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Quantum A1-Struturesfor Open-Closed Topologial StringsManfred HerbstDESY Theory GroupNotkestra�e 8522603 HamburgGermanyEmail: Manfred.Herbst�desy.deAbstratWe study fatorizations of topologial string amplitudes on higher genus Riemann surfaeswith multiple boundary omponents and �nd quantum A1-relations, whih are the highergenus analog of the (lassial) A1-relations on the disk. For topologial strings with ̂ = 3the quantumA1-relations are trivially satis�ed on a single D-brane, whereas in a multipleD-brane on�guration they may be used to ompute open higher genus amplitudes reursivelyfrom disk amplitudes. This an be helpful in open Gromov{Witten theory in order todetermine open string higher genus instanton orretions.Finally, we �nd that the quantum A1-struture annot quite be reast into a quantummaster equation on the open string moduli spae.



Contents1 Introdution and summary 22 Open-losed topologial string amplitudes 42.1 De�nition of the amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Topologial twist and harge seletion rules . . . . . . . . . . . . . . . . . . . 72.3 Bakground fermion number - (suspended) Z2-grading . . . . . . . . . . . . . 82.4 Symmetries, yli invariane, and unitality . . . . . . . . . . . . . . . . . . 92.5 Speial bakground harge ̂ = 3 . . . . . . . . . . . . . . . . . . . . . . . . . 103 Quantum A1-ategory 103.1 The boundary of the moduli spae �Mg;b;0;m1;:::;mb . . . . . . . . . . . . . . . . 123.2 The losed string fatorization hannel . . . . . . . . . . . . . . . . . . . . . 143.3 Boundaries without observables { non-stable on�gurations . . . . . . . . . . 153.4 The open string fatorization hannels . . . . . . . . . . . . . . . . . . . . . 163.5 Inluding losed string deformations . . . . . . . . . . . . . . . . . . . . . . . 194 Comments on the quantum A1-relations 205 Quantum master equation? 21

1



1. Introdution and summaryThe perturbative topologial losed string is by now quite well-studied. The holomorphianomaly equations [1℄ suggest an interpretation of the topologial string partition funtionas a wave funtion [2, 3℄, and urrent researh is onentrating on understanding this wavefuntion in terms of a non-perturbative ompletion of the topologial string.The open topologial string is far from suh an understanding | it is not even well-studied perturbatively. This work is a �rst step in this diretion. We do not yet try toonsider the analog of holomorphi anomalies for open strings; these are notoriously diÆultto handle (f. the remarks in [1℄). Instead we onentrate on a more fundamental di�erenebetween open and losed topologial strings.Deformations of losed string moduli are not obstruted, i.e., they are not subjet to somepotential. This is reeted in the fat that the assoiated on-shell1 L1 struture vanishes [4℄,whih is the main reason for why L1 strutures played a minor rôle in the physial literatureon topologial losed strings.The piture is quite di�erent in open topologial string theory (at tree-level). The openstring moduli sa are obstruted beause they are lifted by an e�etive superpotential [5℄,Weff = 1Xm=1 1mFa1:::amsa1 : : : samwhih is due to a non-vanishing on-shell A1 struture for the disk amplitudes Fa1:::am [6℄.Therefore, in ontrast to losed topologial strings homotopy algebras play a more importantrôle in open topologial string theory.In [6℄ the A1-struture was derived from the bubbling of disks, whih was induedby the insertion of the topologial BRST operator. In the present work we extend thisanalysis to topologial string amplitudes Fg;bA1j:::jAb(t) on genus g Riemann surfaes with bboundary omponents. Here, Ai, for i = 1; : : : ; b, is a olletive index for the yliallyordered topologial observables, whih are inserted at the ith boundary irle. t is a losedstring modulus. It turns out to be onvenient to resume these amplitudes in the all-genustopologial string amplitudes,F bA1j:::jAb(gs; t) = 1Xg=0 g2g+b�2s Fg;bA1j:::jAb(t) ;where we introdued the topologial string oupling onstant gs. The main result of thiswork then states that the all-genus topologial string amplitudes Fg;bA1 j:::jAb(gs; t) satisfy the(yli) quantum A1-relations (24).At �rst sight these relations look quite ompliated, but they bear some interestingfeatures:1. There are no losed string fatorization hannels involved in these relations. This isessentially due to the fat that degenerations in the losed string hannel orrespond to1By on-shell we mean the minimal L1 struture on the spae of topologial observables, i.e., the oho-mology lasses of the BRST operator. 2



(real) odimension 2 boundaries of the moduli spae of the Riemann surfae, whereasthe insertion of the BRST operator 'maps' only to the (real) odimension 1 boundary.This will be explained in detail in the present work. The quantum A1-struture is,therefore, simpler than the homotopy algebra strutures that appear in Zwiebah'sopen-losed string �eld theory [4,7℄.2. As it was pointed out in [8℄, in the ontext of the topologial B-model, the (lassial)A1-relations are trivially satis�ed on a single D-brane. We �nd that this is true forthe full quantum A1-relations in models with entral harge ̂ = 3. This fat relies onarguments involving the U(1) R-harge of the topologial observables.3. On the other hand, in a situation with multiple D-branes the quantum A1-relationsgive rise to a sequene of linear systems for the amplitudes Fg;bA1j:::jAb(t), whih an besolved reursively starting from disk amplitudes. As an example, we �nd solutions tothe linear system in the ontext of open string instanton ounting on the ellipti urvein the ompanion paper [9℄.For the derivation of the quantum A1-relations we make the tehnial assumption thatevery boundary omponent of the Riemann surfae arries at least one observable. This isimportant, for otherwise there appear non-stable on�gurations, whih orrespond to non-ompat diretions in the moduli spae of the Riemann surfae. More spei�ally, these omefrom losed string fatorization hannels where a 'bare' boundary omponent, i.e., withoutoperator insertions, bubbles o� from the rest of the Riemann surfae. The appearane ofa non-stable on�guration indiates ambiguities in view of divergenes of topologial stringamplitudes (f. [9℄).As it is familiar from string �eld theory [7,10℄ and reently from open topologial stringtheory [11℄, homotopy algebras have a dual desription in terms of a master equation ona dual supermanifold (in the present ontext, the open string moduli spae). We brieyomment on this relation and �nd that we have to formally inlude the non-stable on�g-urations, that we just alluded to, in order to reast the quantum A1-struture into themodi�ed quantum master equation (43). We want to stress that on the way of deriving thisrelation some information on the topologial string amplitudes is lost so that the quantumA1-struture is not faithfully mapped to the modi�ed quantum master equation.Before giving an outline of the paper we list some onrete models where the quantumA1-relations may be applied. (i) Consider the topologial B-model on a Calabi{Yau 3-foldM in the presene of B-type boundary onditions. The latter orrespond to holomorphivetor bundles over holomorphi submanifolds or, more generally, to objets in the derivedategory of oherent sheaves on M [12, 13℄. At the lassial level the A1-struture wasomputed for some expliit D-brane on�gurations on non-ompat Calabi{Yau manifoldsin [8℄. (ii) The mirror dual of suh a model is the topologial A-model on M with A-typeboundary onditions desribing Lagrangian submanifolds and the oisotropi D-branes of[14,15℄. These are objets in Fukaya'sA1 ategory [16℄. Correlation funtions in theA-modelreeive world-sheet instanton orretions, thus relating it to enumerative geometry of rationalurves inM or holomorphi disks spanned between Lagrangian submanifolds. In this ontextthe quantum A1-relations ould provide a means of reursively omputing higher genus3



open Gromov{Witten invariants from disk invariants. (iii) A last example are topologiallytwisted Landau{Ginzburg (LG) orbifolds with B-type boundary onditions. The D-branesorrespond to equivariant matrix fatorizations of the LG superpotential [17,18℄.The paper is organized as follows: In setion 2 open-losed topologial string amplitudesare de�ned, and basi symmetry properties as well as seletion rules are reviewed. The mainresult, the quantum A1-relations for the amplitudes F bA1j:::jAb(gs; t), is stated and proven insetion 3. We proeed with the disussion of some features of our result in setion 4 andlose with the derivation of the modi�ed quantummaster equation on the open string modulispae in setion 5.2. Open-losed topologial string amplitudesLet us start with reviewing the general setup of open-losed topologial string theory. Thiswill give us also some room to introdue notations. By de�nition a topologial string theoryis a 2d topologial onformal �eld theory (TCFT) oupled to gravity.So let us have a look at the TCFT �rst. The most important relation in the topologialoperator algebra [19℄ an be stated as the fat that the stress-energy tensor Tzz is BRSTexat, i.e.,2 Tzz(z) = [Q;Gzz(z)℄ : (1)Here, Q is the BRST operator and Gzz is the fermioni urrent of the operator algebra. TheU(1) R-urrent Jz(z) does not interest us for the moment, but will play an important rolein subsequent setions.Sine we want to onsider models on general oriented, bordered Riemann surfaes �we have to speify boundary onditions on the urrents. The only hoie for piking theseboundary onditions omes from the U(1) automorphism of the topologial operator algebra,whih ats as a phase fator ei�' on the fermioni urrents Q(z) and Gzz(z). However, asingle-valued orrelation funtion requires that the di�erene of the phases between twoboundary onditions is integral, �' 2Z(f. [20℄ in the ontext of superonformal algebras).The overall phase is unphysial and an be set to zero, so that the urrents of the topologialoperator algebra satisfy the simple relationsW bos = �W bosW ferm = (�)s �W ferm on �� ;for integral s.The observables of an open-losed string theory are the ohomology lasses of the BRSToperator Q. Bulk observables �i are in one-to-one orrespondene with states in the losedstring Hilbert spae Hl, in short we write �i 2 Hl. Whereas boundary observables  ��aorrespond to a states in the open string Hilbert spae H��op . The upper indies denote theboundary onditions, i.e., the topologial D-branes, on either side of the �eld. The ylialorder of the boundary �elds ensures that the boundary labels �; �; : : :, one determined,always math, so that we restrain ourselves from writing the boundary labels expliitly in2Subsequently, we use [:; :℄ as a graded ommutator.4



the following. In a topologial onformal �eld theory it is important to hoose a partiularrepresentative of the BRST ohomology lass by requiring [19℄[G0; �i℄ = [ �G0; �i℄ = [(G0 + (�)s �G0);  ��a ℄ = 0 ; (2)whih implies that the topologial observables have onformal weight zero.In view of relation (1) we an de�ne topologial desendents [21℄ assoiated with bulk andboundary observables: the bulk 2-form desendent �(2)i and the boundary 1-form desendent (1)a are partiularly important for us and satisfy the relations[Q;�(2)i ℄ = d�(1)i resp. [Q; (1)a ℄ = d a : (3)The oupling of the TCFT to 2d gravity is similar to the bosoni string and we aninherit the proedure to de�ne amplitudes on bordered higher genus Riemann surfaes.3 Forthat we introdue the quantitiesGmi := Z� d2z (Gzz�zi �z +G�z�z��zi z) ; (4)whih we have to insert in the path integral to aount for zero modes related to the omplexstruture moduli spae of the Riemann surfae �. In (4) �zi �z denotes the Beltrami di�erential,�zi �z := 12gz�z ��mig�z�z ;orresponding to the omplex struture modulus mi. Using (1) and the de�nition of thestress-energy tensor, we dedue the relation
: : : [Q;Gmi℄ : : :� = ��mi
: : :� : (5)2.1. De�nition of the amplitudesHaving set up the basis we an start de�ning the topologial string amplitude on orientedRiemann surfaes �g;b of genus g with b boundary omponents.4A measure on the moduli spae of puntured bordered Riemann surfaes is de�ned on-sistently only for stable on�gurations, that is, if2g + b� 2 + 2n + bXi=1 mi � 0 ; (6)where n is the number of bulk observables and mi is the number of boundary observablesinserted on the ith boundary omponent.3We are not onsidering gravitational desendents here [22℄!4In the following we are not interested in the holomorphi anomaly of the higher genus amplitudes [1℄,whih means that we �x a partiular bakground �t = �t0 where the theory is well-de�ned and do not onsiderhanges thereof. We will not indiate this bakground value subsequently and we will work in at oordinates.5



Riemann surfaes with Euler harater �g;b = 2 � 2g � b � �1 do not possess onfor-mal Killing vetor �elds, so that we are not fored to gauge the orresponding symmetry.Following the presription in bosoni string theory the amplitudes are de�ned asFg;bA1j:::jAb(t) := Z d3j�g;bjm 
PZ  (1)a[1℄1 : : :Z  (1)a[1℄m1 ��Z  (1)a[2℄1 : : : �� : : : ��eti R �(2)i 3j�g;bjYi=1 Gmi��g;b ; (7)where we introdued the olletive index Ai = a[i℄1 : : : a[i℄mi. P means that the boundarydesendents are integrated in ylial order; subsequently we will refrain from writing P ex-pliitly. The integration over the omplex struture moduli spae of the puntured Riemannsurfae will be de�ned more arefully later in setion 3.1.The amplitudes (7) an be understood as generating funtion for all amplitudes witharbitrary number of bulk insertions. We will sometimes refer to the amplitudes (7) asdeformed amplitudes as ompared to undeformed ones where the losed string moduli ti areturn o�, i.e., ti = 0. As already emphasized in [6℄ it is not possible to subsume the boundaryobservables as deformations beause of the boundary ondition labels and the yli ordering.There are four Riemann surfaes whih do have onformal Killing vetors and need speialtreatment. Let us start with the simplest one, the Riemann sphere �0;0 = S2. The globalonformal group is SL(2; C ), whih an be gauged by �xing three bulk observables. Thesphere three-point funtion de�nes the prepotential F = F0;0 in the well-known way:�i�j�kF0;0(t) := 
�i �j �k eti R �(2)i ��0;0 : (8)On the torus �1;0 the onformal Killing vetors orrespond to translations and the omplexstruture moduli spaeM1;0 is the upper half omplex plane mod PSL(2;Z). The amplitudereads: �iF1;0(t) := Z d�d��
�i eti R �(2)i G� G����1;0 : (9)For the bordered Riemann surfaes with onformal Killing vetors the situation is a bitmore omplex for the reason that we an use either bulk or boundary observables to �x theglobal onformal symmetries. On the disk �0;1 we need to �x three real positions, so thatwe an have two types of amplitudes (whih are, however, related by Ward identities [6℄):5F0;1a1:::am(t) := �(�1)~a2+:::+~am�1
 a1 a2P Z  (1)a3 : : :Z  (1)am�1 am eti R �(2)i ��0;1 ; (10)for m � 3, and �iF0;1a (t) := 
�i a eti R �(2)i ��0;1 ; (11)�iF0;1ab (t) := 
�i a Z  (1)b eti R �(2)i ��0;1 :5We antiipate the suspended grading ~ai from (17), whih is the fermion number of the desendent  (1)ai .Note the overall sign hange in (10) as ompared to [6℄.6



On the annulus �0;2 the rotation symmetry an be �xed by a boundary observable or a bulkdesendent �(1)i integrated along a ontour from one boundary to the other, resulting in:F0;2A1jA2(t) := Z 10 dL
 a[1℄1Z  (1)a[1℄2 : : :Z  (1)a[1℄m1��Z  (1)a[2℄1 : : :Z  (1)a[2℄m2�� eti R �(2)i GL��0;2 ; (12)for m1 � 1. For annulus amplitudes without any boundary insertions (f. [1℄) we de�ne:�iF0;2:j: (t) := Z 10 dL
ZC �(1)i eti R �(2)i GL��0;2 ; (13)where the ontour C runs from one boundary omponent to the other. The integrationto Fg;b::: in (8), (9) as well as (11), (13) is well-de�ned through onformal Ward identities[6, 19℄. In the following we will assume that the integration onstants in (11) are zero, i.e.,F0;1a ��t=0 = F0;1ab ��t=0 = 0.For later onveniene we introdue the all-genus topologial string amplitudesF bA1j:::jAb(gs; t) := 1Xg=0 g2g+b�2s Fg;bA1j:::jAb(t) for b � 1 : (14)Note that for b = 0 the analogous de�nition gives the topologial losed string free energyF(gs; t) =P1g=0 g2g�2s Fg;0(t) [1℄.2.2. Topologial twist and harge seletion rulesSuppose we started with an N = (2; 2) superonformal algebra (broken by boundary ondi-tions to N = 2), whih is part of a superstring ompati�ation. We will leave the entralharge  = 3̂ arbitrary for the moment. The topologial twist by T ! T + 12�J to theassoiated topologial algebra is implemented by oupling the spin onnetion ! = � ln(pg)to the U(1) urrent J in the ation [1,21,23℄, i.e.,18� Z�g;b d2z(! �J + �!J) :Using the bosonization J = ip̂�H and taking into aount that we have boundaries we get�ip̂8� Z�g;b d2zpgR(2)H + ::� ip̂4� Z��g;b d�kH + :: ; (15)where R(2) is the world sheet urvature and k is the geodesi urvature along the boundary.If we deform the world sheet metri suh that the urvature loalizes at j�g;bj points thetwisting term (15) gives rise to �g;b insertions of the spetral ow operator e� i2p̂(H� �H) inthe superonformal orrelator, whih, in total, arry the bakground U(1) harge �̂�g;b.In view of these onsiderations the U(1) harges Q� of all operator insertions have tosatisfy the ondition #insertX�=1 Q� = ̂�g;b :7



Let us onsider an arbitrary Riemann surfae �g;b with �g;b < 0. From the disussion inthe previous setion we know that we have to insert �3�g;b Beltrami di�erentials oupledto Gzz , whih have harge QG = �1. Furthermore, every bulk desendent �(2)i arriesQi = qi � 2, where qi is the harge of the assoiated topologial observable �i, and everyboundary desendent  (1)a arries harge Qa = qa � 1. The harge seletion rule beomesnXi=1 qi + bXl=1 mlXal=1 qal = 2n +m+ (̂� 3)�g;b ; (16)where n and m = Pbl=1mi are the total number of bulk resp. boundary observables. Per-forming a ase-by-ase study it is easy to show that this formula extends to Riemann surfaeswith �g;b � 0, i.e., the sphere, the disk, the annulus and the torus.2.3. Bakground fermion number - (suspended) Z2-gradingThe bulk as well as the boundary �elds of a general topologial string theory arry a Z2-grading assoiated to the fermion number F . Just as for the U(1) harge we have to anel abakground fermion number ! 2Z2, whih aounts for the insertion of fermioni zero modesin the path integral on the disk. In the ontext of matrix fatorizations in Landau{Ginzburgmodels this is manifest in the Kapustin{Li formula [24,25℄, whereas in the topologial A- andB-model the bakground harge an be read o� from the inner produt for the Chern{Simonsresp. holomorphi Chern{Simons ation [26℄.A generalization of the Z2-seletion rule to arbitrary Riemann surfaes an readily beseen from a fatorization argument within 2d topologial �eld theory [27,28℄; every boundaryomponent ontributes ! to the bakground fermion number one, so that we obtain#insertX�=1 F� = b ! :Taking into aount that the urrent Gzz is odd we �nd Pni=1 Fi +Pma=1 Fa = m+ (! + 1)bfor the topologial string amplitudes, where Fi and Fa are the fermion numbers for bulkresp. boundary observables.Most of the subsequent formulas are onveniently expressed through the introdution ofa suspended grading, whih we de�ne by:~i := Fi for a bulk �eld �i ;~a := Fa + 1 for a boundary �eld  a ; (17)and ~! := ! + 1. In other words, the suspended grading is the fermion number of thetopologial desendent rather than the topologial observable itself. From now on we willrefer to the notions even and odd with respet to the suspended grading. The Z2-seletionrule takes the simple form nXi=1 ~i+ bXl=1 mlXal=1 ~al = b ~! : (18)8



For most interesting models there is a lose relation between theZ2-grading and the U(1)harge. For Calabi{Yau ompati�ations this is simple, sine the U(1) harge is the formdegree and the fermion number is the form degree mod 2. In Gepner models, on the otherhand, a relation is ensured in view of the orbifold ation [29℄. In partiular, we have (̂� 3)mod 2 = ~!.Remark: For the rest of the paper we onsider the ase ~! = 0, so that the Z2-seletionrule is the same for arbitrary numbers of boundaries b, i.e.,nXi=1 ~i+ bXl=1 mlXal=1 ~al = 0 :In many pratial situations we an onentrate on even bulk �elds. For instane, in Landau{Ginzburg models (not orbifolded!) the bulk hiral ring inludes only even �elds. In thetopologial A- and B-model the interest lies mainly on the marginal bulk operators,6 whihare always even. Therefore, we subsequently onsider only even bulk �elds.2.4. Symmetries, yli invariane, and unitalityIn view of the topologial nature of the amplitudes (14), we an deform the Riemann surfaeand exhange two boundary omponents. This leads to the graded symmetry:F bA1j:::jAi jAi+1 j:::jAb = (�) ~Ai ~Ai+1F bA1j:::jAi+1jAi j:::jAb for 8 i = 1; : : : ; b� 1 ; (19)where ~Ai = ~a[i℄1+ : : :+ ~a[i℄mi.Moreover, the invariane of disk amplitudes under yli exhange of boundary observ-ables naturally extends to b � 1, i.e.,F bA1j:::ja[i℄1a[i℄2:::a[i℄mi j:::jAb = (�)~a[i℄1(~a[i℄2+:::+~a[i℄mi)F bA1 j:::ja[i℄2:::a[i℄mia[i℄1j:::jAb : (20)The behavior of the topologial amplitudes under insertion of the boundary unit operator11 was investigated in [6℄ and it was shown that all tree-level amplitudes F0;1a1:::am with at leastone unit operator insertion vanish exept form = 3. For all other amplitudes with 2g+b�2 �0 it is easy to see that they vanish upon insertion of the unit, beause the desendent of theunit vanishes, i.e., 11 (1) = 0.7 We de�ne unitality for the all-genus amplitudes F bA1j:::jAb as theproperties:8 F111 ab = (�)~a�abF ba[1℄1:::11 :::a[1℄m1j:::jAb = 0 otherwise ; (21)6We adopt the terminology of the untwisted N = 2 superonformal theory and all topologial bulk andboundary observables with q = qL + qR = 2 resp. q = 1 marginal.7The only amplitude that does not vanish by this reasoning is the annulus with just the unit inserted onone boundary. It is, however, zero by the harge seletion rule (16).8Stritly speaking, this is true if we deform the amplitudes by marginal bulk observables only. If weadmit the full bulk hiral ring in the deformations there an also be non-vanishing bulk-boundary 2-pointdisk orrelators with unit, i.e., the harge seletion rule (16) admits �iF0;111 = 
�i 11 ��0;1 6= 0.9



where �ab = 
 11  a b��0;1 (22)is the topologial open string metri. Note that the harge seletion rule (16) for �ab reads~a+~b = 1 (reall ~! = 0), and the metri is (graded) symmetri�ab = (�)~a~b�ba :Subsequently, we will use the topologial open string metri �ab rather than the sympletistruture !ab = (�)~a�ab, whih is ommonly used in the literature on yli A1-strutures[10,30℄.2.5. Speial bakground harge ̂ = 3Topologial string theories, for whih the bakground harge ̂ is equal to the ritial dimen-sion of the internal spae of a superstring ompati�ation, i.e., ̂ = 3, have in many respetsspeial properties. The topologial losed string at tree-level is then governed by speial ge-ometry and the tt� equations; and through the 'deoupling' of marginal operators from therelevant and irrelevant ones the holomorphi anomaly equations of [1℄ take a partiularlysimple form.In our situation ̂ = 3 is speial in that the harge seletion rule (16) is equal for arbitrarygenus g and number of boundaries b, whih leads to similar onlusions as for the topologiallosed string [1℄. First of all, an all-genus amplitude F ba1:::am(gs; t), in whih the �elds satisfythe seletion rule (16), gets ontributions from all genera. This is not the ase when ̂ 6= 3,beause then Fg;ba1:::am is non-vanishing for at most one partiular genus ĝ, i.e.,F bA1j:::jAb = P1g=0 g2g+b�2s Fg;bA1j:::jAb for ̂ = 3;F bA1j:::jAb = g2ĝ+b�2s F ĝ;bA1j:::jAb for ̂ 6= 3; and appr. genus ĝ;where ĝ is determined by ~A1; : : : ; ~Ab and b through the harge seletion rule (16).In fat, in many theories with ̂ 6= 3 there is no solution to the harge seletion rule forĝ � 1 at all. For example, in a topologial string theory with ̂ = 1, suh as the topologiallytwisted non-linear sigma model on the torus or the assoiated Landau{Ginzburg orbifold,the boundary observables have harges in the range 0 � q � 1. Therefore, only Riemannsurfaes with �g;b � 0 give non-vanishing amplitudes. In partiular, the annulus and thetorus amplitudes admit only marginal operator insertions.3. Quantum A1-ategoryAs was shown in [6℄ the topologial open string amplitudes satisfy a unital, yliA1-algebraat tree-level: mXl�k=1(�)sl F0;1a1:::alak+1:::am�dF0;1dal+1:::ak = 0 for m � 0 ; (23)10



ρ =Σ +ΣΣ
ρ

ρFigure 1: A diagrammati representation of the quantum A1-relations (24) for b = 5. The expansion in gs, i.e., the sum over allgenera g, is indiated by the wiggly lines on the Riemann surfaes.where sl = ~a1+ : : :+~al. Let us briey reall how this relation omes about. When we insertthe BRST operator Q = HC Qz + �Q�z in the disk amplitudes (10) or (11) with the ontourC hosen suh that it enloses non of the operators then the amplitudes vanish. On theother hand, if we deform the ontour and at on all the bulk and boundary �elds, a series ofontat terms gives rise to disks that bubble o� through a topologial operator produt andwe eventually get the A1-struture (23). In this setion we apply this idea to topologialstring amplitudes of arbitrary genus g and b boundary omponents and show the followingresult:Theorem 1 The all-genus topologial string amplitudesF bA1j:::jAb(gs; t) := 1Xg=0 g2g+b�2s Fg;bA1j:::jAb(t) ;where Ai is the olletive index a[i℄1 : : : a[i℄mi, satisfy (what we all) the unital, yli quantumA1-relations:bXb0=1 X�2Sb m�(1)Xk�l=1 (�)s�( ~A)+s1(b�b0)!(b0�1)!F b�b0+1a1:::akal+1:::am�(1) jA�(2)j:::jA�(b�b0+1)�dF b0dak+1 :::aljA�(b�b0+2)j:::jA�(b)= bXb0=1 mb0Xk�l=1(�)sb0+s2 �dF b+1a01:::a0ka0l+1:::a0mb0 jda0k+1:::a0ljA1j:::Âb0 :::jAb (24)+ bXb00<b0=1 mb0Xk=1 mb00Xl=1 (�)sb0+sb00+s3 �dF b�1a01:::a0ka00l+1:::a00mb00 a001 :::a00l da0k+1 :::a0mb0 jA1j:::Âb0 :::Âb00 :::jAb ;for b � 1, provided that mi � 1 for i = 1; : : : ; b. When b = 1 the last term is zero. Weall the quantum A1-relations weak if both F0;1a (t) and F0;1ab (t) are non-vanishing, strongif F0;1a (t) = 0, and minimal if F0;1a (t) = F0;1ab (t) = 0. In the undeformed ase, t = 0, thequantum A1-relations are minimal. 11



The signs in (24) are:s1 = ~a1+: : :+~ak+(~al+1+: : :+~am�(1)+ ~A�(2)+: : : ~A�(b�b0+1))( ~d+~ak+1+: : :+~al)s2 = ~a01+: : :+~a0k+(~a0l+1+: : :+~a0mb0 )( ~d+~a0k+1+: : :+~a0l) (25)s3 = ~a01+: : :+~a0k+(~a001+: : :+~a00l )(~a00l+1+: : :+~a00mb00 )+ ~Ab00( ~d+~a0k+1+: : :+~a0mb00)sb0 = ~Ab0( ~A1+: : :+ ~Ab0�1) :and s�( ~A) is the Koszul sign for the permutation � 2 Sn of boundary omponents with Z2-grading ~Ai. We used the abbreviations aj = a[�(1)℄j, a0j = a[b0℄j and a00j = a[b00℄j. Fig. 1shows a pitorial representation of the quantum A1-relations (24).Cyli invariane and unitality have been disussed earlier, so that it remains to showformula (24). We do this in several steps, starting with the insertion of the BRST operator inan arbitrary Riemann surfae �g;b. This auses a fatorization of �g;b through degenerationhannels where open or losed topologial observables are exhanged through an in�nitelylong throat. These degenerations are desribed in terms of the boundary of the moduli spae�Mg;b;n;m1;:::;mb of a bordered Riemann surfae �g;b with n (dressed) puntures in the bulkand mi (dressed) puntures on the ith boundary. For a desription of bordered Riemannsurfaes and their moduli spaes in terms of symmetri Riemann surfaes the reader mayonsult [31℄; see also [32,33℄ for the ontext of open Gromov{Witten invariants.An important observation will be that all the losed string degeneration hannels vanish,provided that mi � 0 for all i = 1; : : : ; b. We will onlude that only the open stringfatorization hannels give rise to the quantum A1-relations (24).3.1. The boundary of the moduli spae �Mg;b;0;m1;:::;mbThe proof of theorem 1 is more tratable if we start with the undeformed boundary theory,whih means that we do not insert any bulk desendents in our amplitudes. After obtaining(24) in this situation we will inlude bulk deformations.Our starting point is the amplitudeZMg;b d6g+3b�6m 
�Q;Z 	A1�� : : : �� Z 	Ab�� 6g+3b�6Yi=1 Gmi���g;b = 0 ; (26)for 2g + b� 2 � 1, b � 1, as depited in Fig. 2. Here, we used the abbreviationZ 	Ai = ZMimi 	Ai = P Z  (1)a[i℄1(�1) : : :Z  (1)a[i℄mi (�mi) : (27)At this point some explanations on the moduli spae in (26) are in order. Mg;b is the omplexstruture moduli spae for �g;b. On an internal point of this moduli spae, that is, for anon-degenerate Riemann surfae the boundary observables are integrated in yli order,i.e., the integration domain in (27) isMimi = (�mi�1 ! S1) :12



QFigure 2: A genus 5 amplitude with three onneted boundary om-ponent and a ontour integral over the BRST urrent; the markedpoints indiate integrated boundary �elds R  (1)ai . The Beltramidi�erential with the fermioni urrents (4) are note depited.Here the simplex �mi�1 is �bered over S1 as follows:�mi�1 = �(�2; : : : ; �mi)���1 < �2 < �3 < : : : < �mi < �1 + 2�	 ;where �1 2 S1 with �1 ' �1 + 2�. The total moduli spae for a Riemann surfae withpuntures on the boundary is then a singular �brationMg;b;0;m1;:::;mb = (M1m1 � : : :�Mbmb)!Mg;b :Having set up the basis about the moduli spae, we investigate the e�et of the BRSToperator in (26). Relations (3) and (5) show that Q gives rise to a total derivative on themoduli spae. Using Stokes theorem the left-hand side of (26) looks likeZ�Mg;b;0;m1;:::;mb
: : :� :The boundary of the moduli spae �Mg;b;0;m1;:::;mb onsists of singular on�gurations of theRiemann surfae. This requires a ompati�ation of the moduli spae,Mg;b;0;m1;:::;mb, mean-ing that well-de�ned on�gurations of Riemann surfaes are added at the singular lous ofMg;b;0;m1;:::;mb.What kind of degenerations an our when we deform the omplex struture of the Rie-mann surfae �g;b, i.e., what are the boundary omponents of the moduli spae, �Mg;b;0;m1;:::;mb?To answer this let us divide the boundary on�gurations in three major lasses:(i) A sub-ylinder of �g;b beomes in�nitely long and thin, so that we an insert a ompletesystem of topologial losed string observables.(ii) A sub-strip of �g;b onstrits to be in�nitely long and we an insert a omplete systemof topologial open string �elds.(iii) Several boundary �elds ome lose together and we an take the topologial operatorprodut, whih one again amounts to inserting a omplete system of open string �elds andbubbling of a disk. (This degeneration ould be inluded in (ii), but we onsider it separatelyfor tehnial reasons, whih beome lear below.)13
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l Figure 3: Closed string fatorizationsIn the subsequent setions we investigate these three situations one-by-one and omputethe resulting ontributions to (24).3.2. The losed string fatorization hannelA fatorization in the losed string hannel (f. Fig. 3) ours if the BRST operator atson one of the Gmi 's and gives rise to the derivative ��mi . For de�niteness let us �rst onsiderthe situation like in Fig. 3a, where non of the fatorization produts is a disk.In the neighborhood of the degeneration, the Riemann surfae an be desribed in termsof the plumbing-�xture proedure [34,35℄. Take any two Riemann surfaes, �1 and �2, andut out a disk of radius pjqj on both of them, where q 2 C and jqj small. The entersof the disks are loated at ẑ1 and ẑ2. Let us parameterize the neighborhood of the disksby the omplex oordinates z1 and z2. The plumbing-�xture proedure tells us to glue theRiemann surfaes through the transition funtion z2� ẑ2 = q=(z1� ẑ1). This gluing desribesa ylinder of length l and twist parameter t, determined by q = ei� = e�l+it. In the limit ofin�nite length, l!1, the tube onnets at the points, ẑ1 and ẑ2, to the Riemann surfaes,�1 and �2, respetively. Near this degenerate point the moduli spae �Mg;b;0;m1:::mb an beparameterized by the oordinates (�; ẑ1; ẑ2; ~mi; m̂j). The moduli ~mi and m̂j are the modulion the Riemann surfaes �1 and �2.Instead of putting the moduli dependene on (�; ẑ1; ẑ2) into the world sheet metri andusing the Beltrami di�erentials �zi �z, let us make a loal onformal transformation to a onfor-mally at metri on the ylinder and desribe the moduli dependene through the transitionfuntion between the oordinates z1 and z2. An in�nitesimal hange of the moduli an thenbe written in terms of the onformal vetor �eldvz(z1 � ẑ1) = Æẑ1v1 + Æ�v� + Æẑ2v2 = Æẑ1 + Æ� (z1 � ẑ1) + Æẑ2ei� (z1 � ẑ1)2 :The integrals over the Beltrami di�erentials beomeZ Gmi = IC Gzzvzi + �G�z�z�v�zi (28)for i = 1; 2; � . The yle C wraps one around the tube.The degeneration that we desribed here orresponds to the situation when Q ats onGl and gives rise to the total derivative ��l. Using (28) the amplitude on the degenerate14



Riemann surfae beomesliml!1 Z 
: : : [G�1; [ �G�1; �m(ẑ1)℄℄6g0+3b0�6Yi=1 G ~mi��g0;b0 �mn � (29)� 
�n ��qL0�q �L0���k ��kl Z 
[i(G0 � �G0); [G�1; [ �G�1; �l(ẑ2)℄℄℄ : : :6g00+3b00�6Yj=1 Gm̂j��g00 ;b00 ;where g0 + g00 = g, b0 + b00 = b. We omitted the details about the integration over themoduli spaes and also about the boundary observables, whih are indiated by dots. Inthe limit l ! 1, q vanishes and only states with L0 = �L0 = 0, i.e., the topologial losedstring observables survive, so that �mn restrits to the inverse of the topologial losed stringmetri.The important point is then that the zero mode G0� �G0 remains in (29) and ats on thebulk observable, so that the whole expression vanishes by the gauge ondition (2). A similarargument applies to the fatorization hannel of Fig. 3b, whih therefore vanishes too.Reall that we exluded so far the situation where one of the two Riemann surfaes, �1or �2, is a disk. Let us onsider this ase now. Other than before there is no twist parametert, so that the fatorization beomesZ 
: : : [G�1; [ �G�1; �m(ẑ1)℄℄6g+3b�9Yi=1 G ~mi��g;b�1 �mn 
�n(ẑ2)Z 	Ai��0;1 : (30)Notie that i(G0 � �G0) does not appear beause of the absene of the twist parameter t,and there is no [G�1; [ �G�1; �l℄℄ assoiated to the modulus ẑ2 either, whih reets the fatthat the disk has a onformal Killing vetor �eld that an be used to �x ẑ2. Let us use nowour assumption that we have at least one insertion of an observable on eah boundary, i.e.,mi � 1. In [6℄ it was then shown that a disk amplitude like the one in (30) vanishes in viewof a onformal Ward identity.9 We onlude that, for mi � 1, fatorizations in the losedstring hannel do not ontribute at all to the quantum A1-struture (24).3.3. Boundaries without observables { non-stable on�gurationsLet us briey omment on the ase mi = 0. The expression (30) beomesZ 
: : : [G�1; [ �G�1; �m(ẑ1)℄℄6g+3b�9Yi=1 G ~mi��g;b�1 �mn 
�n(ẑ2)��0;1 ; (31)whih orresponds to a non-stable on�guration, beause the onformal Killing vetor thatrotates the disk is not �xed. The simplest example for suh a situation is the fatorizationof the annulus amplitude,10 i.e.,Z 10 dL 
[Q; 11 j : j GL℄��0;2 = 0 : (32)9A similar Ward identity is responsible for the fat that the topologial metri �ab does not get deforma-tions.10The harge seletion rule (16) tells us that the single observable on the boundary must be the identityoperator 11 . 15



The open string fatorization hannel gives the Witten index, or intersetion number,Xa;b F11 ab�ab = �TrH��op (�)F ; (33)where we used the equation in the unitality properties (21) that relates 3-point funtions tothe topologial metri. The losed string hannel gives
�m 11 ��0;1 �mn
�n��0;1 ;so that the fatorization of the annulus amplitude (32) an be interpreted as topologialCardy relation of 2d topologial �eld theory [27,28℄. In general, one should be autious aboutonsidering fatorizations that involve non-stable on�gurations like (31). They indiateambiguities related to divergenes in topologial amplitudes (f. [9℄).3.4. The open string fatorization hannelsLet us turn now to the non-vanishing ontributions to the quantum A1 relations (24), whihome from open string fatorization hannels. Fatorizations in the open string hannelorresponding to an in�nitely long strip are shown in Fig. 4.The left-hand side of the quantum A1-relation (24)We onsider the situation in Fig. 4a �rst. Loally near the degeneration point the modulispae an be parameterized by (l; x̂1; x̂2; ~m1; : : : ; ~m3j~�j; m̂1; : : : ; m̂3j�̂j). The �rst three oordi-nates parameterize the length l of the strip as well as the positions x̂1 and x̂2 of the puntures,where the strip ends on the surfae boundaries. ~mi and m̂j are the moduli of the resultingRiemann surfaes �g0;b0 and �g00;b00, respetively. Here, g0+ g00 = g and b0+ b00 = b+ 1. SineQ ated on Gl we have to evaluate l at in�nity. The Beltrami di�erentials assoiated to themoduli x̂1 and x̂2 loalize around the puntures as before. The hannel in Fig. 4a gives(�)3j~�j liml!1
Z 	A1 : : :Z 	Ab�� Z ~Mg0 ;b0d3j~�j ~m 3j~�jYi=1 G ~mi Zx̂1 Gx̂1 Zx̂2 Gx̂2 ZM̂g00;b00d3j�̂jm̂ 3j�̂jYi=1Gm̂i� : (34)The sign omes from pulling Q through all the operators. We used ~A1+ : : :+ ~Ab = 1. Notiethat ontributions with (g0; b0) = (0; 1) or (g00; b00) = (0; 1) vanish, beause the degenerationresults into disk amplitudes that vanish by a onformal Ward identity [6℄.We have not deided yet, whih boundary omponent, that is to say, whih �elds 	Ai areinvolved in the fatorization. Let us pik 	A1 �rst and take are of all other boundaries after-wards. The boundary observables are, after fatorization, split into a olletion  (1)al+1 : : :  (1)akon �g00;b00 and  (1)ak+1 : : :  (1)am1 (1)a1 : : :  (1)al on �g0;b0 , where l; k = 1; : : : ;m1 with l � k. In orderto avoid over-ounting we take  (1)a1 always to be on �g0;b0.There is another hoie that determines how the remaining �elds 	Ai for i = 2; : : : ; bare distributed among �g0;b0 and �g00;b00 . We pik again the simplest hoie: �g0;b0 arries the�elds 	Ai for i = 2; : : : ; b0 and �g00;b00 arries 	Ai for i = b0 + 1; : : : ; b.16
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(c)(b)
l(a) Figure 4: Open string fatorizations through in�nitely long strips.Reshu�ing the operators and inserting a omplete system of boundary observables gives(�)s�d
Z  (1)al+1 : : :  (1)ak �� Z 	A2 : : :Z 	Ab0 �� Z ~Mg0;b0d3j~�j ~m 3j~�jYi=1 G ~mi Zx̂1 Gx̂1 (x̂1)��g0 ;b0 �� 
 d(x̂2)Z  (1)ak+1 : : :  (1)al �� Z 	Ab0+1 : : :Z 	Ab�� Zx̂2 Gx̂2 Z ~Mg00 ;b00d3j�̂jm̂ 3j�̂jYi=1 Gm̂i��g00 ;b00 :The sign is s = 1+(3j~�j+1) ~d+(~a1+: : :+~al)(~al+1+: : :+~am1)+( ~A2+: : :+ ~Ab0)(~ak+1+: : :+~al).Now we use the fat that the Beltrami di�erentials assoiated to the positions x̂i loalizearound the puntures: Rx̂1 Gx̂1 (x̂1) ! Rx̂1  (1) . Further reshu�ing of �elds and using thede�nition of topologial amplitudes in (7) we obtain(�)s1�dFg00;b00a1:::akal+1:::am1 jA2j:::jAb0Fg0;b0dak+1:::aljAb0+1j:::jAb ; (35)where s1 = ~a1+: : :+~ak+(~al+1+: : :+~am1+ ~A2+: : : ~Ab0)( ~d+~ak+1+: : :+~al) :In order to take into aount the fatorizations involving the other boundary omponentsand all the inequivalent distributions of remaining �elds R 	Ai , we exhange the observablesR 	Ai aording to an element � in the symmetri group Sb. This gives rise to the Koszulsign (�)s�( ~A). Then, summing up all fatorization hannels givesgXg0=0 0 bXb0=1 0X�2Sb m�(1)Xl�k=1 (�)s�( ~A)+s1(b�b0)!(b0�1)! � (36)� Fg0;b�b0+1a1:::alak+1:::am�(1) jA�(2)j:::jA�(b�b0+1)�dFg�g0 ;b0dal+1:::ak jA�(b�b0+2)j:::jA�(b) :The fator [(b�b0)!(b0�1)!℄�1 aounts for over-ounting, and P 0 means that (g0; b0) = (0; b)and (g0; b0) = (g; 1) are not inluded in the sum. In fat, the latter ontributions ome fromlass (iii) in our list of degenerations in setion 3.1. Let us briey onsider those before weproeed to Fig. 4b. 17



When Q ats on the integrated desendents R  (1)a , it ats as a boundary operator onone of the �ber omponentsMimi of the moduli spae �Mg;b;0;m1:::mb. The boundary of Mimiorresponds to situations where two or more observables ollide. So we have to sum over allpossible ontat terms of boundary observables. This is exatly the same e�et that gaverise to the (lassial) A1-struture for disk amplitudes in [6℄. If, for instane, the �elds  al+1through  ak for l; k = 1; : : : ;mi and l + 2 � k, ome together very losely a disk with these�elds bubbles o� and we get� (�)~a1+:::+~ak�1 
 (1)a1 : : :  (1)al  (1)  (1)ak+1 : : :  (1)am1 jZ 	A2 : : : j 6g+3b�6Yj=1 G ~mj��g;b �� !d
 d al+1 (1)al+2 : : :  (1)ak�1 ak��0;1 ; (37)and similarly � (�)s 
 a1 a2 (1)a3 : : :  (1)al  (1)  (1)ak+1 : : :  (1)am1�1 am1��0;1 � (38)� !d
 (1)d  (1)al+1 : : :  (1)ak jZ 	A2 : : : j 6g+3b�6Yj=1 G ~mj��g;b ;where s = ~am1 + ~a2 + : : :+ ~al + (~ak+1 + : : :+ ~am1)( ~d + ~al+1 + : : :+ ~ak). When we omparethese expressions with (35) taking into aount the sign in (10), we see immediately thatthey provide exatly the two missing terms with (g0; b0) = (0; b) and (g0; b0) = (g; 1) in (36).The all-genus amplitudes (14) allow us to ombine the fatorizations that we have studiedso far into the left-hand side of (24).The right-hand side of the quantum A1-relation (24)The hannel shown in Fig. 4b gives a degeneration resulting in a single Riemann surfae�g�1;b+1, that is, one boundary omponent splits into two, thus inreasing the number ofboundaries by one and dereasing the genus by one. We rearrange the boundary omponentsin the amplitude suh that the observables 	Ab0 , whih are e�eted by the degeneration, areat the �rst position. This gives rise to the sign sb0 de�ned in (25). The observables are splitinto  (1)a0l+1 : : :  (1)a0k and  (1)a0k+1 : : :  (1)a0mb0 (1)a01 : : :  (1)a0l . Here, a0i = a[b0℄i. In the limit l ! 1 theamplitude beomes(�)s+sb0�d
 (x̂1)Z  (1)a0k+1 : : :  (1)a0l ��Z  (1)a0l+1 : : :  (1)a0k �� Z 	A1 : : : �� d(x̂2)�� Zx̂1Gx̂1Zx̂2Gx̂2Z ~Mg�1;b+1d3j~�j ~m 3j~�jYj=1G ~mj��g�1;b+1 ;where s = (~a0l+1 + : : :+ ~a0mb0 )(~a01 + : : :+ ~a0l).We ommute   and  d through the other �elds to their 'right' positions and make use ofthe loalization Rx̂1 Gx̂1  ! Rx̂1  (1) . After further reshu�ing of the observables and using(7) we obtain: �(�)sb0+s2�d Fg�1;b+1a01:::a0la0k+1:::a0m0b jda0l+1:::a0kjA1j:::jÂb0 j:::jAb ;18



where the signs an be found in (25). Summing over all suh hannels yields� bXb0=1 mb0Xl�k=1(�)sb0+s2�d Fg�1;b+1a01:::a0la0k+1:::a0m0b jda0l+1:::a0kjA1j:::jÂb0 j:::jAb ; (39)whih provides the (undeformed) �rst term on the right-hand side of (24).Finally we have to look at the degeneration in Fig. 4, where the genus g stays the sameand two boundary omponents join into one. Let us pik the �elds 	Ab00 and 	Ab0 on theolliding boundaries, where b0; b00 = 1; : : : ; b and b00 < b0. Pulling these observables throughthe other �elds to the �rst two positions in the amplitude gives the sign sb00 + sb0. In thedegeneration limit we insert the omplete system �d  d in suh a way that   is loatedbetween  (1)a0k and  (1)a00l+1 , whereas  d is loated between  (1)a00l and  (1)a0k+1. Here k = 1; : : : ;mb0and l = 1; : : : ;mb00. We obtain:(�)s+sb0+sb00�d
 (x̂1)Z  (1)a0k+1 : : :  (1)a0mb0 (1)a01 : : :  (1)a0k Z  (1)a00l+1 : : :  (1)a0mb00 (1)a001 : : :  (1)a00l ���� Z 	A1 : : : �� d(x̂2)Zx̂1Gx̂1Zx̂2Gx̂2Z ~Mg;b�1d3j~�j ~m 3j~�jYj=1G ~mj��g;b�1 ;where   and  d are not yet at the positions aording to their boundary ondition labels.The sign is s=(~a01+: : :+~a0k)(~a0k+1+: : :+~a0mb0 )+(~a001+: : :+~a00l )(~a00l+1+: : :+~a00mb00). Following thesame steps as for the other fatorizations and olleting all ontributions we obtain:� bXb00<b0=1 mb0Xk=1 mb00Xl=1 (�)sb0+sb00+s3�dFg;b�1a01:::a0ka00l+1:::a00mb00 a001 :::a00l da0k+1:::a0mb0 jA1:::Âb00 :::Âb0 :::Ab : (40)This provides the �nal ontribution to the quantum A1 relation (24). Atually, what wehave found so far are the undeformed, minimal quantum A1-relations for the undeformedamplitudes F bA1j:::jAb(gs; t = 0), in partiular, F0;1a (t = 0) = F0;1ab (t = 0) = 0.Remarks: Observe that the restrition mi = 0 for i = 1; : : : ; b did not play any rôle inthe analysis of the open string fatorization hannels. This means that in situations with'bare' boundary omponents, the quantum A1-relations (24) hold only up to non-stableon�gurations like (30).Stritly speaking, we are not done with the fatorizations of the undeformed amplitudesyet, beause the annulus amplitude, equation (12) with Q insertion and t = 0, was notinluded in our onsiderations so far. We just state here that the gymnastis of the previoussetion an be applied as well and leads to the still missing terms in (24).3.5. Inluding losed string deformationsThe inlusion of losed string deformations, i.e., insertions of bulk observables in the am-plitudes, has a quite trivial e�et. First of all, ontat terms between bulk �elds do notontribute if the regularization is hosen appropriately (f. [6℄).1111Another way to say that is that the minimal L1 struture for (losed) topologial string is trivial, i.e.,all L1 brakets vanish; see [4℄. 19



Suppose we insert one (integrated) bulk desendent in the amplitude (26). If Q ats onboundary �elds or the Gmi 's we obtain the same fatorization hannels as before. In the ase(35), where the Riemann surfae splits into two, �1 and �2, the integration over the bulkobservable splits too, i.e., R� �(2)i ! R�1 �(2)i + R�2 �(2)i . Notie that this is onsisted with,and therefore allows, the formal integration of bulk desendents to the deformed amplitudes(7).If Q ats, on the other hand, on the bulk desendent we get ontat terms betweenthis bulk desendent and boundary �elds, whih gives rise to disks that bubble o� theRiemann surfae (f. [6℄). This provides additional ontributions for the quantum A1-relations involving F0;1a (t) and F0;1ab (t).We onlude that the losed string observables deform the minimal quantum A1-struturefor undeformed amplitudes into the weak quantum A1-struture (24) for deformed ampli-tudes.4. Comments on the quantum A1-relationsSo far we have negleted the boundary ondition labels, �; : : : for onveniene. Reintro-duing them makes apparent that relation (24) de�nes a yli, unital quantum A1 at-egory (rather than an algebra). It is the quantum version of a (lassial) A1-ategory,whih was originally introdued in [16℄. The boundary onditions (or D-branes) are theobjets, �; �; : : : 2 Obj(Aq1), and the boundary observables are the morphisms,  ��a 2HomAq1(�; �) = H��op . The formulation of the lassial A1-relations in terms of satteringproduts rn : H�1�2op 
 : : : 
H�n�n+1op ! H�1�n+1op an be found in the literature. We refer tothe reent review [4℄ on this subjet, and referenes therein.Instead of elaborating on this issue we want to fous subsequently on the rôle and thee�ets of the harge seletion rule on the quantum A1-relations (24) in models with ̂ = 3.For this purpose let us distinguish between boundary ondition preserving observables (BPO) ��a 2 H��op and boundary ondition hanging observables (BCO)  ��a 2 H��op for � 6= �.Consider a single D-brane so that we have only BPOs. We assume to be in a model wherethe boundary ondition preserving setor has only integral U(1) harges, i.e., q = 0; 1; 2; 3,and the unique observable of harge 0 is the unit operator 11 . This is the ase in most modelsof interest.It was pointed out in [8℄ that the disk amplitudes then have a partiularly simple formand that the (lassial) A1-relations are trivially satis�ed. A similar argument an beadopted to the all-genus topologial string amplitudes F bA1j:::jAb and goes as follows: Reall�rst that for ̂ = 3 the harge seletion rule (16) is the same irrespetive of the Eulerharater of the Riemann surfae. In partiular, the seletion rule (16) admits to insert onlymarginal boundary observables in the amplitude F bA1j:::jAb and moreover an arbitrary numberof them. Take suh an amplitude and substitute one of the marginal observables by a harge2 (or 3) one. In order to obtain a non-vanishing amplitude the seletion rule (16) fores usto introdue one (or two) units 11 in the amplitude. On the other hand, by the unitalityproperty (21) the only non-vanishing amplitudes with unit are disk 3-point orrelators. Weonlude that amplitudes on a single D-brane (with the above assumptions) (i) have only20



marginal insertions or (ii) are given by F0;111ab. From this observation it follows readily thatthe quantum A1-relations (24) are trivially satis�ed when we onsider a single D-brane.Only in multiple D-brane situations, that is for a quantum A1-ategory, the algebraiequations (24) give non-trivial relations and an be used as onstraints on the amplitudes.In fat, they provide a means of determining higher genus multiple-boundary amplitudesFg;bA1j:::jAb reursively from amplitudes with larger Euler harater. To see this let us rewrite(24) in suh a way that they look diagrammatially as follows:
g, bΣ Σ= (amplitudes with � > �g;b) : (41)Here, as ompared to (24), we gave up ombining the di�erent levels of genera g into anexpansion of the topologial string oupling gs. The left-hand side of (41) omprises allterms from the left-hand side of (24) that involve disk amplitudes. Therefore, writing thequantum A1-relations in the form (41) makes apparent that they provide a sequene oflinear systems in Fg;bA1j:::jAb, whih an be solved reursively, starting from disk amplitudes.5. Quantum master equation?From string �eld theory [10, 30℄ it is known that the lassial as well as the quantum A1-struture have a dual desription on a (formal) nonommutative supermanifold. In ourontext the latter orresponds to the open string moduli spae (see [11℄ for the preiserelation) and we should be able to reast the quantum A1-relations (24) into a quantummaster equation on moduli spae.In order to see whether this is indeed true let us introdue for our basis  ��a 2 H��op a dualbasis ŝ��a 2 Hdop. The deformation parameters (or open string moduli) ŝ��a are taken to beassoiative and graded nonommutative. The latter requirement aounts for ases where wehave Chan{Paton extensions in the boundary setor [11℄, i.e., the deformation parametersare (super)matries Xa. The Z2-degree of ŝ��a is the same as the Z2-degree of  ��a . Let usdrop the boundary ondition labels again, understanding that the deformation parametersorrespond to edges in some Quiver diagram assoiated to the D-brane on�guration [11℄.An element in the ring A of (formal) power series in fŝag is given by f(ŝa) = f0 +P1m=1 1mfa1:::am ŝa1 : : : ŝam. Let us de�ne left and right partial derivatives *� a, (� a: A! A by:*� a f(s) = (�)~a( ~f+1)f(s) (� a== 1Xm=0 mXi=1 (�)~a(~a1+:::+~ai�1)fa1:::ai�1aai+2:::am ŝa1 : : : ŝai�1 ŝai+1 : : : ŝam ;and the BV operator � : A! A by: � := �ab *�a*� b :Consider the formal power seriesg�2s S(gs; t; ŝ) := 1Xb=1 1Xmi=0 1b!m1 : : :mbF bA1j:::jAb(gs; t) ŝA1 : : : ŝAb (42)21



assoiated to the all-genus topologial string amplitudes (14), where we used the abbreviationŝAi = ŝa[i℄1 : : : ŝa[i℄mi . Note that amplitudes with mi = 0 are inluded in the series (42). It isunderstood that 1=mi is substituted by 1 whenever mi = 0. From the Z2-seletion rule (18)it follows that the series S(gs; t; ŝ) has even degree.After dressing the quantum A1-relations (24) with the deformation parameters ŝAi andsumming over all numbers of boundaries b it follows that the quantum A1-relations ombineinto the quantummaster equation � e�S=g2s = 0. Notie however that amplitudes withmi = 0are inluded in S(gs; t; ŝ), so that this equation holds only up to non-stable on�gurationslike in (31). We obtain not quite the quantum master equation, but:� e�S=g2s = ��ŝ11TrH��op (�)F + non-stable � e�S=g2s ; (43)whih we refer to as the modi�ed quantum master equation.The onverse statement that (43) implies the quantum A1 relations is not true, beausethe latter are �ner than the modi�ed quantummaster equation. This traes bak to de�nition(42), from whih we see that S(gs; t; ŝ) is not a generating funtion for the string amplitudesFg;bA1j:::jAb. To see this let us rewrite S(gs; t; ŝ) in the following way:g�2s S(gs; t; ŝ) = 1Xg=0 1Xb=1 g2g+b�2sb!m1 : : :mbFg;bA1j:::jAb(t) ŝA1 : : : ŝAb= 1X��=�1 2��Xb=1 g��sb!m1 : : :mbFg;bA1j:::jAb(t) ŝA1 : : : ŝAb= 1X��=�1 2��Xb=1 g��sb!m1 : : :mbFg;ba1:::j:::j:::am(t) ŝa1 : : : ŝam= 1X��=�1 g��s F�a1:::am(t) ŝa1 : : : ŝam :where m =Pimi and F�a1:::am(t) = 2��Xb=1 1b!m1 : : :mbFg;ba1:::j:::j:::am(t) :This means that the oeÆients in the power series S(gs; t; ŝ) are sums over string amplitudeswith the same Euler harater and the same boundary �eld on�guration. However, the genusg as well as the number of boundaries b vary in this sum. The partitioning of the �elds overthe di�erent numbers of boundary omponents in F�a1:::am(t) must, of ourse, be onsistentwith the boundary ondition labels.Therefore, the modi�ed master equation (43) is an equation for the quantities F�a1:::am(t).The quantum A1-relations (24) are �ner in the sense that they split up with respet to gand b. If we are interested in F-terms for the 4 dimensional N = 1 supergravity [1, 36{38℄or in higher genus open Gromov{Witten invariants, then it is important to have the moredetailed information from (24). 22
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