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hes Elektronen{Syn
hrotron DESY, 22603 Hamburg, GermanyandDepartment of Physi
s and RIPC, Chonbuk National University, Jeonju 561-756, Korea�2 KIAS, S
hool of Physi
s, Seoul 130{012, KoreaandPhysikalis
hes Institut, Universit�at Bonn, Nussallee 12, D53115 Bonn, Germanyy3 Department of Physi
s, Konkuk University, Seoul 143{701, KoreaAbstra
tOn
e supersymmetri
 neutralinos ~�0 are produ
ed 
opiously at e+e� linear 
ollid-ers, their 
hara
teristi
s 
an be measured with high pre
ision. In parti
ular, thefundamental parameters in the gaugino/higgsino se
tor of the minimal supersym-metri
 extension of the standard model (MSSM) 
an be analyzed. Here we fo
us onthe determination of possible CP{odd phases of these parameters. To that end, weexploit the ele
tron/positron beam polarization, in
luding transverse polarization,as well as the spin/angular 
orrelations of the neutralino produ
tion e+e� ! ~�0i ~�0jand subsequent 2{body de
ays ~�0i ! ~�0kh; ~�0kZ; ~̀�R`�, using (partly) optimized CP{odd observables. If no �nal{state polarizations are measured, the Z and h modesare independent of the ~�0i polarization, but CP{odd observables 
onstru
ted fromthe leptoni
 de
ay mode 
an help in re
onstru
ting the neutralino se
tor of theCP{noninvariant MSSM. In this situation, transverse beam polarization does notseem to be parti
ularly useful in probing expli
it CP violation in the neutralinose
tor of the MSSM. This 
an most easily be a

omplished using longitudinal beampolarization.�Permanent AddressyPermanent Address



1 Introdu
tionIn the minimal supersymmetri
 standard model (MSSM) [1℄, the spin-1/2 partners of theneutral gauge bosons, ~B and fW3, and of the neutral Higgs bosons, ~H01 and ~H02 , mix toform the neutralino mass eigenstates �0i (i=1,2,3,4). The 
orresponding mass matrix inthe ( ~B;fW3; ~H01 ; ~H02 ) basisM = 0BBBB� M1 0 �mZ
�sW mZs�sW0 M2 mZ
�
W �mZs�
W�mZ
�sW mZ
�
W 0 ��mZs�sW �mZs�
W �� 0 1CCCCA (1)
ontains several fundamental supersymmetry parameters: the U(1) and SU(2) gauginomasses M1 and M2, the higgsino mass parameter �, and the ratio tan � = v2=v1 of theva
uum expe
tation values of the two neutral Higgs �elds. Here, s� = sin�, 
� = 
os�and sW ; 
W are the sine and 
osine of the ele
troweak mixing angle �W .In CP{noninvariant theories, the mass parameters M1;2 and � are 
omplex. By re-parameterizing the �elds, M2 
an be taken real and positive without loss of generality.Two remaining non{trivial phases are attributed to M1 and �:M1 = jM1j ei�1 and � = j�j ei�� (0 � �1;�� < 2�) : (2)The existen
e of CP{violating phases in supersymmetri
 theories indu
es, in general,ele
tri
 dipole moments (EDM) [2℄. The 
urrent experimental bounds on the EDM's
onstrain the parameter spa
e in
luding many parameters outside the neutralino/
harginose
tor [3℄. Detailed analyses of the ele
tron EDM show [3, 4℄ that the phase �� mustbe quite small, unless sele
trons are very heavy.� In 
ontrast, large values of �1 areallowed even for rather small sele
tron masses. The CP{violating phase �1 
an thereforeplay a signi�
ant role in the produ
tion and de
ay of neutralinos, whi
h is most easilyinvestigated at (linear) e+e� 
olliders [5, 6, 7, 4, 8℄.Neutralinos are produ
ed in e+e� 
ollisions, either in diagonal or mixed pairs [9℄. Ifthe 
ollider energy is high enough to produ
e all four neutralino states, the underlyingSUSY parameters fjM1j;�1;M2; j�j;��; tan �g 
an be extra
ted from the masses m~�0i(i=1,2,3,4) and the 
ross se
tions [10, 11℄. At the �rst stage of operations of a linear e+e�
ollider, however, only the lighter neutralinos may be a

essible. If ~�01~�02 is the only visibleneutralino pair that is a

essible, measuring their masses and (polarized) produ
tion
ross se
tions may not suÆ
e to determine the parameters of the neutralino mass matrix
ompletely; the detailed analysis of ~�02 de
ays will then be very useful. Moreover, evenif suÆ
iently many di�erent ~�0i ~�0j states are a

essible to determine all the parametersappearing in Eq. (1), analyses of neutralino de
ay will o�er valuable redundan
y. After�Large values of �� 
an also be tolerated for moderate sele
tron masses if tan � is 
lose to 1. However,this possibility is essentially ex
luded by Higgs boson sear
hes at LEP.1



e�e+ Z ~�0i~�0j e�e+ ~eL;R ~�0i~�0j e�e+ ~eL;R ~�0i~�0jFigure 1: Feynman diagrams for �ve me
hanisms 
ontributing to the produ
tion of di-agonal and non{diagonal neutralino pairs in e+e� annihilation, e+e� ! ~�0i ~�0j (i; j=1{4).all, a theory 
an only be said to be tested su

essfully if experiments over{
onstrain itsparameters.In the present work we systemati
ally investigate, both analyti
ally and numeri
ally,the usefulness of ele
tron and positron beam polarization, in
luding transverse polariza-tion, for the analysis of neutralino produ
tion and de
ay at e+e� 
olliders. To this end,we exploit spin/angular 
orrelations of the neutralino produ
tion e+e� ! ~�02~�01 and sub-sequent two{body de
ays of ~�02 ! ~�01h; ~�01Z; and ~�02 ! ~̀�`� followed by ~̀� ! `� ~�01 forprobing the CP properties of the neutralino se
tor in the MSSM. Due to the Majorananature of neutralinos, the de
ay distributions of two{body de
ays ~�02 ! ~�01h; ~�01Z areindependent of the ~�02 polarization, unless the polarization of the Z boson is measured.These modes 
an still be used to probe a produ
tion{level CP{odd asymmetry, whi
hhowever turns out to be small in the MSSM. The slepton mode ~�02 ! ~̀�R`� is an opti-mal polarization analyzer of the de
aying neutralino. We 
an 
onstru
t several CP{odd\de
ay" asymmetries that are sensitive to the ~�02 polarization ve
tor. Our main emphasisis on observables that fully re
e
t the non{trivial angular dependen
e of CP{odd terms,ex
ept for the angular dependen
e appearing in the propagators. Although they are notperfe
tly optimal, these CP{odd asymmetries have mu
h higher statisti
al signi�
an
ethan the 
onventional ones, as demonstrated with numeri
al examples below.The remainder of this arti
le is organized as follows. Se
tion 2 des
ribes neutralinoprodu
tion, in
luding the polarization of the neutralinos, for arbitrary beam polarization.Two{body de
ays of polarized neutralinos are dis
ussed in Se
. 3. Se
tion 4 deals withthe re
onstru
tion of ~�01~�02 �nal states with invisible ~�01. The formalism of \e�e
tiveasymmetries" is des
ribed in Se
. 5, and numeri
al examples for these asymmetries areshown in Se
. 6. Finally, Se
tion 7 
ontains a brief summary and some 
on
lusions.2 Neutralino produ
tion in e+e� 
ollisionsThe neutralino pair produ
tion pro
esses in e+e� 
ollisionse�(p; �) + e+(�p; ��)! ~�0i (pi; �i) + ~�0j(pj ; �j) ( i; j = 1; 2; 3; 4) (3)2



are generated by the �ve me
hanisms of the Feynman diagrams in Fig. 1, with s{
hannelZ ex
hange, or t{ or u{
hannel ~eL;R ex
hange. Here �, ��, �i, and �j denote heli
ities. Forthe analyti
al 
al
ulation, we take a 
oordinate system where the produ
tion o

urs in the(x; z) plane and the in
ident ele
tron beam moves into +z dire
tion. The four{momentaappearing in Eq. (3) are then given byp = ps2 (1; 0; 0; 1) ;�p = ps2 (1; 0; 0;�1) ;pi = ps2 (ei; �1=2 sin�; 0; �1=2 
os �) ;pj = ps2 (ej;��1=2 sin�; 0;��1=2 
os �) ; (4)where ei = 1 + �2i � �2j ; ej = 1 + �2j � �2i ;�i;j = m~�0i;j=ps ; � = (1 � �2i � �2j )2 � 4�2i �2j : (5)The transition matrix element, after an appropriate Fierz transformation of the ~eL;Rex
hange amplitudes, 
an be expressed in terms of four generalized bilinear 
harges Q��:T �e+e� ! ~�0i ~�0j� = e2s Q�� ��v(e+)
�P�u(e�)� ��u(~�0i )
�P�v(~�0j)� : (6)These generalized 
harges 
orrespond to independent heli
ity amplitudes whi
h des
ribethe neutralino produ
tion pro
esses for 
ompletely (longitudinally) polarized ele
tronsand positrons, negle
ting the ele
tron mass as well as ~eL{~eR mixing.� They are de�ned interms of the lepton and neutralino 
ouplings as well as the propagators of the ex
hanged(s)parti
les [6, 11℄: QLL = + DZs2W 
2W (s2W � 12 )Zij �DuLgLij ;QRL = +DZ
2W Zij +DtRgRij ;QLR = � DZs2W 
2W (s2W � 12 )Z�ij +DtLg�Lij ;QRR = �DZ
2W Z�ij �DuRg�Rij : (7)� ~fL{ ~fR mixing is proportional to mf unless one tolerates deeper minima of the s
alar potential where
harged sfermion �elds obtain nonvanishing va
uum expe
tation values; although it 
an be enhan
ed atlarge tan � or for large trilinear A�parameters, sele
tron mixing is generally negligible for 
ollider physi
spurposes. 3



The �rst index in Q�� refers to the 
hirality of the e� 
urrent, the se
ond index to the
hirality of the ~�0 
urrent. The �rst term in ea
h bilinear 
harge is generated by Z{ex
hange and the se
ond term by sele
tron ex
hange; DZ , DtL;R and DuL;R respe
tivelydenote the s{
hannel Z propagator and the t{ and u{
hannel left/right{type sele
tronpropagators: DZ = ss�m2Z + imZ�Z ;DtL;R = st�m2~eL;R and t! u ; (8)with s = (p+ �p)2, t = (p� pi)2 and u = (p� pj)2. The matri
es Zij , gLij and gRij 
an be
omputed from the matrix N diagonalizing the neutralino mass matrix [1℄Zij = (Ni3N�j3 �Ni4N�j4)=2 ;gLij = (Ni2
W +Ni1sW )(N�j2
W +N�j1sW )=4s2W 
2W ;gRij = Ni1N�j1=
2W : (9)They satisfy the hermiti
ity relations ofZij = Z�ji ; gLij = g�Lji ; gRij = g�Rji : (10)If the de
ay width �Z is negle
ted in the Z boson propagator DZ, the bilinear 
hargesQ�� satisfy similar relations, Q��(~�0i ; ~�0j ; t; u) = Q���(~�0j ; ~�0i ; u; t). These relations are veryuseful in 
lassifying CP{even and CP{odd observables.2.1 Produ
tion heli
ity amplitudesWith the e� mass negle
ted, the matrix element in Eq. (6) is nonzero only if the ele
tronheli
ity is opposite to the positron heli
ity. We write the heli
ity amplitudes asT (�; ��; �i; �j) = T (�;��; �i; �j) Æ��;�� � 2�� h�;�i �ji Æ��;�� ; (11)where �; �i; �j = �. Expli
it expressions for these heli
ity amplitudes are [6℄:h+;++i = � �QRRp�i+�j� +QRLp�i��j+� sin� ;h+;+�i = � �QRRp�i+�j+ +QRLp�i��j�� (1 + 
os �) ;h+;�+i = + �QRRp�i��j� +QRLp�i+�j+� (1� 
os �) ;h+;��i = + �QRRp�i��j+ +QRLp�i+�j�� sin� ;h�; ++i = � �QLLp�i��j+ +QLRp�i+�j�� sin� ;h�; +�i = + �QLLp�i��j� +QLRp�i+�j+� (1 � 
os�) ;h�;�+i = � �QLLp�i+�j+ +QLRp�i��j�� (1 + 
os�) ;h�;��i = + �QLLp�i+�j� +QLRp�i��j+� sin � ; (12)where �i� = ei � �1=2 and �j� = ej � �1=2. In the high energy asymptoti
 limit, �i+ and�i� approa
h 1 and 0, respe
tively; only the heli
ity amplitudes with opposite ~�0i and ~�0jheli
ities survive. 4



2.2 Produ
tion 
ross se
tionsWe analyze neutralino produ
tion for general e� polarization states. With the s
atteringplane �xed as the (x; z) plane, the azimuthal s
attering angle appears in the des
riptionof the e� polarization ve
tors:�!P e� = (PT 
os �;�PT sin�; PL); �!P e+ = (P T 
os(� � �); P T sin(� � �);�PL) ; (13)where � is the relative angle between the transverse 
omponents of two polarization ve
-tors. The density matri
es � (�) of the ele
tron (positron) in the f+;�g heli
ity basis are[13℄ � = 12 � 1 + PL PT ei�PT e�i� 1� PL � ; � = 12 � 1 + PL �P T e�i(���)�P T ei(���) 1 � PL � : (14)The polarized di�erential 
ross se
tion is given byd�d
 = �1=264�2s jT j2 ; (15)where jT j2 = X�;��;�i;�j T (�; ��; �i; �j)T �(�0; ��0; �i; �j) ���0 ���0 �� : (16)Note that the order of indi
es of ���0 �� is opposite of that of ���0 due to the di�eren
ebetween the parti
le and the antiparti
le. Inserting Eqs. (12) and (14) into Eq. (16)yields d�d
fijg = �24s �1=2h(1� PL �PL)�ijUU + (PL � �PL)�ijUL+ PT �PT 
os(2�� �)�ijUT + PT �PT sin(2� � �)�ijUNi ; (17)where �ijUU = �1� (�2i � �2j )2 + � 
os2��Q1 + 4�i�jQ2 + 2�1=2Q3 
os�;�ijUL = �1 � (�2i � �2j )2 + � 
os2��Q01 + 4�i�jQ02 + 2�1=2Q03 
os �;�ijUT = �Q5 sin2�;�ijUN = ��Q06 sin2� : (18)Expressions for all relevant quarti
 
harges Q(0)i in terms of bilinear 
harges Q�� are givenin Table 1, whi
h also lists the transformation properties under P and CP. Non{zerotransverse e� beam polarization allows to probe four new quarti
 
harges, Q5, Q6, Q05,and Q06. 5



Table 1: The independent quarti
 
harges des
ribing e+e� ! ~�0i ~�0j .P CP Quarti
 
hargeseven even Q1 = 14 [jQRRj2 + jQLLj2 + jQRLj2 + jQLRj2℄Q2 = 12<e [QRRQ�RL +QLLQ�LR℄Q3 = 14 [jQRRj2 + jQLLj2 � jQRLj2 � jQLRj2℄Q5 = 12<e [QRRQ�LR +QLLQ�RL℄odd Q4 = 12=m[QRRQ�RL +QLLQ�LR℄Q6 = 12=m[QRRQ�LR +QLLQ�RL℄odd even Q01 = 14 [jQRRj2 + jQRLj2 � jQLLj2 � jQLRj2℄Q02 = 12<e [QRRQ�RL �QLLQ�LR℄Q03 = 14 [jQRRj2 + jQLRj2 � jQLLj2 � jQRLj2℄Q05 = 12<e [QRRQ�LR �QLLQ�RL℄odd Q04 = 12=m[QRRQ�RL �QLLQ�LR℄Q06 = 12=m[QRRQ�LR �QLLQ�RL℄2.3 Neutralino polarization ve
torThe polarization ve
tor ~P i = (P iT ;P iN ;P iL) of the neutralino ~�0i is de�ned in its rest frame.The longitudinal 
omponent P iL is parallel to the ~�0i 
ight dire
tion in the 
.m. frame, P iTis in the produ
tion plane, and P iN is normal to the produ
tion plane. In order to extra
tthe ve
tor ~P i, we �rst de�ne the polarization density matrix for the out{going neutralino~�0i : �i�i�0i = P�;�j h�;�i�jih�;�0i�ji�P�;�i;�j h�;�i�jih�;�i�ji� : (19)Expli
it expressions for the heli
ity amplitudes h�;�i�ji are given in Eq. (12). The po-larization ve
tor of the neutralino ~�0i is then given by~P i = Tr(�!� �i) = 1�ijU ��ijT ;�ijN ;�ijL� : (20)We 
an de
ompose the three polarization 
omponents as well as the unpolarized parta

ording to 
ombinations of e� polarizations:�ijU = (1 � PLPL)�ijUU + (PL � PL)�ijUL + PTP Tf�ijUT
(2���) + �ijUNs(2���)g ;6



�ijL = (1 � PLPL)�ijLU + (PL � PL)�ijLL + PTP Tf�ijLT 
(2���) + �ijLNs(2���)g ;�ijT = (1 � PLPL)�ijTU + (PL � PL)�ijTL + PTP Tf�ijTT
(2���) + �ijTNs(2���)g ;�ijN = (1 � PLPL)�ijNU + (PL � PL)�ijNL + PTP Tf�ijNT
(2���)+ �ijNNs(2���)g ; (21)where 
(2���) = 
os(2�� �), s(2���) = sin(2�� �), and the �UB (B = U; L; T; N) are inEq. (18). The �BU , whi
h survive even without beam polarization, are given by�ijLU = 2(1� �2i � �2j ) 
os�Q01 + 4�i�j 
os�Q02 + �1=2f1 + 
os2�� sin2�(�2i � �2j )gQ03 ;�ijTU = �2 sin� hf(1� �2i + �2j )Q01 + �1=2 
os�Q03g�i + (1 + �2i � �2j )�j Q02i ;�ijNU = 2�1=2�j sin�Q4 : (22)The remaining �AB, whi
h 
ontribute only with non{trivial e� polarization, are�ijLL = [�+ 1� (�2i � �2j )2℄ 
os �Q1 + 4�i�j 
os �Q2+�1=2[1 + 
os2�� sin2�(�2i � �2j )℄Q3 ;�ijLT = �1=2(1 + �2i � �2j ) sin2�Q05 ;�ijLN = ��1=2(1 + �2i � �2j ) sin2�Q6 ;�ijTL = �2 sin��[(1� �2i + �2j )Q1 + �1=2 
os �Q3℄�i + (1 + �2i � �2j )�j Q2	 ;�ijTT = �1=2�i sin 2�Q05 ;�ijTN = ��1=2�i sin 2�Q6 ;�ijNL = 2�1=2�j sin�Q04 ;�ijNT = �2�1=2�i sin�Q6 ;�ijNN = �2�1=2�i sin�Q05 : (23)The P and CP properties of all these quantities are identi
al to those of the quarti
 
hargesin Table 1. In parti
ular, the �ve quantities �UN ;�LN ;�TN ;�NU and �NL are CP{odd.Brief 
omments on the referen
e frame are in order here. In the 
oordinate systemwhi
h we have employed so far, the s
attering plane is �xed, while the dire
tion of e�transverse polarization ve
tors di�ers from event to event. For a real experiment, �xede� polarization ve
tors should be more 
onvenient. We de�ne the transverse part of ~Pe�as +x dire
tion; the x and y 
omponents of the outgoing neutralino four{momentumpi are then proportional to 
os � and sin�, respe
tively. In this 
oordinate system thes
attering plane 
hanges from event to event. Sin
e only the relative angles between thee� polarization ve
tors and the s
attering plane are relevant, the �nal results in Eqs. (17)and (21) are still valid. In this new 
oordinate frame, the ~�0i polarization ve
tor 
an beexpli
itly written as ~P i = P iT~eT + P iN~eN + P iL~eL ; (24)where the following three unit ve
tors form a 
o{moving orthonormal basis of the three{dimensional spa
e: ~eT = (
os� 
os �; sin� 
os �; � sin�) ;7



~eN = (� sin�; 
os �; 0) ;~eL = (
os� sin�; sin� sin�; 
os�) : (25)Probing CP violation in the MSSM neutralino se
tor involves the four quarti
 
hargesQ4; Q04; Q6 and Q06 for i 6= j. Their 
hara
teristi
 features 
an be analyti
ally understoodfrom their expli
it expressions in terms of the neutralino mixing matrix N . With �Znegle
ted in the high energy limit, they areQ(0)4 = 12
4W s4W �s4W � (s2W � 1=2)2�D2Z=m(Z2ij)+ DZ2
2W �(DtR +DuR)=m(ZijgRij)� s2W � 1=2s2W (DtL +DUL)=m(ZijgLij)�+12DuRDtR=m(g2Rij)� 12DuLDtL=m(g2Lij) ;Q(0)6 = 12
2WDZ(DtL �DuL)=m(Zijg�Lij) + s2W � 1=22s2W 
2W DZ(DuR �DtR)=m(Zijg�Rij)+12(DuRDtL �DtRDuL)=m(gLijg�Rij) ; (26)where the expli
it form of Zij, gLij and gRij are listed in Eq. (9). From the propagator
ombinations, we see that the quarti
 
harge Q06 is forward{ba
kward asymmetri
 withrespe
t to the s
attering angle � while the other three quarti
 
harges, Q(0)4 and Q6, areforward{ba
kward symmetri
.The relative sizes of the four CP{violating quarti
 
harges indi
ate whi
h observablesshould be promising to investigate experimentally. Let us �rst 
onsider the generi
 
ase ofsmall gaugino{higgsino mixing (with substantial CP phase �1). Small mixing is generallyobtained if the entries in the o�{diagonal 2 � 2 blo
ks in the neutralino mass matrixare smaller than those in the diagonal blo
ks, allowing an expansion in powers of mZ.Analyti
 expressions for N using this expansion, given in Ref. [4℄, help to estimate thesizes of the Q Q(0)4;6. In parti
ular, the last term 
ontributing to Q(0)4 in Eq. (26), whi
h isproportional to sin�1, is not suppressed by small mixing angles: Q4 and Q04 survive evenwithout any gaugino{higgsino mixing. In 
ontrast Q6 and Q06 only start at O(m2Z). This isrelated to the observation that, in the notation of Ref. [11℄, Q(0)6 probe Dira
{type phases,whi
h vanish in the absen
e of nontrivial mixing between neutralino 
urrent eigenstates,whereas Q(0)4 probe Majorana{type phases, whi
h survive in this limit. In the generi
 
aseof small gaugino{higgsino mixing, therefore, the size of Q(0)4 is mu
h larger than that ofQ(0)6 . In the 
ase of strong gaugino{higgsino mixing, however, Q(0)6 , whi
h 
an only beprobed with transversely polarized beams, 
ould ex
eed Q4 and/or Q04.8



3 Two{body neutralino de
aysThe de
ay patterns of heavy neutralinos (~�0i>1) depend on their masses and the massesand 
ouplings of other sparti
les and Higgs bosons. In this arti
le we fo
us on the two{body de
ays of neutralinos. It is possible that the kinemati
s prohibits some two{bodytree{level de
ays. However, a suÆ
iently heavy neutralino 
an de
ay via tree{level two{body 
hannels 
ontaining a Z or a Higgs boson and a lighter neutralino [14℄, and/or intoa sfermion{matter fermion pair.Of parti
ular interest in the present work are the following two{body de
ay modes:~�0i ! ~�0k Z; ~�0i ! ~�0k h and ~�0i ! ~̀�R`� ; (27)with ` = e or �. If any of these pro
esses is kinemati
ally allowed, it will dominate anytree{level three{body de
ay.The relevant 
ouplings areh `�L j ~̀�R j~�0i i = +h `+L j ~̀+R j~�0i i� = �p2gtW N�i1; h`�Rj~̀�Rj~�0i i = 0 ; (28)h~�0kRjZj~�0iRi = �h~�0kLjZj~�0iLi� = + g2
W [Ni3N�k3 �Ni4N�k4℄ ;h~�0kLjhj~�0iRi = +h~�0kRjhj~�0iLi� = g2 [(Nk2 � tWNk1)(s�Ni3 + 
�Ni4) + (i$ k)℄ ;where s� = 
os�, 
� = sin�, and � being the mixing angle between the two CP{evenHiggs states in the MSSM [1℄. Note that the Z 
oupling is proportional to the higgsino
omponents of both parti
ipating neutralinos, whereas the Higgs 
oupling requires a hig-gsino 
omponent of one neutralino and a gaugino 
omponent of the other.� Sin
e thelighter neutralino states ~�01;2 are often gaugino{like, this pattern of 
ouplings implies that~�0i ! ~�01h de
ays will often dominate over the (kinemati
ally preferred) ~�0i ! ~�01Z de
ays.However, the ~�0i ! ~̀�R`� de
ays only depend on the gaugino 
omponents of the de
ayingneutralino. If kinemati
ally a

essible, they 
an have the largest bran
hing ratios.Note also that the Majorana nature of neutralinos relates the left{ and right{handed
ouplings of the Z and h boson to a neutralino pair; they are 
omplex 
onjugate to ea
hother, having an identi
al absolute magnitude. These relations lead to a 
hara
teristi
property of the 
orresponding two{body de
ays, ~�0i ! ~�0kZ and ~�0i ! ~�0kh: the de
aydistributions are independent of the polarization of the de
aying neutralino ~�0i , unless thepolarization of the Z boson or ~�0k is measured. In 
ontrast, the slepton mode in Eq. (27)
an be exploited as optimal polarization analyzer of the de
aying neutralino, if the smalllepton mass is ignored; as noted earlier, this implies that ~̀L{~̀R mixing is ignored as well.y�If Æm~� � m~�02 � m~�01 � mZ , the de
ay into longitudinally polarized Z bosons gets enhan
ed by afa
tor (Æm~�=mZ)2. If Æm~� � O(mZ), three{body de
ays ~�02 ! ~�01f �f may dominate over ~�02 ! ~�01Zde
ays if j�j � m ~f ; this does not happen in models where the entire sparti
le spe
trum is des
ribed bya small number of parameters.y~�i ! ~��1 �� de
ays, where ~�L{~�R mixing 
an be important, have been analyzed in Refs. [7℄.9



Furthermore, the de
ay distributions are 
ompletely determined by the relevant par-ti
le masses, as well as by the ~�0i polarization ve
tor (in 
ase of ~�0i ! ~̀�R`� de
ay). Moreexpli
itly, the angular distribution in the rest frame of the de
aying neutralino ~�0i is1�X d�Xd
� = 14� �1� �X ~P i � k̂�1� ; (29)where �Z;h = 0 for the Z and h de
ay modes, and �l� = �1 for ~�0i ! ~̀�R`� with k̂�1 beingthe unit ve
tor in `� dire
tion. The former two de
ay modes 
an probe only \produ
tion"asymmetries, whereas the (s)leptoni
 de
ay mode 
an probe \de
ay" asymmetries also,whi
h are sensitive to the ~�0i polarization.4 Event re
onstru
tionWe fo
us on e+e� ! ~�02~�01 produ
tion, and assume ~�01 to be stable (or possibly to de
ayinvisibly). The only visible �nal state parti
les therefore result from ~�02 de
ay, whi
hsimpli�es the analysis. Moreover, this is the kinemati
ally most a

essible neutralino pairprodu
tion with visible �nal state; indeed, it is often the �rst sparti
le produ
tion 
hannela

essible at e+e� 
olliders [15℄.An important di�eren
e between ~�02 ! ~�01(h;Z) and ~�02 ! ~̀�R`� ! ~�01`+`� is the de-gree of event re
onstru
tion. The latter de
ay 
hain allows 
omplete event re
onstru
tion(with an, at least, two{fold ambiguity), whereas the former does not. This 
an be seen by
ounting unknowns. The ~�01~�01(h;Z) �nal states 
ontain six unknown 
omponents of ~�01momenta (we are assuming that the masses of all produ
ed parti
les have already beendetermined [10℄, so that the energies 
an be 
omputed from three{momenta); this hasto be 
ompared with four 
onstraints from energy{momentum 
onservation, and a singlemass 
onstraint, (p~�01 + p(h;Z))2 = m2~�02. One quantity remains undetermined.In 
ontrast, ~�01~�01`+`� �nal states produ
ed from an on{shell ~̀�R have two invariantmass 
onstraints. With an equal number of 
onstraints and unknowns, the event 
anbe re
onstru
ted [8℄. An expli
it re
onstru
tion may pro
eed as follows. Let k1 and k2be the four{momenta of the two 
harged leptons in the �nal state, and p1 and q thefour{momenta of the two neutralinos; here k2 and q originate from ~̀R de
ay. Note thatthe energy p01 is �xed from two{body kinemati
s, see Eq. (4). Then q0 is determinedfrom energy 
onservation, on
e the lepton energies are measured. The invariant mass
onstraint (k2 + q)2 = m2~̀R 
an �x the s
alar produ
t ~k2 � ~q. The se
ond mass 
onstraint(k1 + k2 + q)2 = m2~�02 is used for ~k1 � ~q. When writing the unknown three{momentum ~qas ~q = a~k1 + b~k2 + 
(~k1 � ~k2), the two 
oeÆ
ients a and b 
an be 
omputed from the twos
alar produ
ts ~k2 � ~q and ~k1 � ~q determined above; note that the term proportional to 
drops out here. The last 
oeÆ
ient 
 
an be 
omputed from the known energy q0 withtwo{fold ambiguity. 10



On
e ~q is known, ~p1 follows immediately from momentum 
onservation. We 
an reado� the produ
tion angles � and �. This also allows to 
ompute the ~�02 three{momentum~p2 = ~k1 + ~k2 + ~q = �~p1 (in the 
.m. frame). With the known ~�02 energy, we boost intothe ~�02 rest frame, and read o� the ~�02 de
ay angles �� and ��; re
all that there is anon{trivial dependen
e on these de
ay angles via Eq. (29).So far we have assumed that we know whi
h of the two 
harged leptons in the �nalstate originates from the ~�02 de
ay, and whi
h one from ~̀R de
ay. Sin
e, owing to itsMajorana nature, ~�02 will de
ay into both ~̀+R`� and ~̀�R`+ �nal states with equal bran
hingratios, the 
harge of the leptons does not help this dis
rimination of the origin of two
harged leptons. A unique assignment is nevertheless possible if the two mass di�eren
esÆ2R � m~�02�m~̀R and ÆR1 � m~̀R�m~�01 are very di�erent from ea
h other: if Æ2R � ÆR1, themore energeti
 (harder) lepton will originate from the �rst step of ~�02 de
ay, and the lessenergeti
 (softer) lepton 
omes from ~̀R de
ay; if Æ2R � ÆR1 the opposite assignment holds.However, if Æ2R ' ÆR1, both assignments often lead to physi
al solutions if the pro
edurefor event re
onstru
tion outlined above is applied. In this unfavorable situation there isa four{fold ambiguity in the event re
onstru
tion.Finally, we note that ba
kground events 
an be also re
onstru
ted, in some 
ases againwith two{fold ambiguity. The main ba
kgrounds to ~�02 ! ~�01(Z; h) de
ays are e+e� !ZZ; Zh produ
tion with one Z de
aying invisibly. The e+e� ! ZZ(! ���`+`�); W+W�(!`+�``���`); ~̀+ ~̀�(! `+`� ~�01~�01) are the main ba
kgrounds to ~�01 ~�02 ! `+`� ~�01~�01 produ
-tion.� We 
an obtain a pure sample of signal events by dis
arding all events that 
an bere
onstru
ted as one of the ba
kground pro
esses. This ignores the e�e
ts of measure-ment errors, beam energy spread (partly due to bremsstrahlung), as well as initial stateradiation, but should nevertheless give a reasonable indi
ation of the e�e
ts of 
uts thathave to be imposed to isolate the signal.5 E�e
tive asymmetriesWe are interested in 
onstru
ting CP{odd observables. S
hemati
ally, they are written asF = Z d
 d�d
f(
) �L ; (30)where d�=d
 is the di�erential 
ross se
tion, L = R Ldt is the total integrated lumi-nosity, and f(
) is a dimensionless fun
tion of phase spa
e observables. Introdu
ing theluminosity in Eq. (30) simpli�es the statisti
al analysis as presented below.Simple asymmetries are 
onstru
ted from the 
hoi
e f = �1, where the phase spa
eregion giving f = +1 is the CP{
onjugate of that giving f = �1 [5, 8℄. While verystraightforward, this 
hoi
e usually does not yield the highest statisti
al signi�
an
e. We�Note that we in
lude supersymmetri
 slepton produ
tion as ba
kground, sin
e it does not 
ontributeto the CP{odd asymmetries we wish to analyze here.11



de
ompose the di�erential 
ross se
tion into CP{even and CP{odd terms:d�d
 =Xi eif (e)i (
) +Xj ojf (o)j (
) ; (31)where the ei and oj are 
onstant 
oeÆ
ients (produ
ts of 
ouplings and possibly masses)while the f (e) and f (o) are CP{even and CP{odd fun
tions, respe
tively, of phase spa
evariables. The optimal variable to extra
t the 
oeÆ
ient oj is then proportional to f (o)j[16℄.In our 
ase this would lead to very 
ompli
ated observables, due to the non{trivialangular dependen
e of the sele
tron propagators D(t;u)(L;R) in Eq. (7). Moreover, theoptimal variables would depend on both sele
tron masses. For simpli
ity, we 
onstru
tour CP{odd observables by fully in
luding the angular dependen
e in the numerators ofEqs. (17), (18), (21), (22), (23) and (29), but ignoring the angular dependen
e in thepropagators.For dimensionless f , the quantity F in Eq. (30) is also dimensionless. The statisti
alun
ertainty of F is then given by�2(F ) = L � Z d
 d�d
f2(
) : (32)This 
an be seen from the fa
t that L(d�=d
)d
 is the number of events in the phasespa
e interval d
. For the simple 
ase of f = �1, �2(F ) is simply the total number ofevents. With the quantity F and its statisti
al un
ertainty �(F ), we 
an 
onstru
t ane�e
tive asymmetry: Â[f ℄ = F�(F )pL : (33)Note that Â is by 
onstru
tion independent of the luminosity. It is also invariant undertransformations f(
)! 
f(
) for 
onstant 
, making Â independent of the normalizationof f . The statisti
al signi�
an
e for Â[f ℄ is simply given by Â[f ℄ � pL.6 Numeri
al analysisWe are now ready to present some numeri
al results. We will �rst brie
y dis
uss therelevant quarti
 
harges that en
ode CP violation, before dis
ussing \produ
tion" and\de
ay" asymmetries.6.1 Quarti
 
hargesTable 1 shows that the four quarti
 
harges Q4; Q6; Q04 and Q06 are CP-odd. Equation (18)shows thatQ06 is responsible for the produ
tion{level asymmetry, whi
h requires transverse12



beam polarization.� The remaining three CP{odd quarti
 
harges 
an be probed onlyvia the ~�02 polarization. Equations (22) and (23) show that Q4 
ontributes even forunpolarized e� beams, whereas Q04 (Q6) only 
ontributes in the presen
e of longitudinal(transverse) beam polarization.
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Figure 2: The ratios of quarti
 
harges Q4=Q1 (dotted green), Q04=Q1 (dashed blue),Q6=Q1 (solid red) and Q06=Q1 (dot{dashed bla
k). We �xed jM1j = 0:5M2 = 150 GeV,tan � = 5; m~eL = 500 GeV and �� = 0; the values of the other relevant parameters areas indi
ated in the �gures.Figure 2 presents these four 
harges normalized to Q1, whi
h largely determines thesize of the unpolarized 
ross se
tion far above threshold. All these ratios lie between �1�We note in passing that the 
orresponding asymmetry for 
hargino produ
tion vanishes [17℄: thereis no equivalent of the ~eR ex
hange diagram, and the relevant 2 � 2 matrix diagonalizing the 
harginomass matrix does not 
ontain a reparametrization invariant phase.13



and 1. We took jM1j = 150 GeV, M2 = 300 GeV (so that jM1j and M2 unify at thes
ale of Grand Uni�
ation [1℄), a moderate tan � = 5, m~eL = 500 GeV, and �� = 0 (asindi
ated by 
onstraints on the ele
tri
 dipole moments of the ele
tron and neutron [2, 3℄).The default 
hoi
es of the other relevant parameters are j�j = 325 GeV, m~eR = 300 GeV,�1 = 0:6� and ps = 2Ebeam = 500 GeV, but one of these parameters is varied in ea
h ofthe four frames of Fig. 2. Finally, we 
hose s
attering angle 
os � = 1=p2 ; note that Q06vanishes at 
os � = 0.The behavior of the 
urves in Fig. 2 
an be understood with the help of the expressionsin Eq. (26). The top{left frame shows the dependen
e of the four ratios on the phase �1.We see the typi
al behavior of CP{odd quantities, 
hanging sign when sin�1 
hangessign, although not simple sine fun
tions. Sin
e we took j�j to be 
lose to M2, ~�02 isa strongly mixed state. However, ~�01 is still mostly gaugino{like, so that jZ12j is quitesmall. As a result, in
reasing m~eR (top{right frame) redu
es jQ6j and jQ06j, while a�e
tingjQ4j and jQ04j very little; re
all that the latter two quarti
 
harges re
eive the dominant
ontribution from the interferen
e of t� and u�
hannel ~eL ex
hange diagrams. In
reasingj�j (bottom{left frame) has the same e�e
t, as expe
ted from our earlier observation thatQ6 and Q06 need sizable gaugino{higgsino mixing, while Q4 and Q04 do not. Finally, thebottom{right frame shows that the dependen
e on the beam energy is relatively mild.Another 
on
lusion from Fig. 2 is that jQ06j is usually the smallest of the four CP{oddquarti
 
harges. The reason is that in this 
ase t� and u�
hannel diagrams tend to
an
el, whereas they add up in jQ6j. This indi
ates that measuring the produ
tion{levelasymmetry will be quite 
hallenging, as will be dis
ussed in the next Subse
tion.6.2 Produ
tion asymmetriesThe simplest 
hoi
e for probing the CP{odd 
ontribution from Q06 to the produ
tion 
rossse
tion in Eq. (17) is [8℄ fprod = sign[
os� sin(2�)℄ : (34)Instead a partly optimized asymmetry is suggested from the 
hoi
efoptprod = 
os� sin2�sin(2�) ; (35)where we have set the angle � = 0 for simpli
ity; nothing is gained by 
onsidering non-vanishing angles between the transverse e+ and e� polarization ve
tors. The fa
tors ofsin2� and sin(2�) appear expli
itly in the di�erential 
ross se
tion in Eq. (17); in
lusionof the fa
tor 
os �, whi
h stri
tly speaking violates the 
onstru
tion prin
iple des
ribedin Se
. 5, is ne
essary in this 
ase, sin
e this 
ontribution to the 
ross se
tion 
hanges signwhen 
os �!� 
os �.Here it is appropriate to show that the asymmetries de�ned in Eqs. (30), (34) and(35) are indeed CP{odd. This 
an most easily be seen by using the so{
alled naive or eTtransformation, whi
h inverts the signs of all three{momenta and spins, but (unlike a trueT{transformation) does not ex
hange initial and �nal state. In the absen
e of absorptive14



phasesy a violation of eT invarian
e is equivalent to CP violation, as long as CPT is
onserved (whi
h is 
ertainly the 
ase in the MSSM). Re
all that we �xed the +z and +xdire
tions via the e� beam and spin dire
tions, respe
tively, whi
h are themselves eT oddquantities.z In this 
oordinate frame a eT transformation therefore amounts to 
ippingthe signs of only the y�
omponents of all three{momenta and spins. This is equivalent to
ipping the sign of the azimuthal angle � (as well as that of ��, whi
h is however irrelevantfor the produ
tion{level asymmetry), leaving � (and ��) un
hanged. Our produ
tion{level asymmetries are therefore eT odd, whi
h probe CP{violation if absorptive phases 
anbe ignored.The e�e
tive asymmetries resulting from Eqs. (34) and (35) are shown by the (green)dotted and (bla
k) solid 
urves, respe
tively, in three frames in Fig. 3. In these �gures wehave 
hosen the same default parameters as in Fig. 2, whi
h ensures that ~�02 ! ~�01Z is theonly possible two{body de
ay of ~�02.x As noted in Se
. 3, in this 
ase we 
an measure the~�02 polarization only if the polarization of the Z boson is determined. In parti
ular, onehas to be able to distinguish between the two transverse polarization states in order to
onstru
t CP{odd asymmetries involving the Z polarization. Although this measurementis, in prin
iple, possible for Z ! `+`� de
ays, the eÆ
ien
y is quite low due to its smallbran
hing ratio (� 7% after summing over e and � �nal states), and a very poor analyzingpower (from almost purely axial ve
tor 
oupling for Z`+`�). Although q�q �nal states havelarger analyzing power, the measurement of the 
harge is very diÆ
ult. It may be onlypossible to probe the produ
tion level asymmetry through this de
ay mode.Unfortunately the event 
annot be re
onstru
ted in this mode, as noted in Se
. 4. Thismeans that we do not know the angles � and � appearing in the de�nitions of Eqs. (34)and (35); the best we 
an do is to approximate them by the 
orresponding angles of the Zboson. This leads to the (blue) dashed 
urves in the frames of Fig. 3 that show e�e
tiveasymmetries, whi
h are based on the \optimized" 
hoi
e in Eq. (35).The top{left frame shows these asymmetries as fun
tions of the CP{odd phase �1.We see that the \optimized" e�e
tive asymmetry ex
eeds the simple asymmetry based onEq. (34) by typi
ally � 20%, leading to a � 40% redu
tion of the luminosity required toestablish the existen
e of a non{vanishing asymmetry at a given 
on�den
e level. Unfor-tunately repla
ing the true produ
tion angles (� and �) by those of the Z boson redu
esthe e�e
tive asymmetry by a fa
tor of 2.5�3.5. This suppression fa
tor depends on themasses of the two lightest neutralinos, whi
h in turn depend on �1. In this 
ase even forthe most favorable 
hoi
e of parameters an integrated luminosity of several ab�1 would beneeded to establish a non{vanishing optimized asymmetry at the 1� level, even assuming100% beam polarization! This is well beyond the 
urrently expe
ted performan
e of theinternational linear 
ollider.yIn the present 
ontext absorptive phases 
an only 
ome from the �nite width in the Z�propagator,whi
h is entirely negligible for s� m2Z , or from loop 
orre
tions.zNote that for � = 0 the initial state is eT self{
onjugate in this 
oordinate frame.xThe e�e
tive asymmetry 
onstru
ted from ~�02 ! ~�01h de
ays is very similar to that from ~�02 ! ~�01Zde
ays; we therefore do not show numeri
al results for this de
ay mode.15
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Figure 3: The top{left and both bottom frames show the e�e
tive produ
tion{level asym-metries de�ned by Eq. (34) (green dotted 
urves, labeled \prod.") and (35) (solid bla
k
urves, labeled \opt. prod."), together with the \optimized" produ
tion asymmetry wherethe true produ
tion angles are repla
ed by those re
onstru
ted from the Z dire
tion (bluelong{dashed 
urves: without 
uts; red short{dashed 
urve: with the 
uts des
ribed in thetext). The top{right frame shows the total 
ross se
tion for e+e� ! ~�01~�02 without (bla
ksolid 
urve) and with (blue dashed 
urve) 
uts. The default parameters are as in Fig. 2,but one parameter is varied in ea
h frame.The lower{left frame of Fig. 3 shows that the situation might be better at higherbeam energies. The e�e
tive produ
tion asymmetries peak atps ' 900 GeV for the given
hoi
e of SUSY parameters. Moreover, the di�eren
e between the \theoreti
al" optimizedasymmetry and the one 
onstru
ted from the Z boson angles be
omes mu
h smaller athigher energy. The reason is that at ps � m~�02 the ~�02 be
omes ultra{relativisti
; its16



de
ay produ
ts then fall in a narrow 
one around the ~�02 dire
tion, so that the di�eren
esbetween the real produ
tion angles (� and �) and the 
orresponding angles derived fromthe 
ight dire
tion of the Z boson be
ome small. However, even in this 
ase 1 ab�1 wouldonly allow to establish an asymmetry with a signi�
an
e of 3.5 standard deviations atbest, ignoring experimental resolutions and eÆ
ien
ies, and assuming 100% transversebeam polarization. The bottom{right frame shows that the situation is even worse if themass of the SU(2) singlet sele
tron ~eR is 
lose to that of the SU(2) doublet ~eL, whi
h istaken as 500 GeV in this �gure.The top{right �gure is a reminder that ~�01~�02 produ
tion 
an nevertheless provide usefulinformation on the phase �1 [4℄, simply through a measurement of the total produ
tion
ross se
tion, whi
h in
reases by almost a fa
tor of three when �1 is varied from 0 to �;no beam polarization is needed for this measurement. As explained in Refs. [11, 4℄ thisis due to the fa
t that the produ
tion o

urs in a pure P�wave for �1 = 0, but has alarge S�wave 
omponent for �1 = �. This �gure also shows that, for the 
hosen set ofparameters, 
utting against the ZZ ba
kground as des
ribed in Se
. 4, as well as applyingthe a

eptan
e 
ut j 
os�X j � 0:9 (36)for all visible �nal state parti
les X (in this 
ase, the Z boson), only redu
es the 
rossse
tion by � 15%. The (red) short{dashed 
urve in the bottom{left frame shows thatthese 
uts a�e
t the e�e
tive asymmetries even less.6.3 De
ay asymmetriesWe now turn to the \de
ay" asymmetries, whi
h are sensitive to the ~�02 polarization. Wesaw in Se
. 3 that these 
an be only probed through ~�02 ! ~̀�`� de
ays (ignoring three{body de
ays, whi
h will be highly suppressed if any two{body de
ay is allowed). Thedis
ussion of Se
. 4 showed that in this 
ase we 
an re
onstru
t the event with two{ orfour{fold ambiguity.Equation (21) shows that there are three CP{odd terms in the ~�02 polarization ve
tor,whi
h are sensitive to transverse beam polarization. In order to 
onstru
t the 
orrespond-ing \optimized" asymmetries, we �rst need an expli
it expression for the s
alar produ
tappearing in Eq. (29). Working in the referen
e frame where the +x dire
tion is de�nedby the transverse part of the e� polarization ve
tor, and using the same set of axes forthe de�nition of the ~�02 de
ay angles ��;�� in the ~�02 rest frame, we �nd using Eqs. (24)and (25): �!P � k̂�1 = PT [
os � sin�� 
os(� � ��)� sin� sin��℄+PL [sin � sin�� 
os(� ���) + 
os � 
os ��℄+PN sin �� sin(� � ��) ; (37)where we have suppressed the supers
ript 2 on the 
omponents of the ~�02 polarizationve
tor. This, together with Eqs. (21) and (23), leads to the following 
hoi
es for f in17



Eq. (30):� fLN = [sin� sin�� 
os(�� ��) + 
os� 
os ��℄ sin(2�) sin2� ;fTN = [
os� sin�� 
os(�� ��)� sin� sin��℄ sin(2�) sin(2�) ;fNT = [sin�� sin(�� ��)℄ 
os(2�) sin� : (38)In ea
h of the three expressions the fa
tor in square bra
kets 
omes from Eq. (37), these
ond fa
tor from Eq. (21), and the last fa
tor from the expressions for �LN ; �TN and�NT , respe
tively, in Eq. (23).Similarly, the expression for �21N in Eq. (21) 
ontains two CP{odd terms that 
an beprobed with only longitudinal beam polarization, or even with unpolarized beams. Sin
ethe expressions for �NU and �NL in Eqs. (22) and (23) are identi
al ex
ept for di�er-ent quarti
 
harges, we 
an 
ombine these two terms into the \optimized" longitudinale�e
tive asymmetry ÂL � Â[fL℄ withfL = [sin�� sin(�� ��)℄ sin� : (39)Note that the four fun
tions fi de�ned in Eqs. (38) and (39) are all orthogonal to ea
hother, i.e., the produ
t of any two di�erent fun
tions will vanish when integrated over theentire phase spa
e.Although the three asymmetries de�ned in Eqs. (38) are independent of ea
h other(probing di�erent �AB), in the 
ontext of the MSSM they all probe the same quarti

harge Q6. If m~�01 and m~�02 are known, one 
an therefore 
onstru
t a single asymmetry toprobe Q6, 
alled the total \optimized" transverse de
ay asymmetry ÂT � Â[fT ℄ withfT = [sin� sin�� 
os(�� ��) + 
os � 
os ��℄ sin(2�) sin2� � �1 + �21 � �22�+ [
os � sin�� 
os(�� ��)� sin � sin��℄ sin(2�) sin(2�) � �2+ [sin�� sin(� ���)℄ 
os(2�) sin� � 2�2 ; (40)where the �i have been de�ned in Eq. (5). The �rst, se
ond and third line in Eq. (40)
orrespond to the 
ontributions from �LN ; �TN and �NT , respe
tively.Finally, we also 
onsider an e�e
tive asymmetry based on the measurement of themomentum of the positive lepton `1 
oming from the �rst stage of ~�02 de
ay, de�ned byÂ+1 � Â[f+1 ℄ with f+1 = sin(2�`+1 ) : (41)The advantage of this asymmetry, whi
h is somewhat similar to the de
ay asymmetry 
on-sidered in Ref. [8℄, is that it does not need event re
onstru
tion, as long as the \primary"and \se
ondary" leptons 
an be distinguished.As dis
ussed in the previous Subse
tion, a CP{odd observable 
hanges sign when� ! �� and �� ! ���. Evidently the asymmetries de�ned in Eqs. (38) through (41)�Note that the denominator �21U in Eq. (20) 
an
els against the fa
tor �21U from the produ
tion 
rossse
tion (17) in the �nal result for the 
ross se
tion di�erential in produ
tion and de
ay angles.18



satisfy this 
ondition. Due to the sign 
ip in Eq. (29) all asymmetries dis
ussed in thisSubse
tion have opposite signs for ~�02 ! ~̀+R`� and ~�02 ! ~̀�R`+ de
ays; events of these twokinds should be treated separately. Sin
e there are equal number of events from these twode
ay 
hains, we 
an simply fo
us on events with only positively 
harged primary leptons.
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NTFigure 4: E�e
tive transverse de
ay asymmetries for the same default parameters as inFig. 2, ex
ept that now m~eR = 155 GeV. The (bla
k) dot{dashed, (magenta) long dashedand (blue) short dashed 
urves show the \optimized" asymmetries based on fTN ; fNT andfLN in Eq. (38), respe
tively, while the (red) solid 
urves show ÂT of Eq. (40), and the(green) dotted 
urves show Â+1 of Eq. (41). In the right (left) frame a

eptan
e andba
kground{removing 
uts have (not) been applied.The two �gures in Fig. 4 show the e�e
tive \optimized" de
ay asymmetries based onEqs. (38), (40) and (41). We use the same default parameters as in Figs. 2 and 3, ex
eptthat the ~eR mass has been redu
ed to 155 GeV, so that ~�02 ! ~e�Re� de
ays are allowedand dominant. Our 
hoi
e of m~eR implies that m~�02 �m~eR � m~eR �m~�01. As dis
ussedin Se
. 4 this implies that the harder lepton always 
omes from the �rst step of ~�02 de
ay,allowing to re
onstru
t the event with only a two{fold ambiguity. We average over bothof these solutions when 
al
ulating the \optimized" asymmetries. We �nd that the wrongre
onstru
tion typi
ally leads to asymmetries with the same sign as the true solution,with (of 
ourse) smaller magnitude. The dilution of the asymmetries due to the eventre
onstru
tion ambiguity is therefore not very severe. The e�e
tive asymmetry based onfLN of Eq. (38) and, espe
ially, the one based on fT of Eq. (40) are therefore substantiallylarger in magnitude than the simple e�e
tive asymmetry based on Eq. (41). Note also thatthe three e�e
tive asymmetries based on Eq. (38) move \in step", as expe
ted from ourearlier observation that they all probe the same quarti
 
harge Q6. Combining them intoa single e�e
tive asymmetry, as in Eq. (40), therefore in
reases the size of the asymmetrysigni�
antly.The two frames in Fig. 4 di�er in that the left �gure does not in
lude any 
uts whereas19



in the right �gure we remove events that 
an be re
onstru
ted asW or ~eR pair ba
kgroundevents. Also, we apply the a

eptan
e 
ut in Eq. (36) to both �nal state leptons. Forthe 
ase at hand these 
uts only redu
e the e�e
tive asymmetries by 10% to 20%. Thishigh 
ut eÆ
ien
y is also due to our 
hoi
e of masses, whi
h implies that the two leptonsin the �nal state have very di�erent energies. In 
ontrast, both ba
kground pro
esseshave identi
al energy distributions for the two leptons in the �nal state. Signal events
an be rarely re
onstru
ted as ba
kground in this s
enario. As a result we �nd that evenafter 
uts one would only need an integrated luminosity of � 10 fb�1 to measure a non{vanishing asymmetry at the 3� level. This still assumes 100% beam polarization. Evenfor the more realisti
 
hoi
e PTP T ' 0:5 one might a
hieve 3� signi�
an
e with � 40fb�1 of data. This integrated luminosity should be a
hievable, assuming that transversebeams will be available.Finally, the four �gures in Fig. 5 
ompare the simple asymmetry Â+1 of Eq. (41), thetotal optimized transverse de
ay asymmetry ÂT , and the optimized longitudinal de
ayasymmetry ÂL. We note that the longitudinal de
ay asymmetry is usually bigger thanour total optimized transverse asymmetry. At least for probing the CP-violating phase inthe 
ontext of the MSSM (where �1 is the only relevant phase in the 
onvention whereM2 is real), therefore, one does not really seem to gain anything by transverse beampolarization. The only ex
eption is at large energy (bottom{right frame); this is due tothe extra fa
tor m~�01=ps appearing in the expressions for �NU in Eq. (22), and �NL inEq. (23), whi
h determine the size of ÂL.The upper right panel shows a quite 
ompli
ated dependen
e of the e�e
tive asym-metries on m~eR. For intermediate ~eR masses both �nal{state leptons in signal events 
anhave similar energies. As a result one often has four solutions for the event re
onstru
-tion. In this 
ase one 
annot identify the \primary" lepton used in Eq. (41). We havedealt with this by simply dis
arding events with four solutions, sin
e averaging over allfour solutions would dilute the asymmetries a lot. Unfortunately this redu
es the 
rossse
tion signi�
antly. At the same time ~eR pair events be
ome more similar to our ~�01~�02events, sin
e, as we just mentioned, the signal now has similar distributions for both �nal`� energies. Hen
e the 
ut against sele
tron pair produ
tion removes more signal eventsin the present 
ase. As a result, the 
omplete set of 
uts redu
es the total 
ross se
tionby up to a fa
tor of 5, the worst 
ase being m~eR ' 195 GeV. Note that the di�erentasymmetries are not equally sensitive to these 
uts. The total \optimized" transversede
ay asymmetry ÂT is redu
ed by at worst a fa
tor of 2, whereas the simple asymmetryÂ+1 
an go down by a fa
tor of 4. The reason for this is that the 
ut eÆ
ien
y depends onthe same produ
tion and de
ay angles that appear in the de�nitions of our asymmetries.The lower left panel in
ludes the longitudinal de
ay asymmetry ÂL for two di�erent
hoi
es of longitudinal e� beam polarization. In both 
ases we take opposite polarizationfor the e+ and e� beams, sin
e we are dealing with 
hiral 
ouplings, see Eq.(11). Usuallytaking a right{handed ele
tron beam is most advantageous, sin
e it maximizes the ~eRex
hange 
ontribution; note that the ~eR 
oupling to Binos, whi
h is needed to probe theCP{odd phase �1, is two times larger than that of ~eL. However, for very large j�j this20
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ay asymmetry (41) (green dotted
urves), the total \optimized" transverse de
ay asymmetry (40) (red solid 
urves), andthe \optimized" longitudinal de
ay asymmetry (39), the latter both for transverse (bla
kdot{dashed) and for longitudinal (blue dashed) beam polarization. The default values ofthe parameters are as in Fig. 4, but one parameter is varied in ea
h panel.
hoi
e is no longer optimal. In this 
ase ~�02 be
omes more and more wino{like, i.e., it doesnot 
ouple to ~eR. A right{handed e� beam means that ~eL ex
hange does not 
ontribute;the Z{ex
hange 
ontribution also vanishes for large j�j. However, taking left{handedele
trons one still gets a sizable 
ontribution from ~eL ex
hange to the 
ross se
tion, andalso to the asymmetry. In the opposite regime of rather small j�j the asymmetries dependvery strongly on this parameter, sin
e here ~�02 
hanges from a higgsino-like to a wino{likestate.As in the previous �gures (as well as in Ref. [8℄) we took e� beam polarizations �1.21



In the 
ase of longitudinal beams one 
an then suppress the W or ~eR pair ba
kground(but not both), by appropriate 
hoi
e of polarization. However, in pra
ti
e the beampolarization will be signi�
antly smaller than this; we therefore left the 
uts against bothba
kgrounds in pla
e. We also note that longitudinal beam polarization 
an in
rease ÂLsigni�
antly, although the very small size of this e�e
tive asymmetry for our \default"parameters and transversely polarized beams (top left frame) is 
learly a

idental.Last but not least, we have 
he
ked numeri
ally the e�e
t of varying the left{handedsele
tron mass m~eL on the CP{odd asymmetries. The transverse de
ay asymmetries, withtransversely polarized beams, are sensitive to the mass; in fa
t, they get a bit bigger withsmaller mass values. Nevertheless, we have noted that the longitudinal asymmetry forunpolarized beams be
omes mu
h bigger when the left{handed sele
tron mass is redu
ed.For example, taking parameters as in the top{left frame in Fig. 5, ex
ept for a redu
edm~eL = 250 GeV, the maximal value of jÂT j after 
uts in
reases to about 1.2 fb�1=2, whereasthe maximumof jÂLj rea
hes about 2.2 fb�1=2. We emphasize that we do not a
tually needany beam polarization to probe this asymmetry, although it 
an be in
reased signi�
antlyby using longitudinal polarized beams; for redu
ed ~eL mass, taking left{handed e� andright{handed e+ beams is often optimal. Therefore, redu
ing the left{handed sele
tronmass does not a�e
t the ordering of AT and AL, i.e. the inequalityAL > AT (for optimized
hoi
e of longitudinal beam polarization.)7 Summary and Con
lusionsIn this paper we studied the produ
tion of neutralino pairs at future linear e+e� 
olliders,with subsequent two{body de
ays of the heavier neutralinos. We found that de
ays ofthe type ~�0i ! ~�0j(h;Z) are not sensitive to the ~�0i polarization, unless one 
an measurethe polarization of the Z�boson (or that of the �nal{state neutralino ~�0j ). These de
ays
an therefore only be used to probe CP violation in neutralino produ
tion. Unfortunatelythe 
orresponding CP{odd term su�ers from 
an
elations between t� and u�
hanneldiagrams, and is nonzero only in the presen
e of higgsino{gaugino mixing. As a result,measuring this asymmetry, whi
h 
an be done only with transversely polarized e� beams,will be very diÆ
ult, if not impossible, with the 
urrently foreseen linear 
ollider perfor-man
e.In 
ontrast, ~�0i de
ays into a slepton plus a lepton allows to probe the ~�0i polariza-tion state, thereby opening up the possibility to 
onstru
t several de
ay asymmetries.Moreover, this de
ay, followed by subsequent ~̀! `~�01 de
ays, allows to re
onstru
t eventhe simplest neutralino pair events, ~�02~�01 produ
tion with invisible (e.g., stable) ~�01, withtwo{ or four{fold ambiguity. Under favorable 
ir
umstan
es experiments at a 
olliderwith (suÆ
iently strongly) transversely polarized beams should then be able to determinenon{vanishing asymmetries with high statisti
al signi�
an
e. However, even in this 
asea di�erent asymmetry, whi
h does not depend on transverse beam polarization (but 
anbe maximized using longitudinal beam polarization), is generally larger in size than even22



the best of the transverse de
ay asymmetries we studied. We saw in Fig. 5 that this istrue both for gaugino{ and higgsino{like ~�02. It also remains true when we vary the ratiojM1j=M2, in parti
ular for jM1j > M2. However, if jM1j � M2; j�j, or if both produ
edneutralinos are higgsino{like, all CP{odd asymmetries be
ome small. Re
all that in theMSSM all these asymmetries essentially result from a single (potentially large) phase,asso
iated with the U(1) gaugino mass (in the 
onvention where the SU(2) gaugino massis real and positive).We therefore 
on
lude that, at least in the 
ontext of neutralino produ
tion in theMSSM, transverse beam polarization is not parti
ularly useful in probing expli
it CPviolation. On
e the relevant masses have been determined, the most sensitive probe ofthe relevant CP{odd phases remains the total 
ross se
tion [4℄, although it is a CP{evenobservable. If this measurement indi
ates that some phase di�ers from 0 or �, one needsto see expli
it CP violation, in order to 
onvin
e oneself that the variation of the 
rossse
tion is indeed due to a phase, rather than due to some extension of the MSSM. However,as noted above, this 
an be most easily a

omplished by using longitudinal, rather thantransverse, beam polarization.The situation might be di�erent in extensions of the MSSM, however. Whenever thequarti
 
harges Q6 and Q06 de�ned in Se
. 2.2 
ontain (
ombinations of) phases that areindependent of those in Q4 and Q04, the option of transverse beam polarization might bevery useful for determining these phases. In the NMSSM, for example, the neutralino massmatrix 
ontains additional CP{odd phases asso
iated with the singlino se
tor, whi
h 
anbe large. A dedi
ated analysis along the lines presented in this paper would be required tode
ide whether transverse beam polarization 
ould be helpful in disentangling this more
ompli
ated neutralino se
tor.A
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