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DESY/06-009ZMP-HH/06-01Gauged N=4 supergravitiesJonas Sh�on and Martin WeidnerII. Institut f�ur Theoretishe PhysikUniversit�at HamburgLuruper Chaussee 149D-22761 Hamburg, GermanyandZentrum f�ur Mathematishe PhysikUniversit�at HamburgBundesstrasse 55D-20146 Hamburg, Germanyjonas.shoen�desy.de, martin.weidner�desy.deABSTRACTWe present the gauged N = 4 (half-maximal) supergravities in four and �vespaetime dimensions oupled to an arbitrary number of vetor multiplets.The gaugings are parameterized by a set of appropriately onstrained on-stant tensors, whih transform ovariantly under the global symmetry groupsSL(2)� SO(6; n) and SO(1; 1)� SO(5; n), respetively. In terms of these ten-sors the universal Lagrangian and the Killing Spinor equations are given. Theknown gaugings, in partiular those originating from ux ompati�ations,are inorporated in the formulation, but also new lasses of gaugings are found.Finally, we present the embedding hain of the �ve dimensional into the fourdimensional into the three dimensional gaugings, thereby showing how thedeformation parameters organize under the respetively larger duality groups.
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1 IntrodutionThe �rst examples of N = 4 supergravities in four spaetime dimensions were on-struted in the seond half of the seventies [1, 2, 3, 4℄ and within the following deadethe oupling of vetor multiplets to these theories and some of their gaugings wereworked out [5, 6, 7, 8, 9℄. In N = 4 the gaugings are the only known deformationsof the theory that are ompatible with supersymmetry. They are indued by minimalouplings of vetor �elds to isometry generators, but supersymmetry requires variousadditional ouplings and in partiular the emergene of a salar potential, thus giv-ing the possibility of ground states with non-vanishing osmologial onstant. So far,however, no stable de Sitter ground state has been found in these theories [10℄.From a string theory perspetive the N = 4 theories result from orientifold om-pati�ations of IIB supergravity [11, 12℄. In this piture part of the deformationparameters of the gauging orrespond to uxes or additional branes on the bakground[13, 14, 15, 16, 17℄. But so far not all known gaugings ould be identi�ed in this way.Lower N theories an be obtained by trunation of the N = 4 supergravities, for exam-ple ertain relevant N = 1 K�ahler potentials an be omputed from the N = 4 salarpotential [18, 19, 20℄.By inorporating all possible gauged N = 4 supergravities in a universal formula-tion in this paper we hope to illuminate the interrelation of the di�erent theories butalso to pave the way for a future analysis of partiular gaugings. The gaugings areparameterized by an embedding tensor whih an be treated as a group theoretialobjet and is subjet to a set of onsisteny onstraints. This method was suessfullyused to work out the general gaugings of maximal supergravities for various spaetimedimensions [21, 22, 23, 24℄. For an even number of spaetime dimensions there are sub-tleties that seem to hamper the universal desription. For example in D = 4 magnetivetor �elds are usually introdued on-shell via the equations of motion, while for ageneral gauging they may possibly our as gauge �elds in the ovariant derivative al-ready at the level of the Lagrangian. Closely related to this problem is the fat that inD = 4 the global symmetry group of a supergravity theory is generially only realizedon-shell sine it involves duality rotations between the eletri and magneti vetor�elds [25, 26℄. These issues were resolved in [27℄, where for a general four dimensionaltheory it was explained how to onsistently ouple eletri and magneti vetor gauge�elds together with two-form tensor gauge �elds for a general gauging. Here we applythis method to the ase of gauged N = 4 supergravities.In D = 4 the global symmetry group of the ungauged theory is G = SL(2) �SO(6; n), where n denotes the number of vetor multiplets. This group also organizesthe gaugings sine the deformation parameters f�MNP and ��M are tensors under G(they are expliitly de�ned below). These tensors are the irreduible omponents of2



the embedding tensor. In terms of them the bosoni Lagrangian and the Killing spinorequations are presented, the onsisteny onstraints whih they have to satisfy areexplained and solutions to these onstraints are disussed. In partiular the SU(1; 1)phases that were introdued by de Roo and Wagemans to �nd ground states with non-vanishing osmologial onstant [7, 8, 28℄ are identi�ed as parameters inorporatedin f�MNP . In the same manner the parameters that orrespond to three-form uxesin ompati�ations from IIB supergravity [13, 14, 15, 16℄ are identi�ed. Also thegaugings that originate from Sherk-Shwarz redution from D = 5 are inluded inour formulation [29℄. In addition, there are various other gaugings that have not yetbeen disussed in the literature, in partiular all gaugings with both f�MNP and ��Mnon-zero are novel.Analogous to the four dimensional ase the general �ve dimensional gauged N = 4supergravity1 is worked out by applying the ideas of [23℄, where the orrespondinggauged maximal supergravity was presented. In D = 5 the irreduible omponentsof the embedding tensor are tensors fMNP , �MN and �M , whih are tensors underthe global symmetry group SO(1; 1) � SO(5; n). The �rst aount of the ungaugedN = 4 supergravity in D = 5 was given in [30℄, where also the �rst gauging of thetheory was already onsidered. Those gaugings where the gauge group is a produt ofa semi-simple and an Abelian fator were already presented in [31℄, examples of thistype were already known for a while [32℄. Also some non-semi-simple gaugings werealready onstruted [29℄. Our presentation inorporates all these known gaugings andalso inludes new ones.In former desriptions of D = 5 gauged supergravities the vetor �elds that are notneeded as gauge �elds were dualized into two-form �elds to make the theory onsistent[31, 32, 33, 34, 35, 36, 37℄. This makes the �eld ontent of the theory dependent onthe partiular gauging and makes it diÆult to formulate the general gauged theory ina ovariant way. It was shown in [23℄ that one an deal with this issue by introduingboth the vetor �elds and all their dual two-form �elds as o�-shell degrees of freedomand ouple them via a topologial term suh that their duality equation results fromthe equations of motion. The same onept is used here to desribe the general �vedimensional gauged theory.The gauged N = 4 supergravities in �ve dimensions are naturally embedded intothe four dimensional ones by dimensional redution and we make this relation expliitwithin this paper. Noteworthy, the �ve dimensional gaugings are parameterized interms of three tensors fMNP , �MN and �M while the four dimensional ones are param-eterized in terms of two tensors f�MNP and ��M only. Thus with dereasing spaetime1We denote by N = 4 the half-maximal supergravity, although in �ve spaetime dimensions thistheory is sometimes referred to as N = 2. 3



dimension one �nds not only a larger duality group but also a more uniform desrip-tion of the deformations. This is the typial piture of dualities in string theory wheredimensional redution relates theories with di�erent higher-dimensional origin.The paper is organized as follows. In setion 2 we present the general four dimen-sional theory. We give its bosoni Lagrangian and its Killing spinor equations, disussthe onsisteny onstraints on the deformation parameters, and desribe examples ofgaugings, inluding those known from the literature. In setion 3 the �ve dimensionaltheories are disussed analogously. Eventually, having both general gauged theories athand, their embedding indued by a irle redution is given. For ompleteness, wesketh the analogous embedding of the D = 4 into the D = 3 gaugings in the appendix.2 Gauged N = 4 supergravities in D = 4The gaugings of N = 4 supergravity in four spaetime dimensions are parameterizedby two real onstant tensors f�MNP and ��M . These are tensors under the global on-shell symmetry group SL(2) � SO(6; n), and � = 1; 2 and M = 1; : : : ; 6 + n are therespetive vetor indies. In the following setion the Lagrangian of the theory is givenin terms of these tensors. However, f�MNP and ��M an not be hosen arbitrarily, theonsisteny onditions that they have to obey are disussed in setion 2.2.2.1 Lagrangian and �eld equationsThe N = 4 supergravity multiplet ontains as bosoni degrees of freedom the metri, sixmassless vetors and two real massless salars. The orresponding supergravity theoryhas a global SL(2) � SO(6) symmetry [3℄ whih is realized only on-shell. The salar�elds onstitute an SL(2)=SO(2) oset2. Coupling this theory to n vetor multiplets,eah ontaining one vetor and six real salars, yields an N = 4 supergravity withglobal on-shell symmetry group G = SL(2) � SO(6; n) [6℄. This is the theory whosedeformations we want to study here for arbitrary n 2 N .For the vetor �elds of the theory one an hoose a sympleti frame suh thatthe subgroup SO(1; 1) � SO(6; n) of G is realized o�-shell. The eletri vetor �eldsA�M+ (M = 1; : : : ; 6 + n) then form a vetor under SO(6; n) and arry harge +1under SO(1; 1). Their dual magneti vetor �elds A�M� form an SO(6; n) vetor aswell but arry SO(1; 1) harge �1. Together they onstitute an SL(2) vetor A�M� =(A�M+; A�M�)3.2 In the literature the symmetry group is usually denoted by SU(1; 1), however, we prefer to treat itas SL(2) whih is of ourse the same group but with di�erent onventions onerning its fundamentalrepresentation.3 Here and in the following we use indies �; �; : : : = +;� for SL(2) vetors. The embedding of the4



The salar �elds form the oset spae G=H, where H = SO(2) � SO(6) � SO(n)is the maximal ompat subgroup of G. The SL(2)=SO(2) fator of this oset anequivalently be desribed by a omplex number � with Im(�) > 0 or by a symmetripositive de�nite matrix M�� 2 SL(2). The relation between these two desriptions isgiven byM�� = 1Im(�)  j� j2 Re(�)Re(�) 1 ! ; M�� = 1Im(�)  1 �Re(�)�Re(�) j� j2 ! ; (2.1)where M�� is the inverse of M��. The SL(2) symmetry ation on M��M ! gMgT ; g =  a b d! 2 SL(2) ; (2.2)ats on � as a M�obius transformation � ! (a� + b)=(� + d).The SO(6; n)=SO(6)� SO(n) fator of the salar oset is desribed by oset repre-sentatives VMa and VMm where m = 1; : : : ; 6 and a = 1; : : : ; n denote SO(6) and SO(n)vetor indies, respetively. The matrix V = (VMm; VMa) is an element of SO(6; n),i.e. �MN = �VMmVNm + VMaVNa ; (2.3)where �MN = diag(�1;�1;�1;�1;�1;�1;+1; : : : ;+1) is the SO(6; n) metri. GlobalSO(6; n) transformations at on V from the left while loal SO(6)�SO(n) transforma-tions at from the rightV ! gVh(x) ; g 2 SO(6; n); h(x) 2 SO(6)� SO(n) : (2.4)Analogous to M�� this oset spae may be parameterized by a symmetri positivede�nite salar metri M = VVT , expliitly given byMMN = VMaVNa + VMmVNm : (2.5)Its inverse we denote by MMN . Note that eah of the matries MMN , VMm and VMaalone already parameterizes the SO(6; n) part of the salar oset.In order to later give the salar potential we also need to de�ne the salar dependentompletely antisymmetri tensorMMNPQRS = �mnopqr VMmVNnVP oVQpVRqVSr : (2.6)o�-shell symmetry group SO(1; 1) into SL(2) de�nes a basis for these vetors and thus omponentsv� = (v+; v�) and v� = (v+; v�). For the epsilon tensor ��� we use �+� = �+� = 1 whih yields���� = Æ��. 5



The ungauged theory ontains the metri, eletri vetor �elds and salars as free�elds in the Lagrangian, while the dual magneti vetors and two-form gauge �elds areonly introdued on-shell (this is the desription we hoose). The latter ome in theadjoint representation of G and sine G has two fators there are also two kinds of two-form gauge �elds, namely BMN�� = B[MN ℄�� and B���� = B(��)�� = (B++�� ; B+��� ; B���� ). Forthe general desription of the gauged theory all these �elds appear as free �elds in theLagrangian [27℄. For the magneti vetors this is neessary beause they an appearas gauge �elds in the ovariant derivative while the two-forms in turn are required inorder to onsistently ouple the vetor �elds. Some of the vetor �elds that are notneeded in the gauging beome Stuekelberg �elds for the two-forms.Neither the magneti vetor �elds A�M� nor the two-form gauge �elds have a kinetiterm and via their �rst order equations of motion they eventually turn out to be dualto the eletri vetor �elds A�M+ and to the salars, respetively. Thus the number ofdegrees of freedom remains unhanged as ompared to the ungauged theory.The gauged supergravities are parameterized by two G-tensors ��M = (�+M ; ��M)and f�MNP = (f+MNP ; f�MNP ) with f�MNP = f�[MNP ℄. One should think of thesetensors as generalized struture onstants of the gauge group. They have to satisfyertain onsisteny onstraints to be introdued later. The following ombinationsour regularly ��MNP = f�MNP � ��[N �P ℄M ;f̂�MNP = f�MNP � ��[M �P ℄N � 32 ��N�MP : (2.7)In addition we use a gauge oupling onstant g whih is atually dispensable by resal-ing f�MNP ! g�1 f�MNP and ��M ! g�1 ��M . Nevertheless it is onvenient to use gto keep trak of the order in the gauge oupling.We an now present the bosoni Lagrangian of the general gauged theory4Lbos = Lkin + Ltop + Lpot : (2.8)It onsists of a kineti terme�1Lkin = 12 R + 116 (D�MMN)(D�MMN )� 14 Im(�)2 (D��)(D�� �)� 14 Im(�)MMNH��M+H��N+ + 18 Re(�) �MN �����H��M+H��N+ ; (2.9)4 Our spae-time metri has signature (�;+;+;+) and the Levi-Civita is a proper spae-timetensor, i.e. �0123 = e�1, �0123 = �e.
6



a topologial term for the vetor and tensor gauge �elds [27℄e�1Ltop = � g2 �������+M�NPAM�� AN+� ��AP+� � �f̂�MNP + 2 ��N�MP�AM�� AN+� ��AP��� g4 f̂�MNRf̂�PQRAM�� AN+� AP�� AQ�� + g16 �+MNP��MQRBNP�� BQR��� 14 ���MNPBNP�� + ��MB+��� + �+MB++�� � �2��AM�� � gf̂�QRMAQ�� AR�� �� ;(2.10)and a salar potentiale�1Lpot = �g2V= �g216�f�MNPf�QRSM��h13 MMQMNRMPS + (23 �MQ �MMQ)�NR�PSi� 49 f�MNPf�QRS���MMNPQRS + 3 �M� �N� M��MMN� : (2.11)The ovariant derivative D� appearing in Lkin ats on objets in an arbitrary represen-tation of G = SL(2)� SO(6; n) asD� = r� � g A�M���MNP tNP + g A�M(���)�M t�� ; (2.12)where r� ontains the spin-onnetion and tNP and t�� are the generators of the globalsymmetry group5. Expliitly one �nds for the salar �eldsD�M�� = ��M�� + gAM� �(�MM�) � gAMÆ� ��M�Æ(���M�) ;D�MMN = ��MMN + 2gA�P���P (MQMN)Q : (2.13)Note that Im(�)�2(D��)(D�� �) = �12(D�M��)(D�M��), i.e. the kineti term for �an equivalently be expressed in terms of M��.The full ovariant �eld strengths of the eletri and magneti vetor �elds are givenby6 HM+�� = 2�[�A�℄M+ � g f̂�NPMA[�N�A�℄P++ g2 ��MNPBNP�� + g2 �+MB++�� + g2��MB+��� ;HM��� = 2�[�A�℄M� � g f̂�NPMA[�N�A�℄P�� g2 �+MNPBNP�� + g2 ��MB���� + g2�+MB+��� : (2.14)5 In the vetor representation the symmetry generators have the form (tMN )PQ = ÆQ[M�N ℄P and(t��)Æ = ÆÆ(���) , respetively.6 Note that the indies + and � on the vetor �elds and on their �eld strengths distinguish theeletri ones from the magneti ones and thus do not indiate omplex self-dual ombinations of the�eld strengths as is ommon in the literature. We hope note to onfuse the reader with that notation.7



Only HM+�� enters the Lagrangian, but HM��� appears in the equations of motion. Toexpress the latter it is also useful to de�ne the following ombination of the eletri�eld strengths G��M+ � H��M+ ;G��M� � e�1 �MN ����� �Lkin�HN+��= �12 ����� Im(�)MMN�NPHP+ �� � Re(�)HM+�� : (2.15)The importane of G��M� beomes lear in the ungauged theory obtained from (2.8)in the limit g ! 0. In this limit the topologial term and the potential vanish andH��M+ and H��M� redue to Abelian �eld strengths. Sine the magneti vetors andthe two-form gauge �elds only appear projeted with some ombination of f�MNP and��M they ompletely deouple from the Lagrangian at g = 0. The equations of motionfor the eletri vetor �elds then take the form �[�G��℄M� = 0. In the ungauged theorymagneti vetor �elds are introdued by hand viaHM��� = GM��� and GM� = (GM+;GM�)and HM� are on-shell idential.Turning bak to the gauged theory one �nds for general variations of the vetorand two-form gauge �elds that the Lagrangian varies as [27℄e�1ÆLbos = 18g ���MNP�BNP�� + ��M�B+��� + �+M�B++�� � ����� �HM��� � GM��� �+ 12(ÆAM+� )�g ��MM+D�M� + g2 �+MPNMNQD�MQP � ������MN D�GN��� �+ 12(ÆAM�� )�g ��MM�D�M� + g2 ��MPNMNQD�MQP + ������MN D�GN+�� �+ total derivatives, (2.16)where we used the \ovariant variations"�BMN�� = ÆBMN�� � 2���A�[M[� ÆAN ℄��℄ ;�B���� = ÆB���� + 2�MNAM(�[� ÆA�)N�℄ : (2.17)Equation (2.16) enodes the gauge �eld equations of motion of the theory. Variation ofthe two-form gauge �elds yields a projeted version of the duality equationHM��� = GM���between eletri and magneti vetor �elds. From varying the eletri vetor �elds oneobtains a �eld equation for the eletri vetors themselves whih ontains salar urrentsas soure terms. Finally, the variation of the magneti vetors gives a duality equationbetween salars and two-form gauge �elds. To make this transparent one needs themodi�ed Bianhi identity for HM+�� whih readsD[�HM+��℄ = g6 ���MPQH(3)PQ��� + �+MH(3)++��� + ��MH(3)+���� � ; (2.18)8



where the two-form �eld strengths are given byH(3)MN��� = 3 �[�BMN��℄ + 6 ��� A�[M[� ��AN ℄��℄ +O(g) ;H(3)����� = 3 �[�B����℄ + 6 �MN AM(�[� ��A�)N�℄ +O(g) ; (2.19)up to terms of order g.Thus we �nd that the tensors f�MNP and ��M do not only speify the gauge groupbut also organize the ouplings of the various �elds. They determine whih vetor gauge�elds appear in the ovariant derivatives, how the �eld strengths have to be modi�ed,whih magneti vetor �elds and whih two-form gauge �elds enter the Lagrangianand how they beome dual to eletri vetor �elds and salars via their equation ofmotion. However, onsisteny of the entire onstrution above ruially depends onsome partiular quadrati onstraints that f�MNP and ��M have to satisfy and whihare presented in the next subsetion.In priniple one should also give the fermioni ontributions to the Lagrangianand hek supersymmetry to verify that (2.8) really desribes the bosoni part of asupergravity theory. We have obtained the results by applying the general method ofovariantly oupling eletri and magneti vetor gauge �elds in a gauged theory [27℄to the partiular ase of N = 4 supergravity. This �xes the bosoni Lagrangian upto the salar potential. The latter is also strongly restrited by gauge invariane, onlythose terms that appear in (2.11) are allowed. We obtained the pre-fators between thevarious terms by mathing the salar potential with the one known from half-maximalsupergravity in three spaetime dimensions [38℄, see appendix A. The general theorythen was ompared with various speial ases that were already worked out elsewhere[7, 9, 10, 13, 14, 15, 16, 28, 29, 39℄, see setion 2.4.2.2 Quadrati onstraints and gauge invarianeWe have seen that the tensors ��M and f�MNP = f�[MNP ℄ parameterize the possiblegaugings of the theory. These are onstant tensors (their entries are �xed real numbers)for whih we demand in addition the following set of onsisteny onstraints�M� ��M = 0 ;�P(�f�)PMN = 0 ;3f�R[MNf�PQ℄R + 2�(�[Mf�)NPQ℄ = 0 ;��� ��P� f�PMN + ��M��N� = 0 ;��� �f�MNRf�PQR � �R� f�R[M [P�Q℄N ℄ � ��[MfN ℄[PQ℄� + ��[PfQ℄[MN ℄�� = 0 : (2.20)9



These quadrati onstraints guarantee the losure of the gauge group, as will be ex-plained below. The deformation of the theory is onsistent if and only if these on-straints are satis�ed. They are invariant under the global symmetry group: given onesolution one an reate another one by a G ation. But all solutions generated in thisway desribe the same gauged supergravity. This is obvious for those G transformationthat belong to the SO(1; 1)� SO(6; n) o�-shell symmetry sine the entire onstrutionof the last setion was formally invariant under these transformations, i.e. these trans-formations orrespond to a linear �eld rede�nition that does not mix magneti andeletri vetor �elds. In ontrast, two solutions of the onstraints whih are related bya general SL(2) transformation yield two theories whih at �rst sight look rather di�er-ent but are related by a sympleti transformation whih rotates eletri into magnetivetor �elds and vie versa.It is onvenient to de�ne a omposite index for the vetor �elds by A�M = A�M�,and a sympleti form 
MN by
MN = 
M�N� � �MN��� ; 
MN = 
M�N� � �MN��� ; (2.21)The sympleti group Sp(12+ 2n) is the group of linear transformations that preserve
MN . An arbitrary sympleti rotation of the theory gives a Lagrangian that is notyet ontained in the desription above but whih desribes the same theory on the levelof the equations of motion. All possible Lagrangians of gauged N = 4 supergravity arethus parameterized by ��M , f�MNP and an element of Sp(12 + 2n).In order to illustrate the meaning of the quadrati onstraints (2.20) we �rst onsiderthe ase of purely eletri gaugings for whih ��M = 0 and f�MNP = 0. In this ase onlyeletri vetor �elds A�M+ enter the Lagrangian. We then �nd f+MNP = f+MNQ �QPto be the struture onstants of the gauge group and the onstraint (2.20) simpli�es tothe Jaobi identity f+R[MNf+PQ℄R = 0 : (2.22)Due to this identity the topologial term Ltop vanishes in this ase. Note that theSO(6; n) metri �MN is used to ontrat the indies in (2.22), while in the ordinaryJaobi identity the Cartan Killing form ours. Also the indies M;N; : : : run over6 + n values while the gauge group might be of smaller dimension. These issues willbe disussed in setion 2.4.In the general ase of an arbitrary solution of (2.20) we an read o� the gaugegroup generators from the ovariant derivative (2.12). For an objet in the vetor �eldrepresentation we want D� �M = r� �M + g AN� XNPM �P ; (2.23)10



whih yieldsXMNP = XM�N�P= �Æ� f�MNP + 12 �ÆPM Æ� ��N � ÆPN Æ� ��M � Æ� �MN �P� + ��� ÆPN �ÆM �Æ� :(2.24)Note that these objets satisfyXM[NQ
P℄Q = 0 ; X(MNQ
P)Q = 0 : (2.25)It was found in [27℄ that the last of these equations is ruial for onsisteny of thegauged theory. It is this linear onstraint that demands the gauge group generators tobe parameterized by f�MNP and ��M aording to (2.24).An in�nitesimal gauge transformation is parameterized by �M(x) = �M�(x) andats on objets xM and xM in the (dual) vetor �eld representations asÆxM = �g�N XNPM xP ; ÆxM = g�N XNMP xP ; (2.26)where g is the gauge oupling onstant. This de�nes the gauge group G0 � G �Sp(12 + 2n). Treating the generators XMNP = (XM)NP as matries we �nd thefollowing ommutator relations to be satis�ed[XM; XN ℄ = �XMNP XP ; (2.27)i.e. the gauge group G0 is losed. Some omputation reveals that the last equation isequivalent to the quadrati onstraint (2.20). Therefore the quadrati onstraint is ageneralization of the Jaobi identity (2.22) guaranteeing the losure of the gauge group.Furthermore aording to (2.27) the generators XMNP take the role of generalizedstruture onstants. However, they are only antisymmetri in M, N after havingontrated with XP . The fat that X(MN )P is in general not vanishing explains theneed for the two-form gauge �elds in the generalized �eld strengths (2.14). The ordinary�eld strength would not transform ovariantly under gauge transformations �M�(x).The two-form gauge �elds BMN�� and B���� are equipped with tensor gauge transfor-mations parameterized by �MN� = �[MN ℄� and ���� = �(��)� . Under general vetor andtensor gauge transformations the gauge �elds transform asÆAM+� = D��M+ � g2 ��MNP�NP� � g2 �+M�++� � g2��M�+�� ;ÆAM�� = D��M� + g2 �+MNP�NP� � g2 ��M���� � g2�+M�+�� ;�BMN�� = 2D[��MN�℄ � 2�����[M GN ℄��� ;�B���� = 2D[�����℄ + 2�MN�M(� G�)N�� ; (2.28)11



where we used the ovariant variations of the two-form gauge �elds (2.17). Underthese gauge transformations the Lagrangian (2.8) is invariant. The only non-vanishingommutator of these gauge transformations is7[Æ�1 ; Æ�2 ℄ = Æ~� + Æ~� ; (2.29)where ~�M = gXNPM�N[1�P2℄ ;~�MN� = ��� ���[M1 D��N ℄�2 � ��[M2 D��N ℄�1 � ;~���� = ��MN ��M(�1 D���)N2 � �M(�2 D���)N1 � : (2.30)In the ation on objets that do not transform under tensor gauge transformations(like �eld strengths, salar �elds) this algebra oinides with (2.27).2.3 Killing spinor equationsSo far we have only onsidered bosoni �elds and we do not intend to give the entirefermioni Lagrangian nor the omplete supersymmetry ation. They an e.g. be foundin the paper of Bergshoe�, Koh and Sezgin [9℄ for purely eletri gaugings when onlyf+MNP is non-zero, and we have hosen most of our onventions to agree with theirwork in this speial ase8. In partiular all terms of order g0, i.e. terms of the ungaugedtheory, an be found there.Our aim in this setion is to give the Killing spinor equations of the general gaugedtheory, i.e. the variations of the gravitini and of the spin 1=2 fermions under supersym-metry. Those are required for example when studying BPS solutions or when analyzingthe supersymmetry breaking or preserving of partiular ground states.All the fermions arry a representation of H = SO(2)�SO(6)�SO(n) whih is themaximal ompat subgroup of G. Instead of SO(6) we work with its overing groupSU(4) in the following. The gravity multiplet ontains four gravitini  i� and four spin1=2 fermions �i and in the n vetor multiplet there are 4n spin 1/2 fermions �ai, wherei = 1; : : : ; 4 and a = 1; : : : ; n are vetor indies of SU(4) and SO(n). The SO(2) = U(1)ats on the fermions as a multipliation with a omplex phase exp(iq�(x)), where theharges q are given in table 1.As usual we use gamma-matries withf��;��g = 2��� ; (��)y = ����� ; �5 = i�0�1�2�3 : (2.31)7 In the Lagrangian the two-form gauge �elds only appear under a partiular projetion withf�MNP and ��M and the gauge transformation on them only lose under this very projetion [23℄.8 The struture onstants fMNP in [9℄ equal minus f+MNP .12



SO(2) harges SU(4) rep. SO(n) rep.gravitini  i� � 12 4 1spin 1=2 fermions �i + 32 4 1spin 1=2 fermions �ai + 12 4 nTable 1: H-representations of the fermions.All our fermions are hiral. We hoose  i� and �ai to be right-handed while �i isleft-handed, that is�5 i� = + i� ; �5�i = ��i ; �5�ai = +�ai : (2.32)Vetor indies of SU(4) are raised and lowered by omplex onjugation, i.e. for anordinary SU(4) vetor vi = (vi)�. However, for fermions we need the matrix B = i�5�2to de�ne �i = B(�i)�. This ensures that �i transforms as a Dira spinor when �i does.The omplex onjugate of a hiral spinor has opposite hirality, e.g. �i = B(�i)� isright-handed9. For ��i = (�i)y�0 we de�ne the omplex onjugate by ��i = (��i)�B whihyields ��i�i = ��i�i = (��i�i)� = (��i�i)�.An SO(6) vetor vm an alternatively be desribed by an antisymmetri tensorvij = v[ij℄ subjet to the pseudo-reality onstraintvij = (vij)� = 12�ijklvkl : (2.33)We normalize the map vm 7! vij suh that the salar produt beomesvmwm = 12�ijklvijwkl : (2.34)We an thus rewrite the oset representative VMm as VMij suh that the equations(2.3) and (2.6) beome�MN = �12�ijklVMijVNkl + VMaVNa ;MMNPQRS = � 2 i �ijps �klqt �mnru V[MijVNklVPmnVQpqVRrsVS℄tu : (2.35)9 Right-handed spinors an be desribed by Weyl-spinors �A, and left-handed ones then turn toonjugate Weyl-spinors � _A. Here A and _A are (onjugate) SL(2; C ) vetor indies. In the hiralrepresentation of the Gamma-matries�� =  0 ���� 0 ! ; �5 =  1 00 �1 ! ; B = i�5�2 =  0 ��� 0 ! ;where � is the two-dimensional epsilon-tensor and �� = (1; ~�), �� = ����� = (�1; ~�) ontains thePauli matries, we �nd right-handed spinors to have the form � = (�A; 0)T while left-handed ones looklike � = (0; � _A)T . Thus we have �i = (0; �i_A)T and its omplex onjugate is given by �i = (�Ai ; 0)Twhere the Weyl-spinors are related by �Ai = �AB(�i_B)�.13



The salar matries VMij and VMa an be used to translate from SO(6; n) represen-tations under whih the vetor and tensor gauge �elds transform into SO(6)� SO(n)representations arried by the fermions. They are thus ruial when we want to ouplefermions. For the same reason it is neessary to introdue an SL(2) oset representative,namely a omplex SL(2) vetor V� whih satis�esM�� = Re(V�(V�)�) : (2.36)Under SO(2) V� arries harge +1 while its omplex onjugate arries harge �1.10When gauging the general theory all partial derivatives are replaed by ovariantderivatives � ! D and all Abelian �eld strengths by ovariant ones FM+ ! HM+.Moreover one has to add the topologial term and the salar potential to the Lagrangianas we have desribed in setion 2.1. In the fermioni setor the only additional hangethat has to be made in the Lagrangian is the introdution of fermioni mass terms andfermioni ouplings, all of order g1. For example those terms that involve the gravitinireade�1Lf.mass = 13 g Aij1 � �i ���  �j � 13 i g Aij2 � �i �� �j + ig A2 aij � i� �� �aj + h.. ; (2.37)where Aij1 = A(ij)1 , Aij2 and A2 aij are the so alled fermion shift matries whih dependon the salar �elds.Also the supersymmetry transformations of the fermions have to be endowed withorretions of order g1, namelyÆ i� = 2D��i + 14 i (V�)�VMij GM��� ������j � 23 g Aij1 ���j ;Æ�i = i ���V�(D�V�)���i + 12 iV�VMij GM��� ����j � 43 i g Aji2 �j ;Æ�ia = 2iVaM(D�VMij)���j � 14 V�VMa GM��� ����i + 2 i g A2 aji �j ; (2.38)where the same matries A1 and A2 appear as in the Lagrangian. There are also higherorder fermion terms in the supersymmetry rules, but those do not get orretions inthe gauged theory. We wrote the vetor �eld ontribution to the fermion variations inan SL(2) ovariant way. Using the de�nition (2.15) one �ndsiV�VMijGM��� ��� = (V��)�1 VMij �HM+�� + 12 i �����HM+ ������= (V��)�1 VMijHM+�� ���(1� �5) ;iV�VMaGM��� ��� = (V��)�1 VMa �HM+�� � 12 i �����HM+ ������= (V��)�1 VMaHM+�� ���(1 + �5) : (2.39)10 The omplex salars � and  in [9℄ translate into our notation as V+ =  , V� = i� and  =� = i��.14



Expliitly, the fermion shift matries are given byAij1 = ���(V�)�V[kl℄MVN [ik℄VP [jl℄f�MNP ;Aij2 = ���V�V[kl℄MVN [ik℄VP [jl℄f�MNP + 32���V�VMij��M ;A2 aij = ���V�VMaVN [ik℄VP [jk℄f�MNP � 14Æji ���V�VaM��M : (2.40)Supersymmetry of the Lagrangian fores them to obey in partiular1113 Aik1 �A1 jk � 19 Aik2 �A2 jk � 12 A2 ajk �A2 aik = � 14 Æij V ; (2.41)where the salar potential V appears on the right hand side. The last equation isindeed satis�ed as a onsequene of the quadrati onstraints (2.20).If we have hosen f�MNP and ��M suh that the salar potential possesses an ex-tremal point one may wonder whether the assoiated ground state onserves somesupersymmetry, i.e. whether �i exists suh the fermion variations (2.38) vanish in theground state. The usual Ansatz is �i = qi �, where qi is just an SU(4) vetor while � isa right-handed Killing spinor of AdS (V < 0) or Minkowski (V = 0) spae, i.e.12D�� = gq� 112V ��B�� : (2.42)The Killing spinor equations Æ i = 0, Æ�i = 0 and Æ�ai = 0 then take the formAij1 qj =q�34V qi ; qjAji2 = 0 ; A2ajiqj = 0 : (2.43)Due to (2.41) the �rst equation of (2.43) already implies the other two.2.4 ExamplesIn this setion we give examples of tensors f�MNP and ��M that solve the onstraints(2.20), therewith giving examples of gauged N = 4 supergravities. We reover thosegaugings that were already disussed in the literature but also obtain new ones.2.4.1 Purely eletri gaugingsIt an be shown that as a onsequene of the onstraints (2.20) for every onsistentgauging one an perform a sympleti rotation suh that only the eletri vetor �eldsserve as gauge �elds [27℄. In the maximal supersymmetri theory, i.e. for N = 8,this statement an even be reversed, i.e. every gauging (de�ned by some embedding11 This equation is obtained by onsidering terms of the form g2 � ���� in the variation ÆL.12 Consisteny of the AdS Killing spinor equation an be heked by using R���� = � 23g2V g�[�g�℄� ,�[�B���℄B� = ���� and [D�; D� ℄� = � 14R��������.15



tensor similar to our f�MNP and ��M) that is purely eletri in some sympleti frameis onsistent (i.e. solves the quadrati onstraints for the embedding tensor). Thisis di�erent in N = 4 where a nontrivial quadrati onstraint remains also for purelyeletri gaugings.In the partiular eletri frame we have hosen { the one in whih the eletri andmagneti vetor �elds eah form a vetor under SO(6; n) { the purely eletri gaugingsare those for whih f�MNP = 0 and ��M = 0, thus only f+MNP is non-vanishing. Thisis the lass of theories that were onstruted by Bergshoe�, Koh and Sezgin [9℄. Asmentioned above the quadrati onstraint in this ase simpli�es to the Jaobi identity(2.22), whih may alternatively be written asf+R[MQf+NP ℄R = 0 : (2.44)This is a onstraint on f+MNP = f+MNQ�QP only, but in addition the linear onstraintf+MNP = f+[MNP ℄ has to be satis�ed, suh that the SO(6; n) metri �MN enters non-trivially into this system of onstraints. The dimension of the gauge group an at mostbe 6 + n, whih is obvious in the ase that we onsider here (M = 1; : : : ; 6 + n), butwhih is also the general limit for arbitrary gaugings.We �rst want to onsider semi-simple gaugings. Let fab be the struture onstantsof a semi-simple gauge group G0, where a; b;  = 1 : : :dim(G0), dim(G0) � 6 + n, then�ab = fadfbd is the Cartan-Killing form and we an hoose a basis suh that it beomesdiagonal, i.e. �ab = diag( 1; : : : ;| {z }p �1; : : :| {z }q ) : (2.45)We an only realize the gauge group G0 if we an embed its Lie algebra g0 = fvag intothe vetor spae of eletri vetor �elds suh that the preimage of �MN agrees with �abup to a fator. This puts a restrition on the signature of �ab, namely either p � 6,q � n (ase 1) or p � n, q � 6 (ase 2). To make the embedding expliit we de�ne theindex M̂ with range M̂ = 1 : : : p; 7 : : : 6 + q (ase 1) or M̂ = 1 : : : q; 7 : : : 6 + p (ase 2).We then have (�M̂N̂) = �(�ab) and we an de�ne(f+M̂N̂P̂ ) = (fab) ; all other entries of f+MNP zero, (2.46)where fab = fabd�d. Sine G0 is semi-simple fab is ompletely antisymmetri and thusf+MNP satis�es the linear and the quadrati onstraint. For n � 6 the possible simplegroups that an appear as fators in G0 are SU(2), SO(2; 1), SO(3; 1), SL(3), SU(2; 1),SO(4; 1) and SO(3; 2). For larger n we then �nd SU(3), SO(5), G2(2), SL(4), SU(3; 1),SO(5; 1), et.Apart from these semi-simple gaugings there are various non-semi-simple gaugingsthat satisfy (2.44). Of those we only want to give an example. We an hoose three16



mutual orthogonal lightlike vetors aM , bM and M and de�ne f+MNP to be the volumeform on their span, i.e. f+MNP = a[MbNP ℄ : (2.47)The vetors have to be linearly independent in order that f+MNP is non-vanishing. Thequadrati onstraint is then satis�ed trivially sine it ontains �MN whih is vanishingon the domain of f+MNP . The gauge group turns out to be G0 = U(1)3. We angeneralize this onstrution by hoosing f+MNP to be any three form that has asdomain a lightlike subspae of the vetor spae fvMg. All orresponding gauge groupsare Abelian.None of the purely eletri gaugings an have a ground state with non-vanishingosmologial onstant sine the salar potential (2.11) in this ase is proportional toM++ = Im(�)�1. Therefore de Roo and Wagemans introdued a further deformation ofthe theory [7℄. Starting from a semi-simple gauging as presented above they introdueda phase for every simple group fator as additional parameters in the desription ofthe gauging. In the next setion we will explain the relation of these phases to ourparameters f�MNP and show how these theories �t into our framework.2.4.2 The phases of de Roo and WagemansWe now allow for f+MNP and f�MNP to be non-zero but keep �M� = 0. The quadrationstraint (2.20) then readsf�R[MNf�PQ℄R = 0 ; ���f�MNRf�PQR = 0 : (2.48)To �nd solutions we start from the situation of the last setion, i.e. we assume to havesome struture onstants fMNP = f[MNP ℄ that satisfy the Jaobi-identity fR[MQfNP ℄R =0. In addition we assume to have a deomposition of the vetor spae fvMg into Kmutual orthogonal subspaes with projetors PiMN , i = 1 : : :K, i.e. suh that for ageneral vetor vM we havevM = KXi=1 PiMNvN ; �MP PiMN PjPQ = 0 for i 6= j : (2.49)Furthermore this deomposition shall be suh that the three form fMNP does not mixbetween the subspaes, i.e. it deomposes into a sum of three-forms on eah subspaefMNP = KXi=1 f (i)MNP ; f (i)MNP = PiMQPiNRPiP S fQRS : (2.50)
17



This implies that the gauge group splits into K fators G0 = G(1) �G(2) � : : :�G(K)with f (i)MNP being the struture onstant of the i-th fator, eah of them satisfying theabove Jaobi-identity separately. Solutions of the onstraint (2.48) are then given byf�MNP = KXi=1 w(i)� f (i)MNP ; w(i)� = (w(i)+ ; w(i)� ) = (os�i; sin�i); (2.51)where the w(i)� ould be arbitrary SL(2) vetors whih we ould restrit to have unitlength without loss of generality. The �i 2 R, i = 1 : : :K, are the de Roo-Wagemans-phases �rst introdues in [7℄. In the following we want to use the abbreviations i =os�i, si = sin�i. If K = 1 we �nd f+MNP and f�MNP to be proportional. This aseis equivalent to the purely eletri gaugings of the last setion sine one always �ndsan SL(2) transformation suh that w(1)� beomes (1; 0).For a semi-simple gauging as desribed in the last setion there is a natural deom-position of fvMg into mutual orthogonal subspaes and K equals the number of simplefators in G0. But the above onstrution also applies for non-semi-simple gaugings.We have mentioned above that every onsistent gauging is purely eletri in apartiular sympleti frame. Considering a onrete gauging it is therefore natural toformulate the theory in this partiular frame, and also the two-form gauge �elds thendisappear from the Lagrangian. For those gaugings de�ned by (2.51) we may performthe sympleti transformation~AM+� = KXi=1 iPiMN AN+� + KXi=1 siPiMN AN�� ;~AM�� = � KXi=1 siPiMN AN+� + KXi=1 iPiMN AN�� ; (2.52)suh that the ovariant derivative depends exlusively on ~AM+�D� = r� � g ~A�M+fMNP tNP : (2.53)Note that the new eletri vetor �elds ~AM+� do not form a vetor under SO(6; n), buttransform into ~AM�� under this group. The Lagrangian in the new sympleti framereads e�1L = 12 R + 18 (D�MMN )(D�MMN )� 14 Im(�)2 (D��)(D�� �)� 14 IMN ~F��M+ ~F��N+ � 18 RMN ����� ~FM+�� ~FN+�� � g2V ; (2.54)
18



and the salar potential (2.11) takes the form [28℄V = 116 Im(�)�1 KXi;j=1 �ij � 2Re(�)isj + j� j2sisj� f (i)MNPf (j)QRS� h13 MMQMNRMPS + (23 �MQ �MMQ)�NR�PSi� 118 KXi;j=1 isjf (i)MNPf (j)QRSMMNPQRS : (2.55)The kineti term of the vetor �elds involves the �eld strength~F��M+ = 2�[� ~A�℄M+ � g fNPM ~A[�N+ ~A�℄P+ ; (2.56)and the salar dependent matries IMN and RMN whih are de�ned by(I�1)MN = 1Im(�) KXi;j=1 �ij � 2Re(�)isj + j� j2sisj�PiMPPjNQMPQ ;RMN(I�1)NP = 1Im(�) KXi;j=1 ��isj +Re(�)(sisj � ij) + j� j2sij�PiMNPjP RMNR :(2.57)In general when going to the eletri frame for an arbitrary gauging there is still atopologial term for the eletri �elds of the form AA�A + AAAA [40℄, but here thisterm is not present.Comparing the salar potential V for non-vanishing phases �i with that of the lastsetion we �nd it to have a muh more ompliated � dependene and one an indeed�nd gaugings where it possesses stationary points [10, 28℄.2.4.3 IIB ux ompati�ationsWe now want to onsider gaugings with an origin in type IIB supergravity. N = 4supergravity an be obtained by an orientifold ompati�ation of IIB [11, 12℄ and inthe simplest T 6=Z2 ase this yields the ungauged theory with n = 6, i.e. the globalsymmetry group is G = SL(2) � SO(6; 6). Here, the SL(2) fator is the symmetrythat was already present in ten dimensions and SO(6; 6) ontains the GL(6) symmetrygroup assoiated with the torus T 6. The ompati�ation thus yields the theory in asympleti frame in whih SL(2)�GL(6) is realized o�-shell. Turning on uxes resultsin gaugings of the theory that are purely eletri in this partiular sympleti frame.This is the lass of gaugings to be examined in this subsetion.An SO(6; 6) vetor deomposes under GL(6) = U(1)�SL(6) into 6�6. The vetor�elds A�M� split aordingly into eletri ones A��� and magneti ones A��� where19



� = 1 : : : 6 is a (dual) SL(6) vetor index. The SO(6; 6) metri takes the form�MN =  ��� ������ ���! =  0 Æ��Æ�� 0 ! : (2.58)The gauge group generators (2.24) split as XM� = (X��; X��) and a purely eletrigauging satis�es X�� = 0. The tensors ��M and f�MNP deompose into the followingrepresentations(2; 12) ! (2; 6)� (2; 6) ;(2; 220) ! (2; 6)� (2; 20)� (2; 84)� (2; 84)� (2; 20)� (2; 6) : (2.59)From (2.24) one �nds that the ondition X�� = 0 demands most of these omponentsto vanish, only the (2; 20) and a partiular ombinations of the two (2; 6)'s are allowedto be non-zero. Expliitly we �nd for the general eletri gaugings in this frame��M = (���; ���) = (���; 0) ;f�MNP = (f����; f����; f����; f����) = (f����; ��[�Æ��℄; 0; 0) : (2.60)This Ansatz automatially satis�es most of the quadrati onstraints (2.20), the onlyonsisteny onstraint left is f(�[��� ��)	℄ = 0 : (2.61)Thus for ��� = 0 we �nd f���� to be unonstrained, i.e. every hoie of f���� givesa valid gauged theory. It turns out that f���� orresponds to the possible three-formuxes that an be swithed on. These theories and extensions of them were alreadydesribed and analyzed in [13, 14℄. It was noted in [41℄ that not all N = 4 modelsthat ome from T 6=Z2 orientifold ompati�ations an be embedded into the N = 8models from torus redution of IIB, sine for the latter the uxes have to satisfy theonstraint f�[���f�	��℄ = 0.Searhing for solutions to the onstraint (2.61) with ��� non-vanishing one �ndsthat the possible solutions have the formf���� = ��[�A��℄ ; or f���� = �� B�[� ��� ��℄ ; (2.62)with unonstraint ���, A�� = A[��℄ and B��, respetively.Theories with both f�MNP and ��M non-zero were not yet onsidered in the litera-ture. For f�MNP = 0 the remaining quadrati onstraints on ��M demands it to be ofthe form ��M = v� wM , with v� arbitrary and wM lightlike, i.e. wMwM = 0. Thus forvanishing f�MNP the solution for ��M is unique up to SL(2)�SO(6; n) transformations.This solution orresponds to the gauging that an be obtained from Sherk-Shwarz20



redution fromD = 5 with a non-ompat SO(1; 1) twist, whih was onstruted in [29℄for the ase of one vetor multiplet. This suggests that in ertain ases non-vanishing��M orresponds to torsion on the internal manifold. But this does not apply for the IIBredutions in this setion sine ��� is a doublet under the global SL(2) symmetry of IIB,while a torsion parameter should be a singlet. We have shown that these theories withnon-vanishing ��� are onsistent N = 4 supergravities, but their higher-dimensionalorigin remains to be eluidated.The list of gauged N = 4 supergravities that were presented in this setion is, ofourse, far from omplete. One ould, for example, disuss other orientifold ompati-�ations of IIA and IIB supergravity, for all of whih turning on uxes yields gaugedtheories in four dimensions [15, 16℄. However, the examples disussed were hopefullyrepresentative enough to show that indeed all the various gaugings appearing in theliterature an be embedded in the universal formulation presented above. New lassesof gaugings are those with both f�MNP and ��M non-vanishing. Every solution of thequadrati onstraints (2.20) yields a onsistent gauging . For additional examples see[42℄.3 Gauged N = 4 supergravities in D = 5In analogy to the four dimensional theory presented in the last setion we now desribethe general gauged N = 4 (half-maximal) supergravity in �ve spaetime dimensions13.The general gauging in D = 5 is parameterized by three real tensors fMNP , �MN and�M , taking the role of f�MNP and ��M from the last setion. Our presentation isless detailed than for the four dimensional theory beause for the ase �M = 0 thesetheories were already presented in the literature [31℄. On the other hand, gaugings withvanishing fMNP and �MN but non-zero �M have a non-semi-simple gauge group andoriginate in generalized dimensional redution from D = 6 supergravity [29℄. Here weomplete the analysis of [29, 31℄ by inluding gaugings with all tensors fMNP , �MN and�M non-zero. We give the omplete bosoni Lagrangian and Killing spinor equationsand at the end of this setion make ontat with the four dimensional theory.3.1 Quadrati onstraints and gauge algebraThe global symmetry group of ungauged D = 5, N = 4 supergravity is G = SO(1; 1)�SO(5; n), where n 2 N ounts the number of vetor multiplets. The theory ontains13 Sometimes the half-maximal supergravities in D = 5 are referred to as N = 2 theories. Weprefer the notation N = 4 sine they are related to the N = 4 theories in four dimensions via a torusredution. In this notation the minimal supergravity in D = 5 is denoted as N = 2.21



Abelian vetor gauge �elds that form one vetor AM� and one salar A0� under SO(5; n).Note that the index M = 1 : : : 5+ n now is a vetor index of SO(5; n) while in the lastsetion we used it for SO(6; n). The vetor �elds arry SO(1; 1) harges 1=2 and �1,respetively, i.e. Æ0̂AM� = 12AM� ; Æ0̂A0� = �A0� ; (3.1)where Æ0̂ denotes the SO(1; 1) ation. The orresponding algebra generator is denotedt0̂ while the SO(5; n) generators are tMN = t[MN ℄. For the representations of the vetorgauge �elds these generators expliitly readtMN PQ = ÆQ[M�N ℄P ; t0̂MN = �12ÆNM ; tMN 00 = 0 ; t0̂00 = 1 : (3.2)The general gauging of the theory is parameterized by tensors fMNP = f[MNP ℄, �MN =�[MN ℄ and �M . They designate the gauge group and assign the vetor gauge �elds tothe gauge group generators. The general ovariant derivative readsD� = r� � g AM� fMNP tNP � g A0� �NP tNP � g AM� �N tMN � g AM� �M t0̂ ; (3.3)where the indies are raised and lowered by using the SO(5; n) metri �MN and g isthe gauge oupling onstant. In order that the above expression is G invariant weneed fMNP and �M to arry SO(1; 1) harge �1=2 and �MN to have harge 1. By Ginvariane we mean a formal invariane treating the fMNP , �MN and �M as spurioniobjets that transform under G. However, as soon as we hoose partiular values forthese tensors the global G invariane is broken and only a loal G0 � G invariane isleft.To guarantee the losure of the gauge group and the onsisteny of the gauging weneed the following quadrati onstraints to be satis�ed for a general gauging�M�M = 0 ; �MN�N = 0 ; fMNP �P = 0 ;3fR[MN fPQ℄R = 2f[MNP �Q℄ ; �MQ fQNP = �M �NP � �[N �P ℄M : (3.4)This implies for example that �M has to vanish for n = 0 sine for an Eulidean metri�MN one has no lightlike vetors. In general, however, all three tensors may be non-zero at the same time. For the sake of disussing the losure of the gauge group it isonvenient to onsider the group ation on the vetor �eld representation de�ned by(3.2). Introduing the omposite index M = f0; Mg, i.e. AM� = (A0�; AM� ), we haveD� �M = r� �M + g AN� XNPM �P ; (3.5)where the gauge group generators XMNP = (XM)NP are given byXMNP = �fMNP � 12�MN�P + ÆP[M�N ℄ ; XM00 = �M ; X0MN = ��MN ; (3.6)22



and all other omponents vanish. For the ommutator of these generators one �nds[XM; XN ℄ = �XMNP XP ; (3.7)i.e. the gauge group loses and XMNP itself takes the role of a generalized strutureonstant. The losure relation (3.7) is equivalent to the quadrati onstraint (3.4).For gaugings with only fMNP non-zero we see that this tensor is a struture onstantfor a subgroup G0 of SO(5; n) that is gauged by using AM� as vetor gauge �elds. Ifonly �MN is non-zero we �nd a one-dimensional subgroup of SO(5; n) to be gauged withgauge �eld A0�. And for gaugings with only �M non-zero one �nds a 4 + n dimensionalgauge group SO(1; 1)n SO(1; 1)3+n where the �rst fator involves the SO(1; 1) of G.Note further that (3.7) is of preisely the same form as the losure relation (2.27)whih we had in four dimensions. This is not by aident but we have just applied ageneral method of how to gauge supersymmetri theories whih goes under the nameof the embedding tensor [21, 22, 23, 24, 27℄. In this language the tensors fMNP , �MNand �M are omponents of the embedding tensor whih is a linear map from the vetorspae of vetor gauge �elds to the Lie algebra of invarianes of the ungauged theory.Independent of the number of supersymmetries or of the spaetime dimension theembedding tensor always has to satisfy the quadrati onstraint (3.7). In additionit always satis�es a linear onstraint whih involves extra objets and whose formdepends on the number of spaetime dimensions. For example in D = 4 the linearonstraint involves the antisymmetri tensor 
MN and has the form X(MNQ
P)Q = 0[27℄ while in D = 5 it involves the tensor dMNP and takes the form (3.10) below. Ourpresentation of the �ve dimensional theory is to a large extend based on [23℄ where theorresponding maximal supergravity was presented.To give the Lagrangian and the gauge transformations of the theory in the nextsetion it is useful to introdue the tensors dMNQ = d(MNQ) and ZMN = Z [MN ℄ asfollows d0MN = dM0N = dMN0 = �MN ; all other omponents zero, (3.8)and ZMN = 12 �MN ; Z0M = �ZM0 = 12 �M : (3.9)The embedding tensor then satis�esX(MN )P = dMNQZPQ : (3.10)3.2 The general LagrangianWe have already introdued the vetor �elds AM� and A0�. In addition the bosoni �eldontent onsists of salars that form the oset SO(1; 1)� SO(5; n)=SO(5)� SO(n) and23



two-form gauge �elds B��M = (B�� M ; B�� 0). In the ungauged theory these two-form�elds do not appear in the Lagrangian but an be introdued on-shell as the duals ofthe vetor gauge �elds. In the gauged theory we onsider both vetor and two-form�elds as o�-shell degrees of freedom, however, the latter do not have a kineti term butouple to the vetor �elds via a topologial term suh that they turn dual to the vetorsdue to their own equations of motion [23℄. This is analogous to the four dimensionalase where the two-forms turned out to be dual to salars via the equations of motion.The SO(1; 1) part of the salar manifold is simply desribed by one real �eld �that is a singlet under SO(5; n) and arries SO(1; 1) harge �1=2. In addition we havethe oset SO(5; n)=SO(5) � SO(n) whih is parameterized by a oset representativeV = (VMm; VMa), where m = 1 : : : 5 and a = 1 : : : n are SO(5) and SO(n) vetorindies. Our onventions for V here are the same as for the SO(6; n)=SO(6) � SO(n)oset representative we had in four dimensions, see equations (2.3), (2.4), (2.5). Inaddition to the symmetri matrix MMN = VVT and its inverse MMN we need theompletely antisymmetriMMNPQR = �mnopqVMmVNnVP oVQpVRq : (3.11)The two-form gauge �elds transform dual to the vetor gauge �eld under G, i.e.B�� M is a vetor with SO(1; 1) harge �1=2 and B�� 0 is a singlet arrying harge 1.They enter into the ovariant �eld strength of the vetor �elds as followsHM�� � 2�[�AM�℄ + gXNPMAN� AP� + gZMNB��N : (3.12)We now have all objets to give the bosoni Lagrangian of the general gauged N = 4supergravity in �ve dimensionsLbos = Lkin + Ltop + Lpot : (3.13)It onsists of a kineti parte�1Lkin = 12 R� 14 �2MMN HM��HN �� � 14 ��4H0�� H0��� 32 ��2 (D��)2 + 116 (D�MMN)(D�MMN ) ; (3.14)a topologial part [23℄Ltop = � e8p2�������gZMNB��M hD�B��N + 4dNPQAP[����AQ�℄ + 13gXRSPAR� AS�℄�i� 83 dMNP AM� ��AN� ��AP� � 2 g dMNP XQRMAN� AQ� AR� ��AP�� 25 g2 dMNP XQRMXST P AN� AQ� AR� AS� AT�� ; (3.15)24



and a salar potentiale�1Lpot = �g2V= �g24 h�MNP �QRS��2 � 112MMQMNRMPS � 14MMQ�NR�PS + 16�MQ�NR�PS�+ 14�MN�PQ�4 �MMPMNQ � �MP�NQ�+ �M�N��2MMN+ 13p2�MNP �QR�MMNPQRi : (3.16)For �M = 0 the latter agrees with the potential given in [31℄.The topologial term seems ompliated, but its variation with respet to the vetorand tensor gauge �elds takes a rather simple and ovariant form, namelyÆLtop = e4p2������ � 13 g ZMN H(3)���M�B��N + dMNP HM�� HN�� ÆAP� � + tot. deriv. ;(3.17)where we have used the ovariant variation�B��N � ZMN �ÆB��N � 2dNPQAP[�ÆAQ�℄� ; (3.18)and the ovariant �eld strength of the two-form gauge �eldsZMNH(3)���N = ZMN h3D[�B��℄N + 6 dNPQAP[� ��� AQ�℄ + 13 g XRSQAR� AS�℄�i : (3.19)Note that the two-forms appear in the Lagrangian always projeted with ZMN , i.e.they ompletely deouple from the theory for the ungauged ase g ! 0, but also for thegauged theory there are never all two-forms entering the Lagrangian. For gaugings withonly fMNP non-zero we have ZMN = 0 and thus no two-forms are needed. In the lastequation we also de�ned the �eld strength of the two-forms only under ZMN projetionbeause only then it transforms ovariantly under the following gauge transformations[23℄ ÆAM� = D��M � gZMN��N ;�B��M = �2D[���℄M � 2dMNPHN���P� : (3.20)Here �M = �M(x) and ��M = ��M(x) parameterize the (tensor) gauge transforma-tions. Also the �eld strength HM�� transforms ovariantly under these transformations,i.e. ÆHM�� = �g�NXNPMHP�� : (3.21)The topologial term Ltop is invariant under (3.20) up to a total derivative. The algebraof gauge transformations loses analogous to the one we found in four dimensions (2.29).25



Varying the two-forms in the Lagrangian yields the equation of motionZMN � 16p2������H(3) ���N �MNPHP��� = 0 ; (3.22)where we have used MMN �  ��4 00 �2MMN! : (3.23)Due to equation (3.22) the two-forms beome dual to the vetor gauge �elds as wasannouned earlier.3.3 Killing spinor equationsWe now turn to the fermions of the �ve dimensional theory in order to give the Killingspinor equations. The fermions ome in representations of the maximal ompat sub-group H = USp(4) � SO(n) of G, where USp(4) is the overing group of SO(5). Inthe gravity multiplet there are four gravitini  �i and four spin 1=2 fermions �i, bothvetors under USp(4) and singlets under SO(n), i = 1 : : : 4. In the n vetor multipletsthere are 4n spin 1=2 fermions �ai whih form a vetor under both USp(4) and SO(n),a = 1 : : : n. All fermions are pseudo-Majorana, i.e. they satisfy a pseudo-reality on-straint of the form �i = 
ijC(��j)T , where 
ij is the USp(4) invariant sympleti formand C is the harge onjugation matrix.The oset representative VMm transforms as a 5 under USp(4) and an alternativelybe expressed as VMij = VM [ij℄ subjet toVMij
ij = 0 ; (VMij)� = 
ik
jlVMkl : (3.24)Under supersymmetry transformations parameterized by �i = �i(x) we haveÆ �i = D��i � i6 �
ij�VMjkHM�� � 14p2 Æki ��2H0��� ����� � 4Æ����� �k+ igp6 
ij Ajk1 �� �k ;Æ�i = �12 p3 i (��1D��)���i � 16 p3 ��
ij VMjkHM�� + 12p2��2 Æki H0�������k+p2 g
ij Akj2 �k ;Æ�ai = i
jk (VMaD�VijM)���k � 14 �VMaHM�� ��� �i +p2 g
ij Aakj2 �k : (3.25)Here we have negleted higher order fermion terms. These fermion variations ouldformally be read o� from [31℄. But the fermion shift matries A1ij, A2ij and Aa2ij whihare de�ned below now inlude ontributions from the vetor �M .26



Using VMa and VMij we an de�ne from fMNP , �MN and �M salar dependenttensors that transform under H. The vetor �M gives� ij = ��1VMij �M ; �a = ��1VMa �M ; (3.26)from the 2-form �MN one gets� ij = p2�2
kl VMikVNjl �MN ; �aij = �2VMaVNij �MN ; (3.27)and the 3-form fMNP yields�ij = �23 ��1V ikMVjlNVP kl fMNP ; �aij = p2��1 
kl VMaVNikVP jl fMNP ; (3.28)where �ij = �[ij℄, � ij = �(ij), �aij = �a[ij℄, �ij = �(ij), �aij = �a(ij). 14 The fermion shiftmatries an now be de�ned asAij1 = 1p6 ��� ij + 2�ij� ;Aij2 = 1p6 �� ij + �ij + 32 � ij� ;Aaij2 = 12 ���aij + �aij � 14 p2 �a 
ij� : (3.29)These matries do not only appear in the fermion variations but also in the fermionmass terms that have to appear in the Lagrangian of the gauged theorye�1Lf.mass = p6 i g4 
kiAij1 � k���� � j +p2 g
kj Aji2 � k����i +p2 g
kj Ajia2 � k����ai :(3.30)Note that we have only given those terms that involve the gravitini. Supersymmetryimposes the following ondition on the fermion shift matries
kl �Aik1 Ajl1 � Aik2 Ajl2 � Aaik2 Aajl2 � = �14
ijV ; (3.31)where the salar potential appears on the right hand side. Again this ondition issatis�ed as a onsequene of the quadrati onstraint (3.4).3.4 Dimensional redution from D = 5 to D = 4Starting from a �ve dimensional N = 4 supergravity one an perform a irle redutionto get a four dimensional N = 4 supergravity. Thus any �ve dimensional gaugingdesribed by fMNP , �MN and �M must give rise to a partiular four dimensional gauging14 Our notation translates into that of [31℄ as follows: a� = A0�, �MN = ggA �MN , fPMN = � ggS fMNP ,Uij = � g6gA �ij , V aij = � gp2gA �aij , Sij = g3gS �ij , T aij = gp2gS �aij .27



haraterized by f�MNP and ��M . In other words the set of �ve dimensional gaugingsis embedded into the set of four dimensional gaugings and we now want to make thisembedding expliit. This yields additional examples of four dimensional gaugings, butit is also interesting in the ontext of string dualities in presene of uxes sine the twotensors fMNP and �MN in D = 5 turn out to be parts of the single tensor f�MNP underthe larger duality group inD = 4. Thus, as usual, one gets a more uni�ed desription ofgaugings with di�erent higher dimensional origin when ompatifying the supergravitytheory further. With all the group struture at hand it is not neessary to expliitlyperform the dimensional redution but we an read o� the onnetion from the formulasfor the ovariant derivatives (2.12) and (3.3) (that is from the embedding tensor).A �ve dimensional theory with n vetor multiplets yields a four dimensional theorywith n+ 1 vetor multiplets. One way to understand that is by ounting salar �elds.There are 5n + 1 salars already present in �ve dimensions and in addition one getsone salar from the metri and 6+n salars form the vetor �elds whih gives 6n+8 intotal and agrees with the number of salars in the oset SL(2)� SO(6; n+1)=SO(2)�SO(6) � SO(n + 1). When breaking the SO(6; n + 1) into SO(1; 1)A � SO(5; n) thevetor representation splits into an SO(5; n) vetor vM and two salars v� and v	 withharges 0, 1=2 and �1=2, respetively, under SO(1; 1)A. When breaking the SL(2)into SO(1; 1)B the vetor splits into two salars v+ and v� with harges 1=2 and �1=2under SO(1; 1)B. The four dimensional vetor �elds therefore split into AM+� , AM�� ,A�+� , A��� , A	+� and A	�� . We an now identifying the �ve dimensional vetor �elds asAM� = AM+� ; A0� = A	�� ; (3.32)and these �elds arry harges 1=2 and �1 under the diagonal of SO(1; 1)A and SO(1; 1)Band the �ve dimensional SO(1; 1) therefore has to be this diagonal. Thus the �vedimensional global symmetry generators are given in terms of the four dimensionalones as follows t0̂ = tSL(2)+� + tSO(6;n+1)	� ; tMN = tSO(6;n+1)[MN ℄ : (3.33)The vetor �elds AM�� , A�+� are the four dimensional duals of AM+� and A	�� , theyome from the two-form gauge �elds in �ve dimensions. The vetor �elds A��� andA	+� are unharged under the �ve dimensional SO(1; 1), they are the Kaluza-Kleinvetor oming from the metri and its dual �eld.Now, if a four dimensional vetor �eld that was already a vetor �eld in �ve di-mensions (3.32) gauges a four dimensional symmetry that was already a symmetry in�ve dimensions (3.33) the orresponding gauge oupling in the ovariant derivative inD = 4 has to be the same as in D = 5. For the four dimensional ovariant derivative28



(2.12) one �ndsD� = r� � g A�M+ ��+MNP tNP + 2f+M	�t	� + �+M t+��� g A�	� �f�	NP tNP + ��	t	� � ��	t+�� +Dadd� ; (3.34)where ��MNP is de�ned in (2.7)15 andDadd� denotes exlusively four dimensional ontri-butions to the ovariant derivative. By omparing with the known ovariant derivativein �ve dimensions (3.3) one gets�+M = �M ; f+M�	 = 12 �M ; f�	MN = �MN ; f+MNP = fMNP : (3.35)For a simple irle redution it is natural to demand furthermore f�MN� = 0, f+MN	 =0, f�MNP = 0, f�M�	 = 0, ��M = 0, ��� = 0 and ��	 = 0. Some of the last quantities,however, may be non-zero for more ompliated dimensional redutions and may thenfor example orrespond to Sherk-Shwarz generators [29℄. But for the ordinary irleredution we have just given the embedding of the �ve dimensional gaugings intothe four dimensional ones. In addition to the above equations we have to make surethat f� ~M ~N ~P is totally antisymmetri in the last three indies ( ~M = fM;�;	g). Onean then show that for these tensors f� ~M ~N ~P and �� ~M the four dimensional quadrationstraint (2.20) beomes preisely the �ve dimensional one (3.4) for fMNP , �MN and�M . Also the four and the �ve dimensional salar potentials (2.11), (3.16) beome thesame if all salars that are not yet present in D = 5 are set to the origin16.Due to the antisymmetry of f� ~M ~N ~P one �nds the following additional terms in theD = 4 ovariant derivative:Dadd� = �g A�M� �2�MN tN	 + �M t���+ g A�	+ �N (tN	 � tN�) + g A��+ �N (tN	 + tN�) : (3.36)These are ouplings of vetor �elds to symmetry generators that both only our infour dimensions. If one expliitly performs the dimensional redution by hand thesegauge ouplings originate from the dualization of the various �elds.4 ConlusionsThe general gaugings of N = 4 supergravity in D = 5 and D = 4 were presented. TheD = 4 gaugings are parameterized by two SL(2) � SO(6; n) tensors f�MNP and ��M ,15 Note that what we alled n in setion 2 is now n+1 and the index M now is an SO(5; n) vetorindex rather than a SO(6; n+ 1) index.16 The equality of the salar potentials is most easily heked at the originM = 1. If the potentialsdo agree there for all possible gaugings the statement is already proven due to the SO(1; 1)�SO(5; n)ovariane of the onstrution. 29



subjet to a set of onsisteny onstraints. New lasses of gaugings were found and itwas shown how the known gaugings are inorporated in this framework. Remarkably,all known examples an be desribed by turning on only f�MNP or ��M , but we haveshown that for a general gauging both tensors an be non-vanishing. Similarly, in �vedimensions the general gaugings are parameterized by three SO(1; 1)�SO(5; n) tensorsfMNP , �MN and �M . The gaugings with �M = 0 were already desribed in [31℄, but it isneessary to inorporate �M to also inlude non-semi-simple gaugings that result fromSherk-Shwarz dimensional redution [29℄. For a generi gauging all three tensorsmay be non-zero. It would be very interesting to understand how all these gaugingsan be obtained from ompati�ations of string- or M-theory. For example for theD = 4 gaugings with non-vanishing de Roo-Wagemans phases the higher dimensionalorigin is not yet known. The ompati�ations that yield these gaugings might be ofunonventional type [43, 44℄. The unifying sheme presented in this paper should be auseful tool when takling these questions in a ovariant form. On the other hand, wehave so far only presented the gauged theories and have shown their onsisteny. Itwould be interesting to further study these theories by lassifying their ground states,omputing the mass spetrum, analyzing stability, et.AknowledgmentsWe are grateful to Henning Samtleben for suggesting this projet, his valuable insightsduring all stages of this work and for arefully reading the manusript. We thankNikolaos Prezas, Giovanni Villadoro, and Fabio Zwirner for pointing out a sign mistakein the original version of this paper. All errors remain our own. This work is partlysupported by the EU ontrats MRTN-CT-2004-503369 and MRTN-CT-2004- 512194,the DFG grant SA 1336/1-1 and the DAAD { The German Aademi Exhange Servie.A Gauged half-maximal supergravities in D = 3The general gauged half-maximal supergravity in D = 3 was given in [38, 45℄. Herewe shortly desribe the underlying group theory and the tensors that parameterize thegauging. We then give the fermion shift matries and the salar potential in the sameform as we did in four and �ve dimensions. Finally we desribe the embedding of thefour dimensional gaugings into the three dimensional ones. This relation is neessaryin order to alulate the four and �ve dimensional salar potentials from the knownthree dimensional one.
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A.1 General gauging, salar potential, fermion shift matriesThe global symmetry group of the ungauged theory is G = SO(8; n), where n againounts the number of vetor multiplets. The vetor �elds A�MN = A�[MN ℄ transform inthe adjoint representation of G. Here M;N = 1; : : : ; 8 + n are SO(8; n) vetor indies.The general gauging is parameterized by the two real tensors �MNPQ = �[MNPQ℄ and�MN = �(MN), with �MN�MN = 0, and one real salar �. Together they onstitute theembedding tensor �MNPQ = �MNPQ + �[P [M �N ℄Q℄ + � �P [M �N ℄Q ; (A.1)whih enters into the ovariant derivativeD� = �� � A�MN�MNPQtPQ : (A.2)Due to the above de�nition the embedding tensor automatially satis�es the linearonstraint �MN PQ = �PQMN : (A.3)In addition it has to satisfy the quadrati onstraint�MNT V�PQV U ��PQTV�MNV U = �MN [P V�Q℄V T U ; (A.4)whih may be written as a onstraint on �MNPQ, �MN and �.The salars of the theory form the oset SO(8; n)=SO(8)�SO(n) and in the followingwe use the same onventions and notations as for the SO(6; n)=SO(6)�SO(n) oset infour dimension, in partiular we again haveMMN = VMaVNa + VMmVNm ; �MN = VMaVNa � VMmVNm ; (A.5)where now a = 1; : : : ; n and m = 1; : : : ; 8. In addition we need the salar dependentobjet MMNPQRSTU = �mnopqrstVMmVNnVP oVQpVRqVSrVT sVU t : (A.6)The salar potential then takes the formV = � 124 "�MNPQ�RSTU�� 12MMRMNSMPTMQU + 3MMRMNS�PT�QU� 4MMR�NS�PT�QU + 32MMR�NS�PT�QU + 13MMNPQRSTU�+ �MN�PQ ��32MMPMNQ + 32�MP�NQ + 34MMNMPQ�+ 192�2 � 24��MNMMN# : (A.7)31



Although written di�erently, this is the same potential as given in [38℄.The maximal ompat subgroup of G is H = SO(8) � SO(n). All the fermionsand the fermion shift matries A1 and A2 transform under H. Let A; _A = 1; : : : ; 8 be(onjugate) SO(8) spinor indies. The Gamma-matries of SO(8) satisfy�(mA _A�n)B _A = ÆmnÆAB ; �mnAB � �[mA _A�n℄B _A : (A.8)Then the fermion shift matries A1 and A2 are de�ned through the so alled T -tensoras follows [38℄ TABCD = 116�ABmn�CDop VMmVNnVP oVQp�MN PQ ;TABma = 14�ABop VMoVNpVPmVQa�MN PQ ;AAB1 = �83TAC BC + 421ÆABTCDCD ;AAB2 ma = 2TABma � 23�C(Amn TB)Cna � 121ÆAB�CDmnTCDna : (A.9)The quadrati onstraint (A.4) guarantees that A1 and A2 satisfyAAC1 ABC1 � AAC2 maABC2 ma = � 1128ÆABV ; (A.10)with the salar potential V appearing on the right hand side.A.2 From D = 4 to D = 3Performing a irle redution of four dimensional N = 4 supergravity with n vetormultiplets yields a three dimensional N = 8 supergravity with n+2 vetor multiplets.The embedding of the global symmetry groups is given bySO(8; n+ 2) � SO(2; 2)� SO(6; n) � SL(2)� SO(6; n) ; (A.11)where the SL(2) is just one of the fators in SO(2; 2) = SL(2)�SL(2). Aordingly wesplit the fundamental representation of SO(8; n+ 2) as v ~M = (vM ; vx�) where � = 1; 2and x = 1; 2. Note that the SO(8; n+ 2) vetor index is denoted by ~M , while M is anSO(6; n) vetor index. The SO(2; 2) metri is given by�x� y� = �xy��� ; whih yields �x� y��y� z = Æzx� : (A.12)The SL(2) generators t(��), t(xy) and the SO(2; 2) generators tx� y� = ty� x� are relatedas follows tx� y� = �12 (���txy + �xyt��) ; (A.13)32
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