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Abstra
tIn this note we prove a 
orresponden
e between the Wess-Zumino-Novikov-Witten model of the Lie supergroup GL(1j1) and a free model 
onsisting of twos
alars and a pair of symple
ti
 fermions. This model was dis
ussed earlier byLeClair. Vertex operators for the symple
ti
 fermions in
lude twist �elds, and
orrelation fun
tions of GL(1j1) agree with the known results for the s
alars andsymple
ti
 fermions. We perform a detailed study of boundary states for symple
-ti
 fermions and apply them to branes in GL(1j1). This allows us to 
ompute newamplitudes of strings stret
hing between branes of di�erent types and 
on�rmingCardy's 
ondition.
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1 Introdu
tionConformal �eld theories with supersymmetri
 target spa
e has be
ome an importantarea of 
urrent resear
h. They are essential in a variety of signi�
ant problems both instring theory and in disordered systems.Understanding sigma models on supersymmetri
 spa
es deep in the strongly 
oupledregime is of primary importan
e. In many models one believes that there exists a dualdes
ription whi
h is better a

essible in su
h a regime. The most prominent example is
ertainly the 
elebrated AdS/CFT 
orresponden
e [1, 2℄, but there are, of 
ourse, otherinteresting dualities involving sigma models on supersymmetri
 spa
es. For example,re
ently a strong-weak duality between the OSp(2N+2j2N) Gross-Neveu model and theprin
ipal 
hiral model on the supersphere S2N j2N+1 was 
onje
tured [3, 4℄.There are various ways to �nd and to test su
h 
orresponden
es. Many supersym-metri
 spa
es possess a family of 
onformally invariant �eld theories, and points in themoduli spa
e that are exa
tly solvable e.g. the Wess-Zumino-Novikov-Witten point onsupergroup manifolds or the in�nite radius limit of the prin
ipal 
hiral model on the su-persphere. In these 
ases, one way to test a duality is to 
ompute 
ertain quantities,e.g. some boundary spe
tra, at this solvable point and perform the perturbation to otherpoints in the moduli spa
e exa
tly [5℄. This method has su

essfully been applied tothe supersphere/Gross-Neveu 
orresponden
e [6℄. The question remains how to a
tuallyprove su
h a 
orresponden
e. The 
ase N = 0 in the Gross-Neveu-supersphere duality isthe well-known 
orresponden
e between the O(2) Gross-Neveu model, that is the mass-less Thirring model, and a free boson on the 
ir
le, i.e. bosonization [7℄. Unfortunately,the proof does not generalize straightforwardly, but still we believe that bosonizationte
hniques will turn out to be 
ru
ial in understanding the 
orresponden
e.If there is a simpler model at hand, it is a good idea to study it in detail to gaininsight and to establish te
hniques for the more 
ompli
ated models. This leads us tothe GL(1j1)-symple
ti
 fermion 
orresponden
e. The GL(1j1) WZNW model is probablythe best understood CFT with supersymmetri
 target spa
e that is not free. Thereexists another CFT with GL(1j1) 
urrent symmetry [8℄, whi
h was used to study the spinquantum Hall transition. This CFT is 
onstru
ted from the OSp(2j2) Gross-Neveu modelat the free point via bosonization and it automati
ally has GL(1j1) symmetry sin
e theOSp(2j2) Gross-Neveu model is 
onstru
ted from a spin one half ve
tor transforming inthe adjoint representation of GL(1j1). This model 
onsists of two free s
alars and a set ofsymple
ti
 fermions. The symple
ti
 fermions were �rst analyzed in detail in [9, 10℄. The�rst part of this note is devoted to showing the 
orresponden
e between these models.The te
hnique we use is based on bosonization, but in addition we use the aÆne 
urrentsas a guideline whi
h we hope is also useful for other Gross-Neveu-like models.The 
orresponden
e, we �nd, is remarkable in its own right sin
e the GL(1j1) WZNWmodel is an intera
ting theory, while the 
orresponding model is free, and the bosonsare 
ompletely de
oupled from the fermions. The non-triviality is hidden in the vertexoperators, i.e. the GL(1j1) vertex operators in the free des
ription 
ontain twist �eldsof the fermions and it turns out that the 
omputation of bulk 
orrelation fun
tions in1



both des
riptions is of a similar 
omplexity. Still our method provides a new approa
hto WZNW models on Lie supergroups. So far, the models have been investigated eitheralgebrai
ally [11℄ or in terms of fermioni
 ghost systems [12, 13, 14, 15℄. Hopefully,there exist generalizations of our approa
h to other Lie supergroups leading to a betterunderstanding of them.In the se
ond part of this note, we apply the 
orresponden
e to branes in GL(1j1).For the understanding of Cardy boundary states, the free des
ription is better adaptedthan the original one. GL(1j1) possesses two 
lasses of branes. One of them, the so-
alleduntwisted branes whi
h geometri
ally des
ribe super
onjuga
y 
lasses in the supergroupmanifold, have been studied in detail in [16℄. It was found that amplitudes of boundarystates satisfy Cardy 
onditions [17℄ and that they agree with fusion, as expe
ted fromexperien
e with rational CFT [18℄ and also logarithmi
 CFT [19℄. The se
ond 
lass ofbranes 
ontains just one volume-�lling brane. This brane has been investigated in [15℄,i.e. its 
orrelation fun
tions have been 
omputed, but also the boundary state has been
onstru
ted and tested. For a 
omplete des
ription of boundary states one still needs tounderstand amplitudes of strings stret
hing between a twisted and an untwisted brane.In our new des
ription this 
an be done straightforwardly. The �nal result is that Cardy
onditions are still satis�ed, and essentially all known results of branes on Lie groups
arry over to the Lie supergroup GL(1j1).The stru
ture of this note is as follows. In se
tion 2 we verify the 
orresponden
e indetail. We explain how the 
urrents are used as a guideline to prove the 
orresponden
e,and we 
he
k the 
orresponden
e by 
omparing 
orrelation fun
tions. Se
tion 3 gives adetailed dis
ussion of boundary states in the symple
ti
 fermions, in
luding twist �elds.In se
tion 4 we apply the results of the two previous se
tions to 
omplete the dis
ussionof GL(1j1) boundary states.2 The GL(1j1)-symple
ti
 fermion 
orresponden
eIn this se
tion we will set up the notation and show the relation between the GL(1j1)WZNW model and the free s
alars and symple
ti
 fermions. Finally, we will 
omment onthe bulk 
orrelation fun
tions.2.1 The GL(1j1) WZNW modelOur starting point for the relation between the GL(1j1) WZNW model and the freetheory will be the �rst order a
tion for GL(1j1) found in [12℄. To set up the notationused in this paper we re
all a few fa
ts about the gl(1j1) superalgebra. It is generatedby two bosoni
 elements E;N and two fermioni
  � whi
h have the following non-zero(anti)
ommutator relations [N; �℄ = � �; f �;  +g = E: (2.1)2



Further, we have a family of supersymmetri
 bilinear forms, but below we will alwayswork with str(NE) = str( + �) = �1: (2.2)For the GL(1j1) supergroup we 
hoose a Gauss-like de
omposition of the formg = e
� � eXE+Y N e�
+ +:The WZNW model thus has two bosoni
 �elds X(z; �z); Y (z; �z) and two fermioni
 �elds
�(z; �z), and the a
tion takes the formSWZNW[g(X; Y; 
�)℄ = k4� Z� d2zhg�1�g; g�1 ��gi+ k24� ZBhg�1dg; [g�1dg; g�1dg℄i= k4� Z� d2z ���X ��Y � �Y ��X + 2eY �
+ ��
�� ; (2.3)where k is the level. Variation of the a
tion leads to the usual bulk equations of motion[16℄.The holomorphi
 
urrent of the GL(1j1) WZNW model is in our notation given byk�gg�1. The 
omponents 
orresponding to the generators areJE = �k�Y; JN = �k�X + k
��
+ eY ;J� = keY �
+; J+ = �k�
� � k
��Y ; (2.4)Similarly, for the anti-holomorphi
 
urrent �kg�1 ��g the 
omponents are�JE = k ��Y; �JN = k ��X � k ��
� 
+ eY ;�J+ = keY ��
�; �J� = �k ��
+ � k
+ ��Y : (2.5)Let us also mention that the modes of this aÆne algebra satisfy[JEn ; JNm ℄ = �kmÆn+m; [JNn ; J�m℄ = �J�n+m; fJ�n ; J+mg = JEn+m + kmÆn+m; (2.6)where we note that the modes 
an be res
aled su
h that the algebra is independent of thelevel k. Equation (2.6) 
orresponds to the OPEJA(z)JB(w) � �k str(AB)(z � w)2 + [A;Bgz � w : (2.7)2.2 First order formulationFollowing [12℄ we will now pass to a �rst order formalism by introdu
ing two additionalfermioni
 auxiliary �elds b� of weight �(b�) = 1. Naively, the a
tion would be14� Z� d2z ��k�X ��Y � k�Y ��X + 2b+�
+ + 2b� ��
� + 2ke�Y b�b+� : (2.8)3



This redu
es to (2.3) if we integrate out b� using their equations of motionb� = k�
+ exp Y; b+ = �k ��
� expY: (2.9)However, we get a quantum 
orre
tion in going from the GL(1j1) invariant measure usedfor the a
tion in (2.3) to the free-�eld measure DXDYD
�D
+Db�Db+ that we want touse for our �rst order formalism. In analogy with [20℄ the 
orre
tion isln det �j�j�2e�Y �eY ��� = 14� Z d2z ��Y ��Y + 14pGRY � : (2.10)Here G is the determinant of the world-sheet metri
 and R its Gaussian 
urvature. j�j2is the metri
 and we have the relation pGR = 4� �� log j�j2. We thus get a 
orre
tionto the kineti
 term and a ba
kground 
harge for Y . The �rst order a
tion in
luding the
orre
tion isS(X; Y; b�; 
�) = 14� Z� d2z� � k�X ��Y � k�Y ��X + �Y ��Y + 14pGRY+ 2
+�b+ + 2
� ��b� + 2ke�Y b�b+�: (2.11)We also get a quantum 
orre
tion to the 
urrent. This will happen where we have to
hoose a normal ordering of the terms in the 
urrent (2.4). We �x this by demanding thatthe 
urrents obey the OPEs (2.7). Indeed, we have to add �Y to JN to ensure that it hasa regular OPE with itself. Thus the holomorphi
 
urrents in the free �eld formalism areJE = �k�Y; JN = �k�X + 
�b� + �Y ;J� = b�; J+ = �k�
� � k
��Y ;where we here and in the following suppress the normal ordering. We get similar expres-sions for the anti-holomorphi
 
urrents.2.3 The 
orresponden
eIf we integrate out b� in (2.11) we would simply obtain the GL(1j1) WZNW model.We will now show that if we instead bosonize the b
 system to obtain a system of threes
alars, it is possible to perform a �eld rede�nition su
h that one of the s
alars de
ouples.We 
an then return to a new b0
0 formalism and integrate out b0� to arrive at a de
oupledtheory of two s
alars and a set of symple
ti
 fermions.In this pro
ess the 
urrent be
omes more symmetri
 and simple. It 
an be seen as aguideline for whi
h transformations to perform and we will therefore expli
itly follow thetransformation of the 
urrent in ea
h step.We will start by only dis
ussing the transformation of the a
tion and the 
urrent. Themap of the vertex operators will be determined in the next subse
tion.4



To begin we bosonize the b
 system in (2.11) in the standard way [21℄
� = e�R;L ; b� = e��R;L ;
+�b+ + 
� ��b� = �12�����+ 18pGR�;b�
� = ���L; (2.12)where we denote left and right 
omponents of s
alars by supers
ripts L;R. In the 
urrentswe likewise have to introdu
e left and right indi
es and the holomorphi
 
urrents thenbe
ome JE = �k�Y L; JN = �k�XL + ��L + �Y L ;J� = e��L ; J+ = �k�(�L + Y L)e�L ; (2.13)and the a
tion isS(X; Y; b�; 
�) = 14� Z� d2z��k�X ��Y � k�Y ��X + �Y ��Y+� �����+ 14pGR(Y + �) + 2ke�Y��� : (2.14)We observe, both from the 
urrent and the a
tion, that it is very natural to go tovariables Y; Z; �0 where�0 = Y + �; Z = kX � �� Y = kX � �0: (2.15)The 
urrents and the a
tion in these variables areJE = �k�Y L; JN = ��ZL;J� = eY L��0L ; J+ = �k��0Le�0L�Y L ; (2.16)S(X; Y; b�; 
�) = 14� Z� d2z���Z ��Y � �Y ��Z � ��0 ���0 + 14pGR�0 + 2ke��0� : (2.17)Hen
e we got a theory of two s
alars de
oupled from a Coulomb gas with s
reening 
harge.For 
al
ulation of 
orrelation fun
tions this is a very eÆ
ient formulation of the theory.We will, however, go one step further and rewrite the s
reened Coulomb gas in terms ofsymple
ti
 fermions.We thus return to a b0
0 system using again (2.12), but now for the �eld �0. This givesus the following simple expressionsJE = �k�Y L; JN = ��ZL;J� = eY Lb0�; J+ = �ke�Y L�
0� ; (2.18)5



S(X; Y; b0�; 
0�) = 14� Z� d2z���Z ��Y � �Y ��Z + 2
0+�b0+ + 2
0� ��b0� + 2kb0�b0+� : (2.19)We 
an now integrate out the �elds b0� getting the equations of motionb0+ = �k ��
0�; b0� = k�
0+ ; (2.20)and arrive at S(X; Y; 
�) = 14� Z� d2z ���Z ��Y � �Y ��Z + 2k�
0+ ��
0�� : (2.21)Of 
ourse, we have to be 
areful when the vertex operators depend on b0. As we will seebelow, the vertex operators for typi
al representations will be twist operators whi
h weinterpret as not 
ontaining b.To remove the dependen
e on the level k in the a
tion we introdu
e �a bypk
0+ = �1; pk
0� = �2; (2.22)and the 
urrents and a
tion are thenJE = �k�Y L; JN = ��ZL;J� = pkeY L��1; J+ = �pke�Y L��2; (2.23)S(X; Y; �a) = 14� Z� d2z ���Z ��Y � �Y ��Z + �ab��a ���b� : (2.24)where the anti-symmetri
 symbol is de�ned by �12 = ��21 = 1. This gives the OPEs�a(z; �z)�b(w; �w) � ��ab ln jz � wj2 ;Z(z; �z)Y (w; �w) � ln jz � wj2 : (2.25)where �12 = �1. This is the a
tion and 
urrent that was 
onstru
ted in [8℄. In thatreferen
e it was also found that the a
tion has an enlarged OSp(2j2) symmetry.For future referen
e, let us sum up the 
orresponden
e between the symple
ti
 fermionsand the underlying b0; 
0 system. We have���1 = pk ��
0+; ���2 = pk ��
0� = � 1pkb0+;��1 = pk�
0+ = 1pkb0�; ��2 = pk�
0�; (2.26)whi
h will be useful in the next se
tion where we study what happens to the vertexoperators. 6



2.4 Mapping of the vertex operatorsWe now 
onsider the mapping of the GL(1j1) vertex operators under the transforma-tion that we found in the last subse
tion. The basis of vertex operators to be used withthe �rst order a
tion (2.11) were found in [12℄ by a minisuperspa
e analysis. We will hereuse the notation of [15℄ and write the operators asVh�e;�n+1i = : eeX+nY : � 1 
�
+ 
�
+� ; (2.27)and the 
onformal dimension is �(e;n) = e2k (2n� 1 + ek ): (2.28)For e 6= mk, where m is an integer, the 
olumns of this matrix will 
orrespond to thetwo-dimensional representation h�e;�n + 1i for the left-moving 
urrents while the rows
orrespond to the representation he; ni under the right-moving 
urrents.Let us �rst 
onsider the transformation giving us (2.17):X = 1k (�0 + Z);
� = e�0L1 �Y L; b� = e��0L1 +Y L: (2.29)This maps the vertex operators toVh�e;�n+1i = : e ek �0+ ekZ+nY � 1 e�0L�Y Le�0R�Y R e�0�Y � : : (2.30)Here we generally split s
alar �elds into the left and right handed part as �0 = �0L + �0R.Some 
omments are in order here: Firstly, rather than thinking of e.g. 
� in (2.27) asa fun
tion to be evaluated under the path integral, we have here used bosonization andwill think about the vertex operators in the operator formalism. This means that 
� is aholomorphi
 operator. Se
ondly, for the Y Z system the vertex operators areV Bh�e;�n+1i = � : e ekZ+nY : : e ekZ+(n�1)Y L+nY R :: e ekZ+nY L+(n�1)Y R : : e ekZ+(n�1)Y : � ; (2.31)whereas for the �0 system they areV Fh�e;�n+1i = � : e ek �0 : : e( ek+1)�0L+ ek �0R :: e ek �0L+( ek+1)�0R : : e( ek+1)�0 : � : (2.32)Thus in the o�-diagonal terms, the splitting into holomorphi
 and anti-holomorphi
 partsmeans that the 
orrelation fun
tions 
al
ulated in respe
tively the Y Z system and the�0 system are not separately real, but only the 
ombined 
orrelation fun
tion 
an be7



expressed in the absolute values of the insertions zi. Also, we see that around the o�-diagonal terms in the operator (2.31) the �eld Z gets an additive twist. The overall twistvanishes due to 
harge 
onservation for Y .Sin
e �0 now appears with non-integer momenta, we see that in going to the b0; 
0system with a
tion (2.19) we get twist operators. Pre
isely, the vertex operator (2.32)maps into V Fh�e;�n+1i = � ~�Le=k~�Re=k ~�Le=k+1~�Re=k~�Le=k~�Re=k+1 ~�Le=k+1~�Re=k+1� ; (2.33)where the twist states are de�ned by
0�(e2�iz)~�L� (0) = e2�i�~�L�(0): (2.34)This is solved by ~�L� � : e��0L : ; (2.35)but only uniquely in � modulo integers and, naturally, up to a normalisation. The 
on-formal dimension is �12�(1� �) so the ground states have 0 < � < 1. We 
an step � upand down with respe
tively 
0� and b0� e.g.
0�(z)~�L� (0) � 1z�� ~�L�+1(0): (2.36)Also note that ~�R� � : e��0R : ; (2.37)ful�lls 
0+(e�2�i�z)~�R� (0) = e�2�i�~�R� (0): (2.38)Sin
e ~�R� gives opposite transformations 
ompared to the holomorphi
 operator ~�L� , buthas the same dimension �12�(1� �), it in many ways 
ompares to ~�L1��.To obtain the symple
ti
 fermions requires integrating out b0. This means that theanti-holomorphi
 part of 
0� is non-trivial in the OPEs. As an example, 
0+ and 
0� witha
tion (2.21) have a singular OPE that is � 1k ln jz � wj2. However, using equations (2.26)we get the mapping of �
0� and b0� to the holomorphi
 operators ��2 and ��1. Likewise,��
0+ and b0+ will 
orrespond to the anti-holomorphi
 operators ���1 and ���2.One has to be 
areful sin
e we in prin
iple 
an not integrate out b0 when the vertexoperators depend on b0�b0+. However, for the twist operators it seems plausible sin
e, atleast for � > 0, we 
an naively think of �� as 
0�. To 
he
k this we will in the next se
tion
ompare the 
orrelation fun
tions to the already known 
al
ulation for the symple
ti
fermions. The twist �elds in the b0; 
0 system then dire
tly translates into twist �elds ofthe symple
ti
 fermions. The symple
ti
 fermion twist �elds are de�ned by [10℄�1(e2�iz)��(0) = e�2�i��1(z)��(0); �2(e2�iz)��(0) = e2�i��2(z)��(0);��1(e�2�i�z)��(0) = e�2�i� ��1(�z)��(0); ��2(e�2�i�z)��(0) = e2�i� ��2(�z)��(0); (2.39)8



where �1 and �2 has to transform oppositely to give a symmetry of the Lagrangian. Herewe have split the symple
ti
 fermions into their 
hiral and anti-
hiral parts �a(z; �z) =�a(z) + ��a(�z). The anti-holomorphi
 part must transform in the same way under �z 7!e�2�i�z, but importantly � 
an di�er by an integer between the holomorphi
 and anti-holomorphi
 se
tor. The 
ondition (2.39) is ful�lled by ~�L� ~�R� and the other operatorsin (2.33). However, we have done the res
aling (2.22) so if we think of the twist operatoras (
0�)� we should 
hoose the following normalisation:�L� = pk�~�L� = pk� : e��0L : ; (2.40)and similarly for the anti-holomorphi
 part. Thus the vertex operator (2.33) maps intoV Fh�e;�n+1i 7! k� ek  �Le=k�Re=k 1pk�Le=k+1�Re=k1pk�Le=k�Re=k+1 1k�Le=k+1�Re=k+1! : (2.41)A notation with splitting into left and right part, like in the b0
0 system, turns out to beuseful. The twist values 
an be stepped up and down using the following OPEs:��1(z)�L�(0) � 1z��L��1(0); ��2(z)�L� (0) � �z1���L�+1(0); (2.42)and 
orrespondingly�� ��1(�z)�R� (0) � ��z1���R�+1(0); �� ��2(�z)��R� (0) � � 1�z��R��1(0): (2.43)We note here again that up to a sign the anti-holomorphi
 side is understood by seeing�R� as �L1��.To 
on
lude the total vertex operator Vh�e;�n+1i in the Y Z and symple
ti
 fermionsystem with a
tion (2.24) takes the formVh�e;�n+1i 7! k� ek  : e ekZ+nY : �Le=k�Re=k 1pk : e ekZ+(n�1)Y L+nY R : �Le=k+1�Re=k1pk : e ekZ+nY L+(n�1)Y R : �Le=k�Re=k+1 1k : e ekZ+(n�1)Y : �Le=k+1�Re=k+1 !(2.44)We note that equations (2.42) 
an be used to 
he
k that the 
olumns of this operator trans-form in the h�e;�n + 1i representation of GL(1j1) under the left-moving 
urrents (2.23).These operators are indeed 
lose to the operators found in [8℄. Let us now 
he
k theoperators in 
orrelation fun
tions.2.5 Bulk 
orrelation fun
tionsWe will now 
ompare the 
orrelation fun
tions of the primary �elds (2.27) obtainedin the GL(1j1) model to the 
al
ulations done for the symple
ti
 fermions in [10℄. Thesimilarity was already noted in [12℄. 9



Let us �rst note that from equations (2.31) and (2.32) the vertex operators (2.27) inthe Y; Z; �0 pi
ture (2.17) takes the formVh�e;�n+1i��� = : e ekZ+(n��)Y L+(n���)Y Re( ek+�)�0L+( ek+��)�0R : ; (2.45)where �; �� 2 f0; 1g labels respe
tively the 
olumns and the rows.We 
onsider the three-point fun
tionA = hVh�e1;�n1+1i��1�1(z1)Vh�e2;�n2+1i��2�2(z2)Vh�e3;�n3+1i��3�3(z3)i: (2.46)The 
orrelation fun
tion splits into a Y Z and a �0 part, A = ABAF. The Y Z part is easilyevaluated to beAB = Æ�Xi eik �Æ�Xi (ni � �i)�Æ�Xi (ni � ��i)��Yi<j(zi � zj) eik (nj��j)+ ejk (ni��i)(�zi � �zj) eik (nj���j)+ ejk (ni���i); (2.47)where the indi
es run from 1 to 3. The Æ-fun
tions follow dire
tly from the JE and JN
urrents. The �0 part is also easily evaluated. Here one has to remember that the overall�0 
harge has to sum to one due to the ba
kground 
harge of �0. This means that we 
anmaximally have two insertions of the intera
tion term of the a
tion (2.17). However, aswas 
ommented in [12℄, the part with two intera
tion terms vanish. The part with oneintera
tion term is 
al
ulated using the Dotsenko-Fateev like integral used in [12℄. We getAF = Æ�Xi �i � 1�Æ�Xi ��i � 1�Yi<j(zi � zj)( eik +�i)( ejk +�j)(�zi � �zj)( eik +��i)( ejk +��j)�1kÆ�Xi �i � 2�Æ�Xi ��i � 2�(�1)�3+��3 �(1� e1k � �1)�(1� e2k � �2)�(1� e3k � ��3)�( e3k + �3)�( e1k + ��1)�( e2k + ��2)�Yi<j(zi � zj)( eik +�i�1)( ejk +�j�1)(�zi � �zj)( eik +��i�1)( ejk +��j�1);(2.48)where the �rst part is for no intera
tion term and the se
ond part for one intera
tionterm. We have here used that Pi ei = 0 due to the delta-fun
tion from the Y Z part ofthe 
orrelation fun
tion in (2.47).If we 
ombine the two parts in (2.47) and (2.48) the symmetry between the holomor-
10



phi
 and anti-holomorphi
 se
tor is restored and we arrive atA = Æ�Xi eik �Æ�Xi (ni � �i)�Æ�Xi (ni � ��i)��Æ�Xi �i � 1�Æ�Xi ��i � 1�Yi<j jzi � zjj2 eik nj+2 ejk ni+2 eiejk2� 1kÆ�Xi �i � 2�Æ�Xi ��i � 2�(�1)�3+��3 �(1� e1k � �1)�(1� e2k � �2)�(1� e3k � ��3)�( e3k + �3)�( e1k + ��1)�( e2k + ��2)�Yi<j jzi � zjj2 eik (nj�1)+2 ejk (ni�1)+2 eiejk2 �; (2.49)as was derived in [12℄. This indeed supports the validity of our de
oupling of the GL(1j1)WZNW model into a set of free s
alars and the �0 system with a
tion (2.17). The resultmay not look lo
al, e.g. does not seem to be symmetri
 in inter
hanging operator 2 and3, due to the asymmetri
-looking � fun
tions. However, these 
an be rewritten in thefollowing symmetri
 form(�1)�3+��3 �(1� e1k � �1)�(1� e2k � �2)�(1� e3k � ��3)�( e3k + �3)�( e1k + ��1)�( e2k + ��2) =Yi �(1� eik )�( eik ) ��eik ���i���i :(2.50)As we see from the result (2.49) one has to be 
areful in the limit when ei is aninteger multiple of k. As was shown in [12℄ this gives logarithmi
 
orrelation fun
tions.For now let us not 
onsider these limits. Thus we get genuine twist operators whengoing to the symple
ti
 fermions and the twists are �i = ei=k + �i in the holomorphi
se
tor and ��i = ei + ��i in the anti-holomorphi
 se
tor when we 
ompare equation (2.45)with (2.41). As we see from the vertex operators in (2.41), the results that we expe
tfrom the symple
ti
 fermions to 
omply with 
orrelation fun
tion (2.48) areh�L�1(z1)�R��1(�z1)�L�2(z2)�R��2(�z2)�L�3(z3)�R��3(�z3)iSF =Yi<j(zi � zj)�i�j (�zi � �zj)��i��jfor Xi �i =Xi ��i = 1; (2.51)andh�L�1(z1)�R��1(�z1)�L�2(z2)�R��2(�z2)�L�3(z3)�R��3(�z3)iSF= �(�1)�3���3 �(��1)�(��2)�(���3)�(��1)�(��2)�(�3)Yi<j(zi � zj)��i ��j (�zi � �zj)���i ���j for Xi �i =Xi ��i = 2;(2.52)11



where �� = 1 � � and the subs
ript SF means that the expe
tation value is 
al
ulatedusing the symple
ti
 fermion part of the a
tion (2.24). Here �� are the twist operatorsde�ned in eq. (2.39). We have also used that in going to this expe
tation value underthe res
aling (2.22) we have to multiply the 
orrelation fun
tions with an overall fa
torof k. This is be
ause the 
orrelation fun
tion normalisation is relative to the 
orrelatorof ��1�2 or 
0+
0� in the b0
0 system in eq. (2.19). This simply means that the dependen
eon k disappears due to the normalisation in eq. (2.40) as is expe
ted.We want to 
ompare this to the 
al
ulation of bulk twist 
orrelators done by Kaus
hin [10℄. In that paper, of 
ourse, only twist �elds with identi
al twist in the holomorphi
and anti-holomorphi
 se
tor are treated so we take �i = ��i. Further, we have to rememberthat the twist �elds are only de�ned up to normalisation. To 
ompare with Kaus
h weuse one of the equations (2.51), (2.52) to �x the normalisation and 
an then 
ompare tothe se
ond one. The normalisation is �xed by de�ning�L��R� = �s�(��)�(�) ��: (2.53)Then we geth��1(z1; �z1)��2(z2; �z2)��3(z3; �z3)iSF =Yi s�(�i)�(��i )Yi<j jzi � zjj2�i�j for Xi �i = 1;=Yi s�(��i )�(�i)Yi<j jzi � zjj2��i ��j for Xi �i = 2;(2.54)whi
h is exa
tly as in [10℄. We 
an also 
ompare with the two-point fun
tion whi
h iseasily 
al
ulated and also get a mat
h here. Note, however, that in [10℄ only ground statetwist �elds with 0 < � < 1 are 
onsidered. Our results thus 
ompare pre
isely in thisrange, and are the analyti
 
ontinuation of the twists � for the results in [10℄.In the 
ase where we allow the ei to be zero or an integer multiple of k, we have totake into a

ount the zero modes of the symple
ti
 fermions. This gives four di�erentground states in the symple
ti
 model - two fermioni
 and two bosoni
, where the lasttwo span a Jordan blo
k for L0. The result is that we get logarithmi
 bran
h 
uts inthe 
orrelation fun
tions. This 
an be seen from the GL(1j1) side where the � fun
tionsdiverge when � be
omes integer [12℄. Thus we also get agreement from the two sides ofthe 
orresponden
e here.3 Branes in the symple
ti
 fermionsNow, having established the 
orresponden
e, we want to apply it. There are twoapparent appli
ations. For point-like branes in the GL(1j1) WZNW model, so far it12




ould be argued that 
orrelators 
ontaining only boundary �elds behave like untwistedsymple
ti
 fermions [15℄, but it was not possible to handle insertions of bulk �elds. Now,we are in a position to approa
h the problem of 
omputing 
orrelation fun
tions involvingbulk and boundary �elds. We will refrain from this problem for now, but keep it in mindfor future resear
h. Instead, we re
onsider the study of boundary states. Re
all that thegroup of outer automorphisms of GL(1j1) is Z2. The branes 
orresponding to the trivialgluing automorphism we 
all untwisted and their boundary states have been studied in[16℄. The non-trivial automorphism only admits one volume-�lling brane, whi
h we 
alltwisted. Its boundary state has been studied, with quite some e�ort, in [15℄. With theGL(1j1)-symple
ti
 fermion 
orresponden
e, we 
an easily reprodu
e these results, butalso 
ompute spe
tra of strings stret
hing between an untwisted and a twisted brane.This gives, �nally, a 
omplete dis
ussion of Cardy boundary states. It will turn outthat the boundary states indeed satisfy Cardy's 
ondition, i.e. the amplitude is a true
hara
ter.As we have seen, the GL(1j1) WZNWmodel 
an equally well be understood in a theoryof s
alars and symple
ti
 fermions. Sin
e boundary states with symple
ti
 fermions havenot been dis
ussed in 
ompleteness before, we start by a quite general analysis of these.For earlier works on boundary models of symple
ti
 fermions see [22, 23, 24, 25℄.3.1 Boundary 
onditionsWe start our 
onsiderations by investigating possible boundary 
onditions. The energymomentum tensors areT (z) = �12�ab : ��a��b : ; �T (�z) = �12�ab : ���a ���b : : (3.1)They preserve the symple
ti
 fermion symmetry and 
oin
ide along the boundary if�� = A ��� for z = �z ; (3.2)where A = � a b
 d � is a matrix in SL(2) and for 
onvenien
e we 
ombined the two fermionsin the ve
tor � = � �1�2 �. In terms of Diri
hlet and Neumann derivatives (� = 12�u � i12�nand �� = 12�u + i12�n) the boundary 
onditions are�i�n� = A� 1A+ 1 �u� (3.3)provided 1 + A is invertible. Then the a
tion on the upper half-plane isS = � 14� Z d2z ��t J ��� + i8� Zz=�z du �t J A� 1A+ 1 �u� ; (3.4)where the matrix J is J = � 0 �11 0 �. The variation of this a
tion vanishes provided theabove boundary 
onditions hold as well as the bulk equations of motion � ���� = 0. If1 + A is not invertible it has 
hara
teristi
 polynomial �2, i.e. if 1 + A = 0 there areDiri
hlet 
onditions in both dire
tions while otherwise there is one Diri
hlet and oneNeumann 
ondition. Note that these 
ases resemble the atypi
al branes in GL(1j1) [26℄.13



3.2 The Ramond se
torWe �rst 
onsider the Ramond se
tor, by whi
h we mean the symple
ti
 fermionswithout any twist �elds, or in the language of modes meaning only integer modes appear.The expli
it mode expansion is�a(z; �z) = �a + �a0 ln jzj2 �Xn 6=0 1n�anz�n + 1n ��an�z�n; (3.5)where the modes satisfyf�am; �bng = �m�ab Æm;�n ; f��am; ��bng = �m�ab Æm;�n and f�a; �b0g = �ab : (3.6)All other anti-
ommutators vanish. Note that for lo
ality we have required �a0 = ��a0.In this se
tion we 
onstru
t the boundary states in the Ramond se
tor, 
ompute theamplitudes and 
onstru
t the 
orresponding open string model. We start the dis
ussionof boundary states by investigating Diri
hlet 
onditions in the two fermioni
 dire
tions.3.2.1 Diri
hlet 
onditionsLet us �rst remind ourselves that if we have an extended 
hiral algebra given by W (z)and �W (�z) we need an gluing automorphism, 
, for the boundary [27℄:W (z) = 
( �W )(�z) for z = �z : (3.7)This is as in equation (3.2) for the gluing of the 
urrents. We now pass to 
losed stringsvia the world-sheet duality. The gluing 
onditions then be
ome the following Ishibashi
onditions for the boundary states j�ii
 in the CFT on the full plane:�Wn � (�1)hW
( �W�n)� j�ii
 ; (3.8)where hW is the 
onformal dimension of W .Using (3.8) we see that for the Diri
hlet boundary 
onditions (A = �1 in (3.2)) the
orresponding Ishibashi states have to satisfy��an � ��a�n� jDii = 0 for a = 1; 2 ; (3.9)note that there is no 
ondition on �a0 be
ause of the lo
ality 
onstraint �a0 � ��a0 = 0. TheIshibashi states are expli
itly 
onstru
ted asjD0ii = p2� exp�Pm>0 1m��2�m ��1�m � �1�m ��2�m��j0i ; (3.10)jD�ii = �� exp�Pm>0 1m��2�m ��1�m � �1�m ��2�m��j0i ; (3.11)jD2ii = ���+p2� exp�Pm>0 1m��2�m ��1�m � �1�m ��2�m��j0i ; (3.12)14



where the ground state j0i is de�ned by �anj0i = 0 for n � 0. The dual Ishibashi state isobtained by dualizing the modes using (here m > 0)�1�my = �1m and �2�my = ��2m : (3.13)For the 
omputation of amplitudes we need the Virasoro generators, they areLn = �12�abXm : �an�m�bm : (3.14)and the 
entral 
harge is 
 = �2. De�ne q = exp 2�i� and ~q = exp(�2�i=�) as usual,where � takes values in the upper half plane. Then the non-vanishing overlaps arehhD0jqL
0+ 112 (�1)F 
jD2ii = hhD2jqL
0+ 112 (�1)F 
jD0ii = �(�)2;hhD�jqL
0+ 112 (�1)F 
jD+ii = �hhD+jqL
0+ 112 (�1)F 
jD�ii = �(�)2;hhD2jqL
0+ 112 (�1)F 
jD2ii = �i��(�)2 = �(~�)2 ; (3.15)where L
0 = L0 + �L0. Thus only jD2i makes sense as a boundary state.3.2.2 Neumann 
onditionsNext we would like to display the boundary state jAi for our general boundary 
on-ditions (3.2). It has to satisfy the Ishibashi 
ondition (3.8)�1n + a ��1�n + b ��2�njAii = 0 ;�2n + 
 ��1�n + d ��2�njAii = 0 ; (3.16)whi
h are satis�ed byjAii = N exp��Xm>0 1m�a�2�m ��1�m + b�2�m ��2�m � 
�1�m ��1�m � d�1�m ��2�m��j0i : (3.17)The dual state ishhAj = N hh0j exp��Xm>0 1m��a�2m ��1m + b�2m ��2m � 
�1m ��1m + d�1m ��2m�� : (3.18)It will turn out that the normalization should be �xed to beN = p2� 2 sin�� ; (3.19)where we introdu
e � via � = exp 2�i� by �tr(A) = � + ��1.Now it is straightforward to 
ompute amplitudes between two boundary states. Anynon-zero amplitude requires the zero modes of �1 and �2 hen
e only the Diri
hlet boundarystate has non-vanishing overlap with any Neumann state:hhAj q 12L
0+ 112 (�1)F 
 jD2ii = Np2�q 112 Ym>0(1� �12qm)(1� ��112 qm) : (3.20)15



Upon modular transformation this amplitude is the spe
trum of an open string stret
hingbetween two branes with respe
tively Neumann boundary 
onditions given by A andDiri
hlet 
onditions. Using the formulas provided in the appendix equation (3.20) be
omesNp2� q 112 Ym>0(1� �qm)(1� ��1qm) = ~q 12 (�� 12 )2� 124 1Yn=0�1� ~qn+1����1� ~qn+�� : (3.21)Now, we 
onstru
t the boundary theory of a string stret
hing between these two branesand 
he
k that its spe
trum is indeed given by the amplitude we just 
omputed, wefollow [28℄. Therefore 
onsider the upper half plane, and demand boundary 
ondition Afor the negative real line, i.e.�� = A ��� for z = �z and z + �z < 0 ; (3.22)and Diri
hlet 
onditions for the positive real axis�u� = 0 for z = �z and z + �z > 0 : (3.23)Then the �elds have the following SL(2) monodromy (
ounter
lo
kwise)��(ze2�i) = �A��(z) ; (3.24)and similar for the bared quantities. Denote by S the matrix that diagonalizes the mon-odromy, i.e. S(�A)S�1 is diagonal. We denote the eigenvalues by ��1. Further, 
all theeigenve
tors ���, they then have the usual mode expansion [10℄��(z) = Xn2Z 1n� ���n��z�(n��) : (3.25)The original �elds are then expli
itly��1�2� = S�1��+��� : (3.26)Their partition fun
tion istr( qL0� 
24 (�1)F ) = q 12 (�� 12 )2� 124 1Yn=0�1� qn+1����1� qn+�� : (3.27)The 
omputation has been done similarly by Kaus
h [10℄. We see that the result �tswith (3.20) and the Cardy 
ondition is ful�lled. Thus, we ni
ely established our boundarystate and the open string theory it des
ribes.If we want to investigate amplitudes involving Neumann boundary states on bothends, we learnt [28℄ that it is ne
essary to insert additional zero modes in order to obtain16



a non-vanishing amplitude. Also introdu
e �12 via tr(A1A�12 ) = �12 + ��112 then we gethhA1j�2�1 q 12L
0+ 112 (�1)F 
 jA2ii = N1N2 q 112 Ym>0(1� �12qm)(1� ��112 qm)= N12 ~q 12 (�12� 12 )2� 124 1Yn=0�1� ~qn+1��12��1� ~qn+�12� ;(3.28)where N12 = 4� sin ��1 sin��2sin ��12 : (3.29)The open string theory is 
onstru
ted almost exa
tly as above and again resembles [28℄.We demand boundary 
ondition A1 for the negative real line and A2 for the positive one,�� = � A1 ��� if z = �z and z + �z < 0A2 ��� if z = �z and z + �z > 0 : (3.30)The �elds have the following SL(2) monodromy��(ze2�i) = A1A�12 ��(z) : (3.31)Let S diagonalize the monodromy, then its eigenvalues are ��112 and we 
all the eigenve
torsagain ���. They have the mode expansion��(z) = pN12 �� +Xn2Z 1n� �12��n��12z�(n��12) ; (3.32)note the extra zero mode, sin
e the monodromy does only 
on
ern derivatives. Its parti-tion fun
tion with appropriate insertion istr(�2�1qL0� 
24 (�1)F ) = N12 q 12 (�12� 12 )2� 124 1Yn=0�1� qn+1��12��1� qn+�12� ; (3.33)and 
oin
ides with (3.28) as desired.3.3 The Neveu-S
hwarz se
torIn this se
tion we study the boundary states in the Neveu-S
hwarz se
tor. The stateshave to satisfy the usual Ishibashi 
ondition�1n + a��1�n + b��2�njAiiNS = 0 ;�2n + 
��1�n + d��2�njAiiNS = 0 ; (3.34)where the modes are half-integer, i.e. n in Z+ 1=2. The 
onditions are satis�ed byjAii = exp�� Xm>0m2Z+1=2 1m�a�2�m ��1�m + b�2�m ��2�m � 
�1�m ��1�m � d�1�m ��2�m��j0i : (3.35)17



We introdu
e �12 as before, that is tr(A1A�12 ) = �12 + ��112 , and getNShhA1jqL
0+ 112 (�1)F
jA2iiNS = q� 124 Ym>0m2Z+1=2(1� �12qm)(1� ��112 qm)= ~q 12 (�� 12 )2� 124 Yn>0(1 + ~qn��)(1 + ~qn���) ; (3.36)where �12 = e2�i�. This is the spe
trum of an open string 
onstru
ted similarly as before,and in addition demanding antisymmetri
 boundary 
onditions in the time-dire
tion.3.4 The twisted se
torsGiven any twisted se
tor we 
an diagonalize it and thus we 
an restri
t to twists thatare diagonal. Call the ground state of the se
tor for �� on whi
h �a has twists�1 �! e�2�i��1 and �2 �! e2�i��2 : (3.37)Then the mode expansions of the �elds in these se
tors are��1(z) = �Xn2Z�1n+�z�(n+�)�1 and �� ��1(�z) = �Xn2Z ��1n���z�(n��)�1��2(z) = �Xn2Z�2n��z�(n��)�1 and �� ��2(�z) = �Xn2Z ��2n+��z�(n+�)�1 : (3.38)Whenever � 6= 1=2 the boundary 
onditions are parameterized by just one parameter �a

ording to the boundary 
onditions��1 = ����1 and ��2 = ��1 ���2 : (3.39)Only to these 
onditions there exist twisted Ishibashi states. The boundary state has tosatisfy the usual Ishibashi 
ondition�1n+� + ���1�n��j�ii� = 0 ;�2n�� + ��1 ��2�n+�j�ii� = 0 ; (3.40)and these are solved by (�� = 1� �)j�ii� = N exp��Xm>0 �m� ���2�m+�� ��1�m+�� � ��1m� ��1�m+� ��2�m+���� : (3.41)where we �x the normalization to be N = e�2�i(��1=2)(��1=4) and � = e2�i�. The dualboundary state is�hh�j = �N�y� exp�Xm>0 �m� ��2m�� ��1m�� � ��1m� ���1m��� ��2m���� : (3.42)18



Now we are prepared to 
ompute the amplitudes (note that the 
onformal dimension ofthe twist state is h� = ����=2 and we use the shorthand �1��12 = e2�i�)�h�1jqL
0+ 112 (�1)F
j�2i� = e�2�i(�� 12 )(�� 12 )q 12 (�� 12 )2� 124 Yn>0(1� �1��12 qn���)(1� �2��11 qn��)= ~q 12 (�� 12 )2��~� (12 � �)� (�� 12); ~��=�(~�)= ~q 12 (�� 12 )2� 124 Yn>0(1� u�1~qn��)(1� u~qn���) ; (3.43)where u = e2�i�. This is the 
hara
ter of a boundary theory twisted by �12 in an orbifold byan abelian subgroup G of SL(2), whi
h is generated by u, see [10℄ for a detailed dis
ussion.4 Branes in the GL(1j1) WZNW modelWe are �nally in a position to apply the symple
ti
 fermion GL(1j1) 
orresponden
eto boundary states in GL(1j1). GL(1j1) possesses two non-trivial gluing 
onditions. One
ondition, whi
h we 
all untwisted sin
e it is given by a trivial gluing automorphism,has a two-parameter family of branes 
orresponding to super 
onjuga
y 
lasses. Theyhave been dis
ussed in detail in [16℄. The other gluing 
ondition, whi
h we 
all twisted,
onsists of one volume �lling brane. Its boundary state has been dis
ussed in [15℄ as arather 
ompli
ated perturbative expansion from a free s
alar times a symple
ti
 fermionboundary state. In [15℄ it was shown that for a parti
ular amplitude this expansion didnot 
ontribute and 
omputations redu
ed to 
omputations in the de
oupled free s
alarfree fermion model. This was already a �rst hint of the 
orresponden
e now found.We 
an now 
ompute amplitudes between boundary states of di�erent gluing 
ondi-tions and 
onstru
t the 
orresponding open string theory expli
itly. There is anotherpuzzle we 
an unreveal and that is the role of atypi
al Ishibashi states and their log qdependent overlaps. While Ishibashi states 
orresponding to typi
al representations havetrue 
hara
ters as overlap, atypi
als might have a log q prefa
tor, as seen in (3.15) ande.g. [29℄. We will see that in the GL(1j1) story, this log q dependen
e arises by a limitingpro
edure from 
hara
ters of typi
al representations. The understanding of the atypi
alIshibashi states in our 
ontext is important for amplitudes involving two branes withdi�erent gluing 
onditions.4.1 Untwisted BranesLet us re
all the analysis performed in [16℄. Untwisted branes 
orrespond to the gluing
onditions J(z) = �J(�z) for z = �z : (4.1)19



Insertion of the expli
it formulas (2.23) for the 
urrents into above gluing 
onditions givesDiri
hlet 
onditions for the bosoni
 
urrents�uY = 0 ; �uZ = 0 ; for z = �z ; (4.2)While the fermioni
 ones generi
ally satisfy Neumann 
onditionseY L0 ��1 = �e�Y R0 ���1 and e�Y L0 ��2 = �eY R0 ���2 : (4.3)Thus one parameterizes the branes by their positions labeled by (y0; z0). But whenever1Y L0 + Y R0 = iy0 = 2�is; s 2 Z we obtain Diri
hlet boundary 
onditions in all dire
tions,bosoni
 and fermioni
 ones,�uY = �uZ = �a = 0 for z = �z : (4.4)These branes will be 
alled non-generi
 (untwisted) branes in the following.Let us shortly des
ribe the main results of the minisuperspa
e analysis performed in[16℄. The minisuperspa
e or parti
le limit des
ribes the behaviour of full �eld theoryquantities in the large level limit, k ! 1. In this limit the zero modes of the �eldsdominate and thus �elds are interpreted as fun
tions on the supergroup, and the a
tion ofthe 
urrents is mimi
ked by the right and left invariant ve
tor �elds RX and LX . We areinterested in semi
lassi
al analogua of Ishibashi states. Minisuperspa
e Ishibashi statesare those states invariant under the adjoint a
tion adX = RX + LX sin
e the gluingautomorphism is the identity. What is interesting for our further 
onsideration is thatthere exist two kinds of atypi
al Ishibashi states. One of them has vanishing overlap withitself and is thus asso
iated with (3.10) in our 
orresponden
e to symple
ti
 fermions,while the other one is obtained from the �rst kind by the a
tion of the fermioni
 fun
tionsasso
iated to the fermioni
 �elds 
�, and thus it should be identi�ed with (3.12). Further,in the minisuperspa
e limit boundary states be
ome distributions 
on
entrated on thesuper 
onjuga
y 
lass they 
orrespond to, and this distribution 
an be expressed in termsof minisuperspa
e Ishibashi states. It turns out that the �rst kind of Ishibashi state
ontributes to the generi
 boundary states while the se
ond kind to the non-generi
 one.For more details, we refer the reader to [16℄, but we will also illustrate the lift of thisminisuperspa
e story to the full �eld theory in the following subse
tions.4.1.1 Ishibashi statesWe now 
onstru
t the Ishibashi states using our symple
ti
 fermion 
orresponden
e.Re
all that the 
urrents take the form (2.23)JE = �k�Y; JN = ��Z; J� = pkeY L��1; J+ = �pke�Y L��2; (4.5)�JE = k ��Y; �JN = ��Z; �J� = �pke�Y R ���1; �J+ = pkeY R ���2: (4.6)1In this se
tion we allow for imaginary brane positions exa
tly as done in [16℄.20



Further, the fermions have mode expansion as in equation (3.5) and relations (3.6) (orthe twisted versions thereof) while the two s
alars have expansionY L(z) = Y L0 + pLY ln z �Xn 6=0 1n Y Ln z�n;Y R(z) = Y R0 + pRY ln �z �Xn 6=0 1n Y Rn �z�n;ZL(z) = ZL0 + pLZ ln z �Xn 6=0 1n ZLn z�n;ZR(z) = ZR0 + pRZ ln �z �Xn 6=0 1n ZRn �z�n; (4.7)
and relations[Y L;Rn ; ZL;Rm ℄ = �mÆn;�m and [ZL;R0 ; pL;RY ℄ = [Y L;R0 ; pL;RZ ℄ = �1 : (4.8)To ensure lo
ality we have pLY = pRY and also ZL0 = ZR0 for the 
onjugate modes. However,we will not demand pLZ = pRZ and 
orrespondingly not Y L0 = Y R0 sin
e Z has an additivetwist around our winding states (2.44).The energy momentum tensor isT (z) = �Y �Z � 12�ab��a��b and �T (�z) = ��Y ��Z � 12�ab ���a ���b ; (4.9)and thus the Virasoro modes areLn = � Xm2Z : �1n�m�2m : + Xm 6=0;n : Y Ln�mZLm : ++ Xm 6=0( : pLYZLm : + : pLZY Lm : ) + Æn;0 pLY pLZ ;�Ln = � Xm2Z : ��1n�m ��2m : + Xm 6=0;n : Y Rn�mZRm : ++ Xm 6=0( : pRYZRm : + : pRZY Rm : ) + Æn;0 pRY pRZ : (4.10)
We also need the zero modes of the 
urrents 
orresponding to the Cartan generators JEand JN : E0 = �kpLY ; �E0 = kpRY ; N0 = �pLZ ; �N0 = pRZ : (4.11)Let us now 
onsider the Ishibashi states. We start by spelling out the Ishibashi 
onditionsfor the untwisted 
ase. As noted above, the gluing 
ondition J = �J means that the bosoni
�elds simply satisfy Diri
hlet 
onditions�uY = �uZ = 0 : (4.12)21



Using these Diri
hlet 
onditions for the �eld Y = Y L + Y R the fermioni
 ones 
an bewritten as followseY L0 ��1 = �e�Y R0 ���1 and e�Y L0 ��2 = �eY R0 ���2 : (4.13)Then 
orrespondingly the Ishibashi 
onditions for the bosoni
 �elds are�Y Ln � Y R�n� j I ii = �ZLn � ZR�n� j I ii = 0 n 6= 0�pLZ � pRZ� j I ii = �pLY � pRY � j I ii = 0 ; (4.14)note that there is no 
onditions on the zero modes Y L0 and Y R0 . Further, the 
onditionsfor the fermioni
 ones are�eY L0 �1n � e�Y R0 ��1�n� j I ii = �e�Y L0 �2n � eY R0 ��2�n� j I ii = 0 : (4.15)The Ishibashi states 
learly fa
torize into a bosoni
 and a fermioni
 part and are easily
onstru
ted as follows. The typi
al primary of GL(1j1), he; niR, is the representation withground state jn; ��i where � = e=k satisfyingpLZ jn; ��i = pRZ jn; ��i = njn; ��i ;pLY jn; ��i = pRY jn; ��i = �jn; ��i : (4.16)Further, re
all that the fermions have the mode expansion in the presen
e of the groundstate �� (3.38) �1(z; �z) = Xn2Z+� 1n �1n z�n + Xn2Z+�� 1n ��1n �z�n ;�2(z; �z) = Xn2Z+�� 1n �2n z�n + Xn2Z+� 1n ��2n �z�n ; (4.17)where �� = 1� �. Then the bosoni
 Ishibashi state isjn; eiiB = exp�Xm>0 1m�Y L�mZR�m + ZL�mY R�m��jn; ��iB ; (4.18)and the fermioni
 one is 
omputed as (3.41)jn; eiiF = exp��Xm> 0 eY L0 +Y R0m� � �1�m+� ��2�m+�� e�Y L0 �Y R0m� �� �2�m+�� ��1�m+���jn; ��iF : (4.19)and the Ishibashi state is then the produ
t of the two. The following simple 
omputationsare 
ru
ial qL0e�Y L0 = e�Y L0 qL0�E0k ; ZN0e�Y L0 = e�Y L0 ZN0�1 ;q �L0e�Y R0 = e�Y R0 q �L0� �E0k ; Z �N0e�Y R0 = e�Y R0 Z �N0�1 ; (4.20)22



Introdu
e L
0 = 12(L0 + �L0) and N 
0 = 12(N0 � �N0) as usual. Then we get the fermioni

ontribution of the overlap, that isF hhn; ejqL
0+ 112 zN
0 (�1)F 
jn; eiiF = zn(1�z�1)q 12 (�� 12 )2� 124 Yn>0(1�z�1qn)(1�zqn) ; (4.21)and the bosoni
 Bhhn; ejqL
0� 112 zN
0 (�1)F 
jn; eiiB = � qn��(�)2 ; (4.22)where we normalized the dual state su
h that we get the minus sign. Then in total, wearrive athhn; ejqL
0zN
0 (�1)F 
jn; eii = zn�1(1� z)qn�+ 12 (�� 12 )2� 124�(�)2 Yn>0(1� z�1qn)(1� zqn)= �̂<e;n>(z; �) : (4.23)So far we assumed 0 < � < 1, whenever � be
omes zero our Diri
hlet symple
ti
 fermionboundary states 
ome into the game. There are four of them. Denote by jn; 0i the groundstate with N0 eigenvalue n, i.e.N0jn; 0i = njn; 0i; E0jn; 0i = 0 ;Ymjn; 0i = Zmjn; 0i = �amjn; 0i = �a0jn; 0i = 0; for m > 0: (4.24)Then the Ishibashi states arejn0ii = exp�Xm>0 1m�Y L�mZR�m + ZL�mY R�m � eY L0 +Y R0 �1�m ��2�m + e�Y L0 �Y R0 �2�m ��1�m��jn; 0i ;jn�ii = ��jn0ii ;jnii = ���+jn0ii ; (4.25)and we arrive at the following amplitudeshhn0jqL
0zN
0 (�1)F 
jnii = �0(�; �);hhnjqL
0zN
0 (�1)F 
jn0ii = ��0(�; �);hhn�jqL
0zN
0 (�1)F 
jn�ii = ��0(�; �);hhnjqL
0zN
0 (�1)F 
jnii = �2�i��0(�; �); (4.26)where �0(�; �) = zn�1q 112 Yn>0(1� z�1qn)(1� zqn)=�(�)2: (4.27)All other amplitudes vanish unless zero modes are inserted.23



Let us now 
onsider twist states �~� where ~� 62 ℄0; 1[ . We already saw in the se
ondse
tion that su
h states are simply des
endants of �� where ~� = � +m for some integerm and � 2 ℄0; 1[. The state jn; �~�i satis�es the following 
onditionsN0jn; �~�i = njn; �~�i and E0jn; �~�i = k(�+m)jn; �~�i : (4.28)The Ishibashi state je; nii (with e=k = ~� = �+m) in this representation is obtained fromthe previously 
onstru
ted ones asje; nii = em(ZL0 �ZR0 )em(Y L0 +Y R0 )je�mk; nii : (4.29)The amplitude is 
omputed usingqL
0em(ZL0 �ZR0 ) = em(ZL0 �ZR0 )qL
0�mN
0 ; (4.30)and the spe
tral 
ow formulas provided in appendix Bhhn; ejqL
0zN
0 (�1)F 
jn; eii = �̂<e�mk;n+m>(z �m�; �) = (�1)m�̂<e;n>(z; �) : (4.31)A similar 
onstru
tion holds also for the atypi
al part.4.2 The untwisted boundary statesUntwisted boundary states were studied in detail in [16℄, here we re
all the statesand their properties. Atypi
al Ishibashi states 
ontribute to amplitudes only by a set ofmeasure zero, therefore their role has not been fully investigated previously. Here we will�ll this gap. As we will see in a moment boundary states are represented by an integralof Ishibashi states, hen
e any amplitude is given by an integral of GL(1j1) 
hara
ters. We�x the role of the Ishibashi states by requiring that any integrand of any amplitude is asmooth fun
tion. Let us be more pre
ise.The minisuperspa
e analysis [16℄ already suggests that the Ishibashi states jn0ii 
on-tribute to generi
 branes, while the states jnii 
ontribute to non-generi
 branes. We willsee that this is 
orre
t. The boundary state 
orresponding to a generi
 brane lo
alized at(z0; y0) with y0 6= 2�s isjz0; y0i = r2ik Ze 6=mkm2Zdedn exp�i(n� 1=2)y0 + iez0� sin1=2(�e=k) je; nii �p2�ik Xm2ZZ dn exp�i(n� 1=2)y0 + imkz0� jn0ii(m); (4.32)where the supers
ript m denotes the 
m spe
tral 
owed state. In order to 
he
k the
onsisten
y of our proposal for the boundary states with world-sheet duality, we 
omputethe spe
trum between a pair of generi
 branes,hz0; y0j(�1)F 
 ~qL
0~zN
0 jz00; y00i = 2ik Z de0dn0ei(n0� 12 )(y00�y0)+ie0(z00�z0) sin(�e0=k)�̂he0;n0i(~�; ~� )= �̂he;ni(�; �) � �̂he;n+1i(�; �) ; (4.33)24



where the momenta e; n are related to the 
oordinates of the branes a

ording toe = k(y00 � y0)2� ; n = k(z00 � z0)2� � y00 � y02� :Let us now turn to the boundary states of non-generi
 untwisted branes in the GL(1j1)WZNW model. The boundary states of elementary branes asso
iated with non-generi
position parameters z0 and y0 = 2�s; s 2 Z; are given byjz0; si = 1p2ki Ze 6=mk dedn exp�2�i(n� 1=2)s+ iez0� sin�1=2(�e=k) je; nii� 1p2�i Xm2ZZ dn exp�2�i(n� 1=2)s+ imkz0� jnii(m) : (4.34)We also here verify that the proposed boundary states produ
e a 
onsistent open stringspe
trum by 
al
ulating the overlap between two non-generi
 boundary states jz0; si andjz00; s0i,hz0; sj(�1)F 
~qL
0 ~zN
0 jz00; s0i = Z de0dn02ki e2�i(n0�1=2)(s0�s)+ie0(z00�z0)sin(�e0=k) �̂he0;n0i(~�; ~�)= �̂(m)hni (�; �) ; (4.35)where the labels n and m in the 
hara
ter are related to the branes' parameters throughn = k(z00 � z0)2� + s� s0 ; m = s0 � s : (4.36)The supers
ript on the 
hara
ter �̂(m)hni (�; �) again means we have used the spe
tral 
ow 
msee ref. [16℄ and appendix B. The following limit for t any integer shows that in equation(4.35) is indeed a hidden � -dependen
elime!mk 12ki Z dn e2�itnsin(�e=k) �̂he;ni(~�; ~�) = Z dn � e2�itn�̂(m)hni (~�; ~�) : (4.37)Thus we observe that the Ishibashi state jnii (4.26) with its � -dependen
e is the naturalatypi
al Ishibashi state 
ontributing to the atypi
al boundary state.Further, the overlap between a generi
 and a non-generi
 state ishz0; y0j(�1)F 
~qL
0~zN
0 jz00; si = Z de0dn0k ei(n0�1=2)(2�s�y0)+ie0(z00�z0) �̂he0;n0i(~�; ~�)= �̂he;ni(�; �) ; (4.38)where n = k(z00 � z0)2� + y02� � s+ 12 ; ek = s� y02� : (4.39)25



4.3 Twisted boundary stateThe group of outer automorphisms of the Lie superalgebra gl(1j1) is of order 2. Wealready dis
ussed the boundary states belonging to the trivial one. The non-trivial onede�nes the following gluing 
onditions on the 
urrentsJE = � �JE ; JN = � �JN ; J+ = � �J� ; J� = �J+ for z = �z : (4.40)This translates into Neumann 
onditions for the bosoni
 and the fermioni
 �elds, that is�nY = �nZ = 0 for z = �z (4.41)implying espe
ially that the left movers of Y 
oin
ide with its right movers up to the zeromodes Y L � Y R = Y L0 � Y R0 for z = �z : (4.42)Thus the gluing 
onditions for the fermions areeY L0 ��1 = eY R0 ���2 ; e�Y L0 ��2 = �e�Y R0 ���1 for z = �z : (4.43)The boundary state j
ii is easily 
onstru
ted as before. It has to satisfy(Y Ln + Y R�n) j
ii = (pLY + pRY ) j
ii = 0 ;(ZLn + ZR�n) j
ii = (pLZ + pRZ) j
ii = 0 ;(eY L0 �1n + eY R0 ��2�n) j
ii = 0 ;(e�Y L0 �2n � e�Y R0 ��1�n) j
ii = 0 ; (4.44)whi
h 
an be 
omputed to bej
 ii = p�=i exp� 1Xn=1 1n�Y L�nZR�n+ZL�nY R�n� eY R0 �Y L0 �2�n ��2�n+ eY L0 �Y R0 �1�n ��1�n��j0; 0 i :(4.45)Here, j0; 0 i denotes the va
uum de�ned by �anj0; 0 i = 0 for n � 0 and ZL;Rn j0; 0 i =Y L;Rn j0; 0 i = pL;RY j0; 0 i = pL;RZ j0; 0 i = 0 for n > 0. The dual boundary state is 
onstru
tedanalogously.Our main aim now is to 
ompute some non-vanishing overlap of the twisted boundarystate j
ii. This requires the insertion of the invariant bulk �eld �1�2, i.e.hh
 j ~qL
0(�1)F 
 ~zN
0 �1�2 j
ii = �2k Z dedn �̂he;ni(�; �)sin(�e=k) : (4.46)where L
0 = (L0 + �L0)=2 and N 
0 = (N0 + �N0)=2 are obtained from the zero modes ofthe Virasoro �eld and the 
urrent N . Here the normalization in (4.45) by p�=i wasimportant.2 This amplitude has been tested in detail in [15℄.2Note the di�eren
e of a p2 
ompared to [15℄ whi
h is due to a misprint there.26



4.4 Mixed amplitudes and their open stringsUsing the GL(1j1)-symple
ti
 fermion 
orresponden
e we were able to 
onstru
t bound-ary states expli
itly, and the amplitudes �ts with the previously known results 
al
ulatedin GL(1j1). The new expli
it formulation also allows us to 
ompute new quantities su
has overlaps for atypi
alshh
 j ~qL
0(�1)F 
 ~zN
0 j z0; sii = r12(�1)s 1Yn=0 (1� ~qn)(1 + ~qn)= (�1)s q 132 1Yn=0 (1� qn+ 14 )(1� qn+ 34 )(1� qn+ 12 )2 : (4.47)Note the independen
e on z, no matter whether we take N 
0 as in the previous se
tion oras in the untwisted 
ase, whi
h is natural sin
e there does not exist a distinguished 
hoi
efor N 
0 for mixed amplitudes.The 
orresponding open string theory is easily 
onstru
ted using our previous experi-en
e. That is, we demand untwisted gluing 
onditions on the negative real line�uY = �uZ = 0 ;eY L0 ��1 = �e�Y R0 ���1 ;e�Y L0 ��2 = �eY R0 ���2 for z = �z and z + �z < 0 ; (4.48)and twisted on the positive one�nY = �nZ = 0 ;eY L0 ��1 = eY R0 ���2 ;e�Y L0 ��2 = �e�Y R0 ���1 for z = �z and z + �z > 0 ; (4.49)Then the fermions have a monodromy of order four around the origin��1(ze2�i) = i ��1(z) ; ��2(ze2�i) = �i ��2(z) ; (4.50)and the bosons a monodromy of order two�Y (ze2�i) = ��Y ; �Z(ze2�i) = ��Z(z) : (4.51)Thus the fermions have mode expansion�1(z) = Xn2Z+ 34 1n�1nz�n ;�2(z) = Xn2Z+ 14 1n�2nz�n ; (4.52)
27



and the bosons Y (z) = Xn2Z+ 12 1n Yn z�n ;Z(z) = Xn2Z+ 12 1n Zn z�n ; (4.53)We de�ne the ground state to be bosoni
 if s (the position parameter of the non-generi
brane) is even and fermioni
 if it is odd. The partition fun
tion is thentr(qL0(�1)F ) = (�1)s q 132 1Yn=0 (1� qn+ 14 )(1� qn+ 34 )(1� qn+ 12 )2 : (4.54)The amplitude involving typi
al �elds requires as usual zero mode insertions, i.e.hh
 j ~qL
0(�1)F 
 ~zN
0 �1�2 j z0; y0ii = p2�k e�iy0=2 1Qn=0(1� ~qn)1Qn=0(1 + ~qn)= 2�k e�iy0=2 q 132 1Yn=0 (1� qn+ 14 )(1� qn+ 34 )(1� qn+ 12 )2 ; (4.55)
and its open string spe
trum 
an be 
onstru
ted as in the symple
ti
 fermion 
ase.In summary, we have been able to give a 
omplete dis
ussion of Cardy boundary statesin the GL(1j1) WZNWmodel. This was only possible due to the new formulation in termsof symple
ti
 fermions. As a result, we saw that indeed also for the Lie supergroup GL(1j1)Cardy's 
ondition holds, i.e. any amplitude of two boundary states indeed des
ribes anopen string spe
trum.5 OutlookIn this note, we have established a 
orresponden
e between the Wess-Zumino-Novikov-Witten model on the Lie supergroup GL(1j1) and free s
alars plus symple
ti
 fermions.This 
orresponden
e introdu
es a new eÆ
ient way to study the WZNWmodel. A naturalquestion is whether there exist generalizations of the pro
edure. GL(1j1) is spe
ial in thesense that it is level-independent, i.e. res
aling the 
urrent JE by �2, the fermioni

urrents J� by � and leaving JN invariant simply 
hanges the level k by a fa
tor of �2.Be
ause of this pe
uliarity we do not expe
t our pro
edure to extend in full generality, butstill we believe that for other supergroups at spe
ial levels su
h a pres
ription also applies.A �rst attempt would be to look for free �eld des
riptions. This one 
an do immediatelyby taking the free Gross-Neveu model of a dimension one half ve
tor transforming in theadjoint representation of the desired supergroup similar to what was done by LeClair forGL(1j1) [8℄. 28



For standard groups the pro
edure 
ould also be useful. In the 
ase of the H+3 modelone 
an use the pro
edure to arrive at a model of two free s
alars and the Liouville a
tion.However, the vertex operators will take a very 
ompli
ated form.A main motivation to study the 
orresponden
e was to serve as a toy model for moresophisti
ated dualities. The guideline in our approa
h was to rewrite the GL(1j1) 
urrentsin su
h a form that they are very symmetri
 as the 
urrents of a Gross-Neveu model are.We hope that this guiding prin
iple 
an serve as an important step in understanding thedualities between the OSp(2N+2j2N) Gross-Neveu model and the prin
ipal 
hiral modelof the supersphere S2N+1j2N [3℄.Finally, we used the 
orresponden
e to 
onstru
t the boundary states of GL(1j1) andverify Cardy's 
ondition, 
ompleting the series of investigations [16, 15℄. Espe
ially, wegot a pi
ture of atypi
al Ishibashi states and their 
ontributions. As in other logarithmi

onformal �eld theories there exists more than just one Ishibashi state 
orresponding toea
h atypi
al representation. Their overlaps might give � -dependent 
ontributions, butthese Ishibashi states only 
ontributed to atypi
al boundary states. Based on the insightsof this note and former work, we should be able to investigate boundary states of otherLie supergroups su
h as SU(1j2).We remark, however, that there is still one open problem for branes in GL(1j1). Thereexist branes whose geometry is not a super
onjuga
y 
lass and whi
h are rather spe
ialsin
e their spe
tra are representations that are inde
omposable but redu
ible. Furtherthey are pe
uliar sin
e their dual states are proje
ted out [26℄. These obje
ts are not un-derstood and it would be interesting to study these in the light of the GL(1j1)-symple
ti
fermion 
orresponden
e.A
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A Some formulas 
on
erning theta fun
tionsLet us re
all some fa
ts about the theta fun
tion in one variable, a good referen
e isMumford's �rst book [30℄. �(�; �) is the unique holomorphi
 fun
tion on C �H , su
h that�(�+ 1; �) = �(�; �);�(�+ �; �) = e��i�e�2�i��(�; �);�(�+ 12 ; � + 1) = �(�; �);�(�=�;�1=�) = p�i�e�i�2=��(�; �) ;limIm(�)!1 �(�; �) = 1 : (A.1)
The theta fun
tions has a simple expansion as an in�nite produ
t,�(�; �) = 1Ym=0�1� qm� 1Yn=0�1 + u�1qn+1=2��1 + uqn+1=2� ; (A.2)where q = e2�i� and u = e2�i�. The following variant is of 
on
ern to us���� 12(� + 1); ��=�(�) = (1� u)q�124 1Yn=1�1� uqn��1� u�1qn� : (A.3)Its behavior under modular S transformations whi
h send the arguments of the thetafun
tion to ~� = �1=� and ~� = �=� 
an be dedu
ed from the properties above. Onesimply �nds���� 12(� + 1); ��=�(�) = �ie�i�q� 18 ��~� (12 � �)� 12 ; ~��=�(~�)~q 12 (�� 12 )2= ie�i�q� 18 ~q 12 (�� 12 )2� 124 1Ym=0�1� ~qn+1����1� ~qn+�� : (A.4)
B Representation theory of GL(1j1)We re
all some fa
ts of the representation theory of bgl(1j1). A more detailed dis
ussionis given in the Appendix of [16℄.A useful tool for the investigation of the aÆne Lie superalgebra bgl(1j1) and its rep-resentations are automorphisms that do not leave the horizontal subalgebra invariant,the spe
tral 
ow automorphisms. The relevant one for our purposes [16℄, 
m, leaves themodes Nn invariant and a
ts on the remaining ones as
m(En) = En + kmÆn0 ; 
m(	�n ) = 	�n�m : (B.1)30



These transformations indu
e a modi�
ation of the energy momentum tensor
m(Ln) = Ln +mNn : (B.2)The 
hara
ters of two representations � and 
m(�) that are related by spe
tral 
ow satisfy�
m(�)(�; �) = ��(�+m�; �) : (B.3)Finally, we state the relevant 
hara
ters, the typi
al one is�̂he;ni(�; �) = �̂he;ni(�; �) = un�1q e2k (2n�1+e=k)+1=8���� 12(� + 1); ��Æ�(�)3 (B.4)and the atypi
al one is following [31℄�̂(m)hni (�; �) = 1Xl=0 �̂hmk;n+l+1i(�; �)= un1� uqm qm2 (2n+m+1)+1=8���� 12(� + 1); ���(�)3 : (B.5)
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