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tWe study fa
torizations of topologi
al string amplitudes on higher genus Riemann surfa
eswith multiple boundary 
omponents and �nd quantum A1-relations, whi
h are the highergenus analog of the (
lassi
al) A1-relations on the disk. For topologi
al strings with 
̂ = 3the quantumA1-relations are trivially satis�ed on a single D-brane, whereas in a multipleD-brane 
on�guration they may be used to 
ompute open higher genus amplitudes re
ursivelyfrom disk amplitudes. This 
an be helpful in open Gromov{Witten theory in order todetermine open string higher genus instanton 
orre
tions.Finally, we �nd that the quantum A1-stru
ture 
annot quite be re
ast into a quantummaster equation on the open string moduli spa
e.
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1. Introdu
tion and summaryThe perturbative topologi
al 
losed string is by now quite well-studied. The holomorphi
anomaly equations [1℄ suggest an interpretation of the topologi
al string partition fun
tionas a wave fun
tion [2, 3℄, and 
urrent resear
h is 
on
entrating on understanding this wavefun
tion in terms of a non-perturbative 
ompletion of the topologi
al string.The open topologi
al string is far from su
h an understanding | it is not even well-studied perturbatively. This work is a �rst step in this dire
tion. We do not yet try to
onsider the analog of holomorphi
 anomalies for open strings; these are notoriously diÆ
ultto handle (
f. the remarks in [1℄). Instead we 
on
entrate on a more fundamental di�eren
ebetween open and 
losed topologi
al strings.Deformations of 
losed string moduli are not obstru
ted, i.e., they are not subje
t to somepotential. This is re
e
ted in the fa
t that the asso
iated on-shell1 L1 stru
ture vanishes [4℄,whi
h is the main reason for why L1 stru
tures played a minor rôle in the physi
al literatureon topologi
al 
losed strings.The pi
ture is quite di�erent in open topologi
al string theory (at tree-level). The openstring moduli sa are obstru
ted be
ause they are lifted by an e�e
tive superpotential [5℄,Weff = 1Xm=1 1mFa1:::amsa1 : : : samwhi
h is due to a non-vanishing on-shell A1 stru
ture for the disk amplitudes Fa1:::am [6℄.Therefore, in 
ontrast to 
losed topologi
al strings homotopy algebras play a more importantrôle in open topologi
al string theory.In [6℄ the A1-stru
ture was derived from the bubbling of disks, whi
h was indu
edby the insertion of the topologi
al BRST operator. In the present work we extend thisanalysis to topologi
al string amplitudes Fg;bA1j:::jAb(t) on genus g Riemann surfa
es with bboundary 
omponents. Here, Ai, for i = 1; : : : ; b, is a 
olle
tive index for the 
y
li
allyordered topologi
al observables, whi
h are inserted at the ith boundary 
ir
le. t is a 
losedstring modulus. It turns out to be 
onvenient to resume these amplitudes in the all-genustopologi
al string amplitudes,F bA1j:::jAb(gs; t) = 1Xg=0 g2g+b�2s Fg;bA1j:::jAb(t) ;where we introdu
ed the topologi
al string 
oupling 
onstant gs. The main result of thiswork then states that the all-genus topologi
al string amplitudes Fg;bA1 j:::jAb(gs; t) satisfy the(
y
li
) quantum A1-relations (24).At �rst sight these relations look quite 
ompli
ated, but they bear some interestingfeatures:1. There are no 
losed string fa
torization 
hannels involved in these relations. This isessentially due to the fa
t that degenerations in the 
losed string 
hannel 
orrespond to1By on-shell we mean the minimal L1 stru
ture on the spa
e of topologi
al observables, i.e., the 
oho-mology 
lasses of the BRST operator. 2



(real) 
odimension 2 boundaries of the moduli spa
e of the Riemann surfa
e, whereasthe insertion of the BRST operator 'maps' only to the (real) 
odimension 1 boundary.This will be explained in detail in the present work. The quantum A1-stru
ture is,therefore, simpler than the homotopy algebra stru
tures that appear in Zwieba
h'sopen-
losed string �eld theory [4,7℄.2. As it was pointed out in [8℄, in the 
ontext of the topologi
al B-model, the (
lassi
al)A1-relations are trivially satis�ed on a single D-brane. We �nd that this is true forthe full quantum A1-relations in models with 
entral 
harge 
̂ = 3. This fa
t relies onarguments involving the U(1) R-
harge of the topologi
al observables.3. On the other hand, in a situation with multiple D-branes the quantum A1-relationsgive rise to a sequen
e of linear systems for the amplitudes Fg;bA1j:::jAb(t), whi
h 
an besolved re
ursively starting from disk amplitudes. As an example, we �nd solutions tothe linear system in the 
ontext of open string instanton 
ounting on the ellipti
 
urvein the 
ompanion paper [9℄.For the derivation of the quantum A1-relations we make the te
hni
al assumption thatevery boundary 
omponent of the Riemann surfa
e 
arries at least one observable. This isimportant, for otherwise there appear non-stable 
on�gurations, whi
h 
orrespond to non-
ompa
t dire
tions in the moduli spa
e of the Riemann surfa
e. More spe
i�
ally, these 
omefrom 
losed string fa
torization 
hannels where a 'bare' boundary 
omponent, i.e., withoutoperator insertions, bubbles o� from the rest of the Riemann surfa
e. The appearan
e ofa non-stable 
on�guration indi
ates ambiguities in view of divergen
es of topologi
al stringamplitudes (
f. [9℄).As it is familiar from string �eld theory [7,10℄ and re
ently from open topologi
al stringtheory [11℄, homotopy algebras have a dual des
ription in terms of a master equation ona dual supermanifold (in the present 
ontext, the open string moduli spa
e). We brie
y
omment on this relation and �nd that we have to formally in
lude the non-stable 
on�g-urations, that we just alluded to, in order to re
ast the quantum A1-stru
ture into themodi�ed quantum master equation (43). We want to stress that on the way of deriving thisrelation some information on the topologi
al string amplitudes is lost so that the quantumA1-stru
ture is not faithfully mapped to the modi�ed quantum master equation.Before giving an outline of the paper we list some 
on
rete models where the quantumA1-relations may be applied. (i) Consider the topologi
al B-model on a Calabi{Yau 3-foldM in the presen
e of B-type boundary 
onditions. The latter 
orrespond to holomorphi
ve
tor bundles over holomorphi
 submanifolds or, more generally, to obje
ts in the derived
ategory of 
oherent sheaves on M [12, 13℄. At the 
lassi
al level the A1-stru
ture was
omputed for some expli
it D-brane 
on�gurations on non-
ompa
t Calabi{Yau manifoldsin [8℄. (ii) The mirror dual of su
h a model is the topologi
al A-model on M with A-typeboundary 
onditions des
ribing Lagrangian submanifolds and the 
oisotropi
 D-branes of[14,15℄. These are obje
ts in Fukaya'sA1 
ategory [16℄. Correlation fun
tions in theA-modelre
eive world-sheet instanton 
orre
tions, thus relating it to enumerative geometry of rational
urves inM or holomorphi
 disks spanned between Lagrangian submanifolds. In this 
ontextthe quantum A1-relations 
ould provide a means of re
ursively 
omputing higher genus3



open Gromov{Witten invariants from disk invariants. (iii) A last example are topologi
allytwisted Landau{Ginzburg (LG) orbifolds with B-type boundary 
onditions. The D-branes
orrespond to equivariant matrix fa
torizations of the LG superpotential [17,18℄.The paper is organized as follows: In se
tion 2 open-
losed topologi
al string amplitudesare de�ned, and basi
 symmetry properties as well as sele
tion rules are reviewed. The mainresult, the quantum A1-relations for the amplitudes F bA1j:::jAb(gs; t), is stated and proven inse
tion 3. We pro
eed with the dis
ussion of some features of our result in se
tion 4 and
lose with the derivation of the modi�ed quantummaster equation on the open string modulispa
e in se
tion 5.2. Open-
losed topologi
al string amplitudesLet us start with reviewing the general setup of open-
losed topologi
al string theory. Thiswill give us also some room to introdu
e notations. By de�nition a topologi
al string theoryis a 2d topologi
al 
onformal �eld theory (TCFT) 
oupled to gravity.So let us have a look at the TCFT �rst. The most important relation in the topologi
aloperator algebra [19℄ 
an be stated as the fa
t that the stress-energy tensor Tzz is BRSTexa
t, i.e.,2 Tzz(z) = [Q;Gzz(z)℄ : (1)Here, Q is the BRST operator and Gzz is the fermioni
 
urrent of the operator algebra. TheU(1) R-
urrent Jz(z) does not interest us for the moment, but will play an important rolein subsequent se
tions.Sin
e we want to 
onsider models on general oriented, bordered Riemann surfa
es �we have to spe
ify boundary 
onditions on the 
urrents. The only 
hoi
e for pi
king theseboundary 
onditions 
omes from the U(1) automorphism of the topologi
al operator algebra,whi
h a
ts as a phase fa
tor ei�' on the fermioni
 
urrents Q(z) and Gzz(z). However, asingle-valued 
orrelation fun
tion requires that the di�eren
e of the phases between twoboundary 
onditions is integral, �' 2Z(
f. [20℄ in the 
ontext of super
onformal algebras).The overall phase is unphysi
al and 
an be set to zero, so that the 
urrents of the topologi
aloperator algebra satisfy the simple relationsW bos = �W bosW ferm = (�)s �W ferm on �� ;for integral s.The observables of an open-
losed string theory are the 
ohomology 
lasses of the BRSToperator Q. Bulk observables �i are in one-to-one 
orresponden
e with states in the 
losedstring Hilbert spa
e H
l, in short we write �i 2 H
l. Whereas boundary observables  ��a
orrespond to a states in the open string Hilbert spa
e H��op . The upper indi
es denote theboundary 
onditions, i.e., the topologi
al D-branes, on either side of the �eld. The 
y
li
alorder of the boundary �elds ensures that the boundary labels �; �; : : :, on
e determined,always mat
h, so that we restrain ourselves from writing the boundary labels expli
itly in2Subsequently, we use [:; :℄ as a graded 
ommutator.4



the following. In a topologi
al 
onformal �eld theory it is important to 
hoose a parti
ularrepresentative of the BRST 
ohomology 
lass by requiring [19℄[G0; �i℄ = [ �G0; �i℄ = [(G0 + (�)s �G0);  ��a ℄ = 0 ; (2)whi
h implies that the topologi
al observables have 
onformal weight zero.In view of relation (1) we 
an de�ne topologi
al des
endents [21℄ asso
iated with bulk andboundary observables: the bulk 2-form des
endent �(2)i and the boundary 1-form des
endent (1)a are parti
ularly important for us and satisfy the relations[Q;�(2)i ℄ = d�(1)i resp. [Q; (1)a ℄ = d a : (3)The 
oupling of the TCFT to 2d gravity is similar to the bosoni
 string and we 
aninherit the pro
edure to de�ne amplitudes on bordered higher genus Riemann surfa
es.3 Forthat we introdu
e the quantitiesGmi := Z� d2z (Gzz�zi �z +G�z�z��zi z) ; (4)whi
h we have to insert in the path integral to a

ount for zero modes related to the 
omplexstru
ture moduli spa
e of the Riemann surfa
e �. In (4) �zi �z denotes the Beltrami di�erential,�zi �z := 12gz�z ��mig�z�z ;
orresponding to the 
omplex stru
ture modulus mi. Using (1) and the de�nition of thestress-energy tensor, we dedu
e the relation
: : : [Q;Gmi℄ : : :� = ��mi
: : :� : (5)2.1. De�nition of the amplitudesHaving set up the basi
s we 
an start de�ning the topologi
al string amplitude on orientedRiemann surfa
es �g;b of genus g with b boundary 
omponents.4A measure on the moduli spa
e of pun
tured bordered Riemann surfa
es is de�ned 
on-sistently only for stable 
on�gurations, that is, if2g + b� 2 + 2n + bXi=1 mi � 0 ; (6)where n is the number of bulk observables and mi is the number of boundary observablesinserted on the ith boundary 
omponent.3We are not 
onsidering gravitational des
endents here [22℄!4In the following we are not interested in the holomorphi
 anomaly of the higher genus amplitudes [1℄,whi
h means that we �x a parti
ular ba
kground �t = �t0 where the theory is well-de�ned and do not 
onsider
hanges thereof. We will not indi
ate this ba
kground value subsequently and we will work in 
at 
oordinates.5



Riemann surfa
es with Euler 
hara
ter �g;b = 2 � 2g � b � �1 do not possess 
onfor-mal Killing ve
tor �elds, so that we are not for
ed to gauge the 
orresponding symmetry.Following the pres
ription in bosoni
 string theory the amplitudes are de�ned asFg;bA1j:::jAb(t) := Z d3j�g;bjm 
PZ  (1)a[1℄1 : : :Z  (1)a[1℄m1 ��Z  (1)a[2℄1 : : : �� : : : ��eti R �(2)i 3j�g;bjYi=1 Gmi��g;b ; (7)where we introdu
ed the 
olle
tive index Ai = a[i℄1 : : : a[i℄mi. P means that the boundarydes
endents are integrated in 
y
li
al order; subsequently we will refrain from writing P ex-pli
itly. The integration over the 
omplex stru
ture moduli spa
e of the pun
tured Riemannsurfa
e will be de�ned more 
arefully later in se
tion 3.1.The amplitudes (7) 
an be understood as generating fun
tion for all amplitudes witharbitrary number of bulk insertions. We will sometimes refer to the amplitudes (7) asdeformed amplitudes as 
ompared to undeformed ones where the 
losed string moduli ti areturn o�, i.e., ti = 0. As already emphasized in [6℄ it is not possible to subsume the boundaryobservables as deformations be
ause of the boundary 
ondition labels and the 
y
li
 ordering.There are four Riemann surfa
es whi
h do have 
onformal Killing ve
tors and need spe
ialtreatment. Let us start with the simplest one, the Riemann sphere �0;0 = S2. The global
onformal group is SL(2; C ), whi
h 
an be gauged by �xing three bulk observables. Thesphere three-point fun
tion de�nes the prepotential F = F0;0 in the well-known way:�i�j�kF0;0(t) := 
�i �j �k eti R �(2)i ��0;0 : (8)On the torus �1;0 the 
onformal Killing ve
tors 
orrespond to translations and the 
omplexstru
ture moduli spa
eM1;0 is the upper half 
omplex plane mod PSL(2;Z). The amplitudereads: �iF1;0(t) := Z d�d��
�i eti R �(2)i G� G����1;0 : (9)For the bordered Riemann surfa
es with 
onformal Killing ve
tors the situation is a bitmore 
omplex for the reason that we 
an use either bulk or boundary observables to �x theglobal 
onformal symmetries. On the disk �0;1 we need to �x three real positions, so thatwe 
an have two types of amplitudes (whi
h are, however, related by Ward identities [6℄):5F0;1a1:::am(t) := �(�1)~a2+:::+~am�1
 a1 a2P Z  (1)a3 : : :Z  (1)am�1 am eti R �(2)i ��0;1 ; (10)for m � 3, and �iF0;1a (t) := 
�i a eti R �(2)i ��0;1 ; (11)�iF0;1ab (t) := 
�i a Z  (1)b eti R �(2)i ��0;1 :5We anti
ipate the suspended grading ~ai from (17), whi
h is the fermion number of the des
endent  (1)ai .Note the overall sign 
hange in (10) as 
ompared to [6℄.6



On the annulus �0;2 the rotation symmetry 
an be �xed by a boundary observable or a bulkdes
endent �(1)i integrated along a 
ontour from one boundary to the other, resulting in:F0;2A1jA2(t) := Z 10 dL
 a[1℄1Z  (1)a[1℄2 : : :Z  (1)a[1℄m1��Z  (1)a[2℄1 : : :Z  (1)a[2℄m2�� eti R �(2)i GL��0;2 ; (12)for m1 � 1. For annulus amplitudes without any boundary insertions (
f. [1℄) we de�ne:�iF0;2:j: (t) := Z 10 dL
ZC �(1)i eti R �(2)i GL��0;2 ; (13)where the 
ontour C runs from one boundary 
omponent to the other. The integrationto Fg;b::: in (8), (9) as well as (11), (13) is well-de�ned through 
onformal Ward identities[6, 19℄. In the following we will assume that the integration 
onstants in (11) are zero, i.e.,F0;1a ��t=0 = F0;1ab ��t=0 = 0.For later 
onvenien
e we introdu
e the all-genus topologi
al string amplitudesF bA1j:::jAb(gs; t) := 1Xg=0 g2g+b�2s Fg;bA1j:::jAb(t) for b � 1 : (14)Note that for b = 0 the analogous de�nition gives the topologi
al 
losed string free energyF(gs; t) =P1g=0 g2g�2s Fg;0(t) [1℄.2.2. Topologi
al twist and 
harge sele
tion rulesSuppose we started with an N = (2; 2) super
onformal algebra (broken by boundary 
ondi-tions to N = 2), whi
h is part of a superstring 
ompa
ti�
ation. We will leave the 
entral
harge 
 = 3
̂ arbitrary for the moment. The topologi
al twist by T ! T + 12�J to theasso
iated topologi
al algebra is implemented by 
oupling the spin 
onne
tion ! = � ln(pg)to the U(1) 
urrent J in the a
tion [1,21,23℄, i.e.,18� Z�g;b d2z(! �J + �!J) :Using the bosonization J = ip
̂�H and taking into a

ount that we have boundaries we get�ip
̂8� Z�g;b d2zpgR(2)H + 
:
:� ip
̂4� Z��g;b d�kH + 
:
: ; (15)where R(2) is the world sheet 
urvature and k is the geodesi
 
urvature along the boundary.If we deform the world sheet metri
 su
h that the 
urvature lo
alizes at j�g;bj points thetwisting term (15) gives rise to �g;b insertions of the spe
tral 
ow operator e� i2p
̂(H� �H) inthe super
onformal 
orrelator, whi
h, in total, 
arry the ba
kground U(1) 
harge �
̂�g;b.In view of these 
onsiderations the U(1) 
harges Q� of all operator insertions have tosatisfy the 
ondition #insertX�=1 Q� = 
̂�g;b :7



Let us 
onsider an arbitrary Riemann surfa
e �g;b with �g;b < 0. From the dis
ussion inthe previous se
tion we know that we have to insert �3�g;b Beltrami di�erentials 
oupledto Gzz , whi
h have 
harge QG = �1. Furthermore, every bulk des
endent �(2)i 
arriesQi = qi � 2, where qi is the 
harge of the asso
iated topologi
al observable �i, and everyboundary des
endent  (1)a 
arries 
harge Qa = qa � 1. The 
harge sele
tion rule be
omesnXi=1 qi + bXl=1 mlXal=1 qal = 2n +m+ (
̂� 3)�g;b ; (16)where n and m = Pbl=1mi are the total number of bulk resp. boundary observables. Per-forming a 
ase-by-
ase study it is easy to show that this formula extends to Riemann surfa
eswith �g;b � 0, i.e., the sphere, the disk, the annulus and the torus.2.3. Ba
kground fermion number - (suspended) Z2-gradingThe bulk as well as the boundary �elds of a general topologi
al string theory 
arry a Z2-grading asso
iated to the fermion number F . Just as for the U(1) 
harge we have to 
an
el aba
kground fermion number ! 2Z2, whi
h a

ounts for the insertion of fermioni
 zero modesin the path integral on the disk. In the 
ontext of matrix fa
torizations in Landau{Ginzburgmodels this is manifest in the Kapustin{Li formula [24,25℄, whereas in the topologi
al A- andB-model the ba
kground 
harge 
an be read o� from the inner produ
t for the Chern{Simonsresp. holomorphi
 Chern{Simons a
tion [26℄.A generalization of the Z2-sele
tion rule to arbitrary Riemann surfa
es 
an readily beseen from a fa
torization argument within 2d topologi
al �eld theory [27,28℄; every boundary
omponent 
ontributes ! to the ba
kground fermion number on
e, so that we obtain#insertX�=1 F� = b ! :Taking into a

ount that the 
urrent Gzz is odd we �nd Pni=1 Fi +Pma=1 Fa = m+ (! + 1)bfor the topologi
al string amplitudes, where Fi and Fa are the fermion numbers for bulkresp. boundary observables.Most of the subsequent formulas are 
onveniently expressed through the introdu
tion ofa suspended grading, whi
h we de�ne by:~i := Fi for a bulk �eld �i ;~a := Fa + 1 for a boundary �eld  a ; (17)and ~! := ! + 1. In other words, the suspended grading is the fermion number of thetopologi
al des
endent rather than the topologi
al observable itself. From now on we willrefer to the notions even and odd with respe
t to the suspended grading. The Z2-sele
tionrule takes the simple form nXi=1 ~i+ bXl=1 mlXal=1 ~al = b ~! : (18)8



For most interesting models there is a 
lose relation between theZ2-grading and the U(1)
harge. For Calabi{Yau 
ompa
ti�
ations this is simple, sin
e the U(1) 
harge is the formdegree and the fermion number is the form degree mod 2. In Gepner models, on the otherhand, a relation is ensured in view of the orbifold a
tion [29℄. In parti
ular, we have (
̂� 3)mod 2 = ~!.Remark: For the rest of the paper we 
onsider the 
ase ~! = 0, so that the Z2-sele
tionrule is the same for arbitrary numbers of boundaries b, i.e.,nXi=1 ~i+ bXl=1 mlXal=1 ~al = 0 :In many pra
ti
al situations we 
an 
on
entrate on even bulk �elds. For instan
e, in Landau{Ginzburg models (not orbifolded!) the bulk 
hiral ring in
ludes only even �elds. In thetopologi
al A- and B-model the interest lies mainly on the marginal bulk operators,6 whi
hare always even. Therefore, we subsequently 
onsider only even bulk �elds.2.4. Symmetries, 
y
li
 invarian
e, and unitalityIn view of the topologi
al nature of the amplitudes (14), we 
an deform the Riemann surfa
eand ex
hange two boundary 
omponents. This leads to the graded symmetry:F bA1j:::jAi jAi+1 j:::jAb = (�) ~Ai ~Ai+1F bA1j:::jAi+1jAi j:::jAb for 8 i = 1; : : : ; b� 1 ; (19)where ~Ai = ~a[i℄1+ : : :+ ~a[i℄mi.Moreover, the invarian
e of disk amplitudes under 
y
li
 ex
hange of boundary observ-ables naturally extends to b � 1, i.e.,F bA1j:::ja[i℄1a[i℄2:::a[i℄mi j:::jAb = (�)~a[i℄1(~a[i℄2+:::+~a[i℄mi)F bA1 j:::ja[i℄2:::a[i℄mia[i℄1j:::jAb : (20)The behavior of the topologi
al amplitudes under insertion of the boundary unit operator11 was investigated in [6℄ and it was shown that all tree-level amplitudes F0;1a1:::am with at leastone unit operator insertion vanish ex
ept form = 3. For all other amplitudes with 2g+b�2 �0 it is easy to see that they vanish upon insertion of the unit, be
ause the des
endent of theunit vanishes, i.e., 11 (1) = 0.7 We de�ne unitality for the all-genus amplitudes F bA1j:::jAb as theproperties:8 F111 ab = (�)~a�abF ba[1℄1:::11 :::a[1℄m1j:::jAb = 0 otherwise ; (21)6We adopt the terminology of the untwisted N = 2 super
onformal theory and 
all topologi
al bulk andboundary observables with q = qL + qR = 2 resp. q = 1 marginal.7The only amplitude that does not vanish by this reasoning is the annulus with just the unit inserted onone boundary. It is, however, zero by the 
harge sele
tion rule (16).8Stri
tly speaking, this is true if we deform the amplitudes by marginal bulk observables only. If weadmit the full bulk 
hiral ring in the deformations there 
an also be non-vanishing bulk-boundary 2-pointdisk 
orrelators with unit, i.e., the 
harge sele
tion rule (16) admits �iF0;111 = 
�i 11 ��0;1 6= 0.9



where �ab = 
 11  a b��0;1 (22)is the topologi
al open string metri
. Note that the 
harge sele
tion rule (16) for �ab reads~a+~b = 1 (re
all ~! = 0), and the metri
 is (graded) symmetri
�ab = (�)~a~b�ba :Subsequently, we will use the topologi
al open string metri
 �ab rather than the symple
ti
stru
ture !ab = (�)~a�ab, whi
h is 
ommonly used in the literature on 
y
li
 A1-stru
tures[10,30℄.2.5. Spe
ial ba
kground 
harge 
̂ = 3Topologi
al string theories, for whi
h the ba
kground 
harge 
̂ is equal to the 
riti
al dimen-sion of the internal spa
e of a superstring 
ompa
ti�
ation, i.e., 
̂ = 3, have in many respe
tsspe
ial properties. The topologi
al 
losed string at tree-level is then governed by spe
ial ge-ometry and the tt� equations; and through the 'de
oupling' of marginal operators from therelevant and irrelevant ones the holomorphi
 anomaly equations of [1℄ take a parti
ularlysimple form.In our situation 
̂ = 3 is spe
ial in that the 
harge sele
tion rule (16) is equal for arbitrarygenus g and number of boundaries b, whi
h leads to similar 
on
lusions as for the topologi
al
losed string [1℄. First of all, an all-genus amplitude F ba1:::am(gs; t), in whi
h the �elds satisfythe sele
tion rule (16), gets 
ontributions from all genera. This is not the 
ase when 
̂ 6= 3,be
ause then Fg;ba1:::am is non-vanishing for at most one parti
ular genus ĝ, i.e.,F bA1j:::jAb = P1g=0 g2g+b�2s Fg;bA1j:::jAb for 
̂ = 3;F bA1j:::jAb = g2ĝ+b�2s F ĝ;bA1j:::jAb for 
̂ 6= 3; and appr. genus ĝ;where ĝ is determined by ~A1; : : : ; ~Ab and b through the 
harge sele
tion rule (16).In fa
t, in many theories with 
̂ 6= 3 there is no solution to the 
harge sele
tion rule forĝ � 1 at all. For example, in a topologi
al string theory with 
̂ = 1, su
h as the topologi
allytwisted non-linear sigma model on the torus or the asso
iated Landau{Ginzburg orbifold,the boundary observables have 
harges in the range 0 � q � 1. Therefore, only Riemannsurfa
es with �g;b � 0 give non-vanishing amplitudes. In parti
ular, the annulus and thetorus amplitudes admit only marginal operator insertions.3. Quantum A1-
ategoryAs was shown in [6℄ the topologi
al open string amplitudes satisfy a unital, 
y
li
A1-algebraat tree-level: mXl�k=1(�)sl F0;1a1:::al
ak+1:::am�
dF0;1dal+1:::ak = 0 for m � 0 ; (23)10



ρ =Σ +ΣΣ
ρ

ρFigure 1: A diagrammati
 representation of the quantum A1-relations (24) for b = 5. The expansion in gs, i.e., the sum over allgenera g, is indi
ated by the wiggly lines on the Riemann surfa
es.where sl = ~a1+ : : :+~al. Let us brie
y re
all how this relation 
omes about. When we insertthe BRST operator Q = HC Qz + �Q�z in the disk amplitudes (10) or (11) with the 
ontourC 
hosen su
h that it en
loses non of the operators then the amplitudes vanish. On theother hand, if we deform the 
ontour and a
t on all the bulk and boundary �elds, a series of
onta
t terms gives rise to disks that bubble o� through a topologi
al operator produ
t andwe eventually get the A1-stru
ture (23). In this se
tion we apply this idea to topologi
alstring amplitudes of arbitrary genus g and b boundary 
omponents and show the followingresult:Theorem 1 The all-genus topologi
al string amplitudesF bA1j:::jAb(gs; t) := 1Xg=0 g2g+b�2s Fg;bA1j:::jAb(t) ;where Ai is the 
olle
tive index a[i℄1 : : : a[i℄mi, satisfy (what we 
all) the unital, 
y
li
 quantumA1-relations:bXb0=1 X�2Sb m�(1)Xk�l=1 (�)s�( ~A)+s1(b�b0)!(b0�1)!F b�b0+1a1:::ak
al+1:::am�(1) jA�(2)j:::jA�(b�b0+1)�
dF b0dak+1 :::aljA�(b�b0+2)j:::jA�(b)= bXb0=1 mb0Xk�l=1(�)sb0+s2 �
dF b+1a01:::a0k
a0l+1:::a0mb0 jda0k+1:::a0ljA1j:::Âb0 :::jAb (24)+ bXb00<b0=1 mb0Xk=1 mb00Xl=1 (�)sb0+sb00+s3 �
dF b�1a01:::a0k
a00l+1:::a00mb00 a001 :::a00l da0k+1 :::a0mb0 jA1j:::Âb0 :::Âb00 :::jAb ;for b � 1, provided that mi � 1 for i = 1; : : : ; b. When b = 1 the last term is zero. We
all the quantum A1-relations weak if both F0;1a (t) and F0;1ab (t) are non-vanishing, strongif F0;1a (t) = 0, and minimal if F0;1a (t) = F0;1ab (t) = 0. In the undeformed 
ase, t = 0, thequantum A1-relations are minimal. 11



The signs in (24) are:s1 = ~a1+: : :+~ak+(~al+1+: : :+~am�(1)+ ~A�(2)+: : : ~A�(b�b0+1))( ~d+~ak+1+: : :+~al)s2 = ~a01+: : :+~a0k+(~a0l+1+: : :+~a0mb0 )( ~d+~a0k+1+: : :+~a0l) (25)s3 = ~a01+: : :+~a0k+(~a001+: : :+~a00l )(~a00l+1+: : :+~a00mb00 )+ ~Ab00( ~d+~a0k+1+: : :+~a0mb00)sb0 = ~Ab0( ~A1+: : :+ ~Ab0�1) :and s�( ~A) is the Koszul sign for the permutation � 2 Sn of boundary 
omponents with Z2-grading ~Ai. We used the abbreviations aj = a[�(1)℄j, a0j = a[b0℄j and a00j = a[b00℄j. Fig. 1shows a pi
torial representation of the quantum A1-relations (24).Cy
li
 invarian
e and unitality have been dis
ussed earlier, so that it remains to showformula (24). We do this in several steps, starting with the insertion of the BRST operator inan arbitrary Riemann surfa
e �g;b. This 
auses a fa
torization of �g;b through degeneration
hannels where open or 
losed topologi
al observables are ex
hanged through an in�nitelylong throat. These degenerations are des
ribed in terms of the boundary of the moduli spa
e�Mg;b;n;m1;:::;mb of a bordered Riemann surfa
e �g;b with n (dressed) pun
tures in the bulkand mi (dressed) pun
tures on the ith boundary. For a des
ription of bordered Riemannsurfa
es and their moduli spa
es in terms of symmetri
 Riemann surfa
es the reader may
onsult [31℄; see also [32,33℄ for the 
ontext of open Gromov{Witten invariants.An important observation will be that all the 
losed string degeneration 
hannels vanish,provided that mi � 0 for all i = 1; : : : ; b. We will 
on
lude that only the open stringfa
torization 
hannels give rise to the quantum A1-relations (24).3.1. The boundary of the moduli spa
e �Mg;b;0;m1;:::;mbThe proof of theorem 1 is more tra
table if we start with the undeformed boundary theory,whi
h means that we do not insert any bulk des
endents in our amplitudes. After obtaining(24) in this situation we will in
lude bulk deformations.Our starting point is the amplitudeZMg;b d6g+3b�6m 
�Q;Z 	A1�� : : : �� Z 	Ab�� 6g+3b�6Yi=1 Gmi���g;b = 0 ; (26)for 2g + b� 2 � 1, b � 1, as depi
ted in Fig. 2. Here, we used the abbreviationZ 	Ai = ZMimi 	Ai = P Z  (1)a[i℄1(�1) : : :Z  (1)a[i℄mi (�mi) : (27)At this point some explanations on the moduli spa
e in (26) are in order. Mg;b is the 
omplexstru
ture moduli spa
e for �g;b. On an internal point of this moduli spa
e, that is, for anon-degenerate Riemann surfa
e the boundary observables are integrated in 
y
li
 order,i.e., the integration domain in (27) isMimi = (�mi�1 ! S1) :12



QFigure 2: A genus 5 amplitude with three 
onne
ted boundary 
om-ponent and a 
ontour integral over the BRST 
urrent; the markedpoints indi
ate integrated boundary �elds R  (1)ai . The Beltramidi�erential with the fermioni
 
urrents (4) are note depi
ted.Here the simplex �mi�1 is �bered over S1 as follows:�mi�1 = �(�2; : : : ; �mi)���1 < �2 < �3 < : : : < �mi < �1 + 2�	 ;where �1 2 S1 with �1 ' �1 + 2�. The total moduli spa
e for a Riemann surfa
e withpun
tures on the boundary is then a singular �brationMg;b;0;m1;:::;mb = (M1m1 � : : :�Mbmb)!Mg;b :Having set up the basi
s about the moduli spa
e, we investigate the e�e
t of the BRSToperator in (26). Relations (3) and (5) show that Q gives rise to a total derivative on themoduli spa
e. Using Stokes theorem the left-hand side of (26) looks likeZ�Mg;b;0;m1;:::;mb
: : :� :The boundary of the moduli spa
e �Mg;b;0;m1;:::;mb 
onsists of singular 
on�gurations of theRiemann surfa
e. This requires a 
ompa
ti�
ation of the moduli spa
e,Mg;b;0;m1;:::;mb, mean-ing that well-de�ned 
on�gurations of Riemann surfa
es are added at the singular lo
us ofMg;b;0;m1;:::;mb.What kind of degenerations 
an o

ur when we deform the 
omplex stru
ture of the Rie-mann surfa
e �g;b, i.e., what are the boundary 
omponents of the moduli spa
e, �Mg;b;0;m1;:::;mb?To answer this let us divide the boundary 
on�gurations in three major 
lasses:(i) A sub-
ylinder of �g;b be
omes in�nitely long and thin, so that we 
an insert a 
ompletesystem of topologi
al 
losed string observables.(ii) A sub-strip of �g;b 
onstri
ts to be in�nitely long and we 
an insert a 
omplete systemof topologi
al open string �elds.(iii) Several boundary �elds 
ome 
lose together and we 
an take the topologi
al operatorprodu
t, whi
h on
e again amounts to inserting a 
omplete system of open string �elds andbubbling of a disk. (This degeneration 
ould be in
luded in (ii), but we 
onsider it separatelyfor te
hni
al reasons, whi
h be
ome 
lear below.)13
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l Figure 3: Closed string fa
torizationsIn the subsequent se
tions we investigate these three situations one-by-one and 
omputethe resulting 
ontributions to (24).3.2. The 
losed string fa
torization 
hannelA fa
torization in the 
losed string 
hannel (
f. Fig. 3) o

urs if the BRST operator a
tson one of the Gmi 's and gives rise to the derivative ��mi . For de�niteness let us �rst 
onsiderthe situation like in Fig. 3a, where non of the fa
torization produ
ts is a disk.In the neighborhood of the degeneration, the Riemann surfa
e 
an be des
ribed in termsof the plumbing-�xture pro
edure [34,35℄. Take any two Riemann surfa
es, �1 and �2, and
ut out a disk of radius pjqj on both of them, where q 2 C and jqj small. The 
entersof the disks are lo
ated at ẑ1 and ẑ2. Let us parameterize the neighborhood of the disksby the 
omplex 
oordinates z1 and z2. The plumbing-�xture pro
edure tells us to glue theRiemann surfa
es through the transition fun
tion z2� ẑ2 = q=(z1� ẑ1). This gluing des
ribesa 
ylinder of length l and twist parameter t, determined by q = ei� = e�l+it. In the limit ofin�nite length, l!1, the tube 
onne
ts at the points, ẑ1 and ẑ2, to the Riemann surfa
es,�1 and �2, respe
tively. Near this degenerate point the moduli spa
e �Mg;b;0;m1:::mb 
an beparameterized by the 
oordinates (�; ẑ1; ẑ2; ~mi; m̂j). The moduli ~mi and m̂j are the modulion the Riemann surfa
es �1 and �2.Instead of putting the moduli dependen
e on (�; ẑ1; ẑ2) into the world sheet metri
 andusing the Beltrami di�erentials �zi �z, let us make a lo
al 
onformal transformation to a 
onfor-mally 
at metri
 on the 
ylinder and des
ribe the moduli dependen
e through the transitionfun
tion between the 
oordinates z1 and z2. An in�nitesimal 
hange of the moduli 
an thenbe written in terms of the 
onformal ve
tor �eldvz(z1 � ẑ1) = Æẑ1v1 + Æ�v� + Æẑ2v2 = Æẑ1 + Æ� (z1 � ẑ1) + Æẑ2ei� (z1 � ẑ1)2 :The integrals over the Beltrami di�erentials be
omeZ Gmi = IC Gzzvzi + �G�z�z�v�zi (28)for i = 1; 2; � . The 
y
le C wraps on
e around the tube.The degeneration that we des
ribed here 
orresponds to the situation when Q a
ts onGl and gives rise to the total derivative ��l. Using (28) the amplitude on the degenerate14



Riemann surfa
e be
omesliml!1 Z 
: : : [G�1; [ �G�1; �m(ẑ1)℄℄6g0+3b0�6Yi=1 G ~mi��g0;b0 �mn � (29)� 
�n ��qL0�q �L0���k ��kl Z 
[i(G0 � �G0); [G�1; [ �G�1; �l(ẑ2)℄℄℄ : : :6g00+3b00�6Yj=1 Gm̂j��g00 ;b00 ;where g0 + g00 = g, b0 + b00 = b. We omitted the details about the integration over themoduli spa
es and also about the boundary observables, whi
h are indi
ated by dots. Inthe limit l ! 1, q vanishes and only states with L0 = �L0 = 0, i.e., the topologi
al 
losedstring observables survive, so that �mn restri
ts to the inverse of the topologi
al 
losed stringmetri
.The important point is then that the zero mode G0� �G0 remains in (29) and a
ts on thebulk observable, so that the whole expression vanishes by the gauge 
ondition (2). A similarargument applies to the fa
torization 
hannel of Fig. 3b, whi
h therefore vanishes too.Re
all that we ex
luded so far the situation where one of the two Riemann surfa
es, �1or �2, is a disk. Let us 
onsider this 
ase now. Other than before there is no twist parametert, so that the fa
torization be
omesZ 
: : : [G�1; [ �G�1; �m(ẑ1)℄℄6g+3b�9Yi=1 G ~mi��g;b�1 �mn 
�n(ẑ2)Z 	Ai��0;1 : (30)Noti
e that i(G0 � �G0) does not appear be
ause of the absen
e of the twist parameter t,and there is no [G�1; [ �G�1; �l℄℄ asso
iated to the modulus ẑ2 either, whi
h re
e
ts the fa
tthat the disk has a 
onformal Killing ve
tor �eld that 
an be used to �x ẑ2. Let us use nowour assumption that we have at least one insertion of an observable on ea
h boundary, i.e.,mi � 1. In [6℄ it was then shown that a disk amplitude like the one in (30) vanishes in viewof a 
onformal Ward identity.9 We 
on
lude that, for mi � 1, fa
torizations in the 
losedstring 
hannel do not 
ontribute at all to the quantum A1-stru
ture (24).3.3. Boundaries without observables { non-stable 
on�gurationsLet us brie
y 
omment on the 
ase mi = 0. The expression (30) be
omesZ 
: : : [G�1; [ �G�1; �m(ẑ1)℄℄6g+3b�9Yi=1 G ~mi��g;b�1 �mn 
�n(ẑ2)��0;1 ; (31)whi
h 
orresponds to a non-stable 
on�guration, be
ause the 
onformal Killing ve
tor thatrotates the disk is not �xed. The simplest example for su
h a situation is the fa
torizationof the annulus amplitude,10 i.e.,Z 10 dL 
[Q; 11 j : j GL℄��0;2 = 0 : (32)9A similar Ward identity is responsible for the fa
t that the topologi
al metri
 �ab does not get deforma-tions.10The 
harge sele
tion rule (16) tells us that the single observable on the boundary must be the identityoperator 11 . 15



The open string fa
torization 
hannel gives the Witten index, or interse
tion number,Xa;b F11 ab�ab = �TrH��op (�)F ; (33)where we used the equation in the unitality properties (21) that relates 3-point fun
tions tothe topologi
al metri
. The 
losed string 
hannel gives
�m 11 ��0;1 �mn
�n��0;1 ;so that the fa
torization of the annulus amplitude (32) 
an be interpreted as topologi
alCardy relation of 2d topologi
al �eld theory [27,28℄. In general, one should be 
autious about
onsidering fa
torizations that involve non-stable 
on�gurations like (31). They indi
ateambiguities related to divergen
es in topologi
al amplitudes (
f. [9℄).3.4. The open string fa
torization 
hannelsLet us turn now to the non-vanishing 
ontributions to the quantum A1 relations (24), whi
h
ome from open string fa
torization 
hannels. Fa
torizations in the open string 
hannel
orresponding to an in�nitely long strip are shown in Fig. 4.The left-hand side of the quantum A1-relation (24)We 
onsider the situation in Fig. 4a �rst. Lo
ally near the degeneration point the modulispa
e 
an be parameterized by (l; x̂1; x̂2; ~m1; : : : ; ~m3j~�j; m̂1; : : : ; m̂3j�̂j). The �rst three 
oordi-nates parameterize the length l of the strip as well as the positions x̂1 and x̂2 of the pun
tures,where the strip ends on the surfa
e boundaries. ~mi and m̂j are the moduli of the resultingRiemann surfa
es �g0;b0 and �g00;b00, respe
tively. Here, g0+ g00 = g and b0+ b00 = b+ 1. Sin
eQ a
ted on Gl we have to evaluate l at in�nity. The Beltrami di�erentials asso
iated to themoduli x̂1 and x̂2 lo
alize around the pun
tures as before. The 
hannel in Fig. 4a gives(�)3j~�j liml!1
Z 	A1 : : :Z 	Ab�� Z ~Mg0 ;b0d3j~�j ~m 3j~�jYi=1 G ~mi Zx̂1 Gx̂1 Zx̂2 Gx̂2 ZM̂g00;b00d3j�̂jm̂ 3j�̂jYi=1Gm̂i� : (34)The sign 
omes from pulling Q through all the operators. We used ~A1+ : : :+ ~Ab = 1. Noti
ethat 
ontributions with (g0; b0) = (0; 1) or (g00; b00) = (0; 1) vanish, be
ause the degenerationresults into disk amplitudes that vanish by a 
onformal Ward identity [6℄.We have not de
ided yet, whi
h boundary 
omponent, that is to say, whi
h �elds 	Ai areinvolved in the fa
torization. Let us pi
k 	A1 �rst and take 
are of all other boundaries after-wards. The boundary observables are, after fa
torization, split into a 
olle
tion  (1)al+1 : : :  (1)akon �g00;b00 and  (1)ak+1 : : :  (1)am1 (1)a1 : : :  (1)al on �g0;b0 , where l; k = 1; : : : ;m1 with l � k. In orderto avoid over-
ounting we take  (1)a1 always to be on �g0;b0.There is another 
hoi
e that determines how the remaining �elds 	Ai for i = 2; : : : ; bare distributed among �g0;b0 and �g00;b00 . We pi
k again the simplest 
hoi
e: �g0;b0 
arries the�elds 	Ai for i = 2; : : : ; b0 and �g00;b00 
arries 	Ai for i = b0 + 1; : : : ; b.16



l

l

(c)(b)
l(a) Figure 4: Open string fa
torizations through in�nitely long strips.Reshu�ing the operators and inserting a 
omplete system of boundary observables gives(�)s�
d
Z  (1)al+1 : : :  (1)ak �� Z 	A2 : : :Z 	Ab0 �� Z ~Mg0;b0d3j~�j ~m 3j~�jYi=1 G ~mi Zx̂1 Gx̂1 
(x̂1)��g0 ;b0 �� 
 d(x̂2)Z  (1)ak+1 : : :  (1)al �� Z 	Ab0+1 : : :Z 	Ab�� Zx̂2 Gx̂2 Z ~Mg00 ;b00d3j�̂jm̂ 3j�̂jYi=1 Gm̂i��g00 ;b00 :The sign is s = 1+(3j~�j+1) ~d+(~a1+: : :+~al)(~al+1+: : :+~am1)+( ~A2+: : :+ ~Ab0)(~ak+1+: : :+~al).Now we use the fa
t that the Beltrami di�erentials asso
iated to the positions x̂i lo
alizearound the pun
tures: Rx̂1 Gx̂1 
(x̂1) ! Rx̂1  (1)
 . Further reshu�ing of �elds and using thede�nition of topologi
al amplitudes in (7) we obtain(�)s1�
dFg00;b00a1:::ak
al+1:::am1 jA2j:::jAb0Fg0;b0dak+1:::aljAb0+1j:::jAb ; (35)where s1 = ~a1+: : :+~ak+(~al+1+: : :+~am1+ ~A2+: : : ~Ab0)( ~d+~ak+1+: : :+~al) :In order to take into a

ount the fa
torizations involving the other boundary 
omponentsand all the inequivalent distributions of remaining �elds R 	Ai , we ex
hange the observablesR 	Ai a

ording to an element � in the symmetri
 group Sb. This gives rise to the Koszulsign (�)s�( ~A). Then, summing up all fa
torization 
hannels givesgXg0=0 0 bXb0=1 0X�2Sb m�(1)Xl�k=1 (�)s�( ~A)+s1(b�b0)!(b0�1)! � (36)� Fg0;b�b0+1a1:::al
ak+1:::am�(1) jA�(2)j:::jA�(b�b0+1)�
dFg�g0 ;b0dal+1:::ak jA�(b�b0+2)j:::jA�(b) :The fa
tor [(b�b0)!(b0�1)!℄�1 a

ounts for over-
ounting, and P 0 means that (g0; b0) = (0; b)and (g0; b0) = (g; 1) are not in
luded in the sum. In fa
t, the latter 
ontributions 
ome from
lass (iii) in our list of degenerations in se
tion 3.1. Let us brie
y 
onsider those before wepro
eed to Fig. 4b. 17



When Q a
ts on the integrated des
endents R  (1)a , it a
ts as a boundary operator onone of the �ber 
omponentsMimi of the moduli spa
e �Mg;b;0;m1:::mb. The boundary of Mimi
orresponds to situations where two or more observables 
ollide. So we have to sum over allpossible 
onta
t terms of boundary observables. This is exa
tly the same e�e
t that gaverise to the (
lassi
al) A1-stru
ture for disk amplitudes in [6℄. If, for instan
e, the �elds  al+1through  ak for l; k = 1; : : : ;mi and l + 2 � k, 
ome together very 
losely a disk with these�elds bubbles o� and we get� (�)~a1+:::+~ak�1 
 (1)a1 : : :  (1)al  (1)
  (1)ak+1 : : :  (1)am1 jZ 	A2 : : : j 6g+3b�6Yj=1 G ~mj��g;b �� !
d
 d al+1 (1)al+2 : : :  (1)ak�1 ak��0;1 ; (37)and similarly � (�)s 
 a1 a2 (1)a3 : : :  (1)al  (1)
  (1)ak+1 : : :  (1)am1�1 am1��0;1 � (38)� !
d
 (1)d  (1)al+1 : : :  (1)ak jZ 	A2 : : : j 6g+3b�6Yj=1 G ~mj��g;b ;where s = ~am1 + ~a2 + : : :+ ~al + (~ak+1 + : : :+ ~am1)( ~d + ~al+1 + : : :+ ~ak). When we 
omparethese expressions with (35) taking into a

ount the sign in (10), we see immediately thatthey provide exa
tly the two missing terms with (g0; b0) = (0; b) and (g0; b0) = (g; 1) in (36).The all-genus amplitudes (14) allow us to 
ombine the fa
torizations that we have studiedso far into the left-hand side of (24).The right-hand side of the quantum A1-relation (24)The 
hannel shown in Fig. 4b gives a degeneration resulting in a single Riemann surfa
e�g�1;b+1, that is, one boundary 
omponent splits into two, thus in
reasing the number ofboundaries by one and de
reasing the genus by one. We rearrange the boundary 
omponentsin the amplitude su
h that the observables 	Ab0 , whi
h are e�e
ted by the degeneration, areat the �rst position. This gives rise to the sign sb0 de�ned in (25). The observables are splitinto  (1)a0l+1 : : :  (1)a0k and  (1)a0k+1 : : :  (1)a0mb0 (1)a01 : : :  (1)a0l . Here, a0i = a[b0℄i. In the limit l ! 1 theamplitude be
omes(�)s+sb0�
d
 
(x̂1)Z  (1)a0k+1 : : :  (1)a0l ��Z  (1)a0l+1 : : :  (1)a0k �� Z 	A1 : : : �� d(x̂2)�� Zx̂1Gx̂1Zx̂2Gx̂2Z ~Mg�1;b+1d3j~�j ~m 3j~�jYj=1G ~mj��g�1;b+1 ;where s = (~a0l+1 + : : :+ ~a0mb0 )(~a01 + : : :+ ~a0l).We 
ommute  
 and  d through the other �elds to their 'right' positions and make use ofthe lo
alization Rx̂1 Gx̂1 
 ! Rx̂1  (1)
 . After further reshu�ing of the observables and using(7) we obtain: �(�)sb0+s2�
d Fg�1;b+1a01:::a0l
a0k+1:::a0m0b jda0l+1:::a0kjA1j:::jÂb0 j:::jAb ;18



where the signs 
an be found in (25). Summing over all su
h 
hannels yields� bXb0=1 mb0Xl�k=1(�)sb0+s2�
d Fg�1;b+1a01:::a0l
a0k+1:::a0m0b jda0l+1:::a0kjA1j:::jÂb0 j:::jAb ; (39)whi
h provides the (undeformed) �rst term on the right-hand side of (24).Finally we have to look at the degeneration in Fig. 4
, where the genus g stays the sameand two boundary 
omponents join into one. Let us pi
k the �elds 	Ab00 and 	Ab0 on the
olliding boundaries, where b0; b00 = 1; : : : ; b and b00 < b0. Pulling these observables throughthe other �elds to the �rst two positions in the amplitude gives the sign sb00 + sb0. In thedegeneration limit we insert the 
omplete system �
d 
 d in su
h a way that  
 is lo
atedbetween  (1)a0k and  (1)a00l+1 , whereas  d is lo
ated between  (1)a00l and  (1)a0k+1. Here k = 1; : : : ;mb0and l = 1; : : : ;mb00. We obtain:(�)s+sb0+sb00�
d
 
(x̂1)Z  (1)a0k+1 : : :  (1)a0mb0 (1)a01 : : :  (1)a0k Z  (1)a00l+1 : : :  (1)a0mb00 (1)a001 : : :  (1)a00l ���� Z 	A1 : : : �� d(x̂2)Zx̂1Gx̂1Zx̂2Gx̂2Z ~Mg;b�1d3j~�j ~m 3j~�jYj=1G ~mj��g;b�1 ;where  
 and  d are not yet at the positions a

ording to their boundary 
ondition labels.The sign is s=(~a01+: : :+~a0k)(~a0k+1+: : :+~a0mb0 )+(~a001+: : :+~a00l )(~a00l+1+: : :+~a00mb00). Following thesame steps as for the other fa
torizations and 
olle
ting all 
ontributions we obtain:� bXb00<b0=1 mb0Xk=1 mb00Xl=1 (�)sb0+sb00+s3�
dFg;b�1a01:::a0k
a00l+1:::a00mb00 a001 :::a00l da0k+1:::a0mb0 jA1:::Âb00 :::Âb0 :::Ab : (40)This provides the �nal 
ontribution to the quantum A1 relation (24). A
tually, what wehave found so far are the undeformed, minimal quantum A1-relations for the undeformedamplitudes F bA1j:::jAb(gs; t = 0), in parti
ular, F0;1a (t = 0) = F0;1ab (t = 0) = 0.Remarks: Observe that the restri
tion mi = 0 for i = 1; : : : ; b did not play any rôle inthe analysis of the open string fa
torization 
hannels. This means that in situations with'bare' boundary 
omponents, the quantum A1-relations (24) hold only up to non-stable
on�gurations like (30).Stri
tly speaking, we are not done with the fa
torizations of the undeformed amplitudesyet, be
ause the annulus amplitude, equation (12) with Q insertion and t = 0, was notin
luded in our 
onsiderations so far. We just state here that the gymnasti
s of the previousse
tion 
an be applied as well and leads to the still missing terms in (24).3.5. In
luding 
losed string deformationsThe in
lusion of 
losed string deformations, i.e., insertions of bulk observables in the am-plitudes, has a quite trivial e�e
t. First of all, 
onta
t terms between bulk �elds do not
ontribute if the regularization is 
hosen appropriately (
f. [6℄).1111Another way to say that is that the minimal L1 stru
ture for (
losed) topologi
al string is trivial, i.e.,all L1 bra
kets vanish; see [4℄. 19



Suppose we insert one (integrated) bulk des
endent in the amplitude (26). If Q a
ts onboundary �elds or the Gmi 's we obtain the same fa
torization 
hannels as before. In the 
ase(35), where the Riemann surfa
e splits into two, �1 and �2, the integration over the bulkobservable splits too, i.e., R� �(2)i ! R�1 �(2)i + R�2 �(2)i . Noti
e that this is 
onsisted with,and therefore allows, the formal integration of bulk des
endents to the deformed amplitudes(7).If Q a
ts, on the other hand, on the bulk des
endent we get 
onta
t terms betweenthis bulk des
endent and boundary �elds, whi
h gives rise to disks that bubble o� theRiemann surfa
e (
f. [6℄). This provides additional 
ontributions for the quantum A1-relations involving F0;1a (t) and F0;1ab (t).We 
on
lude that the 
losed string observables deform the minimal quantum A1-stru
turefor undeformed amplitudes into the weak quantum A1-stru
ture (24) for deformed ampli-tudes.4. Comments on the quantum A1-relationsSo far we have negle
ted the boundary 
ondition labels, �; : : : for 
onvenien
e. Reintro-du
ing them makes apparent that relation (24) de�nes a 
y
li
, unital quantum A1 
at-egory (rather than an algebra). It is the quantum version of a (
lassi
al) A1-
ategory,whi
h was originally introdu
ed in [16℄. The boundary 
onditions (or D-branes) are theobje
ts, �; �; : : : 2 Obj(Aq1), and the boundary observables are the morphisms,  ��a 2HomAq1(�; �) = H��op . The formulation of the 
lassi
al A1-relations in terms of s
atteringprodu
ts rn : H�1�2op 
 : : : 
H�n�n+1op ! H�1�n+1op 
an be found in the literature. We refer tothe re
ent review [4℄ on this subje
t, and referen
es therein.Instead of elaborating on this issue we want to fo
us subsequently on the rôle and thee�e
ts of the 
harge sele
tion rule on the quantum A1-relations (24) in models with 
̂ = 3.For this purpose let us distinguish between boundary 
ondition preserving observables (BPO) ��a 2 H��op and boundary 
ondition 
hanging observables (BCO)  ��a 2 H��op for � 6= �.Consider a single D-brane so that we have only BPOs. We assume to be in a model wherethe boundary 
ondition preserving se
tor has only integral U(1) 
harges, i.e., q = 0; 1; 2; 3,and the unique observable of 
harge 0 is the unit operator 11 . This is the 
ase in most modelsof interest.It was pointed out in [8℄ that the disk amplitudes then have a parti
ularly simple formand that the (
lassi
al) A1-relations are trivially satis�ed. A similar argument 
an beadopted to the all-genus topologi
al string amplitudes F bA1j:::jAb and goes as follows: Re
all�rst that for 
̂ = 3 the 
harge sele
tion rule (16) is the same irrespe
tive of the Euler
hara
ter of the Riemann surfa
e. In parti
ular, the sele
tion rule (16) admits to insert onlymarginal boundary observables in the amplitude F bA1j:::jAb and moreover an arbitrary numberof them. Take su
h an amplitude and substitute one of the marginal observables by a 
harge2 (or 3) one. In order to obtain a non-vanishing amplitude the sele
tion rule (16) for
es usto introdu
e one (or two) units 11 in the amplitude. On the other hand, by the unitalityproperty (21) the only non-vanishing amplitudes with unit are disk 3-point 
orrelators. We
on
lude that amplitudes on a single D-brane (with the above assumptions) (i) have only20



marginal insertions or (ii) are given by F0;111ab. From this observation it follows readily thatthe quantum A1-relations (24) are trivially satis�ed when we 
onsider a single D-brane.Only in multiple D-brane situations, that is for a quantum A1-
ategory, the algebrai
equations (24) give non-trivial relations and 
an be used as 
onstraints on the amplitudes.In fa
t, they provide a means of determining higher genus multiple-boundary amplitudesFg;bA1j:::jAb re
ursively from amplitudes with larger Euler 
hara
ter. To see this let us rewrite(24) in su
h a way that they look diagrammati
ally as follows:
g, bΣ Σ= (amplitudes with � > �g;b) : (41)Here, as 
ompared to (24), we gave up 
ombining the di�erent levels of genera g into anexpansion of the topologi
al string 
oupling gs. The left-hand side of (41) 
omprises allterms from the left-hand side of (24) that involve disk amplitudes. Therefore, writing thequantum A1-relations in the form (41) makes apparent that they provide a sequen
e oflinear systems in Fg;bA1j:::jAb, whi
h 
an be solved re
ursively, starting from disk amplitudes.5. Quantum master equation?From string �eld theory [10, 30℄ it is known that the 
lassi
al as well as the quantum A1-stru
ture have a dual des
ription on a (formal) non
ommutative supermanifold. In our
ontext the latter 
orresponds to the open string moduli spa
e (see [11℄ for the pre
iserelation) and we should be able to re
ast the quantum A1-relations (24) into a quantummaster equation on moduli spa
e.In order to see whether this is indeed true let us introdu
e for our basis  ��a 2 H��op a dualbasis ŝ��a 2 Hdop. The deformation parameters (or open string moduli) ŝ��a are taken to beasso
iative and graded non
ommutative. The latter requirement a

ounts for 
ases where wehave Chan{Paton extensions in the boundary se
tor [11℄, i.e., the deformation parametersare (super)matri
es Xa. The Z2-degree of ŝ��a is the same as the Z2-degree of  ��a . Let usdrop the boundary 
ondition labels again, understanding that the deformation parameters
orrespond to edges in some Quiver diagram asso
iated to the D-brane 
on�guration [11℄.An element in the ring A of (formal) power series in fŝag is given by f(ŝa) = f0 +P1m=1 1mfa1:::am ŝa1 : : : ŝam. Let us de�ne left and right partial derivatives *� a, (� a: A! A by:*� a f(s) = (�)~a( ~f+1)f(s) (� a== 1Xm=0 mXi=1 (�)~a(~a1+:::+~ai�1)fa1:::ai�1aai+2:::am ŝa1 : : : ŝai�1 ŝai+1 : : : ŝam ;and the BV operator � : A! A by: � := �ab *�a*� b :Consider the formal power seriesg�2s S(gs; t; ŝ) := 1Xb=1 1Xmi=0 1b!m1 : : :mbF bA1j:::jAb(gs; t) ŝA1 : : : ŝAb (42)21



asso
iated to the all-genus topologi
al string amplitudes (14), where we used the abbreviationŝAi = ŝa[i℄1 : : : ŝa[i℄mi . Note that amplitudes with mi = 0 are in
luded in the series (42). It isunderstood that 1=mi is substituted by 1 whenever mi = 0. From the Z2-sele
tion rule (18)it follows that the series S(gs; t; ŝ) has even degree.After dressing the quantum A1-relations (24) with the deformation parameters ŝAi andsumming over all numbers of boundaries b it follows that the quantum A1-relations 
ombineinto the quantummaster equation � e�S=g2s = 0. Noti
e however that amplitudes withmi = 0are in
luded in S(gs; t; ŝ), so that this equation holds only up to non-stable 
on�gurationslike in (31). We obtain not quite the quantum master equation, but:� e�S=g2s = ��ŝ11TrH��op (�)F + non-stable � e�S=g2s ; (43)whi
h we refer to as the modi�ed quantum master equation.The 
onverse statement that (43) implies the quantum A1 relations is not true, be
ausethe latter are �ner than the modi�ed quantummaster equation. This tra
es ba
k to de�nition(42), from whi
h we see that S(gs; t; ŝ) is not a generating fun
tion for the string amplitudesFg;bA1j:::jAb. To see this let us rewrite S(gs; t; ŝ) in the following way:g�2s S(gs; t; ŝ) = 1Xg=0 1Xb=1 g2g+b�2sb!m1 : : :mbFg;bA1j:::jAb(t) ŝA1 : : : ŝAb= 1X��=�1 2��Xb=1 g��sb!m1 : : :mbFg;bA1j:::jAb(t) ŝA1 : : : ŝAb= 1X��=�1 2��Xb=1 g��sb!m1 : : :mbFg;ba1:::j:::j:::am(t) ŝa1 : : : ŝam= 1X��=�1 g��s F�a1:::am(t) ŝa1 : : : ŝam :where m =Pimi and F�a1:::am(t) = 2��Xb=1 1b!m1 : : :mbFg;ba1:::j:::j:::am(t) :This means that the 
oeÆ
ients in the power series S(gs; t; ŝ) are sums over string amplitudeswith the same Euler 
hara
ter and the same boundary �eld 
on�guration. However, the genusg as well as the number of boundaries b vary in this sum. The partitioning of the �elds overthe di�erent numbers of boundary 
omponents in F�a1:::am(t) must, of 
ourse, be 
onsistentwith the boundary 
ondition labels.Therefore, the modi�ed master equation (43) is an equation for the quantities F�a1:::am(t).The quantum A1-relations (24) are �ner in the sense that they split up with respe
t to gand b. If we are interested in F-terms for the 4 dimensional N = 1 supergravity [1, 36{38℄or in higher genus open Gromov{Witten invariants, then it is important to have the moredetailed information from (24). 22
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