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DESY 08-198CERN-PH-TH/2008-247Construting de Sitter vaua in no-salestring models without upliftingLaura Covia, Marta Gomez-Reinob, Christian Gross,Gonzalo A. Palmad, Claudio A. SruaeaTheory Group, Deutshes Elektronen-Synhrotron DESY,D-22603 Hamburg, GermanybTheory Division, Physis Department, CERN,CH-1211 Geneva 23, SwitzerlandII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,D-22761 Hamburg, GermanydLorentz Institute for Theoretial Physis, Leiden University,NL-2333 CA Leiden, The NetherlandseInst. de Th. des Ph�en. Phys., Eole Polytehnique F�ed�erale de Lausanne,CH-1015 Lausanne, SwitzerlandAbstratWe develop a method for onstruting metastable de Sitter vaua in N = 1supergravity models desribing the no-sale volume moduli setor of Calabi-Yaustring ompati�ations. We onsider both heteroti and orientifold models. Ourmain guideline is the neessary ondition for the existene of metastable vauaoming from the Goldstino multiplet, whih onstrains the allowed salar geometriesand supersymmetry-breaking diretions. In the simplest non-trivial ase where thevolume is ontrolled by two moduli, this ondition simpli�es and turns out to be fullyharaterised by the intersetion numbers of the Calabi-Yau manifold. We analysethis ase in detail and show that one the metastability ondition is satis�ed it ispossible to reonstrut in a systemati way the loal form of the superpotential thatis needed to stabilise all the �elds. We apply then this proedure to onstrut someexamples of models where the superpotential takes a realisti form allowed by uxbakgrounds and gaugino ondensation e�ets, for whih a viable vauum ariseswithout the need of invoking orretions to the K�ahler potential breaking the no-sale property or uplifting terms. We �nally disuss the prospets of onstrutingpotentially realisti models along these lines.
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1 IntrodutionCurrent osmologial observations onviningly suggest that our universe is undergoing anaelerated expansion. The simplest model aounting for this result involves bakgroundswith a tiny positive osmologial onstant. This has lead in the past years to a lot ofativity in the searh of de Sitter (dS) vaua in the four-dimensional low-energy e�etivesupergravity desription of string theory ompati�ations. It is now well understood thate�ets like gaugino ondensation and bakground uxes an indue terms in the e�etivesuperpotential that allow to stabilise many or even all of the moduli �elds. However,this generially leads to a supersymmetri ground state whih is either anti-de Sitter(AdS) or Minkowski spae, and it is surprisingly diÆult to obtain non-supersymmetridS vaua [1{4℄. One generi way of overoming this diÆulty is to start from a settingleading to an AdS vauum and add to it some additional soures of hard supersymmetrybreaking, like anti-D3 branes [5℄ or other loalised soures [6, 7℄, to uplift the vauumenergy. However, the addition of suh soures does not admit a transparent e�etivesupergravity desription, and re�nements of this senario have been onsidered wherethe uplifting setor breaks supersymmetry softly and ontains additional light degrees offreedom [8{16℄. Alternatively, one may ahieve dS vaua in a more genuine way thanksto leading perturbative or non-perturbative orretions to the K�ahler potential [17{21℄.In that ase, however, one has to make sure that higher-order subleading orretions areunder ontrol.Despite of the suess of the above approahes in produing viable vaua, it wouldbe desirable to have models where metastability is granted from the onset, without theneed to inur into either subleading orretions or an additional uplifting setor for help.Ideally, one may want to ahieve this within the setor of the moduli �elds. The sim-plest option ould be to use just the dilaton, whih universally spans the oset spaeSU(1; 1)=U(1), but this has been exluded unless unontrollably large orretions arisefor the geometry [22{24℄. Another interesting possibility ould be to use only the volumemoduli (also alled K�ahler moduli), whih have the universal harateristis of spanninga salar manifold with a no-sale property. Interestingly, no expliit example is knownso far where a viable vauum is produed without invoking orretions to the K�ahlerpotential breaking its no-sale struture. In the simplest ases where the moduli spaeis a oset manifold with ovariantly-onstant urvature, like in the ase of one modulusor more generially for n moduli in orbifold limits of Calabi-Yau (CY) ompati�ations,it has been proved in [24, 25℄ (see also [23℄) that dS vaua are in fat unavoidably un-stable, beause one of the salar partners of the Goldstino always has a semi-negativemass-squared, for any superpotential. It was however shown later in [26℄ (see also [27℄)that this no-go theorem an be evaded when the moduli span a less onstrained spae,1



like for smooth CY ompati�ations. One of the main results dedued in [26℄, followingthe line of reasoning of [24, 25℄, is a neessary ondition on the K�ahler geometry of themoduli spae for a metastable dS vauum to possibly arise. This ondition depends onthe intersetion numbers dijk and thus restrits the type of CY manifold that an be used.Furthermore, it also onstrains the diretion in �eld spae along whih supersymmetry isallowed to be broken, and thus impliitly restrits the form of the superpotential as well.The aim of this paper is to analyse in more detail suh models, and to study how todetermine a superpotential whih allows for metastable de Sitter vaua for a given hoieof CY manifold. We shall fous on the simplest non-trivial lass of models involving twovolume moduli, for whih the metastability ondition simpli�es and an be made moreexpliit, but we believe that the situation for models with more volume moduli shouldbe qualitatively similar. We will then look for a systemati proedure to reonstrutthe required form of the superpotential that is needed to ahieve stabilisation of all themoduli, one the metastability ondition on the K�ahler geometry is satis�ed.The paper is organised as follows. In Setion 2 we briey review the results of refs. [24{26℄ regarding the metastability of supersymmetry-breaking vaua and their impliations.In Setion 3 we apply these results to the more partiular ase of CY string models withtwo volume moduli, and dedue whih type of models an possibly allow viable vaua.In Setion 4 we further analyse those models satisfying the metastability ondition, anddesribe a proedure to determine the type of superpotential that is required to atuallyget a metastable dS vauum. In Setion 5 we provide expliit examples of string modelswith a volume moduli setor satisfying all these requirements and admitting a metastabledS vauum. Finally, in Setion 6 we make some onluding remarks.2 Metastability in supergravityLet us start by reviewing the analysis of the stability of non-supersymmetri vaua withnon-negative osmologial onstant in N = 1 supergravity models, following refs. [24, 25℄and [26,27℄.1 We assume here that vetor multiplets play a negligible role in the dynamisof supersymmetry breaking and fous thus on theories involving only hiral multiplets.2Reall �rst that the most general two-derivative Lagrangian for a supergravity theorywith n hiral super�elds is entirely determined by the funtion G = K + ln jW j2, whihdepends on the hiral super�elds �i and their onjugates ���{ through a real K�ahler poten-tial K and a holomorphi superpotential W .3 The salar �elds span a K�ahler manifold1See [28℄ for a similar analysis in the ontext of N = 2 supergravity with only hypermultiplets.2See [29℄ for a study of the e�ets of vetor multiplets.3We set MPl = 1 and denote derivatives with respet to �i and ��j by lower indies i and �|.2



with a metri given by gi�| = Ki�|, for whih the only non-vanishing omponents of theChristo�el onnetion and Riemann tensor are �kij = gk�lKij�l (and its onjugate), andRi�|m�n = Ki�|m�n � Kim�lg�lkKk�|�n (and permutations). The hiral auxiliary �elds are �xedby their equations of motion to be F i = m3=2Gi, with a sale set by the gravitino massm3=2 = eG=2. Whenever F i 6= 0 at the vauum, supersymmetry is spontaneously brokenand the diretion Gi in the spae of hiral fermions de�nes the Goldstino fermion whihis absorbed by the gravitino in the proess of supersymmetry breaking. We shall desribethis diretion also in the salar �eld spae by the unit vetorfi = GipGkGk : (2.1)Moreover, we will parametrise the osmologial onstant in terms of the gravitino massthrough the dimensionless quantity  = V3m23=2 : (2.2)The salar �elds have a kineti term ontrolled by the K�ahler metri gi�|, whih is thusassumed to be positive-de�nite, and a potential V that takes the following simple form:V = eG�GiGi � 3� : (2.3)Supersymmetry-breaking metastable vaua with non-negative osmologial onstant areassoiated to loal minima of the potential at whih Gi 6= 0 and V � 0. The n omplexstationarity ondition are derived by omputing Vi = riV and read:Vi = eG �Gi +GkriGk�+GiV = 0 : (2.4)The 2n dimensional mass matrix for salar utuations around suh a vauum takes theform M2 =  Vi�| VijV�{�| V�{j! ; (2.5)in terms of the seond derivatives of the potential Vi�| = rir�|V and Vij = rirjV , whihan also be omputed using ovariant derivatives sine the extra onnetion terms vanishby the stationarity onditions, and read:Vi�| = eG �Gi�| +riGkr�|Gk �Ri�|m�nGmG�n�+ (Gi�| �GiG�|)V ; (2.6)Vij = eG �2r(iGj) +Gkr(irj)Gk�+ �r(iGj) �GiGj�V : (2.7)The metastability ondition is then the requirement that the 2n-dimensional mass matrix(2.5) should be positive de�nite. 3



2.1 Neessary ondition for metastabilityAs disussed in detail in [26, 27℄ it is lear that for a �xed K�ahler potential K, mostof the eigenvalues of M2 an be made positive and arbitrarily large by suitably tuningthe superpotential W . The only restrition omes from the fat that the projetion ofVi�| along the Goldstino diretion f i is atually onstrained by the stationarity onditions(2.4), whih imply riGjf j = �(1 + 3)fi, and therefore annot be adjusted so easily.As a onsequene of this fat, in order to study metastability it is suÆient to study theprojetion of the diagonal blok Vi�| of the mass matrix along the Goldstino diretion. Thisprojetion de�nes a mass sale m whih is related to the masses of the two sGoldstinosand is given by m2 � Vi�| f if �| : (2.8)A neessary ondition for the mass matrix (2.5) to be positive-de�nite is that m2 > 0.One an then ompute this quantity more expliitly and derive a neessary ondition formetastability of the vauum. By using eqs. (2.4) and (2.6), one �nds:m2 = �3(1 + )�̂(f i)� 2�m23=2 ; (2.9)where4 �̂(f i) � 23 � Ri�|m�n f if �|fmf �n : (2.10)The ondition m2 > 0 implies then the onstraint�̂(f i) > 23 1 +  : (2.11)Observe that the quantity Ri�|m�n f if �|fmf �n in eq. (2.10) orresponds to the holomorphisetional urvature along the Goldstino vetor f i and therefore eq. (2.11) is a restritionon the allowed salar geometries and supersymmetry breaking diretions.Notie that for a �xed K and arbitraryW , the diretion f i an be varied while keepingthe metri and the Riemann tensor �xed. One an then look for the preferred diretion f i0that maximises m2 with value m20. If m20 < 0, then one of the sGoldstinos is unavoidablytahyoni, and the vauum is unstable. If instead m20 > 0, then the sGoldstinos anbe kept non-tahyoni by hoosing W suh that f i is lose-enough to f i0. As alreadymentioned, the rest of the salars an always be given a positive square mass by furthertuning W .4We use the same notation as in [27℄ for this quantity, the hat being introdued to distinguish it fromthe quantity � de�ned in [26℄, whih has a di�erent normalisation.
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2.2 The sGoldstino massAs noted above,m2 is related to the square masses of the sGoldstinos, but in general it doesnot exatly oinide with them, sine f i is in general not an eigenvetor of the full massmatrix (2.5). We will now show that the preferred diretion f i0 is instead automatiallyan eigenvetor of the diagonal bloks of (2.5), and the orresponding mass m20 is thenmore diretly related to their mass eigenvalues. More preisely, when the o�-diagonalblok of (2.5) vanishes one has two degenerate sGoldstinos with square masses given bym20, whereas when the o�-diagonal blok does not vanish these two masses split.To prove this statement, let us determine impliitly the diretion f i0 for whih m2reahes its maximum value m20. To do this, we vary the unit vetor f i while keeping thevauum expetation values (vevs) of the hiral �elds �xed, and try to maximise �̂(f i).Enforing the onstraint f ifi = 1 with the help of a Lagrange multiplier �, we are thenled to extremise the following funtional:F (f i; �) = �̂(f i) + ��gi�|f if �| � 1� : (2.12)Stationarity with respet to f i implies the relation f0i = 2��10 Ri�|m�nf �|0fm0 f �n0 , whih im-pliitly de�nes the values of f i0 in terms of �0. Plugging this result bak into the on-straint f i0f0i = 1, whih follows from stationarity with respet to �, determines then�0 = 2Ri�|m�nf i0f �|0fm0 f �n0 . Putting everything together, one �nally �nds the following rela-tion impliitly determining f i0: f0i = Ri�|m�nf �|0fm0 f �n0Rp�qr�sf p0 f �q0f r0f �s0 : (2.13)Using this relation and the stationarity ondition (2.4), one an now easily verify that f0iis indeed an eigenvetor of the matrix V ji with eigenvalue m20:V ji f0j = m20f0i : (2.14)3 String models with two moduliIn this setion we will onsider more spei�ally a lass of supergravity models arisingfrom the volume moduli setor of CY string ompati�ations in the low-energy and large-volume limit. We assume that the dilaton and omplex struture moduli do not play anyrelevant role. We will moreover assume that there are only two volume moduli, or thatpossible additional ones do not play any relevant role either. We will not address in thispaper the irumstanes under whih suh a situation an be honestly ahieved by making5



the additional moduli heavy and integrating them out.5 Our aim is thus mainly to exhibitthe behaviour of a set of two volume moduli with a no-sale K�ahler potential.3.1 General propertiesLet us start by realling a few general properties of these types of models, whih atuallyhold true for an arbitrary number of volume moduli. A �rst important property is that atleading order in the perturbative and low-energy expansions the e�etive K�ahler potentialsatis�es the no-sale property KiKi = 3 : (3.1)A seond property is that K depends only on �i+��i, i.e. eah �eld enjoys an independentshift symmetry, under whih Æ�i = i�. This allows to drop any distintion betweenholomorphi and antiholomorphi indies in quantities dedued from K. Atually, itturns out that there exists a speial oordinate frame in whih e�K is a homogeneousfuntion of degree 3 in the �elds �i + ��i. One then has:� ��i + ��i�Ki = 3 : (3.2)Taking a derivative of this relation it then also follows that Ki = ���i + ��i�. Thisequation, together with (3.2), implies the no-sale property (3.1), and is thus strongerthan it.In the light of the above properties, it proves onvenient to introdue the unit vetorde�ned by the derivatives of the K�ahler potential:ki = 1p3Ki : (3.3)It was shown in [26℄ that as a result of the no-sale property the funtion �̂ ontrollingthe mass m2 vanishes along this diretion, for any value of the �elds:�̂(ki) = 0 : (3.4)As thoroughly disussed in [26℄, this result allows to study the metastability ondition byanalysing the behaviour of �̂(f i) in the viinity of f i = ki. In this analysis, a speial roleis played by the subspae orthogonal to ki, whih is spanned by a basis of n� 1 omplexunit vetors orthogonal to ki.5See refs. [30{33℄ for work in this diretion.
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3.2 Models with two moduliThe general problem of determining whether a dS vauum may arise in the models underonsideration is still quite ompliated, even in the light of the restritions (3.1), (3.2)and (3.4). However, one an fully haraterise the metastability ondition for two-modulimodels. In this ase, the �eld spae is of omplex dimension 2 and an be onvenientlyparametrised with a basis of two unit vetors: ki and a vetor ni perpendiular to it:kini = 0 : (3.5)This ondition de�nes ni uniquely, up to an overall phase, in terms of the omponents ofki and the elements of the metri and its inverse. Denoting by det g the determinant ofthe metri, one easily �nds:(n1; n2) =pdet g (k2;�k1) ; (n1; n2) = 1pdet g (k2;�k1) : (3.6)Sine the spae perpendiular to ki is one-dimensional, it oinides with the spae parallelto ni, and the projetion operator P ij onto suh a subspae is simply given byP ij = gij � kikj = ninj : (3.7)We may now deompose the unit vetor f i de�ning the Goldstino diretion in terms ofthe two orthogonal vetors ni and ki. Up to an overall phase, that we shall not displayexpliitly, we an parametrise the result in terms of an angle � and a relative phase Æ,and write: f i = sin� ki + eiÆ os�ni ; fi = sin� ki + e�iÆ os�ni ;f�{ = sin� ki + e�iÆ os�ni ; f�{ = sin� ki + eiÆ os�ni : (3.8)To proeed further and be more expliit, we need now to distinguish between the twolasses of heteroti and orientifold models. In ref. [26℄ it was found that in both ases thepossibility of ahieving a metastable dS vauum is linked to the sign of the disriminant� of the ubi polynomial de�ned by the intersetion numbers dijk, after saling out onevariable, and reads� = �27�d2111d2222 � 3 d2112d2122 + 4 d111d3122 + 4 d3112d222 � 6 d111d112d122d222� : (3.9)If � < 0 the heteroti version an potentially admit dS vaua but not the orientifold one.Vieversa, if � > 0 the orientifold version an but the heteroti annot. In what followswe ompute �̂ expliitly in terms of � and Æ parameterising f i for both of these ases.7



3.3 Heteroti modelsIn heteroti models, the e�etive K�ahler potential takes the following simple form in thelarge volume limit:6 K = � logV ; V = 43 dijk titjtk : (3.10)In this expression, dijk denotes the intersetion numbers of the CY manifold and ti are thevolume moduli. In this ase, the ti an be promoted in a simple way to (salar omponentsof) hiral super�elds, by setting ti = (T i + �T i)=2.From the form of the K�ahler potential (3.10) it follows that Ki = �(T i + �T i) andKi = �1=2 eKdimnKmKn. The metri and the Riemann tensor are then given by (see [26℄for more details) gij = eKdijnKn +KiKj ; (3.11)Rijmn = gijgmn + gingmj � e2Kdimpgpqdqjn : (3.12)Using this expression, as well as (3.8) it is then possible to rewrite �̂(f i) in the form�̂H(f i) = �2ŝiŝi + !̂, whereŝi = ni� 2p3 tan� os Æ � 12eKdpqrnpnqnr� os2 � ; (3.13)!̂ = �32�eKdpqrnpnqnr�2 � 1� os4 � : (3.14)On the other hand, it was shown in [26℄ that32�eKdpqrnpnqnr�2 � 1 = aH ; (3.15)where aH � ��24 e4K(det g)3 � �1 : (3.16)Putting all of these results bak into eqs. (3.13)-(3.14), and introduing the sign sH =sign(dpqrnpnqnr), we �nally obtain�̂(�; Æ) = 24aH � 83  tan� os Æ � sHr1 + aH8 !235 os4 � : (3.17)6The disussion of this setion is also valid for ertain lasses of orientifold ompati�ations wherethe K�ahler potential exhibits the same form (3.10). An example of this are ompati�ations of type IIBwith O5/O9-orientifold planes [34℄. 8



Observe that �̂ depends on the vevs of moduli only through the quantity aH.7 Notiealso that the squared term an always be set to zero by tuning �. On the other hand,as long as � < 0 the term proportional to aH is always positive. For a �xed value ofaH 2 [0;+1), we may then ompute the maximal value �̂0 that an be ahieved for �̂.This orresponds to �nding the optimal diretion f i0 disussed in Setion 2.2. The relevantextremum ours at Æ0 = 0 ; tan�0 = sHr1 + aH8 (1 + �) ; (3.18)where � is a quantity still to be determined. One has then�̂0 = 64 �aH � (1 + aH) �2=3��8 + (1 + aH)(1 + �)2�2 : (3.19)Notie �rst that one gets a lower bound on the size that �̂ an reah by setting � ' 0,whih orresponds to setting to zero the negative de�nite part of the numerator. This iswhat was done in [27℄, and results in the value �̂0 ' 64 aH=(9+aH)2. This expression hasan extremum at aH = 9 where it reahes its maximal value �̂0 ' 16=9. The true maximalvalue �̂0 is however obtained for a non-vanishing value of � determined by the stationarityondition ��̂=�� = 0, whih is a ubi polynomial. This polynomial aidentally fatorisesin a simple way in this ase, and it is atually possible to �nd the following simpleexpression for the value of �: � = 32�p1 + aH=9p1 + aH � 1� : (3.20)Notie that � is only small for small aH. This means that the exat �̂0 will departsigni�antly from the approximate one for large values of aH. Plugging (3.20) bak into(3.19) one �nds that this is given by:�̂0 = 1283 aH + 9p(1 + aH)(1 + aH=9)� 9�21 + aH � 3p(1 + aH)(1 + aH=9)�2 ; (3.21)From eq. (3.21) we see that �̂0 grows asymptotially as 2=3 aH for large values of aH andan thus be made arbitrarily large and positive. This means that for heteroti models thesGoldstino mass sale m an be made arbitrarily large by tuning the value of the moduli.As we shall see in the following subsetion, this is not the ase for orientifold models withtwo moduli.7Certainly, for a given hoie of the superpotential, � and Æ also depend on the moduli. Nevertheless,in the present approah � and Æ are independent of the moduli in the sense that we are leaving free theparameters entering the superpotential that a posteriori will do the job of stabilising the moduli. Howto determine these parameters will be the subjet of Setion 4.9



3.4 Orientifold modelsLet us onsider now the ase of orientifold models. We fous on type IIB models withO3/O7 planes, where the e�etive K�ahler potential in the large-volume limit takes theform [34℄ K = �2 logV ; V = 148dijkvivjvk : (3.22)In this expression dijk denotes the olletion of intersetion numbers of the CY (resaledby a fator of 1=8 for onveniene) and vi are the volume moduli. However, the vi do notdiretly orrespond to the real part of salar omponents of hiral super�elds in this ase.These are instead given by new �elds �i, related to the vi via the quadrati relation�i = �V�vi = 116 dijkvjvk : (3.23)One then has to invert this relation and express the vi in terms of the �i. After that,one obtains the super�eld dependene of K by setting �i = (T i + �T i)=2. In general, thisan however not be given expliitly and the K�ahler potential (3.22) remains an impliitfuntion of the T i. Note �nally that we have used lower indies for the �elds vi in orderto get upper indies for the �elds �i. Correspondingly we have used upper indies for theintersetion numbers dijk, but it should be stressed that they are the same objets as inthe heteroti ase.From the above impliit de�nition of the K�ahler potential it follows thatKi = � 12 eK=2viand Ki = �(T i + �T i). The metri and the Riemann tensor are then found to be (see [26℄and [35℄ for more details):gij = KiKj + e�K d̂ijkKk ; (3.24)Rijmn = �gimgjn + e�2K�d̂ijkgkld̂lmn + d̂inkgkld̂ljm�+ ginKjKm + gjmKiKn+ gimKjKn + gjnKiKm + gijKmKn + gmnKiKj � 3KiKjKmKn� e�K�d̂imjKn + d̂imnKj + d̂injKm + d̂nmjKi� ; (3.25)where we introdued the notation d̂ijk � gipgjqgkldpql : (3.26)Inserting these expressions into the de�nition of �̂(f i) in (2.10) and using the parametri-sation (3.8) for f i we an as before rewrite �̂(f i) in the form �̂(f i) = �2ŝiŝi + !̂ where:ŝi = ni � 2p3 tan� os Æ � 12e�Kdpqrnpnqnr� os2 �; (3.27)!̂ = �1� 32�e�Kdpqrnpnqnr�2� os4 � : (3.28)10



On the other hand, it an be shown that [26℄1� 32�e�Kdpqrnpnqnr�2 = aO ; (3.29)where aO � �24 (det g)3e4K � 1 : (3.30)Putting all of this together, and introduing the sign sO = sign(dpqrnpnqnr), we �nallyobtain �̂(�; Æ) = 24aO � 83  tan� os Æ � sOr1� aO8 !235 os4 � : (3.31)It is lear that, as before, the squared term an always be set to zero by tuning � andthen �̂ > 0 as long as the term proportional to aH is positive, whih is the ase when� > 0.As in the previous subsetion, we an now ask what is the maximum value for �̂obtained by varying the Goldstino diretion f i, for a given aO 2 [0; 1℄. The relevantextremum ours for Æ0 = 0 ; tan�0 = sOr1� aO8 (1 + �) : (3.32)One then has �̂0 = 64 �aO � (1� aO) �2=3��8 + (1� aO)(1 + �)2�2 : (3.33)One gets as before a lower bound on �̂0 by setting � ' 0. This gives the approximate value�̂0 ' 64 aO=(9 � aO)2, whih grows as aO is inreased until the point aO = 1, where itreahes its maximal value �̂0 ' 1. But again the exat maximal value of �̂ for a given aOis larger and ours for a in general non-vanishing value of � determined by the ondition��̂=�� = 0, whih is again a ubi polynomial. In this ase, this polynomial is generi,and the expression for the value of � is somewhat ompliated. One �nds:� = p1 + 5 aO=9p1� aO �3 sin � �p3 os �� ; (3.34)where � � 13 aros� aOp3 p1� aO(1 + 5 aO=9)3=2� : (3.35)Plugging this bak into (3.33), one �nds that the exat maximal value �̂0 is given bya relatively ompliated expression, whih we do not report here. Fortunately, one anhowever hek that the quantity � given by (3.34) is always quite small for any value of11



aO 2 [0; 1℄. In partiular, one easily veri�es that also the exat �̂0 inreases monotoniallyas a funtion of aO, and that for aO = 1 one obtains �̂0 = 1. In pratise one an thenapproximate the maximal value of �̂ with the one assoiated with � ' 0, namely�̂0 ' 64 aO(9� aO)2 : (3.36)Notie �nally that the fat that �̂ an be at most 1 implies the following upper bound forthe sGoldstino mass sale m: m2 � (3 + )m23=2 : (3.37)This is an interesting result onerning the phenomenology of orientifold ompati�a-tions. It asserts that the lightest modulus annot be muh heavier than the gravitino. Itseems therefore to point towards a large gravitino mass as the only way to ease the os-mologial moduli problem [36℄. As we shall see during the next setion, one an atuallysaturate the above bound by suitably tuning the superpotential.4 Construting de Sitter vaua with two moduliLet us now ome to the main point of this paper, namely to the question of how for agiven K�ahler potential, satisfying the neessary ondition for metastability on the signof �, one may onstrut superpotentials that indeed allow for loal minima of the salarpotential V with a non-negative osmologial onstant. Our strategy will be to assumesome referene values for the �elds at the loation of the minimum, T 1;2 = T 1;20 , and thento reonstrut the loal behaviour that W needs to have at that point.8 We will thusonsider an expansion of the form:W (T ) = W0 +Wi(T � T0)i + 12Wij(T � T0)i(T � T0)j+ 16Wijk(T � T0)i(T � T0)j(T � T0)k + � � � : (4.1)The goal is to determine suitable oeÆients W0, Wi, Wij and Wijk. Higher order termsin the expansion do not a�et the masses of salar utuations around the vauum andan therefore be omitted. Sine we are demanding stabilisation at T 1;2 = T 1;20 , theseoeÆients depend on T 1;20 via K and its derivatives evaluated at these �eld values. Morepreisely, they depend only on ReT 1;20 , beause of the shift symmetry of K. Hene, thevevs of the axions ImT i do not a�et the oeÆients in eq. (4.1) and an be hosen freely.8One may also try to brutally san over the parameter spae of some plausible superpotential for thosemodels that satisfy the metastability neessary ondition. However, this proves to be very umbersomeas soon as there are several parameters. In this framework, the algebrai method for �nding dS minimadeveloped in ref. [37℄ may perhaps be useful. 12



Let us now desribe a systemati proedure to reonstrut the oeÆients W0, Wi, Wijand Wijk. Notie, before starting, that the freedom in hoosing the two vevs T 1;20 anbe used to ahieve any desired value for the volume V, and a suitable positive value forthe parameter a. More preisely, the value of a �xes the ratio of T 10 and T 20 , whereas thevalue of the volume V �xes their overall size. Note also from eq. (4.1) that resaling thevevs of the �elds T 1;20 an be ompensated by resaling the oeÆients appropriately, afterfatorising out the overall superpotential sale W0.4.1 Tuning W0The oeÆient W0 is �xed, modulo a phase that we shall disard, by the value one desiresto ahieve for the gravitino mass ompared to the volume. From the de�nition of m3=2one gets the relation jW0j = m3=2 e�K=2 : (4.2)Note that due to the di�erent de�nitions of the volume V for heteroti and orientifoldmodels, this equation translates into di�erent relations between m3=2 and V in heterotiand orientifold models. In the two ases one �nds respetivelyjW0j = m3=2VH1=2; jW0j = m3=2VO; (4.3)In any ase, the value of W0 �xes the overall sale of the potential.4.2 Tuning WiThe two oeÆients Wi are �xed by the value of the osmologial onstant and the dire-tion of supersymmetry breaking that one desires to ahieve. Indeed, one has by de�nitionGi = Ki+Wi=W0, and Gi an be parametrised in terms of  and fi as Gi =p3(1 + )fi.Realling also the de�nition Ki = p3 ki, it follows then that:WiW0 = p3�p1 +  fi � ki� : (4.4)This �xes Wi=W0 in terms of  and fi. The diretion fi, whih we have parametrised by �and Æ in eq. (3.8), must be hosen inside a one suÆiently lose to the optimal diretionf0i, in suh a way that m2 > 0.99Note that in eq. (4.4) the overall phase disarded in the parametrisation (3.8) beomes relevant andrepresents an additional parameter that one an tune.
13



4.3 Tuning WijThe three oeÆients Wij are �xed by demanding stationarity of the potential, riV = 0,and positivity of the two-dimensional diagonal bloks Vi�| of the mass matrix, whih isneessary for positivity of the full mass matrix. It is onvenient to �rst implement thestationarity onditions (2.4). This implies the following two relations, whih allow to �xtwo of the three parameters Wij in terms of the last one (understanding now Gi as �xed):WijW0 Gj = �(1 + 3)Gi �G�{ + �kijGkGj + WiWjW 20 Gj : (4.5)The remaining parameter among the Wij whih is still free is then �xed by demandingpositivity of the two-dimensional matrix Vi�|. This amounts to requiring that its two eigen-values are positive. Notie that we have already ensured the positivity of the projetionm2 = Vi�|f if �|. Thus, it makes sense now to study the projetion of Vi�| along the remain-ing diretion ui orthogonal to f i in order to understand when the positivity of the wholematrix Vi�| is possible. This diretion is ompletely �xed, again modulo an overall phasethat we do not display, and is given by:ui = os� ki � eiÆ sin�ni ; ui = os� ki � e�iÆ sin�ni ;u�{ = os� ki � e�iÆ sin�ni ; u�{ = os� ki � eiÆ sin�ni : (4.6)We are then led to ompute m02 � Vi�| uiu�| : (4.7)Using the fat that riGjuif j = 0 by the stationarity ondition, one �nds that this seondmass sale is given by:m02 = h1 + 3 � 3(1 + )�̂(ui) + jriGjuiujj2im23=2 ; (4.8)where �̂(ui) = Rijmn uiu�|fmf �n : (4.9)From eq. (4.8) we see that it is always possible to tune the quantity riGj in order tomake the last positive term dominate and ahieve m02 > 0, ompatibly with the twostationarity onditions that also involve riGj, sine there are three parameters Wij. Onthe other hand, the matrix Vi�| has in general a non-zero mixing between the f i and uidiretions, whih is given byVi�| uif �| = �3(1 + )m23=2Rijmnuif �|fmf �n: (4.10)Sine this quantity is independent of riGj, it is now evident that it is always possible totune the value of m02 until both eigenvalues of Vi�| beome positive.14



A simple although not mandatory possibility to �x unambiguously the free parameterleft among the Wij after imposing the stationarity ondition is to require that fi shouldbe aligned along the optimal diretion f i0 maximising m2. In that ase the orthogonaldiretion ui is then also �xed to some ui0. In this situation, eq. (2.13) implies that one hasVi�|ui0f �|0 = 0, so that m2 and m02 oinide with the two eigenvalues of Vi�|. Additionally, thequantity �̂ takes a de�nite value, whih is di�erent for heteroti and orientifold modelsand depends on aH and aO respetively. After a straightforward but lengthy omputationone �nds: �̂H0 = 124�9� 2aH + (7 + 2aH) os 4�0 + 4sHp2(1 + aH) sin 4�0� ; (4.11)�̂O0 = 124�9� 4aO + (7 + 4aO) os 4�0 + 4sOp2(1� aO) sin 4�0� : (4.12)In these expressions, the quantity �0 is the one that leads to the maximal value �̂0 for�̂, namely tan�0 = sp(1� a)=8(1 + �). For heteroti models, one has to use the exatvalue (3.20), but for orientifold it is good enough to use the approximate value � ' 0. Inthis way one �nds: �̂H0 = 9� aH + 9p(1 + aH)(1 + aH=9)27 + 2aH ; (4.13)�̂O0 ' 23�1� 12aO(1� aO)(9� aO)2 � : (4.14)We see in partiular that both quantities remain bounded respetively by 1 and 2=3 inthe allowed ranges for a.4.4 Tuning WijkFinally, the four oeÆients Wijk need to be hosen in suh a way that all of the foureigenvalues of the full mass matrix M2 are positive, even after taking into aount thee�et of the o�-diagonal blok Vij. Solving then the expression for Vij in terms of theWijk,one dedues the following three relations (where now both Gi and riGj are understoodas �xed):WijkW0 Gk = �RijkmG �m + �mijrmGk + �m(ikrmGj) � 2WiWjWkW 30 + 2W(iWj)kW 20 + WkWijW 20+�m(ik�Wmj)W0 � WmWj)W 20 ��Gk � (2 + 3)r(iGj) + 3 GiGj + Vijm23=2 : (4.15)Reall that for Vij = 0 the mass spetrum is degenerate, with two states for eah of thetwo eigenvalues of Vi�|, whih have already been adjusted to be positive with the previous15



step. When instead Vij 6= 0, the spetrum splits and one has to make sure that noeigenvalue beomes negative. This represents three onstraints on the four parametersWijk. If for simpliity one requires Vij = 0, then these beome three relations, whih allowto express three of the four parameters Wijk in terms of the last one. More generally, wean leave Vij arbitrary and ompute the four eigenvalues as funtions of the Wijk's. Ingeneri situations it is hard to do this in an analyti way, but it an be easily done withomputer assistane. One an then san this multi-parameter spae for regions where allmasses are positive.The next step is to math these `loal superpotentials' with the expansion of some string-motivated superpotential around the given vevs. To this end we will onsider in the nextsetion superpotentials with enough parameters and determine these parameters in suha way that the Taylor expansion around the extremum mathes the ubi superpotentialonstruted as outlined above.5 Examples of models with dS vauaLet us now apply the proedure desribed in last setion to onstrut some illustrative ex-amples of string models with a setor of two volume moduli admitting a metastable dS va-uum. For simpliity, we shall fous on the ase where the osmologial onstant vanishes( = 0) and on separable superpotentials of the form W (T 1; T 2) =W (1)(T 1) +W (2)(T 2).This hoie implies further restritions on the oeÆients of the Taylor expansion of thesuperpotential about the vauum, namely W12 = W112 = W221 = 0, and the existene ofa solution with these harateristis is no longer guaranteed from the beginning. We willhowever see that it is nevertheless possible to �nd simple examples of this type.5.1 Orientifold modelsLet us start with orientifold models. For these models, the way in whih the dilaton andthe omplex struture moduli may be stabilised is well understood [1℄, and restriting tothe setor of volume moduli may be justi�ed. In this ase, the neessary ondition formetastability is that the disriminant � should be positive. As a prototype example, letus take a CY manifold with intersetion numbers given by d111 = �1, d112 = 0, d122 = 1and d222 = 0, for whih � = 108 > 0. The K�ahler potential is then found to take the
16



following form:K = � log �89�(T 1+ �T 1) +p(T 1+ �T 1)2+ (T 2+ �T 2)2��(T 2+ �T 2)2+ (T 1+ �T 1)2� (T 1+ �T 1)p(T 1+ �T 1)2+ (T 2+ �T 2)2T 2+ �T 2 �2� : (5.1)We require that at the stationary point one should have aO = 1. As seen in Setion 3.4,this hoie allows to maximise the sGoldstino mass and orresponds to setting ŝi = 0. Wewill moreover require that the volume takes some de�nite numerial value VO. These twoonditions �x the vevs of the two �elds to the following values, in units of V2=3O :T 10 0:412741T 20 0:714888 (5.2)Applying then the proedure desribed in the previous setion, in suh a way to ahievesome de�nite numerial valuem3=2 for the gravitino mass, we �nd that the loal behaviourthat the superpotential needs to have is spei�ed by the following Taylor oeÆients, inunits of m3=2VO for W0, m3=2V1=3O for Wi, m3=2V�1=3O for Wii and m3=2V�1O for Wiii:W0 1:000000W1 2:021311W2 0:931223W11 0:999657W22 �0:797685W111 �0:827204W222 3:308820 (5.3)
In this way, the four physial square-mass eigenvalues m2i at the minimum, obtained afteranonially normalising the �elds, are given by 2:77, 2:95, 3:86, 5:14 in units of m23=2.Notie that the oeÆients (5.3) sale in the following way with the size T0 � V2=3O ofthe �eld vevs: W0 : Wi : Wii : Wiii � 1 : T�10 : T�20 : T�30 : (5.4)This saling an be understood as naturally following from the struture of eqs. (4.4), (4.5)and (4.15), although it is oneivable that it ould be hanged with some additional �ne-tuning of the parameters of the theory. This relation alls nevertheless for superpotentialswith derivatives satisfying T nW (n)=W � 1.17



Let us now try to math the oeÆients (5.3) of the loal expansion with an expliitsuperpotential of a form that may plausibly arise in these models. The simplest pos-sibility is to try with an exponential e�etive superpotential that typially arises fromgaugino ondensation. This has the simple form W = Ae�aT , provided that aT � 1,orresponding to a weekly oupled four-dimensional low-energy e�etive theory. For thistype of superpotential, however, one gets T nW (n)=W � (aT )n, whih is muh larger than1 as soon as aT � 1. It is then not possible to reprodue the saling (5.4). This probleman however be ured by adding a onstant term W = �, or possibly also a linear termW = FT , whih may for instane arise from bakground uxes.10 Notie �nally that oneneeds a superpotential with at least 7 free parameters in order to be able to math all theloal oeÆients.As a simple and `symmetri' possibility to try out, one ould onsider a superpotentialwith a onstant term plus a raetrak term for eah �eld:W = �+ A1e�a1T 1 + A2e�a2T 2 +B1e�b1T 1 +B2e�b2T 2 : (5.5)Suh a ombination of exponentials ould arise for instane from gaugino ondensation ontwo sets of D7-branes wrapping yles ontrolled by the moduli T 1 and T 2, eah givingrise to a gauge group onsisting of two semisimple fators. ThisW has 9 oeÆients whihhave to satisfy 7 equations. This allows to express 7 of them in terms of the other 2, sayb1 and b2, and of the oeÆients of the loal superpotential. Among other relations, one�nds that ai = �biWii +WiiibiWi +Wii : (5.6)One an then hoose the values of bi in suh a way that biT i0 � 1, but by eq. (5.4) onewill then get aiT i0 � 1. This means that the onstant term allows to make only some ofthe exponents in the exponential terms large, and some of them remain of order one, sothat higher-power orretions may beome relevant. An example of this type is obtainedwith the following values of the parameters, in units of m3=2VO for �; Ai; Bi and V�2=3O forai,bi: � 2:63036� 101A1 7:37726� 101B1 �9:77287� 101A2 �1:50213� 100B2 �2:80545� 100
a1 3:49830� 10�1b1 2:79764� 10�1a2 7:30908� 100b2 4:19646� 10�1 (5.7)10This kind of e�et has also been used to onstrut supersymmetri vaua. See for instane refs. [38,39℄.18



A more satisfatory but slightly more ompliated model may be obtained by addinglinear terms. Let us onsider for example the following form of the superpotential:W = �+ F1T 1 + F2T 2 + A1e�a1T 1 + A2e�a2T 2 +B1e�b1T 1 +B2e�b2T 2 : (5.8)While one still has Wiii=Wii = �ai, as this ondition is una�eted by the addition of alinear term, the relation between the oeÆients ai; bi and Wiii=Wii gets now more om-pliated and less onstraining. This allows to �nd parameters suh that all the exponentsin the exponential terms are large. A working example of this type is obtained with thefollowing hoie of parameters, in units of m3=2VO for �; Ai; Bi, m3=2V1=3O for Fi and V�2=3Ofor ai; bi: � �4:83093� 10�1A1 5:14986� 109B1 �1:55366� 1010A2 �4:16798� 108B2 2:38480� 1010
a1 6:69463� 101b1 6:99410� 101a2 3:55839� 101b2 4:19646� 101 F1 2:05036� 100F2 8:92014� 10�1 (5.9)

Note that in order to ahieve large values of the exponents aiT i0, biT i0 at the minimumin this kind of models, one neessarily needs a hierarhy between the oeÆients Ai, Biof the gaugino ondensation terms and the oeÆients � and (if present) Fi. Indeed, inorder for all the terms in W to be of omparable size at the minimum, the ratio of thesetwo kinds of oeÆients must be of order eaiT i0 , ebiT i0 . In (5.7) suh a hierarhy is absent,beause the exponents are of order one, whereas in (5.9) it is large, beause the exponentsare large.The partiular numbers hosen in the seond example serve as an illustration but anorrespond to realisti values for physial parameters. The values aiT i0 � biT i0 � 25orresponds to the size of the MSSM inverse ouplings at the uni�ation sale. Moreover,for a Weak sale gravitino mass m3=2 � 10�16MPl � 100GeV and a reasonably largevolume in Plank units VO � 103, one has A1=3i ; B1=3i � 10�1MPl � 1017 GeV, whih is aplausible gaugino ondensation sale, and �1=3 � 10�4MPl � 1014GeV, whih ould alsobe reasonable.5.2 Heteroti modelsLet us now onsider heteroti models. In this ase, the way in whih the dilaton and theomplex struture moduli may be stabilised is less understood, but we will neverthelessassume that these do not play any role and fous on two volume moduli. As an expliitexample satisfying the neessary ondition � < 0, let us onsider a CY manifold with19



intersetion numbers d111 = 1, d112 = 0, d122 = 1 and d222 = 0, for whih � = �108 < 0.The orresponding K�ahler potential is:K = � log h16(T 1+ �T 1)3 + 12(T 1+ �T 1)(T 2+ �T 2)2i : (5.10)We hose in this ase the values of the �eld vevs in suh a way that aH = 9, orrespondingto setting ŝi = 0. This hoie does not orrespond to the largest possible sGoldstinomass in this ase, but it has the virtue of maintaining some similarity with the orientifoldexamples. Moreover, we require as before some de�nite numerial value VH for the volume.This leads then to the following values of the vevs, in units of V1=3H :T 10 0:405666T 20 0:749277 (5.11)Applying the proedure outlined in the previous setion, one �nds the following set ofloal parameters, in units of m3=2V1=2H for W0, m3=2V1=6H for Wi, m3=2V�1=6H for Wii andm3=2V�1=2H for Wiii:
(5.12)W0 1:00000W1 1:64415W2 2:60392W11 �17:4400W22 3:82418W111 616:732W222 2:31275In this model, the four physial square-mass eigenvalues m2i at the minimum are given by4:43, 5:95, 203:88 and 311:92 in units of m23=2.We may now proeed as for orientifold models and �t these oeÆients with a superpo-tential involving exponential, onstant or linear terms. In this ase, however, the possibleorigin of suh terms is less lear than for orientifolds. For instane, gaugino ondensationprodues exponential ontributions, but with an exponent involving in �rst approxima-tion only the dilaton. It is however ommon that the e�etive gauge oupling reeivesperturbative threshold orretions depending on the volume moduli as well. Assumingthen that the dilaton does not play any role and the volume moduli are large, one anbe left with an exponent linear in T . Notie moreover that taking this perspetive thereis no reason to require any longer that the exponent should be large and positive (seefor example [40,41℄). As a toy illustrative example with enough parameters, we an thus20



again onsider a superpotential of the form (5.5). One an then, for example, reproduethe loal oeÆients (5.12) with the following values of parameters, in units of m3=2V1=2Hfor �; Ai; Bi and V�1=3H for ai; bi:� �5:97604� 10�1A1 �3:62358� 105B1 �1:46692� 100A2 7:98841� 10�1B2 7:49672� 10�1 a1 4:36876� 101b1 2:66924� 100a2 �1:28225� 100b2 5:33848� 100 (5.13)
As before, the hierahy arising between some of the oeÆients Ai; Bi and � is relatedto the fat that some of the exponents aiT i0, biT i0 are large at the minimum. In this ase,for m3=2 � 10�16 and VH � 103 in Plank units, the partiular numbers hosen in theexample yield A1=3i ; B1=3i � 1013 � 1015 GeV and �1=3 � 1013GeV.6 ConlusionsIn this paper we have developed a systemati method for onstruting metastable dSvaua in supergravity models desribing the volume moduli setor of CY string om-pati�ations, without invoking subleading orretions breaking the no-sale property oruplifting terms. To do so, we have exploited the fat that there exists a neessary ondi-tion for the existene of metastable vaua, whih onstrains the allowed salar geometryand supersymmetry-breaking diretions [26℄. We have foused on the simplest non-trivialase of two volume moduli, whih allows for a detailed analysis, but we believe that themore ompliated ases with more than two volume moduli an be treated similarly. Wehave singled out the speial Goldstino diretion whih allows to maximise the modulimasses, and in the ase of orientifold ompati�ations, we have found a strong upperbound of the lightest modulus mass as a funtion of the gravitino mass.The main result of the paper is an expliit proedure allowing to onstrut the loalform of the superpotential that gives a metastable dS vauum in models where the K�ahlerpotential satis�es the neessary ondition for metastability on the sign of the disriminant� of the intersetion numbers dijk. We have also applied this proedure to onstrut a fewsimple examples of onrete models admitting viable metastable vaua that may plausiblyemerge within heteroti and orientifold string ompati�ations with bakground uxesand gaugino ondensation e�ets. The fat that these models need to have more thanone dynamial �eld and at least seven independent parameters in the superpotential toallow for the onstrution is probably the reason why suh models have not been noted21



earlier. It is still an open question to study more realisti, more generi or even moreminimal models, but we have now a proof of existene for dS vaua arising from simpleF-term supersymmetry breaking in both the orientifold and heteroti ase. It is also learthat the presene of vetor multiplets giving a D-term ontribution to supersymmetrybreaking an potentially further improve the situation. More preisely, for a �xed valueof V , inreasing the ratio between the D-term and F -term ontributions has the nete�et of making the left-hand side of (2.11) smaller and therefore making that onstraintmilder, although the variety of allowed superpotentials is then redued by the requirementof gauge invariane [29℄. This helps, and in fat there exist no-sale models with a singlehiral multiplet and a vetor multiplet that admit metastable dS vaua [8, 11, 42℄.We believe that our results emphasise in a lear way that it is atually possible toahieve genuine metastable dS vaua even in models satisfying the no-sale property,provided that the salar geometry is suÆiently generi. This is the ase for the volumemoduli setor of smooth CY ompati�ations, as opposed to their orbifolds limits, whenat least two moduli arise. But of ourse in order to onstrut a realisti model, there areseveral other issues to be addressed. One of them is the detailed mehanism stabilizingthe other moduli and the impat of their dynamis onto the dS vauum admitted by thevolume moduli setor. Another is the life-time of the dS vauum against deay to othersupersymmetri AdS vaua that generially arise at di�erent values of the �elds [43{45℄.AknowledgementsThis work was partly supported by the German Siene Foundation (DFG) under theCollaborative Researh Centre (SFB) 676, the Swiss National Siene Foundation, andby the Netherlands Organisation for Sienti Researh (NWO) under a VIDI and a VICIInnovative Researh Inentive Grant. M. G.-R. and C. G. are grateful to the Institute forTheoretial Physis of EPFL for hospitality during the ompletion of this work. G. A. P.would like to thank A. Ah�uarro for useful disussions.Referenes[1℄ S. B. Giddings, S. Kahru and J. Polhinski, Hierarhies from uxes in string om-pati�ations, Phys. Rev. D 66 (2002) 106006 [arXiv:hep-th/0105097℄.[2℄ A. Saltman and E. Silverstein, The saling of the no-sale potential and de Sittermodel building JHEP 0411 (2004) 066 [arXiv:hep-th/0402135℄.22
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