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tWe develop a method for 
onstru
ting metastable de Sitter va
ua in N = 1supergravity models des
ribing the no-s
ale volume moduli se
tor of Calabi-Yaustring 
ompa
ti�
ations. We 
onsider both heteroti
 and orientifold models. Ourmain guideline is the ne
essary 
ondition for the existen
e of metastable va
ua
oming from the Goldstino multiplet, whi
h 
onstrains the allowed s
alar geometriesand supersymmetry-breaking dire
tions. In the simplest non-trivial 
ase where thevolume is 
ontrolled by two moduli, this 
ondition simpli�es and turns out to be fully
hara
terised by the interse
tion numbers of the Calabi-Yau manifold. We analysethis 
ase in detail and show that on
e the metastability 
ondition is satis�ed it ispossible to re
onstru
t in a systemati
 way the lo
al form of the superpotential thatis needed to stabilise all the �elds. We apply then this pro
edure to 
onstru
t someexamples of models where the superpotential takes a realisti
 form allowed by 
uxba
kgrounds and gaugino 
ondensation e�e
ts, for whi
h a viable va
uum ariseswithout the need of invoking 
orre
tions to the K�ahler potential breaking the no-s
ale property or uplifting terms. We �nally dis
uss the prospe
ts of 
onstru
tingpotentially realisti
 models along these lines.
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1 Introdu
tionCurrent 
osmologi
al observations 
onvin
ingly suggest that our universe is undergoing ana

elerated expansion. The simplest model a

ounting for this result involves ba
kgroundswith a tiny positive 
osmologi
al 
onstant. This has lead in the past years to a lot ofa
tivity in the sear
h of de Sitter (dS) va
ua in the four-dimensional low-energy e�e
tivesupergravity des
ription of string theory 
ompa
ti�
ations. It is now well understood thate�e
ts like gaugino 
ondensation and ba
kground 
uxes 
an indu
e terms in the e�e
tivesuperpotential that allow to stabilise many or even all of the moduli �elds. However,this generi
ally leads to a supersymmetri
 ground state whi
h is either anti-de Sitter(AdS) or Minkowski spa
e, and it is surprisingly diÆ
ult to obtain non-supersymmetri
dS va
ua [1{4℄. One generi
 way of over
oming this diÆ
ulty is to start from a settingleading to an AdS va
uum and add to it some additional sour
es of hard supersymmetrybreaking, like anti-D3 branes [5℄ or other lo
alised sour
es [6, 7℄, to uplift the va
uumenergy. However, the addition of su
h sour
es does not admit a transparent e�e
tivesupergravity des
ription, and re�nements of this s
enario have been 
onsidered wherethe uplifting se
tor breaks supersymmetry softly and 
ontains additional light degrees offreedom [8{16℄. Alternatively, one may a
hieve dS va
ua in a more genuine way thanksto leading perturbative or non-perturbative 
orre
tions to the K�ahler potential [17{21℄.In that 
ase, however, one has to make sure that higher-order subleading 
orre
tions areunder 
ontrol.Despite of the su

ess of the above approa
hes in produ
ing viable va
ua, it wouldbe desirable to have models where metastability is granted from the onset, without theneed to in
ur into either subleading 
orre
tions or an additional uplifting se
tor for help.Ideally, one may want to a
hieve this within the se
tor of the moduli �elds. The sim-plest option 
ould be to use just the dilaton, whi
h universally spans the 
oset spa
eSU(1; 1)=U(1), but this has been ex
luded unless un
ontrollably large 
orre
tions arisefor the geometry [22{24℄. Another interesting possibility 
ould be to use only the volumemoduli (also 
alled K�ahler moduli), whi
h have the universal 
hara
teristi
s of spanninga s
alar manifold with a no-s
ale property. Interestingly, no expli
it example is knownso far where a viable va
uum is produ
ed without invoking 
orre
tions to the K�ahlerpotential breaking its no-s
ale stru
ture. In the simplest 
ases where the moduli spa
eis a 
oset manifold with 
ovariantly-
onstant 
urvature, like in the 
ase of one modulusor more generi
ally for n moduli in orbifold limits of Calabi-Yau (CY) 
ompa
ti�
ations,it has been proved in [24, 25℄ (see also [23℄) that dS va
ua are in fa
t unavoidably un-stable, be
ause one of the s
alar partners of the Goldstino always has a semi-negativemass-squared, for any superpotential. It was however shown later in [26℄ (see also [27℄)that this no-go theorem 
an be evaded when the moduli span a less 
onstrained spa
e,1



like for smooth CY 
ompa
ti�
ations. One of the main results dedu
ed in [26℄, followingthe line of reasoning of [24, 25℄, is a ne
essary 
ondition on the K�ahler geometry of themoduli spa
e for a metastable dS va
uum to possibly arise. This 
ondition depends onthe interse
tion numbers dijk and thus restri
ts the type of CY manifold that 
an be used.Furthermore, it also 
onstrains the dire
tion in �eld spa
e along whi
h supersymmetry isallowed to be broken, and thus impli
itly restri
ts the form of the superpotential as well.The aim of this paper is to analyse in more detail su
h models, and to study how todetermine a superpotential whi
h allows for metastable de Sitter va
ua for a given 
hoi
eof CY manifold. We shall fo
us on the simplest non-trivial 
lass of models involving twovolume moduli, for whi
h the metastability 
ondition simpli�es and 
an be made moreexpli
it, but we believe that the situation for models with more volume moduli shouldbe qualitatively similar. We will then look for a systemati
 pro
edure to re
onstru
tthe required form of the superpotential that is needed to a
hieve stabilisation of all themoduli, on
e the metastability 
ondition on the K�ahler geometry is satis�ed.The paper is organised as follows. In Se
tion 2 we brie
y review the results of refs. [24{26℄ regarding the metastability of supersymmetry-breaking va
ua and their impli
ations.In Se
tion 3 we apply these results to the more parti
ular 
ase of CY string models withtwo volume moduli, and dedu
e whi
h type of models 
an possibly allow viable va
ua.In Se
tion 4 we further analyse those models satisfying the metastability 
ondition, anddes
ribe a pro
edure to determine the type of superpotential that is required to a
tuallyget a metastable dS va
uum. In Se
tion 5 we provide expli
it examples of string modelswith a volume moduli se
tor satisfying all these requirements and admitting a metastabledS va
uum. Finally, in Se
tion 6 we make some 
on
luding remarks.2 Metastability in supergravityLet us start by reviewing the analysis of the stability of non-supersymmetri
 va
ua withnon-negative 
osmologi
al 
onstant in N = 1 supergravity models, following refs. [24, 25℄and [26,27℄.1 We assume here that ve
tor multiplets play a negligible role in the dynami
sof supersymmetry breaking and fo
us thus on theories involving only 
hiral multiplets.2Re
all �rst that the most general two-derivative Lagrangian for a supergravity theorywith n 
hiral super�elds is entirely determined by the fun
tion G = K + ln jW j2, whi
hdepends on the 
hiral super�elds �i and their 
onjugates ���{ through a real K�ahler poten-tial K and a holomorphi
 superpotential W .3 The s
alar �elds span a K�ahler manifold1See [28℄ for a similar analysis in the 
ontext of N = 2 supergravity with only hypermultiplets.2See [29℄ for a study of the e�e
ts of ve
tor multiplets.3We set MPl = 1 and denote derivatives with respe
t to �i and ��j by lower indi
es i and �|.2



with a metri
 given by gi�| = Ki�|, for whi
h the only non-vanishing 
omponents of theChristo�el 
onne
tion and Riemann tensor are �kij = gk�lKij�l (and its 
onjugate), andRi�|m�n = Ki�|m�n � Kim�lg�lkKk�|�n (and permutations). The 
hiral auxiliary �elds are �xedby their equations of motion to be F i = m3=2Gi, with a s
ale set by the gravitino massm3=2 = eG=2. Whenever F i 6= 0 at the va
uum, supersymmetry is spontaneously brokenand the dire
tion Gi in the spa
e of 
hiral fermions de�nes the Goldstino fermion whi
his absorbed by the gravitino in the pro
ess of supersymmetry breaking. We shall des
ribethis dire
tion also in the s
alar �eld spa
e by the unit ve
torfi = GipGkGk : (2.1)Moreover, we will parametrise the 
osmologi
al 
onstant in terms of the gravitino massthrough the dimensionless quantity 
 = V3m23=2 : (2.2)The s
alar �elds have a kineti
 term 
ontrolled by the K�ahler metri
 gi�|, whi
h is thusassumed to be positive-de�nite, and a potential V that takes the following simple form:V = eG�GiGi � 3� : (2.3)Supersymmetry-breaking metastable va
ua with non-negative 
osmologi
al 
onstant areasso
iated to lo
al minima of the potential at whi
h Gi 6= 0 and V � 0. The n 
omplexstationarity 
ondition are derived by 
omputing Vi = riV and read:Vi = eG �Gi +GkriGk�+GiV = 0 : (2.4)The 2n dimensional mass matrix for s
alar 
u
tuations around su
h a va
uum takes theform M2 =  Vi�| VijV�{�| V�{j! ; (2.5)in terms of the se
ond derivatives of the potential Vi�| = rir�|V and Vij = rirjV , whi
h
an also be 
omputed using 
ovariant derivatives sin
e the extra 
onne
tion terms vanishby the stationarity 
onditions, and read:Vi�| = eG �Gi�| +riGkr�|Gk �Ri�|m�nGmG�n�+ (Gi�| �GiG�|)V ; (2.6)Vij = eG �2r(iGj) +Gkr(irj)Gk�+ �r(iGj) �GiGj�V : (2.7)The metastability 
ondition is then the requirement that the 2n-dimensional mass matrix(2.5) should be positive de�nite. 3



2.1 Ne
essary 
ondition for metastabilityAs dis
ussed in detail in [26, 27℄ it is 
lear that for a �xed K�ahler potential K, mostof the eigenvalues of M2 
an be made positive and arbitrarily large by suitably tuningthe superpotential W . The only restri
tion 
omes from the fa
t that the proje
tion ofVi�| along the Goldstino dire
tion f i is a
tually 
onstrained by the stationarity 
onditions(2.4), whi
h imply riGjf j = �(1 + 3
)fi, and therefore 
annot be adjusted so easily.As a 
onsequen
e of this fa
t, in order to study metastability it is suÆ
ient to study theproje
tion of the diagonal blo
k Vi�| of the mass matrix along the Goldstino dire
tion. Thisproje
tion de�nes a mass s
ale m whi
h is related to the masses of the two sGoldstinosand is given by m2 � Vi�| f if �| : (2.8)A ne
essary 
ondition for the mass matrix (2.5) to be positive-de�nite is that m2 > 0.One 
an then 
ompute this quantity more expli
itly and derive a ne
essary 
ondition formetastability of the va
uum. By using eqs. (2.4) and (2.6), one �nds:m2 = �3(1 + 
)�̂(f i)� 2
�m23=2 ; (2.9)where4 �̂(f i) � 23 � Ri�|m�n f if �|fmf �n : (2.10)The 
ondition m2 > 0 implies then the 
onstraint�̂(f i) > 23 
1 + 
 : (2.11)Observe that the quantity Ri�|m�n f if �|fmf �n in eq. (2.10) 
orresponds to the holomorphi
se
tional 
urvature along the Goldstino ve
tor f i and therefore eq. (2.11) is a restri
tionon the allowed s
alar geometries and supersymmetry breaking dire
tions.Noti
e that for a �xed K and arbitraryW , the dire
tion f i 
an be varied while keepingthe metri
 and the Riemann tensor �xed. One 
an then look for the preferred dire
tion f i0that maximises m2 with value m20. If m20 < 0, then one of the sGoldstinos is unavoidablyta
hyoni
, and the va
uum is unstable. If instead m20 > 0, then the sGoldstinos 
anbe kept non-ta
hyoni
 by 
hoosing W su
h that f i is 
lose-enough to f i0. As alreadymentioned, the rest of the s
alars 
an always be given a positive square mass by furthertuning W .4We use the same notation as in [27℄ for this quantity, the hat being introdu
ed to distinguish it fromthe quantity � de�ned in [26℄, whi
h has a di�erent normalisation.
4



2.2 The sGoldstino massAs noted above,m2 is related to the square masses of the sGoldstinos, but in general it doesnot exa
tly 
oin
ide with them, sin
e f i is in general not an eigenve
tor of the full massmatrix (2.5). We will now show that the preferred dire
tion f i0 is instead automati
allyan eigenve
tor of the diagonal blo
ks of (2.5), and the 
orresponding mass m20 is thenmore dire
tly related to their mass eigenvalues. More pre
isely, when the o�-diagonalblo
k of (2.5) vanishes one has two degenerate sGoldstinos with square masses given bym20, whereas when the o�-diagonal blo
k does not vanish these two masses split.To prove this statement, let us determine impli
itly the dire
tion f i0 for whi
h m2rea
hes its maximum value m20. To do this, we vary the unit ve
tor f i while keeping theva
uum expe
tation values (vevs) of the 
hiral �elds �xed, and try to maximise �̂(f i).Enfor
ing the 
onstraint f ifi = 1 with the help of a Lagrange multiplier �, we are thenled to extremise the following fun
tional:F (f i; �) = �̂(f i) + ��gi�|f if �| � 1� : (2.12)Stationarity with respe
t to f i implies the relation f0i = 2��10 Ri�|m�nf �|0fm0 f �n0 , whi
h im-pli
itly de�nes the values of f i0 in terms of �0. Plugging this result ba
k into the 
on-straint f i0f0i = 1, whi
h follows from stationarity with respe
t to �, determines then�0 = 2Ri�|m�nf i0f �|0fm0 f �n0 . Putting everything together, one �nally �nds the following rela-tion impli
itly determining f i0: f0i = Ri�|m�nf �|0fm0 f �n0Rp�qr�sf p0 f �q0f r0f �s0 : (2.13)Using this relation and the stationarity 
ondition (2.4), one 
an now easily verify that f0iis indeed an eigenve
tor of the matrix V ji with eigenvalue m20:V ji f0j = m20f0i : (2.14)3 String models with two moduliIn this se
tion we will 
onsider more spe
i�
ally a 
lass of supergravity models arisingfrom the volume moduli se
tor of CY string 
ompa
ti�
ations in the low-energy and large-volume limit. We assume that the dilaton and 
omplex stru
ture moduli do not play anyrelevant role. We will moreover assume that there are only two volume moduli, or thatpossible additional ones do not play any relevant role either. We will not address in thispaper the 
ir
umstan
es under whi
h su
h a situation 
an be honestly a
hieved by making5



the additional moduli heavy and integrating them out.5 Our aim is thus mainly to exhibitthe behaviour of a set of two volume moduli with a no-s
ale K�ahler potential.3.1 General propertiesLet us start by re
alling a few general properties of these types of models, whi
h a
tuallyhold true for an arbitrary number of volume moduli. A �rst important property is that atleading order in the perturbative and low-energy expansions the e�e
tive K�ahler potentialsatis�es the no-sale property KiKi = 3 : (3.1)A se
ond property is that K depends only on �i+��i, i.e. ea
h �eld enjoys an independentshift symmetry, under whi
h Æ�i = i�. This allows to drop any distin
tion betweenholomorphi
 and antiholomorphi
 indi
es in quantities dedu
ed from K. A
tually, itturns out that there exists a spe
ial 
oordinate frame in whi
h e�K is a homogeneousfun
tion of degree 3 in the �elds �i + ��i. One then has:� ��i + ��i�Ki = 3 : (3.2)Taking a derivative of this relation it then also follows that Ki = ���i + ��i�. Thisequation, together with (3.2), implies the no-s
ale property (3.1), and is thus strongerthan it.In the light of the above properties, it proves 
onvenient to introdu
e the unit ve
torde�ned by the derivatives of the K�ahler potential:ki = 1p3Ki : (3.3)It was shown in [26℄ that as a result of the no-s
ale property the fun
tion �̂ 
ontrollingthe mass m2 vanishes along this dire
tion, for any value of the �elds:�̂(ki) = 0 : (3.4)As thoroughly dis
ussed in [26℄, this result allows to study the metastability 
ondition byanalysing the behaviour of �̂(f i) in the vi
inity of f i = ki. In this analysis, a spe
ial roleis played by the subspa
e orthogonal to ki, whi
h is spanned by a basis of n� 1 
omplexunit ve
tors orthogonal to ki.5See refs. [30{33℄ for work in this dire
tion.
6



3.2 Models with two moduliThe general problem of determining whether a dS va
uum may arise in the models under
onsideration is still quite 
ompli
ated, even in the light of the restri
tions (3.1), (3.2)and (3.4). However, one 
an fully 
hara
terise the metastability 
ondition for two-modulimodels. In this 
ase, the �eld spa
e is of 
omplex dimension 2 and 
an be 
onvenientlyparametrised with a basis of two unit ve
tors: ki and a ve
tor ni perpendi
ular to it:kini = 0 : (3.5)This 
ondition de�nes ni uniquely, up to an overall phase, in terms of the 
omponents ofki and the elements of the metri
 and its inverse. Denoting by det g the determinant ofthe metri
, one easily �nds:(n1; n2) =pdet g (k2;�k1) ; (n1; n2) = 1pdet g (k2;�k1) : (3.6)Sin
e the spa
e perpendi
ular to ki is one-dimensional, it 
oin
ides with the spa
e parallelto ni, and the proje
tion operator P ij onto su
h a subspa
e is simply given byP ij = gij � kikj = ninj : (3.7)We may now de
ompose the unit ve
tor f i de�ning the Goldstino dire
tion in terms ofthe two orthogonal ve
tors ni and ki. Up to an overall phase, that we shall not displayexpli
itly, we 
an parametrise the result in terms of an angle � and a relative phase Æ,and write: f i = sin� ki + eiÆ 
os�ni ; fi = sin� ki + e�iÆ 
os�ni ;f�{ = sin� ki + e�iÆ 
os�ni ; f�{ = sin� ki + eiÆ 
os�ni : (3.8)To pro
eed further and be more expli
it, we need now to distinguish between the two
lasses of heteroti
 and orientifold models. In ref. [26℄ it was found that in both 
ases thepossibility of a
hieving a metastable dS va
uum is linked to the sign of the dis
riminant� of the 
ubi
 polynomial de�ned by the interse
tion numbers dijk, after s
aling out onevariable, and reads� = �27�d2111d2222 � 3 d2112d2122 + 4 d111d3122 + 4 d3112d222 � 6 d111d112d122d222� : (3.9)If � < 0 the heteroti
 version 
an potentially admit dS va
ua but not the orientifold one.Vi
eversa, if � > 0 the orientifold version 
an but the heteroti
 
annot. In what followswe 
ompute �̂ expli
itly in terms of � and Æ parameterising f i for both of these 
ases.7



3.3 Heteroti
 modelsIn heteroti
 models, the e�e
tive K�ahler potential takes the following simple form in thelarge volume limit:6 K = � logV ; V = 43 dijk titjtk : (3.10)In this expression, dijk denotes the interse
tion numbers of the CY manifold and ti are thevolume moduli. In this 
ase, the ti 
an be promoted in a simple way to (s
alar 
omponentsof) 
hiral super�elds, by setting ti = (T i + �T i)=2.From the form of the K�ahler potential (3.10) it follows that Ki = �(T i + �T i) andKi = �1=2 eKdimnKmKn. The metri
 and the Riemann tensor are then given by (see [26℄for more details) gij = eKdijnKn +KiKj ; (3.11)Rijmn = gijgmn + gingmj � e2Kdimpgpqdqjn : (3.12)Using this expression, as well as (3.8) it is then possible to rewrite �̂(f i) in the form�̂H(f i) = �2ŝiŝi + !̂, whereŝi = ni� 2p3 tan� 
os Æ � 12eKdpqrnpnqnr� 
os2 � ; (3.13)!̂ = �32�eKdpqrnpnqnr�2 � 1� 
os4 � : (3.14)On the other hand, it was shown in [26℄ that32�eKdpqrnpnqnr�2 � 1 = aH ; (3.15)where aH � ��24 e4K(det g)3 � �1 : (3.16)Putting all of these results ba
k into eqs. (3.13)-(3.14), and introdu
ing the sign sH =sign(dpqrnpnqnr), we �nally obtain�̂(�; Æ) = 24aH � 83  tan� 
os Æ � sHr1 + aH8 !235 
os4 � : (3.17)6The dis
ussion of this se
tion is also valid for 
ertain 
lasses of orientifold 
ompa
ti�
ations wherethe K�ahler potential exhibits the same form (3.10). An example of this are 
ompa
ti�
ations of type IIBwith O5/O9-orientifold planes [34℄. 8



Observe that �̂ depends on the vevs of moduli only through the quantity aH.7 Noti
ealso that the squared term 
an always be set to zero by tuning �. On the other hand,as long as � < 0 the term proportional to aH is always positive. For a �xed value ofaH 2 [0;+1), we may then 
ompute the maximal value �̂0 that 
an be a
hieved for �̂.This 
orresponds to �nding the optimal dire
tion f i0 dis
ussed in Se
tion 2.2. The relevantextremum o

urs at Æ0 = 0 ; tan�0 = sHr1 + aH8 (1 + �) ; (3.18)where � is a quantity still to be determined. One has then�̂0 = 64 �aH � (1 + aH) �2=3��8 + (1 + aH)(1 + �)2�2 : (3.19)Noti
e �rst that one gets a lower bound on the size that �̂ 
an rea
h by setting � ' 0,whi
h 
orresponds to setting to zero the negative de�nite part of the numerator. This iswhat was done in [27℄, and results in the value �̂0 ' 64 aH=(9+aH)2. This expression hasan extremum at aH = 9 where it rea
hes its maximal value �̂0 ' 16=9. The true maximalvalue �̂0 is however obtained for a non-vanishing value of � determined by the stationarity
ondition ��̂=�� = 0, whi
h is a 
ubi
 polynomial. This polynomial a

identally fa
torisesin a simple way in this 
ase, and it is a
tually possible to �nd the following simpleexpression for the value of �: � = 32�p1 + aH=9p1 + aH � 1� : (3.20)Noti
e that � is only small for small aH. This means that the exa
t �̂0 will departsigni�
antly from the approximate one for large values of aH. Plugging (3.20) ba
k into(3.19) one �nds that this is given by:�̂0 = 1283 aH + 9p(1 + aH)(1 + aH=9)� 9�21 + aH � 3p(1 + aH)(1 + aH=9)�2 ; (3.21)From eq. (3.21) we see that �̂0 grows asymptoti
ally as 2=3 aH for large values of aH and
an thus be made arbitrarily large and positive. This means that for heteroti
 models thesGoldstino mass s
ale m 
an be made arbitrarily large by tuning the value of the moduli.As we shall see in the following subse
tion, this is not the 
ase for orientifold models withtwo moduli.7Certainly, for a given 
hoi
e of the superpotential, � and Æ also depend on the moduli. Nevertheless,in the present approa
h � and Æ are independent of the moduli in the sense that we are leaving free theparameters entering the superpotential that a posteriori will do the job of stabilising the moduli. Howto determine these parameters will be the subje
t of Se
tion 4.9



3.4 Orientifold modelsLet us 
onsider now the 
ase of orientifold models. We fo
us on type IIB models withO3/O7 planes, where the e�e
tive K�ahler potential in the large-volume limit takes theform [34℄ K = �2 logV ; V = 148dijkvivjvk : (3.22)In this expression dijk denotes the 
olle
tion of interse
tion numbers of the CY (res
aledby a fa
tor of 1=8 for 
onvenien
e) and vi are the volume moduli. However, the vi do notdire
tly 
orrespond to the real part of s
alar 
omponents of 
hiral super�elds in this 
ase.These are instead given by new �elds �i, related to the vi via the quadrati
 relation�i = �V�vi = 116 dijkvjvk : (3.23)One then has to invert this relation and express the vi in terms of the �i. After that,one obtains the super�eld dependen
e of K by setting �i = (T i + �T i)=2. In general, this
an however not be given expli
itly and the K�ahler potential (3.22) remains an impli
itfun
tion of the T i. Note �nally that we have used lower indi
es for the �elds vi in orderto get upper indi
es for the �elds �i. Correspondingly we have used upper indi
es for theinterse
tion numbers dijk, but it should be stressed that they are the same obje
ts as inthe heteroti
 
ase.From the above impli
it de�nition of the K�ahler potential it follows thatKi = � 12 eK=2viand Ki = �(T i + �T i). The metri
 and the Riemann tensor are then found to be (see [26℄and [35℄ for more details):gij = KiKj + e�K d̂ijkKk ; (3.24)Rijmn = �gimgjn + e�2K�d̂ijkgkld̂lmn + d̂inkgkld̂ljm�+ ginKjKm + gjmKiKn+ gimKjKn + gjnKiKm + gijKmKn + gmnKiKj � 3KiKjKmKn� e�K�d̂imjKn + d̂imnKj + d̂injKm + d̂nmjKi� ; (3.25)where we introdu
ed the notation d̂ijk � gipgjqgkldpql : (3.26)Inserting these expressions into the de�nition of �̂(f i) in (2.10) and using the parametri-sation (3.8) for f i we 
an as before rewrite �̂(f i) in the form �̂(f i) = �2ŝiŝi + !̂ where:ŝi = ni � 2p3 tan� 
os Æ � 12e�Kdpqrnpnqnr� 
os2 �; (3.27)!̂ = �1� 32�e�Kdpqrnpnqnr�2� 
os4 � : (3.28)10



On the other hand, it 
an be shown that [26℄1� 32�e�Kdpqrnpnqnr�2 = aO ; (3.29)where aO � �24 (det g)3e4K � 1 : (3.30)Putting all of this together, and introdu
ing the sign sO = sign(dpqrnpnqnr), we �nallyobtain �̂(�; Æ) = 24aO � 83  tan� 
os Æ � sOr1� aO8 !235 
os4 � : (3.31)It is 
lear that, as before, the squared term 
an always be set to zero by tuning � andthen �̂ > 0 as long as the term proportional to aH is positive, whi
h is the 
ase when� > 0.As in the previous subse
tion, we 
an now ask what is the maximum value for �̂obtained by varying the Goldstino dire
tion f i, for a given aO 2 [0; 1℄. The relevantextremum o

urs for Æ0 = 0 ; tan�0 = sOr1� aO8 (1 + �) : (3.32)One then has �̂0 = 64 �aO � (1� aO) �2=3��8 + (1� aO)(1 + �)2�2 : (3.33)One gets as before a lower bound on �̂0 by setting � ' 0. This gives the approximate value�̂0 ' 64 aO=(9 � aO)2, whi
h grows as aO is in
reased until the point aO = 1, where itrea
hes its maximal value �̂0 ' 1. But again the exa
t maximal value of �̂ for a given aOis larger and o

urs for a in general non-vanishing value of � determined by the 
ondition��̂=�� = 0, whi
h is again a 
ubi
 polynomial. In this 
ase, this polynomial is generi
,and the expression for the value of � is somewhat 
ompli
ated. One �nds:� = p1 + 5 aO=9p1� aO �3 sin � �p3 
os �� ; (3.34)where � � 13 ar

os� aOp3 p1� aO(1 + 5 aO=9)3=2� : (3.35)Plugging this ba
k into (3.33), one �nds that the exa
t maximal value �̂0 is given bya relatively 
ompli
ated expression, whi
h we do not report here. Fortunately, one 
anhowever 
he
k that the quantity � given by (3.34) is always quite small for any value of11



aO 2 [0; 1℄. In parti
ular, one easily veri�es that also the exa
t �̂0 in
reases monotoni
allyas a fun
tion of aO, and that for aO = 1 one obtains �̂0 = 1. In pra
tise one 
an thenapproximate the maximal value of �̂ with the one asso
iated with � ' 0, namely�̂0 ' 64 aO(9� aO)2 : (3.36)Noti
e �nally that the fa
t that �̂ 
an be at most 1 implies the following upper bound forthe sGoldstino mass s
ale m: m2 � (3 + 
)m23=2 : (3.37)This is an interesting result 
on
erning the phenomenology of orientifold 
ompa
ti�
a-tions. It asserts that the lightest modulus 
annot be mu
h heavier than the gravitino. Itseems therefore to point towards a large gravitino mass as the only way to ease the 
os-mologi
al moduli problem [36℄. As we shall see during the next se
tion, one 
an a
tuallysaturate the above bound by suitably tuning the superpotential.4 Constru
ting de Sitter va
ua with two moduliLet us now 
ome to the main point of this paper, namely to the question of how for agiven K�ahler potential, satisfying the ne
essary 
ondition for metastability on the signof �, one may 
onstru
t superpotentials that indeed allow for lo
al minima of the s
alarpotential V with a non-negative 
osmologi
al 
onstant. Our strategy will be to assumesome referen
e values for the �elds at the lo
ation of the minimum, T 1;2 = T 1;20 , and thento re
onstru
t the lo
al behaviour that W needs to have at that point.8 We will thus
onsider an expansion of the form:W (T ) = W0 +Wi(T � T0)i + 12Wij(T � T0)i(T � T0)j+ 16Wijk(T � T0)i(T � T0)j(T � T0)k + � � � : (4.1)The goal is to determine suitable 
oeÆ
ients W0, Wi, Wij and Wijk. Higher order termsin the expansion do not a�e
t the masses of s
alar 
u
tuations around the va
uum and
an therefore be omitted. Sin
e we are demanding stabilisation at T 1;2 = T 1;20 , these
oeÆ
ients depend on T 1;20 via K and its derivatives evaluated at these �eld values. Morepre
isely, they depend only on ReT 1;20 , be
ause of the shift symmetry of K. Hen
e, thevevs of the axions ImT i do not a�e
t the 
oeÆ
ients in eq. (4.1) and 
an be 
hosen freely.8One may also try to brutally s
an over the parameter spa
e of some plausible superpotential for thosemodels that satisfy the metastability ne
essary 
ondition. However, this proves to be very 
umbersomeas soon as there are several parameters. In this framework, the algebrai
 method for �nding dS minimadeveloped in ref. [37℄ may perhaps be useful. 12



Let us now des
ribe a systemati
 pro
edure to re
onstru
t the 
oeÆ
ients W0, Wi, Wijand Wijk. Noti
e, before starting, that the freedom in 
hoosing the two vevs T 1;20 
anbe used to a
hieve any desired value for the volume V, and a suitable positive value forthe parameter a. More pre
isely, the value of a �xes the ratio of T 10 and T 20 , whereas thevalue of the volume V �xes their overall size. Note also from eq. (4.1) that res
aling thevevs of the �elds T 1;20 
an be 
ompensated by res
aling the 
oeÆ
ients appropriately, afterfa
torising out the overall superpotential s
ale W0.4.1 Tuning W0The 
oeÆ
ient W0 is �xed, modulo a phase that we shall dis
ard, by the value one desiresto a
hieve for the gravitino mass 
ompared to the volume. From the de�nition of m3=2one gets the relation jW0j = m3=2 e�K=2 : (4.2)Note that due to the di�erent de�nitions of the volume V for heteroti
 and orientifoldmodels, this equation translates into di�erent relations between m3=2 and V in heteroti
and orientifold models. In the two 
ases one �nds respe
tivelyjW0j = m3=2VH1=2; jW0j = m3=2VO; (4.3)In any 
ase, the value of W0 �xes the overall s
ale of the potential.4.2 Tuning WiThe two 
oeÆ
ients Wi are �xed by the value of the 
osmologi
al 
onstant and the dire
-tion of supersymmetry breaking that one desires to a
hieve. Indeed, one has by de�nitionGi = Ki+Wi=W0, and Gi 
an be parametrised in terms of 
 and fi as Gi =p3(1 + 
)fi.Re
alling also the de�nition Ki = p3 ki, it follows then that:WiW0 = p3�p1 + 
 fi � ki� : (4.4)This �xes Wi=W0 in terms of 
 and fi. The dire
tion fi, whi
h we have parametrised by �and Æ in eq. (3.8), must be 
hosen inside a 
one suÆ
iently 
lose to the optimal dire
tionf0i, in su
h a way that m2 > 0.99Note that in eq. (4.4) the overall phase dis
arded in the parametrisation (3.8) be
omes relevant andrepresents an additional parameter that one 
an tune.
13



4.3 Tuning WijThe three 
oeÆ
ients Wij are �xed by demanding stationarity of the potential, riV = 0,and positivity of the two-dimensional diagonal blo
ks Vi�| of the mass matrix, whi
h isne
essary for positivity of the full mass matrix. It is 
onvenient to �rst implement thestationarity 
onditions (2.4). This implies the following two relations, whi
h allow to �xtwo of the three parameters Wij in terms of the last one (understanding now Gi as �xed):WijW0 Gj = �(1 + 3
)Gi �G�{ + �kijGkGj + WiWjW 20 Gj : (4.5)The remaining parameter among the Wij whi
h is still free is then �xed by demandingpositivity of the two-dimensional matrix Vi�|. This amounts to requiring that its two eigen-values are positive. Noti
e that we have already ensured the positivity of the proje
tionm2 = Vi�|f if �|. Thus, it makes sense now to study the proje
tion of Vi�| along the remain-ing dire
tion ui orthogonal to f i in order to understand when the positivity of the wholematrix Vi�| is possible. This dire
tion is 
ompletely �xed, again modulo an overall phasethat we do not display, and is given by:ui = 
os� ki � eiÆ sin�ni ; ui = 
os� ki � e�iÆ sin�ni ;u�{ = 
os� ki � e�iÆ sin�ni ; u�{ = 
os� ki � eiÆ sin�ni : (4.6)We are then led to 
ompute m02 � Vi�| uiu�| : (4.7)Using the fa
t that riGjuif j = 0 by the stationarity 
ondition, one �nds that this se
ondmass s
ale is given by:m02 = h1 + 3
 � 3(1 + 
)�̂(ui) + jriGjuiujj2im23=2 ; (4.8)where �̂(ui) = Rijmn uiu�|fmf �n : (4.9)From eq. (4.8) we see that it is always possible to tune the quantity riGj in order tomake the last positive term dominate and a
hieve m02 > 0, 
ompatibly with the twostationarity 
onditions that also involve riGj, sin
e there are three parameters Wij. Onthe other hand, the matrix Vi�| has in general a non-zero mixing between the f i and uidire
tions, whi
h is given byVi�| uif �| = �3(1 + 
)m23=2Rijmnuif �|fmf �n: (4.10)Sin
e this quantity is independent of riGj, it is now evident that it is always possible totune the value of m02 until both eigenvalues of Vi�| be
ome positive.14



A simple although not mandatory possibility to �x unambiguously the free parameterleft among the Wij after imposing the stationarity 
ondition is to require that fi shouldbe aligned along the optimal dire
tion f i0 maximising m2. In that 
ase the orthogonaldire
tion ui is then also �xed to some ui0. In this situation, eq. (2.13) implies that one hasVi�|ui0f �|0 = 0, so that m2 and m02 
oin
ide with the two eigenvalues of Vi�|. Additionally, thequantity �̂ takes a de�nite value, whi
h is di�erent for heteroti
 and orientifold modelsand depends on aH and aO respe
tively. After a straightforward but lengthy 
omputationone �nds: �̂H0 = 124�9� 2aH + (7 + 2aH) 
os 4�0 + 4sHp2(1 + aH) sin 4�0� ; (4.11)�̂O0 = 124�9� 4aO + (7 + 4aO) 
os 4�0 + 4sOp2(1� aO) sin 4�0� : (4.12)In these expressions, the quantity �0 is the one that leads to the maximal value �̂0 for�̂, namely tan�0 = sp(1� a)=8(1 + �). For heteroti
 models, one has to use the exa
tvalue (3.20), but for orientifold it is good enough to use the approximate value � ' 0. Inthis way one �nds: �̂H0 = 9� aH + 9p(1 + aH)(1 + aH=9)27 + 2aH ; (4.13)�̂O0 ' 23�1� 12aO(1� aO)(9� aO)2 � : (4.14)We see in parti
ular that both quantities remain bounded respe
tively by 1 and 2=3 inthe allowed ranges for a.4.4 Tuning WijkFinally, the four 
oeÆ
ients Wijk need to be 
hosen in su
h a way that all of the foureigenvalues of the full mass matrix M2 are positive, even after taking into a

ount thee�e
t of the o�-diagonal blo
k Vij. Solving then the expression for Vij in terms of theWijk,one dedu
es the following three relations (where now both Gi and riGj are understoodas �xed):WijkW0 Gk = �RijkmG �m + �mijrmGk + �m(ikrmGj) � 2WiWjWkW 30 + 2W(iWj)kW 20 + WkWijW 20+�m(ik�Wmj)W0 � WmWj)W 20 ��Gk � (2 + 3
)r(iGj) + 3
 GiGj + Vijm23=2 : (4.15)Re
all that for Vij = 0 the mass spe
trum is degenerate, with two states for ea
h of thetwo eigenvalues of Vi�|, whi
h have already been adjusted to be positive with the previous15



step. When instead Vij 6= 0, the spe
trum splits and one has to make sure that noeigenvalue be
omes negative. This represents three 
onstraints on the four parametersWijk. If for simpli
ity one requires Vij = 0, then these be
ome three relations, whi
h allowto express three of the four parameters Wijk in terms of the last one. More generally, we
an leave Vij arbitrary and 
ompute the four eigenvalues as fun
tions of the Wijk's. Ingeneri
 situations it is hard to do this in an analyti
 way, but it 
an be easily done with
omputer assistan
e. One 
an then s
an this multi-parameter spa
e for regions where allmasses are positive.The next step is to mat
h these `lo
al superpotentials' with the expansion of some string-motivated superpotential around the given vevs. To this end we will 
onsider in the nextse
tion superpotentials with enough parameters and determine these parameters in su
ha way that the Taylor expansion around the extremum mat
hes the 
ubi
 superpotential
onstru
ted as outlined above.5 Examples of models with dS va
uaLet us now apply the pro
edure des
ribed in last se
tion to 
onstru
t some illustrative ex-amples of string models with a se
tor of two volume moduli admitting a metastable dS va
-uum. For simpli
ity, we shall fo
us on the 
ase where the 
osmologi
al 
onstant vanishes(
 = 0) and on separable superpotentials of the form W (T 1; T 2) =W (1)(T 1) +W (2)(T 2).This 
hoi
e implies further restri
tions on the 
oeÆ
ients of the Taylor expansion of thesuperpotential about the va
uum, namely W12 = W112 = W221 = 0, and the existen
e ofa solution with these 
hara
teristi
s is no longer guaranteed from the beginning. We willhowever see that it is nevertheless possible to �nd simple examples of this type.5.1 Orientifold modelsLet us start with orientifold models. For these models, the way in whi
h the dilaton andthe 
omplex stru
ture moduli may be stabilised is well understood [1℄, and restri
ting tothe se
tor of volume moduli may be justi�ed. In this 
ase, the ne
essary 
ondition formetastability is that the dis
riminant � should be positive. As a prototype example, letus take a CY manifold with interse
tion numbers given by d111 = �1, d112 = 0, d122 = 1and d222 = 0, for whi
h � = 108 > 0. The K�ahler potential is then found to take the
16



following form:K = � log �89�(T 1+ �T 1) +p(T 1+ �T 1)2+ (T 2+ �T 2)2��(T 2+ �T 2)2+ (T 1+ �T 1)2� (T 1+ �T 1)p(T 1+ �T 1)2+ (T 2+ �T 2)2T 2+ �T 2 �2� : (5.1)We require that at the stationary point one should have aO = 1. As seen in Se
tion 3.4,this 
hoi
e allows to maximise the sGoldstino mass and 
orresponds to setting ŝi = 0. Wewill moreover require that the volume takes some de�nite numeri
al value VO. These two
onditions �x the vevs of the two �elds to the following values, in units of V2=3O :T 10 0:412741T 20 0:714888 (5.2)Applying then the pro
edure des
ribed in the previous se
tion, in su
h a way to a
hievesome de�nite numeri
al valuem3=2 for the gravitino mass, we �nd that the lo
al behaviourthat the superpotential needs to have is spe
i�ed by the following Taylor 
oeÆ
ients, inunits of m3=2VO for W0, m3=2V1=3O for Wi, m3=2V�1=3O for Wii and m3=2V�1O for Wiii:W0 1:000000W1 2:021311W2 0:931223W11 0:999657W22 �0:797685W111 �0:827204W222 3:308820 (5.3)
In this way, the four physi
al square-mass eigenvalues m2i at the minimum, obtained after
anoni
ally normalising the �elds, are given by 2:77, 2:95, 3:86, 5:14 in units of m23=2.Noti
e that the 
oeÆ
ients (5.3) s
ale in the following way with the size T0 � V2=3O ofthe �eld vevs: W0 : Wi : Wii : Wiii � 1 : T�10 : T�20 : T�30 : (5.4)This s
aling 
an be understood as naturally following from the stru
ture of eqs. (4.4), (4.5)and (4.15), although it is 
on
eivable that it 
ould be 
hanged with some additional �ne-tuning of the parameters of the theory. This relation 
alls nevertheless for superpotentialswith derivatives satisfying T nW (n)=W � 1.17



Let us now try to mat
h the 
oeÆ
ients (5.3) of the lo
al expansion with an expli
itsuperpotential of a form that may plausibly arise in these models. The simplest pos-sibility is to try with an exponential e�e
tive superpotential that typi
ally arises fromgaugino 
ondensation. This has the simple form W = Ae�aT , provided that aT � 1,
orresponding to a weekly 
oupled four-dimensional low-energy e�e
tive theory. For thistype of superpotential, however, one gets T nW (n)=W � (aT )n, whi
h is mu
h larger than1 as soon as aT � 1. It is then not possible to reprodu
e the s
aling (5.4). This problem
an however be 
ured by adding a 
onstant term W = �, or possibly also a linear termW = FT , whi
h may for instan
e arise from ba
kground 
uxes.10 Noti
e �nally that oneneeds a superpotential with at least 7 free parameters in order to be able to mat
h all thelo
al 
oeÆ
ients.As a simple and `symmetri
' possibility to try out, one 
ould 
onsider a superpotentialwith a 
onstant term plus a ra
etra
k term for ea
h �eld:W = �+ A1e�a1T 1 + A2e�a2T 2 +B1e�b1T 1 +B2e�b2T 2 : (5.5)Su
h a 
ombination of exponentials 
ould arise for instan
e from gaugino 
ondensation ontwo sets of D7-branes wrapping 
y
les 
ontrolled by the moduli T 1 and T 2, ea
h givingrise to a gauge group 
onsisting of two semisimple fa
tors. ThisW has 9 
oeÆ
ients whi
hhave to satisfy 7 equations. This allows to express 7 of them in terms of the other 2, sayb1 and b2, and of the 
oeÆ
ients of the lo
al superpotential. Among other relations, one�nds that ai = �biWii +WiiibiWi +Wii : (5.6)One 
an then 
hoose the values of bi in su
h a way that biT i0 � 1, but by eq. (5.4) onewill then get aiT i0 � 1. This means that the 
onstant term allows to make only some ofthe exponents in the exponential terms large, and some of them remain of order one, sothat higher-power 
orre
tions may be
ome relevant. An example of this type is obtainedwith the following values of the parameters, in units of m3=2VO for �; Ai; Bi and V�2=3O forai,bi: � 2:63036� 101A1 7:37726� 101B1 �9:77287� 101A2 �1:50213� 100B2 �2:80545� 100
a1 3:49830� 10�1b1 2:79764� 10�1a2 7:30908� 100b2 4:19646� 10�1 (5.7)10This kind of e�e
t has also been used to 
onstru
t supersymmetri
 va
ua. See for instan
e refs. [38,39℄.18



A more satisfa
tory but slightly more 
ompli
ated model may be obtained by addinglinear terms. Let us 
onsider for example the following form of the superpotential:W = �+ F1T 1 + F2T 2 + A1e�a1T 1 + A2e�a2T 2 +B1e�b1T 1 +B2e�b2T 2 : (5.8)While one still has Wiii=Wii = �ai, as this 
ondition is una�e
ted by the addition of alinear term, the relation between the 
oeÆ
ients ai; bi and Wiii=Wii gets now more 
om-pli
ated and less 
onstraining. This allows to �nd parameters su
h that all the exponentsin the exponential terms are large. A working example of this type is obtained with thefollowing 
hoi
e of parameters, in units of m3=2VO for �; Ai; Bi, m3=2V1=3O for Fi and V�2=3Ofor ai; bi: � �4:83093� 10�1A1 5:14986� 109B1 �1:55366� 1010A2 �4:16798� 108B2 2:38480� 1010
a1 6:69463� 101b1 6:99410� 101a2 3:55839� 101b2 4:19646� 101 F1 2:05036� 100F2 8:92014� 10�1 (5.9)

Note that in order to a
hieve large values of the exponents aiT i0, biT i0 at the minimumin this kind of models, one ne
essarily needs a hierar
hy between the 
oeÆ
ients Ai, Biof the gaugino 
ondensation terms and the 
oeÆ
ients � and (if present) Fi. Indeed, inorder for all the terms in W to be of 
omparable size at the minimum, the ratio of thesetwo kinds of 
oeÆ
ients must be of order eaiT i0 , ebiT i0 . In (5.7) su
h a hierar
hy is absent,be
ause the exponents are of order one, whereas in (5.9) it is large, be
ause the exponentsare large.The parti
ular numbers 
hosen in the se
ond example serve as an illustration but 
an
orrespond to realisti
 values for physi
al parameters. The values aiT i0 � biT i0 � 25
orresponds to the size of the MSSM inverse 
ouplings at the uni�
ation s
ale. Moreover,for a Weak s
ale gravitino mass m3=2 � 10�16MPl � 100GeV and a reasonably largevolume in Plan
k units VO � 103, one has A1=3i ; B1=3i � 10�1MPl � 1017 GeV, whi
h is aplausible gaugino 
ondensation s
ale, and �1=3 � 10�4MPl � 1014GeV, whi
h 
ould alsobe reasonable.5.2 Heteroti
 modelsLet us now 
onsider heteroti
 models. In this 
ase, the way in whi
h the dilaton and the
omplex stru
ture moduli may be stabilised is less understood, but we will neverthelessassume that these do not play any role and fo
us on two volume moduli. As an expli
itexample satisfying the ne
essary 
ondition � < 0, let us 
onsider a CY manifold with19



interse
tion numbers d111 = 1, d112 = 0, d122 = 1 and d222 = 0, for whi
h � = �108 < 0.The 
orresponding K�ahler potential is:K = � log h16(T 1+ �T 1)3 + 12(T 1+ �T 1)(T 2+ �T 2)2i : (5.10)We 
hose in this 
ase the values of the �eld vevs in su
h a way that aH = 9, 
orrespondingto setting ŝi = 0. This 
hoi
e does not 
orrespond to the largest possible sGoldstinomass in this 
ase, but it has the virtue of maintaining some similarity with the orientifoldexamples. Moreover, we require as before some de�nite numeri
al value VH for the volume.This leads then to the following values of the vevs, in units of V1=3H :T 10 0:405666T 20 0:749277 (5.11)Applying the pro
edure outlined in the previous se
tion, one �nds the following set oflo
al parameters, in units of m3=2V1=2H for W0, m3=2V1=6H for Wi, m3=2V�1=6H for Wii andm3=2V�1=2H for Wiii:
(5.12)W0 1:00000W1 1:64415W2 2:60392W11 �17:4400W22 3:82418W111 616:732W222 2:31275In this model, the four physi
al square-mass eigenvalues m2i at the minimum are given by4:43, 5:95, 203:88 and 311:92 in units of m23=2.We may now pro
eed as for orientifold models and �t these 
oeÆ
ients with a superpo-tential involving exponential, 
onstant or linear terms. In this 
ase, however, the possibleorigin of su
h terms is less 
lear than for orientifolds. For instan
e, gaugino 
ondensationprodu
es exponential 
ontributions, but with an exponent involving in �rst approxima-tion only the dilaton. It is however 
ommon that the e�e
tive gauge 
oupling re
eivesperturbative threshold 
orre
tions depending on the volume moduli as well. Assumingthen that the dilaton does not play any role and the volume moduli are large, one 
anbe left with an exponent linear in T . Noti
e moreover that taking this perspe
tive thereis no reason to require any longer that the exponent should be large and positive (seefor example [40,41℄). As a toy illustrative example with enough parameters, we 
an thus20



again 
onsider a superpotential of the form (5.5). One 
an then, for example, reprodu
ethe lo
al 
oeÆ
ients (5.12) with the following values of parameters, in units of m3=2V1=2Hfor �; Ai; Bi and V�1=3H for ai; bi:� �5:97604� 10�1A1 �3:62358� 105B1 �1:46692� 100A2 7:98841� 10�1B2 7:49672� 10�1 a1 4:36876� 101b1 2:66924� 100a2 �1:28225� 100b2 5:33848� 100 (5.13)
As before, the hiera
hy arising between some of the 
oeÆ
ients Ai; Bi and � is relatedto the fa
t that some of the exponents aiT i0, biT i0 are large at the minimum. In this 
ase,for m3=2 � 10�16 and VH � 103 in Plan
k units, the parti
ular numbers 
hosen in theexample yield A1=3i ; B1=3i � 1013 � 1015 GeV and �1=3 � 1013GeV.6 Con
lusionsIn this paper we have developed a systemati
 method for 
onstru
ting metastable dSva
ua in supergravity models des
ribing the volume moduli se
tor of CY string 
om-pa
ti�
ations, without invoking subleading 
orre
tions breaking the no-s
ale property oruplifting terms. To do so, we have exploited the fa
t that there exists a ne
essary 
ondi-tion for the existen
e of metastable va
ua, whi
h 
onstrains the allowed s
alar geometryand supersymmetry-breaking dire
tions [26℄. We have fo
used on the simplest non-trivial
ase of two volume moduli, whi
h allows for a detailed analysis, but we believe that themore 
ompli
ated 
ases with more than two volume moduli 
an be treated similarly. Wehave singled out the spe
ial Goldstino dire
tion whi
h allows to maximise the modulimasses, and in the 
ase of orientifold 
ompa
ti�
ations, we have found a strong upperbound of the lightest modulus mass as a fun
tion of the gravitino mass.The main result of the paper is an expli
it pro
edure allowing to 
onstru
t the lo
alform of the superpotential that gives a metastable dS va
uum in models where the K�ahlerpotential satis�es the ne
essary 
ondition for metastability on the sign of the dis
riminant� of the interse
tion numbers dijk. We have also applied this pro
edure to 
onstru
t a fewsimple examples of 
on
rete models admitting viable metastable va
ua that may plausiblyemerge within heteroti
 and orientifold string 
ompa
ti�
ations with ba
kground 
uxesand gaugino 
ondensation e�e
ts. The fa
t that these models need to have more thanone dynami
al �eld and at least seven independent parameters in the superpotential toallow for the 
onstru
tion is probably the reason why su
h models have not been noted21



earlier. It is still an open question to study more realisti
, more generi
 or even moreminimal models, but we have now a proof of existen
e for dS va
ua arising from simpleF-term supersymmetry breaking in both the orientifold and heteroti
 
ase. It is also 
learthat the presen
e of ve
tor multiplets giving a D-term 
ontribution to supersymmetrybreaking 
an potentially further improve the situation. More pre
isely, for a �xed valueof V , in
reasing the ratio between the D-term and F -term 
ontributions has the nete�e
t of making the left-hand side of (2.11) smaller and therefore making that 
onstraintmilder, although the variety of allowed superpotentials is then redu
ed by the requirementof gauge invarian
e [29℄. This helps, and in fa
t there exist no-s
ale models with a single
hiral multiplet and a ve
tor multiplet that admit metastable dS va
ua [8, 11, 42℄.We believe that our results emphasise in a 
lear way that it is a
tually possible toa
hieve genuine metastable dS va
ua even in models satisfying the no-s
ale property,provided that the s
alar geometry is suÆ
iently generi
. This is the 
ase for the volumemoduli se
tor of smooth CY 
ompa
ti�
ations, as opposed to their orbifolds limits, whenat least two moduli arise. But of 
ourse in order to 
onstru
t a realisti
 model, there areseveral other issues to be addressed. One of them is the detailed me
hanism stabilizingthe other moduli and the impa
t of their dynami
s onto the dS va
uum admitted by thevolume moduli se
tor. Another is the life-time of the dS va
uum against de
ay to othersupersymmetri
 AdS va
ua that generi
ally arise at di�erent values of the �elds [43{45℄.A
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