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DESY/06-009ZMP-HH/06-01Gauged N=4 supergravitiesJonas S
h�on and Martin WeidnerII. Institut f�ur Theoretis
he PhysikUniversit�at HamburgLuruper Chaussee 149D-22761 Hamburg, GermanyandZentrum f�ur Mathematis
he PhysikUniversit�at HamburgBundesstrasse 55D-20146 Hamburg, Germanyjonas.s
hoen�desy.de, martin.weidner�desy.deABSTRACTWe present the gauged N = 4 (half-maximal) supergravities in four and �vespa
etime dimensions 
oupled to an arbitrary number of ve
tor multiplets.The gaugings are parameterized by a set of appropriately 
onstrained 
on-stant tensors, whi
h transform 
ovariantly under the global symmetry groupsSL(2)� SO(6; n) and SO(1; 1)� SO(5; n), respe
tively. In terms of these ten-sors the universal Lagrangian and the Killing Spinor equations are given. Theknown gaugings, in parti
ular those originating from 
ux 
ompa
ti�
ations,are in
orporated in the formulation, but also new 
lasses of gaugings are found.Finally, we present the embedding 
hain of the �ve dimensional into the fourdimensional into the three dimensional gaugings, thereby showing how thedeformation parameters organize under the respe
tively larger duality groups.
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1 Introdu
tionThe �rst examples of N = 4 supergravities in four spa
etime dimensions were 
on-stru
ted in the se
ond half of the seventies [1, 2, 3, 4℄ and within the following de
adethe 
oupling of ve
tor multiplets to these theories and some of their gaugings wereworked out [5, 6, 7, 8, 9℄. In N = 4 the gaugings are the only known deformationsof the theory that are 
ompatible with supersymmetry. They are indu
ed by minimal
ouplings of ve
tor �elds to isometry generators, but supersymmetry requires variousadditional 
ouplings and in parti
ular the emergen
e of a s
alar potential, thus giv-ing the possibility of ground states with non-vanishing 
osmologi
al 
onstant. So far,however, no stable de Sitter ground state has been found in these theories [10℄.From a string theory perspe
tive the N = 4 theories result from orientifold 
om-pa
ti�
ations of IIB supergravity [11, 12℄. In this pi
ture part of the deformationparameters of the gauging 
orrespond to 
uxes or additional branes on the ba
kground[13, 14, 15, 16, 17℄. But so far not all known gaugings 
ould be identi�ed in this way.Lower N theories 
an be obtained by trun
ation of the N = 4 supergravities, for exam-ple 
ertain relevant N = 1 K�ahler potentials 
an be 
omputed from the N = 4 s
alarpotential [18, 19, 20℄.By in
orporating all possible gauged N = 4 supergravities in a universal formula-tion in this paper we hope to illuminate the interrelation of the di�erent theories butalso to pave the way for a future analysis of parti
ular gaugings. The gaugings areparameterized by an embedding tensor whi
h 
an be treated as a group theoreti
alobje
t and is subje
t to a set of 
onsisten
y 
onstraints. This method was su

essfullyused to work out the general gaugings of maximal supergravities for various spa
etimedimensions [21, 22, 23, 24℄. For an even number of spa
etime dimensions there are sub-tleties that seem to hamper the universal des
ription. For example in D = 4 magneti
ve
tor �elds are usually introdu
ed on-shell via the equations of motion, while for ageneral gauging they may possibly o

ur as gauge �elds in the 
ovariant derivative al-ready at the level of the Lagrangian. Closely related to this problem is the fa
t that inD = 4 the global symmetry group of a supergravity theory is generi
ally only realizedon-shell sin
e it involves duality rotations between the ele
tri
 and magneti
 ve
tor�elds [25, 26℄. These issues were resolved in [27℄, where for a general four dimensionaltheory it was explained how to 
onsistently 
ouple ele
tri
 and magneti
 ve
tor gauge�elds together with two-form tensor gauge �elds for a general gauging. Here we applythis method to the 
ase of gauged N = 4 supergravities.In D = 4 the global symmetry group of the ungauged theory is G = SL(2) �SO(6; n), where n denotes the number of ve
tor multiplets. This group also organizesthe gaugings sin
e the deformation parameters f�MNP and ��M are tensors under G(they are expli
itly de�ned below). These tensors are the irredu
ible 
omponents of2



the embedding tensor. In terms of them the bosoni
 Lagrangian and the Killing spinorequations are presented, the 
onsisten
y 
onstraints whi
h they have to satisfy areexplained and solutions to these 
onstraints are dis
ussed. In parti
ular the SU(1; 1)phases that were introdu
ed by de Roo and Wagemans to �nd ground states with non-vanishing 
osmologi
al 
onstant [7, 8, 28℄ are identi�ed as parameters in
orporatedin f�MNP . In the same manner the parameters that 
orrespond to three-form 
uxesin 
ompa
ti�
ations from IIB supergravity [13, 14, 15, 16℄ are identi�ed. Also thegaugings that originate from S
herk-S
hwarz redu
tion from D = 5 are in
luded inour formulation [29℄. In addition, there are various other gaugings that have not yetbeen dis
ussed in the literature, in parti
ular all gaugings with both f�MNP and ��Mnon-zero are novel.Analogous to the four dimensional 
ase the general �ve dimensional gauged N = 4supergravity1 is worked out by applying the ideas of [23℄, where the 
orrespondinggauged maximal supergravity was presented. In D = 5 the irredu
ible 
omponentsof the embedding tensor are tensors fMNP , �MN and �M , whi
h are tensors underthe global symmetry group SO(1; 1) � SO(5; n). The �rst a

ount of the ungaugedN = 4 supergravity in D = 5 was given in [30℄, where also the �rst gauging of thetheory was already 
onsidered. Those gaugings where the gauge group is a produ
t ofa semi-simple and an Abelian fa
tor were already presented in [31℄, examples of thistype were already known for a while [32℄. Also some non-semi-simple gaugings werealready 
onstru
ted [29℄. Our presentation in
orporates all these known gaugings andalso in
ludes new ones.In former des
riptions of D = 5 gauged supergravities the ve
tor �elds that are notneeded as gauge �elds were dualized into two-form �elds to make the theory 
onsistent[31, 32, 33, 34, 35, 36, 37℄. This makes the �eld 
ontent of the theory dependent onthe parti
ular gauging and makes it diÆ
ult to formulate the general gauged theory ina 
ovariant way. It was shown in [23℄ that one 
an deal with this issue by introdu
ingboth the ve
tor �elds and all their dual two-form �elds as o�-shell degrees of freedomand 
ouple them via a topologi
al term su
h that their duality equation results fromthe equations of motion. The same 
on
ept is used here to des
ribe the general �vedimensional gauged theory.The gauged N = 4 supergravities in �ve dimensions are naturally embedded intothe four dimensional ones by dimensional redu
tion and we make this relation expli
itwithin this paper. Noteworthy, the �ve dimensional gaugings are parameterized interms of three tensors fMNP , �MN and �M while the four dimensional ones are param-eterized in terms of two tensors f�MNP and ��M only. Thus with de
reasing spa
etime1We denote by N = 4 the half-maximal supergravity, although in �ve spa
etime dimensions thistheory is sometimes referred to as N = 2. 3



dimension one �nds not only a larger duality group but also a more uniform des
rip-tion of the deformations. This is the typi
al pi
ture of dualities in string theory wheredimensional redu
tion relates theories with di�erent higher-dimensional origin.The paper is organized as follows. In se
tion 2 we present the general four dimen-sional theory. We give its bosoni
 Lagrangian and its Killing spinor equations, dis
ussthe 
onsisten
y 
onstraints on the deformation parameters, and des
ribe examples ofgaugings, in
luding those known from the literature. In se
tion 3 the �ve dimensionaltheories are dis
ussed analogously. Eventually, having both general gauged theories athand, their embedding indu
ed by a 
ir
le redu
tion is given. For 
ompleteness, wesket
h the analogous embedding of the D = 4 into the D = 3 gaugings in the appendix.2 Gauged N = 4 supergravities in D = 4The gaugings of N = 4 supergravity in four spa
etime dimensions are parameterizedby two real 
onstant tensors f�MNP and ��M . These are tensors under the global on-shell symmetry group SL(2) � SO(6; n), and � = 1; 2 and M = 1; : : : ; 6 + n are therespe
tive ve
tor indi
es. In the following se
tion the Lagrangian of the theory is givenin terms of these tensors. However, f�MNP and ��M 
an not be 
hosen arbitrarily, the
onsisten
y 
onditions that they have to obey are dis
ussed in se
tion 2.2.2.1 Lagrangian and �eld equationsThe N = 4 supergravity multiplet 
ontains as bosoni
 degrees of freedom the metri
, sixmassless ve
tors and two real massless s
alars. The 
orresponding supergravity theoryhas a global SL(2) � SO(6) symmetry [3℄ whi
h is realized only on-shell. The s
alar�elds 
onstitute an SL(2)=SO(2) 
oset2. Coupling this theory to n ve
tor multiplets,ea
h 
ontaining one ve
tor and six real s
alars, yields an N = 4 supergravity withglobal on-shell symmetry group G = SL(2) � SO(6; n) [6℄. This is the theory whosedeformations we want to study here for arbitrary n 2 N .For the ve
tor �elds of the theory one 
an 
hoose a symple
ti
 frame su
h thatthe subgroup SO(1; 1) � SO(6; n) of G is realized o�-shell. The ele
tri
 ve
tor �eldsA�M+ (M = 1; : : : ; 6 + n) then form a ve
tor under SO(6; n) and 
arry 
harge +1under SO(1; 1). Their dual magneti
 ve
tor �elds A�M� form an SO(6; n) ve
tor aswell but 
arry SO(1; 1) 
harge �1. Together they 
onstitute an SL(2) ve
tor A�M� =(A�M+; A�M�)3.2 In the literature the symmetry group is usually denoted by SU(1; 1), however, we prefer to treat itas SL(2) whi
h is of 
ourse the same group but with di�erent 
onventions 
on
erning its fundamentalrepresentation.3 Here and in the following we use indi
es �; �; : : : = +;� for SL(2) ve
tors. The embedding of the4



The s
alar �elds form the 
oset spa
e G=H, where H = SO(2) � SO(6) � SO(n)is the maximal 
ompa
t subgroup of G. The SL(2)=SO(2) fa
tor of this 
oset 
anequivalently be des
ribed by a 
omplex number � with Im(�) > 0 or by a symmetri
positive de�nite matrix M�� 2 SL(2). The relation between these two des
riptions isgiven byM�� = 1Im(�)  j� j2 Re(�)Re(�) 1 ! ; M�� = 1Im(�)  1 �Re(�)�Re(�) j� j2 ! ; (2.1)where M�� is the inverse of M��. The SL(2) symmetry a
tion on M��M ! gMgT ; g =  a b
 d! 2 SL(2) ; (2.2)a
ts on � as a M�obius transformation � ! (a� + b)=(
� + d).The SO(6; n)=SO(6)� SO(n) fa
tor of the s
alar 
oset is des
ribed by 
oset repre-sentatives VMa and VMm where m = 1; : : : ; 6 and a = 1; : : : ; n denote SO(6) and SO(n)ve
tor indi
es, respe
tively. The matrix V = (VMm; VMa) is an element of SO(6; n),i.e. �MN = �VMmVNm + VMaVNa ; (2.3)where �MN = diag(�1;�1;�1;�1;�1;�1;+1; : : : ;+1) is the SO(6; n) metri
. GlobalSO(6; n) transformations a
t on V from the left while lo
al SO(6)�SO(n) transforma-tions a
t from the rightV ! gVh(x) ; g 2 SO(6; n); h(x) 2 SO(6)� SO(n) : (2.4)Analogous to M�� this 
oset spa
e may be parameterized by a symmetri
 positivede�nite s
alar metri
 M = VVT , expli
itly given byMMN = VMaVNa + VMmVNm : (2.5)Its inverse we denote by MMN . Note that ea
h of the matri
es MMN , VMm and VMaalone already parameterizes the SO(6; n) part of the s
alar 
oset.In order to later give the s
alar potential we also need to de�ne the s
alar dependent
ompletely antisymmetri
 tensorMMNPQRS = �mnopqr VMmVNnVP oVQpVRqVSr : (2.6)o�-shell symmetry group SO(1; 1) into SL(2) de�nes a basis for these ve
tors and thus 
omponentsv� = (v+; v�) and v� = (v+; v�). For the epsilon tensor ��� we use �+� = �+� = 1 whi
h yields��
��
 = Æ��. 5



The ungauged theory 
ontains the metri
, ele
tri
 ve
tor �elds and s
alars as free�elds in the Lagrangian, while the dual magneti
 ve
tors and two-form gauge �elds areonly introdu
ed on-shell (this is the des
ription we 
hoose). The latter 
ome in theadjoint representation of G and sin
e G has two fa
tors there are also two kinds of two-form gauge �elds, namely BMN�� = B[MN ℄�� and B���� = B(��)�� = (B++�� ; B+��� ; B���� ). Forthe general des
ription of the gauged theory all these �elds appear as free �elds in theLagrangian [27℄. For the magneti
 ve
tors this is ne
essary be
ause they 
an appearas gauge �elds in the 
ovariant derivative while the two-forms in turn are required inorder to 
onsistently 
ouple the ve
tor �elds. Some of the ve
tor �elds that are notneeded in the gauging be
ome Stue
kelberg �elds for the two-forms.Neither the magneti
 ve
tor �elds A�M� nor the two-form gauge �elds have a kineti
term and via their �rst order equations of motion they eventually turn out to be dualto the ele
tri
 ve
tor �elds A�M+ and to the s
alars, respe
tively. Thus the number ofdegrees of freedom remains un
hanged as 
ompared to the ungauged theory.The gauged supergravities are parameterized by two G-tensors ��M = (�+M ; ��M)and f�MNP = (f+MNP ; f�MNP ) with f�MNP = f�[MNP ℄. One should think of thesetensors as generalized stru
ture 
onstants of the gauge group. They have to satisfy
ertain 
onsisten
y 
onstraints to be introdu
ed later. The following 
ombinationso

ur regularly ��MNP = f�MNP � ��[N �P ℄M ;f̂�MNP = f�MNP � ��[M �P ℄N � 32 ��N�MP : (2.7)In addition we use a gauge 
oupling 
onstant g whi
h is a
tually dispensable by res
al-ing f�MNP ! g�1 f�MNP and ��M ! g�1 ��M . Nevertheless it is 
onvenient to use gto keep tra
k of the order in the gauge 
oupling.We 
an now present the bosoni
 Lagrangian of the general gauged theory4Lbos = Lkin + Ltop + Lpot : (2.8)It 
onsists of a kineti
 terme�1Lkin = 12 R + 116 (D�MMN)(D�MMN )� 14 Im(�)2 (D��)(D�� �)� 14 Im(�)MMNH��M+H��N+ + 18 Re(�) �MN �����H��M+H��N+ ; (2.9)4 Our spa
e-time metri
 has signature (�;+;+;+) and the Levi-Civita is a proper spa
e-timetensor, i.e. �0123 = e�1, �0123 = �e.
6



a topologi
al term for the ve
tor and tensor gauge �elds [27℄e�1Ltop = � g2 �������+M�NPAM�� AN+� ��AP+� � �f̂�MNP + 2 ��N�MP�AM�� AN+� ��AP��� g4 f̂�MNRf̂�PQRAM�� AN+� AP�� AQ�� + g16 �+MNP��MQRBNP�� BQR��� 14 ���MNPBNP�� + ��MB+��� + �+MB++�� � �2��AM�� � gf̂�QRMAQ�� AR�� �� ;(2.10)and a s
alar potentiale�1Lpot = �g2V= �g216�f�MNPf�QRSM��h13 MMQMNRMPS + (23 �MQ �MMQ)�NR�PSi� 49 f�MNPf�QRS���MMNPQRS + 3 �M� �N� M��MMN� : (2.11)The 
ovariant derivative D� appearing in Lkin a
ts on obje
ts in an arbitrary represen-tation of G = SL(2)� SO(6; n) asD� = r� � g A�M���MNP tNP + g A�M(���)
�
M t�� ; (2.12)where r� 
ontains the spin-
onne
tion and tNP and t�� are the generators of the globalsymmetry group5. Expli
itly one �nds for the s
alar �eldsD�M�� = ��M�� + gAM
� �(�MM�)
 � gAMÆ� ��M�Æ(���
M�)
 ;D�MMN = ��MMN + 2gA�P���P (MQMN)Q : (2.13)Note that Im(�)�2(D��)(D�� �) = �12(D�M��)(D�M��), i.e. the kineti
 term for �
an equivalently be expressed in terms of M��.The full 
ovariant �eld strengths of the ele
tri
 and magneti
 ve
tor �elds are givenby6 HM+�� = 2�[�A�℄M+ � g f̂�NPMA[�N�A�℄P++ g2 ��MNPBNP�� + g2 �+MB++�� + g2��MB+��� ;HM��� = 2�[�A�℄M� � g f̂�NPMA[�N�A�℄P�� g2 �+MNPBNP�� + g2 ��MB���� + g2�+MB+��� : (2.14)5 In the ve
tor representation the symmetry generators have the form (tMN )PQ = ÆQ[M�N ℄P and(t��)
Æ = ÆÆ(���)
 , respe
tively.6 Note that the indi
es + and � on the ve
tor �elds and on their �eld strengths distinguish theele
tri
 ones from the magneti
 ones and thus do not indi
ate 
omplex self-dual 
ombinations of the�eld strengths as is 
ommon in the literature. We hope note to 
onfuse the reader with that notation.7



Only HM+�� enters the Lagrangian, but HM��� appears in the equations of motion. Toexpress the latter it is also useful to de�ne the following 
ombination of the ele
tri
�eld strengths G��M+ � H��M+ ;G��M� � e�1 �MN ����� �Lkin�HN+��= �12 ����� Im(�)MMN�NPHP+ �� � Re(�)HM+�� : (2.15)The importan
e of G��M� be
omes 
lear in the ungauged theory obtained from (2.8)in the limit g ! 0. In this limit the topologi
al term and the potential vanish andH��M+ and H��M� redu
e to Abelian �eld strengths. Sin
e the magneti
 ve
tors andthe two-form gauge �elds only appear proje
ted with some 
ombination of f�MNP and��M they 
ompletely de
ouple from the Lagrangian at g = 0. The equations of motionfor the ele
tri
 ve
tor �elds then take the form �[�G��℄M� = 0. In the ungauged theorymagneti
 ve
tor �elds are introdu
ed by hand viaHM��� = GM��� and GM� = (GM+;GM�)and HM� are on-shell identi
al.Turning ba
k to the gauged theory one �nds for general variations of the ve
torand two-form gauge �elds that the Lagrangian varies as [27℄e�1ÆLbos = 18g ���MNP�BNP�� + ��M�B+��� + �+M�B++�� � ����� �HM��� � GM��� �+ 12(ÆAM+� )�g ��MM+
D�M�
 + g2 �+MPNMNQD�MQP � ������MN D�GN��� �+ 12(ÆAM�� )�g ��MM�
D�M�
 + g2 ��MPNMNQD�MQP + ������MN D�GN+�� �+ total derivatives, (2.16)where we used the \
ovariant variations"�BMN�� = ÆBMN�� � 2���A�[M[� ÆAN ℄��℄ ;�B���� = ÆB���� + 2�MNAM(�[� ÆA�)N�℄ : (2.17)Equation (2.16) en
odes the gauge �eld equations of motion of the theory. Variation ofthe two-form gauge �elds yields a proje
ted version of the duality equationHM��� = GM���between ele
tri
 and magneti
 ve
tor �elds. From varying the ele
tri
 ve
tor �elds oneobtains a �eld equation for the ele
tri
 ve
tors themselves whi
h 
ontains s
alar 
urrentsas sour
e terms. Finally, the variation of the magneti
 ve
tors gives a duality equationbetween s
alars and two-form gauge �elds. To make this transparent one needs themodi�ed Bian
hi identity for HM+�� whi
h readsD[�HM+��℄ = g6 ���MPQH(3)PQ��� + �+MH(3)++��� + ��MH(3)+���� � ; (2.18)8



where the two-form �eld strengths are given byH(3)MN��� = 3 �[�BMN��℄ + 6 ��� A�[M[� ��AN ℄��℄ +O(g) ;H(3)����� = 3 �[�B����℄ + 6 �MN AM(�[� ��A�)N�℄ +O(g) ; (2.19)up to terms of order g.Thus we �nd that the tensors f�MNP and ��M do not only spe
ify the gauge groupbut also organize the 
ouplings of the various �elds. They determine whi
h ve
tor gauge�elds appear in the 
ovariant derivatives, how the �eld strengths have to be modi�ed,whi
h magneti
 ve
tor �elds and whi
h two-form gauge �elds enter the Lagrangianand how they be
ome dual to ele
tri
 ve
tor �elds and s
alars via their equation ofmotion. However, 
onsisten
y of the entire 
onstru
tion above 
ru
ially depends onsome parti
ular quadrati
 
onstraints that f�MNP and ��M have to satisfy and whi
hare presented in the next subse
tion.In prin
iple one should also give the fermioni
 
ontributions to the Lagrangianand 
he
k supersymmetry to verify that (2.8) really des
ribes the bosoni
 part of asupergravity theory. We have obtained the results by applying the general method of
ovariantly 
oupling ele
tri
 and magneti
 ve
tor gauge �elds in a gauged theory [27℄to the parti
ular 
ase of N = 4 supergravity. This �xes the bosoni
 Lagrangian upto the s
alar potential. The latter is also strongly restri
ted by gauge invarian
e, onlythose terms that appear in (2.11) are allowed. We obtained the pre-fa
tors between thevarious terms by mat
hing the s
alar potential with the one known from half-maximalsupergravity in three spa
etime dimensions [38℄, see appendix A. The general theorythen was 
ompared with various spe
ial 
ases that were already worked out elsewhere[7, 9, 10, 13, 14, 15, 16, 28, 29, 39℄, see se
tion 2.4.2.2 Quadrati
 
onstraints and gauge invarian
eWe have seen that the tensors ��M and f�MNP = f�[MNP ℄ parameterize the possiblegaugings of the theory. These are 
onstant tensors (their entries are �xed real numbers)for whi
h we demand in addition the following set of 
onsisten
y 
onstraints�M� ��M = 0 ;�P(�f�)PMN = 0 ;3f�R[MNf�PQ℄R + 2�(�[Mf�)NPQ℄ = 0 ;��� ��P� f�PMN + ��M��N� = 0 ;��� �f�MNRf�PQR � �R� f�R[M [P�Q℄N ℄ � ��[MfN ℄[PQ℄� + ��[PfQ℄[MN ℄�� = 0 : (2.20)9



These quadrati
 
onstraints guarantee the 
losure of the gauge group, as will be ex-plained below. The deformation of the theory is 
onsistent if and only if these 
on-straints are satis�ed. They are invariant under the global symmetry group: given onesolution one 
an 
reate another one by a G a
tion. But all solutions generated in thisway des
ribe the same gauged supergravity. This is obvious for those G transformationthat belong to the SO(1; 1)� SO(6; n) o�-shell symmetry sin
e the entire 
onstru
tionof the last se
tion was formally invariant under these transformations, i.e. these trans-formations 
orrespond to a linear �eld rede�nition that does not mix magneti
 andele
tri
 ve
tor �elds. In 
ontrast, two solutions of the 
onstraints whi
h are related bya general SL(2) transformation yield two theories whi
h at �rst sight look rather di�er-ent but are related by a symple
ti
 transformation whi
h rotates ele
tri
 into magneti
ve
tor �elds and vi
e versa.It is 
onvenient to de�ne a 
omposite index for the ve
tor �elds by A�M = A�M�,and a symple
ti
 form 
MN by
MN = 
M�N� � �MN��� ; 
MN = 
M�N� � �MN��� ; (2.21)The symple
ti
 group Sp(12+ 2n) is the group of linear transformations that preserve
MN . An arbitrary symple
ti
 rotation of the theory gives a Lagrangian that is notyet 
ontained in the des
ription above but whi
h des
ribes the same theory on the levelof the equations of motion. All possible Lagrangians of gauged N = 4 supergravity arethus parameterized by ��M , f�MNP and an element of Sp(12 + 2n).In order to illustrate the meaning of the quadrati
 
onstraints (2.20) we �rst 
onsiderthe 
ase of purely ele
tri
 gaugings for whi
h ��M = 0 and f�MNP = 0. In this 
ase onlyele
tri
 ve
tor �elds A�M+ enter the Lagrangian. We then �nd f+MNP = f+MNQ �QPto be the stru
ture 
onstants of the gauge group and the 
onstraint (2.20) simpli�es tothe Ja
obi identity f+R[MNf+PQ℄R = 0 : (2.22)Due to this identity the topologi
al term Ltop vanishes in this 
ase. Note that theSO(6; n) metri
 �MN is used to 
ontra
t the indi
es in (2.22), while in the ordinaryJa
obi identity the Cartan Killing form o

urs. Also the indi
es M;N; : : : run over6 + n values while the gauge group might be of smaller dimension. These issues willbe dis
ussed in se
tion 2.4.In the general 
ase of an arbitrary solution of (2.20) we 
an read o� the gaugegroup generators from the 
ovariant derivative (2.12). For an obje
t in the ve
tor �eldrepresentation we want D� �M = r� �M + g AN� XNPM �P ; (2.23)10



whi
h yieldsXMNP = XM�N�P
= �Æ
� f�MNP + 12 �ÆPM Æ
� ��N � ÆPN Æ
� ��M � Æ
� �MN �P� + ��� ÆPN �ÆM �Æ
� :(2.24)Note that these obje
ts satisfyXM[NQ
P℄Q = 0 ; X(MNQ
P)Q = 0 : (2.25)It was found in [27℄ that the last of these equations is 
ru
ial for 
onsisten
y of thegauged theory. It is this linear 
onstraint that demands the gauge group generators tobe parameterized by f�MNP and ��M a

ording to (2.24).An in�nitesimal gauge transformation is parameterized by �M(x) = �M�(x) anda
ts on obje
ts xM and xM in the (dual) ve
tor �eld representations asÆxM = �g�N XNPM xP ; ÆxM = g�N XNMP xP ; (2.26)where g is the gauge 
oupling 
onstant. This de�nes the gauge group G0 � G �Sp(12 + 2n). Treating the generators XMNP = (XM)NP as matri
es we �nd thefollowing 
ommutator relations to be satis�ed[XM; XN ℄ = �XMNP XP ; (2.27)i.e. the gauge group G0 is 
losed. Some 
omputation reveals that the last equation isequivalent to the quadrati
 
onstraint (2.20). Therefore the quadrati
 
onstraint is ageneralization of the Ja
obi identity (2.22) guaranteeing the 
losure of the gauge group.Furthermore a

ording to (2.27) the generators XMNP take the role of generalizedstru
ture 
onstants. However, they are only antisymmetri
 in M, N after having
ontra
ted with XP . The fa
t that X(MN )P is in general not vanishing explains theneed for the two-form gauge �elds in the generalized �eld strengths (2.14). The ordinary�eld strength would not transform 
ovariantly under gauge transformations �M�(x).The two-form gauge �elds BMN�� and B���� are equipped with tensor gauge transfor-mations parameterized by �MN� = �[MN ℄� and ���� = �(��)� . Under general ve
tor andtensor gauge transformations the gauge �elds transform asÆAM+� = D��M+ � g2 ��MNP�NP� � g2 �+M�++� � g2��M�+�� ;ÆAM�� = D��M� + g2 �+MNP�NP� � g2 ��M���� � g2�+M�+�� ;�BMN�� = 2D[��MN�℄ � 2�����[M GN ℄��� ;�B���� = 2D[�����℄ + 2�MN�M(� G�)N�� ; (2.28)11



where we used the 
ovariant variations of the two-form gauge �elds (2.17). Underthese gauge transformations the Lagrangian (2.8) is invariant. The only non-vanishing
ommutator of these gauge transformations is7[Æ�1 ; Æ�2 ℄ = Æ~� + Æ~� ; (2.29)where ~�M = gXNPM�N[1�P2℄ ;~�MN� = ��� ���[M1 D��N ℄�2 � ��[M2 D��N ℄�1 � ;~���� = ��MN ��M(�1 D���)N2 � �M(�2 D���)N1 � : (2.30)In the a
tion on obje
ts that do not transform under tensor gauge transformations(like �eld strengths, s
alar �elds) this algebra 
oin
ides with (2.27).2.3 Killing spinor equationsSo far we have only 
onsidered bosoni
 �elds and we do not intend to give the entirefermioni
 Lagrangian nor the 
omplete supersymmetry a
tion. They 
an e.g. be foundin the paper of Bergshoe�, Koh and Sezgin [9℄ for purely ele
tri
 gaugings when onlyf+MNP is non-zero, and we have 
hosen most of our 
onventions to agree with theirwork in this spe
ial 
ase8. In parti
ular all terms of order g0, i.e. terms of the ungaugedtheory, 
an be found there.Our aim in this se
tion is to give the Killing spinor equations of the general gaugedtheory, i.e. the variations of the gravitini and of the spin 1=2 fermions under supersym-metry. Those are required for example when studying BPS solutions or when analyzingthe supersymmetry breaking or preserving of parti
ular ground states.All the fermions 
arry a representation of H = SO(2)�SO(6)�SO(n) whi
h is themaximal 
ompa
t subgroup of G. Instead of SO(6) we work with its 
overing groupSU(4) in the following. The gravity multiplet 
ontains four gravitini  i� and four spin1=2 fermions �i and in the n ve
tor multiplet there are 4n spin 1/2 fermions �ai, wherei = 1; : : : ; 4 and a = 1; : : : ; n are ve
tor indi
es of SU(4) and SO(n). The SO(2) = U(1)a
ts on the fermions as a multipli
ation with a 
omplex phase exp(iq�(x)), where the
harges q are given in table 1.As usual we use gamma-matri
es withf��;��g = 2��� ; (��)y = ����� ; �5 = i�0�1�2�3 : (2.31)7 In the Lagrangian the two-form gauge �elds only appear under a parti
ular proje
tion withf�MNP and ��M and the gauge transformation on them only 
lose under this very proje
tion [23℄.8 The stru
ture 
onstants fMNP in [9℄ equal minus f+MNP .12



SO(2) 
harges SU(4) rep. SO(n) rep.gravitini  i� � 12 4 1spin 1=2 fermions �i + 32 4 1spin 1=2 fermions �ai + 12 4 nTable 1: H-representations of the fermions.All our fermions are 
hiral. We 
hoose  i� and �ai to be right-handed while �i isleft-handed, that is�5 i� = + i� ; �5�i = ��i ; �5�ai = +�ai : (2.32)Ve
tor indi
es of SU(4) are raised and lowered by 
omplex 
onjugation, i.e. for anordinary SU(4) ve
tor vi = (vi)�. However, for fermions we need the matrix B = i�5�2to de�ne �i = B(�i)�. This ensures that �i transforms as a Dira
 spinor when �i does.The 
omplex 
onjugate of a 
hiral spinor has opposite 
hirality, e.g. �i = B(�i)� isright-handed9. For ��i = (�i)y�0 we de�ne the 
omplex 
onjugate by ��i = (��i)�B whi
hyields ��i�i = ��i�i = (��i�i)� = (��i�i)�.An SO(6) ve
tor vm 
an alternatively be des
ribed by an antisymmetri
 tensorvij = v[ij℄ subje
t to the pseudo-reality 
onstraintvij = (vij)� = 12�ijklvkl : (2.33)We normalize the map vm 7! vij su
h that the s
alar produ
t be
omesvmwm = 12�ijklvijwkl : (2.34)We 
an thus rewrite the 
oset representative VMm as VMij su
h that the equations(2.3) and (2.6) be
ome�MN = �12�ijklVMijVNkl + VMaVNa ;MMNPQRS = � 2 i �ijps �klqt �mnru V[MijVNklVPmnVQpqVRrsVS℄tu : (2.35)9 Right-handed spinors 
an be des
ribed by Weyl-spinors �A, and left-handed ones then turn to
onjugate Weyl-spinors � _A. Here A and _A are (
onjugate) SL(2; C ) ve
tor indi
es. In the 
hiralrepresentation of the Gamma-matri
es�� =  0 ���� 0 ! ; �5 =  1 00 �1 ! ; B = i�5�2 =  0 ��� 0 ! ;where � is the two-dimensional epsilon-tensor and �� = (1; ~�), �� = ����� = (�1; ~�) 
ontains thePauli matri
es, we �nd right-handed spinors to have the form � = (�A; 0)T while left-handed ones looklike � = (0; � _A)T . Thus we have �i = (0; �i_A)T and its 
omplex 
onjugate is given by �i = (�Ai ; 0)Twhere the Weyl-spinors are related by �Ai = �AB(�i_B)�.13



The s
alar matri
es VMij and VMa 
an be used to translate from SO(6; n) represen-tations under whi
h the ve
tor and tensor gauge �elds transform into SO(6)� SO(n)representations 
arried by the fermions. They are thus 
ru
ial when we want to 
ouplefermions. For the same reason it is ne
essary to introdu
e an SL(2) 
oset representative,namely a 
omplex SL(2) ve
tor V� whi
h satis�esM�� = Re(V�(V�)�) : (2.36)Under SO(2) V� 
arries 
harge +1 while its 
omplex 
onjugate 
arries 
harge �1.10When gauging the general theory all partial derivatives are repla
ed by 
ovariantderivatives � ! D and all Abelian �eld strengths by 
ovariant ones FM+ ! HM+.Moreover one has to add the topologi
al term and the s
alar potential to the Lagrangianas we have des
ribed in se
tion 2.1. In the fermioni
 se
tor the only additional 
hangethat has to be made in the Lagrangian is the introdu
tion of fermioni
 mass terms andfermioni
 
ouplings, all of order g1. For example those terms that involve the gravitinireade�1Lf.mass = 13 g Aij1 � �i ���  �j � 13 i g Aij2 � �i �� �j + ig A2 aij � i� �� �aj + h.
. ; (2.37)where Aij1 = A(ij)1 , Aij2 and A2 aij are the so 
alled fermion shift matri
es whi
h dependon the s
alar �elds.Also the supersymmetry transformations of the fermions have to be endowed with
orre
tions of order g1, namelyÆ i� = 2D��i + 14 i (V�)�VMij GM��� ������j � 23 g Aij1 ���j ;Æ�i = i ���V�(D�V�)���i + 12 iV�VMij GM��� ����j � 43 i g Aji2 �j ;Æ�ia = 2iVaM(D�VMij)���j � 14 V�VMa GM��� ����i + 2 i g A2 aji �j ; (2.38)where the same matri
es A1 and A2 appear as in the Lagrangian. There are also higherorder fermion terms in the supersymmetry rules, but those do not get 
orre
tions inthe gauged theory. We wrote the ve
tor �eld 
ontribution to the fermion variations inan SL(2) 
ovariant way. Using the de�nition (2.15) one �ndsiV�VMijGM��� ��� = (V��)�1 VMij �HM+�� + 12 i �����HM+ ������= (V��)�1 VMijHM+�� ���(1� �5) ;iV�VMaGM��� ��� = (V��)�1 VMa �HM+�� � 12 i �����HM+ ������= (V��)�1 VMaHM+�� ���(1 + �5) : (2.39)10 The 
omplex s
alars � and  in [9℄ translate into our notation as V+ =  , V� = i� and  =� = i��.14



Expli
itly, the fermion shift matri
es are given byAij1 = ���(V�)�V[kl℄MVN [ik℄VP [jl℄f�MNP ;Aij2 = ���V�V[kl℄MVN [ik℄VP [jl℄f�MNP + 32���V�VMij��M ;A2 aij = ���V�VMaVN [ik℄VP [jk℄f�MNP � 14Æji ���V�VaM��M : (2.40)Supersymmetry of the Lagrangian for
es them to obey in parti
ular1113 Aik1 �A1 jk � 19 Aik2 �A2 jk � 12 A2 ajk �A2 aik = � 14 Æij V ; (2.41)where the s
alar potential V appears on the right hand side. The last equation isindeed satis�ed as a 
onsequen
e of the quadrati
 
onstraints (2.20).If we have 
hosen f�MNP and ��M su
h that the s
alar potential possesses an ex-tremal point one may wonder whether the asso
iated ground state 
onserves somesupersymmetry, i.e. whether �i exists su
h the fermion variations (2.38) vanish in theground state. The usual Ansatz is �i = qi �, where qi is just an SU(4) ve
tor while � isa right-handed Killing spinor of AdS (V < 0) or Minkowski (V = 0) spa
e, i.e.12D�� = gq� 112V ��B�� : (2.42)The Killing spinor equations Æ i = 0, Æ�i = 0 and Æ�ai = 0 then take the formAij1 qj =q�34V qi ; qjAji2 = 0 ; A2ajiqj = 0 : (2.43)Due to (2.41) the �rst equation of (2.43) already implies the other two.2.4 ExamplesIn this se
tion we give examples of tensors f�MNP and ��M that solve the 
onstraints(2.20), therewith giving examples of gauged N = 4 supergravities. We re
over thosegaugings that were already dis
ussed in the literature but also obtain new ones.2.4.1 Purely ele
tri
 gaugingsIt 
an be shown that as a 
onsequen
e of the 
onstraints (2.20) for every 
onsistentgauging one 
an perform a symple
ti
 rotation su
h that only the ele
tri
 ve
tor �eldsserve as gauge �elds [27℄. In the maximal supersymmetri
 theory, i.e. for N = 8,this statement 
an even be reversed, i.e. every gauging (de�ned by some embedding11 This equation is obtained by 
onsidering terms of the form g2 � ���� in the variation ÆL.12 Consisten
y of the AdS Killing spinor equation 
an be 
he
ked by using R���� = � 23g2V g�[�g�℄� ,�[�B���℄B� = ���� and [D�; D� ℄� = � 14R��������.15



tensor similar to our f�MNP and ��M) that is purely ele
tri
 in some symple
ti
 frameis 
onsistent (i.e. solves the quadrati
 
onstraints for the embedding tensor). Thisis di�erent in N = 4 where a nontrivial quadrati
 
onstraint remains also for purelyele
tri
 gaugings.In the parti
ular ele
tri
 frame we have 
hosen { the one in whi
h the ele
tri
 andmagneti
 ve
tor �elds ea
h form a ve
tor under SO(6; n) { the purely ele
tri
 gaugingsare those for whi
h f�MNP = 0 and ��M = 0, thus only f+MNP is non-vanishing. Thisis the 
lass of theories that were 
onstru
ted by Bergshoe�, Koh and Sezgin [9℄. Asmentioned above the quadrati
 
onstraint in this 
ase simpli�es to the Ja
obi identity(2.22), whi
h may alternatively be written asf+R[MQf+NP ℄R = 0 : (2.44)This is a 
onstraint on f+MNP = f+MNQ�QP only, but in addition the linear 
onstraintf+MNP = f+[MNP ℄ has to be satis�ed, su
h that the SO(6; n) metri
 �MN enters non-trivially into this system of 
onstraints. The dimension of the gauge group 
an at mostbe 6 + n, whi
h is obvious in the 
ase that we 
onsider here (M = 1; : : : ; 6 + n), butwhi
h is also the general limit for arbitrary gaugings.We �rst want to 
onsider semi-simple gaugings. Let fab
 be the stru
ture 
onstantsof a semi-simple gauge group G0, where a; b; 
 = 1 : : :dim(G0), dim(G0) � 6 + n, then�ab = fa
dfbd
 is the Cartan-Killing form and we 
an 
hoose a basis su
h that it be
omesdiagonal, i.e. �ab = diag( 1; : : : ;| {z }p �1; : : :| {z }q ) : (2.45)We 
an only realize the gauge group G0 if we 
an embed its Lie algebra g0 = fvag intothe ve
tor spa
e of ele
tri
 ve
tor �elds su
h that the preimage of �MN agrees with �abup to a fa
tor. This puts a restri
tion on the signature of �ab, namely either p � 6,q � n (
ase 1) or p � n, q � 6 (
ase 2). To make the embedding expli
it we de�ne theindex M̂ with range M̂ = 1 : : : p; 7 : : : 6 + q (
ase 1) or M̂ = 1 : : : q; 7 : : : 6 + p (
ase 2).We then have (�M̂N̂) = �(�ab) and we 
an de�ne(f+M̂N̂P̂ ) = (fab
) ; all other entries of f+MNP zero, (2.46)where fab
 = fabd�d
. Sin
e G0 is semi-simple fab
 is 
ompletely antisymmetri
 and thusf+MNP satis�es the linear and the quadrati
 
onstraint. For n � 6 the possible simplegroups that 
an appear as fa
tors in G0 are SU(2), SO(2; 1), SO(3; 1), SL(3), SU(2; 1),SO(4; 1) and SO(3; 2). For larger n we then �nd SU(3), SO(5), G2(2), SL(4), SU(3; 1),SO(5; 1), et
.Apart from these semi-simple gaugings there are various non-semi-simple gaugingsthat satisfy (2.44). Of those we only want to give an example. We 
an 
hoose three16



mutual orthogonal lightlike ve
tors aM , bM and 
M and de�ne f+MNP to be the volumeform on their span, i.e. f+MNP = a[MbN
P ℄ : (2.47)The ve
tors have to be linearly independent in order that f+MNP is non-vanishing. Thequadrati
 
onstraint is then satis�ed trivially sin
e it 
ontains �MN whi
h is vanishingon the domain of f+MNP . The gauge group turns out to be G0 = U(1)3. We 
angeneralize this 
onstru
tion by 
hoosing f+MNP to be any three form that has asdomain a lightlike subspa
e of the ve
tor spa
e fvMg. All 
orresponding gauge groupsare Abelian.None of the purely ele
tri
 gaugings 
an have a ground state with non-vanishing
osmologi
al 
onstant sin
e the s
alar potential (2.11) in this 
ase is proportional toM++ = Im(�)�1. Therefore de Roo and Wagemans introdu
ed a further deformation ofthe theory [7℄. Starting from a semi-simple gauging as presented above they introdu
eda phase for every simple group fa
tor as additional parameters in the des
ription ofthe gauging. In the next se
tion we will explain the relation of these phases to ourparameters f�MNP and show how these theories �t into our framework.2.4.2 The phases of de Roo and WagemansWe now allow for f+MNP and f�MNP to be non-zero but keep �M� = 0. The quadrati

onstraint (2.20) then readsf�R[MNf�PQ℄R = 0 ; ���f�MNRf�PQR = 0 : (2.48)To �nd solutions we start from the situation of the last se
tion, i.e. we assume to havesome stru
ture 
onstants fMNP = f[MNP ℄ that satisfy the Ja
obi-identity fR[MQfNP ℄R =0. In addition we assume to have a de
omposition of the ve
tor spa
e fvMg into Kmutual orthogonal subspa
es with proje
tors PiMN , i = 1 : : :K, i.e. su
h that for ageneral ve
tor vM we havevM = KXi=1 PiMNvN ; �MP PiMN PjPQ = 0 for i 6= j : (2.49)Furthermore this de
omposition shall be su
h that the three form fMNP does not mixbetween the subspa
es, i.e. it de
omposes into a sum of three-forms on ea
h subspa
efMNP = KXi=1 f (i)MNP ; f (i)MNP = PiMQPiNRPiP S fQRS : (2.50)
17



This implies that the gauge group splits into K fa
tors G0 = G(1) �G(2) � : : :�G(K)with f (i)MNP being the stru
ture 
onstant of the i-th fa
tor, ea
h of them satisfying theabove Ja
obi-identity separately. Solutions of the 
onstraint (2.48) are then given byf�MNP = KXi=1 w(i)� f (i)MNP ; w(i)� = (w(i)+ ; w(i)� ) = (
os�i; sin�i); (2.51)where the w(i)� 
ould be arbitrary SL(2) ve
tors whi
h we 
ould restri
t to have unitlength without loss of generality. The �i 2 R, i = 1 : : :K, are the de Roo-Wagemans-phases �rst introdu
es in [7℄. In the following we want to use the abbreviations 
i =
os�i, si = sin�i. If K = 1 we �nd f+MNP and f�MNP to be proportional. This 
aseis equivalent to the purely ele
tri
 gaugings of the last se
tion sin
e one always �ndsan SL(2) transformation su
h that w(1)� be
omes (1; 0).For a semi-simple gauging as des
ribed in the last se
tion there is a natural de
om-position of fvMg into mutual orthogonal subspa
es and K equals the number of simplefa
tors in G0. But the above 
onstru
tion also applies for non-semi-simple gaugings.We have mentioned above that every 
onsistent gauging is purely ele
tri
 in aparti
ular symple
ti
 frame. Considering a 
on
rete gauging it is therefore natural toformulate the theory in this parti
ular frame, and also the two-form gauge �elds thendisappear from the Lagrangian. For those gaugings de�ned by (2.51) we may performthe symple
ti
 transformation~AM+� = KXi=1 
iPiMN AN+� + KXi=1 siPiMN AN�� ;~AM�� = � KXi=1 siPiMN AN+� + KXi=1 
iPiMN AN�� ; (2.52)su
h that the 
ovariant derivative depends ex
lusively on ~AM+�D� = r� � g ~A�M+fMNP tNP : (2.53)Note that the new ele
tri
 ve
tor �elds ~AM+� do not form a ve
tor under SO(6; n), buttransform into ~AM�� under this group. The Lagrangian in the new symple
ti
 framereads e�1L = 12 R + 18 (D�MMN )(D�MMN )� 14 Im(�)2 (D��)(D�� �)� 14 IMN ~F��M+ ~F��N+ � 18 RMN ����� ~FM+�� ~FN+�� � g2V ; (2.54)
18



and the s
alar potential (2.11) takes the form [28℄V = 116 Im(�)�1 KXi;j=1 �
i
j � 2Re(�)
isj + j� j2sisj� f (i)MNPf (j)QRS� h13 MMQMNRMPS + (23 �MQ �MMQ)�NR�PSi� 118 KXi;j=1 
isjf (i)MNPf (j)QRSMMNPQRS : (2.55)The kineti
 term of the ve
tor �elds involves the �eld strength~F��M+ = 2�[� ~A�℄M+ � g fNPM ~A[�N+ ~A�℄P+ ; (2.56)and the s
alar dependent matri
es IMN and RMN whi
h are de�ned by(I�1)MN = 1Im(�) KXi;j=1 �
i
j � 2Re(�)
isj + j� j2sisj�PiMPPjNQMPQ ;RMN(I�1)NP = 1Im(�) KXi;j=1 ��
isj +Re(�)(sisj � 
i
j) + j� j2si
j�PiMNPjP RMNR :(2.57)In general when going to the ele
tri
 frame for an arbitrary gauging there is still atopologi
al term for the ele
tri
 �elds of the form AA�A + AAAA [40℄, but here thisterm is not present.Comparing the s
alar potential V for non-vanishing phases �i with that of the lastse
tion we �nd it to have a mu
h more 
ompli
ated � dependen
e and one 
an indeed�nd gaugings where it possesses stationary points [10, 28℄.2.4.3 IIB 
ux 
ompa
ti�
ationsWe now want to 
onsider gaugings with an origin in type IIB supergravity. N = 4supergravity 
an be obtained by an orientifold 
ompa
ti�
ation of IIB [11, 12℄ and inthe simplest T 6=Z2 
ase this yields the ungauged theory with n = 6, i.e. the globalsymmetry group is G = SL(2) � SO(6; 6). Here, the SL(2) fa
tor is the symmetrythat was already present in ten dimensions and SO(6; 6) 
ontains the GL(6) symmetrygroup asso
iated with the torus T 6. The 
ompa
ti�
ation thus yields the theory in asymple
ti
 frame in whi
h SL(2)�GL(6) is realized o�-shell. Turning on 
uxes resultsin gaugings of the theory that are purely ele
tri
 in this parti
ular symple
ti
 frame.This is the 
lass of gaugings to be examined in this subse
tion.An SO(6; 6) ve
tor de
omposes under GL(6) = U(1)�SL(6) into 6�6. The ve
tor�elds A�M� split a

ordingly into ele
tri
 ones A��� and magneti
 ones A��� where19



� = 1 : : : 6 is a (dual) SL(6) ve
tor index. The SO(6; 6) metri
 takes the form�MN =  ��� ������ ���! =  0 Æ��Æ�� 0 ! : (2.58)The gauge group generators (2.24) split as XM� = (X��; X��) and a purely ele
tri
gauging satis�es X�� = 0. The tensors ��M and f�MNP de
ompose into the followingrepresentations(2; 12) ! (2; 6)� (2; 6) ;(2; 220) ! (2; 6)� (2; 20)� (2; 84)� (2; 84)� (2; 20)� (2; 6) : (2.59)From (2.24) one �nds that the 
ondition X�� = 0 demands most of these 
omponentsto vanish, only the (2; 20) and a parti
ular 
ombinations of the two (2; 6)'s are allowedto be non-zero. Expli
itly we �nd for the general ele
tri
 gaugings in this frame��M = (���; ���) = (���; 0) ;f�MNP = (f����; f����; f����; f����) = (f����; ��[�Æ��℄; 0; 0) : (2.60)This Ansatz automati
ally satis�es most of the quadrati
 
onstraints (2.20), the only
onsisten
y 
onstraint left is f(�[��� ��)	℄ = 0 : (2.61)Thus for ��� = 0 we �nd f���� to be un
onstrained, i.e. every 
hoi
e of f���� givesa valid gauged theory. It turns out that f���� 
orresponds to the possible three-form
uxes that 
an be swit
hed on. These theories and extensions of them were alreadydes
ribed and analyzed in [13, 14℄. It was noted in [41℄ that not all N = 4 modelsthat 
ome from T 6=Z2 orientifold 
ompa
ti�
ations 
an be embedded into the N = 8models from torus redu
tion of IIB, sin
e for the latter the 
uxes have to satisfy the
onstraint f�[���f�	��℄ = 0.Sear
hing for solutions to the 
onstraint (2.61) with ��� non-vanishing one �ndsthat the possible solutions have the formf���� = ��[�A��℄ ; or f���� = ��
 B�[� ��� �
�℄ ; (2.62)with un
onstraint ���, A�� = A[��℄ and B��, respe
tively.Theories with both f�MNP and ��M non-zero were not yet 
onsidered in the litera-ture. For f�MNP = 0 the remaining quadrati
 
onstraints on ��M demands it to be ofthe form ��M = v� wM , with v� arbitrary and wM lightlike, i.e. wMwM = 0. Thus forvanishing f�MNP the solution for ��M is unique up to SL(2)�SO(6; n) transformations.This solution 
orresponds to the gauging that 
an be obtained from S
herk-S
hwarz20



redu
tion fromD = 5 with a non-
ompa
t SO(1; 1) twist, whi
h was 
onstru
ted in [29℄for the 
ase of one ve
tor multiplet. This suggests that in 
ertain 
ases non-vanishing��M 
orresponds to torsion on the internal manifold. But this does not apply for the IIBredu
tions in this se
tion sin
e ��� is a doublet under the global SL(2) symmetry of IIB,while a torsion parameter should be a singlet. We have shown that these theories withnon-vanishing ��� are 
onsistent N = 4 supergravities, but their higher-dimensionalorigin remains to be elu
idated.The list of gauged N = 4 supergravities that were presented in this se
tion is, of
ourse, far from 
omplete. One 
ould, for example, dis
uss other orientifold 
ompa
ti-�
ations of IIA and IIB supergravity, for all of whi
h turning on 
uxes yields gaugedtheories in four dimensions [15, 16℄. However, the examples dis
ussed were hopefullyrepresentative enough to show that indeed all the various gaugings appearing in theliterature 
an be embedded in the universal formulation presented above. New 
lassesof gaugings are those with both f�MNP and ��M non-vanishing. Every solution of thequadrati
 
onstraints (2.20) yields a 
onsistent gauging . For additional examples see[42℄.3 Gauged N = 4 supergravities in D = 5In analogy to the four dimensional theory presented in the last se
tion we now des
ribethe general gauged N = 4 (half-maximal) supergravity in �ve spa
etime dimensions13.The general gauging in D = 5 is parameterized by three real tensors fMNP , �MN and�M , taking the role of f�MNP and ��M from the last se
tion. Our presentation isless detailed than for the four dimensional theory be
ause for the 
ase �M = 0 thesetheories were already presented in the literature [31℄. On the other hand, gaugings withvanishing fMNP and �MN but non-zero �M have a non-semi-simple gauge group andoriginate in generalized dimensional redu
tion from D = 6 supergravity [29℄. Here we
omplete the analysis of [29, 31℄ by in
luding gaugings with all tensors fMNP , �MN and�M non-zero. We give the 
omplete bosoni
 Lagrangian and Killing spinor equationsand at the end of this se
tion make 
onta
t with the four dimensional theory.3.1 Quadrati
 
onstraints and gauge algebraThe global symmetry group of ungauged D = 5, N = 4 supergravity is G = SO(1; 1)�SO(5; n), where n 2 N 
ounts the number of ve
tor multiplets. The theory 
ontains13 Sometimes the half-maximal supergravities in D = 5 are referred to as N = 2 theories. Weprefer the notation N = 4 sin
e they are related to the N = 4 theories in four dimensions via a torusredu
tion. In this notation the minimal supergravity in D = 5 is denoted as N = 2.21



Abelian ve
tor gauge �elds that form one ve
tor AM� and one s
alar A0� under SO(5; n).Note that the index M = 1 : : : 5+ n now is a ve
tor index of SO(5; n) while in the lastse
tion we used it for SO(6; n). The ve
tor �elds 
arry SO(1; 1) 
harges 1=2 and �1,respe
tively, i.e. Æ0̂AM� = 12AM� ; Æ0̂A0� = �A0� ; (3.1)where Æ0̂ denotes the SO(1; 1) a
tion. The 
orresponding algebra generator is denotedt0̂ while the SO(5; n) generators are tMN = t[MN ℄. For the representations of the ve
torgauge �elds these generators expli
itly readtMN PQ = ÆQ[M�N ℄P ; t0̂MN = �12ÆNM ; tMN 00 = 0 ; t0̂00 = 1 : (3.2)The general gauging of the theory is parameterized by tensors fMNP = f[MNP ℄, �MN =�[MN ℄ and �M . They designate the gauge group and assign the ve
tor gauge �elds tothe gauge group generators. The general 
ovariant derivative readsD� = r� � g AM� fMNP tNP � g A0� �NP tNP � g AM� �N tMN � g AM� �M t0̂ ; (3.3)where the indi
es are raised and lowered by using the SO(5; n) metri
 �MN and g isthe gauge 
oupling 
onstant. In order that the above expression is G invariant weneed fMNP and �M to 
arry SO(1; 1) 
harge �1=2 and �MN to have 
harge 1. By Ginvarian
e we mean a formal invarian
e treating the fMNP , �MN and �M as spurioni
obje
ts that transform under G. However, as soon as we 
hoose parti
ular values forthese tensors the global G invarian
e is broken and only a lo
al G0 � G invarian
e isleft.To guarantee the 
losure of the gauge group and the 
onsisten
y of the gauging weneed the following quadrati
 
onstraints to be satis�ed for a general gauging�M�M = 0 ; �MN�N = 0 ; fMNP �P = 0 ;3fR[MN fPQ℄R = 2f[MNP �Q℄ ; �MQ fQNP = �M �NP � �[N �P ℄M : (3.4)This implies for example that �M has to vanish for n = 0 sin
e for an Eu
lidean metri
�MN one has no lightlike ve
tors. In general, however, all three tensors may be non-zero at the same time. For the sake of dis
ussing the 
losure of the gauge group it is
onvenient to 
onsider the group a
tion on the ve
tor �eld representation de�ned by(3.2). Introdu
ing the 
omposite index M = f0; Mg, i.e. AM� = (A0�; AM� ), we haveD� �M = r� �M + g AN� XNPM �P ; (3.5)where the gauge group generators XMNP = (XM)NP are given byXMNP = �fMNP � 12�MN�P + ÆP[M�N ℄ ; XM00 = �M ; X0MN = ��MN ; (3.6)22



and all other 
omponents vanish. For the 
ommutator of these generators one �nds[XM; XN ℄ = �XMNP XP ; (3.7)i.e. the gauge group 
loses and XMNP itself takes the role of a generalized stru
ture
onstant. The 
losure relation (3.7) is equivalent to the quadrati
 
onstraint (3.4).For gaugings with only fMNP non-zero we see that this tensor is a stru
ture 
onstantfor a subgroup G0 of SO(5; n) that is gauged by using AM� as ve
tor gauge �elds. Ifonly �MN is non-zero we �nd a one-dimensional subgroup of SO(5; n) to be gauged withgauge �eld A0�. And for gaugings with only �M non-zero one �nds a 4 + n dimensionalgauge group SO(1; 1)n SO(1; 1)3+n where the �rst fa
tor involves the SO(1; 1) of G.Note further that (3.7) is of pre
isely the same form as the 
losure relation (2.27)whi
h we had in four dimensions. This is not by a

ident but we have just applied ageneral method of how to gauge supersymmetri
 theories whi
h goes under the nameof the embedding tensor [21, 22, 23, 24, 27℄. In this language the tensors fMNP , �MNand �M are 
omponents of the embedding tensor whi
h is a linear map from the ve
torspa
e of ve
tor gauge �elds to the Lie algebra of invarian
es of the ungauged theory.Independent of the number of supersymmetries or of the spa
etime dimension theembedding tensor always has to satisfy the quadrati
 
onstraint (3.7). In additionit always satis�es a linear 
onstraint whi
h involves extra obje
ts and whose formdepends on the number of spa
etime dimensions. For example in D = 4 the linear
onstraint involves the antisymmetri
 tensor 
MN and has the form X(MNQ
P)Q = 0[27℄ while in D = 5 it involves the tensor dMNP and takes the form (3.10) below. Ourpresentation of the �ve dimensional theory is to a large extend based on [23℄ where the
orresponding maximal supergravity was presented.To give the Lagrangian and the gauge transformations of the theory in the nextse
tion it is useful to introdu
e the tensors dMNQ = d(MNQ) and ZMN = Z [MN ℄ asfollows d0MN = dM0N = dMN0 = �MN ; all other 
omponents zero, (3.8)and ZMN = 12 �MN ; Z0M = �ZM0 = 12 �M : (3.9)The embedding tensor then satis�esX(MN )P = dMNQZPQ : (3.10)3.2 The general LagrangianWe have already introdu
ed the ve
tor �elds AM� and A0�. In addition the bosoni
 �eld
ontent 
onsists of s
alars that form the 
oset SO(1; 1)� SO(5; n)=SO(5)� SO(n) and23



two-form gauge �elds B��M = (B�� M ; B�� 0). In the ungauged theory these two-form�elds do not appear in the Lagrangian but 
an be introdu
ed on-shell as the duals ofthe ve
tor gauge �elds. In the gauged theory we 
onsider both ve
tor and two-form�elds as o�-shell degrees of freedom, however, the latter do not have a kineti
 term but
ouple to the ve
tor �elds via a topologi
al term su
h that they turn dual to the ve
torsdue to their own equations of motion [23℄. This is analogous to the four dimensional
ase where the two-forms turned out to be dual to s
alars via the equations of motion.The SO(1; 1) part of the s
alar manifold is simply des
ribed by one real �eld �that is a singlet under SO(5; n) and 
arries SO(1; 1) 
harge �1=2. In addition we havethe 
oset SO(5; n)=SO(5) � SO(n) whi
h is parameterized by a 
oset representativeV = (VMm; VMa), where m = 1 : : : 5 and a = 1 : : : n are SO(5) and SO(n) ve
torindi
es. Our 
onventions for V here are the same as for the SO(6; n)=SO(6) � SO(n)
oset representative we had in four dimensions, see equations (2.3), (2.4), (2.5). Inaddition to the symmetri
 matrix MMN = VVT and its inverse MMN we need the
ompletely antisymmetri
MMNPQR = �mnopqVMmVNnVP oVQpVRq : (3.11)The two-form gauge �elds transform dual to the ve
tor gauge �eld under G, i.e.B�� M is a ve
tor with SO(1; 1) 
harge �1=2 and B�� 0 is a singlet 
arrying 
harge 1.They enter into the 
ovariant �eld strength of the ve
tor �elds as followsHM�� � 2�[�AM�℄ + gXNPMAN� AP� + gZMNB��N : (3.12)We now have all obje
ts to give the bosoni
 Lagrangian of the general gauged N = 4supergravity in �ve dimensionsLbos = Lkin + Ltop + Lpot : (3.13)It 
onsists of a kineti
 parte�1Lkin = 12 R� 14 �2MMN HM��HN �� � 14 ��4H0�� H0��� 32 ��2 (D��)2 + 116 (D�MMN)(D�MMN ) ; (3.14)a topologi
al part [23℄Ltop = � e8p2�������gZMNB��M hD�B��N + 4dNPQAP[����AQ�℄ + 13gXRSPAR� AS�℄�i� 83 dMNP AM� ��AN� ��AP� � 2 g dMNP XQRMAN� AQ� AR� ��AP�� 25 g2 dMNP XQRMXST P AN� AQ� AR� AS� AT�� ; (3.15)24



and a s
alar potentiale�1Lpot = �g2V= �g24 h�MNP �QRS��2 � 112MMQMNRMPS � 14MMQ�NR�PS + 16�MQ�NR�PS�+ 14�MN�PQ�4 �MMPMNQ � �MP�NQ�+ �M�N��2MMN+ 13p2�MNP �QR�MMNPQRi : (3.16)For �M = 0 the latter agrees with the potential given in [31℄.The topologi
al term seems 
ompli
ated, but its variation with respe
t to the ve
torand tensor gauge �elds takes a rather simple and 
ovariant form, namelyÆLtop = e4p2������ � 13 g ZMN H(3)���M�B��N + dMNP HM�� HN�� ÆAP� � + tot. deriv. ;(3.17)where we have used the 
ovariant variation�B��N � ZMN �ÆB��N � 2dNPQAP[�ÆAQ�℄� ; (3.18)and the 
ovariant �eld strength of the two-form gauge �eldsZMNH(3)���N = ZMN h3D[�B��℄N + 6 dNPQAP[� ��� AQ�℄ + 13 g XRSQAR� AS�℄�i : (3.19)Note that the two-forms appear in the Lagrangian always proje
ted with ZMN , i.e.they 
ompletely de
ouple from the theory for the ungauged 
ase g ! 0, but also for thegauged theory there are never all two-forms entering the Lagrangian. For gaugings withonly fMNP non-zero we have ZMN = 0 and thus no two-forms are needed. In the lastequation we also de�ned the �eld strength of the two-forms only under ZMN proje
tionbe
ause only then it transforms 
ovariantly under the following gauge transformations[23℄ ÆAM� = D��M � gZMN��N ;�B��M = �2D[���℄M � 2dMNPHN���P� : (3.20)Here �M = �M(x) and ��M = ��M(x) parameterize the (tensor) gauge transforma-tions. Also the �eld strength HM�� transforms 
ovariantly under these transformations,i.e. ÆHM�� = �g�NXNPMHP�� : (3.21)The topologi
al term Ltop is invariant under (3.20) up to a total derivative. The algebraof gauge transformations 
loses analogous to the one we found in four dimensions (2.29).25



Varying the two-forms in the Lagrangian yields the equation of motionZMN � 16p2������H(3) ���N �MNPHP��� = 0 ; (3.22)where we have used MMN �  ��4 00 �2MMN! : (3.23)Due to equation (3.22) the two-forms be
ome dual to the ve
tor gauge �elds as wasannoun
ed earlier.3.3 Killing spinor equationsWe now turn to the fermions of the �ve dimensional theory in order to give the Killingspinor equations. The fermions 
ome in representations of the maximal 
ompa
t sub-group H = USp(4) � SO(n) of G, where USp(4) is the 
overing group of SO(5). Inthe gravity multiplet there are four gravitini  �i and four spin 1=2 fermions �i, bothve
tors under USp(4) and singlets under SO(n), i = 1 : : : 4. In the n ve
tor multipletsthere are 4n spin 1=2 fermions �ai whi
h form a ve
tor under both USp(4) and SO(n),a = 1 : : : n. All fermions are pseudo-Majorana, i.e. they satisfy a pseudo-reality 
on-straint of the form �i = 
ijC(��j)T , where 
ij is the USp(4) invariant symple
ti
 formand C is the 
harge 
onjugation matrix.The 
oset representative VMm transforms as a 5 under USp(4) and 
an alternativelybe expressed as VMij = VM [ij℄ subje
t toVMij
ij = 0 ; (VMij)� = 
ik
jlVMkl : (3.24)Under supersymmetry transformations parameterized by �i = �i(x) we haveÆ �i = D��i � i6 �
ij�VMjkHM�� � 14p2 Æki ��2H0��� ����� � 4Æ����� �k+ igp6 
ij Ajk1 �� �k ;Æ�i = �12 p3 i (��1D��)���i � 16 p3 ��
ij VMjkHM�� + 12p2��2 Æki H0�������k+p2 g
ij Akj2 �k ;Æ�ai = i
jk (VMaD�VijM)���k � 14 �VMaHM�� ��� �i +p2 g
ij Aakj2 �k : (3.25)Here we have negle
ted higher order fermion terms. These fermion variations 
ouldformally be read o� from [31℄. But the fermion shift matri
es A1ij, A2ij and Aa2ij whi
hare de�ned below now in
lude 
ontributions from the ve
tor �M .26



Using VMa and VMij we 
an de�ne from fMNP , �MN and �M s
alar dependenttensors that transform under H. The ve
tor �M gives� ij = ��1VMij �M ; �a = ��1VMa �M ; (3.26)from the 2-form �MN one gets� ij = p2�2
kl VMikVNjl �MN ; �aij = �2VMaVNij �MN ; (3.27)and the 3-form fMNP yields�ij = �23 ��1V ikMVjlNVP kl fMNP ; �aij = p2��1 
kl VMaVNikVP jl fMNP ; (3.28)where �ij = �[ij℄, � ij = �(ij), �aij = �a[ij℄, �ij = �(ij), �aij = �a(ij). 14 The fermion shiftmatri
es 
an now be de�ned asAij1 = 1p6 ��� ij + 2�ij� ;Aij2 = 1p6 �� ij + �ij + 32 � ij� ;Aaij2 = 12 ���aij + �aij � 14 p2 �a 
ij� : (3.29)These matri
es do not only appear in the fermion variations but also in the fermionmass terms that have to appear in the Lagrangian of the gauged theorye�1Lf.mass = p6 i g4 
kiAij1 � k���� � j +p2 g
kj Aji2 � k����i +p2 g
kj Ajia2 � k����ai :(3.30)Note that we have only given those terms that involve the gravitini. Supersymmetryimposes the following 
ondition on the fermion shift matri
es
kl �Aik1 Ajl1 � Aik2 Ajl2 � Aaik2 Aajl2 � = �14
ijV ; (3.31)where the s
alar potential appears on the right hand side. Again this 
ondition issatis�ed as a 
onsequen
e of the quadrati
 
onstraint (3.4).3.4 Dimensional redu
tion from D = 5 to D = 4Starting from a �ve dimensional N = 4 supergravity one 
an perform a 
ir
le redu
tionto get a four dimensional N = 4 supergravity. Thus any �ve dimensional gaugingdes
ribed by fMNP , �MN and �M must give rise to a parti
ular four dimensional gauging14 Our notation translates into that of [31℄ as follows: a� = A0�, �MN = ggA �MN , fPMN = � ggS fMNP ,Uij = � g6gA �ij , V aij = � gp2gA �aij , Sij = g3gS �ij , T aij = gp2gS �aij .27




hara
terized by f�MNP and ��M . In other words the set of �ve dimensional gaugingsis embedded into the set of four dimensional gaugings and we now want to make thisembedding expli
it. This yields additional examples of four dimensional gaugings, butit is also interesting in the 
ontext of string dualities in presen
e of 
uxes sin
e the twotensors fMNP and �MN in D = 5 turn out to be parts of the single tensor f�MNP underthe larger duality group inD = 4. Thus, as usual, one gets a more uni�ed des
ription ofgaugings with di�erent higher dimensional origin when 
ompa
tifying the supergravitytheory further. With all the group stru
ture at hand it is not ne
essary to expli
itlyperform the dimensional redu
tion but we 
an read o� the 
onne
tion from the formulasfor the 
ovariant derivatives (2.12) and (3.3) (that is from the embedding tensor).A �ve dimensional theory with n ve
tor multiplets yields a four dimensional theorywith n+ 1 ve
tor multiplets. One way to understand that is by 
ounting s
alar �elds.There are 5n + 1 s
alars already present in �ve dimensions and in addition one getsone s
alar from the metri
 and 6+n s
alars form the ve
tor �elds whi
h gives 6n+8 intotal and agrees with the number of s
alars in the 
oset SL(2)� SO(6; n+1)=SO(2)�SO(6) � SO(n + 1). When breaking the SO(6; n + 1) into SO(1; 1)A � SO(5; n) theve
tor representation splits into an SO(5; n) ve
tor vM and two s
alars v� and v	 with
harges 0, 1=2 and �1=2, respe
tively, under SO(1; 1)A. When breaking the SL(2)into SO(1; 1)B the ve
tor splits into two s
alars v+ and v� with 
harges 1=2 and �1=2under SO(1; 1)B. The four dimensional ve
tor �elds therefore split into AM+� , AM�� ,A�+� , A��� , A	+� and A	�� . We 
an now identifying the �ve dimensional ve
tor �elds asAM� = AM+� ; A0� = A	�� ; (3.32)and these �elds 
arry 
harges 1=2 and �1 under the diagonal of SO(1; 1)A and SO(1; 1)Band the �ve dimensional SO(1; 1) therefore has to be this diagonal. Thus the �vedimensional global symmetry generators are given in terms of the four dimensionalones as follows t0̂ = tSL(2)+� + tSO(6;n+1)	� ; tMN = tSO(6;n+1)[MN ℄ : (3.33)The ve
tor �elds AM�� , A�+� are the four dimensional duals of AM+� and A	�� , they
ome from the two-form gauge �elds in �ve dimensions. The ve
tor �elds A��� andA	+� are un
harged under the �ve dimensional SO(1; 1), they are the Kaluza-Kleinve
tor 
oming from the metri
 and its dual �eld.Now, if a four dimensional ve
tor �eld that was already a ve
tor �eld in �ve di-mensions (3.32) gauges a four dimensional symmetry that was already a symmetry in�ve dimensions (3.33) the 
orresponding gauge 
oupling in the 
ovariant derivative inD = 4 has to be the same as in D = 5. For the four dimensional 
ovariant derivative28



(2.12) one �ndsD� = r� � g A�M+ ��+MNP tNP + 2f+M	�t	� + �+M t+��� g A�	� �f�	NP tNP + ��	t	� � ��	t+�� +Dadd� ; (3.34)where ��MNP is de�ned in (2.7)15 andDadd� denotes ex
lusively four dimensional 
ontri-butions to the 
ovariant derivative. By 
omparing with the known 
ovariant derivativein �ve dimensions (3.3) one gets�+M = �M ; f+M�	 = 12 �M ; f�	MN = �MN ; f+MNP = fMNP : (3.35)For a simple 
ir
le redu
tion it is natural to demand furthermore f�MN� = 0, f+MN	 =0, f�MNP = 0, f�M�	 = 0, ��M = 0, ��� = 0 and ��	 = 0. Some of the last quantities,however, may be non-zero for more 
ompli
ated dimensional redu
tions and may thenfor example 
orrespond to S
herk-S
hwarz generators [29℄. But for the ordinary 
ir
leredu
tion we have just given the embedding of the �ve dimensional gaugings intothe four dimensional ones. In addition to the above equations we have to make surethat f� ~M ~N ~P is totally antisymmetri
 in the last three indi
es ( ~M = fM;�;	g). One
an then show that for these tensors f� ~M ~N ~P and �� ~M the four dimensional quadrati

onstraint (2.20) be
omes pre
isely the �ve dimensional one (3.4) for fMNP , �MN and�M . Also the four and the �ve dimensional s
alar potentials (2.11), (3.16) be
ome thesame if all s
alars that are not yet present in D = 5 are set to the origin16.Due to the antisymmetry of f� ~M ~N ~P one �nds the following additional terms in theD = 4 
ovariant derivative:Dadd� = �g A�M� �2�MN tN	 + �M t���+ g A�	+ �N (tN	 � tN�) + g A��+ �N (tN	 + tN�) : (3.36)These are 
ouplings of ve
tor �elds to symmetry generators that both only o

ur infour dimensions. If one expli
itly performs the dimensional redu
tion by hand thesegauge 
ouplings originate from the dualization of the various �elds.4 Con
lusionsThe general gaugings of N = 4 supergravity in D = 5 and D = 4 were presented. TheD = 4 gaugings are parameterized by two SL(2) � SO(6; n) tensors f�MNP and ��M ,15 Note that what we 
alled n in se
tion 2 is now n+1 and the index M now is an SO(5; n) ve
torindex rather than a SO(6; n+ 1) index.16 The equality of the s
alar potentials is most easily 
he
ked at the originM = 1. If the potentialsdo agree there for all possible gaugings the statement is already proven due to the SO(1; 1)�SO(5; n)
ovarian
e of the 
onstru
tion. 29



subje
t to a set of 
onsisten
y 
onstraints. New 
lasses of gaugings were found and itwas shown how the known gaugings are in
orporated in this framework. Remarkably,all known examples 
an be des
ribed by turning on only f�MNP or ��M , but we haveshown that for a general gauging both tensors 
an be non-vanishing. Similarly, in �vedimensions the general gaugings are parameterized by three SO(1; 1)�SO(5; n) tensorsfMNP , �MN and �M . The gaugings with �M = 0 were already des
ribed in [31℄, but it isne
essary to in
orporate �M to also in
lude non-semi-simple gaugings that result fromS
herk-S
hwarz dimensional redu
tion [29℄. For a generi
 gauging all three tensorsmay be non-zero. It would be very interesting to understand how all these gaugings
an be obtained from 
ompa
ti�
ations of string- or M-theory. For example for theD = 4 gaugings with non-vanishing de Roo-Wagemans phases the higher dimensionalorigin is not yet known. The 
ompa
ti�
ations that yield these gaugings might be ofun
onventional type [43, 44℄. The unifying s
heme presented in this paper should be auseful tool when ta
kling these questions in a 
ovariant form. On the other hand, wehave so far only presented the gauged theories and have shown their 
onsisten
y. Itwould be interesting to further study these theories by 
lassifying their ground states,
omputing the mass spe
trum, analyzing stability, et
.A
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t, his valuable insightsduring all stages of this work and for 
arefully reading the manus
ript. We thankNikolaos Prezas, Giovanni Villadoro, and Fabio Zwirner for pointing out a sign mistakein the original version of this paper. All errors remain our own. This work is partlysupported by the EU 
ontra
ts MRTN-CT-2004-503369 and MRTN-CT-2004- 512194,the DFG grant SA 1336/1-1 and the DAAD { The German A
ademi
 Ex
hange Servi
e.A Gauged half-maximal supergravities in D = 3The general gauged half-maximal supergravity in D = 3 was given in [38, 45℄. Herewe shortly des
ribe the underlying group theory and the tensors that parameterize thegauging. We then give the fermion shift matri
es and the s
alar potential in the sameform as we did in four and �ve dimensions. Finally we des
ribe the embedding of thefour dimensional gaugings into the three dimensional ones. This relation is ne
essaryin order to 
al
ulate the four and �ve dimensional s
alar potentials from the knownthree dimensional one.
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A.1 General gauging, s
alar potential, fermion shift matri
esThe global symmetry group of the ungauged theory is G = SO(8; n), where n again
ounts the number of ve
tor multiplets. The ve
tor �elds A�MN = A�[MN ℄ transform inthe adjoint representation of G. Here M;N = 1; : : : ; 8 + n are SO(8; n) ve
tor indi
es.The general gauging is parameterized by the two real tensors �MNPQ = �[MNPQ℄ and�MN = �(MN), with �MN�MN = 0, and one real s
alar �. Together they 
onstitute theembedding tensor �MNPQ = �MNPQ + �[P [M �N ℄Q℄ + � �P [M �N ℄Q ; (A.1)whi
h enters into the 
ovariant derivativeD� = �� � A�MN�MNPQtPQ : (A.2)Due to the above de�nition the embedding tensor automati
ally satis�es the linear
onstraint �MN PQ = �PQMN : (A.3)In addition it has to satisfy the quadrati
 
onstraint�MNT V�PQV U ��PQTV�MNV U = �MN [P V�Q℄V T U ; (A.4)whi
h may be written as a 
onstraint on �MNPQ, �MN and �.The s
alars of the theory form the 
oset SO(8; n)=SO(8)�SO(n) and in the followingwe use the same 
onventions and notations as for the SO(6; n)=SO(6)�SO(n) 
oset infour dimension, in parti
ular we again haveMMN = VMaVNa + VMmVNm ; �MN = VMaVNa � VMmVNm ; (A.5)where now a = 1; : : : ; n and m = 1; : : : ; 8. In addition we need the s
alar dependentobje
t MMNPQRSTU = �mnopqrstVMmVNnVP oVQpVRqVSrVT sVU t : (A.6)The s
alar potential then takes the formV = � 124 "�MNPQ�RSTU�� 12MMRMNSMPTMQU + 3MMRMNS�PT�QU� 4MMR�NS�PT�QU + 32MMR�NS�PT�QU + 13MMNPQRSTU�+ �MN�PQ ��32MMPMNQ + 32�MP�NQ + 34MMNMPQ�+ 192�2 � 24��MNMMN# : (A.7)31



Although written di�erently, this is the same potential as given in [38℄.The maximal 
ompa
t subgroup of G is H = SO(8) � SO(n). All the fermionsand the fermion shift matri
es A1 and A2 transform under H. Let A; _A = 1; : : : ; 8 be(
onjugate) SO(8) spinor indi
es. The Gamma-matri
es of SO(8) satisfy�(mA _A�n)B _A = ÆmnÆAB ; �mnAB � �[mA _A�n℄B _A : (A.8)Then the fermion shift matri
es A1 and A2 are de�ned through the so 
alled T -tensoras follows [38℄ TABCD = 116�ABmn�CDop VMmVNnVP oVQp�MN PQ ;TABma = 14�ABop VMoVNpVPmVQa�MN PQ ;AAB1 = �83TAC BC + 421ÆABTCDCD ;AAB2 ma = 2TABma � 23�C(Amn TB)Cna � 121ÆAB�CDmnTCDna : (A.9)The quadrati
 
onstraint (A.4) guarantees that A1 and A2 satisfyAAC1 ABC1 � AAC2 maABC2 ma = � 1128ÆABV ; (A.10)with the s
alar potential V appearing on the right hand side.A.2 From D = 4 to D = 3Performing a 
ir
le redu
tion of four dimensional N = 4 supergravity with n ve
tormultiplets yields a three dimensional N = 8 supergravity with n+2 ve
tor multiplets.The embedding of the global symmetry groups is given bySO(8; n+ 2) � SO(2; 2)� SO(6; n) � SL(2)� SO(6; n) ; (A.11)where the SL(2) is just one of the fa
tors in SO(2; 2) = SL(2)�SL(2). A

ordingly wesplit the fundamental representation of SO(8; n+ 2) as v ~M = (vM ; vx�) where � = 1; 2and x = 1; 2. Note that the SO(8; n+ 2) ve
tor index is denoted by ~M , while M is anSO(6; n) ve
tor index. The SO(2; 2) metri
 is given by�x� y� = �xy��� ; whi
h yields �x� y��y� z
 = Æz
x� : (A.12)The SL(2) generators t(��), t(xy) and the SO(2; 2) generators tx� y� = ty� x� are relatedas follows tx� y� = �12 (���txy + �xyt��) ; (A.13)32



where we use the 
onventions (tMN )PQ = ÆQ[M�N ℄P for the SO(2; 2) generators (M =x�). The embedding of the D = 4 ve
tor �elds into the D = 3 ones is then given byAM�� = AM 1�� ; (A.14)where AM 1�� denotes the 
orresponding 
omponents of the D = 3 ve
tor �elds A ~M ~N� =A[ ~M ~N ℄� . Analogous to the redu
tion from D = 5 to D = 4 des
ribed in se
tion 3.4, nowthe 
ovariant derivatives in D = 4 and D = 3 have to agree for those terms alreadypresent in D = 4, i.e.D� � �� � 2AM 1�� �M 1�NP tNP + AM 1�� �M 1�x� y
 �xy t�
= �� � A�M��M�NP tNP � A�M��M��
t�
 : (A.15)This yields�1�MNP = � 12 f�MNP ; �M 1�x� y
�xy = 12 ��(
��)M ; �1�M = ��M ; (A.16)while we demand the other 
omponents of � ~M ~N ~P ~Q and � ~M ~N to vanish and also � = 0.However, the antisymmetry of � ~M ~N ~P ~Q and the symmetry of � ~M ~N has to be imposed,for example�M z�x� y
 = ~�M [fz�g fx�g fy
g℄ ; ~�M z�x� y
 = 12 Æ1z�xy��(
��)M : (A.17)We have thus de�ned the embedding of the four dimensional gaugings into the threedimensional ones. The quadrati
 
onstraint (A.4) in D = 3 is satis�ed i� the D = 4quadrati
 
onstraint (2.20) is satis�ed. The D = 3 s
alar potential (A.7) redu
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