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Abstra
tFluxes are widely used to stabilise extra dimensions, but the supporting monopole-like 
on�gurations are often unstable, parti
ularly if they arise as gauge 
ux within anon-abelian gauge se
tor. We here seek the endpoint geometries to whi
h this insta-bility leads, fo
ussing on the simplest 
on
rete examples: sphere-monopole 
ompa
t-i�
ations in six dimensions. Without gravity most monopoles in non-abelian gaugegroups are unstable, de
aying into the unique stable monopole in the same topologi
al
lass. We show that the same is true in Einstein-YM systems, with the new twistthat the de
ay leads to a shrinkage in the size of the extra dimensions and 
urvesthe non-
ompa
t dire
tions: in D dimensions a MinkD�2 � S2 geometry supportedby an unstable monopole relaxes to AdSD�2 � S2, with the endpoint sphere smallerthan the initial one. For supergravity the situation is more 
ompli
ated be
ause thedilaton obstru
ts su
h a simple evolution. The endpoint instead a
quires a dilatongradient, thereby breaking some of the spa
etime symmetries. For 6D supergravity weargue that it is the 4D symmetries that break, and examine several 
andidates for theendpoint geometry. By using the tri
k of dimensional oxidation it is possible to re-
ast the supergravity system as a higher-dimensional Einstein-YM monopole, allowingunderstanding of this system to guide us to the 
orresponding endpoint. The resultis a Kasner-like geometry 
onformal to Mink4 � S2, with nontrivial 
onformal fa
torand dilaton breaking the maximal 4D symmetry and generating a singularity. Yet theresulting 
on�guration has a lower potential energy than did the initial one, and isperturbatively stable, making it a sensible 
andidate endpoint for the evolution.1Email: 
burgess�perimeterinstitute.
a2Email: susha.louise.parameswaran�desy.de3Email: zavala�th.physik.uni-bonn.de 1
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tionThe ubiquity of moduli in extra-dimensional 
ompa
ti�
ations has been a persistent thorn inthe side of model-builders attempting to bring higher-dimensional theories into 
onta
t withNature as we see it around us. For this reason 
ux-supported 
ompa
ti�
ations, for whi
hvarious n-form �eld strengths thread 
y
les and are topologi
ally blo
ked from relaxingto zero, represent a signi�
ant step forward by providing an attra
tive me
hanism thatdynami
ally stabilises many of these moduli.Better yet, the required n-form �elds are as 
ommon as dirt in supersymmetri
 theories,arising as 
omponents of the gravity supermultiplet in higher dimensions; as Maxwell �eldsrequired by anomaly 
an
ellation; or as �elds sour
ed by D-branes or other su
h obje
ts.Perhaps the simplest su
h 
onstru
tion, due to Salam and Sezgin [1℄, is more than 20 yearsold, and threads a Maxwell 
ux through the extra dimensions in 6D supergravity to stabiliseits 
ompa
ti�
ation to Mink4 � S2.What is less well known is that a great many of su
h monopole 
on�gurations are unstable,parti
ularly when the 
ux involved arises as a Dira
 monopole embedded into a non-Abeliangauge se
tor. For instan
e, expli
it 
al
ulations [2℄ show that sphere-monopole 
ompa
ti-�
ations in anomaly-free supergravity { and their warped braneworld generalizations { aregeneri
ally unstable, even though the monopole in question 
arries nontrivial topologi
al
harge. The instability is possible be
ause there are typi
ally more monopole solutions thanthere are distin
t topologi
al se
tors, allowing most to de
ay to the (often unique) stablerepresentative in any topologi
al 
lass | a phenomenon that is well understood within pureYang Mills (YM) theories [3, 4, 5℄. 2



For monopole-supported systems, the 
oupling to gravity does not remove the instability[6, 7℄, and requires the geometry also to relax as the monopole de
ays. We examine this re-laxation here, and argue that it is fairly straightforward for the Einstein-YM system (EYM).As in pure YM theory, the unstable monopole evolves towards the unique stable monopolein the same topologi
al 
lass [5℄, and as it does so the geometry adjusts simply by shrinkingthe size of the supported extra-dimensional sphere, and by 
urving the large 4 dimensions.In d+ 2 dimensions, starting from Minkd � S2 the system evolves towards AdSd � S 02, withthe radius of S 02 being smaller than that of S2.The situation is more 
ompli
ated in the supergravity 
ase, be
ause the dilaton obstru
tsthis same simple evolution towards another maximally symmetri
 solution built with thestable monopole be
ause for it � 6= 0. As a result �M� 6= 0, instead leading to a breakdownof some of the spa
etime symmetries. The 
orresponding �nal state for higher dimensionalsystems, with gravity and a dilaton ba
k-rea
ting to the monopole dynami
s, is unknown.In this paper we examine several 
andidate stable endpoint 
on�gurations for the simplest
ase of 
ompa
ti�
ations of 6D supergravity down to 4D. We argue that the insensitivityof the low-energy e�e
tive 4D s
alar potential to s
alar gradients in the 
ompa
ti�ed twodimensions make it likely that it is the 4D spa
etime symmetries that break in this 
ase,rather than those of the 
ompa
ti�ed two dimensions.To �nd the endpoint solution we employ a tri
k: a 
y
le of dimensional oxidation andredu
tion that maps the solutions of the supergravity of interest onto those of a dilaton-free pure EYM system in still-higher dimensions. We use this to map the unstable initialmonopole-supported supergravity 
on�guration onto an unstable monopole-supported statein the still-higher dimensional theory. Assuming this higher-dimensional EYM system relaxesin the simple maximally-symmetri
 way tells us its endpoint, and this 
an then be mappedto determine the endpoint EYM-dilaton 
on�guration that is supported by the �nal stablestate into whi
h the monopole de
ays.Pro
eeding in this way we are led to a stable, nonsupersymmetri
 endpoint geometrythat (in the absen
e of brane sour
es) is 
onformal to Mink4 � S2. Its nontrivial 
onformalfa
tor and dilaton break the maximal 4D symmetry, giving rise to a singular geometry forwhi
h the dilaton and 
urvature blow up at a point in the 4D spa
etime. However, the
on�guration nonetheless has a lower potential energy than did the initial one, and is stable,and is a reasonable 
andidate for the endpoint of the instability.Although the dilaton 
hanges the dynami
s drasti
ally, the presen
e of branes (spe
if-i
ally, 
oni
al singularities in the extra-dimensional geometry) and warping do not makemu
h di�eren
e, as we show by also �nding a warped generalization of the endpoint solutionin this 
ase, for generi
 brane tensions. The solutions we �nd in this way turn out to bestati
 analogues of the time-dependent s
aling solutions to 6D supergravity found in [8℄, withthe �elds varying along a 4D spatial 
oordinate rather than along time.We also examine a 
lass of supersymmetri
 solutions to 6D supergravity as 
andidateendpoints (that also break the 4D spa
etime symmetry) [9℄. Although we 
annot provethese not to be the ultimate endpoint, we provide arguments as to why this seems less likelythan those we 
onstru
t using the oxidation/redu
tion tri
k.The rest of our exposition is organised as follows. The next se
tion, x1, summarisesthe �eld equations of 
hiral gauged 6D supergravity [13℄, together with their most generalmonopole-supported solutions that have at most 
oni
al singularities [14, 15℄. This se
tion3




on
ludes by brie
y summarising the linearised stability analysis of ref. [2℄, and reviewing thetopologi
al 
lassi�
ation of non-abelian Dira
 monopoles in YM theories. x3 then des
ribeshow gravity ba
krea
ts to monopole de
ay in dilaton-free EYM theory, by shrinking the extradimensions and 
urving the 4 large dimensions. Finally x4 generalises these 
onsiderationsto the EYM-dilaton system that arises in the 6D supergravity of interest. This se
tiondes
ribes the oxidation/redu
tion pro
edure, and applies it to two examples. The �rstexample 
onsiders unwarped systems su
h as arise in the absen
e of branes, or with twobranes having equal tension. The se
ond does the 
ase of the general warped geometries ofx2, having only 
oni
al singularities. We end with some brief 
on
lusions.2 Theory and Ba
kgroundWe start with the bosoni
 a
tion4 for 
hiral 6D gauged supergravity 
oupled to gauge- andhyper-multiplet matter, with gauge group Ĝ = G � U(1)R [13℄SB = Z d6xp�g � 1�2 R� 14 �M� �M� � 14 e��=2 Tr (FMNFMN) (2.1)� 112 e��HMNPHMNP �G��(�)DM��DM�� � 8�4 e���=2v(�)� ;where fgMN ; H3 = dB2 +A1 ^ F2; �g are the bosoni
 �elds in the gravity multiplet; FMN arethe gauge-multiplet �eld strengths for G�U(1)R; and �� denote the hyper-multiplet s
alars.The dependen
e of the s
alar potential on �� is su
h that its minimum is at �� = 0 wherev(0) = g21, and so we �x hen
eforth �� = 0. Here g1 is the U(1)R gauge 
oupling, and weuse g for the G 
oupling 
onstants.5Using �� = 0 the remaining equations of motion (EOMs) be
ome1�2 RMN = 14 �M� �N� + 12 e��=2 Tr (FMPF PN ) + 14 e��HMPQH PQN � 14� gMN �;1� � = 14 e��=2 Tr (FMNFMM) + 16 e��HMNPHMNP � 8g21�4 e���=2;DM �e��=2FMN� = �2 e��HNPQFPQ;DM (e��HMNP ) = 0; (2.2)where AM = AIM TI ; FMN = F IMN TIF IMN = �MAIN � �NAIM + g 
IJKAJMAKNDM = rM � igAIM TI (2.3)with rM the Lorentz 
ovariant derivative, and TI are the gauge group generators with stru
-ture 
onstants 
IJK.4For fermioni
 terms see [13℄.5In general, if G 
onsists of several simple fa
tors, g represents a 
olle
tion of independent gauge 
ouplings.4



2.1 Ba
kground solutionsThe solutions to these equations whose stability is of interest are monopole-supported extradimensions, in whi
h the extra dimensions are supported against gravitational 
ollapse byhaving a gauge 
ux thread the extra dimensions. Our interest in parti
ular lies in the 
asewhere this ba
kground 
ux lies within the non-Abelian part of the gauge group. A broad
lass of these have the form [15℄,ds2 = gMN dxMdxN = � ��� dx�dx� + d�2h(�) + h(�) d�2A� = qaQa2 � 1�2 � 1�2�� d�� � = 2 ln� ; HMNP = 0 (2.4)with h(�) = 2M� � 2 g21��2 � �2 
abqaqb8 �3= � 2 g21�2�3 (�2 � �2+)(�2 � �2�) ; (2.5)where Qa are the generators of the Cartan subalgebra of the Lie algebra asso
iated with thegroup G, normalized so that Tr(QaQb) = 
ab = 
2Æab, for 
onstant 
. The qa identify themagnitude and dire
tion of the ba
kground 
ux in the Lie algebra of G. Finally, �� < � < �+,where �� = �22g21 "M �rM2 � 14 
abqaqb# ; (2.6)denote the two positive values where h(��) = 0, at whi
h point the geometry has a 
oni
alsingularity, with de�
it angleÆ� = 1� 12 jh0(��)j = 1� 2 g21�2�� ��2+ � �2�� : (2.7)As shown in ref. [16℄, it is the property that these singularities are 
oni
al that de�nes thesesolutions, eqs. (2.4) and (2.5), as spe
ial 
ases of the more general solutions of ref. [14℄.We regard the 
oni
al singularities as indi
ating the presen
e of sour
e 
odimension-twobranes having tensions T�, Sbrane = �T� Z d4yp�
� ; (2.8)with yi being 
oordinates on the brane world-volume, and 
ij the indu
ed metri
 there. Thetension is related to the geometry's 
oni
al defe
t angle through T� = 2Æ�=�2, and this
onne
tion allows us to trade the integration parameters M and q2 = 
abqaqb for the twosour
e brane tensions. It turns out that only one 
ombination of these parameters is �xed,and that the tensions of the branes are related to ea
h other by a 
onstraint [15℄ (see laterse
tions for a re
ap of some of these features).5



These solutions break supersymmetry, apart from the spe
ial rugby-ball 
ase where thedilaton is a 
onstant: �m� = 0. Whether supersymmetry breaks even in this 
ase dependson the boundary 
onditions at the branes [17℄, whi
h is governed by more model-dependentdetails of the branes themselves.The amplitude, qa, of the gauge �eld is also 
onstrained by topology to be quantized, asfollows. In order for the gauge �eld potential to be well-de�ned at ��, we need to 
over theinternal manifold with two 
oordinate pat
hes. Requiring that the two pat
hes be related by asingle valued gauge transformation on their overlap leads to the following Dira
 quantization
ondition � g eaI qa2 � 1�2+ � 1�2�� = NI ; (2.9)where NI are integer monopole numbers, one for ea
h gauge generator TI. The quantitieseaI denote the Qa 
harge of generator TI, de�ned in the adjoint representation by 
hoosinga basis of generators that satis�es [Qa; TI℄ = eaITI (no sum). This 
learly vanishes forall generators of the Cartan subalgebra, eab = �eba = 0. For those Ti not in the Cartansubalgebra6 hermitian 
onjugation reverses the sign of this 
harge, so we 
hoose notation sothat T yi = T�i.Rugby Balls and Spheres:Ref. [16℄ shows that these solutions go over to the unwarped rugby-ball solutions [18℄, whenT� ! T+ (and to the spheri
al Salam-Sezgin solutions [1℄ when T+ = T� = 0). In theselimits, a 
hange of 
oordinates puts the ba
kground into the familiar form of a spheri
algeometry supported by a Dira
 monopole:ds2 = ���dx�dx� + a2 �d�2 + sin2 �d�2�A� = �qaQa2 (
os � � 1) d��� = HMNP = 0 (2.10)In this 
ase the equations of motion �x the radius of the sphere,7 a = �=(2p2g1), and �xthe monopole strength q2 = 
2Æab qaqb = 1g21 : (2.11)(Any other value for the monopole strength would indu
e warping in the non-
ompa
t di-re
tions, whi
h requires T+ 6= T�). On the other hand, the Dira
 quantization 
ondition inthis 
ase redu
es to: � g qa eaI = NI ; (2.12)and so 
onsisten
y between this and eq. (2.11) in general requires relations between theotherwise independent 
ouplings g1 and g. In the simplest 
ase where the monopole isaligned in the U(1)R dire
tion [1℄ we have g = g1 and 
onsisten
y between equations ofmotion and Dira
 quantisation imply the monopole number must be N = �1.6In the Cartan-Weyl basis of generators we label the Lie algebra of G by: fTIg = fQa; Ti; T�ig.7More generally there is a 
at dire
tion along whi
h the values of � and a are 
orrelated.6



A 
on
rete exampleIt is useful in what follows to have in mind a 
on
rete example that is simple enough tosolve expli
itly yet 
ompli
ated enough to display the instabilities of later interest. Forthis purpose we fo
us on the subse
tor of the theory for whi
h the gauge �elds lie within asubgroup Ĝ = SU(3) � U(1)R of the full group, with all hyper-s
alars either neutral underthe non-Abelian subgroup or transforming in the adjoint,8 and all other �elds required foranomaly 
an
ellation, in
luding the Kalb-Ramond �elds HMNP , set to zero.The Cartan subalgebra of SU(3) is two-dimensional, Qa with a = 1 ; 2 , and with thenormalisation 
ondition 
ab = Tr (QaQb) = 16 Æab (so 
2 = 16), these may be writtenQ1 = 12p3 0� 1 �1 0 1A Q2 = 160� 1 1 �2 1A : (2.13)The remaining six generators 
an be divided into three pairs, Ti and T�i with i = 1; 2; 3,having opposite 
harges. The independent nonzero 
harge eigenvalues, eai, then be
omeT1 T2 T3Q1 1p3 12p3 � 12p3Q2 0 12 12Table 1: Table of 
harges for adjoint �elds in SU(3).The monopole breaks the SU(3) gauge group down to either U(1)1 � U(1)2 or SU(2)�U(1)2, depending on whether or not all of the eigenvalues of qaQa are distin
t or if two ofthem are equal.The 
ase SU(3)! SU(2)� U(1)2:If two eigenvalues of qaQa are equal then an SU(3) rotation 
an be performed to ensurethat qaQa points purely in the q2 dire
tion.9 The spe
trum of SU(3) gauge bosons thende
omposes into the four massless gauge �elds of the unbroken gauge group together withan SU(2) doublet of massive 
harged states, having 
harge 12 with respe
t to U(1)2 (andtheir 
onjugates). The Dira
 quantisation 
ondition then requires that q2 = 2N=g whereN = Ni=2 = Ni=3 is an arbitrary integer, while Na = Ni=1 = 0.The 
ase SU(3)! U(1)1 � U(1)2:Alternatively, if all eigenvalues of qaQa are distin
t then both q1 and q2 are nonzero. TheSU(3) gauge �elds then de
ompose into two massless gauge �elds, together with three 
om-plex massive ve
tors with U(1)1 � U(1)2 
harges as given by Table 1: ( 1p3 ; 0), ( 12p3 ; 12),8Although the hyper-s
alars vanish in the ba
kground, the 
harge of their 
u
tuations plays a role in theDira
 quantization 
onditions.9The same 
an sometimes also be done if its eigenvalues all di�er, but the required SU(3) transformationis then singular, a distin
tion that turns out not to be important for identifying whi
h monopoles aretopologi
ally stable [4℄. 7



(� 12p3 ; 12). The Dira
 quantisation 
ondition then requires that q1 = 2p3 s1=g and q2 =2 s2=g, where s1 = 12(Ni=3�Ni=2) = 12Ni=1 and s2 = 12(Ni=3+Ni=2) are half-integer valued.Di�erent quantum numbers (s1 ; s2 ) do not always label distin
t monopoles. For instan
eif (s1 ; s2 ) = �12 ; 12�, theng qaQa = p3Q1 +Q2 = 130� 2 �1 �1 1A ; (2.14)and so equals �2Q2 up to a permutation of the axes. This shows that the (s1 ; s2 ) = �12 ; 12�monopole is physi
ally equivalent to the (s1 ; s2 ) = (0;�1) (or N = �1) SU(2) � U(1)2-preserving monopole.2.2 Linearised instabilityLinearised stability analysis shows that spa
etimes stabilised by monopoles embedded intonon-abelian groups (as above) are unstable, as we now summarise following ref. [2℄. Considertherefore linearising about the ba
kground geometry�gMNdxMdxN := e �A���dx�dx� + e �Adu2 + e �Bd�2 ; (2.15)where the extra-dimensional 
oordinates are fxmg = fu(�); �g. Denote the Ri

i tensor forthis geometry by RMN , and the ba
kground gauge �eld by AM , with �eld strength FMN .The unstable ta
hyoni
 dire
tions turn out to be among the Kaluza-Klein (KK) modes ofthe non-abelian gauge �eld that live in the extra dimensions and lie along dire
tions of thegauge algebra that are 
harged under the generator along whi
h the ba
kground monopolepoints: ÆAIuTI := V IuTI = VuÆAI�TI := V I�TI = V� : (2.16)Raising and lowering all indi
es with the res
aled ba
kground metri
, ĝMN = e��=2 gMN ,ref. [2℄ shows that the part of the a
tion that is bilinear in these unstable gauge-�eld 
u
tu-ations is (in light-
one gauge):S2(V; V ) = �12 Z d6Xp�ĝ Tr h��Vm��V m +DmVnDmV n � 2(�uÂ)2V 2u�2(�uÂ)VuDmV m + R̂mnV mV n + 2gFmnV m � V ni ; (2.17)where Â = �A+ ��=2, and the 
ovariant derivative of VM is de�ned byDMVN = rMVN � ig [AM ; VN ℄ ; (2.18)and rM is the Lorentz 
ovariant derivative.Solving the linearised equations of motion and boundary 
onditions obtained from thisa
tion, and requiring the resulting modes to have �nite kineti
 energy, leads to a dis
rete8



spe
trum of 
u
tuations. Taking advantage of the axial-symmetry, make the Fourier de
om-position: Vn(X) =Xm Vnm(x; u)eim� (2.19)with m an arbitrary integer, �1 < m < 1. To diagonalise the mode fun
tions make the�eld rede�nitionsV�m(x; u) = 1p2 �e(Â+B̂)=4 Vum(x; u)� ie(3Â�B̂)=4 V�m(x; u)� (2.20)and perform a Kaluza-Klein de
ompositionV�(x; u) = V�(x) �(u) : (2.21)The solutions for  �(�) 
an then be found expli
itly in terms of hypergeometri
 fun
tions.For n = 0; 1; 2; : : : the 
orresponding KK mass spe
trum for V I+ is� For m � � 1�+ and m � NI + 1��M2 = 1a2 �n(n+ 1)� �n+ 12� [m�+ + (m�NI)��℄ +m(m�NI)�+��� : (2.22)� For � 1�+ <m � NI + 1��M2 = 1a2 (�n+ 32�2 � 14 + �n+ 32� [m�+ � (m�NI)��℄) : (2.23)� For NI + 1�� <m � � 1�+M2 = 1a2 �n(n� 1)� �n� 12� [m�+ � (m�NI)��℄� : (2.24)� For m > � 1�+ and m > NI + 1��M2 = 1a2 �n(n + 1) + �n + 12� [m�+ + (m�NI)��℄ +m(m�NI)�+��� : (2.25)In these expressions the parameters, ��, are related to the two 
oni
al defe
t angles, Æ�,by �� = (1� Æ�=2�)�1. The spe
trum for V I� is obtained from the above by transformingm! �m andNI ! �NI . The integerNI is the quantity appearing in the Dira
 quantisation
ondition, eq. (2.9).1010In the sphere limit, the spe
trum 
an be put into the familiar form M2 = 1a2 hl(l + 1)� �NI2 �2i withmultipli
ity 2l+ 1, where, for V I�, l = k + j1�NI=2j, and k = 0; 1; 2; : : : .9



Using these expressions it is possible to show that the ne
essary and suÆ
ient 
onditionfor the absen
e of ta
hyoni
 modes, assuming brane tensions not less than zero, isjNI j � 1 for every I: (2.26)For �elds with NI � 2 the ta
hyoni
 modes are those with m = 1; 2; : : : ; NI � 1, while for�elds NI � �2 the ta
hyoni
 modes are those with m = �1;�2; : : : ; NI + 1. Noti
e thatbe
ause m 6= 0 the instability towards growth of these modes spontaneously breaks theaxially symmetry of the ba
kground.In fa
t, it has long been known that non-abelian monopoles in pure gauge theory in 4dimensions are also generi
ally unstable, with only one dynami
ally stable monopole exist-ing within ea
h topologi
al 
lass [3, 5℄. Similar instabilities were also found soon after inhigher dimensions, 
ompa
ti�ed on spheres, both for Yang-Mills and for Einstein-Yang-Millstheories [6, 7℄. We use these related instabilities in subsequent se
tions to try to identify thenew state towards whi
h the system evolves on
e the instability develops.The SU(3)� U(1)R exampleIt is instru
tive to apply this to the spe
i�
 example 
onsidered above, where the monopoleis embedded into SU(3)� U(1)R.The 
ase SU(3)! SU(2)� U(1)1:In this 
ase we had (q1 ; q2 ) = (2=g)(0; N), with Na = Ni=1 = 0 and Ni=2 = Ni=3 = N . Inthis 
ase we �nd no ta
hyoni
 modes when N = 0;�1, but instability when jN j � 2 (forwhi
h there are two 
omplex ta
hyoni
 modes, V i=2 and V i=3).The 
ase SU(3)! U(1)1 � U(1)2:Consider the monopole with (s1 ; s2 ) = (1; 0), for example, where solving for the NI 's leadsto the nonzero values Ni = (2; 1;�1). Sin
e Ni=1 = 2 this monopole has one 
omplexunstable ta
hyoni
 dire
tion. Similarly, the monopole with (s1 ; s2 ) = (2; 0) has ta
hyonsamongst all three of its 
harged 
u
tuations, sin
e Ni = (4; 2;�2). However, the embedding(s1 ; s2 ) = �12 ; 12� turns out to give monopole numbers Ni = (1; 1; 0), and so is stable, as itmust be given that it is equivalent to the N = �1 monopole of the SU(2)�U(1)2-preserving
ategory. Sin
e this (and its 
onjugate) is the only stable monopole of this 
ategory, we seethat the only three stable 
ases preserve SU(2)� U(1)2, with N = 0;�1.2.3 TopologySin
e topologi
al 
harge 
an 
ause stability for some 
on�gurations, it is worth identifyinghow these 
harges are 
lassi�ed for non-abelian monopoles. In the present instan
e thetopology of the internal manifold is that of a sphere, with Euler number � = 2. Thisis not 
hanged by the presen
e of the 
oni
al defe
ts, sin
e the 
ontribution to � from thesingularities 
ompensates for the redu
tion that the angular defe
t 
auses in the 
ontributionto � from the integral of R over the internal spa
e.The non-trivial topology asso
iated with the Dira
 monopole embedded into the gaugegroup G is similarly 
lassi�ed by �1(G). This 
an be seen expli
itly in the so 
alled Wu-Yang10



Gauge group G �1(G) CenterSU(N) 1 ZNSO(2k + 1) Z2 Z2SO(4k) Z2 Z2 � Z2SO(4k + 2) Z (k = 0), Z2 (k � 1) Z4Sp(N) 1 Z2E8 1 1E7 1 Z2E6 1 Z3F4 1 1G2 1 1Table 1: �1 and 
entres for the simple Lie groups.
onstru
tion [19℄, used above, wherein the extra dimensions are 
overed with two pat
hes,ea
h with a non-singular gauge potential A�. In this 
ase the A� must di�er on the overlapof the two pat
hes at the equator by a single-valued gauge transformation, and so de�nes amap from S1 to G that is 
lassi�ed by �1(G).11For non-abelian groups the integer 
orresponding to this topologi
al 
lassi�
ation 
an bewritten expli
itly in terms of the representative gauge �elds. Suppose for example, the gaugealgebra is SU(N), and all 
harged �elds transform in the adjoint representation. Then theglobal group is a
tually G = SU(N)=ZN be
ause the adjoint representation uses the samematrix to represent two group elements that di�er only by an element of the group's 
enter.De�ne the magneti
 
ux, �, using the following integral,� = 1NTr exp �ig I ds (A+M � A�M) dxMds � ; (2.27)where the path is taken as the 
losed loop around the equator in the overlap of the twopat
hes on whi
h the two gauge 
on�gurations, A+ and A�, are respe
tively de�ned. Thisexpression, when evaluated using expli
it gauge 
on�gurations, produ
es a phase� = exp�2�iLN � ; (2.28)where 0 � L < N is the integer that labels the 
orresponding element of �1(SU(N)=ZN) =ZN .Table 1 gives �1 and the 
enters of all the simple Lie algebras. Amongst the knownanomaly-free non-abelian gauge groups in 6D 
hiral supergravity, those involving non-Abelian11If Higgs �elds spontaneously break G ! H, then magneti
 
harge would instead be 
lassi�ed by �1(H).For smooth 
on�gurations without Dira
 strings this redu
es to the subgroup of �1(H) 
onsisting of thoseelements whi
h are 
ontra
tible in G, denoted �1(H)G . This is equivalent to the familiar 
lassi�
ation ofnon-singular monopoles by �2(G=H) (interpreted as 
lassifying the map from the S2 at spatial in�nity tothe va
uum manifold G=H) due to the isomorphism �1(H)G � �2(G=H). Similarly, in the absen
e of a Higgs
ontribution to topologi
al 
harge the 
lassi�
ation �1(H) redu
es to the Wu-Yang 
lassi�
ation �1(G), sin
e�1(H)=�1(H)G � �1(G). 11



gauge groups with non-trivial topology are the 
lassi
 E7�E6�U(1)R model [20℄, for whi
hall hyper-multiplets are singlets under E6; as well as two models by Avramis and Kehaghias[21℄, respe
tively involving E6 (with hyper-multiplets only in the adjoint representation) orSO(N)'s.The example G = SU(3)� U(1)RFor the Dira
 monopole embedded in SU(3), with all �elds 
harged under the SU(3) sub-group transforming in the adjoint representation, as des
ribed above the global group isa
tually Ĝ = [SU(3)=Z3℄� U(1)R, and the topologi
al 
lassi�
ation is given by:�1(Ĝ) = �1(G) + �1(U(1)R)= �1(SU(3)=Z3) + �1(U(1)R)= Z3 + Z (2.29)Noti
e that ea
h simple fa
tor of Ĝ gives rise to its own topologi
al 
lassi�
ation, providedthat the monopole lies at least partially in the fa
tor of interest.If the monopole is embedded purely within the SU(3) then the topology is simply 
las-si�ed by �1(SU(3)=Z3) = Z3. In the 
ase where the monopole preserves an unbrokenSU(2)� U(1)2 we have seen that it 
an always be written as 12gA� = �12 M (
os � � 1) d�where M = 2N Q2 = N3 0� 1 1 �2 1A ; (2.30)and, as before, Q2 is the se
ond Cartan generator of SU(3) while N is the integer of theDira
 quantisation 
ondition. In this 
ase the asso
iated 
ux evaluates to � = ei2�N=3 2 Z3,showing that it is L = N (mod 3) that labels the distin
t topologi
al 
lass [4℄. The �ndingthat linearised stability requires N = 0;�1 is therefore 
onsistent with the expe
tation thatthere is only one stable monopole in ea
h of the three independent topologi
al se
tors.3 The Instability's EndpointThe previous se
tions argue that monopole-supported 
ux 
ompa
ti�
ations in 6D super-gravity are generi
ally unstable, provided the monopole is embedded within a non-Abelianfa
tor of the gauge group. We now ask what the new 
on�guration is towards whi
h su
han unstable non-Abelian monopole evolves.As mentioned above, this problem is well understood in the 
ase of pure Yang-Mills (YM)theory, where the instability des
ribes the de
ay into the lightest monopole within the giventopologi
al 
lass [5℄. Our goal is to address what su
h a de
ay implies when the monopole inquestion supports an extra-dimensional 
ompa
ti�
ation. We do so in this se
tion starting12More generally, a monopole in SU(3) 
an always be written as gA� = � 12 M (
os � � 1) d� whereM = 2LQ2 + diag(r1; r2; r3), L is one of 0; 1; 2 and r1; r2; r3 are integers that sum to zero [4℄.12



with simple spheri
al 
ompa
ti�
ations of extra-dimensional Yang Mills and Einstein-Yang-Mills (EYM) systems (in
luding a 
osmologi
al 
onstant, �). We defer the qualitativelydi�erent 
ase of EYM-Dilaton theories relevant to higher-dimensional supergravity to thenext se
tion.Con
retely, 
onsider the unstable N = 2 SU(3) monopole des
ribed in previous se
tions,for whi
h g(q1 ; q2 ) = (0; 4). Be
ause N 6= 0 (mod 3), this state has a non-trivial topologythat prevents it from de
aying into a topologi
ally trivial 
on�guration. It must insteadde
ay into the stable monopole with N = �1, doing so by emitting magneti
 radiation (seee.g. [3, 5℄).3.1 Einstein Yang-Mills TheoryWhen the de
aying monopole supports a 
ompa
ti�ed extra dimension, its de
ay should also
ause the extra-dimensional geometry to 
hange. But sin
e the de
ay also redu
es the 4Dmonopole energy density, its de
ay should also 
hange the 
urvature of the large dimensionswe observe. We �rst show how this takes pla
e in detail, working within the Einstein-Yang-Mills system. In this 
ase, we must solve both the Einstein and Maxwell equations of motionto 
he
k that the expe
ted stable monopole is a possible endpoint solution.Consider then six-dimensional gravity 
oupled to a Yang-Mills �eld and a positive 6D
osmologi
al 
onstant, �. We start with a solution, Mink4 � S2, for this system 
omprisingan unstable SU(3) monopole supporting two spheri
al extra dimensions, with � adjusted toallow the observable four dimensions to be 
at. This initial monopole then de
ays into thetopologi
ally 
onne
ted stable monopole as above, whilst the ba
kground geometry appro-priately adjusts itself. We do not try to follow the time-dependen
e of this pro
ess in itsfull transient glory. Instead we dire
tly seek the endpoint solution to whi
h it ultimatelyevolves, under the assumption that this endpoint also remains maximally symmetri
 in the4 visible and 2 internal dimensions.It turns out that we are led in this way to two possible endpoint solutions. Either theinternal sphere shrinks whilst the non-
ompa
t dire
tions 
urve into anti-de Sitter spa
e(AdS), or the sphere grows whilst the 4D spa
etime 
urves into a de Sitter (dS) universe.Based on the prin
iple that the evolution lowers the e�e
tive 4D s
alar potential energy, weexpe
t it is the AdS solution towards whi
h the system evolves.Endpoint SolutionsWe start with the 6D EYM a
tion,SEYM = 1�2 Z d6xp�g �R� �24 Tr (FMNFMN)� �� ; (3.31)
ontaining only gravity, gMN , the Yang-Mills �eld, AM , and the 6D positive 
osmologi
al
onstant, �. The equations of motion for this system be
omeRMN = �22 Tr (FMPF PN ) + gMN ��4 � �216TrF 2� (3.32)rMFMN � igAMFMN = 0 ; (3.33)13



for whi
h we seek solutions having maximal symmetry in both 4 large dimensions and 2small ones ds2 = g��dx�dx� + a2(d�2 + sin2 �d�2) (3.34)with the maximally symmetri
 metri
, g��, satisfying R�� = 3�g��, with 4D 
urvature
onstant �. In our 
onventions the 
ases � > 0, � = 0 or � < 0 respe
tively 
orrespond todS, 
at and AdS geometries.Consider now solutions for whi
h the Maxwell �eld strength only has nonzero internal
omponents, Fmn, and depends only on the 
oordinate � (as in the monopole solution). Theequation of motion for the gauge �eld then impliesF�� = qaQa2 sin � (3.35)where the 
onstants qa again parametrise the monopole strength. Re
alling our 
onventionTr(QaQb) = 
ab = 
2Æab, we �nd after use of the 4D 
omponents of Einstein's equations,R�� = 3�g�� = g�� ��4 � �2q232 a4� ; (3.36)where q2 = 
abqaqb. From the 2D Einstein equations we instead �ndRmn = gmna2 = gmn �3 �2q232 a4 + �4 � ; (3.37)leading to the following 
onditions for � and a:3� = ��4 � �2q232 a4� (3.38)1a2 = 3 �2q232 a4 + �4 = �2q28 a4 + 3� : (3.39)If we 
hoose the initial monopole to be the unstable 
on�guration having qa = qai =(0; 4=g), then q2i = 16
2=g2. It is for this 
on�guration that we tune the 6D 
osmologi
al
onstant to obtain a 
at 4D spa
etime, � = 0. This �xes the initial radius of the internalsphere and the 6D 
osmologi
al 
onstant to bea2i = �2q2i8 = 2 �2
2g2 and � = �2q2i8a4i = 1a2i = g22 �2
2 : (3.40)To �nd the endpoint, we now take the monopole 
harge to be the topologi
ally stableone having N = �1 and so qaf = (0;�2=g), and so q2f = 4
2=g2 = 14 q2i . Sin
e � is no longerfree to be adjusted, we now solve eqs. (3.38) and (3.39) for the �nal radius, af , of the 2Dsphere, and the 
urvature, �f , of the �nal 4D spa
etime.We �nd in this way that the 4D 
urvature be
omes3�f = 14a2i � �2q2f32 a4f = 14a2i � a2i16 a4f ; (3.41)14



while the new radius of the 2-sphere is given by1a2f = 14a2i + 3 �2q2f32 a4f = 14a2i + 3 a2i16 a4f : (3.42)This has two roots, given bya2f� = 2 a2i 241�s1� 34 q2fq2i 35 = 2 a2i �1� 14p13� ; (3.43)and so af+ ' 1:95 ai while af� ' 0:444 ai. The 
orresponding 4D 
urvature then be
omes3�f� = 1a2i  7� 2p1329� 8p13! ; (3.44)and so �f+ ' 0:0819=a2i and �f� ' �0:452=a2i . Clearly the radius of the sphere in
reases forthe dS solution and de
reases for the AdS one.Energeti
sIntuitively, one would expe
t the AdS 
ase to be the natural endpoint, sin
e one expe
ts toobtain a negative potential energy after lowering it below the initially zero value needed toensure a 
at 4 dimension, as we next 
he
k expli
itly. To this end de�ne the potential energy(per unit 3D volume), E , of the e�e
tive 4D theory as the sum of the stati
 6D energy (i.e.gradient, magneti
 and potential energy), integrated over the extra dimensions, withE = 1�2 Z d2xpg2 ��R(2) + �24 TrFmnFmn + �� : (3.45)Here R(2) = 2=a2 denotes the 2D 
urvature s
alar, while the magneti
 energy goes asTrFmnFmn = q2=2a4, leading toE = 4�a2�2 �� 2a2 + �+ �2q28 a4 �= �4�a2�2 �2 �24� �� 2a4 + �a2 + �2q28 a6 � : (3.46)The se
ond equality of eq. (3.46) pulls out four powers of the 4D Plan
k mass, M2p =4�a2=�2, whi
h is useful when verifying that E as de�ned reprodu
es the 
orre
t equationsof motion when used in the 4D �eld theory. It is useful to display the fa
tors ofMp expli
itlyin this way be
ause transforming to the 4D Einstein frame ensures that these are held �xedwhen the 4D �eld a is varied to minimize the potential energy, leading to the 
ondition�(E=M4p )�a = 2�2�a3 � 1a2 � �4 � 3�2q232 a4 � = 0 ; (3.47)15



in agreement with eq. (3.39) determining a. The 4D Einstein equations similarly equateR�� = 3�g�� to �E=M2p� g��, leading to the 
ondition6� = � 2a2 + �+ �2q28 a4= �2 � �2q216 a4 ; (3.48)where the last equality | whi
h agrees with eq. (3.38) | uses the �eld equation, eq. (3.47),for a.We may now 
ompare the value of E when evaluated at the initial and �nal 
on�gurations
onsidered above. Evaluating using our previous results for ai, q2i and � leads to Ei = 0 forthe initial unstable solution, 
onsistent with having tuned � to ensure the 
atness of theinitial 4D geometry. For the two 
andidate endpoint solutions, the potential energy is insteadEf� = 4��2 "�2 + �a2f� + �2q2f8 a2f�#= 4��2 "�2 + �af�ai �2 + q2fq2i � aiaf��2# (3.49)= 2��2  14� 4p134�p13 ! ; (3.50)and so Ef+ ' 3:74 (2�=�2) > 0 and Ef� ' �1:07 (2�=�2) < 0. Clearly we have af+ > ai >af�, and Ef+ > Ei > Ef�, indi
ating that the endpoint solution rea
hed after the instabilityindeed 
orresponds to a shrunken extra-dimensional sphere together with 4D AdS spa
e.4 Endpoint Revisited: In
luding the DilatonWe next re
onsider the problem of dire
t interest for higher dimensional supergravity, bysupplementing the Einstein-YM theory with an appropriate s
alar dilaton �eld. In this
ase we �nd the endpoint 
on�gurations do not preserve the maximal symmetry of theunderlying 4D and/or 2D geometries of the original unstable monopole-supported system.As emphasised in [22℄, the presen
e of the dilaton 
ru
ially 
hanges the dynami
s of thesystem, and this 
onsiderably 
ompli
ates the sear
h for the new endpoint solutions.To see why the dilaton is so di�erent we again start with a monopole-supported solutionto 6D 
hiral gauged supergravity with 
ouplings 
hosen to allow a Mink4 � S2 solutionwith 4 
at large dimensions, see Eq. (2.10-2.11). Now, however, if the monopole de
ays toits stable topologi
al 
ousin, a new maximally symmetri
 solution supported by the stablemonopole no longer satis�es the �eld equations (2.2), whi
h require � = 0 together with theEinstein and Yang-Mills equations. In detail, the equations of motion under the maximallysymmetri
 ansatz ds2 = ds24+a2(d�2+sin2 �d�2), F�� = qaQa2 sin � and � = �0 = 
onst, withds24 the metri
 on 4D (A)dS or Minkowski spa
etime, together imply the 4D 
urvature � = 0,a e���0=4 = �=2p2g1 and q2 = 1=g21. This is to be 
ompared with the initial 
on�guration Eq.16



(2.10-2.11). So, although one 
ombination of the parameters, say a e��0=4, is left free thanksto the 
lassi
al s
aling symmetry, the magneti
 
ux in parti
ular is �xed to its original {unstable { magnitude if we insist on keeping the maximal symmetries. This shows that on
ethe monopole 
ux de
ays the dilaton gradient, �M�, is ne
essarily nonzero, thereby pi
kingout preferred dire
tions in the underlying spa
etime.A key question asks whether this gradient points in the 
ompa
t two dire
tions, �m� 6= 0,or in the large spa
etime dire
tions, ���. In this se
tion we �rst argue that the system islikely to prefer growing nonzero gradients in the large 4 dimensions, and then des
ribe therelative merits of two 
lasses of 
andidate endpoint solutions that break the 4D spa
etimesymmetries: a one-parameter family of supersymmetri
 solutions [9℄; and a 
lass of newsolutions to whi
h one is led by adapting the arguments of the previous se
tion to in
ludethe dilaton.4.1 4D or 2D: Whi
h symmetries break?We now argue that for 6D supergravity it is the 4D spa
etime symmetries that generi
allyprefer to break. If true this is somewhat surprising, sin
e the instability revealed by thelinearised analysis is in modes that vary in the internal 2 dimensions and not the ma
ros
opi
4 dimensions. However, it is known [10℄ that all of the axially symmetri
 bulk solutionshaving AdS 4D geometry ne
essarily have a 
urvature singularity in the 2D geometry at theposition of one of the two sour
e branes.13 Any de
ay to a solution of the form AdS4 �M2therefore ne
essarily requires the development of a 
urvature singularity in the 2D geometryat the position of one of the sour
e branes, even if the initial unstable solution has no su
ha singularity. But the divergen
e of bulk �elds at a singularity is related to the physi
alproperties of the brane whi
h is situated there [11, 12℄, with a 
urvature singularity inparti
ular implying a brane 
oupling to the bulk dilaton. Sin
e it is not 
lear how su
h a
hange to intrinsi
 brane properties 
an be triggered by the de
ay of a monopole in the bulk,we instead explore the possibility that it is the 4D spa
etime symmetries that break.The simplest way to see the ne
essity for a 
urvature singularity is to re
ognize that thee�e
tive 4D potential energy turns out to depend only on the near-brane limit of the � �eldwhen its derivatives, �m�, point purely along the 2D dire
tions [15℄. That is, we evaluateE = Z d2xpg2 �� 1�2 R(2) + 14 �m� �m� + 14 e��=2 TrFmnFmn + 8g21�4 e���=2� ; (4.51)at an arbitrary solution to the �eld equations, eqs. (2.2), assuming only that all tensor
omponents point purely along the 
ompa
t 2 dimensions. Use of the Einstein and dilatonequations in parti
ular then show [15℄ thatE = � 12� Z d2xpg2 � ; (4.52)whi
h vanishes on a smooth manifold. For example, when evaluated for the parti
ular13This is also a 
orollary of the fa
t [10℄ that all of the solutions having only 
oni
al singularities at thebranes have 4D geometries that are 
at. 17



solutions of eqs. (2.4) and (2.5), we �nd (keeping in mind the 
oni
al singularities at � = ��)E = ��� Z �+�� d� ��hpg2 ���i = 2��2 �h(��)�� � h(�+)�+ � = 0 : (4.53)In the presen
e of singularities lo
alized at sour
e branes, ea
h brane 
an be isolatedwithin a small 
ir
le that a
ts as the boundary of the bulk geometry, leading the right-hand-side of eq. (4.52) to evaluate to a sum of terms involving the radial dilaton derivative, n ���,evaluated at the brane positions. But the presen
e of su
h a nonzero s
alar gradient nearthe 
odimension-2 brane requires � to diverge logarithmi
ally there, and the stress energyof this 
on�guration makes the 
urvature also diverge. This argument is in agreement withthe expli
itly known solutions of ref. [10℄.But the near-brane dilaton derivative is related [11, 12℄ by the bulk-brane mat
hing 
on-ditions to the e�e
tive 
odimension-2 brane tension, T2(�), with n � � being proportional toits derivative T 02. As su
h, the near-brane dilaton derivative 
annot 
hange without there alsobeing a physi
al 
hange to the sour
e branes, making su
h a 
on�guration an unlikely end-point for an unstable monopole. This being said, we shall also �nd the ne
essity of new typesof singularities in some solutions breaking the 4D symmetries, and so this argument 
annotbe regarded as de
isive until the interpretation of those singularities is better understood.With this motivation we next examine two 
ategories of 
andidate endpoint solutionsthat break the 4D symmetries.4.2 Supersymmetri
 AdS3 � ~S3Supersymmetri
 solutions are always attra
tive options when seeking stable endpoints frominitially unstable initial 
on�gurations, and it is the remarkable s
ar
ity of su
h solutionshaving the form M4 � M2, with M4 = Mink4 or AdS4, that helps make the endpoint ofmonopole de
ay in 6D supergravity su
h a puzzle. The only known solutions of this typehave M4 = Mink4, M2 = S2, and align the monopole in the U(1)R dire
tions with monopolenumber N = �1 [1℄.Other supersymmetri
 solutions do exist [9℄, however, they just have fewer 4D spa
etimesymmetries. These solutions have geometries AdS3 � ~S3, where ~S3 denotes a one-parameterfamily of `squashed' 3-spheres. The �eld 
on�gurations have 
onstant dilaton, �M� = 0, andds2 = ds2AdS3 + a2 �!21 + !22�+ b2!23H3 = � �!1 ^ !2 ^ !3 + "3a2b� (4.54)F2 = k !1 ^ !2 ;where ds2AdS3 is the line-element for AdS3 and "3 denotes the volume 3-form for the internal3D geometry. The !m denote the left-invariant 1-forms on the 3-sphere, that satisfy d!m =�12 �mnp !n ^ !p, and so!1 + i!2 = e�i (d� + i sin � d�) ; !3 = d + 
os � d� ; (4.55)where (�; �;  ) are Euler angles on the 3-sphere.18



The equations of motion impose the following three relations among the solution's fourparameters, a, b, � and k [9℄:b2 = �5=2� ; a2 = �3k4g1 = 116g21 �1�q1� 32�1=2g21�� ; (4.56)in terms of whi
h the AdS3 Ri

i tensor is R�� = 2� g�� with � = �b2=(4a4).Is this the endpoint of the evolution away from the unstable monopole? Su
h a s
enariowould be very attra
tive, indi
ating a dynami
 spontaneous 
ompa
ti�
ation wherein themonopole instability triggers one of the large 4 dimensions to roll up into one of the dire
tionsin ~S3. And be
ause � is negative this might be argued to be favoured energeti
ally interms of an appropriate 3D potential energy. Better yet, the supersymmetri
 Mink4 � S2solution 
an be obtained formally from the AdS3 � ~S3 solutions by taking the limit b ! 0[9℄, indi
ating there might be a plausible path through �eld spa
e leading from the initialunstable 
on�guration to the �nal supersymmetri
 one.There are a number of possible obje
tions to the proposal that these solutions representto endpoint of the monopoles of present interest, however. Not least, the natural way toobtain 4 large dire
tions from AdS3� ~S3 is by taking the lone squashed dire
tion to be
omelarge, b � a, rather than taking b � a. However in the limit b � a the 
urvature of thelarge 3 dimensions be
omes larger and not smaller, and there is furthermore an obstru
tion totaking this limit within the supersymmetri
 solutions sin
e it formally would require taking� very large, but a2 be
omes 
omplex in this limit. We therefore next seek other options forthe de
ay endpoint.4.3 Deking the Dilaton14 As noted above, it is the dilaton that appears to prevent the system's relaxation towardsa maximally symmetri
 solution, and so removes the attra
tive pi
ture obtained in the EYMsystem des
ribed in x3. In the remainder of this se
tion we use an elegant tri
k [23℄ thatreformulates the EYM-dilaton system as a dilaton-free system in higher dimensions. We do sowith the goal of exploring whether the analysis of x3 
an lead to a better 
andidate endpoint,for whi
h the preserved maximal symmetries involve the �
titious dimensions asso
iated withthe dilaton rather than being part of the physi
al 6 dimensions of our starting supergravity.The idea behind the tri
k is that the dilaton 
an be regarded as a modulus obtainedby 
ompa
tifying a simpler system in higher dimension.15 In parti
ular, we 
onsider EYMtheory in (6 + n) dimensions, 
hosen so that its dimensional redu
tion to 6D leads to thedilaton-EYM theory of interest. With 
are, solutions in the higher dimensional non-dilatoni
theory 
an be redu
ed to solutions of dilatoni
 Einstein Yang-Mills in six dimensions, and6D supergravity 
on�gurations 
an be `oxidised' to higher dimensional solutions. Ref. [24℄performs a similar analysis to study the dynami
s of instabilities in warped de Sitter solutionsto 6D dilatoni
 Einstein Maxwell theory, building on studies of the dilaton-free model [25℄.14deke v. (in i
e ho
key) to draw a defending player out of position by faking a shot or movement: dekedthe goalie with a move from left to right.15A similar logi
 underlies the dis
ussion of F -theory va
ua in Type IIB string 
ompa
ti�
ations havingnontrivial dilaton pro�les. 19



Figure 1: The oxidation-redu
tion 
y
le used to generate solutions in the 6D dilatoni
 theory.This tri
k is useful be
ause the stability analysis of previous se
tions 
an be translatedword-for-word to the higher dimensional system, at least for unwarped ba
kgrounds.16 Inparti
ular, an unstable monopole-supported 
on�guration with geometry Mink(4+n) � S2,is unstable for large enough magneti
 quantum numbers, and applying the arguments of x3to the higher-dimensional system indi
ates a de
ay to AdS(4+n) � S2 supported by a stablemonopole. The logi
 (illustrated in Fig. 1) then is to dimensionally redu
e both the unstablesolution and its stable endpoint down to 6D to �nd the 
orresponding transition to whi
hthis points in the lower-dimensional dilaton system.4.3.1 Oxidation/Redu
tionTo pro
eed in detail we start with the D = 6 + n a
tion [23, 24℄S = 1�2D Z dDxp�gD �R(D) � �2D4 TrF2 � �� ; (4.57)whose equations of motion areR�� = �2D2 Tr (F�
F 
� ) + g��(D � 2) ��� �2D4 TrF2� (4.58)r�F�� � igA�F�� = 0 :16The bilinear a
tion for the relevant modes is identi
al in this 
ase (see equation (44) of [26℄).20



To dimensionally redu
e we seek solutions to these equations having the form17ds2D = g�� dx�dx� = ĝMN(x) dxMdxN + e2'(x)gab(y) dyadyb= e�n'(x)=2gMN(x) dxMdxN + e2'(x)gab(y) dyadyb (4.59)FMN = FMN(x) and FaM = Fab = 0 :Here gab(y) is an n-dimensional maximally-symmetri
 metri
, whose 
urvature s
alar is:gabRab = n(n � 1)K, for 
onstant K. Furthermore, the above 
on�guration is the mostgeneral one 
onsistent with this maximal symmetry, whi
h ensures that solutions to thetrun
ated a
tion are guaranteed also to be solutions of the full higher-dimensional equations.(Su
h a 
on�guration is 
alled a `
onsistent' trun
ation [27℄.)With this ansatz the a
tion of the trun
ated 6D theory be
omes [23, 24℄S = 1�2 Z d6xp�g �R� n(n + 4)4 �M'�M'� �24 en'=2TrF 2 (4.60)� �e�n'=2 +Kn(n� 1) e�(n+4)'=2� ;where we de�ne �2 := �2D=V and FMN := V 1=2FMN , with V the volume of the n-dimensionalmanifold 
omputed with the metri
 gab. Finally, de�ning� � =pn(n + 4) ' and �2 = nn+ 4 ; (4.61)and so n = 4�2=(1� �2), allows the a
tion to be writtenS = 1�2 Z d6xp�g �R � �24 �M� �M� � �24 e� ��=2TrF 2 (4.62)� � e�� ��=2 +K 4�2(5�2 � 1)1� �2 e���=2�� :This shows that the 6D supergravity a
tion, eq. (2.2), is obtained in the formal limit whereK = 0 and � ! 1 (and so n!1), provided we also identify � = 8g21=�2.4.3.2 The Rugby Ball and its De
ayAs an appli
ation 
onsider the following simple monopole-supported 
ompa
ti�
ation fromD to D � 2 dimensions: ds2D = gAB dxAdxB + a2(d�2 + sin2 � d�2)Fa�� = qaD2 sin � (4.63)where A;B; :: = 0; 1; :::; n + 3, for whi
h dire
tions the d = (D � 2) = (4 + n)-dimensionalmetri
 is RAB = (d� 1)�d gAB = (D � 3)�d gAB : (4.64)17The indi
es �;�; :: run from 0 to n+ 5, while indi
es a; b; :: run from 1 to n and 6D indi
es M;N; :: runfrom 0 to 5 as before. We reserve A;B; :: to run from 0 to n+ 3 in later appli
ations.21



Using this ansatz in the D-dimensional equations of motion allows their 
ontent to beboiled down to (D � 3)�d = � 1D � 2 ��2Dq2D8a4 � �� (4.65)1a2 = �2Dq2D8a4 + (D � 3)�d ; (4.66)whose solutions are a2� = (D � 2)2� "1�s1� (D � 3)2(D � 2)2 � �2Dq2D# (4.67)�d = 1(D � 3)2 ��� 1a2�� : (4.68)Eliminating q2D gives the 2-sphere radius in terms of the d-dimensional 
urvature:a2� = 1�� (D � 3)2�d = 1�� (n + 3)2�d : (4.69)Applying these results to an initial geometry Mink4 � S2 supported by an unstablemonopole having 
harge q2 = q2i shows that the parameter � must be tuned to� = 1a2i = 8�2Dq2Di = 8�2q2i ; (4.70)in whi
h the �nal equality 
an
els the fa
tors of extra-dimensional volume, V , that appear inthe relations between the D- and 6-dimensional versions of � and q2. Dimensionally redu
ingthis geometry on n of the 
at dire
tions then trivially reprodu
es the rugby-ball solution,eq. (2.10), of 6D supergravity (whose de
ay we wish to study).As in x3 we suppose the endpoint of the instability in the D-dimensional system also tobe given by solutions to these same equations, but for the smaller 
harge of the �nal stablemonopole: q2D f < q2D i. And eq. (4.67) implies that shrinking q2 makes a2+ get larger whilea2� gets smaller, whi
h eq. (4.68) in turn implies �d+ is positive while �d� is negative. Asin x3 this predi
ts the endpoint to be a smaller monopole-supported sphere, with negatively
urved large dire
tions.The idea now is to dimensionally trun
ate the endpoint monopole-supportedD-dimensionalgeometry on n of its AdS dimensions, thereby obtaining a 
andidate endpoint solution forthe 6D EYM-dilaton system. To this end it is useful to rewrite the D-dimensional metri
 interms of 
at spatial sli
ingsds2D = hdx2 + e2p��d x ��dt2 + Æij dxidxj + Æab dyadyb�i+ a2� d
22= e�np��d x=2 h�e(2+n=2)p��d x dt2 + enp��d x=2 dx2 + e(2+n=2)p��d x Æij dxidxj+a2�enp��d x=2 d
22i+ e2p��d x Æab dyadyb ; (4.71)22



where i; j; :: run from 1 to 2, while (as before) a; b; :: run from 4 to 4 + n, and d
22 denotesthe standard metri
 on the unit 2-sphere.Comparing this last expression with the ansatz, eq. (4.60) allows the dilaton to be reado� from the x-dependen
e of the n-dimensional trun
ated metri
, giving ' = p��d x, or� � = 4�1� �2p��d x : (4.72)Using this in eq. (4.60) then also allows the 6D metri
 to be identi�ed. Making the 
hangeof variables z = Z enp��d x=4dx = 4np��d enp��d x=4 (4.73)allows the trun
ated 6D solution to be writtends2 = �� zLn�2+8=n dt2 + dz2 + � zLn�2+8=n Æij dxidxj + � zLn�2 a2�d
22 ; (4.74)and � � = 4� ln� zLn� ; (4.75)where the length s
ale Ln is de�ned by1Ln := np��d4 = n4(n+ 3)s 1a2� � 1a2i ; (4.76)and the expression for �d in terms of a� and ai is used. The �nal step is to take n ! 1(� ! 1) to re
over 6D Nishino-Sezgin supergravity. Both L and a� remain �nite in thislimit, with 1L = limn!1 1Ln = 14s 1a2� � 1a2i (4.77)and limn!1 a2� = limn!1 (n+ 4)2� "1�s1� (n+ 3)2(n+ 4)2 � �2q2f# = �2q2f8 : (4.78)Combining all expression gives the �nal result for the 
andidate endpoint solution togauged 
hiral 6D supergravityds2 = dz2 + � zL�2 h�dt2 + Æij dxidxji+ � zL�2 a2�d
22 ;� � = 4 ln� zL� and F a�� = qaf2 sin � : (4.79)One 
an 
he
k dire
tly that this 
on�guration indeed solves the 6D supergravity equations,and in fa
t 
an be re
ognized as one of the s
aling solutions found in [8℄, but with the s
alingo

urring along a 4D spatial 
oordinate, z, rather than time. Also noteworthy is the relation23



this solution implies between the sphere's radius, r, and the dilaton: r2 = e��=2a2�, whi
h isalso familiar (but z-independent) from the Salam-Sezgin 
ompa
ti�
ation [1℄.The solution eventually breaks down for small z due to the singularity as z ! 0, whereboth the dilaton and the 6D Ri

i s
alar,R = 2(L2 � 10 a2�)z2a2� ; (4.80)blow up. Sin
e this singularity has no 
ounterpart in the higher dimensional AdS4+n � S2EYM solution, its emergen
e is a 
onsequen
e of taking the limit n ! 1. The �nite-ngeometries may be regarded in this way as providing resolutions of this singularity, alongthe lines of the higher-dimensional resolution of dilatoni
 bla
k hole singularities in stringtheory des
ribed in ref. [28℄.At large z the radius of the 
ompa
t 2-sphere be
omes very large, implying an eventualbreakdown of the 4D e�e
tive theory even at very low energies. It is instru
tive to ask howthe metri
 varies in the 4D Einstein frame, espe
ially sin
e the dependen
e on z only arisesas an overall 
onformal fa
tor (as may be seen using the 
oordinate 
hange u = ln (z=L)),ds2 = e2u���� dx�dx� + a2� d
22� ; (4.81)implying the breaking of the 4D maximal symmetry therefore drops out of 
onformally invari-ant quantities. Sin
e the volume of the 2 
ompa
t dimensions varies as V2 = (z=L)2a2� / e2u,the 4D Einstein frame metri
 s
ales with u as g(E)�� = e2ug�� , whi
h is again u-dependent,and in fa
t turns out to be the same geometry as that of the 6D Einstein frame.StabilityThe stability of this solution follows from that of the 
orresponding oxidised solution,AdS4+n�S2, sin
e the 
u
tuations in the 6D model are a sub-se
tor of those in the oxidisedmodel, allowing us to 
on
lude that our proposed endpoint is a stable solution, withoutperforming the linearised stability analysis from s
rat
h. Flu
tuations in the (6+n)D EYMmodel divide into two de
oupled se
tors:1. The metri
 
u
tuations and gauge �eld 
u
tuations in the dire
tion of the U(1)monopole in the Lie Algebra. These were studied in [29℄, where they were foundto be stable, in the sense that none violate the Breitenlohner-Freedman bound.2. The gauge �eld 
u
tuations orthogonal to the U(1) monopole. We argued above thatthe presen
e of instabilities in this se
tor for Mink4 � S2 [6, 2℄ generalise to higherdimensions and so these modes are also unstable in the Mink4+n � S2 theory. Theidenti
al argument shows that stable monopoles in Mink4�S2 oxidise to 
on�gurationsthat are also stable in Mink4+n � S2. The same 
on
lusion should also apply forAdS4+n � S2, sin
e the Kaluza-Klein mass operator does not depend on the 
urvatureof the external geometry, but only on the 
urvature of the internal geometry and theinternal 
ux. 24



EnergyThe higher-dimensional pi
ture also argues for there being an energeti
 
riterion whi
hfavours these new solutions as having smaller energy then the initial, unstable one. Giventhe non-trivial pro�le for the dilaton in the large dimensions, an appropriate de�nition forthe energy is the sum of the 4D dilatoni
 gradient energy and the potential energy of the4D e�e
tive theory de�ned in (4.51), whi
h emerges from the gradient, magneti
 and poten-tial energy in the extra dimensions. Integrating out the extra dimensions, the total energydensity (per unit 3D volume) in the Einstein frame, g(E)�� = e��=2 g��, is:ETOT = e����2 Z d2xpg2 ��24 e��=2 �z� �z� �R(2) + �24 TrFmn Fmn + � e���=2� ; (4.82)where the overall fa
tor of e��� 
omes from the Weyl res
aling to the Einstein frame ofthe 4D volume fa
tor. A non-trivial gradient energy in the dilaton always gives a positive
ontribution to the total energy, whereas the 4D potential energy in terms of the dilaton andvolume breathing modes is: E = �4�a2��2 e��� 12a2� �1� a2�a2i � (4.83)Plugging the endpoint 
on�guration (4.79) into (4.82) shows that the potential energy isnegative, �4�a2��2 8L2 z4 , and beats the gradient energy, 4�a2��2 4L2 z4 , giving in total:ETOT = �4�a2��2 4L2 z4 (4.84)This result should be 
ompared to the initial total energy, for whi
h both the 4D gradientand potential 
ontributions are zero, and so the energy has been lowered.4.3.3 The De
ay of Warped Con�gurationsAs a se
ond example we extend the above analysis from sphere-monopole 
ompa
ti�
ationsto the more generi
 presen
e of warping, as is required if the two brane tensions are unequal.We know that 
on�gurations with monopole numbers jNIj � 2 are also unstable in warpedbrane-world 
ompa
ti�
ations with positive-tension brane sour
es [2℄. We now seek theendpoint of this stability, as indi
ated by the above oxidation/redu
tion te
hnique.To do so we �rst display a warped solution to the (n+6)-dimensional EYM system with
osmologi
al 
onstant, whi
h redu
es to the warped Minkowski solution of the 6D EYM�theory. As previously, the instability of the 6D solution is shared by its higher dimensionalrepresentation.18 We identify a plausible endpoint in the higher-dimensional EYM theory,and redu
e it to identify the 
orresponding 
andidate endpoint in 6D supergravity.18Note, however, that the dire
t linearized analysis made in [2℄ does not extend to warped solutions in(6+n)D be
ause the bilinear a
tion for the modes of relevan
e depends on (n+4) in the warped 
ase [26℄.25



The higher-dimensional warped solutionWe again start from the (n+ 6) dimensional EYM a
tion (4.57)S = 1�2D Z dDxp�gD �R(D) � �2D4 TrF2 � �� : (4.85)The relevant stati
 warped solution to the 
orresponding �eld equations is obtained by aWeyl rotation of a known bla
k-hole like solution [30℄, as was done in [15℄ (a similar solutionand method were also used in [31℄). The result isds2D = r2 gABdxAdxB + dr2hD(r) + �2D hD(r) d�2 (4.86)and Fr� = ��DqaDQarn+4 ; (4.87)where gAB is a d = (n + 4)-dimensional, maximally symmetri
 metri
, with RAB = (d �1)�d gAB, and we have introdu
ed an additional parameter, �D, whi
h will allow us to rea
hthe unwarped 
ompa
ti�
ations via a smooth limit. The fun
tion hD(r) is given expli
itlyby hD(r) = �d + Mrn+3 � �r2(n+ 4)(n+ 5) � �2Dq2D2(n+ 4)(n+ 3) r2(n+3) ; (4.88)where M is an integration 
onstant that 
an be positive or negative. This solution 
an alsobe found by solving dire
tly the equations of motion, for whi
h the Einstein equations redu
eunder the above ansatz toRAB = �gAB ��(n + 3)�dr2 + h0Dr + (n + 3) hDr2 � = �gAB � �2D q2D8 r2(n+4) � �4 � (4.89)Rmn = �12gmn �h00D + (n+ 4) h0Dr � = gmn � 3 �2Dq2D8 r2(n+4) + �4 � : (4.90)Ref. [31℄ shows that this yields the desired warped 6D solutions to Nishino-Sezgin super-gravity found in [15℄ on
e the limit n!1 is taken, making them a good starting point forseeking the endpoint of the de
ay of the underlying monopole.The solution above (4.86, 4.88) is very similar to that studied in [15℄, Se
tion 3 (see also[14, 16℄). The geometry is well de�ned in the region where the metri
 fun
tion hD(r) ispositive, and this implies M > 0 when �d � 0, while M 
an be negative for �d > 0. Similarto what is shown in [15℄, the geometry pin
hes o� at the points where hD(r) vanishes. Thereare two su
h real roots, r�, sin
e hD(r)! �1 as r ! 0 and r !1, and 
hanges sign onlytwi
e.Moreover, be
ause hD vanishes linearly near r = r�, being well approximated by hD(r) �h0D (r�) (r � r�), the 2D internal metri
 is approximately 
oni
al at these points, with:ds22 � dR2� + �1� Æ�2��2R2�d�2 : (4.91)26



Here R� = 2p(r � r�)=h0D(r�), and the de�
it angles are given by:Æ�2� = 1� 12 �D h0D(r�) : (4.92)These singularities are sour
ed by 
odimension-two branes, with a
tionsSbrane = �T� Z dD�2yp�
� ; (4.93)and whose tensions satisfy �2DT� = 2Æ�. On redu
tion to the 6D theory these be
ome3-branes with tensions T� given by T�V .Finally, sin
e the internal spa
e is 
ompa
t, there is as usual a Dira
 quantization 
ondi-tion for the magneti
 
ux. Covering the spa
e with two pat
hes that respe
tively in
orporater�, �a la Wu and Yang, allows the gauge potential to be writtenA� = �DqaDQa(n+ 3) � 1rn+3 � 1rn+3� � d� : (4.94)These are related by a single-valued gauge transformation on the overlap only if� g eaI �DqaDn + 3 � 1rn+3+ � 1rn+3� � = NI ; (4.95)where eaI are the adjoint 
harges dis
ussed in earlier se
tions, and NI is an integer.In order to have an expression for h in terms of the two real roots, we 
an write it asfollows (` := n + 3):hD(r) = �d �1� r+̀r` � �1� r�̀r` � (4.96)+ �(`+ 1)(`+ 2) 1r2+(r+̀ � r�̀) 1r2` �r`(r2 `+2+ � r2 `+2� )� r2 `+2(r+̀ � r�̀)�(r+r�)`(r`+2+ � r`+2� )�where now it is 
lear that h(r�) = 0. By 
omparing (4.88 and 4.96), the parameters r� 
anbe related to the original parameters of the solution as:M = �(`+ 1)(`+ 2) (r2(`+1)+ � r2(`+1)� )r2+(r+̀ � r�̀) � �d(r+̀ + r�̀) (4.97)�2Dq2D2`(`+ 1) = (r+r�)` � �(`+ 1)(`+ 2) (r`+2+ � r`+2� )r2+(r+̀ � r�̀) � �d� (4.98)and moreover r+ = 1, whi
h amounts to a 
hoi
e of 
oordinates. Meanwhile, the tensions of27



the branes 
an be related to the bulk parameters via Eq. (4.92):1� T+�2D4� = (4.99)12 �Dr�̀ � 1 �(`+ 2� 2 (`+ 1) r�̀ + ` r2 `+2� ) �(`+ 1)(`+ 2) � `(r�̀ � 1)2��1� T��2D4� = (4.100)12 �Dr`+1� (r�̀ � 1) �(�` + 2 (`+ 1) r`+2� � (`+ 2) r2 `+2� ) �(`+ 1)(`+ 2) + `(r�̀ � 1)2�� :Unwarped limitAs an aside, we show how the above higher dimensional warped ba
kground redu
es to theknown unwarped solution as the warp fa
tor goes to one, r� ! r+. This limit 
an be takenby making the 
hange of 
oordinates:r = r+2 ((1 + �) + (1� �) 
os �) ; (4.101)where we have de�ned � := r�=r+. We then take � = 1 + � together with the limit � ! 0,but insist that � �D ! "D, a �nite 
onstant. In this way, the metri
 assumes the form of therugbyball ds2D = gABdxAdxB + a2 �d�2 + �2 sin2 �d�2� ; (4.102)where the radius and de�
it angle are, respe
tively,a2 = 1�� `2� and (4.103)�2 = "2D4a4 ; (4.104)and the gauge �eld is that of the monopoleA� = "DqaDQa2 (
os � � 1) d� : (4.105)The quantisation 
ondition (4.95) redu
es to �g "D qaD eaI = NI, and Eq. (4.98) tells us that:`� = 1(`+ 1) ��� �2D"2Dq2D8�2a4 � ; (4.106)whi
h is pre
isely one of the 
onstraints en
ountered from the equations of motion for theunwarped rugbyball. Meanwhile, the boundary 
onditions (4.99, 4.100) also redu
e to theexpe
ted ones: T+�2D4� = 1� � (4.107)T��2D4� = 1� � : (4.108)28



We obtain an additional 
onstraint by putting together Eqs. (4.98) and (4.99, 4.100): aftersome manipulation one arrives at the 
ondition � = 0. Therefore, we are able to take theunwarped limit only for 
at (n+4)D sli
es, and the warped generalizations for the dS4+n�S2and AdS4+n � S2 solutions are yet to be dis
overed. Finally, taking furthermore � ! 1 were
over the equations for the sphere (4.66,4.69).The Warped Endpoints: Upstairs and DownstairsBa
k to the main line of argument, having established the higher dimensional warped 
on-�gurations that are assumed in the presen
e of 3-branes, we now ask what happens to these
on�gurations when they are unstable. As des
ribed above, we expe
t both the 6D and D-dimensional warped solutions to be unstable when there are monopoles numbers jNIj > 1.The monopole numbers depend on the 
harges present, as well as the parameters qaD; �D andr�, via the Dira
 Quantisation 
ondition (4.95). The d = 4 + n-dimensional 
urvature, �d,
ompletes the des
ription of the solution (4.86-4.88), but not all of these parameters areindependent, due to the equations of motion (4.98, 4.99, 4.100). Thus we 
an spe
ify agiven solution 
ompletely with one parameter, say, qaD. Beginning with an unstable solution,qaD i, the monopole �eld strength will de
ay 
onserving its topologi
al 
ux, as we have seenpreviously, and the geometry will adjust appropriately a

ording to the equations of motion.A reasonable endpoint in the D-dimensional EYM theory is then a warped 
on�gurationwithin the same 
lass (4.86-4.88), with new parameters qaD f ; �D f ; r�f and �df .It remains to play the same game as in unwarped 
ase to dis
over how the geometryand dilaton respond to the de
ay of the monopole in 6D supergravity. The rules of thegame are by now familiar; we begin with a warped dilatoni
 6D model, tuning the bulk
osmologi
al 
onstant, �, to allow for 
at 4D sli
es in the initial unstable 
on�guration,with monopole strength qa = qai and brane tensions T�. Uplifting this model to a non-dilatoni
 D-dimensional theory, it is easy to see that the de
ay of the monopole to its stabletopologi
al 
ousin 
urves the (4+n)D sli
es from �di = 0 to �df 6= 0. Now we dimensionallyredu
e the stable D-dimensional solution, and take the n!1 limit, in order to re
over thegeometry and dilaton pro�le in the 6D supergravity model.The dimensional redu
tion is performed as in the previous se
tion. To allow a well-de�nedn!1 limit, we further make the 
hange of 
oordinates � = r2+n2 , along with the parameterrede�nitions �� = r2+n2� , � = 2 �D=n and � = n2�d. Moreover, we de�ne the fun
tion h(�) ash(�) = limn!1 n2�4 hn(�): h(�) = (�� �) �4 �1� 1�2� �1� �2��2 � : (4.109)Finally, the solution to the 6D supergravity 
an be written:ds26 = � dz2 + � � zL�2 ��dt2 + Æijdxidxj�+ � zL�2� d�2h(�) + �2h(�)d�2��� = 4 ln� zL� + 2 ln� F�� = �� qa�3 Qa (4.110)29



where, assuming � < 0, we have de�ned z as in Eq. (4.73), 4=L = p�� and the quantization
ondition takes the familiar form:� g eaI � qa2 �1� 1�2�� = NI ; (4.111)where we re
all the 
hoi
e of 
oordinates su
h that �+ = 1. The parameters des
ribing theba
kground, �; � and ��, are given as above in terms of qf ; T�, using (4.98,4.99,4.100) in thelimit n!1: � = �� �2q2f2�2��1� T+�24� �2 = � �4 1(�2� � 1) �(1� 2�2� + �4�)�� (�2� � 1)2���2�1� T��24� �2 = � �4 1�2�(�2� � 1) �(�1 + 2�2� � �4�)� + (�2� � 1)2���2 : (4.112)It is a simple exer
ise to invert these expressions. Then, the initial tuning of � gives:� = �2q2i2 �1� T+�24� ��1� T��24� � (4.113)whereas the �nal solution parameters are:� = �� �2q2f2 �1� T+�24� ��1� T��24� �� = � 32��2q2f �1� T+�24� �2(T+�2 � T��2)�� = vuut1� T+�24�1� T��24� : (4.114)In 
ontrast to the unwarped 
ase with or without branes, here we �nd a unique physi
alsolution with � < 0 (for the monopole �eld strength to de
ay, the 
ombination � qa mustde
rease, whi
h, together with � � 1=q2, implies q2f > q2i ). Otherwise, the endpoint in thepresen
e of warping is a straightforward generalization to the one we found in the previousse
tions, breaking the 4D maximal symmetry, and it is similarly the analogue of the warpeds
aling solutions found in [8℄. Although to establish the stability of this �nal solution wouldnow require a systemati
 analysis of its 
u
tuations, we argue that due to 
ux 
onservation,the monopole has nowhere else to go. 30



EnergyMoreover, we now 
on�rm that the energy of our proposed endpoint solution is less than thezero energy of the initial unstable 
on�guration. The total energy density 
an be de�ned as inthe unwarped 
ase as a sum of 4D gradient and potential energies, (4.82), but now in
ludingthe warp fa
tor when we integrate out the extra dimensions. Evaluating on the ba
kgroundsolution (4.110), we �nd, just as for the unwarped 
ase, that the gradient energy is �1=2 ofthe potential energy, so that the total energy in the Einstein frame (g(E)�� = (z=L)2g��) is:ETOT = �4���2 (1� �2�)L2 z4 (4.115)and indeed less than zero.5 Con
lusionsCompa
ti�
ations supported by gauge �eld 
uxes were long ago [6, 7℄ found to be generi
allyunstable, due to ta
hyoni
 modes in the non-Abelian degrees of freedom, but the fate thatthey meet has remained an open question. In this paper, we have explored a number ofpossible 
andidates for the endpoint of this instability.Topologi
al 
ux 
onservation suggests that an unstable monopole �eld de
ays to theunique, topologi
ally 
onne
ted, stable monopole [3, 4, 5℄, and we have determined how thegeometry responds to this de
ay in various s
enarios. In the Einstein-Yang Mills theory, witha 
osmologi
al 
onstant, a Minkd�S2 lowers its potential energy by adjusting to AdSd�S 02.In 6D supergravity, the dilaton pre
ludes su
h a simple dynami
s, and we have argued that itfor
es the breaking of the maximal symmetry in the non-
ompa
t dimensions. By re
astingthe dilaton as the volume modulus of n �
titious dimensions in a yet-higher dimensional non-dilatoni
 Einstein-Yang Mills theory [23℄, we were able to �nd the 
orresponding solutionsexpli
itly for both unwarped and warped initial 
on�gurations, with and without branesour
es. The non-trivial pro�le of the dilaton in 4D generates a singular, stati
, Kasner-like geometry that is 
onformal to (unwarped or warped) Mink4 � S2, where the radiusof the 2-sphere grows with the distan
e from the singularity. How to interpret the nakedtimelike singularity to whi
h the instability seems to lead is an important open question;does it signal an in
onsisten
y or does it suggest some new physi
s beyond any supergravityapproximation? One way to resolve the singularity is to pass to the higher dimensionalEinstein-Yang Mills theory in (6+n)D, in whi
h 
ase the singularity results from proje
tingthe smooth AdS4+n � S2 geometry onto six dimensions. Su
h ideas have been dis
ussed in[28℄. Moreover, we have shown that the �nal 
on�guration is perturbatively stable, and thatthe de
ay results in a �nite total energy whi
h is lower (
ounting gradient and potential
ontributions) than the initial one.We would like to end with a 
omment. The instability su�ered by Yang-Mills se
tors inthe ba
kground of a monopole is the spheri
al analogue of the Nielsen-Olesen instability thato

urs in 
at 4D Yang-Mills theory [32℄. In that 
ase, it was proposed that 
ondensation ofthe ta
hyoni
 modes leads to the formation of magneti
 
ux tubes [33℄, in a rather beautifulimitation of the vortex formation in super
ondu
tor physi
s [34℄. That su
h a dynami
smight also be possible in the present 
ase is 
ertainly an interesting spe
ulation.31
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