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Final state dipole showers and the DGLAP equation
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Abstract: We study a parton shower description, based on a dipole picture, of the fi-
nal state in electron-positron annihilation. In such a shower, the distribution function
describing the inclusive probability to find a quark with a given energy depends on the
shower evolution time. Starting from the exclusive evolution equation for the shower, we
derive an equation for the evolution of the inclusive quark energy distribution in the limit
of strong ordering in shower evolution time of the successive parton splittings. We find
that, as expected, this is the DGLAP equation. This paper is a response to a recent paper
of Dokshitzer and Marchesini that raised troubling issues about whether a dipole based
shower could give the DGLAP equation for the quark energy distribution.
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1. Introduction

Parton shower algorithms, when coupled to hadronization models, provide a way of gener-
ating cross sections for exclusive final states according to approximations based on QCD.
One can use these algorithms also to produce predictions for inclusive observables. Of
special interest are predictions that, in a perturbative expansion, involve large logarithms
of ratios of different momentum scales in the physical problem. In many cases, there are
also predictions based on the full field theory. In these cases, it is of interest to know if a
particular parton shower algorithm gives results consistent with the full field theory.

In this paper, we investigate one such case. We consider the inclusive parton energy
distribution in electron-positron annihilation: the probability that a parton carries a frac-
tion x of the maximum possible energy of a parton. (We define the energy distribution
precisely in Sec. 2.) We ask how the parton energy distribution changes as the resolution
with which we look at the shower changes. We use the shower evolution equation of Ref. [1],
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which may be said to describe a dipole shower in that the emission of a gluon from a parton
l can interfere with the emission of a gluon from another parton k. The shower evolution
equation describes the evolution of exclusive parton states. We manipulate the equation
to produce an evolution equation for the inclusive parton energy distribution. This energy
distribution of the partons should obey, approximately, the lowest order DGLAP evolution
equation [2] (like parton distribution functions).1

This investigation is prompted by a recent paper of Dokshitzer and Marchesini [4],
which raises some troubling issues with respect to the flow of momentum in the parton
splittings. Ref. [4] suggests that perhaps a dipole shower cannot get the evolution of the
energy distribution right. This is a significant issue since parton shower Monte Carlo event
generators are of great importance in the design and interpretation of experiments and
because some of these are based on a dipole picture. For instance, the program Ariadne

[5] is based on dipoles and, in fact, introduced the dipole idea as an organizing principle for
parton showers.2 In particular, the recent program of Dinsdale, Ternick and Weinzierl [6]
and the program of Schumann and Krauss [7] are both of the dipole type. These programs
are based on the Catani-Seymour dipole splitting functions and momentum mapping [8]
that are often used in next-to-leading order perturbative calculations and can be applied to
showers as described in Ref. [9]. Furthermore, the final state shower in version 8 of Pythia

[10, 11] is effectively a Catani-Seymour dipole shower. Thus if dipole showers cannot work
for as significant a quantity as the evolution of the parton energy distribution, we ought to
know about it.

For our investigation, we consider the process e+ + e− → partons in a shower picture.
Our principle example is the shower evolution equation of Ref. [1]. The organizing principle
of the shower is that one starts at the hard interaction γ → q + q̄ and moves to softer
interactions, always factoring the softer interaction from previous harder interactions. We
find in Sec. 3 and Appendix A that with the definitions of Ref. [1], we do obtain the
expected DGLAP equations. We will also show in Sec. 5 that, at least for the case of
q → q + g splittings, the DGLAP equation results if one uses the splitting functions and
momentum mapping of the Catani-Seymour dipole scheme. For either choice of splitting
functions and momentum mapping, we take virtuality as the measure of hardness. One
could also use the transverse momentum of the splittings to order successive splittings as
in Refs. [6, 7, 10, 11]. As we outline in Secs. 3.6 and 5, transverse momentum ordering
also produces the DGLAP equation. We devote Sec. 4 to the role of soft gluons in the
evolution equation, since this was the point of interest in Ref. [4].

The main point of this paper is to show that one can obtain the lowest order DGLAP
equation from the shower evolution equation of Ref. [1] in a simple fashion, using the essen-
tial approximation that the shower splittings, which are by definition ordered in virtuality,
are strongly ordered. In fact, successive splittings are strongly ordered if the splitting
probability for each step dq2 in virtuality is small, which follows if αs is small.

Before beginning the main analysis, we provide an informal and qualitative description
of what we think the issue raised in Ref. [4] is. Suppose that in the first step of a shower

1The application to parton decay functions can be found in Ref. [3].
2However, we do not investigate whether the DGLAP equation results in Ariadne.

– 2 –



Figure 1: Emission of a soft gluon from a nearly collinear quark-gluon jet. The gluon is at a wider
angle to the jet than the jet opening angle, but is very soft. The gluon does not resolve the jet,
so the emission is as if the soft gluon were emitted from an on-shell massless parton moving in the
direction of the jet and carrying the net color of the jet, as indicated on the right hand side of the
approximation.

description for e+ + e− → partons, the initial quark emits a gluon with an energy ω1 equal
to 1/3 of the initial quark energy, Eq. Then the daughter quark has energy 2/3 × Eq.
Suppose that the emission angle θ1 is very small, say θ1 = 0.01. Now suppose that a soft
gluon with energy ω2 is emitted from the daughter quark or the daughter gluon at an angle
θ2 that is large compared to θ1, say θ2 = 0.1. This is the second emission in a virtuality
ordered shower, so the virtuality of the emission, q2

2 ∼ Eqω2θ
2
2 must be smaller than the

previous virtuality, q2
1 = Eqω1θ

2
1. Thus we need ω2 < ω1θ

2
1/θ

2
2 ∼ 10−2ω1.

0

Figure 2: Emission of a soft gluon from a nearly collinear quark-gluon jet when the gluon in the
jet is considered as 3⊗ 3 state. Emission from the narrow dipole cancels.

Now we can ask where the energy of the soft gluon comes from. We note that the
soft gluon cannot resolve the narrow jet. Thus, as indicated in Fig. 1, the matrix element
for emitting the soft gluon is approximately the same as the matrix element for emitting
the soft gluon from an on-shell quark moving in the direction of the mother quark. In an
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angular ordered shower, the emission is, in fact, modeled in this way [12]. This suggests
that the energy of the soft gluon should come from the mother quark, so that 2/3 of it is
taken from the daughter quark and 1/3 from the daughter gluon. However, this suggestion
is (at least within the intuitive picture used here) misleading. If we make a simple leading
color approximation, then the daughter gluon carries color 3 ⊗ 3 instead of color 8. The
soft gluon could be emitted from the 3 color in the daughter gluon, but the soft gluon
cannot resolve this color from the 3 color of the daughter quark. Thus this part of the
gluon emission approximately cancels, as depicted in Fig. 2. Not all of the soft gluon
emission amplitude cancels. The amplitude for emitting the soft gluon from the 3 part of
the daughter gluon, as depicted in Fig. 3, remains. This amplitude is approximately the
same as that for emitting the soft gluon from the mother quark, as in the right hand side
of Fig. 1. However, the soft gluon emission comes after the mother quark has split into a
daughter quark and a daughter gluon. We thus see that it is the daughter gluon that gives
up part of its energy to supply the energy of the soft gluon.

Does this issue matter? Perhaps, but it does not matter to the evolution of the energy
distribution of the quark. The reason is that the energy taken by the soft, wide angle gluon
is too tiny to make a difference in the limit in which we can regard the virtualities in the
shower as strongly ordered. We will see this point appear in the actual shower evolution
equations in the following sections.

Figure 3: Emission of a soft gluon from a nearly collinear quark-gluon jet when the gluon in the
get is considered as 3 ⊗ 3 state. Emission from the part of the gluon that makes part of a wide
angle dipole remains.

We point out that the virtuality ordering matters to this argument. Consider the case
that ω2 < ω1 but ω2 > ω1θ

2
1/θ

2
2. Then the soft gluon emission is harder than the collinear

q → q+ g splitting, so that the soft gluon emission belongs first in the shower, and part of
its energy is to be deducted from what the daughter quark would otherwise get. Suppose
that one were to use an energy ordered shower, despite the fact that the approximations
used in factoring the softest splitting from harder splittings require that softer splittings
are later in the shower. Then in a dipole style shower this soft gluon emission would come
second and the non-cancelling contribution would come from Fig. 3. The wrong parton
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would then be giving up its energy to supply the soft gluon energy. One would then not be
surprised to not get the DGLAP evolution equation from such a shower evolution if one did
not neglect ω2 compared to Eq. We suspect that something like this may have happened
in Ref. [4]. In this paper, we use a virtuality ordered shower, as in Ref. [1].

2. The parton energy distribution

We consider the process e+ + e− → partons in a shower picture, using the notation of
Ref. [1]. The shower evolution equation of Ref. [1] includes quantum interference among
colors and spins. We note that this shower evolution equation is not directly practical for
generating events. In order to implement the shower evolution equation, one would need
an approximation scheme such that the approximated shower evolution can be practically
implemented and such that the approximations can be systematically improved at a cost
of computer time. In the lowest order approximation, one averages over spins and takes
the leading color approximation, which yields an evolution equation that can be written
as a Markov process [13]. We will discover in this paper that we get the conventional
DGLAP evolution equation for the energy distribution of partons as a function of resolution
either with the full treatment of color and spin or in the leading color, spin averaged
approximation.

In the notation of Ref. [1], states in the sense of statistical mechanics are represented
by ket vectors

∣∣ρ), while possible measurements are represented by bra vectors
(
F
∣∣. Thus(

F
∣∣ρ) is the probability that one obtains a particular result F from a measurement on an en-

semble of systems represented by
∣∣ρ). We use basis states labelled by lists {p, f, s′, c′, s, c}m

of parton quantum numbers. Here {p1, . . . , pm} ≡ {p}m are the momenta of the partons
and {f}m are their flavors. The total momentum is Q =

∑
pi. The spins are specified by

{s′, s}m, with two spin labels for each parton because we use the quantum density matrix
in spin space in order to represent possible interference among spin states. The colors
are similarly specified by {c′, c}m. Quantum spin and color states are represented by bra
and ket vectors with angle brackets, as in the quantum spin inner product

〈
{s′}m

∣∣{s}m〉.
A much more detailed specification of our notation is provided in Ref. [1]. In Ref. [1],
the quarks can have non-zero masses, but in this paper we take all of the partons to be
massless.

Let
∣∣ρ(t)

)
= U(t, 0)

∣∣ρ(0)
)

be the statistical state at shower time t. Here t = 0 at the
beginning of the shower, which starts with the hard process, and t→∞ gives the statistical
state after hadronization. The total cross section is

(
1
∣∣ρ(t)

)
=
∑
m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

]
×
(
1
∣∣{p, f, s′, c′, s, c}m)({p, f, s′, c′, s, c}m∣∣ρ(t)

)
=
∑
m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

] 〈
{s′}m

∣∣{s}m〉 〈{c′}m∣∣{c}m〉
×
(
{p, f, s′, c′, s, c}m

∣∣ρ(t)
)
.

(2.1)
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This is independent of t because
(
1
∣∣U(t, 0) =

(
1
∣∣. We now introduce a measurement

function
(
x, fa

∣∣ that measures the probability to find in the final state a parton (or a
hadron in the case t → ∞) with flavor fa having a fraction x of the maximum possible
energy for a single particle,

√
Q2/2. The definition is(

x, fa

∣∣ρ(t)
)

=
∑
m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

]
×
(
x, fa

∣∣{p, f, s′, c′, s, c}m)({p, f, s′, c′, s, c}m∣∣ρ)
=
∑
m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

]〈
{s′}m

∣∣{s}m〉 〈{c′}m∣∣{c}m〉
×

m∑
i=1

δfa,fi
δ

(
x− 2pi ·Q

Q2

)(
{p, f, s′, c′, s, c}m

∣∣ρ(t)
)
.

(2.2)

The distribution measures all partons, so there is a sum over parton labels i. The energy
fraction x for parton i is defined to be 2pi ·Q/Q2. Note that if we integrate over x with a
factor x and sum over flavors, we get twice the total cross section:∑

fa

∫ 1

0
dxx

(
x, fa

∣∣ρ(t)
)

=
∑
m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

] 〈
{s′}m

∣∣{s}m〉 〈{c′}m∣∣{c}m〉
×

(∑
i

2pi ·Q
Q2

)(
{p, f, s′, c′, s, c}m

∣∣ρ)
= 2

(
1
∣∣ρ(t)

)
.

(2.3)

When we apply this at t = ∞, we have a physical observable giving, say, the energy
distribution of hadrons of flavor f̂h in an electron-positron collision,

(
x̂, f̂h

∣∣ρ(∞)
)
. This

observable can be written in terms of the cross section to produce a parton of flavor fa

with a momentum fraction x at a resolution scale t convoluted with the parton decay
function that gives the probability for that parton to decay to a hadron of the desired
flavor carrying a fraction x̂/x of the parton’s momentum:(

x̂, f̂h

∣∣ρ(∞)
)
≈
∑
fa

∫ 1

x̂

dx

x
Df̂h/fa

(
x̂

x
, t

) (
x, fa

∣∣ρ(t)
)
. (2.4)

This equation is approximate because factoring out the parton decay function involves
neglecting power suppressed contributions. The parton decay functions depend on the
resolution scale t that we used to factor the cross section. This dependence is given by
the DGLAP equation [3]. Since the observable

(
x̂, f̂h

∣∣ρ(∞)
)

does not depend on t, the
partonic function

(
x, fa

∣∣ρ(t)
)

must also depend on t and this dependence must be given
approximately by the DGLAP equation. We will investigate this evolution scale dependence
within our dipole-like equations for shower evolution.

3. Shower evolution for the energy distribution

We seek to discover how
(
x̂, f̂a

∣∣ρ(t)
)

evolves with shower resolution parameter t. We will
consider the case in which f̂a is a quark flavor, f̂a ∈ Q = {u, d, s, . . . }. This was the case
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examined in Ref. [4]. The case of an antiquark is essentially identical. The case of a gluon
is analyzed in Appendix A.

From the evolution equation [1] for
∣∣ρ(t)

)
, we have

d

dt

(
x̂, f̂a

∣∣ρ(t)
)

=
(
x̂, f̂a

∣∣HI(t)− V(t)
∣∣ρ(t)

)
. (3.1)

Here HI(t) is the parton splitting operator and V(t) is the virtual “no-splitting” operator
that insures that the probability for a splitting plus the probability for no splitting equals
unity. We want to investigate

(
x̂, f̂a

∣∣HI(t) − V(t)
∣∣ρ(t)

)
in the limit of strongly ordered

virtualities in the shower. That is, the virtuality in the shower splitting described by
HI(t) − V(t) should be small compared to the virtualities in the state

∣∣ρ(t)
)

before the
splitting. We will make approximations that reflect this condition.

When we insert a complete sum over statistical states next to
∣∣ρ(t)

)
in Eq. (3.1), we

get

d

dt

(
x̂, f̂a

∣∣ρ(t)
)

=
∑
m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

]
×
(
x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m)

×
(
{p, f, s′, c′, s, c}m

∣∣ρ(t)
)
.

(3.2)

In the following subsections, we will evaluate the matrix element of HI(t) − V(t) in the
approximation of strongly ordered virtualities. In the last subsection, we will insert the
limiting result for this matrix element back into Eq. (3.2). This will yield the DGLAP
equation.

In the analysis of this section, we will freely make approximations that follow from
having strongly ordered virtualities. Some of these approximations, related to soft, wide
angle gluon emissions, were the main focus of Ref. [4]. In Sec. 4, we turn to a detailed
examination of these soft emission approximations.

3.1 The splitting matrix element

To see what Eq. (3.2) means, we examine the matrix element of HI(t) − V(t) using the
results in Sec. 12 of Ref. [1],(

x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m) =∑

l

∑
ζf∈Φl(fl)

∫
dζp θ(ζp ∈ Γl({p}m, ζf)) δ

(
t− Tl({p̂, f̂}m+1)

)

×
[m+1∑
i=1

δf̂a,f̂i
δ

(
x̂− 2p̂i ·Q

Q2

)
−

m∑
i=1

δf̂a,fi
δ

(
x̂− 2pi ·Q

Q2

)]
×
{
θ(f̂m+1 6= g) TR

〈
{c′}m

∣∣{c}m〉 〈{s′}m∣∣{s}m〉 wll({f̂ , p̂}m+1)

+ θ(f̂m+1 = g)
∑
k 6=l

〈
{c′}m

∣∣tk(fk → f̂k + f̂m+1) t†l (fl → f̂l + f̂m+1)
∣∣{c}m〉

×
〈
{s′}m

∣∣{s}m〉 [2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)− wll({f̂ , p̂}m+1)
]}

.

(3.3)

– 7 –



This formula is a little complicated because it contains several ingredients. However, its
important features are easily understood.

In the second line, there is a sum over the index l of the parton that splits. The
daughter partons are labelled l and m + 1. Then there is a sum over the flavors of the
daughter partons into which parton l splits. These flavors are denoted by ζf = (f̂l, f̂m+1). If
fl is a quark or antiquark flavor, it must split into the same flavor quark or antiquark plus a
gluon. If fl is a gluon, it can split into two gluons or a quark-antiquark pair. Then there is
an integration over splitting variables that determine the momenta of the daughters. These
can be a virtuality y, a momentum fraction z, and an azimuthal angle φ. This integration
is indicated as dζp. The momenta p̂i of the partons after the splitting are given in terms
of the momenta pi before the splitting together with the splitting variables ζp. Finally in
the second line there is a delta function that defines the shower time t, for which we will
use the virtuality of the splitting,

Tl({p̂, f̂}m+1) = log
(

Q2

2p̂l · p̂m+1

)
. (3.4)

In the third line there is a difference of two terms. The first, with f̂i and p̂i, comes
from HI(t). The second, with fi and pi, comes from V(t). In this virtual contribution,
the energy fraction x̂ is set to the energy fraction of parton i before the splitting and we
integrate inclusively over the splitting variables.

The functions that follow are defined in Ref. [1]. They are derived from the spin
dependent splitting functions for the splitting of a parton with label l to produce two
daughter partons with, in our labeling scheme, labels l and m+ 1.

The line starting θ(f̂m+1 6= g) is for a g → q + q̄ splitting. It has a color factor
TR

〈
{c′}m

∣∣{c}m〉 with TR = 1/2. The function wll({f̂ , p̂}m+1) is the spin-averaged split-
ting function for g → q + q̄, as given in Ref. [1]. This term is depicted in Fig. 4. The
dependence on the mother parton spin is trivial,

〈
{s′}m

∣∣{s}m〉, because we sum over the
daughter parton spins and integrate over the azimuthal angle of the splitting, as indicated
in Eq. (12.18) of Ref. [1].

The lines starting θ(f̂m+1 = g) are for a q → q + g splitting. It has a nontrivial color
structure

〈
{c′}m

∣∣tk t†l ∣∣{c}m〉. This corresponds to an interference graph and is the color
factor for emitting a gluon from parton l in the quantum amplitude and absorbing it on line
k in the complex conjugate amplitude.3 This color factor multiplies a sum of two terms.
The first, containing wlk, corresponds to the interference graphs, depicted in Fig. 5. The
second, containing wll, corresponds to the direct graphs, depicted in Fig. 6. The functions
wlk and wll are given in Ref. [1], while function Alk, or rather possible choices for it, are
given in Ref. [14].

3.2 Strongly ordered virtualities

We can immediately simplify Eq. (3.2) in the strong ordering approximation. There are
sums over partons i that participate in the measurement represented by

(
x̂, f̂a

∣∣. Thus x̂

3This factor is written as the matrix element of Tk · Tl in the work of Catani and Seymour [8].
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Figure 4: A graph contributing to wll for a g→ q + q̄ splitting.

Figure 5: An interference graph contributing to wlk for a q → q + g splitting.

is set equal to 2p̂i · Q/Q2 in the term from HI(t) and 2pi · Q/Q2 in the term from V(t).
Consider the contribution if i is the same in both terms and is neither of the indices of the
daughter partons, l or m+1. For a splitting that is nearly collinear or is very soft, or both,
we have p̂i ≈ pi for such a spectator parton. In fact, we would have p̂i = pi except for the
need to take some momentum from the spectator partons in order to balance momentum in
the splitting while keeping both the daughter partons and the mother parton on shell. The
amount of momentum needed tends to zero as the virtuality in the splitting approaches
zero. For this reason, p̂i − pi → 0 in the limit of small virtuality in the splitting. Thus in
the limit of strongly ordered virtualities in the shower, we drop the terms for i not equal
to l or m + 1. This becomes yet simpler because we consider the case that f̂a is a quark
flavor. With our labeling scheme, parton m+ 1 is always either a gluon or (for g→ q + q̄)
an antiquark. Thus, in fact, the only term that remains in the sum over i is that for i = l.
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Figure 6: A direct graph contributing to wll for a q → q + g splitting.

This gives

(
x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m) ≈∑

l

∑
ζf∈Φl(fl)

∫
dζp θ(ζp ∈ Γl({p}m, ζf)) δ

(
t− Tl({p̂, f̂}m+1)

) 〈
{s′}m

∣∣{s}m〉
×
[
δf̂a,f̂l

δ

(
x̂− 2p̂l ·Q

Q2

)
− δf̂a,fl

δ

(
x̂− 2pl ·Q

Q2

)]
×
{
θ(f̂m+1 6= g) TR

〈
{c′}m

∣∣{c}m〉 wll({f̂ , p̂}m+1)

+ θ(f̂m+1 = g)
∑
k 6=l

〈
{c′}m

∣∣tk(fk → f̂k + f̂m+1) t†l (fl → f̂l + f̂m+1)
∣∣{c}m〉

×
[
2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)− wll({f̂ , p̂}m+1)

]}
.

(3.5)

The bookkeeping for the flavor structure can now be made more explicit. Consider the
two terms on the third line of Eq. (3.5), representing a real splitting and a virtual splitting.
If the mother parton l is a gluon, the virtual splitting contribution vanishes because f̂a 6= fl.
In the real splitting contribution, the Kroneker delta restricts the sum over flavors ζf in
the splitting to just one term, (f̂l, f̂m+1) = (f̂a,−f̂a). If parton l is not a gluon, it must in
fact be a quark with flavor fl = f̂a. Then again, there is only one term in the sum over
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flavors ζf in the splitting, namely (f̂l, f̂m+1) = (f̂a, g). Thus

(
x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m) ≈∑

l

∫
dζp θ(ζp ∈ Γl({p}m, ζf)) δ

(
t− Tl({p̂, f̂}m+1)

) ∑
f̂l,f̂m+1

〈
{s′}m

∣∣{s}m〉
×
{
θ(fl = g, f̂l = f̂a, f̂m+1 = −f̂a)

× TR

〈
{c′}m

∣∣{c}m〉 wll({f̂ , p̂}m+1) δ
(
x̂− 2p̂l ·Q

Q2

)
+ θ(fl = f̂a, f̂l = f̂a, f̂m+1 = g)

×
∑
k 6=l

〈
{c′}m

∣∣tk(fk → f̂k + f̂m+1) t†l (fl → f̂l + f̂m+1)
∣∣{c}m〉

×
[
2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)− wll({f̂ , p̂}m+1)

]
×
[
δ

(
x̂− 2p̂l ·Q

Q2

)
− δf̂a,fl

δ

(
x̂− 2pl ·Q

Q2

)]}
.

(3.6)

A further simplification is possible. The interference diagram of Fig. 5, represented by
the function wlk, is important in the development of the exclusive final state in a parton
shower. However, wlk is singular only in the limit of a soft gluon emission. It is not singular
for emission with p̂m+1 almost parallel to pl. In the limit of a soft gluon emission, the soft
gluon does not take any momentum from parton l. Thus p̂l ≈ pl, so that the two terms on
the last line of Eq. (3.6) cancel. Thus, for our inclusive observable, in the strong ordering
limit the term in Eq. (3.6) proportional to wlk can be dropped. We recognize that this step
touches on the main point of Ref. [4], so we will return to provide a more detailed analysis
of it in Sec. 4.

Once we have dropped wlk, the sum over k in Eq. (3.6) is trivial. As in Ref. [8] and
in Eq. (8.25) of Ref. [1], we use the fact that the complete quantum state is a color singlet
to write ∑

k 6=l

〈
{c′}m

∣∣tk(fk → f̂k + f̂m+1) t†l (fl → f̂l + f̂m+1)
∣∣{c}m〉

= −
〈
{c′}m

∣∣tl(fk → f̂k + f̂m+1) t†l (fl → f̂l + f̂m+1)
∣∣{c}m〉

= − CF

〈
{c′}m

∣∣{c}m〉 .

(3.7)

This simplification holds when we treat color exactly. It also holds when we use the leading
color approximation, as explained in Ref. [13].

It will also prove useful to define x = 2pl ·Q/Q2 and introduce into Eq. (3.5) a factor

1 =
∫ 1

0
dx δ

(
x− 2pl ·Q

Q2

)
. (3.8)
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With these changes, Eq. (3.6) becomes(
x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m) ≈∑

l

∫
dζp θ(ζp ∈ Γl({p}m, ζf)) δ

(
t− Tl({p̂, f̂}m+1)

) ∑
f̂l,f̂m+1

×
〈
{s′}m

∣∣{s}m〉 〈{c′}m∣∣{c}m〉 ∫ 1

0
dx δ

(
x− 2pl ·Q

Q2

)
×
{
θ(fl = g, f̂l = f̂a, f̂m+1 = −f̂a) TRwll({f̂ , p̂}m+1) δ

(
x̂− p̂l ·Q

pl ·Q
x

)
+ θ(fl = f̂a, f̂l = f̂a, f̂m+1 = g)

× CFwll({f̂ , p̂}m+1)
[
δ

(
x̂− p̂l ·Q

pl ·Q
x

)
− δ(x̂− x)

]}
.

(3.9)

3.3 Kinematics

At this point, we introduce the variables used in Ref. [13] to describe the splitting of parton
l with momentum pl to produce daughter parton l with momentum p̂l and daughter parton
m+ 1 with momentum p̂m+1. We define a virtuality variable

y =
2p̂l · p̂m+1

2pl ·Q
. (3.10)

We use virtuality as the evolution variable, as defined in Eq. (3.4). (In Sec. 3.6, we examine
using transverse momentum as the evolution variable.) Accordingly, the delta function that
sets the shower time of the splitting gives

y =
Q2

2pl ·Q
e−t . (3.11)

We define a lightlike vector nl in the pl-Q plane and use this vector to define a momentum
fraction variable z by

z =
p̂l · nl

p̂l · nl + p̂m+1 · nl
. (3.12)

These are the variables used in Ref. [13] except that we have interchanged z ↔ (1− z) in
order to follow the convention for a q → q + g splitting that z is the momentum fraction
of the daughter quark. There is a third splitting variable, the azimuthal angle of the
transverse part of p̂m+1 in a reference frame in which pl and nl define the 0-3 plane.

We can work out from the definition in Ref. [1] that if we use these splitting variables,∫
dζp θ(ζp ∈ Γl({p}m, ζf)) · · · =

pl ·Q
8π2

∫ ymax

0
dy λ

∫ 1

0
dz

∫
dφ

2π
· · · . (3.13)

Here,4

λ =
√

(1 + y)2 − 4y/x ,

ymax =

(√
1
x
−
√

1
x
− 1

)2

.
(3.14)

4In this paper, we denote 2pl · Q/Q2 = x. In Ref. [1] we wrote 2pl · Q/Q2 = 1/al.
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We take note that x < 1 so that λ < 1. The maximum value of y is the value that makes
λ = 0. Also 1 − λ is proportional to y for y → 0. Using the delta function that sets y in
terms of t, we have∫

dζp θ(ζp ∈ Γl({p}m, ζf)) δ
(
t− Tl({p̂, f̂}m+1)

)
· · ·

=
pl ·Q
8π2

y θ(y < ymax) λ
∫ 1

0
dz

∫
dφ

2π
· · · ,

(3.15)

where now y is given by Eq. (3.11). When we take the limit y → 0, we have θ(y < ymax)→
1. We also have λ→ 1.

The delta function δ(x̂− (p̂l ·Q/pl ·Q)x) relates x̂ = 2p̂l ·Q/Q2 to x = 2pl ·Q/Q2

and the splitting variables y and z according to the momentum mapping in Ref. [1]. The
relation is determined from

p̂l ·Q
pl ·Q

= z +
1
2
y −

(
z − 1

2

)
(1− λ) . (3.16)

We will use the full relation in Sec. 4. In this section, we immediately take the limit of
strongly ordered virtualities, y → 0,

p̂l ·Q
pl ·Q

≈ z . (3.17)

Thus (
x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m) ≈∑

l

pl ·Q
8π2

y

∫ 1

0
dz

∫
dφ

2π

∑
f̂l,f̂m+1

×
〈
{s′}m

∣∣{s}m〉 〈{c′}m∣∣{c}m〉 ∫ 1

0
dx δ

(
x− 2pl ·Q

Q2

)
×
{
θ(fl = g, f̂l = f̂a, f̂m+1 = −f̂a) TRwll({f̂ , p̂}m+1)

1
z
δ

(
x− x̂

z

)
+ θ(fl = f̂a, f̂l = f̂a, f̂m+1 = g)

× CFwll({f̂ , p̂}m+1)
[

1
z
δ

(
x− x̂

z

)
− δ(x− x̂)

]}
.

(3.18)

3.4 Splitting functions

We can take the functions wll from Ref. [13]. They have the form of a simple prefactor
times a function of the splitting variables y and z and the mother parton energy fraction
x,

wll({f̂ , p̂}m+1) =
4παs

pl ·Q y
×

{
Fq/g(y, z, x), (f̂l, f̂m+1) ∈ {(u, ū), (d, d̄), . . . }
Fq/q(y, z, x), (f̂l, f̂m+1) ∈ {(u, g), (d, g), . . . }

. (3.19)
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The functions F are, from Eqs. (A.1) and (2.23) of Ref. [13],

Fq/g(y, z, x) = z2 + (1− z)2 ,

Fq/q(y, z, x) =
(1 + λ+ y)2

4λ

[
2 z̃

1− z̃
− 2y
x(1− z̃)2(1 + y)2

]
+

1
2

(1− z)[1 + y + λ] ,

(3.20)

where5

z̃(y, z, x) =
λz + 1

2(1 + y − λ)
1 + y

. (3.21)

Note that z̃(0, z, x) = z. The function Fq/g is independent of y and x, while Fq/q has a
simple, x independent, limit as y → 0. We have

Fq/g(0, z, x) = z2 + (1− z)2 ,

Fq/q(0, z, x) =
1 + z2

1− z
.

(3.22)

Note that these limiting forms are the DGLAP kernels. In fact, one might say that the
limit of the splitting functions as y → 0 at fixed z defines the DGLAP kernels for final
state evolution.

Using this result, performing the trivial φ-integration, and taking the y → 0 limit, we
have (

x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m) ≈∑

l

αs

2π

∫ 1

0
dz

∫ 1

0
dx δ

(
x− 2pl ·Q

Q2

)〈
{s′}m

∣∣{s}m〉 〈{c′}m∣∣{c}m〉
×
{
θ(fl = g) TR [z2 + (1− z)2]

1
z
δ

(
x− x̂

z

)
+ θ(fl = f̂a) CF

1 + z2

1− z

[
1
z
δ

(
x− x̂

z

)
− δ(x− x̂)

]}
.

(3.23)

3.5 The DGLAP equation

We insert Eq. (3.23) into Eq. (3.2) and use the definition (2.2) of
(
x, f

∣∣ρ(t)
)

on the right
hand side. We obtain

d

dt

(
x̂, f̂a

∣∣ρ(t)
)
≈ αs

2π

∫ 1

0
dz

{
TR [z2 + (1− z)2]

1
z

(
x̂/z, g

∣∣ρ(t)
)

+ CF
1 + z2

1− z

[1
z

(
x̂/z, f̂a

∣∣ρ(t)
)
−
(
x̂, f̂a

∣∣ρ(t)
)]}

.

(3.24)

This is typically written

d

dt

(
x̂, f̂a

∣∣ρ(t)
)
≈ αs

2π

∫ 1

x̂

dz

z

{
TR [z2 + (1− z)2]

(
x̂/z, g

∣∣ρ(t)
)

+ CF

[
1 + z2

1− z

]
+

(
x̂/z, f̂a

∣∣ρ(t)
)}

.

(3.25)

5The variable z̃ is called x in Ref. [13], Eq. (2.21). However, in this paper, we use x for a different

purpose.
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This is the DGLAP equation for
(
x̂, f̂a

∣∣ρ(t)
)

where f̂a is a quark flavor. It has one term for
g → q + q̄ splitting and one for q → q + g splitting. The “+” prescription corresponds to
the subtraction Eq. (3.24). It comes from the virtual splitting operator V(t) in Eq. (3.1).

3.6 Transverse momentum ordered shower

We have chosen virtuality as the shower ordering variable. One could use transverse mo-
mentum instead,

Tl({p̂, f̂}m+1) = log
(

Q2

2z(1− z)p̂l · p̂m+1

)
. (3.26)

In this case, it is

yT = z(1− z)y =
Q2

2pl ·Q
e−t (3.27)

that is fixed by the delta function δ(t − Tl). The strong ordering limit is then yT → 0 at
fixed z. In this case, one should include a factor

θ(z(1− z) > yT /ymax) (3.28)

that limits the z integral in both the real and virtual splitting terms. However, this factor
disappears in the limit yT → 0, leaving us with the same result (3.24).

4. Soft gluon emission

In this section, we examine the effects of soft, wide angle gluon emission. In Sec. 3, we
argued that soft gluon emission could be ignored. Thus we dropped the interference term
containing wlk and, for the direct term wll for a q → q+g splitting, we took the limit y → 0
with fixed z. The argument was that for a soft splitting, the observed quark feels no recoil,
so that the virtual splitting term cancels the real splitting term. However, Ref. [4] argues
that a dipole shower could fail to reproduce the DGLAP equation when the quark recoil
is accounted for. Accordingly, we examine the contribution from soft, wide angle gluon
emission when we account for the recoil using the momentum mapping from Ref. [1]. We
write the q → q+g contribution exactly, then examine the contribution in the soft emission
limit. We find that this contribution vanishes in the limit of strongly ordered virtualities,
y → 0.

We begin with Eq. (3.6) for the matrix element of HI(t) − V(t). There is a term for
a g → q + q̄ splitting and a term for a q → q + g splitting. We examine the q → q + g
term. We use the definitions for dζp and the evolution variable t, Eq. (3.15), as before.
We introduce an integral of a delta function that defines the variable x as before. We also
introduce an integral of a delta function that defines the angle ϑ between pl and pk. This
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gives (
x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m)q→q+g

=∑
l

∑
k 6=l

pl ·Q
8π2

y θ(y < ymax) λ
∫ 1

0
dz

∫
dφ

2π

∑
f̂l,f̂m+1

〈
{s′}m

∣∣{s}m〉
×
∫ 1

0
dx δ

(
x− 2pl ·Q

Q2

) ∫ 1

−1
d cosϑ δ

(
cosϑ− 1 +

pl · pkQ2

pl ·Q pk ·Q

)
× θ(fl = f̂a, f̂l = f̂a, f̂m+1 = g)

×
〈
{c′}m

∣∣tk(fk → f̂k + f̂m+1) t†l (fl → f̂l + f̂m+1)
∣∣{c}m〉

×
[
2Alk({p̂}m+1)wlk({f̂ , p̂}m+1)− wll({f̂ , p̂}m+1)

]
×
[
δ

(
x̂− p̂l ·Q

pl ·Q
x

)
− δ(x̂− x)

]
.

(4.1)

4.1 The splitting functions

For wll, we use the exact expression given by Eqs. (3.19) and (3.20). For wlk, we define

2Alkwlk =
4παs

pl ·Q y
Fint(y, z, φ;x, ϑ) . (4.2)

The q → q + g interference function Fint includes the function Alk that describes how we
divide the l-k interference term between a contribution that we associate with parton l and
another that we associate with parton k. There is some freedom in choosing Alk. For our
purposes here, we choose the version specified in Eqs. (7.2) and (7.12) of Ref. [14]. (Any
of the other choices based on Eq. (7.2) from Ref. [14] would do as well.) The function Fint

is simple when written in terms of the momenta p̂l, p̂m+1, p̂k and Q. When expressed as a
function of x, ϑ and the splitting variables y, z, φ according to the momentum mapping of
Ref. [1], Fint is a little complicated. We find

Fint(y, z, φ;x, ϑ) =

2− 2[g1(y, 1− z, x, ϑ) + g1(y, z, x, ϑ)] g3(y, z) + 2y g2(y, x, ϑ)
g1(y, z, x, ϑ)g3(y, z) + y g2(y, x, ϑ)− 2 tan(ϑ/2)

√
xz(1− z)y g3(y, z) cosφ

+
2z̃

1− z̃
− 2y
x(1− z̃)2(1 + y)2

,

(4.3)

where z̃ was defined in Eq. (3.21), and where

g1(y, z, x, ϑ) =
z x

2(1− x)
[1− y − λ] +

1
2
x tan2(ϑ/2) (1− z) [1− y + λ] ,

g2(y, x, ϑ) =
2− (1 + y)x− λx

2(1− x)
+

1
2

tan2(ϑ/2) [2− (1 + y)x+ λx] ,

g3(y, z) =
z

2
[1 + y + λ] +

1− z
2

[1 + y − λ] .

(4.4)

A simple calculation from Eqs. (4.3) and (4.4) shows that Fint is simple in the collinear
limit, y → 0 with z fixed:

Fint(0, z, φ;x, ϑ) = 0 . (4.5)
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This, of course, was obvious from the beginning. In a physical gauge like the Coulomb
gauge used for our splitting functions, the interference graphs do not give a leading collinear
singularity. Because of Eq. (4.5), we neglected the wlk term in the previous section. In this
section, we do not simply take the limit y → 0 limit with z fixed.

4.2 Kinematics

The delta function δ(x̂− (p̂l ·Q/pl ·Q)x) in Eq. (4.1) relates x̂ = 2p̂l ·Q/Q2 to x =
2pl ·Q/Q2 and the splitting variables y and z according to Eq. (3.16). We can solve
this relation for x, yielding

x = X(y, z, x̂) . (4.6)

The exact relation is rather complicated,

X(y, z, x̂) =
1

2z(1− z)(1 + y)2

{
(1 + y)x̂− y(2z − 1)2

− (2z − 1)
√[

(1 + y)x̂− y
]2 − 4y2z(1− z)

}
.

(4.7)

As y → 0, X(y, z, x̂) approaches a very simple result X(0, z, x̂) = x̂/z. We rewrite the
delta function as

δ(x̂− (p̂l ·Q/pl ·Q)x) =
∂X(y, z, x̂)

∂x̂
δ(x−X(y, z, x̂)) . (4.8)

4.3 Evolution equation

Using Eq. (4.8) and the substitutions for wlk and wll, Eq. (4.1) becomes

(
x̂, f̂a

∣∣HI(t)− V(t)
∣∣{p, f, s′, c′, s, c}m)q→q+g

=∑
l

∑
k 6=l

αs

2π
θ(y < ymax) λ

∫ 1

0
dz

∫
dφ

2π
〈
{s′}m

∣∣{s}m〉
×
∫ 1

0
dx δ

(
x− 2pl ·Q

Q2

) ∫ 1

−1
d cosϑ δ

(
cosϑ− 1 +

pl · pkQ2

pl ·Q pk ·Q

)
× θ(fl = f̂a)

〈
{c′}m

∣∣tk(fk → fk + g) t†l (fl → fl + g)
∣∣{c}m〉

×
[
Fint(y, z, φ;x, ϑ)− Fq/q(y, z, x)

]
×
[
∂X(y, z, x̂)

∂x̂
δ(x−X(y, z, x̂))− δ(x̂− x)

]
.

(4.9)

We insert this into Eq. (3.2), giving the q → q + g contribution to the evolution of the
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energy distribution function. This contribution then takes the form[
d

dt

(
x̂, f̂a

∣∣ρ(t)
)]
q→q+g

=
∫ 1

0
dz

∫
dφ

2π

∫ 1

−1
d cosϑ θ(y < ymax)

× αs

2π
λ

[
Fint(y, z, φ;x, ϑ)− Fq/q(y, z, x)

]
×
[
∂X(y, z, x̂)

∂x̂

(
X(y, z, x̂), f̂a, ϑ

∣∣ρ(t)
)

−
(
x̂, f̂a, ϑ

∣∣ρ(t)
)]

,

(4.10)

where
(
x, fa, ϑ

∣∣ρ(t)
)

is a two parton correlation function,(
x, fa, ϑ

∣∣ρ(t)
)

=
∑
m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

]
×
∑
l

∑
k 6=l

δ

(
x− 2pl ·Q

Q2

)
δ

(
cosϑ− 1 +

Q2 pl · pk
Q · pl Q · pk

)
× θ(fl = fa)

〈
{s′}m

∣∣{s}m〉
×
〈
{c′}m

∣∣tk(fk → fk + g) t†l (fl → fl + g)
∣∣{c}m〉

×
(
{p, f, s′, c′, s, c}m

∣∣ρ(t)
)
.

(4.11)

Thus we find an evolution equation similar to Eq. (3.24) except that the evolution of the
one parton distribution is expressed in terms of a more complicated function, a two parton
distribution.

4.4 The soft emission limit

If we were to follow the analysis of the Sec. 3, we would take the limit y → 0 at fixed
z in the right hand side of Eq. (4.10). However, we should be a little careful about this.
The kernel is singular not only for y → 0 at fixed z but also for y → 0 with (1 − z) = ξy

with ξ fixed. This is the limit of soft, wide angle gluon emission when expressed using the
variables y, z. Define the gluon emission angle ϑm+1 by

1− cosϑm+1 =
p̂m+1 · pl Q2

p̂m+1 ·Q pl ·Q
, (4.12)

Then ξ is related to ϑm+1 by

ξ ≡ 1− z
y

=
[

1
2

[
1 + y2 + (1 + y)λ− 2y

x

]
tan2(ϑm+1/2) +

2y
1 + cosϑm+1

]−1

. (4.13)

The range of ξ is 0 < ξ < 1/y, with ξ → 0 when ϑm+1 → π and ξ → 1/y when ϑm+1 → 0.
For y → 0 at fixed ϑm+1,

ξ ∼ 1
tan2(ϑm+1/2)

. (4.14)

Our purpose in this section is to investigate whether the soft emission integration region,
y → 0 at finite ξ, contributes to the evolution at small y.
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The integration over the soft region can be expressed by using ξ as the integration
variable, with

dz = y dξ . (4.15)

Taking y → 0 at finite ξ, the factor y from the integration measure times the kernel becomes

y λ

[
Fint(y, z, φ;x, ϑ)− Fq/q(y, z, x)

]
∼ − 2x tan2(ϑ/2)

2 + (1 + xξ) tan2(ϑ/2)− 2 tan(ϑ/2)
√
xξ cosφ

.

(4.16)

Thus we would have a finite contribution to the integration from the soft emission region
in the limit y → 0 if we were to multiply the splitting function by anything that is finite
in the soft emission limit.

However, for our inclusive observable, we need to multiply by the function[
∂X(y, z, x̂)

∂x̂

(
X(y, z, x̂), f̂a, ϑ

∣∣ρ(t)
)
−
(
x̂, f̂a, ϑ

∣∣ρ(t)
)]

. (4.17)

Using the expansion

X(y, z, x̂) ∼ x̂+ y (1− x̂+ ξx̂) +O(y2) , (4.18)

we see that the factor (4.17) becomes in the soft limit

y
∂

∂x̂

[
(1− x̂+ ξx̂)

(
x̂, f̂a, ϑ

∣∣ρ(t)
)]

+O(y2) . (4.19)

Thus the integrand has a net factor y in the soft limit, so that the soft region does not
contribute to the leading shower evolution of

(
x̂, f̂a

∣∣ρ(t)
)
. (We have investigated the q →

q + g contribution here, but the g→ q + q̄ contribution vanishes in the soft limit.)
We note that the fact that the soft region does not contribute follows from the inclusive

nature of our observable. With other observables, there would be a leading soft gluon
contribution.

We note also that there is an angular ordering cancellation contained the soft limit
splitting kernel, Eq. (4.16). If we did not have the factor (4.17), the important integration
region for ξ when tan2(ϑ/2) � 1 would be ξ tan2(ϑ/2) & 1. That is, tan2(ϑm+1/2) .
tan2(ϑ/2). However, this effective angular ordering limit on the ξ integration does not play
a role in the present analysis.

This analysis has covered a virtuality ordered shower. For a transverse momentum
ordered shower, the variable yT = z(1− z)y that was introduced in Sec. 3.6 is fixed by the
evolution time. The wide-angle soft limit is yT → 0 at fixed ξ′ where (1 − z) =

√
ξ′yT .

Then the analysis just given for virtuality ordering applies also to transverse momentum
ordering with

√
yT playing the role of y.
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5. Catani-Seymour shower scheme

We now examine what happens with a Catani-Seymour dipole shower as defined in Ref. [9].
A parton with momentum pl splits to daughter partons with momenta p̂l and p̂m+1. There
is a helper parton with momentum pk that absorbs some momentum from the splitting, so
that after the splitting its momentum is p̂k. The splitting is described by splitting variables
y, z, and φ. In contrast to the momentum mapping of Ref. [1], in the Catani-Seymour
scheme, the momenta of all other partons are unchanged by the splitting, p̂i = pi for
i /∈ {l, k}. The momenta p̂l, p̂m+1, and p̂k are given in terms of pl, and pk and the splitting
variables by

p̂l = z pl + y(1− z) pk + [2yz(1− z) pl · pk]1/2κ⊥ ,

p̂m+1 = (1− z) pl + yz pk − [2yz(1− z) pl · pk]1/2κ⊥ ,

p̂k = (1− y) pk .

(5.1)

Here κ⊥ is a spacelike unit vector orthogonal to pl and pk that has azimuthal angle φ. Note
that y is proportional to the virtuality of the splitting

y =
p̂l · p̂m+1

pl · pk
. (5.2)

For the observables that we need to analyze, we need some additional variables involv-
ing Q,

x̂ =
2p̂l ·Q
Q2

,

x =
2pl ·Q
Q2

,

1− cosϑ =
pl · pkQ2

pl ·Q pk ·Q
,

r =
pk ·Q
pl ·Q

.

(5.3)

Using the first equation in Eq. (5.1), we find how x̂ is determined by x, r, ϑ and the
splitting variables,

x̂ = Z(z, φ, y; r, ϑ)x , (5.4)

where
Z(z, φ, y; r, ϑ) = z + y(1− z)r −

√
yz(1− z)r sin(ϑ/2) cosφ . (5.5)

Note that Z(z, φ, y, r, ϑ)→ z for y → 0.
In defining the shower evolution, we take a spin average everywhere, so that spin

indices disappear. In addition, we use the leading color approximation. Then we have just
one color label for the m parton state, {c}m. The evolution equation is

d

dt

(
x̂, f̂a

∣∣ρ(t)
)

=
∑
m

1
m!

∫ [
d{p, f, c}m

]
×
(
x̂, f̂a

∣∣HCS
I (t)− VCS(t)

∣∣{p, f, c}m)
×
(
{p, f, c}m

∣∣ρ(t)
)
,

(5.6)
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where we integrate over a complete set of parton states
∣∣{p, f, c}m) just before the splitting

represented by the real and virtual splitting operators HCS
I (t) and VCS(t).

The matrix element of the splitting operator for a Catani-Seymour shower has the
form (

x̂, f̂a

∣∣HCS
I (t)− VCS(t)

∣∣{p, f, c}m) =∑
l

∑
k 6=l

∑
ζf∈Φl(fl)

2pl · pk
16π2

∫ 1

0
dy (1− y)

∫ 1

0
dz

∫ 2π

0

dφ

2π

× δ
(
t− Tl({p̂, f̂}m+1)

)
×
[m+1∑
i=1

δf̂a,f̂i
δ

(
x̂− 2p̂i ·Q

Q2

)
−

m∑
i=1

δf̂a,fi
δ

(
x̂− 2pi ·Q

Q2

)]
× χlk({c}m) wCS

lk ({f̂ , p̂}m+1) .

(5.7)

For each splitting of a parton l we choose a partner parton k. The momentum mapping
depends on both l and k, so the sum over k comes to the outside. There is a sum over flavor
choices ζf for the splitting. If fl is a quark or antiquark flavor, there is only one choice,
fl → fl + g. When fl = g then the gluon can split to two gluons or to any quark-antiquark
pair. There is an integration over the splitting variables y, z, φ with the jacobian that
follows from the Catani-Seymour kinematics. There is a delta function that defines the
shower time t. We will make the simplest choice of a virtuality ordered shower,

Tl({p̂, f̂}m+1) = log
(

Q2

2p̂l · p̂m+1

)
= log

(
Q2

y 2pl · pk

)
. (5.8)

Thus the y-integration can be eliminated, with

y =
Q2

0

2pl · pk
e−t . (5.9)

In the next factor in Eq. (5.7), the first term is from the splitting operator, HCS
I (t), while

the second term is from the virtual splitting operator, VCS(t). Both operators contain the
same splitting function, represented in the last line.

In all cases except a g→ q + q̄ splitting, the splitting function includes the possibility
of emitting a gluon with label m+1 from a parton with label i and emitting the gluon from
a parton with label j, treated coherently. The total emission probability is divided into a
term associated with parton i, for which we use l = i and k = j and another contribution
associated with parton j for which we use l = j and k = i. The splitting function is wCS

lk .
For q → q + g,

wCS
lk =

4παs

y pl · pk
CF

[
2

1− z + zy
− (1 + z)

]
. (5.10)

Finally, χlk({c}m) = 1 if partons l and k are color connected in color state {c}m. Otherwise
χlk({c}m) = 0.
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We now specialize to the case that f̂a is a quark flavor. The case of a g→ q+ q̄ splitting
is not particularly instructive, so we consider only a q → q + g splitting. Then[

d

dt

(
x̂, f̂a

∣∣ρ(t)
)]
q→q+g

=
∫ 1

0
dz

∫ 2π

0

dφ

2π
αs

2π
CF (1− y)

[
2

1− z + zy
− (1 + z)

]
×
∫ 1

−1
d cosϑ

∫ ∞
0
dr

×

[(
x̂/Z(z, φ, y; r, ϑ), f̂a, r, ϑ

∣∣ρ(t)
)

Z(z, φ, y; r, ϑ)
−
(
x̂, f̂a, r, ϑ

∣∣ρ(t)
)]

,

(5.11)

where(
x, f̂a, r, ϑ

∣∣ρ(t)
)

=
∑
m

1
m!

∫ [
d{p, f, c}m

]∑
l

∑
k 6=l

δf̂a,fl
χlk({c}m)

× δ
(
x− 2pl ·Q

Q2

)
δ

(
cosϑ− 1 +

Q2 pl · pk
Q · pl Q · pk

)
δ

(
r − pk ·Q

pl ·Q

)
×
(
{p, f, c}m

∣∣ρ(t)
)
.

(5.12)

Here
(
x, f̂a, r, ϑ

∣∣ρ(t)
)

is a two parton correlation function. One parton, with flavor f̂a,
carries energy fraction x. Another parton, color connected to the first, is separated from
it by an angle ϑ and carries energy fraction r x.

We can now make the approximation of strongly ordered virtualities in the shower.
For this, we simply take the y → 0 limit. In this limit, the splitting function simplifies and
Z(z, φ, y; r, ϑ) ∼ z. Then

d

dt

(
x̂, f̂a

∣∣ρ(t)
)
≈
∫ 1

0
dz

∫ 2π

0

dφ

2π
αs

2π
CF

[
2

1− z
− (1 + z)

] ∫ 1

−1
d cosϑ

∫ ∞
0
dr

×
[

1
z

(
x̂/z, f̂a, r, ϑ

∣∣ρ(t)
)
−
(
x̂, f̂a, r, ϑ

∣∣ρ(t)
)]

.

(5.13)

Now nothing depends on φ, so we can trivially perform the φ-integration. Furthermore,
the integral over cosϑ and r of the two parton correlation function is the one parton
distribution function,∫ 1

−1
d cosϑ

∫ ∞
0
dr
(
x, f̂a, r, ϑ

∣∣ρ(t)
)

=
(
x, f̂a

∣∣ρ(t)
)
. (5.14)

Thus we obtain, within the strongly ordered virtualities approximation, the q → q + g
contribution to the DGLAP equation for the energy distribution function of a quark,[

d

dt

(
x̂, f̂a

∣∣ρ(t)
)]
q→q+g

≈ αs

2π

∫ 1

0
dz CF

1 + z2

1− z

[
1
z

(
x̂/z, f̂a

∣∣ρ(t)
)
−
(
x̂, f̂a

∣∣ρ(t)
)]

. (5.15)

This is often written using the notation[
d

dt

(
x̂, f̂a

∣∣ρ(t)
)]
q→q+g

≈ αs

2π

∫ 1

0

dz

z
CF

[
1 + z2

1− z

]
+

(
x̂/z, f̂a

∣∣ρ(t)
)
. (5.16)
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We have presented the derivation for a virtuality ordered shower. The Catani-Seymour
dipole showers of Refs. [6, 7, 10] use transverse momentum as the ordering variable,

Tl({p̂, f̂}m+1) = log
(

Q2

2z(1− z)p̂l · p̂m+1

)
. (5.17)

Then the variable

yT = z(1− z)y =
Q2

2pl · pk
e−t (5.18)

is fixed by the delta function δ(t − Tl). The strong ordering limit is then yT → 0 at fixed
z. In this case, since the definition of y entails that y < 1, one should include a factor

θ(z(1− z) > yT ) (5.19)

in the integrand. However, this factor disappears in the limit yT → 0, leaving us with the
same result (5.15).

In our derivation, we have simply taken the limit y → 0 (or yT → 0) inside of the
integration over z. One could explicitly examine the region in the z-integration that cor-
responds to soft gluon emission, y → 0 with (1− z)/y ≡ ξ finite. To do that, one changes
variables from z to ξ and takes the y → 0 limit inside the integration over ξ. This leads to
what would be a finite contribution to the integral except for the factor[(

x̂/Z(z, φ, y; r, ϑ), f̂a, r, ϑ
∣∣ρ(t)

)
Z(z, φ, y; r, ϑ)

−
(
x̂, f̂a, r, ϑ

∣∣ρ(t)
)]

. (5.20)

For a virtuality ordered shower, this factor provides a factor y that removes the soft emission
contribution in the y → 0 limit at fixed ξ = (1−z)/y. For a transverse momentum ordered
shower, this factor provides a factor

√
yT that removes the soft emission contribution in

the yT → 0 limit at fixed ξ′ ≡ ξ/z = (1− z)2/yT . This justifies taking the limit y → 0 (or
yT → 0) inside of the original integration over z.

6. Conclusions

In a final state parton shower, the distribution of the energy carried by a single parton
evolves as the shower evolves and the energy carried by each mother parton is distributed
among the daughters. We have examined this evolution for a final state parton shower
in electron-positron annihilation. Our principle example is based on the shower evolution
equations of Ref. [1], which include complete color and spin information. These evolution
equations are based on a dipole picture of parton splitting, in which gluon emission from a
parton l can interfere with gluon emission from another parton k. We have also analyzed
evolution in (spin averaged, leading color) shower evolution based on the Catani-Seymour
splitting functions and momentum mapping, as used in the practical shower programs of
Refs. [6, 7] and in the final state showers of Pythia [10, 11].

The use of a parton shower to model the evolution of the final state created from a
short distance scattering process is based on the idea that successive steps in the evolution
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are separated by happening on very different time scales. That is, each successive step
involves much smaller virtuality (or transverse momentum) than the previous step. The
shower evolution is based on factoring the amplitude for a relatively soft splitting from the
previous harder splittings. The actual evolution defined by the evolution equation includes
integrations over the virtuality of each splitting, including an integration region in which
the virtuality is not much smaller than the previous virtuality.6 Whatever is left over
coming from the region in which the virtualities of successive splittings of the same parton
are similar rather than strongly ordered may be considered to contribute to the second
order DGLAP kernel. Thus this contribution is suppressed by a factor of αs.

We have examined the evolution of the distribution of the energy carried by a parton,(
x, fa

∣∣ρ(t)
)
, as defined in Eq. (2.2). The analysis presented in Sec. 3 for the shower evolution

equations of Ref. [1] covered the evolution of the energy distribution for quarks. For the
sake of completeness, we include the evolution of the energy distribution for gluons in
Appendix A. For evolution using the Catani-Seymour splitting functions and momentum
mapping, we have limited the analysis to the evolution of the energy distribution for quarks
from q → q + g splitting. In each case, we emphasized a virtuality ordered shower, but
pointed out that a transverse momentum ordered shower gives the same result for the
evolution of the parton energy distribution. In each case examined, we find that the energy
distribution obeys the standard lowest order DGLAP equation when we approximate the
evolution using the strong ordering limit. This result addresses the concern expressed by
Dokshitzer and Marchesini [4] that evolution in dipole based showers might fail to follow
the DGLAP equation.

The shower evolution time t represents the scale µ2 = 2p̂l · p̂m+1 at which one parton
is resolved into two daughter partons. When µ2 is much smaller than the scale Q2 of the
hard process, the logarithm t = log(Q2/µ2) is large. When

(
x, fa

∣∣ρ(t)
)

is expanded in
powers of αs, the perturbative coefficients contain powers of t. The evolution equation
enables us to sum the large logarithms of Q2/µ2. There are a number of other cases in
which a physical observable presents us with a large ratio of physical scales and in which
it is known how to sum the large logarithms of this ratio. In some of these cases, parton
shower evolution will generate the correct summation. This is what we found here for the
parton energy distribution, which, although not directly observable, maps to the observable
hadron energy distribution. In some other cases, it is pretty straightforward to see that a
parton shower generates the correct summation, as for the dependence of jet cross sections
on a jet resolution parameter based on kT when the jets are generated with a kT ordered
parton shower. In other cases, parton shower evolution will generate a summation of large
logarithms, but it may be the wrong summation. For instance, we expect that standard
parton showers do not generate “BFKL” logarithms that describe the physics of large
rapidity differences, as in [15].

For a given choice of shower evolution it is of significant interest to know what sum-
mations of large logarithms the shower evolution equation correctly produces. That is,

6For this reason, one attempts to define the splitting functions and momentum mapping in such a way

that the parton shower model does something sensible when the ratio of successive splitting virtualities is

not small.
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one would like to validate particular shower evolution schemes against known results for
summations of large logarithms. Consider, for example the energy-energy correlation func-
tion in electron-positron annihilation at nearly back-to-back angles θ. One knows the
summation of large logarithms log(1/θ2) in full QCD. Then one needs to derive the cor-
responding summation in the shower model, deriving the appropriate evolution equation
from the shower evolution equation. A second example in electron-positron annihilation is
the summation of logarithms of 1−x in the energy distribution of partons or hadrons. For
hadron-hadron collisions, one should investigate, for example, the transverse momentum
distribution of Drell-Yan lepton pairs.

We note that the existing literature goes a long way toward validating parton shower
evolution against known large logarithm summations in the case of parton showers based
on using the angle between daughter partons in a splitting as the shower evolution variable.
Indeed, some of the derivations of large logarithm summations in QCD make use of on an
angle-ordered parton cascade picture [16, 17, 18, 19, 20]. Correspondingly, the paper [21]
argues that a parton shower ordered in splitting angles gets the leading terms in certain
large logarithm summations correctly.

To our knowledge, less is known analytically about how well virtuality or kT ordered
showers reproduce known large logarithm summations. We do note that Ref. [22] looks at
large logarithm summations for both angle ordered and for virtuality ordered or kT ordered
showers with respect to “non-global” observables.

To build from the existing results, one would need to check carefully, for a given shower
scheme, the accuracy (in powers of αs and the logarithms) with which the full QCD result
for a given kind of summation is reproduced by the shower. As emphasized by Dokshitzer
and Marchesini [4], one would need to pay close attention to the treatment of momentum
conservation in the shower.

We do not attempt a general analysis here. What we offer in this paper applies only
to the circumscribed problem suggested in Ref. [4]. For further investigations along these
lines, we believe that it is useful to have shower evolution expressed as a definite integral
equation, as in Ref. [1]. We hope that the present paper provides some hints about how a
program of validating parton shower evolution against known large logarithm summations
could be pursued.
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A. Energy distribution of gluons

We have analyzed the evolution of the energy distribution
(
x, fa

∣∣ρ(t)
)

in the case that fa is
a quark flavor. The case of an antiquark flavor is so similar that it hardly needs a separate
treatment. However, there are some differences in the case that fa = g. We provide a brief
analysis of this case in this appendix.

There are three sorts of contributions. The first is a q → q+g or q̄ → q̄+g splitting, as
depicted in Fig. 6, in which it is the energy of the daughter gluon, instead of the daughter
quark or antiquark, that is measured. The second is a g → g + g splitting, as in Fig. 4
but with the q + q̄ replaced by g + g. Either of the two daughter gluons can be the one
whose energy is measured. There is a virtual splitting counter term for this contribution.
There are g → g + g interference graphs, but these are singular only in the soft limit and
do not give leading contributions for the evolution of the parton energy distributions, as
we have seen in some detail for quark splitting. (Evidently, if it is the soft gluon itself that
is measured then there is no contribution to the evolution of

(
x, fa

∣∣ρ(t)
)

at any finite x
in the limit in which the soft gluon energy vanishes.) The final contribution is the virtual
splitting counter term for a g→ q + q̄ splitting, as depicted in Fig. 4.

For the gluon case, Eq. (3.18) becomes(
x̂, g
∣∣HI(t)− V(t)

∣∣{p, f, s′, c′, s, c}m) ≈∑
l

pl ·Q
8π2

y

∫ 1

0
dz

∫
dφ

2π

∫ 1

0
dx δ

(
x− 2pl ·Q

Q2

) ∑
f̂l,f̂m+1

×
〈
{s′}m

∣∣{s}m〉 〈{c′}m∣∣{c}m〉
×
{
θ(fl 6= g, f̂l = fl, f̂m+1 = g) CFwll({f̂ , p̂}m+1)

1
1− z

δ

(
x− x̂

1− z

)
+ θ(fl = g, f̂l = g, f̂m+1 = g) CAwll({f̂ , p̂}m+1)

×
[

1
1− z

δ

(
x− x̂

1− z

)
+

1
z
δ

(
x− x̂

z

)
− δ(x− x̂)

]
− θ(fl = g, f̂l ∈ Q, f̂m+1 = −f̂l) TRwll({f̂ , p̂}m+1) δ(x− x̂)

}
.

(A.1)

There are five terms in three groups. In each case, we have adopted the notation that
parton m+ 1 carries momentum fraction 1− z. In the first term, the mother parton with
flavor fl is a quark or antiquark that splits into a parton of the same flavor with index l and
a gluon with index m+ 1. We measure the energy of the daughter gluon, so x̂ = (1− z)x.
In the next three terms, the mother parton l is a gluon and daughter partons l and m+ 1
are both gluons. The definitions of Ref. [1] explicitly break the symmetry between gluons
l and m+ 1 in such a way that there is a singularity in wll corresponding to gluon m+ 1
being soft, but no singularity corresponding to gluon l being soft. In the second term, we
measure the energy of the daughter with label m+1, so x̂ = (1−z)x. In the third term, we
measure the energy of the daughter with label l, so x̂ = zx. The fourth term is the virtual
splitting counter term, with x̂ = x. The fifth term is the virtual splitting counter term for
a g→ q + q̄ splitting. Here f̂l ∈ Q means that f̂l is a quark flavor, Q = {u,d, s, . . . }.
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All that we need is the splitting functions wll in the y → 0 limit. For fl 6= g we have

wll ∼
4παs

pl ·Q y

1 + z2

1− z
, (A.2)

as in Eqs. (3.19) and (3.22). For fl = g, f̂l = g, we have, from Eqs. (2.46) and (2.52) of
Ref. [13]7,

wll ∼
4παs

pl ·Q y

[
2z

1− z
+ z(1− z)

]
. (A.3)

For fl = g, f̂l ∈ Q, we have

wll ∼
4παs

pl ·Q y
[z2 + (1− z)2] , (A.4)

as in Eqs. (3.19) and (3.22). We make these substitutions and perform the trivial φ integra-
tion. In the first two of the five terms, we use the freedom to change integration variables
to interchange the roles of z and 1− z. This gives(

x̂, g
∣∣HI(t)− V(t)

∣∣{p, f, s′, c′, s, c}m) ≈∑
l

∫ 1

0
dz

∫ 1

0
dx δ

(
x− 2pl ·Q

Q2

)〈
{s′}m

∣∣{s}m〉 〈{c′}m∣∣{c}m〉
×
{
θ(fl 6= g)

αs

2π
CF

1 + (1− z)2

z

1
z
δ

(
x− x̂

z

)
+ θ(fl = g)

αs

2π
CA

[
2(1− z)

z
+ z(1− z)

]
1
z
δ

(
x− x̂

z

)
+ θ(fl = g)

αs

2π
CA

[
2z

1− z
+ z(1− z)

] [
1
z
δ

(
x− x̂

z

)
− δ(x− x̂)

]
− θ(fl = g)

αs

2π
TR nf [z2 + (1− z)2] δ(x− x̂)

}
.

(A.5)

In the last line, nf is the number of quark flavors, that is, the number of elements of Q.
We can now substitute this result into Eq. (3.2) for the evolution of

(
x̂, g
∣∣ρ(t)

)
. On

the right hand side of the evolution equation, we use the definition (2.2) of
(
x̂, f̂a

∣∣ρ(t)
)
.

This gives

d

dt

(
x̂, g
∣∣ρ(t)

)
=
αs

2π

∫ 1

0
dz

{∑
f ′ 6=g

CF
1 + (1− z)2

z

1
z

(
x̂/z, f ′

∣∣ρ(t)
)

+ CA

[
2(1− z)

z
+ z(1− z)

]
1
z

(
x̂/z, g

∣∣ρ(t)
)

+ CA

[
2z

1− z
+ z(1− z)

] [
1
z

(
x̂/z, g

∣∣ρ(t)
)
−
(
x̂, g
∣∣ρ(t)

)]
− TR nf [z2 + (1− z)2]

(
x̂, g
∣∣ρ(t)

)}
.

(A.6)

7We interchange z and (1 − z) to match the conventions of this paper.
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This is the DGLAP equation. It is usually written as

d

dt

(
x̂, g
∣∣ρ(t)

)
=
αs

2π

∫ 1

x̂

dz

z

{∑
f ′ 6=g

CF
1 + (1− z)2

z

(
x̂/z, f ′

∣∣ρ(t)
)

+
[
2CA

(
z

[1− z]+
+

(1− z)
z

+ z(1− z)
)

+
11CA − 4TR nf

6
δ(1− z)

](
x̂/z, g

∣∣ρ(t)
)}

.

(A.7)

References

[1] Z. Nagy and D. E. Soper, Parton showers with quantum interference, JHEP 0709 (2007) 114
[arXiv:0706.0017 [hep-ph]].

[2] V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J.
Nucl. Phys. 15, 438 (1972) [Yad. Fiz. 15, 781 (1972)]; G. Altarelli and G. Parisi, Asymptotic
freedom in parton language, Nucl. Phys. B 126, 298 (1977); Y. L. Dokshitzer, Calculation of
the structure functions for deep inelastic scattering and e+e− annihilation by perturbation
theory in quantum chromodynamics, Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz.
73, 1216 (1977)].

[3] J. C. Collins and D. E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194
(1982) 445.

[4] Yu. L. Dokshitzer and G. Marchesini, Monte Carlo and large angle gluon radiation, JHEP
0903, 117 (2009) [arXiv:0809.1749 [hep-ph]].
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