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AbstratIn this note we prove a orrespondene between the Wess-Zumino-Novikov-Witten model of the Lie supergroup GL(1j1) and a free model onsisting of twosalars and a pair of sympleti fermions. This model was disussed earlier byLeClair. Vertex operators for the sympleti fermions inlude twist �elds, andorrelation funtions of GL(1j1) agree with the known results for the salars andsympleti fermions. We perform a detailed study of boundary states for symple-ti fermions and apply them to branes in GL(1j1). This allows us to ompute newamplitudes of strings strething between branes of di�erent types and on�rmingCardy's ondition.
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1 IntrodutionConformal �eld theories with supersymmetri target spae has beome an importantarea of urrent researh. They are essential in a variety of signi�ant problems both instring theory and in disordered systems.Understanding sigma models on supersymmetri spaes deep in the strongly oupledregime is of primary importane. In many models one believes that there exists a dualdesription whih is better aessible in suh a regime. The most prominent example isertainly the elebrated AdS/CFT orrespondene [1, 2℄, but there are, of ourse, otherinteresting dualities involving sigma models on supersymmetri spaes. For example,reently a strong-weak duality between the OSp(2N+2j2N) Gross-Neveu model and theprinipal hiral model on the supersphere S2N j2N+1 was onjetured [3, 4℄.There are various ways to �nd and to test suh orrespondenes. Many supersym-metri spaes possess a family of onformally invariant �eld theories, and points in themoduli spae that are exatly solvable e.g. the Wess-Zumino-Novikov-Witten point onsupergroup manifolds or the in�nite radius limit of the prinipal hiral model on the su-persphere. In these ases, one way to test a duality is to ompute ertain quantities,e.g. some boundary spetra, at this solvable point and perform the perturbation to otherpoints in the moduli spae exatly [5℄. This method has suessfully been applied tothe supersphere/Gross-Neveu orrespondene [6℄. The question remains how to atuallyprove suh a orrespondene. The ase N = 0 in the Gross-Neveu-supersphere duality isthe well-known orrespondene between the O(2) Gross-Neveu model, that is the mass-less Thirring model, and a free boson on the irle, i.e. bosonization [7℄. Unfortunately,the proof does not generalize straightforwardly, but still we believe that bosonizationtehniques will turn out to be ruial in understanding the orrespondene.If there is a simpler model at hand, it is a good idea to study it in detail to gaininsight and to establish tehniques for the more ompliated models. This leads us tothe GL(1j1)-sympleti fermion orrespondene. The GL(1j1) WZNW model is probablythe best understood CFT with supersymmetri target spae that is not free. Thereexists another CFT with GL(1j1) urrent symmetry [8℄, whih was used to study the spinquantum Hall transition. This CFT is onstruted from the OSp(2j2) Gross-Neveu modelat the free point via bosonization and it automatially has GL(1j1) symmetry sine theOSp(2j2) Gross-Neveu model is onstruted from a spin one half vetor transforming inthe adjoint representation of GL(1j1). This model onsists of two free salars and a set ofsympleti fermions. The sympleti fermions were �rst analyzed in detail in [9, 10℄. The�rst part of this note is devoted to showing the orrespondene between these models.The tehnique we use is based on bosonization, but in addition we use the aÆne urrentsas a guideline whih we hope is also useful for other Gross-Neveu-like models.The orrespondene, we �nd, is remarkable in its own right sine the GL(1j1) WZNWmodel is an interating theory, while the orresponding model is free, and the bosonsare ompletely deoupled from the fermions. The non-triviality is hidden in the vertexoperators, i.e. the GL(1j1) vertex operators in the free desription ontain twist �eldsof the fermions and it turns out that the omputation of bulk orrelation funtions in1



both desriptions is of a similar omplexity. Still our method provides a new approahto WZNW models on Lie supergroups. So far, the models have been investigated eitheralgebraially [11℄ or in terms of fermioni ghost systems [12, 13, 14, 15℄. Hopefully,there exist generalizations of our approah to other Lie supergroups leading to a betterunderstanding of them.In the seond part of this note, we apply the orrespondene to branes in GL(1j1).For the understanding of Cardy boundary states, the free desription is better adaptedthan the original one. GL(1j1) possesses two lasses of branes. One of them, the so-alleduntwisted branes whih geometrially desribe superonjugay lasses in the supergroupmanifold, have been studied in detail in [16℄. It was found that amplitudes of boundarystates satisfy Cardy onditions [17℄ and that they agree with fusion, as expeted fromexperiene with rational CFT [18℄ and also logarithmi CFT [19℄. The seond lass ofbranes ontains just one volume-�lling brane. This brane has been investigated in [15℄,i.e. its orrelation funtions have been omputed, but also the boundary state has beenonstruted and tested. For a omplete desription of boundary states one still needs tounderstand amplitudes of strings strething between a twisted and an untwisted brane.In our new desription this an be done straightforwardly. The �nal result is that Cardyonditions are still satis�ed, and essentially all known results of branes on Lie groupsarry over to the Lie supergroup GL(1j1).The struture of this note is as follows. In setion 2 we verify the orrespondene indetail. We explain how the urrents are used as a guideline to prove the orrespondene,and we hek the orrespondene by omparing orrelation funtions. Setion 3 gives adetailed disussion of boundary states in the sympleti fermions, inluding twist �elds.In setion 4 we apply the results of the two previous setions to omplete the disussionof GL(1j1) boundary states.2 The GL(1j1)-sympleti fermion orrespondeneIn this setion we will set up the notation and show the relation between the GL(1j1)WZNW model and the free salars and sympleti fermions. Finally, we will omment onthe bulk orrelation funtions.2.1 The GL(1j1) WZNW modelOur starting point for the relation between the GL(1j1) WZNW model and the freetheory will be the �rst order ation for GL(1j1) found in [12℄. To set up the notationused in this paper we reall a few fats about the gl(1j1) superalgebra. It is generatedby two bosoni elements E;N and two fermioni  � whih have the following non-zero(anti)ommutator relations [N; �℄ = � �; f �;  +g = E: (2.1)2



Further, we have a family of supersymmetri bilinear forms, but below we will alwayswork with str(NE) = str( + �) = �1: (2.2)For the GL(1j1) supergroup we hoose a Gauss-like deomposition of the formg = e� � eXE+Y N e�+ +:The WZNW model thus has two bosoni �elds X(z; �z); Y (z; �z) and two fermioni �elds�(z; �z), and the ation takes the formSWZNW[g(X; Y; �)℄ = k4� Z� d2zhg�1�g; g�1 ��gi+ k24� ZBhg�1dg; [g�1dg; g�1dg℄i= k4� Z� d2z ���X ��Y � �Y ��X + 2eY �+ ���� ; (2.3)where k is the level. Variation of the ation leads to the usual bulk equations of motion[16℄.The holomorphi urrent of the GL(1j1) WZNW model is in our notation given byk�gg�1. The omponents orresponding to the generators areJE = �k�Y; JN = �k�X + k��+ eY ;J� = keY �+; J+ = �k�� � k��Y ; (2.4)Similarly, for the anti-holomorphi urrent �kg�1 ��g the omponents are�JE = k ��Y; �JN = k ��X � k ��� + eY ;�J+ = keY ���; �J� = �k ��+ � k+ ��Y : (2.5)Let us also mention that the modes of this aÆne algebra satisfy[JEn ; JNm ℄ = �kmÆn+m; [JNn ; J�m℄ = �J�n+m; fJ�n ; J+mg = JEn+m + kmÆn+m; (2.6)where we note that the modes an be resaled suh that the algebra is independent of thelevel k. Equation (2.6) orresponds to the OPEJA(z)JB(w) � �k str(AB)(z � w)2 + [A;Bgz � w : (2.7)2.2 First order formulationFollowing [12℄ we will now pass to a �rst order formalism by introduing two additionalfermioni auxiliary �elds b� of weight �(b�) = 1. Naively, the ation would be14� Z� d2z ��k�X ��Y � k�Y ��X + 2b+�+ + 2b� ��� + 2ke�Y b�b+� : (2.8)3



This redues to (2.3) if we integrate out b� using their equations of motionb� = k�+ exp Y; b+ = �k ��� expY: (2.9)However, we get a quantum orretion in going from the GL(1j1) invariant measure usedfor the ation in (2.3) to the free-�eld measure DXDYD�D+Db�Db+ that we want touse for our �rst order formalism. In analogy with [20℄ the orretion isln det �j�j�2e�Y �eY ��� = 14� Z d2z ��Y ��Y + 14pGRY � : (2.10)Here G is the determinant of the world-sheet metri and R its Gaussian urvature. j�j2is the metri and we have the relation pGR = 4� �� log j�j2. We thus get a orretionto the kineti term and a bakground harge for Y . The �rst order ation inluding theorretion isS(X; Y; b�; �) = 14� Z� d2z� � k�X ��Y � k�Y ��X + �Y ��Y + 14pGRY+ 2+�b+ + 2� ��b� + 2ke�Y b�b+�: (2.11)We also get a quantum orretion to the urrent. This will happen where we have tohoose a normal ordering of the terms in the urrent (2.4). We �x this by demanding thatthe urrents obey the OPEs (2.7). Indeed, we have to add �Y to JN to ensure that it hasa regular OPE with itself. Thus the holomorphi urrents in the free �eld formalism areJE = �k�Y; JN = �k�X + �b� + �Y ;J� = b�; J+ = �k�� � k��Y ;where we here and in the following suppress the normal ordering. We get similar expres-sions for the anti-holomorphi urrents.2.3 The orrespondeneIf we integrate out b� in (2.11) we would simply obtain the GL(1j1) WZNW model.We will now show that if we instead bosonize the b system to obtain a system of threesalars, it is possible to perform a �eld rede�nition suh that one of the salars deouples.We an then return to a new b00 formalism and integrate out b0� to arrive at a deoupledtheory of two salars and a set of sympleti fermions.In this proess the urrent beomes more symmetri and simple. It an be seen as aguideline for whih transformations to perform and we will therefore expliitly follow thetransformation of the urrent in eah step.We will start by only disussing the transformation of the ation and the urrent. Themap of the vertex operators will be determined in the next subsetion.4



To begin we bosonize the b system in (2.11) in the standard way [21℄� = e�R;L ; b� = e��R;L ;+�b+ + � ��b� = �12�����+ 18pGR�;b�� = ���L; (2.12)where we denote left and right omponents of salars by supersripts L;R. In the urrentswe likewise have to introdue left and right indies and the holomorphi urrents thenbeome JE = �k�Y L; JN = �k�XL + ��L + �Y L ;J� = e��L ; J+ = �k�(�L + Y L)e�L ; (2.13)and the ation isS(X; Y; b�; �) = 14� Z� d2z��k�X ��Y � k�Y ��X + �Y ��Y+� �����+ 14pGR(Y + �) + 2ke�Y��� : (2.14)We observe, both from the urrent and the ation, that it is very natural to go tovariables Y; Z; �0 where�0 = Y + �; Z = kX � �� Y = kX � �0: (2.15)The urrents and the ation in these variables areJE = �k�Y L; JN = ��ZL;J� = eY L��0L ; J+ = �k��0Le�0L�Y L ; (2.16)S(X; Y; b�; �) = 14� Z� d2z���Z ��Y � �Y ��Z � ��0 ���0 + 14pGR�0 + 2ke��0� : (2.17)Hene we got a theory of two salars deoupled from a Coulomb gas with sreening harge.For alulation of orrelation funtions this is a very eÆient formulation of the theory.We will, however, go one step further and rewrite the sreened Coulomb gas in terms ofsympleti fermions.We thus return to a b00 system using again (2.12), but now for the �eld �0. This givesus the following simple expressionsJE = �k�Y L; JN = ��ZL;J� = eY Lb0�; J+ = �ke�Y L�0� ; (2.18)5



S(X; Y; b0�; 0�) = 14� Z� d2z���Z ��Y � �Y ��Z + 20+�b0+ + 20� ��b0� + 2kb0�b0+� : (2.19)We an now integrate out the �elds b0� getting the equations of motionb0+ = �k ��0�; b0� = k�0+ ; (2.20)and arrive at S(X; Y; �) = 14� Z� d2z ���Z ��Y � �Y ��Z + 2k�0+ ��0�� : (2.21)Of ourse, we have to be areful when the vertex operators depend on b0. As we will seebelow, the vertex operators for typial representations will be twist operators whih weinterpret as not ontaining b.To remove the dependene on the level k in the ation we introdue �a bypk0+ = �1; pk0� = �2; (2.22)and the urrents and ation are thenJE = �k�Y L; JN = ��ZL;J� = pkeY L��1; J+ = �pke�Y L��2; (2.23)S(X; Y; �a) = 14� Z� d2z ���Z ��Y � �Y ��Z + �ab��a ���b� : (2.24)where the anti-symmetri symbol is de�ned by �12 = ��21 = 1. This gives the OPEs�a(z; �z)�b(w; �w) � ��ab ln jz � wj2 ;Z(z; �z)Y (w; �w) � ln jz � wj2 : (2.25)where �12 = �1. This is the ation and urrent that was onstruted in [8℄. In thatreferene it was also found that the ation has an enlarged OSp(2j2) symmetry.For future referene, let us sum up the orrespondene between the sympleti fermionsand the underlying b0; 0 system. We have���1 = pk ��0+; ���2 = pk ��0� = � 1pkb0+;��1 = pk�0+ = 1pkb0�; ��2 = pk�0�; (2.26)whih will be useful in the next setion where we study what happens to the vertexoperators. 6



2.4 Mapping of the vertex operatorsWe now onsider the mapping of the GL(1j1) vertex operators under the transforma-tion that we found in the last subsetion. The basis of vertex operators to be used withthe �rst order ation (2.11) were found in [12℄ by a minisuperspae analysis. We will hereuse the notation of [15℄ and write the operators asVh�e;�n+1i = : eeX+nY : � 1 �+ �+� ; (2.27)and the onformal dimension is �(e;n) = e2k (2n� 1 + ek ): (2.28)For e 6= mk, where m is an integer, the olumns of this matrix will orrespond to thetwo-dimensional representation h�e;�n + 1i for the left-moving urrents while the rowsorrespond to the representation he; ni under the right-moving urrents.Let us �rst onsider the transformation giving us (2.17):X = 1k (�0 + Z);� = e�0L1 �Y L; b� = e��0L1 +Y L: (2.29)This maps the vertex operators toVh�e;�n+1i = : e ek �0+ ekZ+nY � 1 e�0L�Y Le�0R�Y R e�0�Y � : : (2.30)Here we generally split salar �elds into the left and right handed part as �0 = �0L + �0R.Some omments are in order here: Firstly, rather than thinking of e.g. � in (2.27) asa funtion to be evaluated under the path integral, we have here used bosonization andwill think about the vertex operators in the operator formalism. This means that � is aholomorphi operator. Seondly, for the Y Z system the vertex operators areV Bh�e;�n+1i = � : e ekZ+nY : : e ekZ+(n�1)Y L+nY R :: e ekZ+nY L+(n�1)Y R : : e ekZ+(n�1)Y : � ; (2.31)whereas for the �0 system they areV Fh�e;�n+1i = � : e ek �0 : : e( ek+1)�0L+ ek �0R :: e ek �0L+( ek+1)�0R : : e( ek+1)�0 : � : (2.32)Thus in the o�-diagonal terms, the splitting into holomorphi and anti-holomorphi partsmeans that the orrelation funtions alulated in respetively the Y Z system and the�0 system are not separately real, but only the ombined orrelation funtion an be7



expressed in the absolute values of the insertions zi. Also, we see that around the o�-diagonal terms in the operator (2.31) the �eld Z gets an additive twist. The overall twistvanishes due to harge onservation for Y .Sine �0 now appears with non-integer momenta, we see that in going to the b0; 0system with ation (2.19) we get twist operators. Preisely, the vertex operator (2.32)maps into V Fh�e;�n+1i = � ~�Le=k~�Re=k ~�Le=k+1~�Re=k~�Le=k~�Re=k+1 ~�Le=k+1~�Re=k+1� ; (2.33)where the twist states are de�ned by0�(e2�iz)~�L� (0) = e2�i�~�L�(0): (2.34)This is solved by ~�L� � : e��0L : ; (2.35)but only uniquely in � modulo integers and, naturally, up to a normalisation. The on-formal dimension is �12�(1� �) so the ground states have 0 < � < 1. We an step � upand down with respetively 0� and b0� e.g.0�(z)~�L� (0) � 1z�� ~�L�+1(0): (2.36)Also note that ~�R� � : e��0R : ; (2.37)ful�lls 0+(e�2�i�z)~�R� (0) = e�2�i�~�R� (0): (2.38)Sine ~�R� gives opposite transformations ompared to the holomorphi operator ~�L� , buthas the same dimension �12�(1� �), it in many ways ompares to ~�L1��.To obtain the sympleti fermions requires integrating out b0. This means that theanti-holomorphi part of 0� is non-trivial in the OPEs. As an example, 0+ and 0� withation (2.21) have a singular OPE that is � 1k ln jz � wj2. However, using equations (2.26)we get the mapping of �0� and b0� to the holomorphi operators ��2 and ��1. Likewise,��0+ and b0+ will orrespond to the anti-holomorphi operators ���1 and ���2.One has to be areful sine we in priniple an not integrate out b0 when the vertexoperators depend on b0�b0+. However, for the twist operators it seems plausible sine, atleast for � > 0, we an naively think of �� as 0�. To hek this we will in the next setionompare the orrelation funtions to the already known alulation for the sympletifermions. The twist �elds in the b0; 0 system then diretly translates into twist �elds ofthe sympleti fermions. The sympleti fermion twist �elds are de�ned by [10℄�1(e2�iz)��(0) = e�2�i��1(z)��(0); �2(e2�iz)��(0) = e2�i��2(z)��(0);��1(e�2�i�z)��(0) = e�2�i� ��1(�z)��(0); ��2(e�2�i�z)��(0) = e2�i� ��2(�z)��(0); (2.39)8



where �1 and �2 has to transform oppositely to give a symmetry of the Lagrangian. Herewe have split the sympleti fermions into their hiral and anti-hiral parts �a(z; �z) =�a(z) + ��a(�z). The anti-holomorphi part must transform in the same way under �z 7!e�2�i�z, but importantly � an di�er by an integer between the holomorphi and anti-holomorphi setor. The ondition (2.39) is ful�lled by ~�L� ~�R� and the other operatorsin (2.33). However, we have done the resaling (2.22) so if we think of the twist operatoras (0�)� we should hoose the following normalisation:�L� = pk�~�L� = pk� : e��0L : ; (2.40)and similarly for the anti-holomorphi part. Thus the vertex operator (2.33) maps intoV Fh�e;�n+1i 7! k� ek  �Le=k�Re=k 1pk�Le=k+1�Re=k1pk�Le=k�Re=k+1 1k�Le=k+1�Re=k+1! : (2.41)A notation with splitting into left and right part, like in the b00 system, turns out to beuseful. The twist values an be stepped up and down using the following OPEs:��1(z)�L�(0) � 1z��L��1(0); ��2(z)�L� (0) � �z1���L�+1(0); (2.42)and orrespondingly�� ��1(�z)�R� (0) � ��z1���R�+1(0); �� ��2(�z)��R� (0) � � 1�z��R��1(0): (2.43)We note here again that up to a sign the anti-holomorphi side is understood by seeing�R� as �L1��.To onlude the total vertex operator Vh�e;�n+1i in the Y Z and sympleti fermionsystem with ation (2.24) takes the formVh�e;�n+1i 7! k� ek  : e ekZ+nY : �Le=k�Re=k 1pk : e ekZ+(n�1)Y L+nY R : �Le=k+1�Re=k1pk : e ekZ+nY L+(n�1)Y R : �Le=k�Re=k+1 1k : e ekZ+(n�1)Y : �Le=k+1�Re=k+1 !(2.44)We note that equations (2.42) an be used to hek that the olumns of this operator trans-form in the h�e;�n + 1i representation of GL(1j1) under the left-moving urrents (2.23).These operators are indeed lose to the operators found in [8℄. Let us now hek theoperators in orrelation funtions.2.5 Bulk orrelation funtionsWe will now ompare the orrelation funtions of the primary �elds (2.27) obtainedin the GL(1j1) model to the alulations done for the sympleti fermions in [10℄. Thesimilarity was already noted in [12℄. 9



Let us �rst note that from equations (2.31) and (2.32) the vertex operators (2.27) inthe Y; Z; �0 piture (2.17) takes the formVh�e;�n+1i��� = : e ekZ+(n��)Y L+(n���)Y Re( ek+�)�0L+( ek+��)�0R : ; (2.45)where �; �� 2 f0; 1g labels respetively the olumns and the rows.We onsider the three-point funtionA = hVh�e1;�n1+1i��1�1(z1)Vh�e2;�n2+1i��2�2(z2)Vh�e3;�n3+1i��3�3(z3)i: (2.46)The orrelation funtion splits into a Y Z and a �0 part, A = ABAF. The Y Z part is easilyevaluated to beAB = Æ�Xi eik �Æ�Xi (ni � �i)�Æ�Xi (ni � ��i)��Yi<j(zi � zj) eik (nj��j)+ ejk (ni��i)(�zi � �zj) eik (nj���j)+ ejk (ni���i); (2.47)where the indies run from 1 to 3. The Æ-funtions follow diretly from the JE and JNurrents. The �0 part is also easily evaluated. Here one has to remember that the overall�0 harge has to sum to one due to the bakground harge of �0. This means that we anmaximally have two insertions of the interation term of the ation (2.17). However, aswas ommented in [12℄, the part with two interation terms vanish. The part with oneinteration term is alulated using the Dotsenko-Fateev like integral used in [12℄. We getAF = Æ�Xi �i � 1�Æ�Xi ��i � 1�Yi<j(zi � zj)( eik +�i)( ejk +�j)(�zi � �zj)( eik +��i)( ejk +��j)�1kÆ�Xi �i � 2�Æ�Xi ��i � 2�(�1)�3+��3 �(1� e1k � �1)�(1� e2k � �2)�(1� e3k � ��3)�( e3k + �3)�( e1k + ��1)�( e2k + ��2)�Yi<j(zi � zj)( eik +�i�1)( ejk +�j�1)(�zi � �zj)( eik +��i�1)( ejk +��j�1);(2.48)where the �rst part is for no interation term and the seond part for one interationterm. We have here used that Pi ei = 0 due to the delta-funtion from the Y Z part ofthe orrelation funtion in (2.47).If we ombine the two parts in (2.47) and (2.48) the symmetry between the holomor-
10



phi and anti-holomorphi setor is restored and we arrive atA = Æ�Xi eik �Æ�Xi (ni � �i)�Æ�Xi (ni � ��i)��Æ�Xi �i � 1�Æ�Xi ��i � 1�Yi<j jzi � zjj2 eik nj+2 ejk ni+2 eiejk2� 1kÆ�Xi �i � 2�Æ�Xi ��i � 2�(�1)�3+��3 �(1� e1k � �1)�(1� e2k � �2)�(1� e3k � ��3)�( e3k + �3)�( e1k + ��1)�( e2k + ��2)�Yi<j jzi � zjj2 eik (nj�1)+2 ejk (ni�1)+2 eiejk2 �; (2.49)as was derived in [12℄. This indeed supports the validity of our deoupling of the GL(1j1)WZNW model into a set of free salars and the �0 system with ation (2.17). The resultmay not look loal, e.g. does not seem to be symmetri in interhanging operator 2 and3, due to the asymmetri-looking � funtions. However, these an be rewritten in thefollowing symmetri form(�1)�3+��3 �(1� e1k � �1)�(1� e2k � �2)�(1� e3k � ��3)�( e3k + �3)�( e1k + ��1)�( e2k + ��2) =Yi �(1� eik )�( eik ) ��eik ���i���i :(2.50)As we see from the result (2.49) one has to be areful in the limit when ei is aninteger multiple of k. As was shown in [12℄ this gives logarithmi orrelation funtions.For now let us not onsider these limits. Thus we get genuine twist operators whengoing to the sympleti fermions and the twists are �i = ei=k + �i in the holomorphisetor and ��i = ei + ��i in the anti-holomorphi setor when we ompare equation (2.45)with (2.41). As we see from the vertex operators in (2.41), the results that we expetfrom the sympleti fermions to omply with orrelation funtion (2.48) areh�L�1(z1)�R��1(�z1)�L�2(z2)�R��2(�z2)�L�3(z3)�R��3(�z3)iSF =Yi<j(zi � zj)�i�j (�zi � �zj)��i��jfor Xi �i =Xi ��i = 1; (2.51)andh�L�1(z1)�R��1(�z1)�L�2(z2)�R��2(�z2)�L�3(z3)�R��3(�z3)iSF= �(�1)�3���3 �(��1)�(��2)�(���3)�(��1)�(��2)�(�3)Yi<j(zi � zj)��i ��j (�zi � �zj)���i ���j for Xi �i =Xi ��i = 2;(2.52)11



where �� = 1 � � and the subsript SF means that the expetation value is alulatedusing the sympleti fermion part of the ation (2.24). Here �� are the twist operatorsde�ned in eq. (2.39). We have also used that in going to this expetation value underthe resaling (2.22) we have to multiply the orrelation funtions with an overall fatorof k. This is beause the orrelation funtion normalisation is relative to the orrelatorof ��1�2 or 0+0� in the b00 system in eq. (2.19). This simply means that the dependeneon k disappears due to the normalisation in eq. (2.40) as is expeted.We want to ompare this to the alulation of bulk twist orrelators done by Kaushin [10℄. In that paper, of ourse, only twist �elds with idential twist in the holomorphiand anti-holomorphi setor are treated so we take �i = ��i. Further, we have to rememberthat the twist �elds are only de�ned up to normalisation. To ompare with Kaush weuse one of the equations (2.51), (2.52) to �x the normalisation and an then ompare tothe seond one. The normalisation is �xed by de�ning�L��R� = �s�(��)�(�) ��: (2.53)Then we geth��1(z1; �z1)��2(z2; �z2)��3(z3; �z3)iSF =Yi s�(�i)�(��i )Yi<j jzi � zjj2�i�j for Xi �i = 1;=Yi s�(��i )�(�i)Yi<j jzi � zjj2��i ��j for Xi �i = 2;(2.54)whih is exatly as in [10℄. We an also ompare with the two-point funtion whih iseasily alulated and also get a math here. Note, however, that in [10℄ only ground statetwist �elds with 0 < � < 1 are onsidered. Our results thus ompare preisely in thisrange, and are the analyti ontinuation of the twists � for the results in [10℄.In the ase where we allow the ei to be zero or an integer multiple of k, we have totake into aount the zero modes of the sympleti fermions. This gives four di�erentground states in the sympleti model - two fermioni and two bosoni, where the lasttwo span a Jordan blok for L0. The result is that we get logarithmi branh uts inthe orrelation funtions. This an be seen from the GL(1j1) side where the � funtionsdiverge when � beomes integer [12℄. Thus we also get agreement from the two sides ofthe orrespondene here.3 Branes in the sympleti fermionsNow, having established the orrespondene, we want to apply it. There are twoapparent appliations. For point-like branes in the GL(1j1) WZNW model, so far it12



ould be argued that orrelators ontaining only boundary �elds behave like untwistedsympleti fermions [15℄, but it was not possible to handle insertions of bulk �elds. Now,we are in a position to approah the problem of omputing orrelation funtions involvingbulk and boundary �elds. We will refrain from this problem for now, but keep it in mindfor future researh. Instead, we reonsider the study of boundary states. Reall that thegroup of outer automorphisms of GL(1j1) is Z2. The branes orresponding to the trivialgluing automorphism we all untwisted and their boundary states have been studied in[16℄. The non-trivial automorphism only admits one volume-�lling brane, whih we alltwisted. Its boundary state has been studied, with quite some e�ort, in [15℄. With theGL(1j1)-sympleti fermion orrespondene, we an easily reprodue these results, butalso ompute spetra of strings strething between an untwisted and a twisted brane.This gives, �nally, a omplete disussion of Cardy boundary states. It will turn outthat the boundary states indeed satisfy Cardy's ondition, i.e. the amplitude is a trueharater.As we have seen, the GL(1j1) WZNWmodel an equally well be understood in a theoryof salars and sympleti fermions. Sine boundary states with sympleti fermions havenot been disussed in ompleteness before, we start by a quite general analysis of these.For earlier works on boundary models of sympleti fermions see [22, 23, 24, 25℄.3.1 Boundary onditionsWe start our onsiderations by investigating possible boundary onditions. The energymomentum tensors areT (z) = �12�ab : ��a��b : ; �T (�z) = �12�ab : ���a ���b : : (3.1)They preserve the sympleti fermion symmetry and oinide along the boundary if�� = A ��� for z = �z ; (3.2)where A = � a b d � is a matrix in SL(2) and for onveniene we ombined the two fermionsin the vetor � = � �1�2 �. In terms of Dirihlet and Neumann derivatives (� = 12�u � i12�nand �� = 12�u + i12�n) the boundary onditions are�i�n� = A� 1A+ 1 �u� (3.3)provided 1 + A is invertible. Then the ation on the upper half-plane isS = � 14� Z d2z ��t J ��� + i8� Zz=�z du �t J A� 1A+ 1 �u� ; (3.4)where the matrix J is J = � 0 �11 0 �. The variation of this ation vanishes provided theabove boundary onditions hold as well as the bulk equations of motion � ���� = 0. If1 + A is not invertible it has harateristi polynomial �2, i.e. if 1 + A = 0 there areDirihlet onditions in both diretions while otherwise there is one Dirihlet and oneNeumann ondition. Note that these ases resemble the atypial branes in GL(1j1) [26℄.13



3.2 The Ramond setorWe �rst onsider the Ramond setor, by whih we mean the sympleti fermionswithout any twist �elds, or in the language of modes meaning only integer modes appear.The expliit mode expansion is�a(z; �z) = �a + �a0 ln jzj2 �Xn 6=0 1n�anz�n + 1n ��an�z�n; (3.5)where the modes satisfyf�am; �bng = �m�ab Æm;�n ; f��am; ��bng = �m�ab Æm;�n and f�a; �b0g = �ab : (3.6)All other anti-ommutators vanish. Note that for loality we have required �a0 = ��a0.In this setion we onstrut the boundary states in the Ramond setor, ompute theamplitudes and onstrut the orresponding open string model. We start the disussionof boundary states by investigating Dirihlet onditions in the two fermioni diretions.3.2.1 Dirihlet onditionsLet us �rst remind ourselves that if we have an extended hiral algebra given by W (z)and �W (�z) we need an gluing automorphism, 
, for the boundary [27℄:W (z) = 
( �W )(�z) for z = �z : (3.7)This is as in equation (3.2) for the gluing of the urrents. We now pass to losed stringsvia the world-sheet duality. The gluing onditions then beome the following Ishibashionditions for the boundary states j�ii
 in the CFT on the full plane:�Wn � (�1)hW
( �W�n)� j�ii
 ; (3.8)where hW is the onformal dimension of W .Using (3.8) we see that for the Dirihlet boundary onditions (A = �1 in (3.2)) theorresponding Ishibashi states have to satisfy��an � ��a�n� jDii = 0 for a = 1; 2 ; (3.9)note that there is no ondition on �a0 beause of the loality onstraint �a0 � ��a0 = 0. TheIshibashi states are expliitly onstruted asjD0ii = p2� exp�Pm>0 1m��2�m ��1�m � �1�m ��2�m��j0i ; (3.10)jD�ii = �� exp�Pm>0 1m��2�m ��1�m � �1�m ��2�m��j0i ; (3.11)jD2ii = ���+p2� exp�Pm>0 1m��2�m ��1�m � �1�m ��2�m��j0i ; (3.12)14



where the ground state j0i is de�ned by �anj0i = 0 for n � 0. The dual Ishibashi state isobtained by dualizing the modes using (here m > 0)�1�my = �1m and �2�my = ��2m : (3.13)For the omputation of amplitudes we need the Virasoro generators, they areLn = �12�abXm : �an�m�bm : (3.14)and the entral harge is  = �2. De�ne q = exp 2�i� and ~q = exp(�2�i=�) as usual,where � takes values in the upper half plane. Then the non-vanishing overlaps arehhD0jqL0+ 112 (�1)F jD2ii = hhD2jqL0+ 112 (�1)F jD0ii = �(�)2;hhD�jqL0+ 112 (�1)F jD+ii = �hhD+jqL0+ 112 (�1)F jD�ii = �(�)2;hhD2jqL0+ 112 (�1)F jD2ii = �i��(�)2 = �(~�)2 ; (3.15)where L0 = L0 + �L0. Thus only jD2i makes sense as a boundary state.3.2.2 Neumann onditionsNext we would like to display the boundary state jAi for our general boundary on-ditions (3.2). It has to satisfy the Ishibashi ondition (3.8)�1n + a ��1�n + b ��2�njAii = 0 ;�2n +  ��1�n + d ��2�njAii = 0 ; (3.16)whih are satis�ed byjAii = N exp��Xm>0 1m�a�2�m ��1�m + b�2�m ��2�m � �1�m ��1�m � d�1�m ��2�m��j0i : (3.17)The dual state ishhAj = N hh0j exp��Xm>0 1m��a�2m ��1m + b�2m ��2m � �1m ��1m + d�1m ��2m�� : (3.18)It will turn out that the normalization should be �xed to beN = p2� 2 sin�� ; (3.19)where we introdue � via � = exp 2�i� by �tr(A) = � + ��1.Now it is straightforward to ompute amplitudes between two boundary states. Anynon-zero amplitude requires the zero modes of �1 and �2 hene only the Dirihlet boundarystate has non-vanishing overlap with any Neumann state:hhAj q 12L0+ 112 (�1)F  jD2ii = Np2�q 112 Ym>0(1� �12qm)(1� ��112 qm) : (3.20)15



Upon modular transformation this amplitude is the spetrum of an open string strethingbetween two branes with respetively Neumann boundary onditions given by A andDirihlet onditions. Using the formulas provided in the appendix equation (3.20) beomesNp2� q 112 Ym>0(1� �qm)(1� ��1qm) = ~q 12 (�� 12 )2� 124 1Yn=0�1� ~qn+1����1� ~qn+�� : (3.21)Now, we onstrut the boundary theory of a string strething between these two branesand hek that its spetrum is indeed given by the amplitude we just omputed, wefollow [28℄. Therefore onsider the upper half plane, and demand boundary ondition Afor the negative real line, i.e.�� = A ��� for z = �z and z + �z < 0 ; (3.22)and Dirihlet onditions for the positive real axis�u� = 0 for z = �z and z + �z > 0 : (3.23)Then the �elds have the following SL(2) monodromy (ounterlokwise)��(ze2�i) = �A��(z) ; (3.24)and similar for the bared quantities. Denote by S the matrix that diagonalizes the mon-odromy, i.e. S(�A)S�1 is diagonal. We denote the eigenvalues by ��1. Further, all theeigenvetors ���, they then have the usual mode expansion [10℄��(z) = Xn2Z 1n� ���n��z�(n��) : (3.25)The original �elds are then expliitly��1�2� = S�1��+��� : (3.26)Their partition funtion istr( qL0� 24 (�1)F ) = q 12 (�� 12 )2� 124 1Yn=0�1� qn+1����1� qn+�� : (3.27)The omputation has been done similarly by Kaush [10℄. We see that the result �tswith (3.20) and the Cardy ondition is ful�lled. Thus, we niely established our boundarystate and the open string theory it desribes.If we want to investigate amplitudes involving Neumann boundary states on bothends, we learnt [28℄ that it is neessary to insert additional zero modes in order to obtain16



a non-vanishing amplitude. Also introdue �12 via tr(A1A�12 ) = �12 + ��112 then we gethhA1j�2�1 q 12L0+ 112 (�1)F  jA2ii = N1N2 q 112 Ym>0(1� �12qm)(1� ��112 qm)= N12 ~q 12 (�12� 12 )2� 124 1Yn=0�1� ~qn+1��12��1� ~qn+�12� ;(3.28)where N12 = 4� sin ��1 sin��2sin ��12 : (3.29)The open string theory is onstruted almost exatly as above and again resembles [28℄.We demand boundary ondition A1 for the negative real line and A2 for the positive one,�� = � A1 ��� if z = �z and z + �z < 0A2 ��� if z = �z and z + �z > 0 : (3.30)The �elds have the following SL(2) monodromy��(ze2�i) = A1A�12 ��(z) : (3.31)Let S diagonalize the monodromy, then its eigenvalues are ��112 and we all the eigenvetorsagain ���. They have the mode expansion��(z) = pN12 �� +Xn2Z 1n� �12��n��12z�(n��12) ; (3.32)note the extra zero mode, sine the monodromy does only onern derivatives. Its parti-tion funtion with appropriate insertion istr(�2�1qL0� 24 (�1)F ) = N12 q 12 (�12� 12 )2� 124 1Yn=0�1� qn+1��12��1� qn+�12� ; (3.33)and oinides with (3.28) as desired.3.3 The Neveu-Shwarz setorIn this setion we study the boundary states in the Neveu-Shwarz setor. The stateshave to satisfy the usual Ishibashi ondition�1n + a��1�n + b��2�njAiiNS = 0 ;�2n + ��1�n + d��2�njAiiNS = 0 ; (3.34)where the modes are half-integer, i.e. n in Z+ 1=2. The onditions are satis�ed byjAii = exp�� Xm>0m2Z+1=2 1m�a�2�m ��1�m + b�2�m ��2�m � �1�m ��1�m � d�1�m ��2�m��j0i : (3.35)17



We introdue �12 as before, that is tr(A1A�12 ) = �12 + ��112 , and getNShhA1jqL0+ 112 (�1)FjA2iiNS = q� 124 Ym>0m2Z+1=2(1� �12qm)(1� ��112 qm)= ~q 12 (�� 12 )2� 124 Yn>0(1 + ~qn��)(1 + ~qn���) ; (3.36)where �12 = e2�i�. This is the spetrum of an open string onstruted similarly as before,and in addition demanding antisymmetri boundary onditions in the time-diretion.3.4 The twisted setorsGiven any twisted setor we an diagonalize it and thus we an restrit to twists thatare diagonal. Call the ground state of the setor for �� on whih �a has twists�1 �! e�2�i��1 and �2 �! e2�i��2 : (3.37)Then the mode expansions of the �elds in these setors are��1(z) = �Xn2Z�1n+�z�(n+�)�1 and �� ��1(�z) = �Xn2Z ��1n���z�(n��)�1��2(z) = �Xn2Z�2n��z�(n��)�1 and �� ��2(�z) = �Xn2Z ��2n+��z�(n+�)�1 : (3.38)Whenever � 6= 1=2 the boundary onditions are parameterized by just one parameter �aording to the boundary onditions��1 = ����1 and ��2 = ��1 ���2 : (3.39)Only to these onditions there exist twisted Ishibashi states. The boundary state has tosatisfy the usual Ishibashi ondition�1n+� + ���1�n��j�ii� = 0 ;�2n�� + ��1 ��2�n+�j�ii� = 0 ; (3.40)and these are solved by (�� = 1� �)j�ii� = N exp��Xm>0 �m� ���2�m+�� ��1�m+�� � ��1m� ��1�m+� ��2�m+���� : (3.41)where we �x the normalization to be N = e�2�i(��1=2)(��1=4) and � = e2�i�. The dualboundary state is�hh�j = �N�y� exp�Xm>0 �m� ��2m�� ��1m�� � ��1m� ���1m��� ��2m���� : (3.42)18



Now we are prepared to ompute the amplitudes (note that the onformal dimension ofthe twist state is h� = ����=2 and we use the shorthand �1��12 = e2�i�)�h�1jqL0+ 112 (�1)Fj�2i� = e�2�i(�� 12 )(�� 12 )q 12 (�� 12 )2� 124 Yn>0(1� �1��12 qn���)(1� �2��11 qn��)= ~q 12 (�� 12 )2��~� (12 � �)� (�� 12); ~��=�(~�)= ~q 12 (�� 12 )2� 124 Yn>0(1� u�1~qn��)(1� u~qn���) ; (3.43)where u = e2�i�. This is the harater of a boundary theory twisted by �12 in an orbifold byan abelian subgroup G of SL(2), whih is generated by u, see [10℄ for a detailed disussion.4 Branes in the GL(1j1) WZNW modelWe are �nally in a position to apply the sympleti fermion GL(1j1) orrespondeneto boundary states in GL(1j1). GL(1j1) possesses two non-trivial gluing onditions. Oneondition, whih we all untwisted sine it is given by a trivial gluing automorphism,has a two-parameter family of branes orresponding to super onjugay lasses. Theyhave been disussed in detail in [16℄. The other gluing ondition, whih we all twisted,onsists of one volume �lling brane. Its boundary state has been disussed in [15℄ as arather ompliated perturbative expansion from a free salar times a sympleti fermionboundary state. In [15℄ it was shown that for a partiular amplitude this expansion didnot ontribute and omputations redued to omputations in the deoupled free salarfree fermion model. This was already a �rst hint of the orrespondene now found.We an now ompute amplitudes between boundary states of di�erent gluing ondi-tions and onstrut the orresponding open string theory expliitly. There is anotherpuzzle we an unreveal and that is the role of atypial Ishibashi states and their log qdependent overlaps. While Ishibashi states orresponding to typial representations havetrue haraters as overlap, atypials might have a log q prefator, as seen in (3.15) ande.g. [29℄. We will see that in the GL(1j1) story, this log q dependene arises by a limitingproedure from haraters of typial representations. The understanding of the atypialIshibashi states in our ontext is important for amplitudes involving two branes withdi�erent gluing onditions.4.1 Untwisted BranesLet us reall the analysis performed in [16℄. Untwisted branes orrespond to the gluingonditions J(z) = �J(�z) for z = �z : (4.1)19



Insertion of the expliit formulas (2.23) for the urrents into above gluing onditions givesDirihlet onditions for the bosoni urrents�uY = 0 ; �uZ = 0 ; for z = �z ; (4.2)While the fermioni ones generially satisfy Neumann onditionseY L0 ��1 = �e�Y R0 ���1 and e�Y L0 ��2 = �eY R0 ���2 : (4.3)Thus one parameterizes the branes by their positions labeled by (y0; z0). But whenever1Y L0 + Y R0 = iy0 = 2�is; s 2 Z we obtain Dirihlet boundary onditions in all diretions,bosoni and fermioni ones,�uY = �uZ = �a = 0 for z = �z : (4.4)These branes will be alled non-generi (untwisted) branes in the following.Let us shortly desribe the main results of the minisuperspae analysis performed in[16℄. The minisuperspae or partile limit desribes the behaviour of full �eld theoryquantities in the large level limit, k ! 1. In this limit the zero modes of the �eldsdominate and thus �elds are interpreted as funtions on the supergroup, and the ation ofthe urrents is mimiked by the right and left invariant vetor �elds RX and LX . We areinterested in semilassial analogua of Ishibashi states. Minisuperspae Ishibashi statesare those states invariant under the adjoint ation adX = RX + LX sine the gluingautomorphism is the identity. What is interesting for our further onsideration is thatthere exist two kinds of atypial Ishibashi states. One of them has vanishing overlap withitself and is thus assoiated with (3.10) in our orrespondene to sympleti fermions,while the other one is obtained from the �rst kind by the ation of the fermioni funtionsassoiated to the fermioni �elds �, and thus it should be identi�ed with (3.12). Further,in the minisuperspae limit boundary states beome distributions onentrated on thesuper onjugay lass they orrespond to, and this distribution an be expressed in termsof minisuperspae Ishibashi states. It turns out that the �rst kind of Ishibashi stateontributes to the generi boundary states while the seond kind to the non-generi one.For more details, we refer the reader to [16℄, but we will also illustrate the lift of thisminisuperspae story to the full �eld theory in the following subsetions.4.1.1 Ishibashi statesWe now onstrut the Ishibashi states using our sympleti fermion orrespondene.Reall that the urrents take the form (2.23)JE = �k�Y; JN = ��Z; J� = pkeY L��1; J+ = �pke�Y L��2; (4.5)�JE = k ��Y; �JN = ��Z; �J� = �pke�Y R ���1; �J+ = pkeY R ���2: (4.6)1In this setion we allow for imaginary brane positions exatly as done in [16℄.20



Further, the fermions have mode expansion as in equation (3.5) and relations (3.6) (orthe twisted versions thereof) while the two salars have expansionY L(z) = Y L0 + pLY ln z �Xn 6=0 1n Y Ln z�n;Y R(z) = Y R0 + pRY ln �z �Xn 6=0 1n Y Rn �z�n;ZL(z) = ZL0 + pLZ ln z �Xn 6=0 1n ZLn z�n;ZR(z) = ZR0 + pRZ ln �z �Xn 6=0 1n ZRn �z�n; (4.7)
and relations[Y L;Rn ; ZL;Rm ℄ = �mÆn;�m and [ZL;R0 ; pL;RY ℄ = [Y L;R0 ; pL;RZ ℄ = �1 : (4.8)To ensure loality we have pLY = pRY and also ZL0 = ZR0 for the onjugate modes. However,we will not demand pLZ = pRZ and orrespondingly not Y L0 = Y R0 sine Z has an additivetwist around our winding states (2.44).The energy momentum tensor isT (z) = �Y �Z � 12�ab��a��b and �T (�z) = ��Y ��Z � 12�ab ���a ���b ; (4.9)and thus the Virasoro modes areLn = � Xm2Z : �1n�m�2m : + Xm 6=0;n : Y Ln�mZLm : ++ Xm 6=0( : pLYZLm : + : pLZY Lm : ) + Æn;0 pLY pLZ ;�Ln = � Xm2Z : ��1n�m ��2m : + Xm 6=0;n : Y Rn�mZRm : ++ Xm 6=0( : pRYZRm : + : pRZY Rm : ) + Æn;0 pRY pRZ : (4.10)
We also need the zero modes of the urrents orresponding to the Cartan generators JEand JN : E0 = �kpLY ; �E0 = kpRY ; N0 = �pLZ ; �N0 = pRZ : (4.11)Let us now onsider the Ishibashi states. We start by spelling out the Ishibashi onditionsfor the untwisted ase. As noted above, the gluing ondition J = �J means that the bosoni�elds simply satisfy Dirihlet onditions�uY = �uZ = 0 : (4.12)21



Using these Dirihlet onditions for the �eld Y = Y L + Y R the fermioni ones an bewritten as followseY L0 ��1 = �e�Y R0 ���1 and e�Y L0 ��2 = �eY R0 ���2 : (4.13)Then orrespondingly the Ishibashi onditions for the bosoni �elds are�Y Ln � Y R�n� j I ii = �ZLn � ZR�n� j I ii = 0 n 6= 0�pLZ � pRZ� j I ii = �pLY � pRY � j I ii = 0 ; (4.14)note that there is no onditions on the zero modes Y L0 and Y R0 . Further, the onditionsfor the fermioni ones are�eY L0 �1n � e�Y R0 ��1�n� j I ii = �e�Y L0 �2n � eY R0 ��2�n� j I ii = 0 : (4.15)The Ishibashi states learly fatorize into a bosoni and a fermioni part and are easilyonstruted as follows. The typial primary of GL(1j1), he; niR, is the representation withground state jn; ��i where � = e=k satisfyingpLZ jn; ��i = pRZ jn; ��i = njn; ��i ;pLY jn; ��i = pRY jn; ��i = �jn; ��i : (4.16)Further, reall that the fermions have the mode expansion in the presene of the groundstate �� (3.38) �1(z; �z) = Xn2Z+� 1n �1n z�n + Xn2Z+�� 1n ��1n �z�n ;�2(z; �z) = Xn2Z+�� 1n �2n z�n + Xn2Z+� 1n ��2n �z�n ; (4.17)where �� = 1� �. Then the bosoni Ishibashi state isjn; eiiB = exp�Xm>0 1m�Y L�mZR�m + ZL�mY R�m��jn; ��iB ; (4.18)and the fermioni one is omputed as (3.41)jn; eiiF = exp��Xm> 0 eY L0 +Y R0m� � �1�m+� ��2�m+�� e�Y L0 �Y R0m� �� �2�m+�� ��1�m+���jn; ��iF : (4.19)and the Ishibashi state is then the produt of the two. The following simple omputationsare ruial qL0e�Y L0 = e�Y L0 qL0�E0k ; ZN0e�Y L0 = e�Y L0 ZN0�1 ;q �L0e�Y R0 = e�Y R0 q �L0� �E0k ; Z �N0e�Y R0 = e�Y R0 Z �N0�1 ; (4.20)22



Introdue L0 = 12(L0 + �L0) and N 0 = 12(N0 � �N0) as usual. Then we get the fermioniontribution of the overlap, that isF hhn; ejqL0+ 112 zN0 (�1)F jn; eiiF = zn(1�z�1)q 12 (�� 12 )2� 124 Yn>0(1�z�1qn)(1�zqn) ; (4.21)and the bosoni Bhhn; ejqL0� 112 zN0 (�1)F jn; eiiB = � qn��(�)2 ; (4.22)where we normalized the dual state suh that we get the minus sign. Then in total, wearrive athhn; ejqL0zN0 (�1)F jn; eii = zn�1(1� z)qn�+ 12 (�� 12 )2� 124�(�)2 Yn>0(1� z�1qn)(1� zqn)= �̂<e;n>(z; �) : (4.23)So far we assumed 0 < � < 1, whenever � beomes zero our Dirihlet sympleti fermionboundary states ome into the game. There are four of them. Denote by jn; 0i the groundstate with N0 eigenvalue n, i.e.N0jn; 0i = njn; 0i; E0jn; 0i = 0 ;Ymjn; 0i = Zmjn; 0i = �amjn; 0i = �a0jn; 0i = 0; for m > 0: (4.24)Then the Ishibashi states arejn0ii = exp�Xm>0 1m�Y L�mZR�m + ZL�mY R�m � eY L0 +Y R0 �1�m ��2�m + e�Y L0 �Y R0 �2�m ��1�m��jn; 0i ;jn�ii = ��jn0ii ;jnii = ���+jn0ii ; (4.25)and we arrive at the following amplitudeshhn0jqL0zN0 (�1)F jnii = �0(�; �);hhnjqL0zN0 (�1)F jn0ii = ��0(�; �);hhn�jqL0zN0 (�1)F jn�ii = ��0(�; �);hhnjqL0zN0 (�1)F jnii = �2�i��0(�; �); (4.26)where �0(�; �) = zn�1q 112 Yn>0(1� z�1qn)(1� zqn)=�(�)2: (4.27)All other amplitudes vanish unless zero modes are inserted.23



Let us now onsider twist states �~� where ~� 62 ℄0; 1[ . We already saw in the seondsetion that suh states are simply desendants of �� where ~� = � +m for some integerm and � 2 ℄0; 1[. The state jn; �~�i satis�es the following onditionsN0jn; �~�i = njn; �~�i and E0jn; �~�i = k(�+m)jn; �~�i : (4.28)The Ishibashi state je; nii (with e=k = ~� = �+m) in this representation is obtained fromthe previously onstruted ones asje; nii = em(ZL0 �ZR0 )em(Y L0 +Y R0 )je�mk; nii : (4.29)The amplitude is omputed usingqL0em(ZL0 �ZR0 ) = em(ZL0 �ZR0 )qL0�mN0 ; (4.30)and the spetral ow formulas provided in appendix Bhhn; ejqL0zN0 (�1)F jn; eii = �̂<e�mk;n+m>(z �m�; �) = (�1)m�̂<e;n>(z; �) : (4.31)A similar onstrution holds also for the atypial part.4.2 The untwisted boundary statesUntwisted boundary states were studied in detail in [16℄, here we reall the statesand their properties. Atypial Ishibashi states ontribute to amplitudes only by a set ofmeasure zero, therefore their role has not been fully investigated previously. Here we will�ll this gap. As we will see in a moment boundary states are represented by an integralof Ishibashi states, hene any amplitude is given by an integral of GL(1j1) haraters. We�x the role of the Ishibashi states by requiring that any integrand of any amplitude is asmooth funtion. Let us be more preise.The minisuperspae analysis [16℄ already suggests that the Ishibashi states jn0ii on-tribute to generi branes, while the states jnii ontribute to non-generi branes. We willsee that this is orret. The boundary state orresponding to a generi brane loalized at(z0; y0) with y0 6= 2�s isjz0; y0i = r2ik Ze 6=mkm2Zdedn exp�i(n� 1=2)y0 + iez0� sin1=2(�e=k) je; nii �p2�ik Xm2ZZ dn exp�i(n� 1=2)y0 + imkz0� jn0ii(m); (4.32)where the supersript m denotes the m spetral owed state. In order to hek theonsisteny of our proposal for the boundary states with world-sheet duality, we omputethe spetrum between a pair of generi branes,hz0; y0j(�1)F  ~qL0~zN0 jz00; y00i = 2ik Z de0dn0ei(n0� 12 )(y00�y0)+ie0(z00�z0) sin(�e0=k)�̂he0;n0i(~�; ~� )= �̂he;ni(�; �) � �̂he;n+1i(�; �) ; (4.33)24



where the momenta e; n are related to the oordinates of the branes aording toe = k(y00 � y0)2� ; n = k(z00 � z0)2� � y00 � y02� :Let us now turn to the boundary states of non-generi untwisted branes in the GL(1j1)WZNW model. The boundary states of elementary branes assoiated with non-generiposition parameters z0 and y0 = 2�s; s 2 Z; are given byjz0; si = 1p2ki Ze 6=mk dedn exp�2�i(n� 1=2)s+ iez0� sin�1=2(�e=k) je; nii� 1p2�i Xm2ZZ dn exp�2�i(n� 1=2)s+ imkz0� jnii(m) : (4.34)We also here verify that the proposed boundary states produe a onsistent open stringspetrum by alulating the overlap between two non-generi boundary states jz0; si andjz00; s0i,hz0; sj(�1)F ~qL0 ~zN0 jz00; s0i = Z de0dn02ki e2�i(n0�1=2)(s0�s)+ie0(z00�z0)sin(�e0=k) �̂he0;n0i(~�; ~�)= �̂(m)hni (�; �) ; (4.35)where the labels n and m in the harater are related to the branes' parameters throughn = k(z00 � z0)2� + s� s0 ; m = s0 � s : (4.36)The supersript on the harater �̂(m)hni (�; �) again means we have used the spetral ow msee ref. [16℄ and appendix B. The following limit for t any integer shows that in equation(4.35) is indeed a hidden � -dependenelime!mk 12ki Z dn e2�itnsin(�e=k) �̂he;ni(~�; ~�) = Z dn � e2�itn�̂(m)hni (~�; ~�) : (4.37)Thus we observe that the Ishibashi state jnii (4.26) with its � -dependene is the naturalatypial Ishibashi state ontributing to the atypial boundary state.Further, the overlap between a generi and a non-generi state ishz0; y0j(�1)F ~qL0~zN0 jz00; si = Z de0dn0k ei(n0�1=2)(2�s�y0)+ie0(z00�z0) �̂he0;n0i(~�; ~�)= �̂he;ni(�; �) ; (4.38)where n = k(z00 � z0)2� + y02� � s+ 12 ; ek = s� y02� : (4.39)25



4.3 Twisted boundary stateThe group of outer automorphisms of the Lie superalgebra gl(1j1) is of order 2. Wealready disussed the boundary states belonging to the trivial one. The non-trivial onede�nes the following gluing onditions on the urrentsJE = � �JE ; JN = � �JN ; J+ = � �J� ; J� = �J+ for z = �z : (4.40)This translates into Neumann onditions for the bosoni and the fermioni �elds, that is�nY = �nZ = 0 for z = �z (4.41)implying espeially that the left movers of Y oinide with its right movers up to the zeromodes Y L � Y R = Y L0 � Y R0 for z = �z : (4.42)Thus the gluing onditions for the fermions areeY L0 ��1 = eY R0 ���2 ; e�Y L0 ��2 = �e�Y R0 ���1 for z = �z : (4.43)The boundary state j
ii is easily onstruted as before. It has to satisfy(Y Ln + Y R�n) j
ii = (pLY + pRY ) j
ii = 0 ;(ZLn + ZR�n) j
ii = (pLZ + pRZ) j
ii = 0 ;(eY L0 �1n + eY R0 ��2�n) j
ii = 0 ;(e�Y L0 �2n � e�Y R0 ��1�n) j
ii = 0 ; (4.44)whih an be omputed to bej
 ii = p�=i exp� 1Xn=1 1n�Y L�nZR�n+ZL�nY R�n� eY R0 �Y L0 �2�n ��2�n+ eY L0 �Y R0 �1�n ��1�n��j0; 0 i :(4.45)Here, j0; 0 i denotes the vauum de�ned by �anj0; 0 i = 0 for n � 0 and ZL;Rn j0; 0 i =Y L;Rn j0; 0 i = pL;RY j0; 0 i = pL;RZ j0; 0 i = 0 for n > 0. The dual boundary state is onstrutedanalogously.Our main aim now is to ompute some non-vanishing overlap of the twisted boundarystate j
ii. This requires the insertion of the invariant bulk �eld �1�2, i.e.hh
 j ~qL0(�1)F  ~zN0 �1�2 j
ii = �2k Z dedn �̂he;ni(�; �)sin(�e=k) : (4.46)where L0 = (L0 + �L0)=2 and N 0 = (N0 + �N0)=2 are obtained from the zero modes ofthe Virasoro �eld and the urrent N . Here the normalization in (4.45) by p�=i wasimportant.2 This amplitude has been tested in detail in [15℄.2Note the di�erene of a p2 ompared to [15℄ whih is due to a misprint there.26



4.4 Mixed amplitudes and their open stringsUsing the GL(1j1)-sympleti fermion orrespondene we were able to onstrut bound-ary states expliitly, and the amplitudes �ts with the previously known results alulatedin GL(1j1). The new expliit formulation also allows us to ompute new quantities suhas overlaps for atypialshh
 j ~qL0(�1)F  ~zN0 j z0; sii = r12(�1)s 1Yn=0 (1� ~qn)(1 + ~qn)= (�1)s q 132 1Yn=0 (1� qn+ 14 )(1� qn+ 34 )(1� qn+ 12 )2 : (4.47)Note the independene on z, no matter whether we take N 0 as in the previous setion oras in the untwisted ase, whih is natural sine there does not exist a distinguished hoiefor N 0 for mixed amplitudes.The orresponding open string theory is easily onstruted using our previous experi-ene. That is, we demand untwisted gluing onditions on the negative real line�uY = �uZ = 0 ;eY L0 ��1 = �e�Y R0 ���1 ;e�Y L0 ��2 = �eY R0 ���2 for z = �z and z + �z < 0 ; (4.48)and twisted on the positive one�nY = �nZ = 0 ;eY L0 ��1 = eY R0 ���2 ;e�Y L0 ��2 = �e�Y R0 ���1 for z = �z and z + �z > 0 ; (4.49)Then the fermions have a monodromy of order four around the origin��1(ze2�i) = i ��1(z) ; ��2(ze2�i) = �i ��2(z) ; (4.50)and the bosons a monodromy of order two�Y (ze2�i) = ��Y ; �Z(ze2�i) = ��Z(z) : (4.51)Thus the fermions have mode expansion�1(z) = Xn2Z+ 34 1n�1nz�n ;�2(z) = Xn2Z+ 14 1n�2nz�n ; (4.52)
27



and the bosons Y (z) = Xn2Z+ 12 1n Yn z�n ;Z(z) = Xn2Z+ 12 1n Zn z�n ; (4.53)We de�ne the ground state to be bosoni if s (the position parameter of the non-generibrane) is even and fermioni if it is odd. The partition funtion is thentr(qL0(�1)F ) = (�1)s q 132 1Yn=0 (1� qn+ 14 )(1� qn+ 34 )(1� qn+ 12 )2 : (4.54)The amplitude involving typial �elds requires as usual zero mode insertions, i.e.hh
 j ~qL0(�1)F  ~zN0 �1�2 j z0; y0ii = p2�k e�iy0=2 1Qn=0(1� ~qn)1Qn=0(1 + ~qn)= 2�k e�iy0=2 q 132 1Yn=0 (1� qn+ 14 )(1� qn+ 34 )(1� qn+ 12 )2 ; (4.55)
and its open string spetrum an be onstruted as in the sympleti fermion ase.In summary, we have been able to give a omplete disussion of Cardy boundary statesin the GL(1j1) WZNWmodel. This was only possible due to the new formulation in termsof sympleti fermions. As a result, we saw that indeed also for the Lie supergroup GL(1j1)Cardy's ondition holds, i.e. any amplitude of two boundary states indeed desribes anopen string spetrum.5 OutlookIn this note, we have established a orrespondene between the Wess-Zumino-Novikov-Witten model on the Lie supergroup GL(1j1) and free salars plus sympleti fermions.This orrespondene introdues a new eÆient way to study the WZNWmodel. A naturalquestion is whether there exist generalizations of the proedure. GL(1j1) is speial in thesense that it is level-independent, i.e. resaling the urrent JE by �2, the fermioniurrents J� by � and leaving JN invariant simply hanges the level k by a fator of �2.Beause of this peuliarity we do not expet our proedure to extend in full generality, butstill we believe that for other supergroups at speial levels suh a presription also applies.A �rst attempt would be to look for free �eld desriptions. This one an do immediatelyby taking the free Gross-Neveu model of a dimension one half vetor transforming in theadjoint representation of the desired supergroup similar to what was done by LeClair forGL(1j1) [8℄. 28



For standard groups the proedure ould also be useful. In the ase of the H+3 modelone an use the proedure to arrive at a model of two free salars and the Liouville ation.However, the vertex operators will take a very ompliated form.A main motivation to study the orrespondene was to serve as a toy model for moresophistiated dualities. The guideline in our approah was to rewrite the GL(1j1) urrentsin suh a form that they are very symmetri as the urrents of a Gross-Neveu model are.We hope that this guiding priniple an serve as an important step in understanding thedualities between the OSp(2N+2j2N) Gross-Neveu model and the prinipal hiral modelof the supersphere S2N+1j2N [3℄.Finally, we used the orrespondene to onstrut the boundary states of GL(1j1) andverify Cardy's ondition, ompleting the series of investigations [16, 15℄. Espeially, wegot a piture of atypial Ishibashi states and their ontributions. As in other logarithmionformal �eld theories there exists more than just one Ishibashi state orresponding toeah atypial representation. Their overlaps might give � -dependent ontributions, butthese Ishibashi states only ontributed to atypial boundary states. Based on the insightsof this note and former work, we should be able to investigate boundary states of otherLie supergroups suh as SU(1j2).We remark, however, that there is still one open problem for branes in GL(1j1). Thereexist branes whose geometry is not a superonjugay lass and whih are rather speialsine their spetra are representations that are indeomposable but reduible. Furtherthey are peuliar sine their dual states are projeted out [26℄. These objets are not un-derstood and it would be interesting to study these in the light of the GL(1j1)-sympletifermion orrespondene.AknowledgementsWe would like to express our gratitude to Volker Shomerus and David Ridout forinteresting disussion. PBR and TC would respetively like to thank the Niels BohrInstitute, Copenhagen, and ETH, Z�urih, for hospitality during part of this work.
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A Some formulas onerning theta funtionsLet us reall some fats about the theta funtion in one variable, a good referene isMumford's �rst book [30℄. �(�; �) is the unique holomorphi funtion on C �H , suh that�(�+ 1; �) = �(�; �);�(�+ �; �) = e��i�e�2�i��(�; �);�(�+ 12 ; � + 1) = �(�; �);�(�=�;�1=�) = p�i�e�i�2=��(�; �) ;limIm(�)!1 �(�; �) = 1 : (A.1)
The theta funtions has a simple expansion as an in�nite produt,�(�; �) = 1Ym=0�1� qm� 1Yn=0�1 + u�1qn+1=2��1 + uqn+1=2� ; (A.2)where q = e2�i� and u = e2�i�. The following variant is of onern to us���� 12(� + 1); ��=�(�) = (1� u)q�124 1Yn=1�1� uqn��1� u�1qn� : (A.3)Its behavior under modular S transformations whih send the arguments of the thetafuntion to ~� = �1=� and ~� = �=� an be dedued from the properties above. Onesimply �nds���� 12(� + 1); ��=�(�) = �ie�i�q� 18 ��~� (12 � �)� 12 ; ~��=�(~�)~q 12 (�� 12 )2= ie�i�q� 18 ~q 12 (�� 12 )2� 124 1Ym=0�1� ~qn+1����1� ~qn+�� : (A.4)
B Representation theory of GL(1j1)We reall some fats of the representation theory of bgl(1j1). A more detailed disussionis given in the Appendix of [16℄.A useful tool for the investigation of the aÆne Lie superalgebra bgl(1j1) and its rep-resentations are automorphisms that do not leave the horizontal subalgebra invariant,the spetral ow automorphisms. The relevant one for our purposes [16℄, m, leaves themodes Nn invariant and ats on the remaining ones asm(En) = En + kmÆn0 ; m(	�n ) = 	�n�m : (B.1)30



These transformations indue a modi�ation of the energy momentum tensorm(Ln) = Ln +mNn : (B.2)The haraters of two representations � and m(�) that are related by spetral ow satisfy�m(�)(�; �) = ��(�+m�; �) : (B.3)Finally, we state the relevant haraters, the typial one is�̂he;ni(�; �) = �̂he;ni(�; �) = un�1q e2k (2n�1+e=k)+1=8���� 12(� + 1); ��Æ�(�)3 (B.4)and the atypial one is following [31℄�̂(m)hni (�; �) = 1Xl=0 �̂hmk;n+l+1i(�; �)= un1� uqm qm2 (2n+m+1)+1=8���� 12(� + 1); ���(�)3 : (B.5)
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