the dilaton e��̂. The real part ofthis form is omplexi�ed with the R-R three-form Ĉ3 with indies entirely on M6 intothe ombination �odd = Ĉ3+ iRe(�odd). The globally de�ned two-form J is omplexi�edwith the NS-NS �eld B̂2 as J = �B̂2 + iJ . The hiral �elds of the four-dimensionaltheory arise by expanding the omplex forms J and �odd into an appropriate, not ne-essarily �nite, set of real two- and three-forms of M6. The omplex salar oeÆientsin this expansion are the bosoni �elds in the hiral multiplets. The K�ahler potential onthe hiral �eld spae is given byK�J;�odd � = � ln �� iZM6 
�ev; ��ev��� 2 ln �iZM6 
�odd; ��odd�� ; (1.1)where �ev = eJ. The anti-symmetri pairing 
�; �� is de�ned in (3.20) and replaesthe wedge produt. The K�ahler potential an be identi�ed as the logarithm of the1A similar onjeture was mentioned in ref. [64℄ and we are grateful to Jan Louis for disussions onthat point. 3



Hithin funtionals for two- and three-forms on M6 [79℄. The superpotential for thehiral multiplets is given by 2W �J;�odd � = ZM6 
F ev + dH�odd ;�ev� (1.2)where F ev is the bakground ux of the even R-R �eld strengths. The NS-NS bakgroundux H3 of the NS-NS �eld strength dB̂2 arises through the exterior derivative dH =d �H3^. The superpotential is readily shown to be holomorphi in the omplex N = 1hiral multiplets. In the expression (1.2) both d�odd and d�ev are linear in the omplexoordinates and indiate a deviation from the Calabi-Yau ompati�ations where J and
 are losed.In type IIB orientifold ompati�ations the role of even and odd forms is inter-hanged. One ombines the globally de�ned two-form J together with the B-�elds B̂2and the dilaton into the omplex even form �ev = e��̂e�B̂2+iJ . In orientifolds with O3=O7planes the real part of this form is omplexi�ed with the sum of even R-R potentials whileit ontains the imaginary part of �ev for O5=O9 orientifolds:O3=O7 : �ev = e�B̂2 ^ Ĉev + iRe(�ev) ; (1.3)O5=O9 : �ev = e�B̂2 ^ Ĉev + iIm(�ev) ; (1.4)where e�B̂2 ^ Ĉev ontains only forms with all indies on the internal manifold. Theomplex forms �ev are expanded into real even forms on the manifoldM6 with omplexsalar oeÆients in four spae-time dimensions. These omplex �elds are the bosoniomponents of a set of hiral multiplets. The expansion is hosen in aord with theorientifold projetion whih di�ers for O3=O7 and O5=O9 orientifolds. Additional hiralmultiplets are omplex salars z parameterizing independent degrees of freedom of theglobally de�ned three-form �odd = 
. The K�ahler potential for all hiral multiplets isgiven by K�z;�ev � = � ln �� iZM6 
�odd; ��odd��� 2 ln �iZM6 
�ev; ��ev�� : (1.5)Non-trivial NS-NS and R-R bakground uxes H3 and F3 as well as the torsion of M6indue a superpotential for the hiral �elds. It di�ers for the two type IIB setups andreads 2WO3=O7 = ZM6 
F3 + dH�ev ;�odd� ; WO5=O9 = ZM6 
F3 + d�ev ;�odd� ; (1.6)where dH = d�H3^. In addition several D-terms arise due to uxes and torsion, whihare more arefully disussed in a separate publiation [86℄. In both type IIA and type IIBdual linear multiplets an beome massive. The salar funtion enoding their kinetiterms are the Legendre transforms of the K�ahler potentials given above.Note that in the large volume and large omplex struture limit the type II K�ahlerpotentials are formally mirror symmetri under the exhange �ev=odd $ �odd=ev. Theomplex forms �odd and �ev are linear in the omplex �elds and identi�ed under the2See also refs. [18, 19, 61, 64, 21, 11℄. 4



mirror map. The type IIA and type IIB superpotentials annot be identi�ed undermirror symmetry. This is due to the fat that the dual of half of the NS-NS ux H3 hasno mirror parter. Choosing a sympleti basis of harmoni three-forms on M6 eletriand magneti NS-NS uxes an be distinguished. We propose that the mirror for part ofthe eletri and magneti NS-NS uxes HQ3 arises if one ompati�es on a more generallass of spaes. In this onjeture one an allow for all but one magneti and eletri uxdiretion.3 The dual spaes are extensions of almost generalized omplex manifolds witha more generi globally de�ned odd form. More preisely, in addition to the three-form
 the globally de�ned odd forms �odd and �odd loally ontain a one- and �ve-form 
1and 
5 as 4�odd = e�B̂2 ^ (C
1 + C
 + C
5) ; �odd = e�B̂2 ^ (
1 + 
+ 
5) : (1.7)For the general odd forms �odd and �odd the K�ahler potentials (1.1) and (1.5) are replaedby the extended Hithin funtionals introdued in refs. [80, 81℄. Furthermore, using afermioni redution the superpotentials (1.2) and (1.6) are shown to naturally generalizeto the odd forms �odd and �odd. Also the omplex form �odd inluding the R-R �elds isgeneralized to �odd = e�B̂2 ^ Ĉodd+ iRe(�odd) ; (1.8)where e�B̂2 ^ Ĉodd ontains only forms with all indies on the internal manifold.In a �nite redution the magneti uxes arise as the mirror of the torsion d
1 suhthat dRe(
1 + 
+ 
5) $ HQ3 ; (1.9)where the eletri NS-NS uxes are identi�ed as the mirrors of d
 as proposed in ref. [36℄.Hene, `generalized half-at' manifolds obeying dIm(
1 + 
 + 
5) = 0 and generiallynon-zero dRe(
1 + 
 + 
5) are andidate mirrors of NS-NS ux ompati�ations. Weprovide evidene for the identi�ation (1.9) by omparing the holomorphi superpoten-tials inluding the orretions due to d
1. For these generalized spaes the role of thetangent bundle TM6 is taken by the generalized tangent bundle E loally given byTM6�T �M6 [81℄. Supersymmetry implies that E has a struture group SU(3)�SU(3)[49, 64℄. These generalized geometries might not neessarily desend to standard Rie-mannian manifolds with metri on TM6. It is expeted that they are more loselyresemble the non-geometri ompati�ations introdued in refs. [83℄. The relation tothe non-ommutative bakground suggested in refs. [82℄ has to be lari�ed.2 Manifolds with SU(3) strutureIt is a well-known fat that type II supergravity ompati�ed on a Calabi-Yau sixfoldleads to an N = 2 supergravity theory in four spae-time dimensions. In the absene ofuxes the e�etive four-dimensional theory ontains no potential for the salar �elds and3Interpreting mirror symmetry as three T-dualities [87℄, the forbidden magneti ux is the one havingonly indies in the T-dualized diretions. Setting this ux quantum to zero, the dual spae was termedthe Q-spae in ref. [74℄. Hene, the index Q on HQ3 .4From a mathematial point of view, the forms �odd and �odd are expeted to undergo type hangeswhen moving along the internal manifold [84℄. 5



all vaua are Minkowski preserving the full supersymmetry. This hanges as soon as weinlude bakground uxes and loalized soures suh as D-branes and orientifold planes.In these situations it is a non-trivial task to perform onsistent ompati�ations suhthat the four-dimensional e�etive theory remains supersymmetri. In partiular, thisis due to the fat, that the inlusion of soures fores the geometry to bak-reat. Forexample in orientifolds with D3 branes and uxes the spaetime has to be non-triviallywarped over an internal onformally Calabi-Yau manifold [7℄. In other situations theinternal manifold is no longer diretly related to a Calabi-Yau manifold and a moregeneral lass of ompati�ation manifolds has to be taken into aount [11℄.In this setion we disuss suh a more general set of six-manifolds whih yield uponompati�ation an N = 2 supergravity theory in four spae-time dimensions (see, forexample, [36, 37, 64℄). To start with we speify the Kaluza-Klein Ansatz for the metribakground. Topologially our ten-dimensional spae-time is taken to be a produtM3;1�M6, where M3;1 is a four-dimensional non-ompat spae and M6 is a ompat six-dimensional manifold. The bakground metri is blok-diagonal and readsds2 = e2�(y)g��(x)dx�dx� + gmn(y)dymdyn ; (2.1)where x�; � = 0; : : : ; 3 are the oordinates on M3;1 while ym;m = 1; : : : ; 6 are the o-ordinates of M6. Here g�� is the metri on M3;1 and gmn is the metri on the internalmanifoldM6. Note that the metri (2.1) generially inludes a non-trivial warp fator�(y). However, in the following we restrit our analysis to a large volume regime where� is approximately onstant.5The amount of supersymmetry preserved byM6 an be obtained by ounting super-harges. Type II theories admit 32 superharges in D = 10 whih an be represented bytwo (Majorana-Weyl) spinors �(10)1;2 . In type IIA the two spinors have opposite hirality,while in type IIB they are of the same hirality. Demanding N = 2 supersymmetry infour spae-time dimensions the internal manifold has to admit one globally de�ned spinor�.6 We deompose the ten-dimensional spinors asIIA: �(10)1 = �1 
 �+ + ��1 
 �� IIB: �(10)1 = �1 
 �+ + ��1 
 �� ;�(10)2 = �2 
 �� + ��2 
 �+ �(10)2 = �2 
 �+ + ��2 
 �� ; (2.2)where �1;2 and ��1;2 are four-dimensional Weyl spinors whih label the preserved N = 2supersymmetry. The spinors are hosen suh that �1;2 have positive four-dimensionalhiralities and ��1;2 have negative hiralities. We indiate the six-dimensional hirality ofthe globally de�ned spinor � by a subsript �. These spinors are related by omplex on-jugation (��)� = �� and normalized as �y��� = 12. We summarize our spinor onventionsin appendix A.The existene of one globally de�ned spinor � redues the struture group of theinternal manifold from SO(6) to SU(3) [29, 30, 31℄. If this spinor is also ovariantlyonstant with respet to the Levi-Civita onnetion the manifold has SU(3) holonomyand hene satis�es the Calabi Yau onditions. For a general SU(3) struture manifold the5It would be desirable to extend our analysis to a general �(y) along the lines of [88, 89℄.6Note that in [64℄ it was argued that N = 2 supersymmetry an be obtained by ompatifying on amanifold with two globally de�ned spinors, whih may oinide at points inM6. We will ome bak tothis generalization in setion 4. 6



spinor � is not any more ovariantly onstant. The failure of the Levi-Civita onnetionto annihilate the spinor � is measured by the ontorsion tensor � . Using � one de�nes anew onnetion DTm suh thatDTm� = �DLCm � 14�mnpnp�� = 0 ; (2.3)where mn = 12! [mn℄ is the anti-symmetrized produt of six-dimensional gamma matri-es. The spinor � is now ovariantly onstant with respet to the new onnetion DTm,whih additionally ontains the information about the torsion � .Equivalently to the spinor language, SU(3) struture manifolds an be haraterizedby the existene of two no-where vanishing forms J and ��. The form J is a real two-formwhile �� is a real three-form onM6. We denote the spae of real n-forms onM6 by�nT � � �n(T �M6) ; (2.4)suh that J 2 �2T � and �� 2 �3T �. The index � indiates a spei� normalization hosenas we de�ne J and �� in terms of the spinor �. Here we �rst give a haraterizationindependent of � following the de�nition of Hithin [79℄. In this ase one demands thatJ and �� are stable forms, i.e. are elements of open orbits under the ation of generallinear transformations GL(6;R) at every point of the tangent bundle TM6. These formsde�ne a redution of the struture group from GL(6;R) to SU(3) if they furthermoresatisfy J ^ J ^ J = 32�� ^ �̂� ; J ^ �� = 0 ; (2.5)where �̂� = ��� is shown to be a funtion of �� only as we review in appendix B.The spinor and the form desriptions of the SU(3) struture are related by expressingthe omponents of the two-form J and the omplex three-form 
� = �� + i�̂� in terms ofthe spinor � asJmn = �2i�y�mn�� ; 
mnp� = 2�y�mnp�+ ; �
mnp� = 2�y+mnp�� : (2.6)Later on we will relate 
� to the three-form 
 used in the ompati�ation by an appro-priate resaling. In the normalization (2.6) one an apply Fierz identities to derive theSU(3) struture onstraints equivalent to (2.5),J ^ J ^ J = 3i4 
� ^ �
� ; J ^ 
� = 0 : (2.7)Moreover, de�ning I nm = Jmpgpn by raising one of the indies on J by the metri gmn oneshows that I np I pm = �Ænm ; I pn I qm gpq = gmn : (2.8)This implies that Inm is an almost omplex struture with respet to whih the metrigmn is hermitian. The almost omplex struture an be used to de�ne a (p; q) grading offorms. Within this deomposition the form J is of type (1; 1) while 
� is of type (3; 0).The ondition (2.3) an be translated to the form language implying that neither Jnor 
� are losed. The non-losedness is parameterized by the torsion � whih deom-poses under SU(3) into irreduible representations. The representations are onvenientlyenoded by �ve torsion lasses Wi de�ned as [29, 30, 37℄,dJ = �32Im(W1
�) +W4 ^ J +W3d
� = W1J ^ J +W2 ^ J +W5 ^ 
� ; (2.9)7



with onstraints J ^ J ^W2 = J ^W3 = 
� ^W3 = 0. The pattern of vanishing torsionlasses de�nes the properties of the manifoldM6. For example,M6 is omplex in aseW1 = W2 = 0. Of partiular interest are half-at manifolds, sine they are believed toarise as mirrors of ux ompati�ations [36℄. These are de�ned by W4 = W5 = 0 andImW1 = ImW2 = 0. Equivalently, by using (2.9), half-at manifolds are de�ned by thetwo onditions dJ ^ J = 0 ; dIm
� = 0 ; (2.10)while dJ and dRe
� are not neessarily vanishing.As disussed in the beginning of this setion, the ompati�ation on SU(3) struturemanifolds leads to an N = 2 supergravity theory. The supersymmetry is further reduedto N = 1 by imposing an appropriate orientifold projetion. The aim of the next setion isto de�ne this projetion and to determine the harateristi data of the four-dimensionalsupergravity theory obtained by ompati�ation on an SU(3) struture orientifold.3 Type II SU(3) struture orientifoldsIn this setion we study ompati�ations of type IIA and type IIB supergravity on SU(3)struture orientifolds. As reviewed in the previous setion ompati�ations on SU(3)struture manifolds lead to four-dimensional theories with N = 2 supersymmetry. Theinlusion of D-branes and orientifold planes further redued the amount of supersymme-try. In order that the four-dimensional e�etive theory possesses N = 1 supersymmetrythe D-branes and orientifold planes an not be hosen arbitrarily but rather have to ful�llertain supersymmetry onditions (BPS onditions).7 In this paper our main fous willbe the bulk theory. In setion 3.1 we speify the orientifold projetions whih yield super-symmetri orientifold planes preserving half of the N = 2 supersymmetry. We show insetion 3.2 that the orientifold invariant spetrum arranges into N = 1 supermultiplets.Performing a Kaluza-Klein redution allows us to determine the K�ahler potential of thefour-dimensional theory in setion 3.3. The disussion of the superpotential indued bythe uxes and torsion will be presented in setion 3.4.3.1 The orientifold projetionIn this setion we speify the orientifold projetions under onsideration. We start fromtype II string theory and ompatify on a SU(3) struture manifoldM6. In addition wemod out by orientation reversal of the string world-sheet 
p together with an internalsymmetry � whih ats solely on M6 but leaves the D = 4 spae-time untouhed. Wewill restrit ourselves to involutive symmetries (�2 = 1) of M6. In a next step we haveto speify additional properties of � in order that it provides a symmetry of the stringtheory under onsideration. The type IIA and type IIB ases are disussed in turn.Type IIA orientifold projetionThe orientifold projetion for type IIA SU(3) struture orientifolds an be obtained in7In addition, the on�gurations of D-branes, orientifold planes and uxes have to obey onsistenyonditions suh as the anellation of tadpoles [19, 20, 21, 74, 75, 76℄.8



lose analogy to the Calabi-Yau ase. Reall that for Calabi-Yau orientifolds the demandfor N = 1 supersymmetry implies that � has to be an anti-holomorphi and isometriinvolution [8, 9, 10℄. This �xes the ation of � on the K�ahler form J as ��J = �J , where�� denotes the pull-bak of the map �. Furthermore, supersymmetry implies that � atsnon-trivially on the holomorphi three-form 
. This naturally generalizes to the SU(3)struture ase, sine we an still assign a de�nite ation of � on the globally de�nedtwo-form J and three-form 
 de�ned in (2.6). Together the orientifold onstraints read��J = �J ; ��
 = e2i� �
 ; (3.1)where e2i� is a phase and we inluded a fator 2 for later onveniene. Note that theseond ondition in (3.1) an be diretly inferred from the ompatibility of � with theSU(3) struture ondition 
^ �
 / J ^J ^J given in (2.7). In order that � is a symmetryof type IIA string theory it is demanded to be an isometry. Hene, the �rst ondition in(3.1) implies that � yields a minus sign when applied to the almost omplex strutureImn = Jnpgpm introdued in the previous setion. This redues to the anti-holomorphiityof � if Imn is integrable as in the Calabi-Yau ase. The omplete orientifold projetiontakes the form 8 O = (�1)FL
p� ; (3.2)where 
p is the world-sheet parity and FL is the spae-time fermion number in theleft-moving setor.The orientifold planes arise as the �x-points of �. Just as in the Calabi-Yau asesupersymmetri SU(3) struture orientifolds generially ontain O6 planes. This is dueto the fat, that the �xed point set of � in M6 are three-yles �O6 supporting theinternal part of the orientifold planes. These are alibrated with respet to the real formRe(e�i�
) suh thatvol(�O6) / Re(e�i�
) ; Im(e�i�
)j�O6 = Jj�O6 = 0 (3.3)where vol(�O6) is the indued volume form on �O6 and the overall normalization of 
 wasleft undetermined. The onditions (3.3) also allow us to give a more expliit expressionfor the phase ei� as e�2i� = �Z(�O6)=Z(�O6) ; (3.4)where Z(�O6) is given by Z(�O6) = R�O6 
. This expression determines the transforma-tion behavior of � under omplex resalings of 
. Later on we inlude e�i� to de�ne asale invariant three-form C
.Type IIB orientifold projetionLet us turn to type IIB SU(3) struture orientifolds. Reall that for type IIB Calabi-Yauorientifolds onsisteny requires � to be a holomorphi and isometri involution of M6[8, 10℄. A holomorphi isometry leaves both the metri and the omplex struture of theCalabi-Yau manifold invariant, suh that ��J = J . We generalize this ondition to theSU(3) struture ase by demanding that the globally de�ned two-form J de�ned in (2.6)transforms as ��J = J : (3.5)8The fator (�1)FL is inluded in O to ensure that O2 = 1 on all states.9



One again we impose that � is an isometry of the manifoldM6, suh that (3.5) translatesto the invariane of the almost omplex struture Inm. Due to this fat the involutionrespets the (p; q)-deomposition of forms. Hene the (3; 0) form 
 de�ned in (2.6) willbe mapped to a (3; 0) form. Demanding the resulting form to be globally de�ned we havetwo possible hoies(1) O3=O7 : ��
 = �
 ; (2) O5=O9 : ��
 = +
 ; (3.6)where the dimensionality of the orientifold planes is determined by the dimension of the�x-point set of � [8℄. Correspondingly, depending on the transformation properties of 
two di�erent symmetry operations are possible [90, 91, 8, 10℄O(1) = (�1)FL
p � ; O(2) = 
p � (3.7)where 
p is the world-sheet parity and FL is the spae-time fermion number in theleft-moving setor. The type IIB analog of the alibration ondition (3.3) involves aontribution from the NS-NS two-form B̂2. It states that the even yles of the orientifoldplanes inM6 are alibrated with respet to the real or imaginary parts of e�B̂2+iJ . Theexpliit form of this ondition an be found, for example, in refs. [92, 93, 65℄.3.2 The orientifold spetrumHaving spei�ed the orientifold projetions (3.2) and (3.7) of the type IIA and typeIIB orientifolds we an examine the invariant spetrum. Reall that the bosoni NS-NS�elds of both type IIA and type IIB supergravity are the salar dilaton �̂, the ten-dimensional metri ĜMN and the two-form B̂2.9 Considering the theory on the produtspae M3;1�M6 these �elds deompose into SU(3) representation as summarized in thetable 3.1 [64℄. We denote the SU(3) representation R with four-dimensional spin s byRs. For example, a triplet under SU(3) yielding a vetor in four-dimensions is denotedby 31. A four-dimensional tensor (or pseudo-salar) is indiated by an index T.Ĝ g�� 12g�m (3+ �3)1gmn 10 + (6+ �6)0 + 80B̂2 B�� 1TB�m (3+ �3)1Bmn 10 + (3+ �3)0 + 80�̂ � 10Table 3.1: Deomposition of the NS setor in SU(3) representationsIn the R-R setor type IIA onsists of odd forms Ĉ2n�1, while type IIB onsists ofeven forms Ĉ2n. Their deomposition into SU(3) representations is displayed in tables9The hat on the �elds indiates ten-dimensional quantities.10



3.2 and 3.3 [64℄. We list only the deompositions of the Ĉ1 and Ĉ3 in type IIA andĈ0; Ĉ2; Ĉ4 in type IIB. The higher forms are related to these �elds via Hodge duality oftheir �eld strengths. The form Ĉ4 has a self-dual �eld strength and hene only half of itsomponents are physial.Ĉ1 C� 11Cm (3+ �3)0Ĉ3 C��p (3+ �3)TC�np 11 + (3+ �3)1 + 81Cmnp (1+ 1)0 + (3+ �3)0 + (6+ �6)0Table 3.2: Type IIA deomposition of the RR setor in SU(3) representationsĈ0 C0 10Ĉ2 C�� 1TC�m (3+ �3)1Cmn 10 + (3+ �3)0 + 80Ĉ4 C�npq 12 [(1+ 1)1 + (3+ �3)1 + (6+ �6)1℄Cmnpq=C��mn 10 + (3+ �3)0 + 80Table 3.3: Type IIB deomposition of the RR setor in SU(3) representationsThe �elds arising in this deomposition an be arranged into one N = 8 gravitationalmultiplet. As disussed in ref. [64℄, a possible redution to standard N = 2 supergravitytheory with a gravity multiplet as well as some vetor, hyper and tensor multiplets isobtained by removing all the triplets from the spetrum. In partiular, this amounts todisarding all four-dimensional �elds whih arise in the expansion of the ten-dimensional�elds into one- and �ve-forms onM6.In a seond step we impose the orientifold projetion to further redue to an N = 1supergravity theory. Independent of the properties of the internal manifold we an givethe transformation behavior of all supergravity �elds under the world-sheet parity 
pand (�1)FL [4, 5℄. 
p ats on B̂2 with a minus sign, while leaving the dilaton �̂ and theten-dimensional metri Ĝ invariant. To display the transformation behavior of the R-R�elds we introdue the parity operator � by�(C2n) = (�1)nC2n ; �(C2n�1) = (�1)nC2n�1 ; (3.8)where C2n are even and C2n�1 are odd forms. Evaluated on the R-R forms � is minus theworld-sheet parity operator 
p suh that
pĈk = ��(Ĉk) ; (3.9)11



where k is odd for type IIA and even for type IIB. Finally, (�1)FL ats on the R-Rbosoni �elds of the supergravity theories with a minus sign while leaving the NS-NS�elds invariant.The type IIA orientifold spetrumLet us now determine the invariant spetrum for type IIA orientifolds. It turns out tobe onvenient to ombine the odd R-R forms Ĉ2n+1 as [94℄Ĉodd = Ĉ1 + Ĉ3 + Ĉ5 + Ĉ7 + Ĉ9 : (3.10)Note that only half of the degrees of freedom in Ĉodd are physial, while the other halfan be eliminated by a duality onstraint [94℄. Invariane under the orientifold projetionO implies by using the transformation of the �elds under 
p and (�1)FL that the ten-dimensional �elds have to transform as��B̂2 = �B̂2 ; ���̂ = �̂ ; ��Ĉodd = ��Ĉodd� ; (3.11)where the parity operator � is de�ned in (3.8) and we used (3.9). It turns out to beonvenient to ombine the forms 
 and J with the ten-dimensional dilaton �̂ and B̂2 intonew forms �ev=odd as �ev = e�B̂2+iJ ; �odd = C
 ; (3.12)whereC = e��̂�i�e(Ks�KK)=2 ; e�Ks = i
 ^ �
 ; e�KK = 43J ^ J ^ J : (3.13)In the expression for C the form ontributions preisely anel suh that C is a omplexsalar onM6. It depends on the ten-dimensional dilaton �̂ and �xes the normalizationof 
 suh that the ombination C
 stays invariant under omplex resaling of 
.10 Thefour-dimensional dilaton is de�ned ase�2D = 43 ZM6 e�2�̂J ^ J ^ J ; (3.14)and redues to the de�nition e�D = e��̂pVol(M6) in ase �̂ is onstant along M6.Applied to the forms �ev=odd and Ĉodd the orientifold onditions (3.1) and (3.11) areexpressed as ���ev = ���ev� ; ���odd = ����odd� : (3.15)In order to perform the Kaluza-Klein redution one needs to speify the modes ofthe internal manifoldM6 used in the expansion of �ev=odd and Ĉodd. This implies thatone needs to speify a set of forms on M6 whih upon expansion yields the light �eldsin the spetrum of the four-dimensional theory. In general this issue is very hard toaddress and one an only hope to �nd an approximate answer in ertain limits wherethe torsion is `small'. Most of the diÆulty is due to the fat that a non-trivial torsion10Note that also � depends on the three-form 
 as given in (3.4). Hene, using the saling behaviorof � and Ks one �nds C ! Ce�f as 
! ef
 for every omplex funtion f .12



may not generate an additional sale below the Kaluza-Klein sale.11 Hene, disardingthe Kaluza-Klein modes needs some justi�ation. Surprisingly, muh of the analysisperformed below does not expliitly depend on the basis used in the expansion of �ev=oddand Ĉodd. We therefore only assume that the triplets in the SU(3) deomposition areprojeted out while otherwise keeping the analysis general [64℄. Later on we restrit to apartiular �nite number of modes.To implement the orientifold projetion we note that the operator P6 = ��� squaresto the identity and thus splits the spae of two- and three-forms �2T � and �3T � onM6into two eigenspaes as�2T � = �2+T � ��2�T � ; �3T � = �3+T � � �3�T � ; (3.16)where �2�T � ontains forms transforming with a � sign under P6.In performing the Kaluza-Klein redution one expands the forms �ev=odd and Ĉodd intothe appropriate subset of �2T � and �3T � onsistent with the orientifold projetion. TheoeÆients arising in these expansions orrespond to the �elds of the four-dimensionaltheory. In the ase at hand the ompati�ation has to result in an N = 1 supergravitytheory. The spetrum of this theory onsists of a gravity multiplet a number of hiralmultiplets and vetor multiplets. Note that before the trunation to the light modesthe number of multiplets is not neessarily �nite, as the Kaluza-Klein tower onsist ofan in�nite number of modes. These modes an aquire a mass via a generalized Higgsmehanism. For example, a two-from an beome massive by `eating' a vetor [95℄. Inthe following we will disuss the massless �eld ontent before suh a Higgsing takes plae.Let us �rst onentrate on the N = 1 hiral multiplets arising in the expansionof the forms �ev. Due to supersymmetry the bosoni omponents of these multipletsspan a omplex K�ahler manifold. Its omplex struture an be determined by speifyingappropriate omplex ombinations of the forms J and B̂2 whih upon expansion intomodes of the internal manifold yield the omplex hiral oordinates. The globally de�nedtwo-form J ombines with the B-�eld into the omplex ombination 12J � �B̂2 + iJ 2 �2+T �C ; (3.17)where J is given in the string frame. The �eld B̂2 is only extended alongM6, sine dueto (3.11) the four-dimensional two-form in B̂2 transforms with the wrong sign under theorientifold symmetry �� and hene is projeted out. In omparison to the general SU(3)deomposition of B̂2 given in table 3.1 we only kept the 10 + 80 representations while allother omponents left the spetrum. The omplex form J is expanded in real elements of�2+T � onsistent with the orientifold projetion (3.1), (3.11) and the de�nition of � givenin (3.8).13 The oeÆients of this expansion are omplex salar �elds in four spae-time11This is in ontrast to standard RR and NS uxes, whih orrespond to bakground values of the�eld strengths of Ĉodd and B̂2. The quantization ondition implies that these uxes an generate anintermediate sale. This allows to keep modes of the order of the ux sale, but disard all massiveKaluza-Klein modes.12Note that the omplex ombination (3.17) preisely gives the orret oupling to the string world-sheet wrapped around supersymmetri two-yles inM6.13Note that the eigenspaes �2�T � are obtained from the operator P6 = ��� and hene di�er by aminus sign from the eigenspaes of ��. 13



dimensions parameterizing a manifoldMK and provide the bosoni omponents of hiralmultiplets.Turning to the expansion of the R-R forms Ĉodd we �rst note that Ĉ1 (and heneĈ7) are ompletely projeted out from the spetrum. The four-dimensional part of Ĉ1is inompatible with the orientifold symmetry as seen in (3.11). On the other hand theinternal part of Ĉ1 is a triplet under SU(3) and hene disarded following the assumptionsmade above. In ontrast the expansion of Ĉ3 yields four-dimensional salars, vetors andthree-forms. Therefore, we deomposeĈ3 = C(0)3 + C(1)3 + C(3)3 ; (3.18)where C(n)3 are n-forms in M3;1 times (3 � n)-forms inM6. More preisely, in order toful�ll the orientifold ondition (3.11) the omponents C(0)3 ; C(1)3 and C(3)3 are expandedin forms �3+T �; �2�T � and �0T � of M6 respetively. The oeÆients in this expansionorrespond to four-dimensional real salars, vetors and three-forms. Let us note that weprojet out �elds whih arise in the expansion into one-forms onM6 as well as all othertriplets. In summary the omponents kept, are the 11 + 81 and (1+ 1)0 + (6+ �6)0 whileall other representations in table 3.2 have left the spetrum.The four-dimensional real salars in C(0)3 need to ombine with salars arising in theexpansion of �odd to form the omponents of hiral multiplets. The omplex strutureon the orresponding K�ahler �eld spae is de�ned through the omplex form 14�odd � C(0)3 + iRe(�odd) 2 �3+T �C : (3.19)where we used that Re(�odd) transforms with a plus sign as seen from eqn. (3.15). Theomplex oeÆients of �odd expanded in real forms �3+T � are the bosoni omponents ofhiral multiplets. Note that in the massless ase theses hiral multiplets an be dualizedto linear multiplets ontaining a salar from Re(�odd) and a two-form dual to the salarin C(0)3 [96℄. Due to the generality of our disussion both hiral and linear multipletsan beome massive. The full N = 1 spetrum for type IIA orientifold is summarized intable 3.4. multiplet bosoni �elds M6-formsgravity multiplet g��hiral multiplets J �2+T �hiral/linear multiplets �odd �3+T �vetor multiplets C(1)3 �2�T �Table 3.4: N = 1 spetrum of type IIA orientifoldsThe analysis so far was not restrited to a �nite set of �elds. Even though most of thealulations an be performed in this more general setting we will also give a redution14Note that the omplex ombination (3.19) preisely gives the orret oupling to D-branes wrappedaround supersymmetri yles inM6 [92, 93, 65℄. 14



to a four-dimensional theory with �nite number of �elds. This is partiularly useful inthe disussion of mirror symmetry between SU(3) struture orientifolds and Calabi-Yauorientifolds with bakground uxes. A �nite redution is ahieved by piking a �nitebasis of forms ��nite on the SU(3) struture manifold slightly extending the Calabi-Yauredutions [36, 64℄. The expliit onstrution of suh a �nite set of forms is diÆult,however, we an speify its properties. Before turning to the orientifold onstraints letus briey reall the onstrution of ref. [64℄.To de�ne the properties of ��nite we �rst need to introdue an additional strutureon �ev;oddT � known as Mukai pairings. These anti-symmetri forms are de�ned by
'; � = ��(') ^  �6 = ( '0 ^  6 � '2 ^  4 + '4 ^  2 � '6 ^  0 ;�'1 ^  5 + '3 ^  3 � '5 ^  1 ; (3.20)where � is given in eqn. (3.8) and [: : :℄6 denotes the forms of degree 6. Clearly 
'; �is proportional to a volume form on M6 and an be integrated over the manifoldM6.Demanding this integrated Mukai pairings to be non-degenerate on ��nite puts a �rstonstraint on the possible set of forms. To make this more preise, let us denote the �niteset of forms in �nT � by �n, with dimensions dim�n. As a �rst ondition we demandthat dim�0 = dim�6 = 1 and assume that �0 onsists of the onstant funtions while�6 ontains volume forms � / J ^ J ^ J . Moreover, demanding non-degeneray of theintegrated Mukai pairings on �ev one de�nes a (anonial) sympleti basis on this spae.Denoting a basis of �0 ��2 by !Â = (1; !A) one de�nes its dual basis ~!Â = (~!A; �) of�4 ��6 by ZM6 
!Â; ~!B̂� = ÆB̂̂A ; Â; B̂ = 0; : : : ;dim�2 ; (3.21)with all other intersetions vanishing. Turning to the odd forms �odd we follow a similarstrategy to de�ne a sympleti basis. However, in aord with our assumption above, wewill set dim�1 = dim�5 = 0 suh that no one- or �ve-forms are used in the expansionof the �elds.15 Hene, non-degeneray of the integrated Mukai pairings implies that asympleti basis (�K̂; �K̂) of �3 an be de�ned asZM6 
�L̂; �K̂� = ÆK̂̂L ; K̂; L̂ = 1; : : : ; 12 dim�3 ; (3.22)with all other intersetions vanishing. Note that the non-degeneray of the integratedMukai pairings implies that �ev=odd ontains the same number of exat and non-losedforms. We will ome bak to this issue later on when we introdue torsion uxes.After this brief review let us now speify how the orientifold symmetry ats on ��nite.Under the operator P6 = ��� the forms �n deompose into eigenspaes as�n = �n+ ��n� : (3.23)Using the properties (3.1) and (3.8) one infers dim�0� = dim�6� = 0. Furthermore,under the split (3.23) the basis (!Â; ~!Â) introdued in (3.21) deomposes as(!Â; ~!Â) ! (1; !a; ~!�; �) 2 �ev+ ; (!�; ~!a) 2 �ev� ; (3.24)15In setion 4 we disuss a possible way to weaken this ondition.15



where � = 1; : : : ;dim�2� while a = 1; : : : ;dim�2+. Using the intersetions (3.21) oneinfers that dim�2� = dim�4�. Turning to the odd forms onsisteny requires thatZM6 
�3�;�3�� = 0 ; ��3� = �3� ; (3.25)where in the seond equality we used the fat that � is an orientation-reversing isometry.The �rst ondition is a onsequene of the fat that �3� ^�3� transforms with a minussign under P6 and hene is a subset of �6� up to an exat form. The equations (3.25)imply that �3� are Lagrangian subspaes of �3 with respet to the integrated Mukaiparings. Hene, also the sympleti basis (�K̂; �K̂) introdued in (3.22) splits as(�K̂ ; �K̂) ! (�k; ��) 2 �3+ ; (��; �k) 2 �3� ; (3.26)where the numbers of �k and �� in �3+ equal to the numbers of �k and �� in �3�respetively. This is in aord with equation (3.22).We are now in the position to give an expliit expansion of the �elds into the �niteform basis of ��nite. As disussed in the general ase above the four-dimensional omplexhiral �elds arise in the expansion of the forms J and �odd introdued in eqn. (3.17) and(3.19). Restrited to �2+, �3+ and �2� one hasJ = ta!a ; �odd = Nk�k + T��� ; C(1)3 = A�!� ; (3.27)where the basis deompositions (3.24) and (3.26) were used. Hene, in the �nite redutionthe N = 1 spetrum onsists of dim�2+ hiral multiplets ta and 12 dim�3 hiral multipletsNk; T�. In addition one �nds dim�2� vetor multiplets, whih arise in the expansion ofĈ3. Moreover, one four-dimensional massless three-form arises in the expansion of C(3)3into the form 1 2 �0+. It arries no degrees of freedom and orresponds to an additionalux parameter.The type IIB orientifold spetrumLet us next turn to the spetrum of type IIB SU(3) struture orientifolds. To identify theinvariant spetrum we �rst analyze the transformation properties of the ten-dimensional�elds. In ontrast to type IIA supergravity the type IIB theory onsists of even formsĈ2n in the R-R setor, whih we onveniently ombine as [94℄Ĉev = Ĉ0 + Ĉ2 + Ĉ4 + Ĉ6 + Ĉ8 : (3.28)Only half of the degrees of freedom in Ĉev are physial and related to the seond halfby a duality onstraint [94℄. Using the transformation properties of the �elds under 
pand (�1)FL the invariane under the orientifold projetions O(i) implies that the ten-dimensional �elds have to transform as 16��B̂2 = �B̂2 ; ���̂ = �̂ ; ��Ĉev = ���Ĉev� ; (3.29)16The transformation behavior of the R-R forms under the world-sheet parity operator 
p was givenin eqn. (3.9). 16



where the plus sign holds for orientifolds with O3=O7 planes, while the minus sign holdsfor O5=O9 orientifolds. The parity operator � was introdued in eqn. (3.8). We ombinethe globally de�ned forms J and 
 with the �elds B̂2, �̂ and Ĉev as�odd = 
 ; �ev = e��̂e�B̂2+iJ ; Âev = e�B̂2 ^ Ĉev : (3.30)where in omparison to (3.12) one �nds that �odd takes the role of �ev and �ev replaes�odd. Applied to these forms the orientifold onditions (3.5), (3.6) and (3.29) read���odd = ��(�odd) ; ���ev = �(��ev) ; ��Âev = ��(Âev) ; (3.31)where the upper sign orresponds to O3=O7 and the lower sign to O5=O9 orientifolds.In a next step we have to speify the basis of forms onM6 used in the Kaluza-Kleinredution. In doing so we will fae similar problems like in the type IIA ase. Followingthe strategy advaned above we �rst briey disuss the general ase and later simplifythe redution to the �nite set of forms ��nite. The deomposition of the ten-dimensional�elds into SU(3) representations is given in tables 3.1 and 3.3. Also in the type IIB asewe will remove all triplets of SU(3) from the spetrum [64℄.In order to perform the redution we �rst investigate the splitting of the spaes offorms onM6 under the operator P6 = ���. Sine P6 squares to the identity operator itsplits the forms as in eqn. (3.16). More generally, we will need the deomposition of alleven forms as �evT � = �ev+ T � � �ev� T � : (3.32)The four-dimensional �elds arising as the oeÆients of �ev=odd and Âev expanded on�3�T � and �ev� T � �t into N = 1 supermultiplets.Firstly, we deompose the odd form �odd into the eigenspaes of P6. In aord withthe orientifold onstraint (3.31) we �ndO3=O7 : �odd 2 �3�T �C ; O5=O9 : �odd 2 �3+T �C : (3.33)Note that the atual degrees of freedom of �odd = 
 are redued by several onstraints.More preisely, one has to speify forms �odd whih are assoiated to di�erent redutionsof theM6 struture group to SU(3). As already disussed in setion 2 those redutionsan be parameterized by real three-forms � = Re(�odd) whih are in addition stable. Theimaginary part Im(�odd) an be expressed as a funtion of Re(�odd) suh that only halfof the degrees of freedom in �odd are independent [79℄. Moreover, as in the ase of aCalabi-Yau manifold, di�erent omplex normalizations of �odd orrespond to the sameSU(3) struture ofM6. Therefore, one additional omplex degree of freedom in �odd isunphysial and has to be removed from the D = 4 spetrum.In the redution also the ten-dimensional form Âev is expanded into a basis of formsonM6 while additionally satisfying the orientifold ondition (3.31). In analogy to (3.18)we deompose Âev = Aev(0)+Aev(1) +Aev(2) +Aev(3) ; (3.34)where the subsript (n) indiates the form degree in four dimensions. Note that in ageneral expansion of Âev in odd and even forms ofM6 as Âev = evj4�evj6+oddj4�oddj6it would be impossible to assign a four-dimensional form degree as done in eqn. (3.34).17



This is due to the fat that suh a deomposition only allows to distinguish even and oddforms in four dimensions. However, the orientifold imposes the onstraint (3.31) whihintrodues an additional splitting within the even and odd four-dimensional forms. Letus �rst make this more preise in the ase of O3=O7 orientifolds where Âev transformsas ��Âev = �(Âev). Using the properties of the parity operator � one �nds that thesalars in Aev(0) arise as oeÆients of forms in �ev+ T � while the two-forms in Aev(2) arise asoeÆients of forms in �ev� T �. Similarly, one obtains the four-dimensional vetors in Aev(1)as oeÆients of �3+T � and the three-forms in Aev(3) as oeÆients of �3�T �. In the ase ofO5=O9 orientifolds the ten-dimensional form Âev transforms as ��Âev = ��(Âev) and allsigns in the O3=O7 expansions above are exhanged. For both ases the deomposition(3.34) is well de�ned and we an analyze the multiplet struture of the four-dimensionaltheory.In four dimensions massless salars are dual to massless two-forms, while masslessvetors are dual to vetors. Using the duality ondition on the �eld strengths of the evenforms Âev one eliminates half of its degrees of freedom. Indeed it an be shown that inthe massless ase the salars in Aev(0) are dual to the two-forms Aev(2). However, due to thegenerality of our disussion also massive salars, vetors, two-form and three-forms anarise in the expansion (3.34). In these ases the duality onstraint gives a ompliatedrelation between these �elds. In the following we will �rst restrit our attention to themassless ase and eliminate the two-forms in Aev(2) in favor of the salars in Aev(0).Let us start with the hiral multiplets. As the bosoni omponents these multipletsontain the real salars in Aev(0) whih are omplexi�ed by the real salars arising in theexpansion of Re(�ev) or Im(�ev). From the orientifold onstraint (3.31) on infers thatRe(�ev) is expanded in forms of �ev+ T � while Im(�ev) is expanded in forms of �ev� T �.Therefore, one �nds the omplex forms 17O3=O7 : �ev = Aev(0)+ iRe(�ev) ; O5=O9 : �ev = Aev(0) + iIm(�ev) : (3.35)The omplex salars arising in the expansion of the forms �ev span a omplex manifoldMQ. This manifold is K�ahler as disussed in the next setion. Here we onlude ourgeneral analysis of the spetrum of type IIB SU(3) struture orientifolds by summarizingthe four-dimensional multiplets in table 3.5.To end this setion let us give a trunation to a �nite number of the four-dimensional�elds. As we have argued in the previous setion this is ahieved by expanding the ten-dimensional �elds on the �nite set of forms on M6 denoted by ��nite. This is done inaord with the orientifold onstraints for O3=O7 and O5=O9 orientifolds. One again,the n-forms �n split as �n = �n+ ��n�, where �n� are the eigenspaes of the operatorP6 = ���. However, sine �6 ontains forms proportional to J ^ J ^ J one infers fromondition (3.5) that dim�6+ = 0. Clearly, one has dim�0� = 0 sine �0 ontains onstantsalars whih are invariant under P6. A further investigation of the even forms in �2and �4 shows that the basis introdued in eqn. (3.21) deomposes as(!Â; ~!Â) ! (1; !a; ~!�) 2 �ev+ ; (�; !�; ~!a) 2 �ev� ; (3.36)where � = 1; : : : ;dim�2� and a = 1; : : : ;dim�2+. Using J ^ J ^ J 2 �6� and eqn. (3.21)one �nds that �2� = �4�. Together with the fat that R 
�ev� ;�ev� � = 0 one onludes17Note that also in the type IIB ases the omplex forms �ev enode the orret ouplings to D-branesfully wrapped on supersymmetri yles inM6 [92, 93, 65℄.18



multiplet bosoni �elds M6-formsO3=O7 O5=O9gravity multiplet g��hiral multiplets �odd �3�T � �3+T �hiral/linear multiplets �ev �ev+ T � �ev� T �vetor multiplets Aev(1) �3+T � �3�T �Table 3.5: N = 1 spetrum of type IIB orientifoldsthat �ev� are Lagrangian subspaes of �ev. This is the analog of the Lagrangian ondition(3.25) found for the odd forms in type IIA. Let us turn to the odd forms �3 = �3+��3�.Due to the ondition (3.6) the three-form 
 is an element of �3� for O3=O7 orientifolds,while it is an element of �3+ for O5=O9 orientifolds. Note that in ontrast to the evenforms �ev� the spaes �3� and �3+ have generially di�erent dimensions. The basis ofthree-forms introdued in (3.22) splits under the ation of P6 as(�K̂; �K̂) ! (��; ��) 2 �3+ ; (�k; �k) 2 �3� ; (3.37)where � = 1; :::; 12 dim�3+; k = 1; :::; 12�3�.Given the basis deompositions (3.36) and (3.37) we an expliitly determine the�nite four-dimensional spetrum of the type IIB orientifold theories. For orientifoldswith O3=O7 planes one expands �ev and Aev(1) into �ev+ and �3+ as�ev = � +Ga!a + T�~!� ; Aev(1) = A��� ; (3.38)where �;Ga; T� are omplex salars in four dimensions. The vetor oeÆients of theforms �� in the expansion of Aev(1) are eliminated by the duality onstraint on the �eldstrength of Âev. In addition we �nd that �odd depends on 12(dim�3� � 2) omplexdeformations zk. Therefore the full N = 1 spetrum onsists of 12(dim�3� � 2) hiralmultiplets zk as well as dim�2+1 hiral multiplets �;Ga; T�. Moreover, we �nd 12 dim�3+vetor multiplets A�.The story slightly hanges for orientifolds with O5=O9 planes. In this ase the hiraloordinates are obtained by expanding�ev = t�!� + ub ~!b + S � ; Aev(1) = Ak�k ; (3.39)where t�; ub; S are omplex four-dimensional salars and the volume form � is normalizedas RM6 � = 1. Moreover, the form �odd depends on 12(dim�3+� 2) omplex deformationsz�. In summary the ompleteN = 1 spetrum onsists of 12(dim�3+�2) hiral multipletsz� as well as dim�2 + 1 hiral multiplets t�; ub; S. Finally, the expansion of Aev(1) yields12 dim�3� independent vetor multiplets Ak.19



3.3 The K�ahler potentialIn this setion we determine the K�ahler potential enoding the kineti terms of the hiralor dual linear multiplets. Reall that the standard bosoni ation for hiral multipletswith bosoni omponents M I ontains the kineti terms [97℄Shiral = ZM3;1 GI �J dM I ^ �4 d �MJ ; (3.40)where d and �4 are the exterior derivative and the Hodge-star on M3;1. The metriGI �J = �MI� �MJK is K�ahler and loally given as the seond derivative of a real K�ahlerpotential K(M; �M ). In other words, the funtion K determines the dynamis of thesystem of hiral multiplets. Similarly, one an derive the kineti terms for a set of linearmultiplets from a real funtion, the kineti potential ~K. Sine in the massless asethe linear multiplets are dual to hiral multiplets one an always translate ~K into anassoiated K via a Legendre transformation [96℄.18 It therefore suÆes to derive theK�ahler potential. In the massive ase the duality between hiral and linear multipletsis no longer valid, however, the funtion ~K an still be formally related to a K�ahlerpotential K. In the following we will determine the K�ahler potential K for type IIA andtype IIB orientifolds in turn.The IIA K�ahler potential and the K�ahler metriLet us start by disussing the type IIA K�ahler potential �rst. As in setion 3.2 wewill keep our analysis general and only later speify a �nite redution. We found inthe previous setion that the omplex salars in the hiral multiplets are obtained byexpanding the omplex forms �ev and �odd into appropriate forms onM6. Loally, the�eld spae takes the form MK �MQ ; (3.41)whereMK andMQ are spanned by the omplex salars arising in the expansion of �evand �odd respetively. N = 1 supersymmetry demands that both manifolds in (3.41) areK�ahler with metris loally enoded by K�ahler potentials KK and KQ. From the pointof view of an N = 2 to N = 1 redution, the manifoldMK is a omplex submanifoldof the N = 2 speial K�ahler manifold spanned by the omplex salars in the vetormultiplets. As we will disuss momentarily the manifoldMK diretly inherits its K�ahlerstruture from the underlying N = 2 theory. On the other hand, MQ is a submanifoldof the quaternioni spae spanned by the hyper multiplets and has half its dimension. Itis a non-trivial result that MQ is a K�ahler manifold sine the underlying quaternionimanifold is not neessarily K�ahler.We analyze �rst the struture of the �eld spae MK spanned by the omplex �eldsarising in the expansion of J = �B̂2 + iJ into forms �2+T �. Note that as in the originalN = 2 theory not all forms J are allowed and one restrits to the ases where J , J ^ Jand J ^ J ^ J measure positive volumes of two-, four and six-yles [98℄. We abbreviatethis ondition by writing J � 0. Hene, the oeÆients of J de�ne the omplex oneMK = �J 2 �2+T �C : J ^ J ^ J 6= 0 and J � 0	 : (3.42)18For a brief review, see also setion 4 of ref. [28℄.20



This manifold has the same omplex struture as the underlying N = 2 speial K�ahlermanifold. It also inherits its K�ahler struture with a K�ahler potential given by [98, 64℄KK(J) = � ln �� iZM6 
�ev; ��ev�� = � ln �43 ZM6 J ^ J ^ J� ; (3.43)where �ev = eJ is introdued in (3.12) and the pairing 
�; �� is de�ned in (3.20).19 TheK�ahler metri is obtained as the seond derivative of KK given in (3.43) with respet toJ and �J. More preisely, one �ndsGK(!; !0) = ��J� �JKK�(!; !0) = �2eKK ZM6 
!; �6 !0� ; (3.44)where �6 is the six-dimensional Hodge-star and !; !0 are two-forms in �2+T � . Notethat in this general approah the derivatives are taken with respet to two-forms onM6ontaining the D = 4 salars suh that the result needs to be evaluated on elements of�2+T �. The four-dimensional kineti terms (3.40) read 20S�ev = ZM3;1 GK(dJ; �4 d �J) (3.45)with four-dimensional derivative d. From (3.44) one onludes that the metri GK onlydepends on �ev. It is straight forward to evaluate (3.45) in the �nite basis !a 2 �2+introdued in equation (3.24). On this basis the omplex form J deomposes as J = ta!aand one �ndsS�ev = ZM3;1 GKa�b dta ^ �4d�tb ; GKa�b = 2eKK Z !a ^ �!b : (3.46)In the �nite basis the metri GK takes a form similar to the ase whereM6 is a Calabi-Yau orientifold [24℄. However, sine the forms !a are not neessarily harmoni a potentialfor the �elds ta is introdued as we will disuss in setion 3.4.Let us now turn to the seond fator in (3.41) and investigate the K�ahler strutureof the manifoldMQ. As introdued in setion 3.2 the omplex oordinates on this spaeare obtained by expanding the form �odd into elements of �3+T �. The metri on the �eldspaeMQ is derived by inserting the expansion of �odd in the ten-dimensional e�etiveation of type IIA supergravity. For the form C(0)3 the redution of the R-R setor yieldsthe term SC(0)3 = ZM3;1 GQ(dC(0)3 ; �4 dC(0)3 ) ; (3.47)where the metri GQ is de�ned asGQ(�;�0) = 2e2D ZM6 
�; �6 �0� ; (3.48)19Note that in ontrast to ref. [64℄ we inluded an integration in the de�nition of KK suh that it isindependent of the oordinates onM6. This implies that four-dimensional supergravity theory takes thestandard N = 1 form. However, this also implies that we have to exlude modes whih orrespond theresalings of J by a funtionM6 (see also appendix B.3). We will ome bak to this issue in a separatepubliation [86℄.20The ation is given in the four-dimensional Einstein frame where the kineti term for the metritakes the form 12R. 21



with �;�0 2 �3+T �. The four-dimensional dilaton D was de�ned in eqn. (3.14) and arisesin (3.47) due to a Weyl resaling to the four-dimensional Einstein frame. The R-R �eldC(0)3 is omplexi�ed by Re(�odd) as given in eqn. (3.19). Therefore, the full kineti termsfor the omplex salars in �odd are given byS�odd = ZM3;1 GQ(d�odd ; �4 d��odd ) : (3.49)The metriGQ is K�ahler on the manifoldMQ if we arefully speify the forms used in theexpansion of �odd . As already explained in setion 2, the real three-forms � = Re(�odd)de�ning an SU(3) struture manifold have to be `stable'.21 We denote all stable forms in�3+T � by U3+. Using this de�nition the �eld spae MQ spanned by the omplex salarsin �odd is loally of the formMQ = �Re(�odd) 2 U3+	� �3+T � ; (3.50)where �3+T � is parameterized by the real salars in the R-R �eld C(0)3 .In appendix B.3 we show that the metriGQ an be obtained as the seond derivativeof a K�ahler potential. Note however, that we have to impose an additional onstraint onthe forms in MQ in order to obtain a K�ahler potential independent of the oordinatesonM6. More preisely, we demand that all (3; 0) + (0; 3) forms inMQ are proportionalto � with a oeÆient onstant onM6.22 On this the set of stable forms one shows thatthe metri GQ is K�ahler with a K�ahler potential given byKQ(�odd ) = �2 ln �iZM6 
�odd; ��odd�� = � ln �e�4D� ; (3.51)where in the seond equality we have used the de�nition of �odd = C
 given in equations(3.12) and (3.13) to express KQ in terms of the four-dimensional dilaton eD de�ned ineqn. (3.14). The funtional appearing in the logarithm of the K�ahler potential,H�Re(�odd)� = iZ 
�odd; ��odd� ; (3.52)was �rst introdued by Hithin in refs. [79℄. A more expliit de�nition ofH as a funtionalof Re(�odd) an be found in appendix B. The metri GQ de�ned in (3.48) is obtained bythe seond derivative GQ(�;�0) = ���odd ���odd KQ�(�;�0) : (3.53)Note thatKQ is a funtion of Re(�odd) and does not depend on the R-R �elds Re(�odd ) =C(0)3 . Hene, the metri GQ possesses various shift symmetries and the seond fator in(3.50) is a vetor spae.Finally, we will restrit the results obtained forMQ to the �nite basis ��nite. In orderto do so, one expands the omplex form �odd in the real basis �k; �� 2 �3+ as given in21The detailed de�nition of stable forms is given in appendix B.22This ondition an be weakened in ase the K�ahler potential is de�ned as a logarithm of a funtionvarying alongM6 as we also disuss in appendix B.3. In this ase, the orientifold theory is an N = 1reformulation of the ten-dimensional supergravity theory [86℄.22



eqn. (3.27). The oeÆients of this expansion are omplex salars Nk; T�. The K�ahlermetri is the seond derivative of KQ given in eqn. (3.51) with respet to these omplex�elds. Expliitly, it takes the form�Nk� �N lK = 2e2D ZM6 �k ^ �6 �l ; �Nk� �T�K = 2e2D ZM6 �k ^ �6 �� ; (3.54)�T�� �T�K = 2e2D ZM6 �� ^ �6 �� :This ends our disussion of the K�ahler metri on the type IIA �eld spaesMK�MQ.We found that the K�ahler potentials are the two Hithin funtionals depending on realtwo- and three-forms on M6. A similar result with odd and even forms exhanged isfound for type IIB orientifolds to whih we turn now.The IIB K�ahler potential and the K�ahler metriIn the following we investigate the K�ahler struture of the salar �eld spae in type IIBorientifolds. The omplex salars in the hiral multiplets are obtained by expanding �oddand �ev into appropriate forms on M6 as introdued in eqns. (3.33) and (3.35). Theseomplex salars loally span the produt manifoldMK �MQ, whereMK ontains theindependent salars in �odd whileMQ ontains the salars in �ev . Note that we are nowdealing with two type IIB setups orresponding to two trunations of the original N = 2theory.As in the type IIA orientifolds the omplex and K�ahler struture of MK is diretlyinherited from the underlying N = 2 theory. Independent redutions of the struturegroup ofM6 are parameterized by a set of real stable forms � = Re(�odd) denoted by U3.In order to satisfy the orientifold onstraints (3.31) this �eld spae is redued to U3� forO3=O7 orientifolds and to U3+ for O5=O9 orientifolds. Furthermore, omplex resalingsof the omplex three-form �odd are unphysial. Hene, the moduli spae enoded by �oddis obtained by dividing U3� by reparameterizations �odd ! �odd for omplex non-zero 2 C � . The �eld spaeMK is then de�ned asMK = �Re(�odd) 2 U3�	=C � ; (3.55)where the minus sign stands for O3=O7 and the plus sign for O5=O9 orientifolds. The�eld spae MK is a omplex K�ahler manifold. This is shown in analogy to the N = 2ase disussed in refs. [79, 64℄, sine the orientifold projetions preserve the omplexstruture and only redue the dimension ofMK. We denote the omplex salars parame-terizingMK by z's. The K�ahler potential as a funtion of these �elds and their omplexonjugates is given byKK(z; �z) = � ln �� iZM6 
�odd; ��odd�� = � ln �� iZM6 
 ^ �
� ; (3.56)where in the seond equality we used the de�nitions (3.30) and (3.20) of �odd and thepairings 
�; ��. The manifoldMK possesses a speial geometry ompletely analogous tothe N = 2 ase, suh that in partiular the three-form 
(z) is a holomorphi funtionin the omplex oordinates z on MK. This speial geometry was used in ref. [64℄ to23



derive the K�ahler metri orresponding to KK. We will not review the result here, butrather immediately turn to the �eld spaeMQ whih is a K�ahler �eld spae in the N = 1theory.Let us now determine the K�ahler potential enoding the metri on the �eld spaeMQ. As disussed in setion 3.2 the omplex oordinates spanningMQ are obtained byexpanding �ev into elements of �ev� depending on whether we are dealing with O3=O7 orO5=O9 orientifolds. The preise de�nition of �ev was given in eqn. (3.35). Note that notevery form in �ev� orresponds to a redution of the struture group ofM6 to SU(3) andwe have additionally to impose onstraints on Im(�ev ) analog to the stability onditiondisussed above. Reall that in the O3=O7 ase Im(�ev ) = Re(e��̂e�B̂2+iJ ) and in theO5=O9 ase Im(�ev ) = Im(e��̂e�B̂2+iJ ) as given in eqns. (3.30) and (3.35). In thesede�nitions the real two-from J has to satisfy J ^ J ^ J 6= 0 and J � 0 as in (3.42).Altogether the �eld spaeMQ loally takes the formMQ = �Im(�ev ) 2 �ev� : J ^ J ^ J 6= 0 and J � 0	 � �ev� T � ; (3.57)where the vetor spae �ev� T � is spanned by the �elds Aev(0). The plus sign in the expression(3.57) orresponds to orientifolds with O3=O7 planes while the minus sign stands forthe O5=O9 orientifolds. The metri on the manifold MQ is obtained by inserting theexpansion of the R-R form Aev(0) into the ten-dimensional ation of type IIB supergravity.Performing a Weyl resaling to the four-dimensional Einstein frame one �ndsSAev(0) = ZM3;1 GQ(dAev(0); �4 dAev(0)) ; (3.58)where GQ is de�ned on forms �; � 0 2 �ev� T � asGQ(�; � 0) = 2e2D ZM6 
�; �B � 0� : (3.59)The reason for this simple form is that we have replaed the ordinary Hodge-star by theB-twisted Hodge star �B ating on an even form � as (see, for example, ref. [85℄)�B � = eB̂2 ^ ��(e�B̂2 ^ �) ; (3.60)where � is the parity operator introdued in (3.8). In equation (3.59) the four-dimensionaldilaton D is de�ned as in the type IIA ase (3.14). Inluding the redution of Im(�ev )the ation (3.58) is ompleted asS�ev = ZM3;1 GQ(d�ev ; �4 d��ev ) : (3.61)The metri GQ is shown to be the seond derivative of the K�ahler potential 23KQ(�ev ) = �2 ln �iZM6 
�ev; ��ev�� = � ln �e�4D� ; (3.62)23As in the type IIA ase we disard the non-trivial modes proportional to Im(�ev ). These an beinluded if the K�ahler potential is the logarithm of a volume form varying alongM6.24



where in the seond equality we have used the de�nition of �ev as given in (3.30). Notethat KQ is a funtion of Im(�ev ) only, suh that it depends on Re(�ev) in O3=O7 orien-tifolds while it depends on Im(�ev) in O5=O9 orientifolds. The funtionals appearing inthe logarithm are the Hithin funtionals (see also appendix B) [80℄H[Re(�ev)℄ = iZM6 
�ev; ��ev� ; H[Im(�ev)℄ = iZM6 
�ev; ��ev� ; (3.63)depending on whether we are dealing with O3=O7 and O5=O9 orientifolds.24 The metriGQ given in eqn. (3.59) is obtained by taking the seond derivative of KQ asGQ(�; � 0) = ���ev ���ev KQ�(�; � 0) : (3.64)Due to the independene of KQ of the R-R salars in Aev(0) the metri GQ possesses shiftsymmetries.It is straight forward to evaluate the K�ahler metri GQ for the �nite basis of �ev�introdued in (3.36). The oeÆients are omplex �elds M Â = (�;Ga; T�) for O3=O7orientifolds and M Â = (S; t�; Aa) for O5=O9 orientifolds as seen in eqns. (3.38) and(3.39). Expliitly the metri GQ is given by�M Â� �M B̂K = e2D Z 
�Â; �B �B̂� ; (3.65)where �Â = (1; !a; ~!�) for O3=O7 orientifolds while �Â = (�; !�; ~!a) for O5=O9 orien-tifolds. These metris are idential to the ones derived for type IIB Calabi-Yau orien-tifolds [23℄ if the �nite basis ��nite is onsisting of harmoni forms only. Compared tothe expression given in ref. [23℄ we simpli�ed the result onsiderably by introduing theB-twisted Hodge-star �B.To summarize we found that also in the type IIB setups the �eld spaeMK�MQ is aK�ahler manifold with K�ahler potentials given by the logarithm of the Hithin funtionals.This �xes the kineti terms of the hiral or dual linear multiplets. Surprisingly, ouranalysis an be performed in a rather general setting without speifying a �nite redution.To illustrate the results we nevertheless gave the redution to the �nite basis ��nite. Wewill now turn to the analysis of the superpotential terms indued on SU(3) strutureorientifolds.3.4 The Superpotential of type II SU(3) struture orientifoldsIn this setion we derive the superpotentials for type IIA and type IIB SU(3) strutureorientifolds in presene of uxes and torsion. The alulation is most easily done on thelevel of the fermioni e�etive ation. This is due to the fat that the superpotentialW appears linearly in a four-dimensional N = 1 supergravity theory as the mass of thegravitino  �. The orresponding mass term readsSmass = �ZM3;1 eK=2�W � ����� � � + �W ���� �� �4 1 ; (3.66)24In the �rst ase one obtains the funtional dependene of H by evaluating Im(�ev) as a funtion ofthe real part Re(�ev), while in the seond ase one needs do �nd Re(�ev)�Im(�ev)�.25



where �41 = p�g4 d4x is the four-dimensional volume element and K is the K�ahlerpotential on the hiral �eld spae. To determine (3.66) for the orientifold setups onedimensionally redues the fermioni part of the type IIA and type IIB ations. As inthe bosoni part, the orientifold projetions ensure that the resulting four-dimensionaltheories possess N = 1 supersymmetry.Let us start by realling the relevant fermioni terms for our disussion in the ten-dimensional type IIA and type IIB supergravity theories. We onveniently ombine thetwo gravitinos into a two-vetor  ̂N = ( ̂1N ;  ̂2N). The e�etive ation for the gravitinosin string frame takes the form 25S = �ZM10 �e�2�̂ �̂ M�MNPDN  ̂P � 1+ 14e�2�̂Ĥ3 ^ �	+ 18 Xn F̂n ^ �	n� ; (3.67)where we are using the demorati formulation of ref. [94℄. The R-R �eld strengths F̂nare de�ned as F̂n = dĈn�1 � Ĥ3 ^ Ĉn�3 ; �F̂n = �(F̂10�n) ; (3.68)where n runs from 0 to 8 for type IIA and from 1 to 9 for type IIB and we set Ĥ3 = dB̂2.The self-duality ondition in eqn. (3.68) implies that half of the R-R �elds in Ĉev=oddarry no extra degrees of freedom. Furthermore, 	 and 	n are ten-dimensional three-and n-forms whih are bilinear in  ̂M and have omponents(	)M1M2M3 = �̂ M�[M�M1M2M3�N ℄P ̂N ;(	n)M1:::Mn = e��̂ �̂ M�[M�M1:::Mn�N ℄Pn ̂N ; (3.69)where P = �11, Pn = (�11)n for type IIA while for type IIB one has P = ��3, Pn = �1for n+12 even and Pn = i�2 for n+12 odd.In a next step we dimensionally redue the ation (3.67) on the manifold M3;1�M6fousing on the derivation of four-dimensional mass terms of the form (3.66). In order todo that we deompose the ten-dimensional gravitinos  ̂M into four-dimensional spinorsonM3;1 times six-dimensional spinors on the SU(3) struture manifoldM6. Of partiularinterest is the redution of  ̂� where � labels the four spae-time diretions on M3;1. Intype IIB both ten-dimensional gravitinos have the same hirality and split as ̂A� =  A� 
 �� + � A� 
 �+ A = 1; 2 ; (3.70)where � denotes the globally de�ned spinor introdued in eqn. (2.2) with six-dimensionalhirality�. The four-dimensional spinors  1;2� and � 1;2� are Weyl spinors with positive andnegative hiralities respetively. In type IIA supergravity the gravitinos have di�erenthiralities and hene deompose as ̂1� =  1� 
 �+ + � 1� 
 �� ;  ̂2� =  2� 
 �� + � 2� 
 �+ : (3.71)25We only display terms whih are quadrati in the gravitinos  ̂N sine we aim to alulate termsof the form (3.66). Moreover, note that the ten-dimensional fermions are Majorana-Weyl spinors andthe onjugate spinor �̂ M =  yM�0 is obtained by hermitian onjugation and multipliation with theten-dimensional gamma-matrix �0. 26



The spinor  1;2� appearing in (3.70) and (3.71) yield the four-dimensional gravitinoswhen appropriately ombined with four-dimensional spinors arising in the expansionof  ̂m; m = 1; : : : ; 6. However, sine they are ombined linearly the mass terms of  1;2�take the same form as the one for the four-dimensional gravitinos whih label the N = 2supersymmetry.The orientifold projetions redue the four-dimensional theory to an N = 1 super-gravity. Hene, the two four-dimensional gravitinos as well as the spinors  1;2� are notindependent, but rather ombine into one four-dimensional spinor  � whih parameterizesthe N = 1 supersymmetry. This spinor is hosen in suh a way that its ten-dimensionalextension  ̂M is invariant under the projetions O and O(1;2) given in eqns. (3.2) and (3.7)respetively. To investigate the transformation behavior of ten-dimensional spinors, re-all that the world-sheet parity 
p exhanges  ̂1M and  ̂2M . If the orientifold projetionontains the operator (�1)FL one �nds an additional minus sign when applied to  ̂2M . Inthis we asserted that  ̂2M is in the NS-R setor while  ̂1M is in the R-NS setor. The geo-metri symmetry � ats only on the internal spaeM6 whih translates to a non-trivialtransformation of the globally de�ned spinor �. The preise ation of �� is di�erent fortype IIA and type IIB orientifolds. In the following we will disuss the redution of bothten-dimensional type II theories in turn and determine the indued superpotentials.The type IIA superpotentialLet us �rst determine the superpotential for type IIA orientifolds indued by non-trivialbakground uxes and torsion. Bakground uxes are vauum expetation values for theR-R and the NS-NS �eld strengths. We denote the bakground ux of dB̂2 by H3 whilethe uxes of the R-R forms dĈn are denoted by Fn+1. In order that the four-dimensionalbakground M3;1 is maximally symmetri the uxes have to be extended in the internalmanifoldM6 or orrespond to a four-form on M3;1. In type IIA supergravity we addi-tionally allow for a salar parameter F0, whih orresponds to the mass in the massivetype IIA theory introdued by Romans [99℄. In order that the bakground uxes respetthe orientifold ondition (3.11) they have to obey��H3 = �H3 ; ��Fn = �(Fn) : (3.72)It is onvenient to ombine the R-R bakground uxes into an even form F ev onM6 asF ev = F0 + F2 + F4 + F6 : (3.73)In addition to the bakground uxes also a non-vanishing intrinsi torsion of the SU(3)struture manifold will indue terms ontributing to the N = 1 superpotential. Thesearise due to the non-losedness of the globally de�ned two-form J and three-form 
� andan be parameterized as given in eqn. (2.9).In order to atually perform the redution we need to speify the ation of the ori-entifold projetion O = (�1)FL
p�� on the spinors  ̂1� and  ̂2�. The transformationbehavior of the ten-dimensional gravitinos under (�1)FL
p was already disussed above.We supplement this by the ation of �� on the globally de�ned spinor �. In aord withondition (3.1) one has ���+ = ei��� ; ���� = e�i��+ ; (3.74)27



where � is the phase introdued in eqn. (3.1). Therefore, the invariant ombination of thefour-dimensional spinors is given by  � = 12(ei�=2  1��e�i�=2  2�) with a similar expressionfor the Weyl spinors � 1;2� . In order to ensure the orret form of the four-dimensionalkineti terms for  � we restrit to the spei� hoie � = ei�=2  1� = �e�i�=2  2� ; � � = e�i�=2 � 1� = �ei�=2 � 2� : (3.75)These onditions de�ne a redution of a four-dimensionalN = 2 to an N = 1 supergravitytheory [77, 78, 64℄. Hene, the mass terms of the spinors  � take the standard N = 1form given in eqn. (3.66).Now we turn to the expliit redution of the ten-dimensional e�etive ation (3.67)fousing on the mass terms of  � indued by the bakground uxes H3 and Fn and thetorsion of M6. We use the deomposition (3.71) together with (3.75) and the gamma-matrix onventions summarized in appendix A to deriveS = �ZM3;1 eK2 � ����� � � �4 1ZM6 h4e��̂+i��y+mDm�� + 4e��̂�i��y�mDm�++ 13! e��̂+i� (Ĥ3)mnp �y+mnp�� � 13! e��̂�i� (Ĥ3)mnp �y�mnp�+ (3.76)+12 Xk even 1k!�(�F̂k)m1:::mk�y+m1:::mk�+ + (F̂k)m1:::mk�y�m1:::mk���i �6 1+ : : : ;where eK=2 = e2DeKK=2 with KK as de�ned in eqn. (3.43). The four-dimensional dilatoneD is introdued in (3.14). Note that after the redution of the D = 10 string frameation to four spae-time dimensions we performed a Weyl-resaling to obtain a standardEinstein-Hilbert term. More preisely, in the derivation of (3.76) we made the resalingg�� ! e2Dg�� ; �� ! e�D�� ;  � ! eD=2 � : (3.77)The resaling of  � ensures that the four-dimensional theory has a standard kineti termfor the gravitino. The superpotential an be obtained by omparing the ation (3.76)with the standard N = 1 mass term (3.66). We will disuss the arising terms in turn andrewrite them into the form language used in the previous setions.Let us next express the result (3.76) in terms of the globally de�ned two-form J and
� de�ned in (2.6). First note that 
� is related to the 
 used in analysis of the bosoniterms (setions 3.2 and 3.3) by a resaling
� = e(Ks�KK)=2
 ; (3.78)where e�Ks = i R 
 ^ �
 and KK is de�ned in (3.43). The three-form 
� is de�ned insuh a way, that it satis�es automatially the �rst ondition in (2.7) when integratedoverM6. The quantities in the �rst line of (3.76) are expressed in terms of the forms 
�and J by using the identities 26ZM6 �y�mDm�+ �6 1 = �18 ZM6 
� ^ dJ ; ZM6 �y+mDm�� �6 1 = �18 ZM6 �
� ^ dJ ;(3.79)26The expression (3.79) an be shown by using the Fierz identity (A.13) and expression (A.14) for�1 = �2 = �. 28



where d is the six-dimensional exterior derivative. Using these integrals as well as (3.78)and the de�nition of �odd = C
 displayed in (3.12), (3.13) one �nds4ZM6 e��̂hei��y+mDm�� + e�i��y�mDm�+i �6 1 = �ZM6 
dRe(�odd); J� : (3.80)Similarly, one expresses the remaining terms in the ation (3.76) using the three-from�odd and the two-form J . More preisely, the terms in the seond line of eqn. (3.76) arerewritten by applying eqns. (2.6), (3.78), (3.12) and �
 = �i
 as13! ZM6 �e��̂+i�(Ĥ3)mnp�y+mnp�� � e��̂�i�(Ĥ3)mnp�y�mnp�+� �6 1 (3.81)= �iZM6 h
H3 ^ Re(�odd); 1�+ 
dRe(�odd); B̂2�i ;where we have used that Ĥ3 = dB̂2 +H3 with H3 being the bakground ux. Finally,we apply gamma-matrix identities and the de�nition (2.6) of J to rewrite the termsappearing in the last line of (3.76) as12 Xk even 1k! ZM6 h(�F̂k)m1:::mk�y+m1:::mk�+ + (F̂k)m1:::mk�y�m1:::mk��i �6 1 (3.82)= ZM6 h
F ev; e�B̂2+iJ�� 
H3 ^ C(0)3 ; 1�� 
dC(0)3 ; B̂2�+ i
dC(0)3 ; J�i ;where C(0)3 is de�ned in (3.18) as the part of Ĉ3 being a three-form onM6 yielding salar�elds in M3;1. In deriving this identity one uses the de�nition of F̂k given in eqn. (3.68)while eliminating half of the R-R �elds by the duality ondition (3.68) .In summary one an now read o� the omplete type IIA superpotential indued bybakground uxes and torsion. Introduing the di�erential operator dH = d �H3^ one�nds (see also refs. [64, 11℄)WO6 = ZM6 
F ev + dH�odd ; eJ� ; (3.83)where we used the de�nitions of J = �B̂2 + iJ and �odd = C(0)3 + iRe(�odd) given ineqns. (3.17) and (3.19). The superpotential extends the results of refs. [18, 19, 61, 64,21, 11℄ and together with the disussions above it is readily heked to be holomorphiin the N = 1 oordinates. As disussed in setion 3.2 the omplex forms J and �ev arelinear in the omplex N = 1 oordinates. This is also the ase for their derivatives dJand d�ev , where d is the exterior derivative alongM6. Therefore we dedue that W is apolynomial of ubi order in J times a linear polynomial in �odd . Let us now determineW for the type IIB orientifold ompati�ations.The type IIB superpotentialIn the following we will determine the superpotential of the type IIB orientifolds induedby the bakground uxes and torsion. In the type IIB theory we allow for a non-trivialNS-NS ux H3 as well as odd R-R uxes. Due to the fat that we do not expand in29



one- or �ve-forms onM6 the only non-vanishing R-R is the three-form F3. The equation(3.29) implies that H3; F3 transform under the orientifold projetion as��H3 = �H3 ; ��F3 = �F3 ; (3.84)where the minus sign in the seond ondition applies to type IIB orientifolds with O3=O7planes while the plus sign is hosen for O5=O9 orientifolds. Sine, there are some quali-tative di�erenes between both ases we will disuss them in the following separately.O3=O7 : Our analysis starts with the O3=O7 orientifolds. As in the type IIA asewe need to speify the spinor invariant under the orientifold projetions O(1) de�ned ineqn. (3.7). We already gave the transformation of the ten-dimensional spinor under theworld-sheet parity 
p and (�1)FL. It remains to speify how �� ats on the internalspinor ��. Using eqns. (3.5) and (3.6) one infers [100℄���+ = i�+ ; ���� = �i�� ; (3.85)suh that (��)2�� = ��� onsistent with the fat the (�1)FL
p squares to �1 on the ten-dimensional gravitinos. With these identities at hand one de�nes the four-dimensionallinear ombinations  � = 12( 1� + i 2�) together with the onjugate expression for � �.Combining  �; � � into a ten-dimensional spinor  ̂� by multipliation with �� and �+respetively it is readily shown that  ̂� is invariant under O(1). It turns out to besuÆient to determine W for a more simple hoie of the four-dimensional spinor  �given by  � =  1� = �i 2� ; � � = � 1� = i � 2� : (3.86)These onditions de�ne the redution of the N = 2 theory to N = 1 indued by theorientifold projetion. Inserting the deompositions (3.70) together with (3.86) into theten-dimensional ation (3.67) one determines the  � mass termsS = �ZM3;1 eK2 � ����� � � �4 1ZM6 13!h(e��̂(Ĥ3)mnp + i(F̂3)mnp)
mnpi �6 1+ : : : ; (3.87)where eK=2 = e2DeKs=2 with Ks as de�ned in eqn. (3.56). In order to derive thisfour-dimensional ation we performed the Weyl-resaling (3.77) to obtain a standardEinstein-Hilbert term. Moreover, we used the identities (2.6) and (3.78) to replae thegamma-matrix expressions �y�mnp�+ with the omplex three-form 
mnp and absorbed afator arising due to the Weyl-resaling (3.77) into eK=2. It is interesting to note thatthere is no ontribution from the redution of the ten-dimensional kineti term in theation (3.67). This an be traed bak to the fat that in type IIB orientifolds with O3=O7planes the globally de�ned three- and two-forms 
 and J transform with opposite signsunder the map ��. However, sine the volume form is positive under the orientationpreserving map � the integral over terms like d
 ^ J vanishes. The non-losed forms dJand d
 nevertheless yield a potential for the four-dimensional salars whih is enodedby non-trivial D-terms.Let us now express the ation (3.87) in terms of the globally de�ned three-form 
and the form �ev. Using the de�nition (3.30) of �ev one infers13! ZM6 � e��̂�i�(Ĥ3)mnp
mnp� �6 1 = �iZM6 e��̂�
H3;
�+ 
dB̂2;
�� (3.88)= �iZM6 �
H3 ^ Re(�ev);
�� 
dRe(�ev);
�� ;30



where we have used Re(�ev)0 = e��̂ and Re(�ev)2 = �e��̂B̂2 as simply dedued from thede�nition (3.30). For the R-R term in (3.87) one derivesi3! ZM6(F̂3)mnp
mnp �6 1 = ZM6 �
F3;
�+ 
dA(0)2 ;
�� 
H3 ^A(0)0 ;
�� ; (3.89)where A(0)2 and A(0)0 denote the two- and zero- forms in Aev(0) de�ned in (3.34).27 Togetherthe two terms (3.88) and (3.89) ombine into the superpotentialWO3=O7 = ZM6 
F3 + dH�ev ;
� (3.90)where dH = d�H3^ and �ev is de�ned in eqn. (3.35). This superpotential ontains thewell-known Gukov-Vafa-Witten superpotential [101, 102℄ as well as ontributions due tonon-losed two-forms B̂2 and Ĉ2. Also in this type IIB ase it is straight forward tohek the holomorphiity of W . As mentioned in setion 3.3 the form 
(z) is in general aompliated holomorphi funtion of the hiral oordinates z. On the other hand �ev aswell as d�ev depends linearly on the N = 1 hiral oordinates. Hene, the superpotentialWO3=O7 is a linear funtion in �ev times a holomorphi funtion in the �elds z andontains no onjugate �elds. Let us omplete the disussion of the type IIB orientifoldsby determining the O5=O9 superpotential.O5=O9 : To derive the superpotential for the O5=O9 orientifolds we �rst speifythe ombination of the two ten-dimensional gravitinos invariant under O(2) de�ned ineqn. (3.7). We dedue the ation of �� on the globally de�ned spinor � by examining theexpressions (3.5) and (3.6), whih yield���+ = �+ ; ���� = �� : (3.91)The invariant ombination of the four-dimensional spinors is given by  � = 12( 1� +  2�)with a similar relation for � �. As a spei� hoie for this ombination we simplify to � =  1� =  2� ; � � = � 1� = � 2� : (3.92)Together with the deomposition (3.70) we redue the ation (3.67) to determine themass term of  � asS = �ZM3;1 eK2 � ����� � � �4 1ZM6 
� iF̂3 + d(e��̂J);
� �6 1+ : : : ; (3.93)where we have applied (3.79) and performed the Weyl resaling (3.77). Note that theterm involving the NS-NS uxes vanishes in the ase of O5=O9 orientifolds sine 
 andĤ3 transform with an opposite sign under the symmetry �� as an be dedued fromeqns. (3.6) and (3.29). Inserting the de�nition (3.68) of F̂3 into (3.93) one obtains thesuperpotential [11℄ WO5=O9 = �iZM6 
F3 + d�ev ;
� ; (3.94)where we have used Im(�ev)2 = e��̂J and the de�nition (3.35) of �ev . The superpotentialWO5=O9 is a linear funtion in the N = 1 �elds enoded by �ev times a holomorphifuntion of the �elds z. WO5=O9 is independent of the NS-NS ux H3 whih was shownin ref. [23℄ to ontribute a D-term potential to the four-dimensional theory.27Expanding Aev(0) in (3.34) one �nds A(0)2 = Ĉ2 � Ĉ0B̂2 and A(0)0 = Ĉ0.31



4 Generalized orientifolds and mirror symmetryIn this setion we disuss SU(3)�SU(3) struture orientifolds and investigatemirror sym-metry of the type IIA and type IIB setups. More preisely, we aim to speify setups dualto an orientifold ompati�ation on a Calabi-Yau manifold Y with bakground uxes.In doing that our main fous will be the identi�ation of the N = 1 superpotentials.The superpotentials are holomorphi funtions of the hiral �elds of the four-dimensionaltheory and do not reeive perturbative orretions. Hene, they yield a good testingground for the mirror relations we will propose below. Note however, that the poten-tial for Calabi-Yau orientifolds with O5 planes ontains in addition to a superpotentialontribution also a D-term potential whih arises due to the presents of a gauged linearmultiplet [23, 95℄. We will therefore fous on the mirror identi�ations between the typeIIA orientifolds and the type IIB orientifolds with O3=O7 planes. In general Calabi-Yauorientifolds with O3=O7 or O6 planes the potential indued by non-trivial NS-NS andR-R bakground uxes is entirely enoded by a superpotential and the K�ahler potential[23, 24, 11℄. We propose a possible mirror spaeM~Y whih possesses a geometry dual topart of the eletri and magneti NS-NS uxes. In other words, we identify a spaeM~Ysuh that Typ IIBO3=7=Y with HQ3  mirror����! Typ IIAO(even)=M~Y : (4.1)where the preise de�nition of the NS-NS ux HQ3 will be given shortly and the manifoldM~Y is spei�ed in setion 4.1. The evidene for the identi�ation (4.1) is disussed insetion 4.2, where we also hek onsisteny by analyzing the mirror relationTyp IIAO6=Y with HQ3  mirror����! Typ IIBO(odd)=M~Y ; (4.2)In both ases we onentrate on the superpotentials indued by the NS-NS ux HQ3 only.In order to make the mirror onjetures (4.1) and (4.2) more preise we have to de�nethe bakground ux HQ3 as well as the properties ofM~Y . Let us start with HQ3 . Reallthat the bakground uxes in Calabi-Yau ompati�ations are demanded to be harmoniforms in order to obey the equations of motion and Bianhi identities. This implies thatbefore imposing the orientifold projetions the general expansion of the NS-NS ux H3reads H3 = mK̂�K̂ � eK̂�K̂ ; K̂ = 0; : : : ;dimH(2;1) ; (4.3)where (�K̂; �K̂) is a real sympleti basis of H3(Y ) satisfying (3.22). We denoted themagneti and eletri ux quanta of H3 by (mK̂; eK̂). Di�erent hoies of the sympletibasis (�K̂; �K̂) are related by a sympleti rotation whih also ats on the vetor of uxquanta guaranteeing invariane ofH3. Note however, that due to the fat the supergravityredution is only valid in the large volume limit the mirror symmetri theory has to beevaluated in the `large omplex struture limit'. Around this point of the moduli spaethe holomorphi three-form 
 on Y admits a simple dependene on the omplex struturemoduli zK; K = 1; : : : ;dimH(2;1) expliitly given by [103℄
(z) = �0 + zK�K + 12!zKzL�KLM�M � 13!zKzLzM�KLM�0 ; (4.4)where �KLM are intersetion numbers on Y de�ned, for example, in ref. [98℄. The expres-sion (4.4) spei�es a ertain basis (�K̂; �K̂) of H(3)(Y ). In partiular it singles out the32



elements �0 and �0 with oeÆients onstant and ubi in the omplex �elds zK. Usingthis spei�ation we are now in the position to de�ne the NS-NS ux HQ3 by demandingthat the ux quanta e0; m0 along �0; �0 vanish. In other words we setHQ3 = mK�K � eK�K ; e0 = 0 ; m0 = 0 ; (4.5)where the index K runs from K = 1; : : : ;dimH(2;1). An equivalent de�nition of HQ3 anbe given by interpreting mirror symmetry as T-duality along three diretions of Y [87℄.One demands that the omponents of the NS-NS ux (HQ3 )mnp have never zero or threeindies in the T-dualized diretions whih orresponds to e0 = m0 = 0.4.1 Generalized half-at manifoldsLet us now turn to the de�nition of the manifoldM~Y . In referene [36, 43℄ it was arguedthat type II ompati�ations on Calabi-Yau manifolds with eletri NS-NS uxes arethe mirror symmetri duals of ompati�ations on half-at manifolds (2.10). In orderto also inlude magneti uxes into this mirror identi�ation it is inevitable to generalizeaway from the SU(3) struture ompati�ations [82, 83, 64, 74℄. This might also lead tothe appliation of the generalized manifoldsM~Y with SU(3) � SU(3) struture [64℄. Inthe remainder of this setion we disuss some of the properties of the spaesM~Y , whihmight be mirror dual to Calabi-Yau manifolds with NS-NS uxes HQ3 . We term thesespaes `generalized half-at manifolds'. Some evidene for the mirror identi�ations (4.1)and (4.2) will be provided in setion 4.2.To start with let us reall the de�nition of a manifold with SU(3)� SU(3) struture[80, 84℄. Clearly, the group SU(3) � SU(3) annot at on the tangent bundle alone andone has to introdue a generalized tangent bundle E. Following the work of Hithin[80, 81℄, the generalized tangent bundle E is given byEp �= TpM6 � T �pM6 ; p 2 M~Y ; (4.6)where E is loally identi�ed with the sum of the tangent and otangent spae. Its globalde�nition is more involved, sine the spaes Ep might be glued together non-triviallyalong M~Y [81℄. To make this more preise one introdues a natural O(6; 6) metri onEp de�ned by (v + �; u + �) = 12(�(u) + �(v)), for v; u 2 Tp and �; � 2 T �p . Restritingfurther to transformations preserving the (natural) orientation of E redues the groupdown to SO(6; 6). A global de�nition an then be given by speifying elements of thisgroup serving as transition funtion on overlapping pathes on M~Y . We are now inthe position to de�ne an SU(3)�SU(3) struture manifold by demanding the struturegroup of the bundle E to redue to SU(3)� SU(3) � SO(6; 6). As in the ase of SU(3)struture manifolds disussed in setion 2, this redution an be spei�ed in terms oftwo globally de�ned forms or two globally de�ned spinors onM~Y . We omment on thespinor piture in setion 4.2, where it will also beome lear that the struture groupSU(3) � SU(3) is ditated by demanding that type II ompati�ations on M~Y yieldfour-dimensional N = 2 supergravity theories. Let us analyze here the haraterizationin terms of globally de�ned forms [80, 84, 64℄.Note that the group SO(6; 6) naturally admits spin representations on even and oddforms of M~Y . More preisely, one �nds two irreduible Majorana-Weyl representations33



Sev and Sodd given bySev �= �evT � 
 jdet T j1=2 ; Sodd �= �oddT � 
 jdet T j1=2 ; (4.7)where detT �= �6T is �xed one a partiular volume form is hosen. On elements� 2 Sev=odd the group SO(6; 6) ats with the Cli�ord multipliation(v + �) �� = vy�+ � ^� ; (4.8)where vy indiates insertion of the vetor v 2 T and � 2 T � is a one-form. Using thesede�nitions an SU(3) � SU(3) struture on M~Y is spei�ed by two omplex globallyde�ned even and odd forms �0 ev and �0odd whih are annihilated by half of the elementsin E.28 Furthermore, in order to ensure the redution of SO(6; 6) to the diret produtSU(3) � SU(3) the globally de�ned forms also have to obey [84, 64℄
�0 ev; ��0 ev� = 34
�0odd; ��0odd� ; 
�0 ev; (v + �) ��0odd� = 0 ; (4.9)for all elements v + � 2 E. The pairing 
�; �� appearing in this expression is de�ned in(3.20). These onditions redue to the standard SU(3) struture onditions (2.7) in asewe identify �0 ev = e��̂eiJ ; �0odd = C
 ; (4.10)where J and 
 are the globally de�ned two- and three-form. In this expressions theadditional degree of freedom in jdetT j1=2 is labeled by the ten-dimensional dilaton e��̂also linearly appearing in the de�nition (3.13) of C. Note however, that in the generalSU(3) � SU(3) struture ase the odd form �odd also ontains a one- and �ve-formontribution suh that �0odd = �01+�03+�05. It was shown in ref. [84℄ that eah of theseforms loally admits the expression�odd = e�B̂2 ^�0odd = e�B̂2+iJ ^ C
k ; (4.11)where J is a real two-form and we also inluded a possible B-�eld on the internal manifoldM~Y . The index k is the degree of the omplex form 
k. In the speial ase that k = 3on all ofM~Y the form �0odd desends to the form (4.10). However, the degree of 
k anhange when moving alongM~Y [84℄.29 In other words, the form �odd an loally ontaina one-form C
1. The presents of this one-form in the expansion (4.11) will be the keyto enode the mirror of the magneti uxes in HQ3 given in (4.5).To make this more preise, one notes that the globally de�ned forms �0 ev and �0oddare not neessarily losed. This is already the ase for SU(3) struture manifolds whihare half-at and hene obey (2.10). For these manifolds the speial forms (4.10) are nolonger losed, sine dRe(ei��0odd) and dIm(�0 ev) are non-vanishing. This obstrution ofthe internal manifoldM~Y to be Calabi-Yau is interpreted as mirror dual of the eletriNS-NS uxes eK appearing in the expansion (4.5) of H3 [36℄.30 In order to also enodedual magneti uxes we generalize the half-at onditions to the general odd form �odd28More preisely, eah form �0 ev and �0odd is demanded to be annihilated by a maximally isotropisubspae Eev and Eodd of E. Isotropy implies that elements v+�; u+� 2 Eev=odd obey (v+�; u+�) = 0,while maximality orresponds to dimEev=odd = 6.29Interesting examples of manifolds allowing suh transitions were reently onstruted in ref. [104℄.30The remaining ux parameter e0 in eqn. (4.5) indues a non-trivial H3 ux on the mirrorM~Y .34



given in eqn. (4.11). These generalized half-at manifolds are SU(3) � SU(3) struturemanifolds for whih dIm(ei��0odd) = 0 (4.12)where as above e�i� is the phase of C. The real part of ei��0odd and the form �0 ev arenon-losed. We onjeture that in a �nite redution the di�erentials dRe(ei��0odd) andd�0 ev are identi�ed under mirror symmetry with the NS-NS uxes HQ3 .Let us now make the mirror map between the type II theories on a manifoldMY6 andthe Calabi-Yau ompati�ations with NS-NS uxes expliit. In order to do that, weperform a �nite redution by speifying a set of forms ��nite. In ontrast to the SU(3)ase disussed in setion 3.2, the forms in the set ��nite annot anymore be distinguishedby their degree. In the generalized manifolds only a distintion of even and odd forms ispossible, suh that ��nite = �odd ��ev ; (4.13)where �odd now ontains forms of all odd degrees. In partiular, the one-, three and�ve-form omponents of the form �odd given in eqn. (4.11) an mix one one moves alongM~Y . Nevertheless, we are able to speify a basis of ��nite suh that a Kaluza-Kleinredution on these forms preisely yields the mirror theory obtained by a Calabi-Yauredution with NS-NS uxes.To make this more preise, we �rst speify a �nite real sympleti basis of �odd. Wedemand that it ontains the non-trivial odd forms (K̂ ; ~K̂) de�ned asK̂ = �(�0 + �(1)); �K� ; ~K̂ = �(�0 + �(5)); �K� ; ZM ~Y 
K̂; ~L̂� = ÆL̂̂K ; (4.14)where �(1) and �(5) are a one-form and �ve-form respetively. Note that as remarkedabove, the basis elements (K̂ ; ~K̂) arry no de�nite form degree sine 0 and ~0 onsistof a sum of one-, three- and �ve-forms. Using this basis the odd form �odd admits theexpansion 31�odd = C�0 + zKK + 12!zKzL�KLM~M � 13!zKzLzM�KLM~0� ; (4.15)whih generalizes the expansion (4.4) for the three-form 
. In order to identify the �eldszK under the mirror map with the omplexi�ed K�ahler struture deformations of Y onehas K = 1; : : : ;dimH(1;1)(Y ), while K̂ takes an additional value 0. We also introdue abasis �ev of even forms on M~Y denoted by !Â = (1; !A) and ~!Â = (~!A; �), with inter-setions as in equation (3.21). Mirror symmetry imposes that A = 1; : : : ;dimH(2;1)(Y ).Note that due to the fat that �odd; �0 ev 2 ��nite are no longer losed not all basis ele-ments (K̂; ~K̂) and (!Â; ~!Â) are annihilated by the exterior di�erential. More preisely,we assign thatd0 = �mA!A � eA~!A ; d!A = �eA�0 ; d~!A = �mA�(5) ; (4.16)whih is in aord with the non-vanishing intersetions (3.21) and (4.14). It is now learfrom eqn. (4.16) that the existene of one- and �ve forms in 0; ~0 is essential to enode31Note that the preise moduli dependene of the expansion (4.15) will be not relevant in the following.The essential part is that �odd ontains a part C0 whih is linear in C. This an be always ahievedby an appropriate resaling of C. 35



non-vanishing magneti uxes. In the ase, one evaluates (4.16) for �(1) = �(5) = 0 oneenounters set-ups with dual eletri uxes only [36℄.In the �nite redution onM~Y the equation (4.16) parameterizes the deviation ofM~Yto be Calabi-Yau. Using the expansion (4.15) of the globally de�ned forms �odd oneeasily applies (4.16) to derivedRe(ei��odd) = �jCj(mA!A + eA~!A) ; dIm(ei��odd) = 0 : (4.17)In order that the low energy theories of ompati�ations onM~Y oinide with the mirrorredutions on the Calabi-Yau spae Y with uxes the sale of torsion onM~Y has to bebelow the Kaluza-Klein sale. In other words, the generalized half-at manifold should beunderstood as a `small' deviation from the Calabi-Yau spae ~Y whih is the mirror of Y inthe absene of uxes. Note however, that the topology ofM~Y di�ers from the one of theCalabi-Yau spae ~Y sine ��nite ontains various non-harmoni forms. This suggests thatan expliit onstrution ofM~Y might involve the shrinking of yles in homology, whihare later resolved with a non-trivial deformation. Unfortunately, an expliit onstrutionof the manifolds M~Y is still missing. Moreover, it remains hallenging to investigatethe geometri struture of these manifolds in more detail. Despite of the fat that M~Ypossesses two globally de�ned forms �odd and �0ev it remains to be investigated if thisallows to de�ne the mirror of the Riemannian metri. Note however, that from a four-dimensional point of view the globally de�ned even and odd forms are suÆient to enodethe N = 2 or N = 1 harateristi data.In the �nal setion we provide some evidene for the onjeture that the generalizedhalf-at manifolds are the mirrors of Calabi-Yau ompati�ations with NS-NS uxes.We do this by deriving the superpotentials indued by the general odd forms �odd. Thetype IIA and type IIB ases will be analyzed in turn.4.2 The mirrors of type II Calabi-Yau orientifolds with uxesIn this setion we dimensionally redue the fermioni ation (3.67) on a generalizedSU(3) � SU(3) struture manifoldM~Y . In addition we will impose the orientifold pro-jetions ensuring that the four-dimensional theory is an N = 1 supergravity. This willallow us to derive the superpotentials arising due to the non-losed forms �odd and �evand the bakground uxes. These an be evaluated for the generalized half-at manifoldsintrodued in the previous setion. We use the �nite expansion (4.17) to ompare thesuperpotentials depending on d�odd to their mirror partners arising due to NS-NS ux.In order to perform the dimensional redution of the fermioni ation (3.67) the twoten-dimensional gravitinos  1;2M are deomposed on the bakground M3;1 �M~Y . Hene,we are looking for a generalization of the deompositions (3.70) and (3.71). Note however,that the internal manifoldM~Y possesses an SU(3)�SU(3) struture implying that onegenerially �nds two globally de�ned spinors �1 and �2 on this spae [84, 64℄. In termsof these two globally de�ned spinors �1;2 the globally de�ned forms �0ev and �0odd areexpressed as�0ev = 2e��̂ Xn even 1n!�y2+ p1:::pn�1+epn:::p1; �0odd = �2C Xn odd 1n!�y2� p1:::pn�1+epn:::p1;(4.18)36



where ep1:::pn = ep1 ^ : : : ^ epn is a basis of n-forms �nT � on the manifold M~Y . Thepresene of the two spinors �1;2 ensures that the four-dimensional theory obtained byompatifying on the spae M~Y possesses N = 2 supersymmetry. More preisely, thetype IIB ten-dimensional gravitinos deompose on M3;1 �M~Y as ̂A� =  A� 
 �A� + � A� 
 �A+ A = 1; 2 ; (4.19)while the type IIA deomposition is given by ̂1� =  1� 
 �1+ + � 1� 
 �1� ;  ̂2� =  2� 
 �2� + � 2� 
 �2+ : (4.20)As in setion 3.4, the Weyl spinors  1;2� and � 1;2� yield the four-dimensional gravitinosparameterizing the N = 2 supersymmetry of the theory. Clearly, the deompositions(4.19), (4.20) redue on an SU(3) struture manifold to the expressions (3.70), (3.71), if� = �1 = �2 is the only globally de�ned spinor. In general �1 and �2 are not neessarilyparallel along all ofM~Y . It is preisely this deviation whih allows the general odd forms(4.11) to loally ontain a one-form omponent �1ym�2.A dimensional redution on bakgrounds M~Y with SU(3) � SU(3) struture yieldsa four-dimensional N = 2 supergravity [64℄. The number of supersymmetries is furtherredued to N = 1 by imposing appropriate orientifold projetions. To perform the four-dimensional N = 1 redutions we disuss the type IIA and type IIB ases in turn.The type IIA mirror of type IIB Calabi-Yau orientifolds with NS-NS uxLet us �rst derive the four-dimensional superpotential for type IIA orientifolds onM~Y .It is most onveniently read o� from the mass term (3.66) arising in the redution ofthe fermioni ation (3.67). In this derivation we have to impose the type IIA orientifoldprojetion (3.2). It is straight forward to extend the onditions (3.15) to the more generalodd and even forms�odd = e�B̂2 ^ �0odd ; �ev = e�̂e�B̂2 ^�0ev ; (4.21)where �0odd and �0ev are given in expression (4.18). One has���odd = �(��odd) ; ���ev = �(�ev) : (4.22)In omplete analogy to setion 3.4 the transformations (4.22) impose onstraints on thespinors �1;2 appearing in the omponent expansion (4.18). Eventually, this implies thatthe two four-dimensional spinors  1� and  2� are related as in eqn. (3.75).We are now in the position to perform the redution of the ation (3.67). The ten-dimensional terms only depending on NS-NS �elds redue using (4.20) and (3.75) asS �NS = �ZM3;1 eK2 � ����� � � �4 1ZM6 
dRe(�0odd)� Ĥ3 ^ Re(�0odd);�0ev�+ : : := �ZM3;1 eK2 � ����� � � �4 1ZM6 
dHRe(�odd);�ev�+ : : : ; (4.23)where Ĥ3 = dB̂2+H3 and the dots indiate terms depending on the R-R �elds or not on-tributing to the mass term (3.66). The expression (4.23) is a generalization of eqn. (3.80)37



and (3.81) for the globally de�ned forms (4.18). However, the derivation of (4.23) isslightly more involved, sine terms proportional to �A ymDm�A or Hmnp�A ymnp�A forA = 1; 2 need to be onverted to the sum of forms (4.18). In order to do that one re-peatedly uses the Fierz identities (A.12) and (A.13) [105℄. Furthermore, the derivativeson the spinors �1;2 translate to di�erentials on the forms �ev=odd de�ned in eqn. (4.18)by using the identity (A.14). The K�ahler potential K appearing in the ation (4.23)takes the same form as the one for SU(3) struture manifolds (1.1) if one substitutesthe general odd and even forms �ev and �odd. More preisely, the K�ahler potential Konsists of the logarithms of the extended Hithin funtionals introdued in ref. [80℄.32 Abrief review of the relevant mathematial de�nitions an be found in appendix B. As insetion 3.4, the fator eK=2 in the expression (4.23) arises after a four-dimensional Weylresaling (3.77).It is straight forward to inlude the R-R �elds into the fermioni redution in full anol-ogy to setion 3.4. Together with the terms (4.23) the four-dimensional superpotentialtakes the form W = ZM6 
F ev + dH�odd ;�ev� ; (4.24)where �odd = Aodd(0) + iRe(�odd) ; Âodd = e�B̂2 ^ Ĉodd : (4.25)The omplex form�odd an loally ontain a one- and �ve-form ontribution. The ompexhiral multiplets parametrized by �odd arise as omplex oe�ients of an expansion intoreal forms �odd+ .In order to ompare this result to the mirror result for type IIB Calabi-Yau orientifoldswithO3=O7 planes we perform the �nite redution disussed in the previous setion. Notethat we also have to impose the orientifold ondition, suh that the expansion of �ev=oddin performed into the appropriate subset of ��nite = �+ � ��. As in eqn. (3.23) thissplitting is with respet to the geometri symmetry P6 = ���. Using the �nite basis(K̂; K̂) introdued in eqn. (4.14) one expands�odd = Nkk + T�~� ; (k; ~�) 2 �odd+ : (4.26)It is an important requirement that the form 0 is an element of �odd+ in order that thetype IIA setups are mirror dual to type IIB setups with O3=O7 planes [24℄. The evenform �ev is expanded in a basis (1; !a; ~!b; �) of �ev+ as�ev = 1 + ta!a + 12!tatbKab~! + 13!tatbtKab� (4.27)where the Kab = R !a ^ !b ^ ! are the intersetion numbers on �2�. On the type IIAside the NS-NS and R-R uxes are set to be zero. Inserting the expressions (4.26), (4.27)and (4.16) into the superpotential (4.24) one �ndsW = �N0(ebtb + 12!tatbmKab) : (4.28)The superpotential depends on the `eletri' ux parameters e0; ea as well as the `mag-neti' uxes ma. Under the mirror map these parameters are identi�ed with the NS-NSux quanta in HQ3 .32The relevane of the extended Hithin funtional as a spae-time ation for the topologial stringwas reently disussed in ref. [57℄. 38



It is not hard to see, that the superpotential (4.28) is preisely the mirror super-potential to the well-known Gukov-Vafa-Witten superpotential for type IIB Calabi-Yauorientifolds with O3=O7 planes [101, 102℄. Denoting by � , the type IIB dilaton-axion theGukov-Vafa-Witten superpotential for vanishing R-R uxes reads 33W = �� ZY HQ3 ^ 
 = ���ekzk + 12!mkzlzm�klm� ; (4.29)where the NS-NS ux HQ3 is given in eqn. (4.5) and 
 takes the form (4.4) in the largeomplex struture limit. Note that we additionally imposed the orientifold projetion onthe type IIB Calabi-Yau ompati�ation, suh that HQ3 2 H3�(Y ) ontains ux quanta(ek;mk), while 
 2 H3�(Y ) is parameterized by �elds zk only. It is now straight forwardto identify the superpotentials (4.28) with (4.29) by applying the mirror map ta �= zk,N0 �= � and Kab �= �klm. The uxes are identi�ed asd�odd �= ��H3Q : (4.30)The fat that the two superpotentials an be identi�ed gives some evidene for the hosenmirror geometryM~Y . Next, we will perform a similar analysis for the type IIB theoriesonM~Y and hek the onsisteny of our assertions.The type IIB mirror of type IIA Calabi-Yau orientifolds with NS-NS uxLet us now give a brief hek of the seond mirror identi�ation displayed in eqn. (4.2) byomparing the indued superpotentials. In order to do that we perform a four-dimensionalredution of the type IIB e�etive ation (3.67) on the generalized manifolds M~Y . Inaddition we impose the orientifold projetion O(1) given in eqn. (3.7) suh that the four-dimensional theory has N = 1 supersymmetry. We de�ne the forms�ev = e�B̂2 ^ �0ev ; �odd = C�1e�B̂2 ^ �0odd ; (4.31)where �0ev and �0odd are de�ned in eqn. (4.18). The orientifold symmetry �� ats onthese forms as ���odd = ��(�odd) ; ���ev = �(��ev) ; (4.32)generalizing the onditions (3.31). These onstraints translate into onditions on thespinors �1;2. It is then onsistent to identify the four-dimensional gravitinos parameter-izing the original N = 2 supersymmetry as in eqn. (3.86). The single spinor  � aquiresa mass term due to bakground uxes and the non-losedness of the forms �ev and �odd.To derive the mass term (3.66) for the spinor  � we dimensionally redue the fermioniation (3.67) for type IIB supergravity. Using the Fierz identities (A.12), (A.13) and theexpression (A.14) one derives the superpotentialW = ZM ~Y 
F odd+ dH�ev ;�odd� ; (4.33)where the even form �ev = Aev(0) + iRe(�ev) is de�ned as in eqn. (3.35). The odd form�odd generially ontains a one- and �ve-form.33The superpotential (4.29) is a speial ase of the superpotential (1.6) derived in setion 3.4.39



This superpotential an be ompared with the NS-NS superpotential arising in typeIIA Calabi-Yau orientifolds when performing a �nite redution outlined in setion 4.1.However, to also inorporate the orientifold onstraints (4.32) the expansion of �ev and�odd is in forms of the appropriate eigenspae of ��nite = �+ ���. More preisely, wehave �ev = � +Ga!a + T�~!� ; (4.34)where (1; !a; ~!�) is a basis of �ev+ . The expansion of �odd is given in eqn. (4.15) andredues under the orientifold projetion to�odd = 0 + zkk + 12!zkzl�klm~m � 13!zkzlzm�klm~0 ; (4.35)where (0; k; k; 0) is a basis of �odd� . It is now straight forward to evaluate the generalsuperpotential (4.33) for the even and odd forms (4.34) and (4.35). Setting F odd = 0 andH3 = 0 and using the expression (4.16) we �ndWBM ~Y = �Gaea � T�m� : (4.36)Let us now reall the superpotential for type IIA Calabi-Yau orientifolds with NS-NSbakground ux HQ3 . It was shown in refs. [18, 24℄ that WAH3 takes the formWAH3 = �Z HQ3 ^�odd = �Nkek � T�m� ; (4.37)where the expansion of �odd = Nk�k + T��� is in harmoni three-forms (�k; ��) 2H3+(Y ). The deomposition of HQ3 is given in eqn. (4.5) and we appropriately imposed theorientifold onstraint HQ3 2 H3�(Y ). The two superpotentials (4.36) and (4.37) oinideif applies the mirror map Ga �= Nk and T� �= T�.In summary, we onlude that the mirror identi�ations (4.1) and (4.2) might beorret for the speial generalized half at manifolds with �nite redution (4.16). Clearly,this is only a �rst step and more involved heks are neessary to make the identi�ations(4.1) and (4.2) more preise. Moreover, it is a hallenging task to explore more generalorientifold ompati�ations on non-trivial SU(3)�SU(3) manifolds. Work along theselines is in progress.5 Conlusions and DisussionIn this paper we disussed the four-dimensional N = 1 supergravity theories arising ingeneralized orientifold ompati�ations of type IIA and type IIB supergravities. Afterde�ning the orientifold projetion the N = 1 spetrum of the four-dimensional theorywas determined. As we have argued, this an be done before speifying a partiular�nite redution. The degrees of freedom of the bosoni NS-NS �elds enoded by theten-dimensional metri, the B-�eld and the dilaton, deompose on M3;1 � M6 into afour-dimensional metri g4 and two omplex forms onM6,Type IIA: �ev ; �odd ; Type IIB: �ev ; �odd : (5.1)The normalization of �odd and �ev is set by the ten-dimensional dilaton, while the nor-malization of �ev; �odd is a unphysial saling freedom. The forms �ev=odd as well as40



�ev=odd obey various ompatibility onditions ensuring that the four-dimensional theoryis supersymmetri. Moreover, the real and imaginary parts of these forms are not in-dependent suh that, at least formally, the real part an be expressed as a funtion ofthe imaginary part and vie versa. In aseM6 is an SU(3) struture manifold the oddforms �odd; �odd only ontain a three-form ontribution, while the forms �ev; �ev are ofgeneral even degree.From a four-dimensional point of view, the introdution of the odd and even forms(5.1) is appropriate to enode the bosoni degrees of freedom in the NS-NS setor. Thebosoni �elds in the R-R setor are aptured by the ten-dimensional forms Âodd=ev =e�B̂2 ^ Ĉodd=ev for type IIA and type IIB respetively. One again, not all degrees offreedom in these forms are independent sine the duality ondition (3.68) on the �eldstrengths of Âodd=ev needs to be imposed. The four-dimensional spetrum arises byexpanding these ten-dimensional �elds into forms on the internal manifoldM6. Despitethe fat that forms on M6 might only possess a grading into odd and even forms theorientifold projetion allows to distinguish four-dimensional salars and two-forms as wellas vetors and three-forms. Altogether, the �elds arrange into N = 1 supermultiplets.In determining the kineti terms of the four-dimensional supergravity theory we fo-used on the metri on the hiral �eld spae. Supersymmetry implies that this metri isK�ahler and we argued that the K�ahler potential onsists of the two Hithin funtionalson M6. These are funtions of the odd and even forms listed in eqn. (5.1) respetively.The K�ahler potentials are independent of the R-R �elds whih are proteted by ontin-uous shift symmetries. This will no longer be the ase when D-instanton orretions areinluded. Given the K�ahler potentials in the hiral desription, the kineti potentials forthe dual linear multiplets are determined by a Legendre transform [96℄. In general, thetheory onsists of a set of (possibly massive) hiral and linear multiplets. In this work wedid not analyze the vetor setor and three-form setor of the four-dimensional theory.In order to gain a full piture of possible supergravity theories in four-dimensions it willbe neessary to arefully inlude these �elds.Due to bakground uxes and torsion the hiral multiplets an aquire a salar poten-tial. This salar potential onsists of an F-term ontribution enoded by a holomorphisuperpotential and possible D-term ontributions due to non-trivial gaugings. Using afermioni redution we derived the general form of the superpotential on SU(3) stru-ture manifolds. Together with the K�ahler potential this allows to determine the hiralsupersymmetry onditions on four-dimensional vaua and their osmologial onstant� = �3eKjW j2. In order to derive these data and to study moduli stabilization the ex-pliitly onstrution of non-Calabi-Yau bakgrounds is essential. Moreover, the inlusionof matter and moduli �elds due to spae-time �lling D-branes will be needed in attemptsto onstrut spei� models for partile physis and osmology.We also presented some �rst results on type II ompati�ations on SU(3) � SU(3)struture orientifolds. Even though many of the SU(3) struture results naturally gener-alize to the SU(3)�SU(3) struture ase the onsequenes of this extension are enormous.The even and odd forms listed in eqn. (5.1) are in these generalized settings of generieven and odd degree. Moreover, the notion of a spei� form degree is not anymore wellde�ned and an hange on di�erent pathes ofM6. This an be traed bak to the fatthat the tangent and otangent bundles T , T � are no longer the entral geometri objets,but rather get replaed with the generalized tangent bundle E loally given by T �T �. A41



non-losed NS-NS B-�eld has a natural interpretation in this formalism as a twisting ofthe forms �ev=odd and �ev=odd with a gerbe [80, 84, 81℄. At least from a four-dimensionalpoint of view one may attempt to formulate the supergravity in this generalized languageproviding a natural uni�ation of all NS-NS �elds. However, it should be lear that thegeneralized set-ups are not anymore `geometri' in the standard Riemannian sense. Themetri g6 on the tangent bundle is replaed by a metri on the extended tangent bundleE, whih supports higher symmetry group then di�eomorphisms ofM6. In general, thismight also imply that the metri g6 and the B-�eld mix as one moves along the internalmanifold.In this work we explored an interesting appliation of the generalized geometries asmirrors of Calabi-Yau ompati�ations with NS-NS uxes. We haraterized propertiesof generalized half-at manifolds whih might serve as a mirror of NS-NS uxes HQ.The superpotentials of SU(3)�SU(3) struture ompati�ations were derived from theredution of the fermioni type IIA and type IIB ations. In a spei� �nite trunationthe mirror uxes an be identi�ed as ontributions from non-losed one- and three-formsin �odd and �odd. Clearly, this is only a �rst step in the study of ompati�ations ongeneralized manifolds with SU(3) � SU(3) struture. It remains a hallenging task toexplore the pattern of uxes supported in generalized ompati�ations and to determinethe omplete lassial four-dimensional gauged supergravity.AknowledgmentsWe would like to thank Dmitriy Belov, Frederik Denef, Ian Ellwood, Olaf Hohm, HansJokers, Albreht Klemm, Yi Li, Jan Louis and Washington Taylor for valuable disus-sions and useful omments. TWG also likes to thank Mihael Douglas and the RutgersUniversity for hospitality and �nanial support. TWG was supported in part by NSFCAREER Award No. PHY-0348093, DOE grant DE-FG-02-95ER40896, a Researh In-novation Award and a Cottrell Sholar Award from Researh Corporation. IB likes tothank the DFG { The German Siene Foundation, European RTN Program MRTN-CT-2004-503369 and the DAAD { the German Aademi Exhange Servie.AppendixA The Cli�ord Algebra in 4 and 6 dimensionsIn this appendix we assemble the spinor onventions used throughout the paper.In D = 10 the �-matries are hermitian and satisfy the Cli�ord algebraf�M ;�Ng = 2gMN ; M;N = 0; : : : ; 9 : (A.1)One de�nes [4℄ �11 = �0 : : :�9 ; (A.2)42



whih has the properties (�11)2 = 1 ; f�11;�Mg = 0 : (A.3)This implies that the Dira representation an be split into two Weyl representations32Dira = 16+ 160 (A.4)with eigenvalue +1 and �1 under �11.In bakgrounds of the form (2.1) the 10-dimensional Lorentz group deomposes asSO(9; 1)! SO(3; 1) � SO(6) ; (A.5)implying a deomposition of the spinor representations as16 = (2;4) + (�2;�4) : (A.6)Here 2;4 are the Weyl representations of SO(3; 1) and SO(6) respetively.In the bakground (2.1) the ten-dimensional �-matries an be hosen blok-diagonalas �M = (� 
 1; 5 
 m); � = 0; : : : ; 3; m = 1; : : : ; 6 ; (A.7)where 5 de�nes the Weyl representation in D = 4. In this basis �11 splits as [4℄�11 = �5 
 7 ; (A.8)where 7 de�nes the Weyl representations in D = 6.Let us now turn to our spinor onvention in D = 6 and D = 4 respetively.A.1 Cli�ord algebra in 6 dimensionsIn D = 6 the gamma matries are hosen hermitian my = m and they obey the Cli�ordalgebra fm; ng = 2gmn ; m; n = 1; : : : ; 6 : (A.9)The Majorana ondition on a spinor � reads�y = �TC ; (A.10)where C is the harge onjugation matrixCT = C ; Tm = �CmC�1 : (A.11)The following Fierz identity holds for spinors onM6 [105℄M = 18 6Xk=0 1k!p1:::pkTr(pk :::p1M) ; (A.12)43



whereM is an arbitrary matrix in spinor spae. Relevant examples used in the alulationof (4.23) are M = �1 
 �y2, M = (mDm�1)
 �y2, et. Using eqn. (A.12) it is not hard toshow that �1ymDm�1 = 18 6Xn=0 1n!�2yp1:::pnmDm�1 �1ypn:::p1�2 ; (A.13)�1 ymnp�1 = 18 6Xn=0 1n!�2yp1:::pnmnp�1 �1 ypn:::p1�2 ;with similar expressions for �2. A seond important identity enodes how derivatives onspinors translate into exterior derivatives on forms. Expliitly one has (see for example[68℄) Xn 1n!�2yfp1:::pn; mgDm�1epn:::p1 = (d+ d�)Xn 1n!�2yp1:::pn�1epn:::p1 (A.14)where d� = ��6 d �6 is the formal adjoint of d, with �6 being the six-dimensional Hodge-star.A.2 Cli�ord algebra in 4 dimensionsIn D = 4 we adopt the onventions of [97℄ and hoose� = �i� 0 ����� 0 � ; 5 = � 1 00 �1 � (A.15)where the �� are the 2 � 2 Pauli matries�0 = � �i 00 �i � ; �1 = � 0 11 0 � ; �2 = � 0 �ii 0 � ; �3 = � 1 00 �1 � ;(A.16)and ��0 = �0; ��1;2;3 = ��1;2;3. We de�ne��� = 14(����� � �����) ; ���� = 14(����� � �����) : (A.17)B Stable forms and the Hithin funtionalIn this appendix we ollet some basi fats about the geometry of stable even and oddforms on a six-dimensional manifoldM6. The de�nition of the Hithin funtionals willbe realled. The ase of stable three-forms and the general de�nition of stable odd andeven forms will be reviewed in turn. A more exhaustive disussion of these issues anbe found in refs. [79, 80, 84, 81℄. We also omment on the derivation of the expression(3.53). 44



B.1 Stable three-forms and the standard Hithin funtionalLet us �rst onsider a six-dimensional manifoldM6 with a real globally de�ned three-form � 2 �3T �. A natural notion of non-degeneray is that the form � is stable. From anabstrat point of view a stable form � is de�ned by demanding that the natural ationof GL(6) on � spans an open orbit in �3pT � at eah point p of M6. This ondition analso be formulated in terms of the map q : �3T � ! �6T � 
�6T � de�ned as [79℄q(�) = 
em ^ fny�; ��
en ^ fmy� ^ �� ; (B.1)where em is a basis of T �M6 and fm is a basis of TM6. The set of stable three-forms onM6 is then shown to be U3 = �� 2 �3T � : q(�) < 0	 ; (B.2)where q(�) < 0 holds if q(�) = �s 
 s for some s 2 �6T �. Clearly, sine �6T � �= R thismeans that the produt of the oeÆients of the volume forms in (B.1) is negative.It was shown in ref. [79℄ that eah real stable form � 2 U3 is written as� = 12(
 + �
) ; (B.3)where 
 is a omplex three-form satisfying 

; �
� 6= 0. The imaginary part of 
 isunique up to ordering and we denote it by �̂ = Im(
). The real three-forms �̂(�) an alsobe de�ned by using the map q introdued in eqn. (B.1). On forms � 2 U3 one de�nesthe Hithin funtion H(�) :=q�13q(�) 2 �6TY ; (B.4)whih is well de�ned sine q(�) < 0. The form �̂ is then de�ned to be the Hamiltonianvetor �eld on TU3 �= �3T � 344
�̂; �� = �DH(�) ; 8� 2 �3T � ; (B.5)where D is the di�erential on TU3. Note that H(�) an be rewritten as H(�) = i

; �
�.In this paper we mostly use the integrated version of the Hithin funtion H(�). SineH(�) is a volume form it is natural to de�ne the Hithin funtionalH[�℄ = ZM6 H(�) = iZM6 

; �
� : (B.6)Its �rst (variational) derivative is preisely the form �̂ suh that��H = �4�̂ ; ��H(�) = �4ZM6 
�̂; �� : (B.7)Here we also displayed how ��H is evaluated on some real form � 2 �3T �. The seondderivative of H[�℄ is given by����H = �4I ; ����H(�; �) = �4ZM6 
�;I�� : (B.8)34The fator 4 is not present in the orresponding expression in ref. [79℄. It arises due to the fat thatwe have set � = Re(
) and not �Hithin = 2Re(
) as in ref. [79℄45



The map I : �3T �! �3T � is shown to be an almost omplex struture on U3. It is usedto prove that U3 is atually a rigid speial K�ahler manifold [79℄. The real form � an bealso used to de�ne an almost omplex struture I� onM6 itself by setting (see also thedisussion in setion 2) (I�)mn = 1H(�) (em ^ fny� ^ �) ; (B.9)where H(�) is de�ned in eqn. (B.4). With respet to I� one deomposes omplex three-forms as �3T �C = �(3;0) � �(2;1)� �(1;2) � �(0;3) : (B.10)Using this deomposition the omplex struture I on U3 is evaluated to be I = i on�(3;0) � �(2;1) and I = �i on �(1;2) � �(0;3). Furthermore, assuming that M6 possessesa metri hermitian with respet to I� the six-dimensional Hodge-star obeys �6 = i on�(0;3) ��(2;1), while �6 = �i on �(3;0)� �(1;2). This implies the identi�ationsI = �6 on �(2;1)� �(1;2) ; I = � �6 on �(3;0)� �(0;3) : (B.11)The identity (B.11) is essential to show eqn. (3.53) as we will see in appendix B.3.B.2 Stable odd/even forms and the extended Hithin funtionalLet us now briey review the de�nition of general odd and even stable forms and theirassoiated Hithin funtional. Many of the identities for stable three-forms naturallygeneralize to the more generi ase. We onsider real odd or even forms �ev=odd 2 Sev=odd,where Sev=odd = �ev=oddT �
 jdetT j1=2 was already de�ned in equation (4.7). In most ofthe disussion a distintion between the odd and even ase is not needed and we simplifyour notation by writing �� 2 S�, where � = ev or � = odd. As in setion 4.1 the generalizedtangent bundle is denoted by E = T � T � (f. equation (4.6)). A natural Cli�ord ationof elements of E on the forms �� is de�ned in eqn. (4.8). In this sense the elements S �are spinors of the group SO(6; 6). In analogy to the de�nition (B.1) one introduesq(��) = 
em ^ fny��; ���
en ^ fmy��; ��� ; (B.12)where em is a basis of T � and fm is a basis of T . The anti-symmetri Mukai pairing 
�; ��is de�ned in eqn. (3.20). The map q(��) an be evaluated for elements �� 2 S� yielding anumber. The set of stable spinors �� is then de�ned asU � = ��� 2 S� : q(��) < 0	 (B.13)All spinors in U � de�ne a redution of the struture group SO(6; 6) of E to U(3; 3).Furthermore, the elements of U � an be deomposed as�� = 12��� + ���� ; (B.14)where as above the spinor �̂� = Im(��) is unique up to ordering. It was shown that theomplex spinors �� are eliminated by half of the elements in E via the Cli�ord ation(4.8). Suh spinors are alled pure spinors.46



In order to de�ne the Hithin funtional we un-twist S� ! ��T � and onsider q(��)on forms. In this ase p�q(��) is a volume form and we de�ne the extended Hithinfuntional [80℄ H[��℄ = ZM6 q�13q(��) = iZM6 
��; ���� : (B.15)As in the three-form ase the �rst (variational) derivative is preisely the form �̂� suhthat ���H = �4�̂� ; ���H(�) = �4ZM6 
�̂�; �� ; (B.16)where � 2 ��T �. The seond derivative of H is shown to de�ne a omplex struture onthe spae U �. Moreover, the spae of stable spinors U � naturally admits a rigid speialK�ahler struture.B.3 Derivation of the K�ahler metriIn this appendix we give more details on the derivation of the expression (3.53) andbriey disuss its generalizations. We �rst show that���odd ���odd KQ�(�0; �) = 2e2D ZM6 
�0; �6 �� ; (B.17)where �;�0 2 �3+T � are real three-forms obeying an additional ondition and KQ is givenin eqn. (3.51). To begin with, notie that the K�ahler potential KQ is independent ofthe real part of �odd and only depends on � = Re(�odd) = Im(�odd ). Hene, one infers��odd ���odd KQ = 14�� ��KQ. Using the expressions (B.7), (B.8) and (3.51) it is straightforward to derive14��� ��KQ�(�0; �) = 2e2D ZM6 
�0;I ��+ 8e4D ZM6 
�̂; �0� ZM6 
�̂; �� ; (B.18)where �̂ = Im(�odd). SineM6 admits an almost omplex struture (B.9) assoiated to�, eah form � an be deomposed as� = �(3;0)+(0;3)+ �(2;1)+(1;2) 2 �3+T � : (B.19)Using the fat that �̂ is a (3; 0) + (0; 3)-form one has 
�̂; �(2;1)+(1;2)� = 0. Therefore it isan immediate onsequene of the identi�ations (B.11) that (B.17) holds on �(2;1)+(1;2).It remains to show that it is also true for �(3;0)+(0;3). Sine we demand �(3;0)+(0;3) 2 �3+T �one has �(3;0)+(0;3) = f� for some funtion f onM6=�. Note that to show eqn. (B.17) weneed to pull f through the integral and hene demand that f is atually onstant. Withthis restrition it is straight forward to use RM6 
�̂; �� = 12e�2D to show that equation(B.17) holds on general (2; 1) + (1; 2)-forms and forms �(3;0)+(0;3) / �.35Let us also briey omment on the general ase. As we have just argued, the identity(B.17) is easily shown on (2; 1) + (1; 2) forms, while general (3; 0) + (0; 3) forms are35An alternative derivation of the ondition (B.17) might be performed by using deompositions intoSU (3) representations, as done for the G2 analog of (B.17), for example, in ref. [106, 107℄.47



problemati. To also inlude the generi (3; 0) + (0; 3) ase one de�nes the `K�ahlerpotential' �K = �2 ln �i
�odd; ��odd�� ; (B.20)where now �odd = (� + i�̂)
 ��1=2 is an element of S3 = �3T � 
 jdetT j1=2 and � is thevolume form i
�odd; ��odd�� = 2
�; �̂� : (B.21)Note that the produt 
�odd; ��odd� yields a number while 
�; �̂� is a volume form. Bothare depending on the oordinates ofM6. Furthermore, in ontrast to the K�ahler potential(3.51) there is no integration in the funtional (B.20) [64℄. The �rst derivative of �K isobtained from eqn. (B.7) to be12��Re(�odd) �K�(�) = 4e �K=2 
�̂; ��
 ��1=2 ; (B.22)for a three-form � 2 �3T �. Using eqn. (B.8) the seond derivative reads14��Re(�odd)�Re(�odd) �K�(�;�0) = 2e �K=2
�;I�0�+ 8e �K
�̂; ��
�̂; ����1 ; (B.23)for a three-forms �;�0 2 �3T �. This is preisely a volume form and integration overM6yields a metri on three-forms �;�0. Following the same reasoning as above, it is nowstraight forward to showZM6 ���odd ���odd �K�(�;�0) = 2ZM6 e2D
�; �6�0� ; (B.24)on all elements �;�0 2 �3T �+. We have used that �odd = C(0)3 + iRe(�odd) and that �K isindependent of the R-R �elds C(0)3 . In this general ase, the four-dimensional dilaton Dis de�ned as e�2D = i
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