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Desy 08-199, ESI 2088, UTM 726, ZMP-HH/08-21 - Deember 2008Distinguished quantum states in a lass of osmologi-al spaetimes and their Hadamard propertyClaudio Dappiaggi1;a, Valter Moretti2;b, Niola Pinamonti1;1 II. Institut f�ur Theoretishe Physik, Universit�at Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany.2 Dipartimento di Matematia, Universit�a di Trento and Istituto Nazionale di Alta Matematia { Unit�a loale diTrento { and Istituto Nazionale di Fisia Nuleare { Gruppo Collegato di Trento,via Sommarive 14 I-38050 Povo (TN), Italy.E-mail: alaudio.dappiaggi�desy.de, bmoretti�siene.unitn.it, niola.pinamonti�desy.deAbstrat. In a reent paper, we proved that a large lass of spaetimes, not neessarily homogeneous or isotropousand relevant at a osmologial level, possesses a preferred odimension one submanifold, i.e., the past osmologialhorizon, on whih it is possible to enode the information of a salar �eld theory living in the bulk. Suh bulk-to-boundary reonstrution proedure entails the identi�ation of a preferred quasifree algebrai state for the bulktheory, enjoying remarkable properties onerning invariane under isometries (if any) of the bulk and energypositivity, and reduing to well-known vaua in standard situations. In this paper, speialising to open FRWmodels, we extend previously obtained results and we prove that the preferred state is of Hadamard form, henethe bakreation on the metri is �nite and the state an be used as a starting point for renormalisation proedures.That state ould play a distinguished role in the disussion of the evolution of salar utuations of the metri,an analysis often performed in the development of any model desribing the dynami of an early Universe whihundergoes an inationary phase of rapid expansion in the past.Pas: 04.62.+v, 98.80.Jk1 IntrodutionIf one had to arry out a survey in the ommunity of physiists asking for the �eld of expertise, fromwhih we an expet in the next few years new exiting and unexpeted developments, osmology wouldbe, if not an unanimous, ertainly one of the most frequent answers.Aording to the most ommonly aepted idea, it is oneivable that, at large sales, a good modelof the geometry of our Universe is given by an homogeneous and isotropi bakground whose metriis of Friedmann-Robertson-Walker (FRW) type and whose dynami is ruled by the Einstein's equationsupplemented with a suitable hoie of the ordinary matter. This partiular senario is usually alledold dark matter model. Alas, suh an approah is not devoid of some aws and, aording to moderntheoretial osmology, these an be solved or irumvented assuming that the Universe undergoes an earlyphase of rapid expansion, known as the ination; moreover suh model has the added-on advantage ofentailing several diret and somehow simple explanations for observed phenomena suh as the anisotropiesof the spetrum of the osmi mirowave bakground, to quote one, if the most most notable example. Afurther remarkable property of many but not all inationary models is related to the underlying geometry1
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of the bakground whih, at the time of the rapid expansion, turns out to be desribable by a de-Sitterspaetime, where a very large e�etive osmologial onstant appears.Although the underlying assumptions of all FRW models, namely homogeneity and isotropy, are over-idealisations, it is nonetheless safe to laim that a further distinguished advantage of this line of reasoninglies in the possibility to expliitly aount for inhomogeneities as well as for anisotropies in terms ofsuitably modelled perturbations of the metri, they being either of salar, vetor or of tensor form (thereis a vast literature and an interested reader should start looking at [BST83, MFB92℄ as well as at [HW02℄for a areful disussion of the relations between these mentioned utuations and the inationary models).Both from a mathematial and from a physial perspetive, it is rather interesting to notie that theseperturbations are not supposedly lassial but they are truly of quantum nature. Without entering intodetails, they are thought as originating during the phase of rapid expansion as utuations over a suitableground state and, later, they are let freely evolve. To orroborate suh assumption, it has been shownin the past years how it is possible to retrieve by means of these tehniques an (almost) sale-free powerspetrum, also known as the Harrison-Zeldovih power spetrum.Although rather ompelling, the above piture annot be seen as mathematially sound sine all theperformed analyses rely on the existene and on the notion of a suitable ground state, a onept whihunfortunately is highly non trivial to set-up for quantum �eld theories on urved bakgrounds. Theaim of this paper will be, indeed, to make this idea preise though we shall only onsider free salar�elds thought as a prototype for the metri perturbations. Partiularly, we will onstrut and analyse apreferred state in a lass of FRW spaetimes whih are of de Sitter form as the osmologial time � ! �1in a way we shall better speify in the main body of the paper. Most notably we shall show that suha state satis�es the Hadamard property [Wa94, KW91℄. Roughly speaking and in a physial language itentails both that the ultraviolet divergenes, present at the level of the two-point orrelation funtionsbetween the �elds, are similar in form to those arising if we deal with the Minkowski vauum, and thatthe variane of the expetation values of any observable obtained as a limit of oinidene of arguments(i.e., Wik polynomials of the �elds and their derivatives) annot be divergent [HW01℄. Therefore suhstate plays the role of a natural starting point in the investigation of interating �eld theories by means ofperturbative tehniques. Partiularly the stress-energy tensor operator [Mo03℄, averaged with respet tothe state, is �nite as well as the bakreation on the metri; therefore the model may be gravitationallystable at least at perturbative level (see [DFP08℄ for an example in a osmologial set up).The main peuliarity of this paper is that the onstrution of our proposed state originates from adi�erent albeit related senario whih traes its origins bak to G. 't Hooft formulation of the holographipriniple - see [Ho93℄ - whih advoates the existene of a strong interplay between �eld theories on-struted on manifolds of di�erent dimensions. Though often assoiated either to AdS [Reh00, DR03, Ri07℄or to asymptotially at spaetimes [DMP06, Mo06, Da07℄, in [DMP08℄, we showed that a bulk-to-boundary reonstrution proedure an be suessfully set up also in a large lass of expanding spaetimes,not neessarily homogeneous or isotropous, relevant at a osmologial level. Assuming homogeneity andisotropy, these enompass, as a sublass, the Friedmann-Robertson-Walker spaetimes with at spatialsetion whih satisfy a suitable onstraint on the expansion fator a(t), namely, as the onformal time� ! �1, the leading behaviour of a(�) is that of the osmologial de Sitter spaetime.Furthermore, it turns out that all the manifolds satisfying the hypotheses formulated in [DMP08℄posses a preferred odimension one submanifold, namely, the so-alled (past) osmologial horizon =�,on whih we an enode the information of a salar �eld theory on the bulk, barring some further on-straints both on the mass and on the oupling to salar urvature. As in the asymptotially at senario[DMP06, Mo06, Mo08℄, we also managed to identify preferred quasifree algebrai state � assoiated tosuh boundary theory; � satis�es a uniqueness property and, furthermore, it is invariant under a suitablenotion of asymptoti-symmetry group introdued in [DMP08℄ for general (not homogeneous or isotropous)2



expanding universes with geodetially-omplete past osmologial horizon. � is universal, in the sensethat it does not depend on the partiular bulk spaetime M admitting =� as past boundary. However,�xing one of those spaetimes M , � an be pulled-bak in the bulk M to identify a new quasifree state�M whih is a natural andidate to play the role of a preferred state assoiated to the bulk theory, sineit ful�ls several relevant properties: (1) it is invariant under every isometry (if any) of the bulk whihpreserves the struture of =�, (2) �M admits positive energy with respet to every timelike Killing isom-etry of M (if any) whih preserves the struture of =�, (3) �M redues to the well-known Bunh-Daviesvauum when M is the very de Sitter spaetime. As already stated, our main goal here is to prove thatit is also of Hadamard form.It is also remarkable to notie that these results ould be easily extended to other inationary senariosas for example that of the \power law" model. To wit the dynamial ontent of the underlying quantum�elds when onsidered on the dual Minkowski metri (see equation (2)) mimis the one taken here intoaount. In those ases the potential in (9) whih governs the time evolution of the �elds with respet tothe Minkowski time � is still of the form C��2 + O(��3). In other words those theories are onformallyrelated to the ase investigated in the present paper, hene, sine the Hadamard property is invariantunder onformal transformations, the de�nition of a preferred state and the study of its ultravioletdivergenes ould be dealt with in an analogous way.It is important to notie that there have been previous results takling the problem to onstrutHadamard states on FRW spaetimes. It is worth mentioning Olberman's result [Ol07℄, whih is basedon a previous analysis due to L�uders and Roberts [LR90℄ and to Junker and Shrohe [JS01℄. The di�ereneof our approah is in the hoie of a di�erent approximation presription used in the expliit onstrutionof the modes, in the present paper instead of onsidering the adiabati approximation we shall expliitlydisuss both the onstrution of modes out of their asymptoti behaviour and the issue of the onvergeneof the arising perturbative series by means of the so alled Green funtion method. A further reent result,dwelling in the onstrution of Hadamard states with nie thermal properties is presented in the PhDthesis of K�usk�u [K�u08℄.The outline of the paper is the following: in the next setion we briey reollet some of the resultsof [DMP08℄ and, partiularly, we disuss the main geometri properties of the bakgrounds we shallonsider identifying a preferred odimension 1 submanifold, namely, the osmologial horizon. In setion2 we set up the bulk-to-boundary reonstrution proedure for a salar �eld and we identify a preferredalgebrai quasifree bulk state, extending some results previously ahieved in [DMP08℄. Furthermore,we shall disuss the regularity properties of the solutions of the bulk equations of motion one they arerestrited on the horizon and one suitable onstraints on the mass m and on the oupling to salarurvature � are imposed. In the third setion we prove the main result of the paper, i.e., the two-pointfuntion assoiated to the onstruted state in the bulk is a well-de�ned distribution of Hadamard form.Eventually in the fourth setion, we briey draw some onlusions.1.1. Expanding Friedmann-Robertson-Walker spaetime with at spatial setions. Let usremind the reader some geometri properties of the spaetimes we intend to onsider. As this topi hasbeen dealt with in greater details in [DMP08℄, in this setion we shall present only the ingredients relevantto understand the main statements of this paper, while pointing a reader interested in further disussionsand details to [DMP08℄.The homogeneous and isotropi solutions of Einstein's equation whih are of osmologial interest an bedesribed as a four dimensional smooth Lorentzian manifold M equipped with the following metri:g = �dt2 + a2(t) � dr21� kr2 + r2dS2(�; ')� : (1)3



Here k takes the values �1; 0; 1 and it indiates whether the onstant time hypersurfaes are respetivelyhyperboli, at or paraboli, whereas a(t) is a smooth funtion of onstant sign depending only on thevariable t, whose domain ranges in an open interval I = (�; �). Suh lass of bakgrounds is too large forour purposes and, therefore, we shall heneforth restrit our attention to the sublass with both k = 0and _a(t) � 0. It represents, at a physial level, a remarkably interesting ase of a globally-hyperboliFriedmann-Robertson-Walker (FRW) expanding Universe (M; gFRW ) with at spatial setions. M isdi�eomorphi to I � R3 and, up to a hange of oordinates, the metri readsgFRW := a2(�) ��d�2 + dr2 + r2dS2(�; ')� : (2)Here � is the so-alled onformal time onstruted out of the de�ning identity a(�)d� := dt. As alast restrition, we require the onformal fator to have the following form referring to its behaviour as� ! �1:a(�) = � 1H � +O� 1�2� ; da(�)d� = 1H �2 +O� 1�3� ; d2a(�)d�2 = � 1H �3 +O� 1�4� : (3)The reason underlying suh onstraints is twofold. On the one hand they identify a lass of physiallyrelevant spaetimes with a rather distinguished geometri property, namely they all posses a preferredodimension one submanifold whih represents the natural sreen on whih to enode the data of a bulk�eld theory. On the other hand (2) and (3) haraterise those bakgrounds whih look \asymptotially"- i.e., as � ! �1 - as the osmologial de Sitter Universe, whose expansion fator in (2) isadS(�) := � 1H � ;and � 2 I = (�1; �). This property is shared also by all others solutions of (2) satisfying (3). AboveH is the so-alled Hubble parameter and we felt safe to adopt the same symbol also in the preedingformulas.The lass of spaetimes we haraterised has a quite remarkable appliation in the desription of the earlystages of the evolution of the universe, sine most of the so-alled inationary senarios are based on aphase of rapid expansion modelled by a salar �eld on an (asymptotially) de Sitter bakground.1.2. Past osmologial horizons. As we disussed in detail in [DMP08℄, all the spaetimes underanalysis are globally hyperboli { the onstant-� hypersurfaes being trivially smooth spaelike Cauhysurfaes { and they posses a boundary made of a null odimension one-submanifold =� on whih to enodethe data of a bulk �eld-theory. This is the so-alled (past) osmologial horizon as de�ned by Rindlerin [Ri06℄. To onretely haraterise =�, �rst one performs the oordinate hange U = tan�1(� � r),V = tan�1(� + r); in this way one an realize by diret inspetion that (M; gFRW ) ould be read as anopen submanifold of a larger spaetime (M; bg), i.e., M � M and bgjM � gFRW . In this framework, =� isnothing but the past ausal boundary ofM in M , that isM = I+(=�;M) and =� = �M = �J+(M; M).=� turns out to be di�eomorphi to R�S2 as well as a null di�erentiable manifold. We shall also exploitsome further remarkable geometri properties valid in a neighbourhood of =�, namely a(�(U; V )) vanishesidentially on =� whereas the di�erential da(U; V )j=� = �2H�1dV does not. Suh feature entails thatthe metri bg an be restrited on the horizon where it piks up a (geodetially omplete) Bondi-likeform: bgj=� = H�2 ��2d`da+ dS2(�; ')� : (4)Here dS2 is the standard metri on the 2-sphere, whereas, up to a onstant, `(V ) = �H tan(V ), is theaÆne parameter of the integral line of the vetor n := ra whih turns out to be a omplete null geodesis4



of bg. Furthermore the above remark on the form of the expansion fator and of its derivative on thehorizon also leads to onlude L�� bg = �2�� (ln a) bg; where the right hand side vanishes on =� as a does.Hene we an infer that �� is a onformal Killing vetor whih, approahing =�, both tends to beometangent to it and to oinide with �H�1 brba. Suh property will ome in very handy in the forthomingdisussions.Remark 1.1. In this paper we shall on�ne ourselves to FRW models. However, we stress that, asdisussed in [DMP08℄, most results presented therein are valid also for spaetimes whih are neitherhomogeneous nor isotropous, when they admit a geodetially-omplete past osmologial horizon and apreferred onformal time �� with the previously disussed interplay with the geometry of the horizon.From a very abstrat point of view, as established in [DMP08℄, =� an be equipped with a ertain in�nite-dimensional group of isometries SG=� whih is the analogue of the BMS group for asymptotially atspaetimes [DMP06℄. This group, on the one hand depends on the only struture of =�, hene in thissense is universal, while, on the other hand, it embodies { through a faithful representation { all possiblebulk Killing symmetries whih preserve the struture of =� of every { not neessarily homogeneous orisotropous { osmologial model whih admits =� as a boundary (see proposition 3.2 as disussed in[DMP08℄).Also in the general ase onsidered in [DMP08℄, =� is a natural andidate on whih to enode theinformation of bulk data of the salar free QFT. As we shall shortly disuss in the partiular aseonsidered in this paper, it has been proved in [DMP08℄ that it is possible both to onstrut a genuinefree salar quantum �eld theory de�ned on =� and to assoiate to it a preferred state enjoying invarianeunder SG=� . Suh theory an be indued bak to the bulk giving rise to a seond one whih turns outto be automatially invariant under every symmetry of the bulk whih preserves =�.2 From the bulk to the boundary and bakThe aim of this subsetion is to sketh the sheme of quantisation of a free salar �eld living on any of thespaetimes under analysis, as previously disussed in [DMP08℄, fousing on how it is possible to assoiateevery quantum theory living in (M; gFRW ) with a dual theory on =�. The main advantage of pursuingsuh approah lies in the existene of a preferred quasifree state (see remark 1.1) for the boundary theorythat we shall eventually pullbak to the bulk, piking out a natural preferred quasifree state �M for theQFT in the spaetime (M; gRFW ). The state �M generalises the Bunh-Davies vauum for more generalexpanding universes. The analysis of the remarkable properties of !M was started in [DMP08℄ for a widerlass of spaetimes (dropping the requirements of homogeneity and isotropy); here we only fous on thevalidity of the Hadamard property for �M in the lass of RFW spaetimes we are onsidering.Sine (M; gFRW ) is globally hyperboli, the Cauhy problem for smooth ompatly-supported initialdata is well-posed [Wa94, BGP96℄. Let us thus onsider the Klein-Gordon equation for the real salar�eld � arbitrarily oupled � with the salar urvature:P� = 0; where P = ��+ �R+m2 ; (5)where � is the D'Alembert operator assoiated with gFRW and m2 � 0. The spae of real smoothsolutions S(M) of (5) with ompatly supported smooth Cauhy data is a sympleti spae (S(M); �M )when endowed with the Cauhy-surfae independent nondegenerate sympleti form:�M (�1;�2) := Z� d�(�)gFRW (�2rn�1 � �1rn�2) ; 8�1;�2 2 S(M) : (6)5



Above, � is an arbitrary spaelike smooth Cauhy surfae, d�(�)gFRW the measure on � indued by themetri and n is the unit future-pointing vetor orthogonal to �. It is then a standard proedure [KW91,Wa94, BR022℄ to assoiate (S(M); �M ) with the Weyl C�-algebra W(M), determined up to isometri�-isomorphisms and onstruted out of the Weyl generators WM (�) 6= 0, satisfying, for all � 2 S(M),the Weyl relationsWM (�) =W �M (��); WM (�)WM (�0) = e i2�M (�;�0)WM (� + �0): (7)The self-adjoint elements of W(M) represent the quantum observable of the bosoni free quantum �eldtheory of the �eld � and hene W(M) realizes the quantisation of the theory at algebrai level [Wa94,KW91, BR021, BR022℄.2.1. Modes. We wish now to better haraterise S(M) employing onstant-time hypersurfaes ��(whih are di�eomorphi to R3 ) as Cauhy surfaes and adopting standard Cartesian oordinates (�; ~x)on M as in (2). Adopting the onvention that k 2 R3 and k = jkj, a generi element � 2 S(M) an bedeomposed as:�(�; ~x) = ZR3 d3k h�k(�; ~x)e�(k) + �k(�; ~x)e�(k) i with �k(�; ~x) := eik�~x(2�) 32 �k(�)a(�) : (8)The modes �k are onstruted out of the �k(�), whih are solutions of the di�erential equation:d2d�2�k(�) + (V0(k; �) + V (�))�k(�) = 0;V (�) := k2 + a(�)2 �m2 +�� � 16�R(�)�� V0(k; �) ; (9)where V0(k; �) := k2+ adS(�)2�m2 + �� � 16� 12H2�, so that it results V (�) = O(1=�3) in view of (3) as� ! �1. The following ondition is also assumed:d�k(�)d� �k(�)� �k(�)d�k(�)d� = i ; � 2 R� : (10)We now de�ne:� =s94 ��m2H2 + 12�� ; where we always assume both Re� � 0 and Im� � 0, (11)notiing that � an be either real or imaginary, but not a general omplex number. A general solutionof (9) satisfying the onstraint (10) and with Re� < 1=2 an be onstruted as a onvergent series, asdisussed in Theorem 4.5 of [DMP08℄. Therein, V (�) is treated as a perturbation potential over thesolutions (12) in de Sitter bakground where V � 0. For the purely de Sitter spaetime (V � 0) solutionsof (9) satisfying the onstraint (10) are �xed to be:�k(�) = p���2 e�i��2 H(2)�(�k�); (12)whereH(2)� is the Hankel funtion of seond kind [SS76℄. Moreover the perturbative proedure to onstrutthe modes �k(�) for the general bakground yields the onstraints (valid for the pure de Sitter ase, too):lim�!�1�k(�)eik� = e�i�=4p2k ; lim�!�1d�kd� (�)eik� = �ie�i�=4rk2 : (13)6



Remark 2.1.(1) The perturbative onstrution of the smooth real solutions of the Klein-Gordon equation withompatly supported data, as presented in Theorem 4.5 in [DMP08℄, extends with minor hanges to thease Re� < 3=2 provided that the potential deays as V (�) = O � 1�5 �, whih orresponds to the striteronstraints on the rate of expansion a(�):a(�) = � 1H � +O� 1�5=2� ; da(�)d� = 1H �2 +O� 1�3� ; d2a(�)d�2 = � 1H �3 +O� 1�6� : (14)Nonetheless we feel that, despite suh further restrition on the hoie of the underlying geometry, it isinteresting from a physial perspetive to allow � to be as lose to 32 as possible. As a matter of fats, inthis ase the power spetrum P (k; �) of the salar �eld will be lose to the Harrison-Zeldovih sale freeone. As an evidene of this laim, notie that, at least at small sales and as � ! �1,P (k; �) = �k(�)�k(�) � 1jkj2�as one an infer from the analysis performed in the appendix A. If we set � = 3=2, then we end up witha genuine sale free spetrum.(2) The identity (8) inverts as:e�(k) = �i Z�� d3x a2(�) "��k(�; ~x)�� �(�; ~x)� �k(�; ~x)��(�; ~x)�� # ; (15)�� being any onstant-time hypersurfae. As the right hand side is independent from the hoie of aspei� value � , we are free to let �� oinide with the Cauhy surfae. In this way, �(�; ~x) and ���� (�; ~x)are the assigned initial data of the onsidered element � 2 S(M) individuated by e� inserted in theright-hand side of (8).(3) Out of the behaviour of Hankel funtions in a neighbourhood of the origin and in the perturbativeonstrution of the general solution valid both for Re� < 1=2 and V (�) = O � 1�3 �, or for Re� < 3=2 andV (�) = O � 1�5 � (see in the appendix A for more details), the shape of e� as k! 0 is as follows: whether� is imaginary, no singularity ours, whereas, if Re� > 0, following the analysis performed in the proofof Theorem 4.5 in [DMP08℄ (and its extension to the ase Re� < 3=2, in appendix (A)), one gets thatj�nk e�(k)j � CÆ;n=jkjRe�+n ; for 0 < jkj � Æ, (16)if n = 0; 1; 2; 3 and for some CÆ;n; Æ > 0. These estimates arise for the analogous of the funtionsk 7! �k(�), k 7! ���k(�) and their k-derivatives.For jkj ! +1 we have instead the following behaviour. As the k 7! �k(�), k 7! ���k(�) and their k-derivatives inrease at most polynomially and sine the Cauhy data are smooth and ompatly supported,(15) entails that e� 2 C1(R3 n f0g; C ) and, for every � > 0, n;m = 0; 1; 2; ::: there are onstants B�;n;mwith: j�nk e�(k)j � B�;n;m=jkjm ; for jkj � �. (17)2.2. Projetion of the quantum theory on the Horizon. Let us now fous our attention on thehorizon itself. Sine =� is di�eomorphi to R�S2, we adopt the oordinates (`; �; ') 2 R�S2 used in (4).7



We want to de�ne a suitable sympleti spae in order to onstrut the Weyl algebra of the observablesde�ned on a null surfae as =� [MP03, DMP06, DMP08℄. To this end, the introdution of some usefulmathematial tools is in due ourse.The omplex smooth funtions whih deay, with every derivative, faster than every negative power of` uniformly in the angular variables) will be indiated by S (R � S2). Notie that, if f 2 S (R � S2),then f(�; !) 2 S (R) for every �xed ! 2 S2. The omplete dual spae (with respet to the naturalFreh�et topology) of S (R � S2) will be denoted by S 0(R � S2). In the following b denotes the Fouriertransform 1 of the distribution  2 S 0(R � S2). As in the standard theory, this transformation isde�ned by assuming that, if � 2 S (R � S2),b�(k; !) := ZR eik`p2� (`; !)d` ; 8(k; !) 2 R � S2 ; (18)so that b� 2 S (R �S2) again, and afterwards, extending the de�nition per duality to T 2 S 0(R �S2) ash bT ; �i := hT; b� i for all � 2 S (R � S2). The Fourier transform turns out to be bijetive and ontinuousboth as a map S (R � S2) ! S (R � S2) and S 0(R � S2) ! S 0(R � S2) whereas the inverse transformis obtained by duality starting from the inverse Fourier transform on S (R � S2): (`; !) := ZR e�ik`p2� b�(k; !)d` ; 8(`; !) 2 R � S2 ; (19)If � 2 L1(R � S2; d`dS2), so that � 2 S 0(R � S2), its Fourier transform, an be equivalently omputedas the right-hand side of (18) and b� is k-ontinuous.Using these tools, as a �rst step to de�ne a bosoni �eld theory, we introdue the sympleti spae ofreal wavefuntions (S(=�); �) relaxing the requirements on the elements of the spae with respet to thatdone in [DMP08℄ in order to enompass the physially interesting ase Re� < 3=2 as we shall see shortly:S(=�) := n 2 C1(R � S2) �� jj jj1 ; jjk b jj1 <1 ; �` 2 L1(R � S2; d`dS2) ; b 2 L1(R � S2; dkdS2)o ;(20)�=� ( ;  0) := ZR�S2 � � 0�` �  0 � �` � d`dS2 ; 8 ;  0 2 S(=�) : (21)Notie that above, where  2 C1(R � S2) and it is bounded, the Fourier transform b makes sense inthe distributional sense. In [DMP08℄, S(=�) was de�ned as the spae of smooth real-valued funtionsof L2(R � S2; d`dS2) with `-derivative in L2(RS2; d`dS2). In that ase the Fourier transform ould beinterpreted as a Fourier-Planherel transform. In our ase this is not possible in general.Sine �=� is non-degenerate, it is possible to assoiate to (S(=�); �=� ) a unique, up to isometri �-isomorphism, Weyl C�-algebra W(=�) whose generators W=�( ) 6= 0 for  2 S(=�) satisfy the Weylrelations (7) with WM replaed by W=� , �M replaed by � and �;�0 replaed by  ;  0. As for the bulk,W(=�) represents a well-de�ned set of basi observables and, hene, it an be thought as the buildingblok of a full-edged quantum salar �eld theory on the osmologial horizon =�.Nonetheless suh line of reasoning would be spurious if we were not able to onnet the information1All that follows is a very straightforward extension of the standard theory of Fourier transform. Further details werepresented in the Appendix C of [Mo08℄ where we used omplex oordinates (�; ��) on the sphere instead of our (�; '), butthis a�ets by no means the de�nitions and results. 8



arising from the boundary to the bulk ounterpart. In [DMP08℄, we takled this problem showing that it ispossible to realize (S(M); �M ) as a subspae of (S(=�); �=�) by means of an injetive sympletomorphismS(M)! S(=�). This result, in turn, implies the existene of an identi�ation, { :W(M)!W(=�), of thealgebra of bulk observables W(M) and a sub algebra of observables of the boundary W(=�). We reviewthe proedure showing, in theorem 2.1 below, that the result is valid also with our more general de�nitionof S(=�) and referring to a large lass of values of � whih inludes the most physially interesting onesas stressed in (1) of remark 2.1.We start by reminding that any of the spaetimes M we are onsidering an be extended to a seondspaetime M whih both is globally hyperboli in its own right and it inludes =� as a null hypersurfae[DMP08℄. By a standard argument (see [BS06℄ for the general ase), outside the support of Cauhydata of �, one an deform the employed Cauhy surfae of M to a Cauhy surfae of M . Sine P isa seond-order hyperboli partial di�erential operator and it an be extended in the analogy for M , aunique solution �0 of (5) exists in M with the same initial ompatly supported data as those of �. Byuniqueness �0�M= �. Furthermore, sine also =� � M , we an de�ne the linear map:�H�1� : S(M)! C1(=�;R) suh that �(�) := �0�=� . (22)However suh a result does not guarantee a suÆient regularity of the image on =� of the solution of(5) in order that �(�) 2 S(=�); therefore, we shall analyse more in detail the struture of � itself.The following tehnial proposition establishes in fat that this is the ase. It is based on the followingobservation. With the same proedure preformed in the proof of theorem 4.4 in [DMP08℄, employing theestimate stated in (3) of remark 2.1, one gets that:� 1H (��) (`; �; ') = iHe�i�4 1Z0 e�i`kp2�rkH2 e�(Hk; �(�; '))dk + ::; (23)where e� oinides with (15) written in suitable spherial oordinates (i.e., e�(u) = e�(juj; #; �), with (#; �)polar angles of u) and � : (�; ') 7! (� � �; '+ 2�) the parity inversion.Proposition 2.1. Assume that � and m are suh that either � in (11) satis�es Re� < 3=2, andV (�) = O(1=�5) or � in (11) satis�es Re� < 1=2 and V (�) = O(1=�3). If � 2 S(M), the following fatshold for 0 < � < 3=2�Re�.(a) �� deays faster than 1=`� uniformly in the angular variables.(b) �`�� deays faster than 1=`1+� uniformly in the angular variables.() �� 2 S(=�).(d) Partiularly, referring to the Fourier transform �� with � 2 S(M), it holds �� 2 C1((Rnf0g)�S2; C ), it vanishes uniformly in the angles faster than every negative power of k as jkj ! +1,j�nk ��(k; !)j � CÆ;n=jkjRe�+n�1=2 ; for 0 < jkj � Æ, (24)if n = 0; 1; 2; 3 and for some CÆ;n; Æ > 0.Proof. Let us start with (b) taking (23) into aount as well as (3) in remark 2.1. Without losinggenerality, let us assume that ` is positive thenj`1+��` (��) (`; !)j � sup!02S2 j`j� �����Z +1�1dk e�ik` 1 + jk`j1 + jk`j�k "ikrkH2 e�(Hk; �(!0))#����� :9



The right-hand side ould in priniple diverge, but we are going to show that, indeed, this is not the ase.Taking 	(k; !) as a shorter notation for �k �ikqkH2 e�(Hk; �(!))� we getj`1+��` (��) (`; !)j � supS2 j`j� ����Z +1�1dk e�ik` + ijkj�ke�ik`1 + jk`j 	���� :Integrating by parts using (16), the preeding expression an be rewritten as:j`1+��` (��) (`; !)j � supS2 j`j� ����Z +1�1dk e�ik`1 + jk`j ��1� i� �(k)1 + jk`j��	� ijkj�k	����� ;where �(k) = 1 for k � 0 or �1 otherwise. Now let us assume � < 1. With this hoie jk`j�=(1+ jk`j) � 1,so that we obtain the following estimate:j`1+��` (��) (`; !)j � supS2 Z +1�1dk 1jkj� [2 j	j+ jk�k	j℄ (25)whih is meaningful beause the right-hand side is �nite and it does not depend on the angles sine boththe funtions in the integral an be bounded by L1(R; jkj��dk) funtions (independent form angles), inview of (17) and (16). We have established the (�; ')-uniform bound:j�` (��) (`; �; ')j � Cj`j1+�for some onstant C > 0. If � � 1, one starts with the inequalityj`1+��` (��) (`; !)j � sup!02S2 j`j��1 �����Z +1�1dk e�ik` 1 + jk`j1 + jk`j�2k "ikrkH2 e�(Hk; �(!0))#����� ;then the proof goes on as before sine ��1 < 1. (a) an be similarly proved. () We have obtained that ��is bounded (it being everywhere ontinuous and vanishing at in�nity uniformly in the angles). Similarly,in view of Fubini-Tonelli theorem and on the fat that S2 has �nite measure, �`�� 2 L1(R � S2; d`dS2)sine it is ontinuous (so that it is bounded on ompat sets [�L;L℄� S2 and deays faster than 1=`1+�uniformly in the angles outside [�L;L℄. As the requirement jjk��jj1 <1 is trivially ful�lled by (3) inremark 2.1, to onlude the proof of () it is enough to establish that the Fourier transform of �� belongsto L1(R+ � S2; dkdS2(�; ')). Sine, as we have stated in (3) of remark 2.1, e� is rapidly dereasing atin�nity as a funtion of k, the funtions k1=2 e� whih is proportional to the Fourier transform of ��belongs to L1(R+ � S2; dkdS2(�; ')) in our hypotheses. We onlude that �� 2 S(=�).The statement (d) follows immediately from (23) and from the estimates in (3) of remark 2.1. 2Remark 2.2. It is worth notiing that the result was ahieved thanks to the very de�nition of S(=�).With the striter de�nition of S(=�) adopted in [DMP08℄, where the funtions are required to beL2(R � S2; d`dS2) together with their `-derivative, the above result would have been muh more dif-�ult, if not impossible, to establish.We are now in plae to state the theorem whih establishes that � individuates a sympletomorphism.This entails the identi�ation between the bulk algebra of observables and a subalgebra of the boundary10



ounterpart, hene extending one of the main ahievements of [DMP08℄, namely the theorem 4.4, to thephysially relevant senario Re� < 3=2.Theorem 2.1. Assume that � and m are suh that � in (11) satis�es Re� < 3=2, and that V (�) =O(1=�5) or � in (11) satis�es Re� < 1=2, and that V (�) = O(1=�3). The following holds.(a) The linear map �H�1� : S(M)! C1(=�;R) is a sympletomorphism:�=�(�H�1��;�H�1��0) = �M (�;�0) ; 8�;�0 2 S(M)and �H�1� is injetive.(b) There is an isometri �-homomorphism{ :W(M)!W(=�) ;whih identi�es the Weyl algebra of the observables W(M) of the bulk with a sub C�-algebra of W(=�),and { is ompletely individuated by the requirement{ (WM (�)) =W=�(�H�1��): 8� 2 S(M)Proof. (a) By diret inspetion, if �;�0 2 S(M) and making use of (8) one almost immediately gets�2Im ZR+�S2 e�(k; �; ')e�0(k; �; ') k2dk dS2(�; ') = �M (�;�0) ;where the integral makes sense beause ke� and ke�0 are elements of L2(R � S2; dkdS2) as follows form(d) in Proposition 2.1. On the other hand, we shall show at the end of the proof of proposition 2.2 (andsuh proof does not depend on this one) that�=�(��;��0) = �2H2Im ZR+�S2 e�(k; �; ')e�0(k; �; ') k2dk dS2(�; ') : (26)This onludes the proof of (a) by omparison with the identity ahieved above and notiing that thefound sympletomorphism is injetive beause �M is nondegenerate. (b) This fat straightforwardlyfollows from the existene of the sympletomorphism �H�1� and known theorems on Weyl algebras[BR022℄. 22.3. Preferred state and its pullbak on M . The existene of the isometri �-homomorphism{ :W(M)!W(=�) allows one to indue states !M on W(M) from states !=� on W(=�) exploiting thepull bak: !M (a) := !=� ({(a)) ; 8a 2W(M): (27)The most distinguished property displayed by the quantum theory on the null surfae =� (and this is alsotrue for the theory in any null in�nity of asymptotially at spaetime) is the following [DMP06, DMP08℄.It is possible to selet a preferred algebrai quasifree state � on W(=�), whih turns out to be invariantunder the ation of the onformal Killing vetor �` and it has positive energy with respet to the self-adjoint generator of those displaements in its GNS representation. These features uniquely individuate11



the state [Mo06, DMP08℄. In the general ontext studied in [DMP08℄, one sees that � is invariant underthe whole, in�nite dimensional, group SG=� of symmetries of =� (see remark 1.1) and this property isvalid, referring to the BMS group, for the analogue state de�ned on the null boundary of asymptotiallyat spaetimes [DMP06℄. The state � is universal and does not depend on the partiular spaetimeM admitting =� as past boundary. Using (27), � indues a preferred state �M in every spaetime ofthe lass under onsideration. The very peuliar properties of those states were investigated in [Mo08℄for asymptotially at spaetimes and in [DMP08℄ for expanding universes. It was shown that �M isinvariant under all the isometries ofM (whih preserve struture of =� in the ase of expanding universes),it has positive energy with respet to every timelike Killing vetor of M (whih preserve struture of =�for expanding universes) and, furthermore, it redues to well-known physially meaningful states inthe simplest ases (Minkowski vauum and Bunh-Davies, respetively). In the ase of asymptotiallyat spaetimes �M was proved to be Hadamard [Mo08℄ and, thus, it an be employed in perturbativeapproahes. This is the issue we wish to examine here for our lass of spaetimes.We want now to de�ne the preferred quasifree state � onW(=�). The de�nition needs more are thanin [DMP06℄, sine the sympleti spae has been hanged. Following [KW91℄, a quasifree state ! overa Weyl algebra W(S) over the sympleti spae (S; �) is individuated by its one-partile struture,that is a pair (K;H), where H is the one-partile (omplex) Hilbert spae and K : S! H is an R-linearmap suh that (i) �( ;  0) = �2ImhK ;K 0i for all  ;  0 2 S and (ii) K(S) + iK(S) = H , the bardenoting the losure. The quasifree state ! uniquely (up to unitary transformations) assoiated with(K;H) is then ompletely individuated by the requirement (whih extends to the whole W by linearityand ontinuity) ! (W ( )) = e� 12RehK ;K i ; 8 2 S : (28)The state ! turns out to be pure (i.e., its GNS representation is irreduible) if and only if K(S) = H .The GNS representation of a quasifree state ! is always a standard Fok representation with H as one-partile spae, the yli vetor is the vauum and the representation itself maps W ( ) into ei�̂( ) where�̂ is the densely de�ned �eld operator onstruted out of the reation and annihilation operators (see[KW91, Wa94, BR022℄ for details).Let us ome to the preferred state � on W(=�). Following [MP03, DMP06, DMP08℄, its one-partilestruture (K�; H�) should be made as follows. H� = L2(R+ � S2; 2dkdS2) and K� : S(=�) ! H�assoiates  2 S(=�) with its Fourier transform b = b (k; !) restrited to the values k 2 R+ . Di�erentlyfrom [MP03, DMP06, DMP08℄ where the well-posedness of the onstrution were guaranteed by thevery de�nition of S(=�) whose elements were funtions of L2(R �S2; d`dS2) with `-derivative in L2(R �S2; d`dS2), now the Fourier transform has to be interpreted in the distributional sense rather than aFourier-Planherel transform. In priniple there is no automati reason beause, with the given de�nitionof S(=�), the restrition of b to R+ belongs to L2(R+ � S2; 2dkdS2) if  2 S(=�) nor for the ondition(i) above stated to be valid. Therefore a result on the well-posedness of the onstrution is neessary.Proposition 2.2. Let us de�neH� := L2(R+ � S2; 2dkdS2) and K� : S(=�) 3  7! � � b 2 H� ; (29)where b = b (k; !) is the Fourier transform of  2 S(=�) and �(k) := 0 for k � 0 and �(k) := 1otherwise. There is a quasifree pure state � :W(=�)! C whose one-partile struture is, up to unitarymaps, (K�; H�). More preisely:(a) the R-linear map K� : S(=�)! H� is well de�ned,(b) K� (S(=�)) = H�, the bar denoting the losure,12



() �=�( ;  0) = �2ImhK� ;K� 0i.Proof. The �rst statement is onsequene of (a), (b) and (). Let us prove them. (a) If  ;  0 2 S(=�), inview of the de�nition (20) of S(=�) one has thatZR+�S2 ���K� (k; �; ') K� 0(k; !)��� 2k dkdS2;is bounded byZR�S2 ��� b (k; !) b 0(k; !)��� 2k dkdS2(!) � sup!2S2 jk b (k; !)j ZR�S2 2 ��� b 0(k; !)��� dkdS2(!) < +1 :(b) The statement is true beause K�(S(=�)) inludes the set, dense in L2(R+ � S2; 2dkdS2), of theomplex smooth funtion with ompat support whih do not interset a neighbourhood (depending ofthe funtion) of the set fk = 0; ! 2 S2g. Indeed, if �0 is one of suh funtions, it an be smoothly extendedin the region k < 0 as �0(�k; !) := �0(k; !). The resulting funtion has inverse Fourier transform givenby a real element of S (R � S2) and thus it belongs to S(=�).() Let  2 S(=�) and 'n 2 C10 (R � S2; C ) so that 'n(�; !) 2 S (R) and �` (�; !) 2 S 0(R) for every! 2 S2. By standard properties of Fourier transform of Shwartz distributions, one has:ZR'n(`; !)�` (`; !)d` = �i ZR'n(k; !) b (k; !)kdk : (30)However both the right-hand side and the left-hand side an be interpreted as standard integrals, inour hypotheses on S(=�). Now �x  0 2 S(=�) and, taking the angles ! = (�; ') �xed again, onsidera sequene of ompatly supported smooth funtions 'n(k) whih onverges to b 0(�; �; ') in L1(R; dk).Notie that this implies that jj'n(�; !)� (�; !)jj1 ! 0, by standard properties of Fourier transform. Asa onsequene one has from (30):ZR 0(`; !)�` (`; !)d` = limn!+1 ZR'n(`; !)�` (`; !)d` == limn!+1 ZR�i'n(k; !) b (k; !)kdk = ZR�i b 0(k; !) b (k; !)kdk:Conerning the third and the �rst identity we have exploited the inequalities:ZR j'n b � b 0 b j 2k dk � k2k b (�; !) k1k'n(�; !)� b 0(�; !)kL1 ! 0 as n! +1,ZR j'n�` �  0�` j d` � k�l (�; !)kL1k'n(�; !)�  0(�; !)k1 ! 0 as n! +1.We have obtained that ZR 0(`; !)�` (`; !)d` = �i ZR b 0(k; !) b (k; !)kdk : (31)We know by the proof of (a) that b 0 b 2 L2(R�S2; dkdS2) and, by the very de�nition of S(=�) it resultsthat  0�` 2 L2(R � S2; d`dS2). The diret appliation of Fubini-Tonelli theorem to (31) yieldsZR�S2 0(`; !)�` (`; !)d`dS2 = �i ZR�S2 b 0(k; !) b (k; !)kdkdS2 : (32)13



Using the fat that b (�k; !) = b (k; !) and b 0(�k; !) = b 0(k; !) beause  ;  0 are real, (32) together withthe de�nition of K� and �=� implies that �=�( ;  0) = �2ImhK� ;K� 0i, as wanted. This identityimplies the validity of (26) using the fat that, from (23),K� ��H�1�(�)� = �iHe�i�=4rHk2 e�(Hk; �(!)) ;and taking into aount that �H�1�(�) 2 S(=�) when � 2 S(M) as proved in (a) of theorem 2.1. 2We have now all the ingredients to onstrut a bulk state starting from �, the boundary ounterpart,proeeding as indiate in (27) at the beginning of this setion. We de�ne the quasifree state �M onW(M)individuated by the requirement: �M (a) := �({(a)) ; 8a 2W(M) (33)It is worth stressing that in [DMP08℄ a di�erent de�nition of S(=�) was exploited, however, as it anbe heked by diret inspetion, all the above-mentioned properties of � and �M an be proved with thede�nition given in this paper for the whole lass of spaetimes (whih are not homogeneous nor isotropousin general) disussed i9n [DMP08℄, essentially beause � is de�ned employing (29) also in [DMP08℄ andbeause the the image of the sympletomorphism whih assoiates a wavefuntion in the bulk with itsrestrition to =� is inluded in S(=+) no matter whih of the two de�nition is adopted. In partiular, ifM is the de Sitter spaetime, �M is nothing but the Bunh-Davies vauum [SS76, BD78, Al85, KiGa93℄as disussed in [DMP08℄.3 On the Hadamard property.In this setion we shall prove the main statement of the paper: (33) is of Hadamard form for every FRWspaetime in the lass individuated by the metri (2) with the onstraints (3) and for values of � in (11)either suh that Re� < 1=2 or suh that Re� < 3=2 though requiring the shape of the sale fator to bethat of (14). Let us remember that this latter request entails the potential V , appearing in (9), to satisfyV (�) = O(1=�5).As we stressed in the introdution, this senario is of ertain physial relevane if we think of inationmodels where a salar �eld with � lose or equal to 32 is employed as the building blok; remarkablythe perturbative utuations lead to an almost homogeneous power spetrum whih an be indiretlyobserved by experiments and a byprodut of the results of this setion is to provide a mathematialonsisteny to the underlying employed quantisation sheme.There are many reasons to onsider Hadamard states as the most physially relevant ones and it existsa well-developed literature disussing them, espeially in relation with the problem both of onstrutionof Wik polynomials and, more generally, of renormalisation in urved spaetime [BFK96, BF00, HW01,BFV03℄. Roughly speaking, the Hadamard property for a state is very important in QFT in urvedspaetime beause it assures that the stress energy tensor operator [Mo03, HW05℄ evaluated on that stateis renormalizable [Wa94℄ and, thus, the theory might be gravitationally stable at least at perturbativelevel.We shall quikly reall the main features of the notion of an Hadamard state leaving a reader inter-ested in more details to spei� papers [KW91, Rad96a℄ (see also [SA08℄ for some reent ahievements).Consider a smooth globally hyperboli spaetime (M; g), let (S(M); �M ) the real sympleti spae of thereal smooth solutions of Klein-Gordon equation with ompatly supported Cauhy data, as de�ned pre-viously. E := A� R : C10 (M ;R) ! S(M) the ausal propagator [KW91, Wa94, BGP96℄ assoiated with14



the Klein-Gordon operator P in (5). A and R are, respetively, the advaned and retarded fundamentalsolutions. E it is known to be onto S(M), with kernel given by the funtions Pf , for all f 2 C10 (M ;R)and it is ontinuous as an operator from C10 (M ;R) to C1(M ;R) in the relevant topologies of the on-sidered spaes of test funtions. The two-point funtion of a quasifree state ! over W(M) with onepartile struture (K;H) an be de�ned (see [KW91℄ for further details) as the quadrati form:!(f; g) := hK(Ef);K(Eg)iH ; 8f; g 2 C10 (M ;R) : (34)If (f; g) 7! !(f; g) is weakly ontinuous in eah argument separately, the Shwartz kernel theorem assuresthat !(�; �) uniquely individuates a distribution !(�) 2 D0(M �M), known as the Shwartz kernel of!(�; �), by requiring !(f 
 g) = !(f; g) for all f; g 2 C10 (M ; C ). In fat, !(�) is nothing but the integralkernel !(x; y) in a distributional sense:!(f; g) =ZM�M!(x; y)f(x)g(y) d�g(x)d�g(y); !(h) =ZM�M!(x; y)h(x; y) d�g(x)d�g(y) ;if f; g 2 C10 (M ; C ) and h 2 C10 (M �M ; C )) and d�g denoting the metri-indued measure on M . Inthe following we shall use the same symbol to denote a quasifree state, the assoiated quadrati form andits Shwartz kernel when the meaning of the symbol will be lear from the ontext.A quasifree state ! overW(M) is Hadamard if its kernel !(x; y) enjoys a very peuliar behaviour at shortdistane of the arguments. We shall not enter into details here [KW91℄ beause we shall deal with themiroloal haraterisation of Hadamard states due to Radzikowski [Rad96a, Rad96b℄.Proposition 3.1. In a globally hyperboli spaetime (M; g), onsider a quasi-free state ! for the realsmooth Klein Gordon �eld. Assume that the two-point funtion of the state individuates a distribution inD0(M �M). The state ! is Hadamard if and only if the wavefront set WF (!) of the Shwartz kernel ofthe two-point funtion has the form:WF (!) = n((x; kx); (y;�ky)) 2 (T �M)2 n 0 j (x; kx) � (y; ky); kx . 0o ;where (x; kx) � (y; ky) means that it exists a null geodesi onneting x and y with otangent vetorsrespetively kx and ky, whereas kx . 0 means the kx is ausal and future-direted. Here 0 is the zerosetion in the otangent bundle.In [Mo08℄, it was proved that the analogue of the state �M introdued in [DMP06℄ for asymptotiallyat spaetimes at null in�nity is Hadamard. A similar proof an be found in [Ho00℄ in a very di�erentphysial ontext. The main goal of this paper is to prove the Hadamard property for the states �M inthe onsidered lass of FRW expanding universes admitting a past osmologial horizon. We state thisresult formally. The proof will take all the remaining part of this setion and it will be divided in severaltehnial steps.Theorem 3.1. Consider a FRW spaetime (M; gFRW ) in the lass individuated by the metri (2)with the onstraints (3) and for values of � in (11) ful�lling either that Re� < 1=2 or that Re� < 3=2though under the assumption (14). The quasifree state �M de�ned on W(M) in (33) is Hadamard sineits two-point funtion individuates a distribution of D0(M �M) with wavefront set:WF (�M ) = n((x; kx); (y;�ky)) 2 (T �M)2 n 0 j (x; kx) � (y; ky); kx . 0o : (35)15



The proof of theorem 3.1 will be the topi of the rest of the paper.3.1. The two-point funtion of �M individuates a distribution in D0(M �M).As the title itself suggests, we shall now dwell into the �rst part of the proof of Th.3.1. To start with weneed the following proposition:Proposition 3.2. With the hypotheses of Theorem 3.1, the following fats hold for the two-pointfuntion �M (f; g).(a) The two-point funtion of �M uniquely individuates a distribution of D0(M �M), this is theShwartz kernel assoiated with the quadrati form:�M (f; g) = ZR�S2 2k �(k) b f (k; �; ') b g(k; �; ')dk dS2(�; ') ; (36)where �(k) := 0 if k � 0 and �(k) := 0 otherwise,  h is the `-Fourier transform of  h := �H�1�(Eh),for every h 2 C10 (M ;R), where � is de�ned as in (22) and with E : C10 (M ;R) ! S(M) denoting theausal propagator of the Klein-Gordon operator P in (5).(b) Referring to the frame (`; �; ') on =�, if Re� < 1, it holds:�M (f; g) = lim�!0+� 1� ZR2�S2  f (`; �; ') g(`0; �; ')(`� `0 � i�)2 d`d`0dS2(�; '): (37)Proof of Theorem 3.2. (a) Let us onsider two solutions �f = Ef and �g = Eg of (5) assoiated withany two funtions f; g 2 C10 (M ;R). De�ne  f := �H�1��f and  g := �H�1��g . In view of Theorem2.2 and the de�nition of the state �M , we have:�M (f; g) = ZR�S2 2k �(k) b f (k; �; ') b g(k; �; ')dk dS2(�; ') ;where �(k) := 0 if k � 0 and �(k) := 0 otherwise. We postpone the proof of (a) at the end of the proofof the statement (b).(b) Let us show that (36) is equivalent to (37) if Re� < 1. At �xed angles ! = (�; '), we onsider asequene of real ompatly-supported smooth funtions 'n whose `-Fourier transform 'n onverge to  gin the L1(R; dk) norm. Sine k f 2 L1(R; kdk) by de�nition of S(=�) and the 'n are bounded, we obtainvia Lebesgue's dominated onvergene:ZR 2k �(k) b f (k; !)'n(k; !)dk = lim�!0+ Z 10 e��k 2k  f (k; !) 'n(k; !) dkNow notie that both k 7! 2ke��k�(k) b f (k; !) and k 7! 'n(k; !) are funtions of L2(R; dk), the formerbeause of (d) in Proposition 2.1. Therefore the Fourier transform an be interpreted as the Fourier-Planherel one - say F - andh2ke��k� b f ; b'niL2(R;dk) = DF�1 �2k�e��k b g� ; 'nEL2(R;dk) ; (38)We an now use the onvolution theorem in L2(R; dk) to rearrange the right-hand side of the internalprodut as: F�1 ��e��k b f� (`; !) = 1� ZR �`0 f (`0; �; ')(`� `0 � i�) d`0;16



With this in mind we have that:h2ke��k� b f ;'niL2(R;dk) = � 1� ZR d` 'n(`; !) ZR d`0  f (`0; !)(`� `0 � i�)2where in the last equality we integrated by parts. Using the fat that that, uniformly in the angles !,  fis bounded and tends to 0 as 1=j`jÆ with Æ 2 (0; 3=2� Re�) (see proposition 2.1 where Æ was indiatedby �), one sees by diret omputation that, for h � 1 or h = 'n or h =  g and where C � 0 does notdepend on angles:ZR�R d`d`0 ����h  f (`0; !)(`� `0 � i�)2 ���� � jjh(�; !)jj1 ZR�R d`d`0 ���� C(1 + j`jÆ)(`� `0 � i�)2 ���� < +1 ; (39)when one hooses Æ > 1=2, and this is possible when Re� < 1. Partiularly this implies that, in view ofFubini-Tonelli theorem, the integrals:ZR�Rd`d`0'n(`; !) f (`0; !)(`� `0 � i�)2 = ZRd Z̀Rd`0'n(`; !) f (`0; !)(`� `0 � i�)2 ;and ZR�Rd`d`0 g(`; !) f (`0; !)(`� `0 � i�)2 = ZRd Z̀Rd`0 g(`; !) f (`0; !)(`� `0 � i�)2 ;are meaningful and the end point ish2ke��k� b f ;'niL2(R;dk) = � 1� ZR�R d`d`0 'n(`; !) f (`0; !)(`� `0 � i�)2 :On the other and, sine jj( g(�; !) � 'n(�; !))jj1 ! 0 as n ! +1 beause 'n onverge to  g in theL1(R; dk), for n! +1 we have:������ZR d` ZR d`0 ( g � 'n) f (`0; !)(`� `0 � i�)2 ������ � jj( g � 'n)jj1 ZR d`0 ����  f (`0; !)(`� `0 � i�)2 ����! 0so that, as k 7! 2ke��k�(k) b f (k; !) is bounded,h2ke��k� b f ; giL2 = limn!+1h2ke��k� b f ;'niL2 = � 1� ZR2  f (`; !) g(`0; !)(`� `0 � i�)2 d`d`0 ;that is Z 10 e��k 2k  f (k; !)  g(k; !) dk = � 1� ZR2  f (`; !) g(`0; !)(`� `0 � i�)2 d`d`0 :Integrating ! over the ompat set S2 (and this is possible onerning the left-hand side beause theintegrand belong to L1(R � S2; 2kdkdS2) in view of the de�nition of S(=�), whereas (39) holds for theintegrand in the right-hand side), it arisesZR�S2 e��k 2k  f (k; !)  g(k; !) dkdS(!) = � 1� ZR2�S2  f (`; !) g(`0; !)(`� `0 � i�)2 d`d`0dS2(!) :17



Lebesgue's dominated onvergene theorem produes immediately (37) when (36) is assumed.We onlude now the proof of the statement (a), proving that the two-point funtion of �M individuates adistribution in D0(M �M). To this end we are going to show that, for any �xed f 2 C10 (M ;R), �M (f; �)is the weak limit of a sequene of distributions Rf;n 2 D0(M) and, for any �xed g 2 C10 (M ;R), �M (�; g)is the weak limit of a sequene of distributions Lg;n 2 D0(M). This fat implies that �M (f; �); �M (�; g) 2D0(M) and the map C10 (M ;R) 3 f 7! �M (f; �) 2 D0(M) is well-de�ned and sequentially ontinuousin partiular. The standard argument based on Shwartz' integral kernel theorem �nally implies that�M (�; �) 2 D0(M �M).The required sequenes of distributions are de�ned as Rf;n(g) := �n(f; g) and Lg;n(f) := �n(f; g) where:�n(f; g) := lim�!0+ ZR2�S2 ( f�n)(`0; �; ') ( g�n)(`; �; ')(`� `0 � i�)2 d`d`0dS2; (40)Above �n(`) := �(`=n), n = 1; 2; : : : are some uto� funtions on R�S2 whih are onstant in the angularvariables; they are de�ned out of � 2 C10 (R;R), suh that �(0) = 1. The funtionals Rf;n and Lg;n aredistributions beause �n 2 D0(M �M) sine:j�n(f; g)j � Cn Xjmj<N sup j�m(�n f )j Xjm0j<N 0 sup j�m0(�n g)j� Cn Xjmj<N supsupp�n j�m(�n f )j Xjm0j<N 0 supsupp�n j�m0(�n g)j � C 0n Xjpj<M 0 sup j�pf j Xjp0j<M 0 sup j�p0gj: (41)The �rst estimate holds beause the kernel 1=(` � `0 � i0+)2 is a well-de�ned distribution of the spaeD0((R � S2) � (R � S2))). In the last estimate we have used the fat that �n f = �nEf where supp�nis ompat, and the ontinuity of the ausal propagator E : C10 (M;R) ! C1(M;R) with respet to therelevant topologies. To onlude the proof it is suÆient to prove that Rf;n ! �(f; �) and Lg;n ! �(�; g)in weak sense, as n! +1. To this end we notie that, exploiting the proof of the part (a) in the muheasier situation where  f�n and  g�n have ompat support, one ahieves:�n(f; g) = ZR�S2 2k �(k)\�n f [�n gdk dS2 : (42)Therefore, if one performs the integrals over R+ � S2, it holdsjRf;n(g)� �M (f; g)j = jLg;n(f)� �M (f; g)j = j�n(f; g)� �M (f; g)j� ����Z �\�n f[�n g �  f g� 2k dkdS2���� � Z �����\�n f[�n g �\�n f g����+ ����\�n f g �  f g����� 2kdkdS2� 2jjk\�n f jj1 Z ���[�n g � g��� dkdS2 + 2jjk gjj1 Z ����\�n f �  f ���� dkdS2 :Above k b g is bounded by de�nition of S(=�), and, if one makes use both of the onvolution theoremfor L1 funtions and of the de�nition of Fourier transform as well as that of S(=�), one �nds by diretinspetion:j2k\�n f j � 2(2�)�1=2jj�jj1jj�` jj1 + 2jj f jjL1(2�)�1=2 ZR j�0(`=n)jd(`=n) < Cf <1 ;18



where Cf does not depend on n, though it depends on the �xed funtion �. We onlude that:jRf;n(g)� �M (f; g)j = jLg;n(f)� �M (f; g)j � CfZ ���[�n g � g��� dkdS2 +2jjk gjj1Z ����\�n f �  f ���� dkdS2To onlude the proof, it is suÆient to prove that\�n f ! b f and [�n g ! b g in L1(R �S2; dkdS2). Tothis end onsider �Æ 2 C10 (R;R) suh that �Æ(0) = 1, 0 � j�(k)j � 1 and supp�Æ � [�Æ; Æ℄, and de�ne�0Æ := 1 � �Æ whih is non-negative and it vanishes in a neighbourhood of k = 0. With this de�nition itholds, making use of the onvolution theorem in L1ZR�S2 ���\�n f �  f ��� dkdS2 � ZR�S2 ����n � ��Æ f�� �Æ f ��� dkdS2 + ZR�S2 ����n � ��0Æ f�� �0Æ f ��� dkdS2 : (43)On the other hand, using partiularly the fat that �n(k) = nb�(kn) and hanging the oordinates in theonvolution integral, one has that the �rst integral in the right-hand side is dominated by:ZR�S2 ����n � ��Æ f����+ ����Æ f ��� dkdS2 � ZS2 dS2 ZR dhjnb�(nh)j Z Æ�Æ j f (p; !)jdp+ ZS2 Z Æ�Æ j f jdkdS2 :Notiing that j f (k; !)j � B=jkj� about k = 0 as onsequene of (d) in Proposition 2.1, we ahieve the�nal bound, for some onstant B0 � 0 independent from Æ:ZR�S2 ����n � ��Æ f�� �Æ f ��� dkdS2 � Z ����n � ��Æ f����+ ����Æ f ��� dkdS2 � �4� ZR dujb�(u)j+ 1�B0Æ1�� :Conerning the seond integral in the right-hand side of (43) we observe that, as n! +1:��n � ��0Æ f�� (k; !) = ZR b�(p)��0Æ f� (k � p=n; !)dp! ZR b�(p)dp��0Æ f� (k; !) = ��0Æ f� (k; !) ;in view of Lebesgue's dominated onvergene theorem (taking into aount that �0Æ f is bounded byonstrution { the only singularity has been anelled by �0Æ, and that b� 2 L1(R; dk)); moreover, if oneomputes the inverse Fourier transform of (1 + k2)��n � ��0Æ f�� taking into aount both that thearguments of the onvolution are Shwartz funtions and that �n(`) = �(`=n), one sees that it an bebounded by a Shwartz funtion s independent from n and the angles, so that:���(1 + k2)��n � ��0Æ f����� � 1p2� ZR ��eik`s(`)�� d` := K :Therefore there is a onstant K � 0 with:�����n � ��0Æ f�� (k; !)��� � K1 + k2 ; (44)We are, thus, allowed to apply again Lebesgue's theorem to the seond integral in (43), onluding thatit vanishes for n! +1, ZR�S2 ����n � ��0Æ f�� �0Æ f ��� dkdS2 ! 0 :19



Summarising and fousing bak on the right-hand side of (43), we an write, for every �xed � 2 (0; 1):0 � lim infn ZR�S2 ���\�n f �  f ��� dkdS2 � lim supn ZR�S2 ���\�n f �  f ��� dkdS2 �AÆ1��+lim supn Z ����n � ��0Æ f�� �0Æ f ��� dkdS2 = AÆ1��+limn!+1 Z ����n � ��0Æ f�� �0Æ f ��� dkdS2 = AÆ1�� ;where the onstant A � 0 does not depend on Æ > 0 whih an be taken arbitrarily small. This resultimmediately implies that\�n f �  f ! 0 in the topology of L1(R � S; dkdS2) and sine the analogueholds for g, it onludes the proof of (a) and of the theorem. 23.2. The general strategy to establish the identity (35).We an arry on with the proof of the theorem 3.1 proving that the wavefront set of �M is that stated in(35). By onstrution, the distribution �M 2 D0(M �M) satis�es the further properties:�M (f 
 Pg) = �M (Pf 
 g) = 0 (KG); �M (f 
 g)� �M (g 
 f) = E(f 
 g) (Comm);where, in the seond formula, E is the Shwartz kernel of the ausal propagator whih exists in aordanewith the above-mentioned ontinuity properties of the ausal propagator. As is well known [Rad96a,SV01, SVW02, Mo08℄, the inlusion � in (35) follows from � when one applies the elebrated theorem ofpropagation of singularities due to H�ormander [H�o89℄, in ombination with (KG) and (Comm). So, onlythe inlusion � has to be established. In order to prove that inlusion, we would like to interpret the �Mas a omposition of distributions, though this idea will not turn out to be truly onlusive. To this endnotie that, in view of Proposition 3.2, for Re� < 1, the two-point funtion of �M in (37) reads:�M (f; g) = T ((�Ef)
 (�Eg)) ; (45)where �Ef represents the restrition to =� of the wave funtion Ef , E being the ausal propagator, andT is an integral operator whose integral kernel an be thought of as the distribution in D0(=+ �=+):T (`; !; `0; !0) := � 1H2�2(`� `0 � i0+)2 
 Æ(!; !0) : (46)Above, H is the Hubble onstant, Æ(!; !0) is the standard delta distribution on S2 to be integrated withrespet to the standard measure on the unit 2-sphere, whereas ` is the null oordinate on R as in (4).Looking at (45), our strategy to establish � in (35), onluding the proof of Theorem 3.1, will be thefollowing. First of all we shall prove that, if I is the identity from C10 (M ; C ) ! C10 (M ; C ) (i.e. theShwartz kernel in D0(M �M) given by the onstant funtion 1) the produt of distributionsK := (T 
 I)(�E 
 �E) 2 D0 �(=� �=�)� (M �M)� ; (47)is well de�ned. Now notie that, if K : C10 (=��=�; C ) ! D0(M �M) is the ontinuous map assoiatedwith the kernel tK in view of Shwartz kernel theorem, formally speaking, (45) would hold when:�M = K(1
 1) ;where 1 : =� ! R is funtion whih takes the value 1 onstantly. However that does not make sense ingeneral beause, in partiular, 1 62 C10 (=�; C ). As a matter of fat, we shall instead replae the funtion20



1 with a sequene of funtions �n 2 C10 (=�; C ) whih tends to 1 in a suitable sense and we shall provethat, in the general ase Re� < 3=2 so that the distribution �M is de�ned by (36), it holdsK(�n 
 �n) := �n ! �M ; as n! +1 , (48)where the onvergene is valid in the sense of H�ormander's pseudo topology [H�o89℄. We also prove that,for every n 2 N, it holds: WF (�n) � n((x; kx); (y;�ky)) 2 (T �M)2 n 0 j (x; kx) � (y; ky); kx . 0o. Takingthis shape of WF (�n) and (48) into aount, the properties of the notion of onvergene in H�ormander'spseudo topology will imply � in (35), onluding the proof of Theorem 3.1.3.2.1. Restrition to =� of E and well-de�niteness of K in (47).We prove here that K in (47) is a well-de�ned distribution given by the produt of two distributions. Tothis end, we need a result on the extension/restrition of one entry of the ausal propagator E to thehorizon in order to de�ne �E appearing in (47) as an element of D0(=+ �M). Next we pass to analyseT and to show that the distribution K is well de�ned.Sine both M and M are globally hyperboli, and M � M , Eq.(5) admits unique ausal propagators,E on M , and bE on M . By uniqueness bE�M�M= E when both are viewed as Shwartz kernels. bE anbe restrited to =� in the left argument, when the other ranges in M , giving rise to a distribution inD0(=+ �M) we shall indiate by �E = �E(z; x). Indeed, one has [Rad96a℄:WF ( bE) := f ((z; kz); (x;�kx)) 2 �T �M�2 n 0 j (z; kz) � (x; kx)g ; (49)where (x; kx) � (z; kz) means that it exists a null geodesi  from x to z where kx is the otangent vetorin x and kz the otangent vetor in z. To restrit its left entry to =�, we onsider the immersion mapj : =��M ! M�M , j(`; �; '; x) = ((a = 0; `; �; '); x) in the Bondi like oordinates as in (4). Aordingto the theorem 8.2.4 of [H�o89℄, that restrition is meaningful provided WF ( bE)\Nj = ;; where Nj is theset in T �M of normals to =�. In the ase under investigationNj := f((z; kz); (x; 0)) 2 T �M � T �M j z 2 =� x 2 M ;kz = (kz)ada; (kz)a 2 Rg:Sine null strutures are preserved by onformal resaling and sine (2) entails that the spaetimes underonsideration are onformally related to Minkowski spaetime, the null geodesis of (M; gFRW ) have thesame ausal struture as those of (R4 ; �). If we take into aount this remark in ombination with thede�nition (49) aording to whih eah pair of points (x; y) is joined by a null geodesi, we an prove thatWF ( bE)\Nj = ; slavishly following the proof of the analogous statement in [Mo08℄. So, �E := bE�=��Mis well de�ned and Theorem 8.2.4 of [H�o89℄ guarantees that:WF (�E) � f((s; ks); (x;�kx)) 2 �T �=� � T �M� n 0 j (s; ks) � (x; kx); (ks)l 6= 0g : (50)A bound for WF (�E 
 �E) an be obtained by Theorem 8.2.9 in [H�o89℄, via the general formula:WF (u
 v) � (WF (u)�WF (v)) [ ((supp u� f0g)�WF (v)) [ (WF (u)� (supp v � f0g)) : (51)Let us pass to analyse T 
 I . Obviously one has:WF (T 
 I) =WF (T )� ((M �M)� f0g) : (52)The wavefront set of T was already disussed in setion 4.3 of [Mo08℄ and we here summarise it:21



Proposition 3.3. WF (T ) := A [ B where:A := n ((`; !; k;k); (`0; !0; k0;k0)) 2 �T �=��2 n 0 ��� ` = `0; ! = !0; 0 < k = �k0;k = �k0o ;B := n ((`; !; k;k); (`0; !0; k0;k0)) 2 �T �=��2 n 0 ��� ! = !0; k = k0 = 0;k = �k0o ;with ` 2 R, k 2 T �̀R, ! 2 S2, whereas k 2 T �!S2, and 0 is the zero-setion of (T �=�)2 � T � (=� �=�).We an onlude that K in (47) is a well-de�ned distribution in D0(M�M�=��=�), sine the suÆientondition for the existene of the produt of two distributions, stated in term of wavefront sets in theorem8.2.10 in [H�o89℄ is valid: there is no (x; �) 2WF (T 
 I) with (x;��) 2 WF (�E
�E). Furthermore thefollowing inlusion holds in view of the previously ited theorem and (52):WF (K) � �((s; ps + ~ps); (s0; ps0 + ~ps0); (x; kx); (y; ky)) 2 T �=� � T �=� � T �M � T �Mj ((s; ps); (s0; ps0)) 2WF (T ) or ps = ps0 = 0 ; and((s; ~ps); (s0; ~ps0); (x; kx); (y; ky)) 2 WF (�E 
 �E) or ~ps = ~ps0 = kx = ky = 0g : (53)3.2.2. On the sequene of auxiliary distributions �n and their wavefront set.To de�ne the sequene of distributions satisfying (48), let us �rst �x a funtion � 2 C10 (R;R) dependingon the variable ` only, and suh that �(0) = 1 and de�ne �n 2 C10 (=+;R) as:�n(`; !) := �� ǹ� ; if (`; !) 2 R � S2, 8n 2 N : (54)Hene we an de�ne the following sequene of distributions, whih are well de�ned beause as provedbeforehand K 2 D0((=+ �=+)� (M �M)),�n := K(�n 
 �n) 2 D0(M �M) ; (55)where K : C10 (=� � =�; C ) ! D0(M �M) is the ontinuous operator uniquely assoiated to tK inaordane with Shwartz kernel theorem. These distributions have been already used in the proof of (a)of Proposition 3.2. The wavefront set of �n satis�es the following inlusion, whih an be readily inferredout of Theorem 8.2.12 in [H�o89℄:WF (�n) � f((x; kx); (y; ky)) j ((s; 0); (s0; 0); (x; kx); (y; ky)) 2 WF (K) ; for some s; s0 2 supp�ng :As supp�n beomes larger and larger as n! +1, if one wants to ahieve a n-uniform bound ofWF (�n),the last requirement has be dropped and replaed with s; s0 2 =�.WF (�n) � �((x; kx); (y; ky)) j ((s; 0); (s0; 0); (x; kx); (y; ky)) 2 WF (K) ; for some s; s0 2 =�	 : (56)Taking Proposition 3.3 and equations (50), (51) and (53) into aount, with a laborious but elementaryomputation, this n-uniform estimate an be formally restated as:Proposition 3.4. The elements �n 2 D0(M �M) de�ned in (55) satisfy:WF (�n) � V := n((x; kx); (y;�ky)) 2 (T �M)2 n 0 j (x; kx) � (y; ky); kx . 0o : (57)22



Notie that V is a losed subset in (T �M)2 n 0. As an immediate but indiret proof, simply notie that,in view of Radzikowski's ahievements, V is the wavefront set (and thus a losed subset in (T �M)2 n 0by de�nition of wavefront set) of any Hadamard state on the globally hyperboli spaetime (M; gFRW )(and every globally hyperboli spaetime admits Hadamard states as is well known [Wa94℄).3.2.3. Proof of the fat that �n ! �M in D0V(M �M), and the onsequent WF (�M ).In order to omplete the proof of Theorem 3.1, establishing the inlusion � in (35), we intend to showthat f�ngn2N onverges to �M given by (36), in D0V(M �M) in the sense of H�ormander pseudo topology.Aording to the disussion after De�nition 8.2.2 in [H�o89℄, this is equivalent to require that { withoutassuming a priori that �M 2 D0V(M �M), but assuming that every �n 2 D0V(M �M) {1. �n ! �M in the topology of D0(M �M),2. supn supk2V jkjN jdh�nj < 1 for any N � 1 and for any h 2 C10 (M �M ; C ). In this last inequality Vstands for any one, losed in (T �M)2 n 0, in the omplement of V.(The former requirement is a stronger version of the result ahieved in the proof of (a) of Proposition (3.2)where the onvergene of �n to � were proved in the sense of quadrati forms only.) The reader shouldnotie that if both the onditions written above were true, it would have to hold �M 2 D0V(M �M), andthis in turn implies WF (�M ) � V, a statement whih is nothing but the inlusion � in (35). Thereforethe proof of the validity of both items above would onlude the proof of Theorem 3.1.Let us establish the validity of both items separately.Proposition 3.5. The sequene of distributions �n 2 D0(M �M) onverges to �M in the weak sense.Proof. We have to show that, for every h 2 C10 (M �M ; C ), it holds:limn!1 j�n(h)� �M (h)j = 0: (58)Obviously we an restrit ourselves to h 2 C10 (M �M ;R) by linearity. In the following, we shall makeuse of the notations and the properties of 	h := (�E 
 �E)h and its Fourier transform given in the �nalpart of the Appendix B. The distributions �n ats as:�n(h) = ZR+�S �b�n 
 b�n � b	h� (�k; !; k; !) 2kdk dS2(!) ; (59)The Fourier transform of F = F (`1; `2; !1; !2), above indiated by bF (k1; k2; !1; !2) has to be omputedin R2 with respet to the variable (`1; `2) and passing to the onjugate variable (k1; k2) 2 R2 . Finally itis restrited to the diagonal taking k1 = k2 (and !1 = !2). Furthermore, � stands for the onvolutionin R2 so that, obviously, it results: \�n 
 �n � b	h = b�n 
 b�n � b	h = \�n 
 �n	h = \�n	h�n. To justify(59), we notie that it is simply proved that the right-hand side is weakly ontinuous as a funtion ofh 2 C10 (M �M ;R) (due to the ontinuity of E 
 E in the appropriate topologies and the presene ofthe ut-o� funtions �n 
 �n whih restrit the image of �E 
 �E to a lass of funtions supported in aompat subset of =��=�). On the other hand, when h = f 
 g with f; g 2 C10 (M ;R), the right-handside redues to �n(f; g) written as in the right-hand side of (42). Thus, by the uniqueness of the Shwartzkernel assoiated with a separately sequentially ontinuous quadrati form, the right-hand side of (59)individuates the distribution in D0(M �M) assoiated with the quadrati form �n(�; �). Now de�ne the23



funtional over C10 (M �M ;R):�0M (h) := ZR+�S b	h(�k; !; k; !) 2kdkdS2(!) : (60)A priori, there is no guarantee that it de�nes an element of D0(M�M), i.e. that it is weakly ontinuous,nor that it is the distribution assoiated with the quadrati form �M . However, aording to (36), itresults �0M (f
g) = �M (f; g). So, if �0M individuated an element of D0(M�M), it would have to oinidewith the distribution assoiated with the quadrati form �M (�; �), again in view of the uniqueness of theShwartz kernel. Summarising, to prove that �0M = �M 2 D0(M �M) it is suÆient to prove thatlimn!1 j�n(h)� �0M (h)j = 0: (61)In turn it would imply (58). To prove (61) we follow a proedure similar to that employed in the seondpart of the proof of the item (a) in Proposition 3.2. In other words we start onsidering a trivial partitionof unit, onstruted out of �Æ and �0Æ as follows: we hoose �Æ 2 C10 (R) in suh a way that �Æ(0) = 1,0 � j�Æ(k)j � 1 and supp(�Æ) � [�Æ; Æ℄, with Æ > 0, whereas �0Æ := 1� �Æ . Thereforeb	h(k1; !; k2; !0) = (�Æ(k1)�Æ(k2) + �Æ(k1)�0Æ(k2) + �0Æ(k1)�Æ(k2) + �0Æ(k1)�0Æ(k2)) b	h(k1; !; k2; !0);an expression we an now plug in limn!1 j�n(h)� �0M (h)j to get four terms:ZR+�S2 ��� \�n	h�n � b	h��� 2k dkdS2 � ZR�S2 ����n � ��Æ b	h�Æ� � �n � �Æ b	h�Æ��� j2kj dkdS2++ ZR�S2 ����n � ��Æ b	h�0Æ� � �n � �Æ b	h�0Æ��� j2kj dkdS2+ZR�S2 ����n � ��0Æ b	h�Æ� � �n � �0Æ b	h�Æ��� j2kj dkdS2 + ZR�S2 ����n � ��0Æ b	h�0Æ� � �n � �0Æ b	h�0Æ��� j2kj dkdS2 :Heneforth, we shall indiate by An,Bn,Cn and Dn, respetively, the four integrals in the right-hand side.Let us onsider Dn. We have that, as n! +1:��n � ��0Æ b	h�0Æ� � �n� (k; p; !; !0) == ZR2 dk0dp0�b�(k0)��0Æ b	h�0Æ��k � k0n ; p� p0n ; !; !0� b�(p0)�! ��0Æ b	h�0Æ� (k; p; !; !0) :Above we have used the dominated onvergene sine �0Æ b	h�0Æ = �0Æ b	h�0Æ(k; p; !; !0) is in the Shwartzspae (the divergene has been anelled by �0Æ) and b� is bounded. With the same argument used in theproof seond part of the proof of the item (a) in Proposition 3.2 to ahieve (44), one sees that there is aonstant K � 0 with �����n � ��0Æ b	h�0Æ� � �n� (k; p; !; !0)��� � K(1 + k2)(1 + p2) :So, it is possible to use again Lebesgue's theorem in Dn, obtaining Dn ! 0 for n! +1.Conerning An, we notie that it has to holdjAnj � ZR�S2 ����n � ��Æ b	h�Æ� � �n��� j2kj dkdS2 + ZR�S2 ����Æ b	h�Æ��� j2kj dkdS2: (62)24



The last term is bounded byZR�Rdp dp0 ZR�S2dkdS2(!)2jkj ����n(�k � p)��Æ b	h�Æ� (p; p0; !; !)�n(k � p0)��� ;Notiing that b�n(p) = nb�(np), and passing from the oordinates p; p0; k to u = np, u0 = np0, h = nk, theexpression above an be bounded by:1n2 ZR�Rdu du0 ZR�S2dhdS2(!)2(jh+ uj+ juj) ���b�(�h� u)��Æ b	h�Æ��un; un; !; !� b�(h� u0)��� ;Using the fat that jb�j is bounded and has �nite integral, the found integral an be bounded by:1n2 Z[�nÆ;+nÆ℄�[�nÆ;+nÆ℄du du0 ZS2dS2(!)(K +K 0juj) ���b	h �un; un; !; !���� :From the estimate (76), for small k1 and k2, we have b	h(k1; k2; !; !0) � C=(jk1k2jRe��1=2). This bound,inserted in the integral above implies that, for some onstants K1;K2 � 0 independent from Æ:1n2 Z[�nÆ;+nÆ℄�[�nÆ;+nÆ℄du du0 ZS2dS2(!)(K +K 0juj) ���b	h �un; un; !; !���� � K1Æ3�2Re� +K2Æ4�2Re� ;that is, looking bak at (62):ZR�S2 ����n � ��Æ b	h�Æ� � �n��� j2kj dkdS2 � K1Æ3�2Re� +K2Æ4�2Re� :Analogously, we �nd:ZR�S2 �����Æ b	h�Æ���� j2kj dkdS2(!) � Z[�Æ;Æ℄�S2 ���b	h��� j2kj dkdS2(!) � C 00Æ3�2Re� ;where C 0; C 00 � 0 are onstants independent on Æ. Therefore we have obtained that jAnj � HÆ3�2Re� ,uniformly in n, for some onstant H � 0 independent from Æ. The remaining terms, Bn and Cn, an betreated similarly making use of (76) with n = 2, obtaining that, uniformly in n, jBnj � H 0Æ3�2Re� andjCnj � H 00Æ3�2Re� for some onstants H 0; H 00 independent from Æ. Following the same proedure as inthe last part of the proof of Proposition 3.2 (based on the standard properties of lim inf, lim sup), we an�nally assert that the sequene of distributions �n tends to �0M = �M 2 D0(M �M) weakly. 2We are now in the position to study the onvergene of the �n to �M in the H�ormander pseudo-topology D0V(M �M). The following proposition holds, whih easily implies the item (2) in Se. 3.2.3when employing a partition of the unit subordinated to a overing made of domains of oordinate patheson M �M and taking into aount the ompatness of the support of the h appearing in the item (2) inSe. 3.2.3.Proposition 3.6. Let U �M �M a oordinate path, V � R4 � R4 a lose oni set, so that U � Van be viewed as the orresponding portion of T �M � T �M employing the oordinates over U , and leth 2 C10 (M �M ; C ) be a funtion supported in U . If (supph� V ) \ V = ;, then:supn supp2V jpjN j�n(eihp;�ih)j < +1 8N = 1; 2; : : : (63)25



Proof. Obviously, by linearity, we an always assume whih h is real-valued and we shall assume itheneforth. It holds �n(eihp;�ih) = jK(eihp;�ih 
 �n 
 �n)j in aordane with the de�nition of thedistributions �n in terms of the kernel K as spei�ed in (55). Thus, with V as in the hypotheses, thefollowing inequality holds for every N = 1; 2; : : :, beause p 62 WF (�n) (sine WF (�n) � V for (57)):jK(�n 
 �n 
 eihp;�ih)j � CN;n(1 + jpj)N ; 8p 2 V ; (64)for some onstants CN;n � 0 (depending on h). The idea is to show that, for any �xed h 2 C10 (M�M ;R)there is mh 2 N, suh that one an take CN;n = CN;mh onstantly, for n � mh in (64). This fat wouldlead to (63) immediately, sine it implies that:supn supp2V jpjN j�n(eihp;�ih)j � supn supp2V jpjNCN;n(1 + jpj)N � supn CN;n � maxfCN;1; CN;2; : : : ; CN;mhg < +1 :We need a preliminary lemma whose proof stays in the Appendix C.Lemma 3.1. If O � O �M is any open, relatively ompat set, there is `O > 0 suh that, viewing �Ea Shwartz kernel: sing supp (�E�=��O)) � NO � Owith NO := (�`O; `O)� S2 in =�.To go on we give a preise de�nition of the funtions �n. As usual �n(`; !) := �(`=n), but now we de�ne� 2 C10 (R � S2;R) as a funtion independent form ! 2 S2, with 0 � �(`) � 1 and �(`) = 0 for j`j � 2whereas �(`) = 1 for j`j � 1. Notie that the support of �n beomes larger and larger as n inreases andtends to over the whole =�, taking everywhere the value 1, as n! +1. Sine M is homeomorphi toR4 �R4 , for every h 2 C10 (M �M), there is a set O := Oh, as in the hypotheses of the Lemma 3.1, suhthat Oh � Oh � supp h. Hene, there exists a suÆiently large nh 2 N suh that NOh � supp�n as wellas �n(NOh) = 1 if n � nh.We have the following bound for K(eihp;�ih
 �n 
 �n):jK(�n 
 �n 
 eihp;�ih)j �jK(�nh 
 �nh 
 eihp;�ih)j+ jK((�n � �nh)
 �nh 
 eihp;�ih)j+jK(�hn 
 (�n � �nh)
 eihp;�ih)j+ jK((�n � �nh)
 (�n � �nh)
 eihp;�ih)j (65)Let us indiate by Pn, Qn and Rn the �rst the third and the last term, respetively, in the right-hand sideof the inequality above. The seond an be disussed similarly to the third. Let us analyze the featuresof Pn, Qn and Rn separately proving that there exist a natural mh whih guarantees the validity of thethesis as disussed above, for eah term separately, thus onluding the proof.Analysis of Pn. The analysis is straightforward beause n = nh is �xed. As p 2 V does not belongto the WF (�nh ), for every N it exist CN;nh � 0 suh thatPn = jK(�nh 
 �nh 
 eihp;�ih)j � CN;nh(1 + jpj)N ; 8p 2 V; 8N � 1:Analysis of Rn. With our de�nition of nh, the funtion �n � �nh vanishes over NO for n � nh.Thus, due to the Lemma 3.1, the wave front set of ((�n � �nh)�E 
 (�n � �nh)�E) �=��=��O�O is26



empty, so that every p in R4 � R4 individuates a diretion of rapid derease for it. As supph � Oh, thisresult allows us to estimate the rate of rapid dereasing of K((�n � �nh)
 (�n � �nh)
 eihp;�ih). In theAppendix C, we shall prove the following lemmaLemma 3.2. With the hypotheses of Proposition 3.6, for every N = 1; 2; : : : ; there is a onstantCN � 0 suh that:jk1j2 jk2j2 jpjN ���(�E 
 �E)((�n � �nh)eihk1;�i 
 (�n � �nh)eihk2;�i 
 heihp;�i)��� � CN ; (66)when n � nh.Let us prove that (66) implies that, if n � nh:Rn = jK((�n � �nh)
 (�n � �nh)
 eihp;�i)j � CN(1 + jpj)N ; 8p 2 V ;8N � 1 ; (67)for some CN � 0. Indeed, (66) entails that, for every N , it exist a C 0N � 0, whih does not depend onn � nh, suh that:���(�E 
 �E)((�n � �nh)eihk1;�i 
 (�n � �nh)eihk2;�i 
 heihp;�i)��� � 1(1 + jk1j)2(1 + jk2j)2 C 0N(1 + jpj)N : (68)The left-hand side is nothing but H2 ���� \(�n � �nh)
 \(�n � �nh) � b	heihp;�i� (k1; !; k2; !0)���. Therefore,from the very de�nition of the kernel K, K((�n � �nh)
 (�n � �nh)
 eihp;�i) is obtained by integrating(�E 
 �E)((�n � �nh)eihk1;�i
 (�n � �nh)eihk2;�i 
 heihp;�i) with k1 = �k2 = k and ! = !0 over R+ �S2with respet to the measure kdkdS2(!). In that way, (68) yields that CN � 0 exists suh that, 8n � nh:jK((�n��nh)
(�n��nh)
eihp;�i)j � 4��Z +10 2kdk(1 + jkj)4� C 0N(1 + jpj)N = CN(1 + jpj)N ; 8p 2 V ;8N � 1:We have �nally proved the validity of (67).Analysis of Qn. We start by:Qn = jK(�nh
(�n��nh)
eihp;�ih))j � jK(�nh
(�n��3nh)
eihp;�ih)j+jK(�nh
(�3nh��nh)
eihp;�ih)j:First of all notie that the wave front set ofWF (K(�nh
(�3nh��nh)
�)) � V, asK(�nh
(�3nh��nh)
�)an be seen as a omposition of distribution with ompat support and the Theorem 8.2.14 of [H�o89℄an be applied twie. Therefore, every p 2 V is a diretion of rapid dereasing for suh distribution andthe rate of derease does not depend on n by onstrution. Let us pass to analyse the �rst term in theright-hand side of the inequality written above for Qn. Notie that the support of �nh never intersetsthe support of (�n��3nh) if n � 3nh, hene the singularity (`� `0)�2 present inside K due to T (see (46)and Proposition 3.3) is harmless. For this reason we an skip the �-presription present in T (remindedby 0+ in (46)) and we an onsider the part of the integral kernel of T depending on ` and `0 as a smoothfuntion. We pass to establish the existene of a n-uniform bound for jpjN jK(�nh
(�n��3nh)
eihp;�ih)j.We have the bound, where, as before, y = (y1; y2) and with obvious notation onerning derivatives:jpjN jK(�nh 
 (�n � �3nh)
 eihp;�ih)j �� ������Zd`dS2(!)d�(y1)�E(`; !; y1) Zd�(y2)eihp;yiDNy h(y)�nh(`) ZE(`0; !; y2)�� `0n�� �3nh(`0)(`� `0)2 d`0������ : (69)27



Notie that due to the domain property of h and �(`0=n)� �3nh(`0), the assoiated ausal propagator isa smooth funtion similarly to the disussion done for the term Rn mande in the proof of Lemma 3.2.As we done in the proof of that lemma, we have denoted it by E(`0; !0; y2) in the formula above, wherethe two internal integrations have the standard meaning, whereas the external one has to be understoodin the distributional sense. To �nd an estimate for the right-hand side of (69) it is onvenient to de�ne,for n = 3nh; 3nh + 1; : : : ;1:F �n (`; !; y) := �(y) ZRD�y2E(`0; !; y2)�nh(`)h�� `0n�� �3nh(`0)i(`� `0)2 d`0and F �1(`; !; y) := �(y) ZRD�y2E(`0; !; y2)�nh(`)1� �3nh(`0)(`� `0)2 d`0 ; G�n(y) := �(y)t(�E)(F �n )(y) :where �(y) = �1(y1)�2(y2) is suh that �1; �2 2 C10 (M ;R) and �(y) = 1 if y 2 Oh � Oh. Notie that,beause of the deay property at large `0 of E disussed in the analysis of Rn, and due of the boundednessof �(�=n)��3nh(�), all the F �n as well as F �1 are smooth funtions. So they belong to C10 (=��M�M ;R)by onstrution. By diret inspetion one proves that F �n ! F �1 in the topology of C10 (=��M�M ; C ),as n! +1. Furthermore, in view of Theorem 8.2.12 and the disussion before Theorem 8.2.13 in [H�o89℄(and we adopt here the notation used therein), as WF (t(�E))M is the empty set, it results that Gn issmooth onM �M for every n � 3nh inluding n =1, it is ompatly supported within a n-independentrelatively ompat set inluding Oh, in view of the presene of �, and Gn ! G1 in the topology ofC10 (M �M) as 3nh � n ! +1. Equipped with the introdued funtions, the right hand side of (69)an be rearranged as ����Z eihp;yiDNy G0n(y)h(y) d�(y1)d�(y2)���� ;so that we �nally have:jpjN jK(�nh 
 (�n � �3nh)
 eihp;�ih)j � X�+�1+�2=N Z ��D�2y2 �G�n(y)D�1y1h(y)��� d�(y1)d�(y2) � C 0N;nHowever, sine Gn ! G1 in the topology of C10 (M �M) as 3nh � n ! +1, there exists CN < +1with C 0N;n � CN , so that, for n � 3nh:Qn = jK(�nh 
 (�n � �nh)
 eihp;�ih)j � CN(1 + jpj)N ; 8p 2 V; 8N � 1Finally, olleting the estimates for the four terms in (65) we get that (64) holds true with CN;n = CN;mhonstantly if n � mh whenever one assumes mh := 3nh, and this onlude the proof. 2.As disussed in Se. 3.2.3, the ahieved result implies the inlusion � in (35) and this onludes the proofof Theorem 3.1.4 ConlusionIn [DMP06℄ we established that, out of a bulk-to-boundary reonstrution proedure, it is possible toidentify a preferred quasifree algebrai state for a salar �eld theory living on any manifold lying in a28



large lass of Friedmann-Robertson-Walker spaetimes. The �rst goal aomplished in the present paperis the extension of those results to other physially relevant ases, enompassing the analyses of the linearsalar utuations of the metri in inationary models. As a further result, in this paper, we proved thatsuh state is also of Hadamard form. This entails several interesting onsequenes the most notable beingboth the boundedness of the bak-reation due to quantum e�ets and the possibility to perform oversuh a state a renormalisation proedure. Despite the interest of these remarks, we should emphasise onemore that the possibly most interesting appliation of our results lies in inationary models aording towhih the early Universe undergoes an almost de Sitter phase of expansion driven by a real salar �eldoupled to a self-interation potential. Within this framework many onsequenes are derived employingquantisation and perturbative tehniques and the most notable is the existene of a power spetrum ofutuations whih is almost sale invariant. A byprodut of this paper is indeed the possibility to put ona �rmer mathematial ground the often taken for granted assertion that it exists a well-behaved quantumstate out of whih the above results an be derived.Nonetheless we should point out that our proof holds true only under same further hypothesis andmost notably �, taken as in (11), must di�er from 32 whih would orrespond to a massless salar �eldminimally oupled to salar urvature. In this senario the tehniques employed in this paper annot beapplied and we rekon that a rethinking of the whole proedure is neessary. Nonetheless we feel safe tolaim that the proof of the Hadamard ondition, as it stands now, is of physial interest from the pointof view of osmology and it opens the road to takle spei� inationary models on a �rm mathematialground.Aknowledgements.The work of C. D. was supported by the von Humboldt Foundation and, that of N. P., by the GermanDFG Researh Program SFB 676. Part of this paper was written by V. M. and N. P. at the E. Shr�odingerInstitute of Vienna during the ESI Program Operator Algebras and Conformal Field Theory. V. M. andN. P. are therefore grateful to the institute and the organisers of the program Y. Kawahigashi, R. Longo,K.-H. Rehren and J. Yngvason for their kind hospitality. The authors would like to thank K. Fredenhagenand R. Brunetti for useful disussions.A Approximated solution by means of perturbation theoryWe shall briey omment both on the extension of the onstrution of the solution �k(�) of (9) in thease � 2 R with 1=2 < � < 3=2 and V (�) = O(��5) as well as on the related uniform estimates thatwe have used throughout. The values 0 � � � 1=2 (or � imaginary) were onsidered in [DMP08℄. Theonstrution is similar to the one presented in the proof of theorem 4.5 in [DMP08℄ though some subtletiesarise. To be more spei�, in the mentioned theorem, �k was onstruted by means of a perturbativeseries around a partiular solution �0k(�) whih orresponds to (12), that in the de Sitter bakground.More preisely �k(�) = �0k(�)++1Xn=1(�1)nZ ��1dt1 Z t1�1dt2 � � � Z tn�1�1dtnSk(�; t1)Sk(t1; t2) � � �Sk(tn�1; tn)V (t1)V (t2) � � �V (tn)�0k(tn); (70)29



where Sk(t; t0) := �i��0k(t)�0k(t0)� �0k(t0)�0k(t)� ; t; t0 2 (�1; 0) ; (71)is the retarded fundamental solution of the unperturbed one dimensional problem (9), whereas V (�) isthe perturbation potential. In the ase under investigation, the proof of the onvergene of the series(70) an be proved, dividing the problem into two parts, namely we shall disuss the ases 0 � k < 1and k � 1 separately. Though the former is the most diÆult, we an nonetheless take into aount thefollowing behaviour for jk� j � 1:j�0k(�)j � C�2 p� �jk� j� + jk� j2�� + 1jk� j� � ; j� j > 1; jk� j < 1as well as that for jk� j � 1 j�0k(�)j � C�pjkj ; j� j > 1; jk� j � 1 :Together they imply the following � -uniform estimatej�0k(�)j � C�2  1jkj� + 1pjkj! ; j� j > 1 (72)where C� is some positive �-dependant onstant. The analysis of Sk(t1; t2) is more subtle, we shall derivetwo estimates valid for small and large k respetively. More preiselyjSk(t1; t2)j � C 0� �pjt1t2j� (jt1j� jt2j2�� + jt1j� jt2j2��);� C 0� jt1j2�+1; jt1j > jt2j > 1; jkj < 1where 0 < � := supf�; 2� �g < 32 , whilejSk(t1; t2)j � C 0� 1jkj ; jt1j > jt2j > 1; jkj � 1C 0� being a further onstant di�erent from C� . Thanks to these two estimates and sine the perturbationpotential is V (�) = O(��5), the series (70) is dominated by the following onvergent seriesj�k(�)j � j�0k(�)j 1Xn=0 1n! � C(3� 2�) j� j3�2��n ; jkj < 1 j�k(�)j � j�0k(�)j 1Xn=0 1n! � C4jkjj� j4�n ; jkj � 1:with a �xed onstant C. The two inequalities show that the behaviour in k of j�k(�)j is similar to the onepresented in (72) for j�0k(�)j. It is possible to prove that the � derivatives do not alter the bound given atsmall k. Notie that similar estimates hold true also for ���k(�). More preisely, sine for jkj < 1, bothSk(t1; t2) and �0(�) an be expanded in powers of k the following bound must hold for the nth order �derivative of �k(�)�n� �k(�) = Cn+1�2 1jkj� +O(jkjmin(�;2��)); j� j > 1 ; jkj < 1 : (73)These estimates are valid for � 2 R with 0 � � < 3=2. For � 2 iR there is no singularity at k = 0. Toonlude this appendix we would like to emphasise that, as � ! �1, the analogy between �0k and �kbeomes stronger; most notably, if we rearrange the series (70) and we operate as before, in the limit� !1, we end up withj�k(�) � �0k(�)j � C�  1jkj� + 1pjkj!�eC=�3�2� � 1�! 0; � ! �1 :30



B Derivation of some estimates both for �h and 	hIn this appendix we derive some estimates both for the bi-solutions of Klein-Gordon equation generatedby real smooth ompatly-supported smooth onM�M and for their restritions to the horizon =��=�.To this end, take h 2 C10 (M �M ;R) and de�ne the two-wavefuntion �h and its extension/restrition	h to =� � =� (referring to the larger globally-hyperboli spaetime (M; bgFRW ) inluding (M; gFRW )as a subspae): �h := (E 
E) h ; 	h := H�2 h� bE 
 bE� hi �=��=� :It result �h 2 C1(M �M ;R) and similarly 	h 2 C1(=� � =�;R). It follows by diret appliation ofTheorems 8.2.9 and 8.2.12 in [H�o89℄ and taking into aount the shape ofWF (E) (49). Moreover, it turnsout that the restrition of �h to ����� has ompat support when �� is a onstant-time Cauhy surfaeof (M; gFRW ). To prove it, take an open set A �M suh that A is ompat and supph � A�A (suh Adoes exist beause M is homeomorphi to R4 ). Thus onsider lass of funtions fn; gn 2 C10 (A;R) withPNn=1 fn 
 gn ! h in C10 (A� A; C ) as N ! +1. By the known properties of E in globally hyperbolispaetime, the restrition of Ef to a spaelike Cauhy surfae � is inluded in the ompat J(H)\� whenf 2 C1(M ;R) is suh that suppf � H and H is ompat. (Here and heneforth J(A) := J+(A)[J�(A).)As a onsequene, the restrition of (E 
 E)�PNn=1 fn 
 gn� = PNn=1E(fn) 
 E(gn) to �� � �� hassupport inluded in the ompat B := (J(A) \ �� ) � (J(A) \ �� ). Sine PNn=1E(fn) 
 E(gn) ! huniformly on every ompat set, as N ! +1, and eah (E(fn) 
 E(gn)) ������ vanishes outside B,we have that for every ompat subset B0 of �� � �� with B0 � B, it also holds h �B0nB= 0. TakingB0 larger and larger (this is possible beause �� is homeomorphi to R3 ) one �nds that �h������= 0outside the ompat B, so that supp (�h ������ ) = supp [((E 
E)h) ������ ℄ � B is ompat.�h an be deomposed into modes along the lines of (8), formally:�h(x1; x2) = ZR3�R3 h�k1(x1)�k2(x2)e�h(k1;k2) + �k1(x1)�k2(x2)e�h(k1;k2) i d3k1d3k2:Let us analyse the properties of e�h(k1;k2) and its dependene on h. To this end, �x any, but �xed, initialtime �0 and the assoiated Cauhy surfae ��0 . Sine �h is smooth by onstrution, we an restrit it on��0 � ��0 . Hene the previous formula is invertible by means of a proedure similar to that of (15):e�(k1;k2) = �i Z��0���0 d3x1d3x2 a4(�0)"��k1(x1)��1 ��k2(x2)��2 �h(x1; x2)+���k2(x2)��2 �k1(x1)��h(x1; x2)��1 �k1(x1)�k2(x2)�2�h(x1; x2)��1��2 � ��k1(x1)��1 �k2(x2)��h(x1; x2)��2 # : (74)In ombination both with the expliit form of the modes �k as in (8) and with �h; ��1�h; ��2�h 2C10 (��0 � ��0 ; C ), suh expression entails that e�h(k1;k2) is an integrable funtion whih is smoothexept for k1 = 0 and k2 = 0 separately. Furthermore it deays rapidly at large k1 or k2 uniformlyin the angles (when the other variable is �xed) whereas, near k1 = 0 and k2 = 0 it has the followingangle-independent uniform bound: je�h(k1;k2)j � C(jk1jjk2j)Re� :31



The behaviour an be summarised as it follows e�h = e�h(k1;k2) is everywhere smooth but k1 = 0 andk2 = 0 separately, moreover, for n = 1; 2; : : : there are onstants Cn � 0 with:je�h(k1;k2)j � Cn(jk1jjk2j)Re� � 1(1 + jk1j+ jk2j)n� ; for all k1k2 2 R3 n f0g, (75)�nally, the onstants Cn depend ontinuously on h with respet to the topology of ompatly supportedsmooth funtions on M �M . This last observation an be proved using the ontinuity of the Fouriertransform on ��0���0 with respet to the Shwartz topology and the ontinuity of the ausal propagatorin the appropriate topologies, remembering that the restrition to ��0 � ��0 of the wavefuntion �h =(E 
E)h is ompatly supported.We an now pass to onsider the smooth restrition of �h to =��=�, 	h. Adapting a proedure similarto that we exploited for the wavefuntions, it arises that:	h(`; !; `0; !0) = H5i ZR�R e�i`k1�i`0k22� rk1k24 e�h(Hk1; �(!); Hk2; �(!0))dk1dk2:The bound (75) entails some properties of b	h(k1; !; k2; !0) := iH5qk1k24 e�h(Hk1; �(!); Hk2; �(!0)): Thefuntion b	h = b	h(k1; !; k2; !0) is everywhere smooth, exept for k1 = 0 or/and k2 = 0, moreover thefollowing angle-uniform bound holds, for every n = 1; 2; : : : ;jb	h(k1; !; k2; !0)j � C 0njk1k2jRe��1=2 � 1(1 + jk1j+ jk2j)n� ; (76)where eah onstant C 0n depends ontinuously on h as before. Aordingly, it holds that b	h(k1; !; k2; !0)is an integrable funtion on R � S2� R � S2.C Proofs of some propositionsProof of Lemma 3.1. As E is the restrition to M of the analogous ausal propagator bE de�ned inthe larger spaetime M inluding M as subspaetime, and sine the singular support of bE 2 D0(M �M)is given by the points (y; x) 2 M � M suh that there is a null bg-geodesi onneting them, the lemmais proved if we establish that the null bg-geodesi getting out from the ompat K := O �M interset =�in a ompat set.Let us prove this fat. To this end, as in [DMP08℄ and referring to the spaetime (M; gFRW ) withoordinates and metri as in (2), we introdue the new null oordinates U = tan�1(� + r) and V =tan�1(� � r) ranging in subsets of R individuated by � 2 (�1; 0) and r 2 (0;+1). Then:gFRW = a2(�(U; V ))os2 U os2 V ��12dU 
 dV � 12dV 
 dU + sin2(U � V )4 dS2(�; ')� : (77)M [=� is the wedge jV j � jU j with V 2 [��=2; 0℄, but removing the boundary at U = �V (inluding itsendpoints) orresponding to � = +1, and omitting the point (��=2;��=2), orresponding to the tip of=� whih does not exist in M . In this piture =� oinides with the boundary at V = ��=2 (without itsendpoints), whereas the apparent boundary at U = V is the submanifold r = 0. However, with our hoieof a, the metri in (77) is smooth outside this region, too. As a matter of fat, the globally hyperbolispaetime (M; bg), whih extends (M; gFRW ) is obtained letting V ranging in a neighbourhood of =�32



inluding a region beyond it. The relevant point here is that also the metri eg obtained anelling theoverall fator, a2(�(U; V ))=(os2 U os2 V ), in the right-hand side of (77), is well-behaved and smooth forU; V 2 R with U � V (the apparent singularity for U = V is a oordinate singularity only). The spae-time (fM; eg) obtained in that way is nothing but the (globally hyperboli) Einstein stati universe. Theremarkable point is that, within this piture, =� oinides with �J+(i�;fM) n fi�g = �I+(i�;fM) n fi�g,where the point i� 2 fM is the tip of the one =� loalised at U = ��=2, V = ��=2. FurthermoreM = I+(i�;fM). An immediate onsequene is that no future-direted null (or ausal) eg-geodesis ema-nating fromK an reah =� sine J+(K;fM) � I+(i�;fM) whih is always open and so, it annot interset�I+(i�;fM) = =� [ fi�g. Sine the two metris are onformally related [Wa84℄, the null geodesis of(fM; eg) when restrited to (M [=�; bg) individuate bg-geodesis and vie versa. Therefore our thesis wouldproved if we were able to establish that the past-direted null bg-geodesi getting out from the ompatK := O �M interset =� in a ompat set (notie that =� does not inludes i�).Atually that result is true, sine the analogous statement, for the opposite time orientation, was es-tablished in [Mo08℄ in the proof of Lemma 4.3 for a generi globally hyperboli spaetime fM , whenM � fM is the globally hyperboli subspaetime I�(i+;fM) with i+ 2 fM and =+ := �I�(i+;fM) n fi+g =�J�(i+;fM) n fi+g has the same geometri struture as =� (referred to the opposite temporal orienta-tion). In that ase K � M was any ompat set (the further hypotheses assumed for K in the proof ofLemma 4.3 in [Mo08℄ played no role in the part of the proof we are interested in). 2Proof of Lemma 3.2. In the following, E(`; !; y) is the smooth integral kernel of �E with the left entryrestrited to =� nNOh and the right one restrited to Oh. To ahieve (66), we start from:jk1j2 jk2j2 jpjN ���(�E 
 �E)((�n � �nh)eihk1;�i 
 (�n � �nh)eihk2;�i 
 heihp;�i)��� �X�+�+�0=N ZM�Md�(y; y0)jD�y h(y)j ZS2 d! ����ZR d` eik1`� 2̀D�yE(`; !; y1) ��� ǹ�� �nh(`)� ���� �� ����ZR d`0eik2`0� 2̀0D�0y E(`0; !; y2) ���`0n�� �nh(`0)� ���� : (78)where y = (y1; y2) 2 Oh � Oh, d�(`; `0; !; !0; y; y0) := d`dS2(!)d`0dS2(!0)d�g(y)d�g(y0) and, �nally, Dyare shortut notations for the derivatives along the oordinates of y. To prove (66), sine the domainsof integration in y; y0 and ! in the right-hand side of (78) have �nite measure, it is enough proving thateah of the two internal integrals in d` and d`0 give rise to funtions of the remaining variables whih areuniformly bounded in n. In other words we have now to establish that:����ZR d` eik1`� 2̀D�yE(`; !; y1) ��� ǹ�� �nh(`)� ���� � C� < +1 ; uniformly in n = 1; 2; : : :. (79)To prove (79) we study the behaviour of the smooth funtion �ǹD�yE(`; !; y). Starting form the analysisof the solutions of the Klein-Gordon equation in terms of modes summarised in Se.2.1 and using resultsin the subsequent Se.2.2, it arises that the ausal propagator an be written, in the sense of the distri-butional �-presription, i.e. smearing the kernel with a test funtion g = g(y) before taking the limit,as D�y�m̀E(`; !; y) = lim�!0+  Im�D�y�m̀ Z +10 dkei3�=4eik`=Hpk�k(�)e�ikj~yj os(!;~y)e��jkj� ; (80)where  2 R is a onstant irrelevant in our disussion, y := (�; ~y) and os(!; ~y) is a shortut notation forthe osine of the angle between ~y and the unit vetor individuates by the angles ! 2 S2 when adopting33



spherial oordinate on the Cauhy surfae �� the funtions �k are the modes disussed in Se.2.1. Wehave written E instead of �E, beause we are intersted in the ase (=�nNO)�Oh 3 ((`; !); y) whih impliesthat the kernel of �E is smooth. We deompose the integral above into two parts R +10 = R 10 + R +11 andwe de�neD�y�m̀E<(`; !; y) := lim�!0+  Im�D�y�m̀ Z 10 dkei3�=4eik`=Hpk�k(�)e�ikj~yj os(!;~y)e��jkj� ;and D�y�m̀E>(`; !; y) := lim�!0+  Im�D�y�m̀ Z +11 dkei3�=4eik`=Hpk�k(�)e�ikj~yj os(!;~y)e��jkj� :The ase of E<(`; !; y). The limit as � ! 0+ for �rst integral an be omputed without using asmearing test funtion and the limit an be intehanged with the symbol of integral. This arises bydiret appliation of Lebesgue's dominated onvergene theorem. Furthermore, de�ning a := (� + `=H �kj~yj os(!; ~y)), we have the bound, following from (73) when m = � = 0:lim�!0+ ���� Im Z 10 dkei3�=4eik`=Hpk�k(�)e�ikj~yj os(!;~y)e��jkj���� = ���� Z 10 dkei3�=4eik`=Hpk�k(�)e�ikj~yj os(!;~y)����� jjaRe��3=2C�2 Z a0 u1=2�Re�du+ jja�3=2�min(Re�;2) Z a0 O(k1=2+min(Re�;2))du ; (81)where, in our hypotheses jaj > 0 sine j`j is very large wheras y and ! range in a bounded domain (inother words ((`; !); y) does not belong to the singular support of �E). The funtion in the seond lineof (81) vanishes as j`j ! +1 uniformly in y 2 Oh and ! 2 S2. An analogous proedure an easily beimplemented in presene ot derivatives D�y ; �m̀, making use of (73) again. The �nal result is that, forboth � 2 iR or � 2 (0; 3=2), eah funtion:(=� nNO)� Oh 3 ((`; !); y) 7! D�y�m̀E<(`; !; y)vanishes as j`j ! +1 uniformly in (!; y) 2 S2� Oh, so that it is bounded. Furthermore, if m > 0, it isalso ` integrable and the integral is bounded as a funtion of (!; y) 2 S2� Oh.Looking at the left-hand side of (79), we have the bound onerning the only ontribution due toD�yE<(`; !; y): ����ZR d` eik`� 2̀D�yE<(`; !; y) ��� ǹ�� �nh(`)� ����� ZR d` ��� 2̀D�yE<(`; !; y)�� ������ ǹ�� �nh(`)����+ 2 ZR d` ���`D�yE<(`; !; y)�� �����`�� ǹ�� �`�nh(`)����++ ZR d` ��D�yE<(`; !; y)�� ����� 2̀�� ǹ�� � 2̀�nh(`)���� : (82)Let us start by analyzing the third integral in the right-hand side. Performing the hange of variables`! n`, it an be rewritten as:ZR d` ��D�yE<(`; !; y1)�� ����� 2̀�� ǹ�� � 2̀�nh(`)���� = ZR d` ��D�yE<(n`; !; y1)�� n�1 ��� 2̀� (`)� � 2̀�nh(n`)�� : (83)34



and the right-hand side is n-uniformly bounded by the produt of sup(y;!)2Oh�=� jD�yE<j { whih weknow to be �nite { and1n ZR d` ��� 2̀� (`)� � 2̀�nh(n`)�� � 1n ZR d` ��� 2̀�(`)��+ ZR ds ���2s�nh (s)�� � D < +1 ; 8n = 1; 2; : : : :The remaining two terms in the right hand side of (82) an be n-uniformly bounded similarly. The seondterm an be treated with an analogous proedure, with the hange of variables `! n` using the fat that�`D�yE<(`; !; y) is bounded on (=� nNOh)�Oh and that it holds n�1 RR d` j�`� (`)� �`�nh(n`)j < G <+1, uniformly in n. The �rst one an be treated analogously, notiing that ��� � ǹ�� �nh(`)�� is boundeduniformly n, whereas RRn[�`Oh;`Oh ℄ d` ��� 2̀D�yE<(`; !; y)�� � H < +1 if y 2 Oh.We have established that:����ZR d` eik1`� 2̀D�yE<(`; !; y1) ��� ǹ�� �nh(`)� ���� � C < +1 ; uniformly in n = 1; 2; : : :To onlude it is enough to establish the analog for E>.The ase of E>(`; !; y). We pass now to study the behaviour of E>(`; !; y). As before we �rstexamine the ase m = � = 0. To this end we exploit an approximation proedure to ompute themodes �k(�) for k > 1 whih is similar to that used in [DMP08℄ and disussed in the Appendix A,but now using a di�erent deomposition of the omplete potential k2 + a(�)2 �m2 + �� � 16�R(�)� intoground and perturbation parts, W0(k) and W (�), respetively. In fat, we de�ne W0(k) := k2 andW (�) := a(�)2 �m2 + �� � 16�R(�)� in the di�erential equation in (9), so that the equation now reads:d2d�2�k(�) + (W0(k) +W (�))�k(�) = 0 : (84)We stress that the modes �k are the same as that found employing the di�erential equation (9), onlythe perturbative proedure to solve it is di�erent. The solution an be written as in (70) where now,�0k(�) := e�i�=4p2k e�ik� , V is repled by W , and Sk(t; t0) is replaed by: Tk(t; t0) := sin(k(t�t0))2k . By diretinspetion one sees that the found series an be re-arranged as:ei�4pk�k(�) = 1Xn=0��1ik �n �A+n (k; �)eik� +A�n (k; �)e�ik� � ; (85)where the oeÆient A�n satisfy: A+0 (k; �) := 0, A�0 (k; �) := 1 and reursive relations:A+n+1(k; �)= Z ��1W (t) �A+n (k; t) +A�n (k; t)e�2ikt� dt ; A�n+1(k; �)= � Z ��1W (t) �A�n (k; t) +A+n (k; t)e2ikt� dt:All the integrand involved in the reursive proedure are absolutely integrable, due to the form of Wand the series (85) turns out to be uniformly absolutely onvergent with its t-derivatives for (t; k) 2I(t0) � (1;+1), where I(t0) is a neighborhood of every t0 < �T , so that it an be derived under thesymbol of series and, in this way, one an hek that the left-hand side individuates a solution of (84).All the oeÆient A�n (k; �) are bounded uniformly in k. To be more preise, the k dependene of thoseoeÆient appears as osillating phases under some sign of integration. Furthermore there is always apart of A�n (k; t) that does not depend on k at all, while the oeÆient A+n (k; t) expliitly depends on k.We are now in plae to disuss the behaviour of E>(`; !; y) (always remaining out of the singularities of35



E(`; !; y), i.e. for y 2 Oh and (`; !) 2 =� nNOh). We have, for y = (�; ~y),�m̀D�yE>(`; !; y) = lim�!0+  Im(�m̀D�yZ 11dk i eik`=H 1Xn=0��1ik �n hA+n (k; �)eik� 0 +A�n (k; �)e�ik� 0ie��jkj) ;where � 0 := � � j~yj os(!; ~y). As before, we start by onsidering the ase m = 0 and � = 0. The terms ofthe expansion of E> that ould give rise to problems at large k are only those with n = 0 and n = 1, theremaining rest O(1=k2) produes (y; !)-uniformly bounded funtions after evaluation of the integral (itan be evaluated without the �-presription ). So, let us to examine:lim�!0+  Im��m̀D�y Z 11dk i eik`=H �e�ik� 0 +��1ik ��A+1 (k; �)eik� 0 +A�1 (k; �)e�ik� 0�� e��jkj� ; (86)where m = � = 0 andA+1 (�; k) := Z ��1W (t) e�2ikt dt ; A�1 (�; k) := � Z ��1W (t) dt;and thus A�1 does not depend on k, while A+1 has an osillating phase inside an integral. The �rst termin the integral (86) gives rise to a distribution proportional to:Æ(`=H � � + j~yj os(!; ~y))� p2p� sin(`=H � � + j~yj os(!; ~y))(`=H � � + j~yj os(!; ~y)) : (87)In this formula, atually, the Dira delta annot ontribute beause it is supported outside the domainwe are onsidering, moreover the remaining term is bounded uniformly in (y; !) 2 Oh�S2 and it falls o�as 1=` at large `. Let us now onsider the term in the integral arising from A�1 . It looks likeA(�) Z 11 sin(k(`=H � �))k dkwhih deays, for large j`j, faster then 1=j`j�, with 0 � � < 1 so, it is (y; !)-uniformly bounded. Theterm ontaining A+1 an also be easily shown to be (y; !)-bounded. That term an be written aslim�!0+  Im�Z 11 dk i e��jkj Z ��1 eik(� 0+`=H�2t)W (t)� :Performing the k-integration, a distribution like (87) apperas, under the sign of integration in t and itan also be shown to be bounded. Furthermore onsidering m1 y-derivatives and m2 `-derivatives of E>does not a�et its uniform boundedness, in partiular, the extra terms of that series n < m1 +m2 + 2that needs to be taken into aount, they an always treated as one of the ase studied before, using thefat that the derivatives of the distribution (87) are either supported outside the support of E> or vanishuniformly for large `.We onlude that, for m = 0; 1 and any �, every funtion:(=� nNO)� Oh 3 ((`; !); y) 7! D�y�m̀E>(`; !; y)vanishes as j`j ! +1 uniformly in (!; y) 2 S2�Oh, so that it is bounded. Looking at the left-hand side36



of (79), we have the bound onerning the only ontribution due to D�yE>(`; !; y):����ZR d` eik`� 2̀D�yE>(`; !; y) ��� ǹ�� �nh(`)� ���� �� ����ZR d` eik` �� 2̀D�yE>(`; !; y)���� ǹ�� �nh(`)�����+ 2 ZR d` ���`D�yE>(`; !; y)�� �����`�� ǹ�� �`�nh(`)����++ ZR d` ��D�yE>(`; !; y)�� ����� 2̀�� ǹ�� � 2̀�nh(`)���� : (88)As before, we start by analyzing the third integral in the right-hand side. Performing the hange ofvariables `! n`, it an be rewritten as:ZR d` ��D�yE>(`; !; y1)�� ����� 2̀�� ǹ�� � 2̀�nh(`)���� = ZR d` ��D�yE<(n`; !; y1)�� n�1 ��� 2̀� (`)� � 2̀�nh(n`)�� : (89)and the right-hand side is n-uniformly bounded by the produt of sup(!;y)2S2�Oh jD�yE>j { whih weknow to be �nite { and1n ZR d` ��� 2̀� (`)� � 2̀�nh(n`)�� � 1n ZR d` ��� 2̀�(`)��+ ZR ds ���2s�nh (s)�� � D < +1 ; 8n = 1; 2; : : : :The seond term in (88) an be treated with an analogous proedure, with the hange of variables` ! n` using the fat that �`D�yE>(`; !; y) is bounded on (=� n NOh) � Oh and that it also holdsn�1 RR d` j�`� (`)� �`�nh(n`)j < G < +1, uniformly in n.To onlude, in order to establish that:����ZR d` eik`� 2̀D�yE>(`; !; y) ��� ǹ�� �nh(`)� ���� � C < +1 ; uniformly in n = 1; 2; : : :so onluding the overall proof, it is suÆient to prove a n-uniform bound for the �rst term in theright-hand side of (88):����ZR eik` �� 2̀ D�y E>(`; !; y)���� ǹ�� �nh� d`���� � C(�) ; uniformly in n and in k.Without loosing generality we shall substitute the y derivative with ik fators in the k-expansion of E>.The terms not onsidered here are harmless, in partiular, the ase when the y derivative is a � derivativethat ats on the �rst of the reursive integrals in the perturbative series an only lower the degree ofdivergene. We use the expansion found beforehand with w = � + 2:lim�!0+ �����ZR eik`Im(Z 11 dk i eik`=H (ik)w 1Xm=0��1ik �n hA+m(k; � 0)eik� 0 +A�m(k; � 0)e�ik� 0i e��jkj) �� ��� ǹ�� �nh� d`����The oeÆient A�m(k; � 0) deompose into the sum A�m(k; �) = Bm(� 0) + B�m(k; � 0), where Bm(� 0) doesnot depend on k. We start onsidering only these k-independent terms.lim�!0+ �����ZR eik`(ZR dk �(jkj � 1) (ik)weik`=H 1Xm=0��1ik �nBm(�)e�ik� 0e��jkj) �� ��� ǹ�� �nh� d`���� :37
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