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The Fate of Unstable Gauge Flux Compati�ationsC.P. Burgessa;b1, S.L. Parameswaran2 and I. Zavalad3a Department of Physis and Astronomy, MMaster University,1280 Main Street West, Hamilton ON, L8S 4M1, Canada.b Perimeter Institute for Theoretial Physis,31 Caroline Street North, Waterloo ON, N2L 2Y, Canada. II. Institut f�ur Theoretishe Physik der Universit�at Hamburg,DESY Theory Group, Notkestrasse 85, Bldg. 2a, D-22603 Hamburg, Germany.d Bethe Center for Theoretial Physis andPhysikalishes Institut der Universit�at Bonn,Nu�allee 12, D-53115 Bonn, Germany.
AbstratFluxes are widely used to stabilise extra dimensions, but the supporting monopole-like on�gurations are often unstable, partiularly if they arise as gauge ux within anon-abelian gauge setor. We here seek the endpoint geometries to whih this insta-bility leads, foussing on the simplest onrete examples: sphere-monopole ompat-i�ations in six dimensions. Without gravity most monopoles in non-abelian gaugegroups are unstable, deaying into the unique stable monopole in the same topologiallass. We show that the same is true in Einstein-YM systems, with the new twistthat the deay leads to a shrinkage in the size of the extra dimensions and urvesthe non-ompat diretions: in D dimensions a MinkD�2 � S2 geometry supportedby an unstable monopole relaxes to AdSD�2 � S2, with the endpoint sphere smallerthan the initial one. For supergravity the situation is more ompliated beause thedilaton obstruts suh a simple evolution. The endpoint instead aquires a dilatongradient, thereby breaking some of the spaetime symmetries. For 6D supergravity weargue that it is the 4D symmetries that break, and examine several andidates for theendpoint geometry. By using the trik of dimensional oxidation it is possible to re-ast the supergravity system as a higher-dimensional Einstein-YM monopole, allowingunderstanding of this system to guide us to the orresponding endpoint. The resultis a Kasner-like geometry onformal to Mink4 � S2, with nontrivial onformal fatorand dilaton breaking the maximal 4D symmetry and generating a singularity. Yet theresulting on�guration has a lower potential energy than did the initial one, and isperturbatively stable, making it a sensible andidate endpoint for the evolution.1Email: burgess�perimeterinstitute.a2Email: susha.louise.parameswaran�desy.de3Email: zavala�th.physik.uni-bonn.de 1
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Contents1 Introdution 22 Theory and Bakground 42.1 Bakground solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Linearised instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.3 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 The Instability's Endpoint 123.1 Einstein Yang-Mills Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Endpoint Revisited: Inluding the Dilaton 164.1 4D or 2D: Whih symmetries break? . . . . . . . . . . . . . . . . . . . . . . 174.2 Supersymmetri AdS3 � ~S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.3 Deking the Dilaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.3.1 Oxidation/Redution . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.3.2 The Rugby Ball and its Deay . . . . . . . . . . . . . . . . . . . . . . 214.3.3 The Deay of Warped Con�gurations . . . . . . . . . . . . . . . . . . 255 Conlusions 311 IntrodutionThe ubiquity of moduli in extra-dimensional ompati�ations has been a persistent thorn inthe side of model-builders attempting to bring higher-dimensional theories into ontat withNature as we see it around us. For this reason ux-supported ompati�ations, for whihvarious n-form �eld strengths thread yles and are topologially bloked from relaxingto zero, represent a signi�ant step forward by providing an attrative mehanism thatdynamially stabilises many of these moduli.Better yet, the required n-form �elds are as ommon as dirt in supersymmetri theories,arising as omponents of the gravity supermultiplet in higher dimensions; as Maxwell �eldsrequired by anomaly anellation; or as �elds soured by D-branes or other suh objets.Perhaps the simplest suh onstrution, due to Salam and Sezgin [1℄, is more than 20 yearsold, and threads a Maxwell ux through the extra dimensions in 6D supergravity to stabiliseits ompati�ation to Mink4 � S2.What is less well known is that a great many of suh monopole on�gurations are unstable,partiularly when the ux involved arises as a Dira monopole embedded into a non-Abeliangauge setor. For instane, expliit alulations [2℄ show that sphere-monopole ompati-�ations in anomaly-free supergravity { and their warped braneworld generalizations { aregenerially unstable, even though the monopole in question arries nontrivial topologialharge. The instability is possible beause there are typially more monopole solutions thanthere are distint topologial setors, allowing most to deay to the (often unique) stablerepresentative in any topologial lass | a phenomenon that is well understood within pureYang Mills (YM) theories [3, 4, 5℄. 2



For monopole-supported systems, the oupling to gravity does not remove the instability[6, 7℄, and requires the geometry also to relax as the monopole deays. We examine this re-laxation here, and argue that it is fairly straightforward for the Einstein-YM system (EYM).As in pure YM theory, the unstable monopole evolves towards the unique stable monopolein the same topologial lass [5℄, and as it does so the geometry adjusts simply by shrinkingthe size of the supported extra-dimensional sphere, and by urving the large 4 dimensions.In d+ 2 dimensions, starting from Minkd � S2 the system evolves towards AdSd � S 02, withthe radius of S 02 being smaller than that of S2.The situation is more ompliated in the supergravity ase, beause the dilaton obstrutsthis same simple evolution towards another maximally symmetri solution built with thestable monopole beause for it � 6= 0. As a result �M� 6= 0, instead leading to a breakdownof some of the spaetime symmetries. The orresponding �nal state for higher dimensionalsystems, with gravity and a dilaton bak-reating to the monopole dynamis, is unknown.In this paper we examine several andidate stable endpoint on�gurations for the simplestase of ompati�ations of 6D supergravity down to 4D. We argue that the insensitivityof the low-energy e�etive 4D salar potential to salar gradients in the ompati�ed twodimensions make it likely that it is the 4D spaetime symmetries that break in this ase,rather than those of the ompati�ed two dimensions.To �nd the endpoint solution we employ a trik: a yle of dimensional oxidation andredution that maps the solutions of the supergravity of interest onto those of a dilaton-free pure EYM system in still-higher dimensions. We use this to map the unstable initialmonopole-supported supergravity on�guration onto an unstable monopole-supported statein the still-higher dimensional theory. Assuming this higher-dimensional EYM system relaxesin the simple maximally-symmetri way tells us its endpoint, and this an then be mappedto determine the endpoint EYM-dilaton on�guration that is supported by the �nal stablestate into whih the monopole deays.Proeeding in this way we are led to a stable, nonsupersymmetri endpoint geometrythat (in the absene of brane soures) is onformal to Mink4 � S2. Its nontrivial onformalfator and dilaton break the maximal 4D symmetry, giving rise to a singular geometry forwhih the dilaton and urvature blow up at a point in the 4D spaetime. However, theon�guration nonetheless has a lower potential energy than did the initial one, and is stable,and is a reasonable andidate for the endpoint of the instability.Although the dilaton hanges the dynamis drastially, the presene of branes (speif-ially, onial singularities in the extra-dimensional geometry) and warping do not makemuh di�erene, as we show by also �nding a warped generalization of the endpoint solutionin this ase, for generi brane tensions. The solutions we �nd in this way turn out to bestati analogues of the time-dependent saling solutions to 6D supergravity found in [8℄, withthe �elds varying along a 4D spatial oordinate rather than along time.We also examine a lass of supersymmetri solutions to 6D supergravity as andidateendpoints (that also break the 4D spaetime symmetry) [9℄. Although we annot provethese not to be the ultimate endpoint, we provide arguments as to why this seems less likelythan those we onstrut using the oxidation/redution trik.The rest of our exposition is organised as follows. The next setion, x1, summarisesthe �eld equations of hiral gauged 6D supergravity [13℄, together with their most generalmonopole-supported solutions that have at most onial singularities [14, 15℄. This setion3



onludes by briey summarising the linearised stability analysis of ref. [2℄, and reviewing thetopologial lassi�ation of non-abelian Dira monopoles in YM theories. x3 then desribeshow gravity bakreats to monopole deay in dilaton-free EYM theory, by shrinking the extradimensions and urving the 4 large dimensions. Finally x4 generalises these onsiderationsto the EYM-dilaton system that arises in the 6D supergravity of interest. This setiondesribes the oxidation/redution proedure, and applies it to two examples. The �rstexample onsiders unwarped systems suh as arise in the absene of branes, or with twobranes having equal tension. The seond does the ase of the general warped geometries ofx2, having only onial singularities. We end with some brief onlusions.2 Theory and BakgroundWe start with the bosoni ation4 for hiral 6D gauged supergravity oupled to gauge- andhyper-multiplet matter, with gauge group Ĝ = G � U(1)R [13℄SB = Z d6xp�g � 1�2 R� 14 �M� �M� � 14 e��=2 Tr (FMNFMN) (2.1)� 112 e��HMNPHMNP �G��(�)DM��DM�� � 8�4 e���=2v(�)� ;where fgMN ; H3 = dB2 +A1 ^ F2; �g are the bosoni �elds in the gravity multiplet; FMN arethe gauge-multiplet �eld strengths for G�U(1)R; and �� denote the hyper-multiplet salars.The dependene of the salar potential on �� is suh that its minimum is at �� = 0 wherev(0) = g21, and so we �x heneforth �� = 0. Here g1 is the U(1)R gauge oupling, and weuse g for the G oupling onstants.5Using �� = 0 the remaining equations of motion (EOMs) beome1�2 RMN = 14 �M� �N� + 12 e��=2 Tr (FMPF PN ) + 14 e��HMPQH PQN � 14� gMN �;1� � = 14 e��=2 Tr (FMNFMM) + 16 e��HMNPHMNP � 8g21�4 e���=2;DM �e��=2FMN� = �2 e��HNPQFPQ;DM (e��HMNP ) = 0; (2.2)where AM = AIM TI ; FMN = F IMN TIF IMN = �MAIN � �NAIM + g IJKAJMAKNDM = rM � igAIM TI (2.3)with rM the Lorentz ovariant derivative, and TI are the gauge group generators with stru-ture onstants IJK.4For fermioni terms see [13℄.5In general, if G onsists of several simple fators, g represents a olletion of independent gauge ouplings.4



2.1 Bakground solutionsThe solutions to these equations whose stability is of interest are monopole-supported extradimensions, in whih the extra dimensions are supported against gravitational ollapse byhaving a gauge ux thread the extra dimensions. Our interest in partiular lies in the asewhere this bakground ux lies within the non-Abelian part of the gauge group. A broadlass of these have the form [15℄,ds2 = gMN dxMdxN = � ��� dx�dx� + d�2h(�) + h(�) d�2A� = qaQa2 � 1�2 � 1�2�� d�� � = 2 ln� ; HMNP = 0 (2.4)with h(�) = 2M� � 2 g21��2 � �2 abqaqb8 �3= � 2 g21�2�3 (�2 � �2+)(�2 � �2�) ; (2.5)where Qa are the generators of the Cartan subalgebra of the Lie algebra assoiated with thegroup G, normalized so that Tr(QaQb) = ab = 2Æab, for onstant . The qa identify themagnitude and diretion of the bakground ux in the Lie algebra of G. Finally, �� < � < �+,where �� = �22g21 "M �rM2 � 14 abqaqb# ; (2.6)denote the two positive values where h(��) = 0, at whih point the geometry has a onialsingularity, with de�it angleÆ� = 1� 12 jh0(��)j = 1� 2 g21�2�� ��2+ � �2�� : (2.7)As shown in ref. [16℄, it is the property that these singularities are onial that de�nes thesesolutions, eqs. (2.4) and (2.5), as speial ases of the more general solutions of ref. [14℄.We regard the onial singularities as indiating the presene of soure odimension-twobranes having tensions T�, Sbrane = �T� Z d4yp�� ; (2.8)with yi being oordinates on the brane world-volume, and ij the indued metri there. Thetension is related to the geometry's onial defet angle through T� = 2Æ�=�2, and thisonnetion allows us to trade the integration parameters M and q2 = abqaqb for the twosoure brane tensions. It turns out that only one ombination of these parameters is �xed,and that the tensions of the branes are related to eah other by a onstraint [15℄ (see latersetions for a reap of some of these features).5



These solutions break supersymmetry, apart from the speial rugby-ball ase where thedilaton is a onstant: �m� = 0. Whether supersymmetry breaks even in this ase dependson the boundary onditions at the branes [17℄, whih is governed by more model-dependentdetails of the branes themselves.The amplitude, qa, of the gauge �eld is also onstrained by topology to be quantized, asfollows. In order for the gauge �eld potential to be well-de�ned at ��, we need to over theinternal manifold with two oordinate pathes. Requiring that the two pathes be related by asingle valued gauge transformation on their overlap leads to the following Dira quantizationondition � g eaI qa2 � 1�2+ � 1�2�� = NI ; (2.9)where NI are integer monopole numbers, one for eah gauge generator TI. The quantitieseaI denote the Qa harge of generator TI, de�ned in the adjoint representation by hoosinga basis of generators that satis�es [Qa; TI℄ = eaITI (no sum). This learly vanishes forall generators of the Cartan subalgebra, eab = �eba = 0. For those Ti not in the Cartansubalgebra6 hermitian onjugation reverses the sign of this harge, so we hoose notation sothat T yi = T�i.Rugby Balls and Spheres:Ref. [16℄ shows that these solutions go over to the unwarped rugby-ball solutions [18℄, whenT� ! T+ (and to the spherial Salam-Sezgin solutions [1℄ when T+ = T� = 0). In theselimits, a hange of oordinates puts the bakground into the familiar form of a spherialgeometry supported by a Dira monopole:ds2 = ���dx�dx� + a2 �d�2 + sin2 �d�2�A� = �qaQa2 (os � � 1) d��� = HMNP = 0 (2.10)In this ase the equations of motion �x the radius of the sphere,7 a = �=(2p2g1), and �xthe monopole strength q2 = 2Æab qaqb = 1g21 : (2.11)(Any other value for the monopole strength would indue warping in the non-ompat di-retions, whih requires T+ 6= T�). On the other hand, the Dira quantization ondition inthis ase redues to: � g qa eaI = NI ; (2.12)and so onsisteny between this and eq. (2.11) in general requires relations between theotherwise independent ouplings g1 and g. In the simplest ase where the monopole isaligned in the U(1)R diretion [1℄ we have g = g1 and onsisteny between equations ofmotion and Dira quantisation imply the monopole number must be N = �1.6In the Cartan-Weyl basis of generators we label the Lie algebra of G by: fTIg = fQa; Ti; T�ig.7More generally there is a at diretion along whih the values of � and a are orrelated.6



A onrete exampleIt is useful in what follows to have in mind a onrete example that is simple enough tosolve expliitly yet ompliated enough to display the instabilities of later interest. Forthis purpose we fous on the subsetor of the theory for whih the gauge �elds lie within asubgroup Ĝ = SU(3) � U(1)R of the full group, with all hyper-salars either neutral underthe non-Abelian subgroup or transforming in the adjoint,8 and all other �elds required foranomaly anellation, inluding the Kalb-Ramond �elds HMNP , set to zero.The Cartan subalgebra of SU(3) is two-dimensional, Qa with a = 1 ; 2 , and with thenormalisation ondition ab = Tr (QaQb) = 16 Æab (so 2 = 16), these may be writtenQ1 = 12p3 0� 1 �1 0 1A Q2 = 160� 1 1 �2 1A : (2.13)The remaining six generators an be divided into three pairs, Ti and T�i with i = 1; 2; 3,having opposite harges. The independent nonzero harge eigenvalues, eai, then beomeT1 T2 T3Q1 1p3 12p3 � 12p3Q2 0 12 12Table 1: Table of harges for adjoint �elds in SU(3).The monopole breaks the SU(3) gauge group down to either U(1)1 � U(1)2 or SU(2)�U(1)2, depending on whether or not all of the eigenvalues of qaQa are distint or if two ofthem are equal.The ase SU(3)! SU(2)� U(1)2:If two eigenvalues of qaQa are equal then an SU(3) rotation an be performed to ensurethat qaQa points purely in the q2 diretion.9 The spetrum of SU(3) gauge bosons thendeomposes into the four massless gauge �elds of the unbroken gauge group together withan SU(2) doublet of massive harged states, having harge 12 with respet to U(1)2 (andtheir onjugates). The Dira quantisation ondition then requires that q2 = 2N=g whereN = Ni=2 = Ni=3 is an arbitrary integer, while Na = Ni=1 = 0.The ase SU(3)! U(1)1 � U(1)2:Alternatively, if all eigenvalues of qaQa are distint then both q1 and q2 are nonzero. TheSU(3) gauge �elds then deompose into two massless gauge �elds, together with three om-plex massive vetors with U(1)1 � U(1)2 harges as given by Table 1: ( 1p3 ; 0), ( 12p3 ; 12),8Although the hyper-salars vanish in the bakground, the harge of their utuations plays a role in theDira quantization onditions.9The same an sometimes also be done if its eigenvalues all di�er, but the required SU(3) transformationis then singular, a distintion that turns out not to be important for identifying whih monopoles aretopologially stable [4℄. 7



(� 12p3 ; 12). The Dira quantisation ondition then requires that q1 = 2p3 s1=g and q2 =2 s2=g, where s1 = 12(Ni=3�Ni=2) = 12Ni=1 and s2 = 12(Ni=3+Ni=2) are half-integer valued.Di�erent quantum numbers (s1 ; s2 ) do not always label distint monopoles. For instaneif (s1 ; s2 ) = �12 ; 12�, theng qaQa = p3Q1 +Q2 = 130� 2 �1 �1 1A ; (2.14)and so equals �2Q2 up to a permutation of the axes. This shows that the (s1 ; s2 ) = �12 ; 12�monopole is physially equivalent to the (s1 ; s2 ) = (0;�1) (or N = �1) SU(2) � U(1)2-preserving monopole.2.2 Linearised instabilityLinearised stability analysis shows that spaetimes stabilised by monopoles embedded intonon-abelian groups (as above) are unstable, as we now summarise following ref. [2℄. Considertherefore linearising about the bakground geometry�gMNdxMdxN := e �A���dx�dx� + e �Adu2 + e �Bd�2 ; (2.15)where the extra-dimensional oordinates are fxmg = fu(�); �g. Denote the Rii tensor forthis geometry by RMN , and the bakground gauge �eld by AM , with �eld strength FMN .The unstable tahyoni diretions turn out to be among the Kaluza-Klein (KK) modes ofthe non-abelian gauge �eld that live in the extra dimensions and lie along diretions of thegauge algebra that are harged under the generator along whih the bakground monopolepoints: ÆAIuTI := V IuTI = VuÆAI�TI := V I�TI = V� : (2.16)Raising and lowering all indies with the resaled bakground metri, ĝMN = e��=2 gMN ,ref. [2℄ shows that the part of the ation that is bilinear in these unstable gauge-�eld utu-ations is (in light-one gauge):S2(V; V ) = �12 Z d6Xp�ĝ Tr h��Vm��V m +DmVnDmV n � 2(�uÂ)2V 2u�2(�uÂ)VuDmV m + R̂mnV mV n + 2gFmnV m � V ni ; (2.17)where Â = �A+ ��=2, and the ovariant derivative of VM is de�ned byDMVN = rMVN � ig [AM ; VN ℄ ; (2.18)and rM is the Lorentz ovariant derivative.Solving the linearised equations of motion and boundary onditions obtained from thisation, and requiring the resulting modes to have �nite kineti energy, leads to a disrete8



spetrum of utuations. Taking advantage of the axial-symmetry, make the Fourier deom-position: Vn(X) =Xm Vnm(x; u)eim� (2.19)with m an arbitrary integer, �1 < m < 1. To diagonalise the mode funtions make the�eld rede�nitionsV�m(x; u) = 1p2 �e(Â+B̂)=4 Vum(x; u)� ie(3Â�B̂)=4 V�m(x; u)� (2.20)and perform a Kaluza-Klein deompositionV�(x; u) = V�(x) �(u) : (2.21)The solutions for  �(�) an then be found expliitly in terms of hypergeometri funtions.For n = 0; 1; 2; : : : the orresponding KK mass spetrum for V I+ is� For m � � 1�+ and m � NI + 1��M2 = 1a2 �n(n+ 1)� �n+ 12� [m�+ + (m�NI)��℄ +m(m�NI)�+��� : (2.22)� For � 1�+ <m � NI + 1��M2 = 1a2 (�n+ 32�2 � 14 + �n+ 32� [m�+ � (m�NI)��℄) : (2.23)� For NI + 1�� <m � � 1�+M2 = 1a2 �n(n� 1)� �n� 12� [m�+ � (m�NI)��℄� : (2.24)� For m > � 1�+ and m > NI + 1��M2 = 1a2 �n(n + 1) + �n + 12� [m�+ + (m�NI)��℄ +m(m�NI)�+��� : (2.25)In these expressions the parameters, ��, are related to the two onial defet angles, Æ�,by �� = (1� Æ�=2�)�1. The spetrum for V I� is obtained from the above by transformingm! �m andNI ! �NI . The integerNI is the quantity appearing in the Dira quantisationondition, eq. (2.9).1010In the sphere limit, the spetrum an be put into the familiar form M2 = 1a2 hl(l + 1)� �NI2 �2i withmultipliity 2l+ 1, where, for V I�, l = k + j1�NI=2j, and k = 0; 1; 2; : : : .9



Using these expressions it is possible to show that the neessary and suÆient onditionfor the absene of tahyoni modes, assuming brane tensions not less than zero, isjNI j � 1 for every I: (2.26)For �elds with NI � 2 the tahyoni modes are those with m = 1; 2; : : : ; NI � 1, while for�elds NI � �2 the tahyoni modes are those with m = �1;�2; : : : ; NI + 1. Notie thatbeause m 6= 0 the instability towards growth of these modes spontaneously breaks theaxially symmetry of the bakground.In fat, it has long been known that non-abelian monopoles in pure gauge theory in 4dimensions are also generially unstable, with only one dynamially stable monopole exist-ing within eah topologial lass [3, 5℄. Similar instabilities were also found soon after inhigher dimensions, ompati�ed on spheres, both for Yang-Mills and for Einstein-Yang-Millstheories [6, 7℄. We use these related instabilities in subsequent setions to try to identify thenew state towards whih the system evolves one the instability develops.The SU(3)� U(1)R exampleIt is instrutive to apply this to the spei� example onsidered above, where the monopoleis embedded into SU(3)� U(1)R.The ase SU(3)! SU(2)� U(1)1:In this ase we had (q1 ; q2 ) = (2=g)(0; N), with Na = Ni=1 = 0 and Ni=2 = Ni=3 = N . Inthis ase we �nd no tahyoni modes when N = 0;�1, but instability when jN j � 2 (forwhih there are two omplex tahyoni modes, V i=2 and V i=3).The ase SU(3)! U(1)1 � U(1)2:Consider the monopole with (s1 ; s2 ) = (1; 0), for example, where solving for the NI 's leadsto the nonzero values Ni = (2; 1;�1). Sine Ni=1 = 2 this monopole has one omplexunstable tahyoni diretion. Similarly, the monopole with (s1 ; s2 ) = (2; 0) has tahyonsamongst all three of its harged utuations, sine Ni = (4; 2;�2). However, the embedding(s1 ; s2 ) = �12 ; 12� turns out to give monopole numbers Ni = (1; 1; 0), and so is stable, as itmust be given that it is equivalent to the N = �1 monopole of the SU(2)�U(1)2-preservingategory. Sine this (and its onjugate) is the only stable monopole of this ategory, we seethat the only three stable ases preserve SU(2)� U(1)2, with N = 0;�1.2.3 TopologySine topologial harge an ause stability for some on�gurations, it is worth identifyinghow these harges are lassi�ed for non-abelian monopoles. In the present instane thetopology of the internal manifold is that of a sphere, with Euler number � = 2. Thisis not hanged by the presene of the onial defets, sine the ontribution to � from thesingularities ompensates for the redution that the angular defet auses in the ontributionto � from the integral of R over the internal spae.The non-trivial topology assoiated with the Dira monopole embedded into the gaugegroup G is similarly lassi�ed by �1(G). This an be seen expliitly in the so alled Wu-Yang10



Gauge group G �1(G) CenterSU(N) 1 ZNSO(2k + 1) Z2 Z2SO(4k) Z2 Z2 � Z2SO(4k + 2) Z (k = 0), Z2 (k � 1) Z4Sp(N) 1 Z2E8 1 1E7 1 Z2E6 1 Z3F4 1 1G2 1 1Table 1: �1 and entres for the simple Lie groups.onstrution [19℄, used above, wherein the extra dimensions are overed with two pathes,eah with a non-singular gauge potential A�. In this ase the A� must di�er on the overlapof the two pathes at the equator by a single-valued gauge transformation, and so de�nes amap from S1 to G that is lassi�ed by �1(G).11For non-abelian groups the integer orresponding to this topologial lassi�ation an bewritten expliitly in terms of the representative gauge �elds. Suppose for example, the gaugealgebra is SU(N), and all harged �elds transform in the adjoint representation. Then theglobal group is atually G = SU(N)=ZN beause the adjoint representation uses the samematrix to represent two group elements that di�er only by an element of the group's enter.De�ne the magneti ux, �, using the following integral,� = 1NTr exp �ig I ds (A+M � A�M) dxMds � ; (2.27)where the path is taken as the losed loop around the equator in the overlap of the twopathes on whih the two gauge on�gurations, A+ and A�, are respetively de�ned. Thisexpression, when evaluated using expliit gauge on�gurations, produes a phase� = exp�2�iLN � ; (2.28)where 0 � L < N is the integer that labels the orresponding element of �1(SU(N)=ZN) =ZN .Table 1 gives �1 and the enters of all the simple Lie algebras. Amongst the knownanomaly-free non-abelian gauge groups in 6D hiral supergravity, those involving non-Abelian11If Higgs �elds spontaneously break G ! H, then magneti harge would instead be lassi�ed by �1(H).For smooth on�gurations without Dira strings this redues to the subgroup of �1(H) onsisting of thoseelements whih are ontratible in G, denoted �1(H)G . This is equivalent to the familiar lassi�ation ofnon-singular monopoles by �2(G=H) (interpreted as lassifying the map from the S2 at spatial in�nity tothe vauum manifold G=H) due to the isomorphism �1(H)G � �2(G=H). Similarly, in the absene of a Higgsontribution to topologial harge the lassi�ation �1(H) redues to the Wu-Yang lassi�ation �1(G), sine�1(H)=�1(H)G � �1(G). 11



gauge groups with non-trivial topology are the lassi E7�E6�U(1)R model [20℄, for whihall hyper-multiplets are singlets under E6; as well as two models by Avramis and Kehaghias[21℄, respetively involving E6 (with hyper-multiplets only in the adjoint representation) orSO(N)'s.The example G = SU(3)� U(1)RFor the Dira monopole embedded in SU(3), with all �elds harged under the SU(3) sub-group transforming in the adjoint representation, as desribed above the global group isatually Ĝ = [SU(3)=Z3℄� U(1)R, and the topologial lassi�ation is given by:�1(Ĝ) = �1(G) + �1(U(1)R)= �1(SU(3)=Z3) + �1(U(1)R)= Z3 + Z (2.29)Notie that eah simple fator of Ĝ gives rise to its own topologial lassi�ation, providedthat the monopole lies at least partially in the fator of interest.If the monopole is embedded purely within the SU(3) then the topology is simply las-si�ed by �1(SU(3)=Z3) = Z3. In the ase where the monopole preserves an unbrokenSU(2)� U(1)2 we have seen that it an always be written as 12gA� = �12 M (os � � 1) d�where M = 2N Q2 = N3 0� 1 1 �2 1A ; (2.30)and, as before, Q2 is the seond Cartan generator of SU(3) while N is the integer of theDira quantisation ondition. In this ase the assoiated ux evaluates to � = ei2�N=3 2 Z3,showing that it is L = N (mod 3) that labels the distint topologial lass [4℄. The �ndingthat linearised stability requires N = 0;�1 is therefore onsistent with the expetation thatthere is only one stable monopole in eah of the three independent topologial setors.3 The Instability's EndpointThe previous setions argue that monopole-supported ux ompati�ations in 6D super-gravity are generially unstable, provided the monopole is embedded within a non-Abelianfator of the gauge group. We now ask what the new on�guration is towards whih suhan unstable non-Abelian monopole evolves.As mentioned above, this problem is well understood in the ase of pure Yang-Mills (YM)theory, where the instability desribes the deay into the lightest monopole within the giventopologial lass [5℄. Our goal is to address what suh a deay implies when the monopole inquestion supports an extra-dimensional ompati�ation. We do so in this setion starting12More generally, a monopole in SU(3) an always be written as gA� = � 12 M (os � � 1) d� whereM = 2LQ2 + diag(r1; r2; r3), L is one of 0; 1; 2 and r1; r2; r3 are integers that sum to zero [4℄.12



with simple spherial ompati�ations of extra-dimensional Yang Mills and Einstein-Yang-Mills (EYM) systems (inluding a osmologial onstant, �). We defer the qualitativelydi�erent ase of EYM-Dilaton theories relevant to higher-dimensional supergravity to thenext setion.Conretely, onsider the unstable N = 2 SU(3) monopole desribed in previous setions,for whih g(q1 ; q2 ) = (0; 4). Beause N 6= 0 (mod 3), this state has a non-trivial topologythat prevents it from deaying into a topologially trivial on�guration. It must insteaddeay into the stable monopole with N = �1, doing so by emitting magneti radiation (seee.g. [3, 5℄).3.1 Einstein Yang-Mills TheoryWhen the deaying monopole supports a ompati�ed extra dimension, its deay should alsoause the extra-dimensional geometry to hange. But sine the deay also redues the 4Dmonopole energy density, its deay should also hange the urvature of the large dimensionswe observe. We �rst show how this takes plae in detail, working within the Einstein-Yang-Mills system. In this ase, we must solve both the Einstein and Maxwell equations of motionto hek that the expeted stable monopole is a possible endpoint solution.Consider then six-dimensional gravity oupled to a Yang-Mills �eld and a positive 6Dosmologial onstant, �. We start with a solution, Mink4 � S2, for this system omprisingan unstable SU(3) monopole supporting two spherial extra dimensions, with � adjusted toallow the observable four dimensions to be at. This initial monopole then deays into thetopologially onneted stable monopole as above, whilst the bakground geometry appro-priately adjusts itself. We do not try to follow the time-dependene of this proess in itsfull transient glory. Instead we diretly seek the endpoint solution to whih it ultimatelyevolves, under the assumption that this endpoint also remains maximally symmetri in the4 visible and 2 internal dimensions.It turns out that we are led in this way to two possible endpoint solutions. Either theinternal sphere shrinks whilst the non-ompat diretions urve into anti-de Sitter spae(AdS), or the sphere grows whilst the 4D spaetime urves into a de Sitter (dS) universe.Based on the priniple that the evolution lowers the e�etive 4D salar potential energy, weexpet it is the AdS solution towards whih the system evolves.Endpoint SolutionsWe start with the 6D EYM ation,SEYM = 1�2 Z d6xp�g �R� �24 Tr (FMNFMN)� �� ; (3.31)ontaining only gravity, gMN , the Yang-Mills �eld, AM , and the 6D positive osmologialonstant, �. The equations of motion for this system beomeRMN = �22 Tr (FMPF PN ) + gMN ��4 � �216TrF 2� (3.32)rMFMN � igAMFMN = 0 ; (3.33)13



for whih we seek solutions having maximal symmetry in both 4 large dimensions and 2small ones ds2 = g��dx�dx� + a2(d�2 + sin2 �d�2) (3.34)with the maximally symmetri metri, g��, satisfying R�� = 3�g��, with 4D urvatureonstant �. In our onventions the ases � > 0, � = 0 or � < 0 respetively orrespond todS, at and AdS geometries.Consider now solutions for whih the Maxwell �eld strength only has nonzero internalomponents, Fmn, and depends only on the oordinate � (as in the monopole solution). Theequation of motion for the gauge �eld then impliesF�� = qaQa2 sin � (3.35)where the onstants qa again parametrise the monopole strength. Realling our onventionTr(QaQb) = ab = 2Æab, we �nd after use of the 4D omponents of Einstein's equations,R�� = 3�g�� = g�� ��4 � �2q232 a4� ; (3.36)where q2 = abqaqb. From the 2D Einstein equations we instead �ndRmn = gmna2 = gmn �3 �2q232 a4 + �4 � ; (3.37)leading to the following onditions for � and a:3� = ��4 � �2q232 a4� (3.38)1a2 = 3 �2q232 a4 + �4 = �2q28 a4 + 3� : (3.39)If we hoose the initial monopole to be the unstable on�guration having qa = qai =(0; 4=g), then q2i = 162=g2. It is for this on�guration that we tune the 6D osmologialonstant to obtain a at 4D spaetime, � = 0. This �xes the initial radius of the internalsphere and the 6D osmologial onstant to bea2i = �2q2i8 = 2 �22g2 and � = �2q2i8a4i = 1a2i = g22 �22 : (3.40)To �nd the endpoint, we now take the monopole harge to be the topologially stableone having N = �1 and so qaf = (0;�2=g), and so q2f = 42=g2 = 14 q2i . Sine � is no longerfree to be adjusted, we now solve eqs. (3.38) and (3.39) for the �nal radius, af , of the 2Dsphere, and the urvature, �f , of the �nal 4D spaetime.We �nd in this way that the 4D urvature beomes3�f = 14a2i � �2q2f32 a4f = 14a2i � a2i16 a4f ; (3.41)14



while the new radius of the 2-sphere is given by1a2f = 14a2i + 3 �2q2f32 a4f = 14a2i + 3 a2i16 a4f : (3.42)This has two roots, given bya2f� = 2 a2i 241�s1� 34 q2fq2i 35 = 2 a2i �1� 14p13� ; (3.43)and so af+ ' 1:95 ai while af� ' 0:444 ai. The orresponding 4D urvature then beomes3�f� = 1a2i  7� 2p1329� 8p13! ; (3.44)and so �f+ ' 0:0819=a2i and �f� ' �0:452=a2i . Clearly the radius of the sphere inreases forthe dS solution and dereases for the AdS one.EnergetisIntuitively, one would expet the AdS ase to be the natural endpoint, sine one expets toobtain a negative potential energy after lowering it below the initially zero value needed toensure a at 4 dimension, as we next hek expliitly. To this end de�ne the potential energy(per unit 3D volume), E , of the e�etive 4D theory as the sum of the stati 6D energy (i.e.gradient, magneti and potential energy), integrated over the extra dimensions, withE = 1�2 Z d2xpg2 ��R(2) + �24 TrFmnFmn + �� : (3.45)Here R(2) = 2=a2 denotes the 2D urvature salar, while the magneti energy goes asTrFmnFmn = q2=2a4, leading toE = 4�a2�2 �� 2a2 + �+ �2q28 a4 �= �4�a2�2 �2 �24� �� 2a4 + �a2 + �2q28 a6 � : (3.46)The seond equality of eq. (3.46) pulls out four powers of the 4D Plank mass, M2p =4�a2=�2, whih is useful when verifying that E as de�ned reprodues the orret equationsof motion when used in the 4D �eld theory. It is useful to display the fators ofMp expliitlyin this way beause transforming to the 4D Einstein frame ensures that these are held �xedwhen the 4D �eld a is varied to minimize the potential energy, leading to the ondition�(E=M4p )�a = 2�2�a3 � 1a2 � �4 � 3�2q232 a4 � = 0 ; (3.47)15



in agreement with eq. (3.39) determining a. The 4D Einstein equations similarly equateR�� = 3�g�� to �E=M2p� g��, leading to the ondition6� = � 2a2 + �+ �2q28 a4= �2 � �2q216 a4 ; (3.48)where the last equality | whih agrees with eq. (3.38) | uses the �eld equation, eq. (3.47),for a.We may now ompare the value of E when evaluated at the initial and �nal on�gurationsonsidered above. Evaluating using our previous results for ai, q2i and � leads to Ei = 0 forthe initial unstable solution, onsistent with having tuned � to ensure the atness of theinitial 4D geometry. For the two andidate endpoint solutions, the potential energy is insteadEf� = 4��2 "�2 + �a2f� + �2q2f8 a2f�#= 4��2 "�2 + �af�ai �2 + q2fq2i � aiaf��2# (3.49)= 2��2  14� 4p134�p13 ! ; (3.50)and so Ef+ ' 3:74 (2�=�2) > 0 and Ef� ' �1:07 (2�=�2) < 0. Clearly we have af+ > ai >af�, and Ef+ > Ei > Ef�, indiating that the endpoint solution reahed after the instabilityindeed orresponds to a shrunken extra-dimensional sphere together with 4D AdS spae.4 Endpoint Revisited: Inluding the DilatonWe next reonsider the problem of diret interest for higher dimensional supergravity, bysupplementing the Einstein-YM theory with an appropriate salar dilaton �eld. In thisase we �nd the endpoint on�gurations do not preserve the maximal symmetry of theunderlying 4D and/or 2D geometries of the original unstable monopole-supported system.As emphasised in [22℄, the presene of the dilaton ruially hanges the dynamis of thesystem, and this onsiderably ompliates the searh for the new endpoint solutions.To see why the dilaton is so di�erent we again start with a monopole-supported solutionto 6D hiral gauged supergravity with ouplings hosen to allow a Mink4 � S2 solutionwith 4 at large dimensions, see Eq. (2.10-2.11). Now, however, if the monopole deays toits stable topologial ousin, a new maximally symmetri solution supported by the stablemonopole no longer satis�es the �eld equations (2.2), whih require � = 0 together with theEinstein and Yang-Mills equations. In detail, the equations of motion under the maximallysymmetri ansatz ds2 = ds24+a2(d�2+sin2 �d�2), F�� = qaQa2 sin � and � = �0 = onst, withds24 the metri on 4D (A)dS or Minkowski spaetime, together imply the 4D urvature � = 0,a e���0=4 = �=2p2g1 and q2 = 1=g21. This is to be ompared with the initial on�guration Eq.16



(2.10-2.11). So, although one ombination of the parameters, say a e��0=4, is left free thanksto the lassial saling symmetry, the magneti ux in partiular is �xed to its original {unstable { magnitude if we insist on keeping the maximal symmetries. This shows that onethe monopole ux deays the dilaton gradient, �M�, is neessarily nonzero, thereby pikingout preferred diretions in the underlying spaetime.A key question asks whether this gradient points in the ompat two diretions, �m� 6= 0,or in the large spaetime diretions, ���. In this setion we �rst argue that the system islikely to prefer growing nonzero gradients in the large 4 dimensions, and then desribe therelative merits of two lasses of andidate endpoint solutions that break the 4D spaetimesymmetries: a one-parameter family of supersymmetri solutions [9℄; and a lass of newsolutions to whih one is led by adapting the arguments of the previous setion to inludethe dilaton.4.1 4D or 2D: Whih symmetries break?We now argue that for 6D supergravity it is the 4D spaetime symmetries that generiallyprefer to break. If true this is somewhat surprising, sine the instability revealed by thelinearised analysis is in modes that vary in the internal 2 dimensions and not the marosopi4 dimensions. However, it is known [10℄ that all of the axially symmetri bulk solutionshaving AdS 4D geometry neessarily have a urvature singularity in the 2D geometry at theposition of one of the two soure branes.13 Any deay to a solution of the form AdS4 �M2therefore neessarily requires the development of a urvature singularity in the 2D geometryat the position of one of the soure branes, even if the initial unstable solution has no suha singularity. But the divergene of bulk �elds at a singularity is related to the physialproperties of the brane whih is situated there [11, 12℄, with a urvature singularity inpartiular implying a brane oupling to the bulk dilaton. Sine it is not lear how suh ahange to intrinsi brane properties an be triggered by the deay of a monopole in the bulk,we instead explore the possibility that it is the 4D spaetime symmetries that break.The simplest way to see the neessity for a urvature singularity is to reognize that thee�etive 4D potential energy turns out to depend only on the near-brane limit of the � �eldwhen its derivatives, �m�, point purely along the 2D diretions [15℄. That is, we evaluateE = Z d2xpg2 �� 1�2 R(2) + 14 �m� �m� + 14 e��=2 TrFmnFmn + 8g21�4 e���=2� ; (4.51)at an arbitrary solution to the �eld equations, eqs. (2.2), assuming only that all tensoromponents point purely along the ompat 2 dimensions. Use of the Einstein and dilatonequations in partiular then show [15℄ thatE = � 12� Z d2xpg2 � ; (4.52)whih vanishes on a smooth manifold. For example, when evaluated for the partiular13This is also a orollary of the fat [10℄ that all of the solutions having only onial singularities at thebranes have 4D geometries that are at. 17



solutions of eqs. (2.4) and (2.5), we �nd (keeping in mind the onial singularities at � = ��)E = ��� Z �+�� d� ��hpg2 ���i = 2��2 �h(��)�� � h(�+)�+ � = 0 : (4.53)In the presene of singularities loalized at soure branes, eah brane an be isolatedwithin a small irle that ats as the boundary of the bulk geometry, leading the right-hand-side of eq. (4.52) to evaluate to a sum of terms involving the radial dilaton derivative, n ���,evaluated at the brane positions. But the presene of suh a nonzero salar gradient nearthe odimension-2 brane requires � to diverge logarithmially there, and the stress energyof this on�guration makes the urvature also diverge. This argument is in agreement withthe expliitly known solutions of ref. [10℄.But the near-brane dilaton derivative is related [11, 12℄ by the bulk-brane mathing on-ditions to the e�etive odimension-2 brane tension, T2(�), with n � � being proportional toits derivative T 02. As suh, the near-brane dilaton derivative annot hange without there alsobeing a physial hange to the soure branes, making suh a on�guration an unlikely end-point for an unstable monopole. This being said, we shall also �nd the neessity of new typesof singularities in some solutions breaking the 4D symmetries, and so this argument annotbe regarded as deisive until the interpretation of those singularities is better understood.With this motivation we next examine two ategories of andidate endpoint solutionsthat break the 4D symmetries.4.2 Supersymmetri AdS3 � ~S3Supersymmetri solutions are always attrative options when seeking stable endpoints frominitially unstable initial on�gurations, and it is the remarkable sarity of suh solutionshaving the form M4 � M2, with M4 = Mink4 or AdS4, that helps make the endpoint ofmonopole deay in 6D supergravity suh a puzzle. The only known solutions of this typehave M4 = Mink4, M2 = S2, and align the monopole in the U(1)R diretions with monopolenumber N = �1 [1℄.Other supersymmetri solutions do exist [9℄, however, they just have fewer 4D spaetimesymmetries. These solutions have geometries AdS3 � ~S3, where ~S3 denotes a one-parameterfamily of `squashed' 3-spheres. The �eld on�gurations have onstant dilaton, �M� = 0, andds2 = ds2AdS3 + a2 �!21 + !22�+ b2!23H3 = � �!1 ^ !2 ^ !3 + "3a2b� (4.54)F2 = k !1 ^ !2 ;where ds2AdS3 is the line-element for AdS3 and "3 denotes the volume 3-form for the internal3D geometry. The !m denote the left-invariant 1-forms on the 3-sphere, that satisfy d!m =�12 �mnp !n ^ !p, and so!1 + i!2 = e�i (d� + i sin � d�) ; !3 = d + os � d� ; (4.55)where (�; �;  ) are Euler angles on the 3-sphere.18



The equations of motion impose the following three relations among the solution's fourparameters, a, b, � and k [9℄:b2 = �5=2� ; a2 = �3k4g1 = 116g21 �1�q1� 32�1=2g21�� ; (4.56)in terms of whih the AdS3 Rii tensor is R�� = 2� g�� with � = �b2=(4a4).Is this the endpoint of the evolution away from the unstable monopole? Suh a senariowould be very attrative, indiating a dynami spontaneous ompati�ation wherein themonopole instability triggers one of the large 4 dimensions to roll up into one of the diretionsin ~S3. And beause � is negative this might be argued to be favoured energetially interms of an appropriate 3D potential energy. Better yet, the supersymmetri Mink4 � S2solution an be obtained formally from the AdS3 � ~S3 solutions by taking the limit b ! 0[9℄, indiating there might be a plausible path through �eld spae leading from the initialunstable on�guration to the �nal supersymmetri one.There are a number of possible objetions to the proposal that these solutions representto endpoint of the monopoles of present interest, however. Not least, the natural way toobtain 4 large diretions from AdS3� ~S3 is by taking the lone squashed diretion to beomelarge, b � a, rather than taking b � a. However in the limit b � a the urvature of thelarge 3 dimensions beomes larger and not smaller, and there is furthermore an obstrution totaking this limit within the supersymmetri solutions sine it formally would require taking� very large, but a2 beomes omplex in this limit. We therefore next seek other options forthe deay endpoint.4.3 Deking the Dilaton14 As noted above, it is the dilaton that appears to prevent the system's relaxation towardsa maximally symmetri solution, and so removes the attrative piture obtained in the EYMsystem desribed in x3. In the remainder of this setion we use an elegant trik [23℄ thatreformulates the EYM-dilaton system as a dilaton-free system in higher dimensions. We do sowith the goal of exploring whether the analysis of x3 an lead to a better andidate endpoint,for whih the preserved maximal symmetries involve the �titious dimensions assoiated withthe dilaton rather than being part of the physial 6 dimensions of our starting supergravity.The idea behind the trik is that the dilaton an be regarded as a modulus obtainedby ompatifying a simpler system in higher dimension.15 In partiular, we onsider EYMtheory in (6 + n) dimensions, hosen so that its dimensional redution to 6D leads to thedilaton-EYM theory of interest. With are, solutions in the higher dimensional non-dilatonitheory an be redued to solutions of dilatoni Einstein Yang-Mills in six dimensions, and6D supergravity on�gurations an be `oxidised' to higher dimensional solutions. Ref. [24℄performs a similar analysis to study the dynamis of instabilities in warped de Sitter solutionsto 6D dilatoni Einstein Maxwell theory, building on studies of the dilaton-free model [25℄.14deke v. (in ie hokey) to draw a defending player out of position by faking a shot or movement: dekedthe goalie with a move from left to right.15A similar logi underlies the disussion of F -theory vaua in Type IIB string ompati�ations havingnontrivial dilaton pro�les. 19



Figure 1: The oxidation-redution yle used to generate solutions in the 6D dilatoni theory.This trik is useful beause the stability analysis of previous setions an be translatedword-for-word to the higher dimensional system, at least for unwarped bakgrounds.16 Inpartiular, an unstable monopole-supported on�guration with geometry Mink(4+n) � S2,is unstable for large enough magneti quantum numbers, and applying the arguments of x3to the higher-dimensional system indiates a deay to AdS(4+n) � S2 supported by a stablemonopole. The logi (illustrated in Fig. 1) then is to dimensionally redue both the unstablesolution and its stable endpoint down to 6D to �nd the orresponding transition to whihthis points in the lower-dimensional dilaton system.4.3.1 Oxidation/RedutionTo proeed in detail we start with the D = 6 + n ation [23, 24℄S = 1�2D Z dDxp�gD �R(D) � �2D4 TrF2 � �� ; (4.57)whose equations of motion areR�� = �2D2 Tr (F�
F 
� ) + g��(D � 2) ��� �2D4 TrF2� (4.58)r�F�� � igA�F�� = 0 :16The bilinear ation for the relevant modes is idential in this ase (see equation (44) of [26℄).20



To dimensionally redue we seek solutions to these equations having the form17ds2D = g�� dx�dx� = ĝMN(x) dxMdxN + e2'(x)gab(y) dyadyb= e�n'(x)=2gMN(x) dxMdxN + e2'(x)gab(y) dyadyb (4.59)FMN = FMN(x) and FaM = Fab = 0 :Here gab(y) is an n-dimensional maximally-symmetri metri, whose urvature salar is:gabRab = n(n � 1)K, for onstant K. Furthermore, the above on�guration is the mostgeneral one onsistent with this maximal symmetry, whih ensures that solutions to thetrunated ation are guaranteed also to be solutions of the full higher-dimensional equations.(Suh a on�guration is alled a `onsistent' trunation [27℄.)With this ansatz the ation of the trunated 6D theory beomes [23, 24℄S = 1�2 Z d6xp�g �R� n(n + 4)4 �M'�M'� �24 en'=2TrF 2 (4.60)� �e�n'=2 +Kn(n� 1) e�(n+4)'=2� ;where we de�ne �2 := �2D=V and FMN := V 1=2FMN , with V the volume of the n-dimensionalmanifold omputed with the metri gab. Finally, de�ning� � =pn(n + 4) ' and �2 = nn+ 4 ; (4.61)and so n = 4�2=(1� �2), allows the ation to be writtenS = 1�2 Z d6xp�g �R � �24 �M� �M� � �24 e� ��=2TrF 2 (4.62)� � e�� ��=2 +K 4�2(5�2 � 1)1� �2 e���=2�� :This shows that the 6D supergravity ation, eq. (2.2), is obtained in the formal limit whereK = 0 and � ! 1 (and so n!1), provided we also identify � = 8g21=�2.4.3.2 The Rugby Ball and its DeayAs an appliation onsider the following simple monopole-supported ompati�ation fromD to D � 2 dimensions: ds2D = gAB dxAdxB + a2(d�2 + sin2 � d�2)Fa�� = qaD2 sin � (4.63)where A;B; :: = 0; 1; :::; n + 3, for whih diretions the d = (D � 2) = (4 + n)-dimensionalmetri is RAB = (d� 1)�d gAB = (D � 3)�d gAB : (4.64)17The indies �;�; :: run from 0 to n+ 5, while indies a; b; :: run from 1 to n and 6D indies M;N; :: runfrom 0 to 5 as before. We reserve A;B; :: to run from 0 to n+ 3 in later appliations.21



Using this ansatz in the D-dimensional equations of motion allows their ontent to beboiled down to (D � 3)�d = � 1D � 2 ��2Dq2D8a4 � �� (4.65)1a2 = �2Dq2D8a4 + (D � 3)�d ; (4.66)whose solutions are a2� = (D � 2)2� "1�s1� (D � 3)2(D � 2)2 � �2Dq2D# (4.67)�d = 1(D � 3)2 ��� 1a2�� : (4.68)Eliminating q2D gives the 2-sphere radius in terms of the d-dimensional urvature:a2� = 1�� (D � 3)2�d = 1�� (n + 3)2�d : (4.69)Applying these results to an initial geometry Mink4 � S2 supported by an unstablemonopole having harge q2 = q2i shows that the parameter � must be tuned to� = 1a2i = 8�2Dq2Di = 8�2q2i ; (4.70)in whih the �nal equality anels the fators of extra-dimensional volume, V , that appear inthe relations between the D- and 6-dimensional versions of � and q2. Dimensionally reduingthis geometry on n of the at diretions then trivially reprodues the rugby-ball solution,eq. (2.10), of 6D supergravity (whose deay we wish to study).As in x3 we suppose the endpoint of the instability in the D-dimensional system also tobe given by solutions to these same equations, but for the smaller harge of the �nal stablemonopole: q2D f < q2D i. And eq. (4.67) implies that shrinking q2 makes a2+ get larger whilea2� gets smaller, whih eq. (4.68) in turn implies �d+ is positive while �d� is negative. Asin x3 this predits the endpoint to be a smaller monopole-supported sphere, with negativelyurved large diretions.The idea now is to dimensionally trunate the endpoint monopole-supportedD-dimensionalgeometry on n of its AdS dimensions, thereby obtaining a andidate endpoint solution forthe 6D EYM-dilaton system. To this end it is useful to rewrite the D-dimensional metri interms of at spatial sliingsds2D = hdx2 + e2p��d x ��dt2 + Æij dxidxj + Æab dyadyb�i+ a2� d
22= e�np��d x=2 h�e(2+n=2)p��d x dt2 + enp��d x=2 dx2 + e(2+n=2)p��d x Æij dxidxj+a2�enp��d x=2 d
22i+ e2p��d x Æab dyadyb ; (4.71)22



where i; j; :: run from 1 to 2, while (as before) a; b; :: run from 4 to 4 + n, and d
22 denotesthe standard metri on the unit 2-sphere.Comparing this last expression with the ansatz, eq. (4.60) allows the dilaton to be reado� from the x-dependene of the n-dimensional trunated metri, giving ' = p��d x, or� � = 4�1� �2p��d x : (4.72)Using this in eq. (4.60) then also allows the 6D metri to be identi�ed. Making the hangeof variables z = Z enp��d x=4dx = 4np��d enp��d x=4 (4.73)allows the trunated 6D solution to be writtends2 = �� zLn�2+8=n dt2 + dz2 + � zLn�2+8=n Æij dxidxj + � zLn�2 a2�d
22 ; (4.74)and � � = 4� ln� zLn� ; (4.75)where the length sale Ln is de�ned by1Ln := np��d4 = n4(n+ 3)s 1a2� � 1a2i ; (4.76)and the expression for �d in terms of a� and ai is used. The �nal step is to take n ! 1(� ! 1) to reover 6D Nishino-Sezgin supergravity. Both L and a� remain �nite in thislimit, with 1L = limn!1 1Ln = 14s 1a2� � 1a2i (4.77)and limn!1 a2� = limn!1 (n+ 4)2� "1�s1� (n+ 3)2(n+ 4)2 � �2q2f# = �2q2f8 : (4.78)Combining all expression gives the �nal result for the andidate endpoint solution togauged hiral 6D supergravityds2 = dz2 + � zL�2 h�dt2 + Æij dxidxji+ � zL�2 a2�d
22 ;� � = 4 ln� zL� and F a�� = qaf2 sin � : (4.79)One an hek diretly that this on�guration indeed solves the 6D supergravity equations,and in fat an be reognized as one of the saling solutions found in [8℄, but with the salingourring along a 4D spatial oordinate, z, rather than time. Also noteworthy is the relation23



this solution implies between the sphere's radius, r, and the dilaton: r2 = e��=2a2�, whih isalso familiar (but z-independent) from the Salam-Sezgin ompati�ation [1℄.The solution eventually breaks down for small z due to the singularity as z ! 0, whereboth the dilaton and the 6D Rii salar,R = 2(L2 � 10 a2�)z2a2� ; (4.80)blow up. Sine this singularity has no ounterpart in the higher dimensional AdS4+n � S2EYM solution, its emergene is a onsequene of taking the limit n ! 1. The �nite-ngeometries may be regarded in this way as providing resolutions of this singularity, alongthe lines of the higher-dimensional resolution of dilatoni blak hole singularities in stringtheory desribed in ref. [28℄.At large z the radius of the ompat 2-sphere beomes very large, implying an eventualbreakdown of the 4D e�etive theory even at very low energies. It is instrutive to ask howthe metri varies in the 4D Einstein frame, espeially sine the dependene on z only arisesas an overall onformal fator (as may be seen using the oordinate hange u = ln (z=L)),ds2 = e2u���� dx�dx� + a2� d
22� ; (4.81)implying the breaking of the 4D maximal symmetry therefore drops out of onformally invari-ant quantities. Sine the volume of the 2 ompat dimensions varies as V2 = (z=L)2a2� / e2u,the 4D Einstein frame metri sales with u as g(E)�� = e2ug�� , whih is again u-dependent,and in fat turns out to be the same geometry as that of the 6D Einstein frame.StabilityThe stability of this solution follows from that of the orresponding oxidised solution,AdS4+n�S2, sine the utuations in the 6D model are a sub-setor of those in the oxidisedmodel, allowing us to onlude that our proposed endpoint is a stable solution, withoutperforming the linearised stability analysis from srath. Flutuations in the (6+n)D EYMmodel divide into two deoupled setors:1. The metri utuations and gauge �eld utuations in the diretion of the U(1)monopole in the Lie Algebra. These were studied in [29℄, where they were foundto be stable, in the sense that none violate the Breitenlohner-Freedman bound.2. The gauge �eld utuations orthogonal to the U(1) monopole. We argued above thatthe presene of instabilities in this setor for Mink4 � S2 [6, 2℄ generalise to higherdimensions and so these modes are also unstable in the Mink4+n � S2 theory. Theidential argument shows that stable monopoles in Mink4�S2 oxidise to on�gurationsthat are also stable in Mink4+n � S2. The same onlusion should also apply forAdS4+n � S2, sine the Kaluza-Klein mass operator does not depend on the urvatureof the external geometry, but only on the urvature of the internal geometry and theinternal ux. 24



EnergyThe higher-dimensional piture also argues for there being an energeti riterion whihfavours these new solutions as having smaller energy then the initial, unstable one. Giventhe non-trivial pro�le for the dilaton in the large dimensions, an appropriate de�nition forthe energy is the sum of the 4D dilatoni gradient energy and the potential energy of the4D e�etive theory de�ned in (4.51), whih emerges from the gradient, magneti and poten-tial energy in the extra dimensions. Integrating out the extra dimensions, the total energydensity (per unit 3D volume) in the Einstein frame, g(E)�� = e��=2 g��, is:ETOT = e����2 Z d2xpg2 ��24 e��=2 �z� �z� �R(2) + �24 TrFmn Fmn + � e���=2� ; (4.82)where the overall fator of e��� omes from the Weyl resaling to the Einstein frame ofthe 4D volume fator. A non-trivial gradient energy in the dilaton always gives a positiveontribution to the total energy, whereas the 4D potential energy in terms of the dilaton andvolume breathing modes is: E = �4�a2��2 e��� 12a2� �1� a2�a2i � (4.83)Plugging the endpoint on�guration (4.79) into (4.82) shows that the potential energy isnegative, �4�a2��2 8L2 z4 , and beats the gradient energy, 4�a2��2 4L2 z4 , giving in total:ETOT = �4�a2��2 4L2 z4 (4.84)This result should be ompared to the initial total energy, for whih both the 4D gradientand potential ontributions are zero, and so the energy has been lowered.4.3.3 The Deay of Warped Con�gurationsAs a seond example we extend the above analysis from sphere-monopole ompati�ationsto the more generi presene of warping, as is required if the two brane tensions are unequal.We know that on�gurations with monopole numbers jNIj � 2 are also unstable in warpedbrane-world ompati�ations with positive-tension brane soures [2℄. We now seek theendpoint of this stability, as indiated by the above oxidation/redution tehnique.To do so we �rst display a warped solution to the (n+6)-dimensional EYM system withosmologial onstant, whih redues to the warped Minkowski solution of the 6D EYM�theory. As previously, the instability of the 6D solution is shared by its higher dimensionalrepresentation.18 We identify a plausible endpoint in the higher-dimensional EYM theory,and redue it to identify the orresponding andidate endpoint in 6D supergravity.18Note, however, that the diret linearized analysis made in [2℄ does not extend to warped solutions in(6+n)D beause the bilinear ation for the modes of relevane depends on (n+4) in the warped ase [26℄.25



The higher-dimensional warped solutionWe again start from the (n+ 6) dimensional EYM ation (4.57)S = 1�2D Z dDxp�gD �R(D) � �2D4 TrF2 � �� : (4.85)The relevant stati warped solution to the orresponding �eld equations is obtained by aWeyl rotation of a known blak-hole like solution [30℄, as was done in [15℄ (a similar solutionand method were also used in [31℄). The result isds2D = r2 gABdxAdxB + dr2hD(r) + �2D hD(r) d�2 (4.86)and Fr� = ��DqaDQarn+4 ; (4.87)where gAB is a d = (n + 4)-dimensional, maximally symmetri metri, with RAB = (d �1)�d gAB, and we have introdued an additional parameter, �D, whih will allow us to reahthe unwarped ompati�ations via a smooth limit. The funtion hD(r) is given expliitlyby hD(r) = �d + Mrn+3 � �r2(n+ 4)(n+ 5) � �2Dq2D2(n+ 4)(n+ 3) r2(n+3) ; (4.88)where M is an integration onstant that an be positive or negative. This solution an alsobe found by solving diretly the equations of motion, for whih the Einstein equations redueunder the above ansatz toRAB = �gAB ��(n + 3)�dr2 + h0Dr + (n + 3) hDr2 � = �gAB � �2D q2D8 r2(n+4) � �4 � (4.89)Rmn = �12gmn �h00D + (n+ 4) h0Dr � = gmn � 3 �2Dq2D8 r2(n+4) + �4 � : (4.90)Ref. [31℄ shows that this yields the desired warped 6D solutions to Nishino-Sezgin super-gravity found in [15℄ one the limit n!1 is taken, making them a good starting point forseeking the endpoint of the deay of the underlying monopole.The solution above (4.86, 4.88) is very similar to that studied in [15℄, Setion 3 (see also[14, 16℄). The geometry is well de�ned in the region where the metri funtion hD(r) ispositive, and this implies M > 0 when �d � 0, while M an be negative for �d > 0. Similarto what is shown in [15℄, the geometry pinhes o� at the points where hD(r) vanishes. Thereare two suh real roots, r�, sine hD(r)! �1 as r ! 0 and r !1, and hanges sign onlytwie.Moreover, beause hD vanishes linearly near r = r�, being well approximated by hD(r) �h0D (r�) (r � r�), the 2D internal metri is approximately onial at these points, with:ds22 � dR2� + �1� Æ�2��2R2�d�2 : (4.91)26



Here R� = 2p(r � r�)=h0D(r�), and the de�it angles are given by:Æ�2� = 1� 12 �D h0D(r�) : (4.92)These singularities are soured by odimension-two branes, with ationsSbrane = �T� Z dD�2yp�� ; (4.93)and whose tensions satisfy �2DT� = 2Æ�. On redution to the 6D theory these beome3-branes with tensions T� given by T�V .Finally, sine the internal spae is ompat, there is as usual a Dira quantization ondi-tion for the magneti ux. Covering the spae with two pathes that respetively inorporater�, �a la Wu and Yang, allows the gauge potential to be writtenA� = �DqaDQa(n+ 3) � 1rn+3 � 1rn+3� � d� : (4.94)These are related by a single-valued gauge transformation on the overlap only if� g eaI �DqaDn + 3 � 1rn+3+ � 1rn+3� � = NI ; (4.95)where eaI are the adjoint harges disussed in earlier setions, and NI is an integer.In order to have an expression for h in terms of the two real roots, we an write it asfollows (` := n + 3):hD(r) = �d �1� r+̀r` � �1� r�̀r` � (4.96)+ �(`+ 1)(`+ 2) 1r2+(r+̀ � r�̀) 1r2` �r`(r2 `+2+ � r2 `+2� )� r2 `+2(r+̀ � r�̀)�(r+r�)`(r`+2+ � r`+2� )�where now it is lear that h(r�) = 0. By omparing (4.88 and 4.96), the parameters r� anbe related to the original parameters of the solution as:M = �(`+ 1)(`+ 2) (r2(`+1)+ � r2(`+1)� )r2+(r+̀ � r�̀) � �d(r+̀ + r�̀) (4.97)�2Dq2D2`(`+ 1) = (r+r�)` � �(`+ 1)(`+ 2) (r`+2+ � r`+2� )r2+(r+̀ � r�̀) � �d� (4.98)and moreover r+ = 1, whih amounts to a hoie of oordinates. Meanwhile, the tensions of27



the branes an be related to the bulk parameters via Eq. (4.92):1� T+�2D4� = (4.99)12 �Dr�̀ � 1 �(`+ 2� 2 (`+ 1) r�̀ + ` r2 `+2� ) �(`+ 1)(`+ 2) � `(r�̀ � 1)2��1� T��2D4� = (4.100)12 �Dr`+1� (r�̀ � 1) �(�` + 2 (`+ 1) r`+2� � (`+ 2) r2 `+2� ) �(`+ 1)(`+ 2) + `(r�̀ � 1)2�� :Unwarped limitAs an aside, we show how the above higher dimensional warped bakground redues to theknown unwarped solution as the warp fator goes to one, r� ! r+. This limit an be takenby making the hange of oordinates:r = r+2 ((1 + �) + (1� �) os �) ; (4.101)where we have de�ned � := r�=r+. We then take � = 1 + � together with the limit � ! 0,but insist that � �D ! "D, a �nite onstant. In this way, the metri assumes the form of therugbyball ds2D = gABdxAdxB + a2 �d�2 + �2 sin2 �d�2� ; (4.102)where the radius and de�it angle are, respetively,a2 = 1�� `2� and (4.103)�2 = "2D4a4 ; (4.104)and the gauge �eld is that of the monopoleA� = "DqaDQa2 (os � � 1) d� : (4.105)The quantisation ondition (4.95) redues to �g "D qaD eaI = NI, and Eq. (4.98) tells us that:`� = 1(`+ 1) ��� �2D"2Dq2D8�2a4 � ; (4.106)whih is preisely one of the onstraints enountered from the equations of motion for theunwarped rugbyball. Meanwhile, the boundary onditions (4.99, 4.100) also redue to theexpeted ones: T+�2D4� = 1� � (4.107)T��2D4� = 1� � : (4.108)28



We obtain an additional onstraint by putting together Eqs. (4.98) and (4.99, 4.100): aftersome manipulation one arrives at the ondition � = 0. Therefore, we are able to take theunwarped limit only for at (n+4)D slies, and the warped generalizations for the dS4+n�S2and AdS4+n � S2 solutions are yet to be disovered. Finally, taking furthermore � ! 1 wereover the equations for the sphere (4.66,4.69).The Warped Endpoints: Upstairs and DownstairsBak to the main line of argument, having established the higher dimensional warped on-�gurations that are assumed in the presene of 3-branes, we now ask what happens to theseon�gurations when they are unstable. As desribed above, we expet both the 6D and D-dimensional warped solutions to be unstable when there are monopoles numbers jNIj > 1.The monopole numbers depend on the harges present, as well as the parameters qaD; �D andr�, via the Dira Quantisation ondition (4.95). The d = 4 + n-dimensional urvature, �d,ompletes the desription of the solution (4.86-4.88), but not all of these parameters areindependent, due to the equations of motion (4.98, 4.99, 4.100). Thus we an speify agiven solution ompletely with one parameter, say, qaD. Beginning with an unstable solution,qaD i, the monopole �eld strength will deay onserving its topologial ux, as we have seenpreviously, and the geometry will adjust appropriately aording to the equations of motion.A reasonable endpoint in the D-dimensional EYM theory is then a warped on�gurationwithin the same lass (4.86-4.88), with new parameters qaD f ; �D f ; r�f and �df .It remains to play the same game as in unwarped ase to disover how the geometryand dilaton respond to the deay of the monopole in 6D supergravity. The rules of thegame are by now familiar; we begin with a warped dilatoni 6D model, tuning the bulkosmologial onstant, �, to allow for at 4D slies in the initial unstable on�guration,with monopole strength qa = qai and brane tensions T�. Uplifting this model to a non-dilatoni D-dimensional theory, it is easy to see that the deay of the monopole to its stabletopologial ousin urves the (4+n)D slies from �di = 0 to �df 6= 0. Now we dimensionallyredue the stable D-dimensional solution, and take the n!1 limit, in order to reover thegeometry and dilaton pro�le in the 6D supergravity model.The dimensional redution is performed as in the previous setion. To allow a well-de�nedn!1 limit, we further make the hange of oordinates � = r2+n2 , along with the parameterrede�nitions �� = r2+n2� , � = 2 �D=n and � = n2�d. Moreover, we de�ne the funtion h(�) ash(�) = limn!1 n2�4 hn(�): h(�) = (�� �) �4 �1� 1�2� �1� �2��2 � : (4.109)Finally, the solution to the 6D supergravity an be written:ds26 = � dz2 + � � zL�2 ��dt2 + Æijdxidxj�+ � zL�2� d�2h(�) + �2h(�)d�2��� = 4 ln� zL� + 2 ln� F�� = �� qa�3 Qa (4.110)29



where, assuming � < 0, we have de�ned z as in Eq. (4.73), 4=L = p�� and the quantizationondition takes the familiar form:� g eaI � qa2 �1� 1�2�� = NI ; (4.111)where we reall the hoie of oordinates suh that �+ = 1. The parameters desribing thebakground, �; � and ��, are given as above in terms of qf ; T�, using (4.98,4.99,4.100) in thelimit n!1: � = �� �2q2f2�2��1� T+�24� �2 = � �4 1(�2� � 1) �(1� 2�2� + �4�)�� (�2� � 1)2���2�1� T��24� �2 = � �4 1�2�(�2� � 1) �(�1 + 2�2� � �4�)� + (�2� � 1)2���2 : (4.112)It is a simple exerise to invert these expressions. Then, the initial tuning of � gives:� = �2q2i2 �1� T+�24� ��1� T��24� � (4.113)whereas the �nal solution parameters are:� = �� �2q2f2 �1� T+�24� ��1� T��24� �� = � 32��2q2f �1� T+�24� �2(T+�2 � T��2)�� = vuut1� T+�24�1� T��24� : (4.114)In ontrast to the unwarped ase with or without branes, here we �nd a unique physialsolution with � < 0 (for the monopole �eld strength to deay, the ombination � qa mustderease, whih, together with � � 1=q2, implies q2f > q2i ). Otherwise, the endpoint in thepresene of warping is a straightforward generalization to the one we found in the previoussetions, breaking the 4D maximal symmetry, and it is similarly the analogue of the warpedsaling solutions found in [8℄. Although to establish the stability of this �nal solution wouldnow require a systemati analysis of its utuations, we argue that due to ux onservation,the monopole has nowhere else to go. 30



EnergyMoreover, we now on�rm that the energy of our proposed endpoint solution is less than thezero energy of the initial unstable on�guration. The total energy density an be de�ned as inthe unwarped ase as a sum of 4D gradient and potential energies, (4.82), but now inludingthe warp fator when we integrate out the extra dimensions. Evaluating on the bakgroundsolution (4.110), we �nd, just as for the unwarped ase, that the gradient energy is �1=2 ofthe potential energy, so that the total energy in the Einstein frame (g(E)�� = (z=L)2g��) is:ETOT = �4���2 (1� �2�)L2 z4 (4.115)and indeed less than zero.5 ConlusionsCompati�ations supported by gauge �eld uxes were long ago [6, 7℄ found to be generiallyunstable, due to tahyoni modes in the non-Abelian degrees of freedom, but the fate thatthey meet has remained an open question. In this paper, we have explored a number ofpossible andidates for the endpoint of this instability.Topologial ux onservation suggests that an unstable monopole �eld deays to theunique, topologially onneted, stable monopole [3, 4, 5℄, and we have determined how thegeometry responds to this deay in various senarios. In the Einstein-Yang Mills theory, witha osmologial onstant, a Minkd�S2 lowers its potential energy by adjusting to AdSd�S 02.In 6D supergravity, the dilaton preludes suh a simple dynamis, and we have argued that itfores the breaking of the maximal symmetry in the non-ompat dimensions. By reastingthe dilaton as the volume modulus of n �titious dimensions in a yet-higher dimensional non-dilatoni Einstein-Yang Mills theory [23℄, we were able to �nd the orresponding solutionsexpliitly for both unwarped and warped initial on�gurations, with and without branesoures. The non-trivial pro�le of the dilaton in 4D generates a singular, stati, Kasner-like geometry that is onformal to (unwarped or warped) Mink4 � S2, where the radiusof the 2-sphere grows with the distane from the singularity. How to interpret the nakedtimelike singularity to whih the instability seems to lead is an important open question;does it signal an inonsisteny or does it suggest some new physis beyond any supergravityapproximation? One way to resolve the singularity is to pass to the higher dimensionalEinstein-Yang Mills theory in (6+n)D, in whih ase the singularity results from projetingthe smooth AdS4+n � S2 geometry onto six dimensions. Suh ideas have been disussed in[28℄. Moreover, we have shown that the �nal on�guration is perturbatively stable, and thatthe deay results in a �nite total energy whih is lower (ounting gradient and potentialontributions) than the initial one.We would like to end with a omment. The instability su�ered by Yang-Mills setors inthe bakground of a monopole is the spherial analogue of the Nielsen-Olesen instability thatours in at 4D Yang-Mills theory [32℄. In that ase, it was proposed that ondensation ofthe tahyoni modes leads to the formation of magneti ux tubes [33℄, in a rather beautifulimitation of the vortex formation in superondutor physis [34℄. That suh a dynamismight also be possible in the present ase is ertainly an interesting speulation.31
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