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Abstract
We study open charm production at high energies in the framework of the quasi-multi-Regge-
kinematics approach applying the quark-Reggeization hypothesis implemented with Reggeon-
Reggeon-particle and Reggeon-particle-particle effective vertices. Adopting the Kimber-Martin-
Ryskin unintegrated quark and gluon distribution functions of the proton and photon, we thus
nicely describe the proton structure function F;, measured at DESY HERA as well as the
transverse-momentum distributions of D mesons created by photoproduction at HERA and by

hadroproduction at the Fermilab Tevatron.
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I. INTRODUCTION

The study of open charm production in high-energy lepton-hadron and hadron-hadron
collisions is considered as a test of the general applicability of perturbative quantum chromo-
dynamics (QCD) and also provides information on the parton distribution functions (PDFs)
of protons and photons. The present analysis is to explore our potential to access a new
dynamical regime, namely the high-energy Regge limit, which is characterized by the con-
dition V'S > > Aqep, where v/S is the total collision energy in the center-of-mass (CM)
reference frame, Aqcp is the asymptotic scale parameter of QCD, and p is the typical energy
scale of the hard interaction. In the processes of heavy-quark production, one has u > m,
where m is the heavy-quark mass. In this high-energy regime, the contribution from partonic
subprocesses involving ¢-channel parton (quark or gluon) exchanges to the production cross
section can become dominant. Thus, the transverse momenta of the incoming partons and
their off-shell properties can no longer be neglected, and we deal with Reggeized t-channel
partons.

The quasi-multi-Regge-kinematics (QMRK) approach [1, 2] is particularly appropriate
for this kind of high-energy phenomenology. It is based on an effective quantum field theory
implemented with the non-Abelian gauge-invariant action, as suggested a few years ago
[3]. Our previous analyses of charmonium and bottomonium production at the Fermilab
Tevatron [4] demonstrated the advantages of the high-energy factorization scheme over the
collinear parton model as far as the description of experimental data is concerned. These
observations were substantiated for B-meson production at the Tevatron in Ref. [5], where
the experimental data were again well described using the Fadin-Lipatov effective Reggeon-
Reggeon-gluon vertex [2]. In Ref. [6], where the effective photon-Reggeon-quark vertex was
obtained and for the first time, the hypothesis of quark Reggeization was successfully used to
describe experimental data on single prompt-photon production and on the proton structure
functions Fy and Fj.

The CDF Collaboration measured the differential cross sections do/dpr for the inclusive
production of D°, D D** and DF mesons in pp collisions in run IT at the Tevatron as
functions of transverse momentum (py = |pr|) in the central rapidity (y) region [7]. These
measurements were compared with theoretical predictions obtained at next-to-leading order

(NLO) in the collinear parton model of QCD [8, 9] taking into account quark and hadron



mass effects, and it was found that the latter improve the description of the data.

The differential cross sections do/dpr and do/dy for inclusive D** and DF photoproduc-
tion measured by the H1 [10] and ZEUS [11, 12] collaborations at the DESY HERA Collider
were compared with NLO predictions in the collinear parton model. For D** mesons, this
was done in three approaches: the zero-mass variable-flavor-number scheme (ZM-VENS)
[13, [14], the fixed-flavor-number scheme (FFNS) [15], and the general-mass variable-flavor-
number scheme (GM-VFNS) [16]. The experimental results were found to generally lie above
the NLO expectations. For D¥ mesons, the calculations were performed in the FFNS [15]
and in the model suggested by Berezhnoy, Kiselev, and Likhoded [17].

In this paper, we study D-meson production under HERA and Tevatron experimental
conditions as well as the charm structure function Fh . of the proton for the first time in
the framework of the QMRK approach [I, 2] complemented with the quark-Reggeization
hypothesis. This paper is organized as follows. In Sec. [T, we present the basic formalism
of our calculations and briefly recall the QMRK approach in connection with the quark-
Reggeization hypothesis. In Sec. [Tl we consider the charm structure function F;. of the
proton and compare our results with experimental data. In Secs. [V] and [Vl we describe
D-meson production via c-quark fragmentation at HERA and the Tevatron, respectively. In

Sec. [VIl we summarize our conclusions.

II. BASIC FORMALISM

In the phenomenology of the strong interactions at high energies, it is necessary to de-
scribe the QCD evolution of the PDFs of the colliding particles (hadrons or photons) start-
ing from some scale py which controls a non-perturbative regime up to the typical scale
i of the hard-scattering processes, which is typically of the order of the transverse mass
Mr = \/m of the produced particle (or hadron jet) with (invariant) mass M and
transverse momentum pr. In the region of very high energies, which corresponds to the
so-called Regge limit, the typical ratio z = ;/v/S becomes very small, 2 < 1. This leads to
large logarithmic contributions of the type [as In(1/x)]", where « is the strong-coupling con-
stant, which are conveniently resummed in the Balitsky-Fadin-Kuraev-Lipatov [18] formal-
ism by the evolution of unintegrated gluon and quark distribution functions (Iﬂ;ﬁ(x, q>, 1?),

where x and ¢r are the longitudinal-momentum fraction and transverse momentum of the



Reggeized parton w.r.t. the parent particle, respectively. Correspondingly, in the QMRK
approach [1, 2], the initial-state ¢-channel gluons and quarks are considered as Reggeons,
or Reggeized gluons (R) and quarks (@). They carry finite transverse momenta ¢r with
respect to the hadron or photon beam from which they stem and are off mass shell.

The advantages of the QMRK approach in comparison with the conventional Fkp-
factorization scheme [19] include: firstly, it uses gauge-invariant amplitudes and is based
on a factorization hypothesis that is proven in the leading logarithmic approximation; sec-
ondly, it carries over to non-leading orders in the strong-coupling constant, as recently proven
[20]. The Reggeization of amplitudes provides the opportunity to efficiently take into ac-
count large radiative corrections to processes in the Regge limit beyond what is included in
the collinear approximation, which is of great practical importance.

Recently, the Feynman rules for the induced and some important effective vertices of the
effective theory based on the non-Abelian gauge-invariant action [3] have been derived in
Ref. [21]. However, these rules only refer to processes with Reggeized gluons in the initial
state. As for t-channel quark-exchange processes, such rules are still unknown, so that it is
necessary to construct effective vertices involving Reggeized quarks using QMRK approach
prescriptions in each application from first principles. Of course, a certain set of Reggeon-
Reggeon-Particle effective vertices are known, for example for the transitions RR — g [22],
QQ — g 23], and RQ — q [24]. The effective v*Q — ¢ vertex, which describes the
production of a quark in the collision of a virtual photon with a Reggeized quark, has been
recently obtained in Ref. [].

In our numerical calculations below, we adopt the prescription proposed by Kimber,
Martin, Ryskin, and Watt [25] to obtain unintegrated gluon and quark distribution functions
for the proton from the conventional integrated ones, as implemented in Watt’s code [26].
To obtain the analogous unintegrated functions for the photon, we modify Watt’s code [26].
As input for this procedure, we use the Martin-Roberts-Stirlin-Thorne [27] proton and the
Gliick-Reya-Vogt [28] photon PDFs.

III. CHARM STRUCTURE FUNCTION F; . OF THE PROTON

On the experimental side, the charm structure function F,, of the proton was measured

by H1 [29] and ZEUS [30] in deep inelastic scattering (DIS) of electrons and positrons on



protons at HERA. In this section, we consider this quantity in the framework of the QMRK
approach endowed with the quark-Reggeization hypothesis. We thus need the partonic cross
section for the production of a ¢ quark in the collision of a virtual photon and a Reggeized

charm quark. The relevant vertex was found in Ref. [6] and reads:

G v 2k J+ 2:vzq§Pz“g
i+ ad+a"? (@d+@)2"2)’

(1)

a
Clo = —eeq

where the four-momenta of the virtual photon, the proton, the Reggeized charm quark,
and the outgoing charm quark are denoted as qi, P», ¢o = 2P + qor, and k = q; + qo,
respectively. We concentrate on photons with large virtuality Q* = —¢? > m?, so that the
massless approximation for describing DIS structure functions is appropriate [6]. We then
obtain the following master formula for F, :

Q*(Q' + 6Q%, + 2t3)
(Q% +t3)3 ’

where e, = 2/3 is the fractional electric charge of the ¢ quark and zo, = z(Q? + t2)/Q?,

Q2
Poclwn, Q%) = 2€2 [ dty ®2(ws, 12, %) (2)

with xp being the Bjorken variable. For definiteness, we choose the factorization scale to be
0= Q>

In Fig. [l we compare the zp distributions of Fy . for various values of @Q? with the H1
[29] and ZEUS [30] data. We find good agreement for all values of Q?, except for the highest
one, Q% = 500 GeV?, where our prediction is about 50% below the data. This disagreement
shows the importance of higher-order corrections at large values of @2, which are beyond

the scope of our present study.

IV. D-MESON PRODUCTION AT HERA

On the experimental side, ZEUS measured the pr distributions of D** [11] and DF [12]
mesons with rapidity[34] |y| < 1.5 inclusively produced in photoproduction at HERA I, with
proton energy E, = 820 GeV and lepton energy E, = 27.5 GeV in the laboratory frame,
in the ranges 2 < pr < 12 GeV and 3 < pr < 12 GeV, respectively. In this section, we
compare this data with our QMRK predictions. At leading order (LO), we need to consider
only three 2 — 1 partonic subprocesses, namely C,y — ¢ for direct photoproduction and
CpR, — c and R,C, — c for resolved photoproduction, where the subscript indicates the

mother particle.



Exploiting the factorization theorem, the pr distribution of direct photoproduction takes

the form
299 _ o (ay[a ) 2
pTdPTT - ﬂ-/ y/ Zx'yf'y/e(x'y)z C*)D(Z7ILL )
X B (21,11, )| M(Cyy — )2, (3)
where
pre? pre Y 2 > Pr
== = ti =k kr = — 4
o 22E,’ T 2zE, ! £ r 2z’ (4)

with I;T being the transverse momentum of the produced ¢ quark. We evaluate the quasi-
real-photon flux f,/. in Weizsacker-Williams approximation using

o [1+(1-2,), Q. 1 1
f(m):% (% ) In =5 +2m§%< 2. ()2 )]’ (5)

min max

min

2

where a is Sommerfeld’s fine-structure constant, m, is the electron mass, Q2 ;, = mZz2 /(1 —

2

— 2
cax = 1 GeV? in our case

z,), and Q2% is determined by the experimental setup, with @
[11,[12]. As for the ¢ — D fragmentation function (FF) D._, p, we adopt the non-perturbative
D** and DF sets determined in the ZM-VEFNS with initial evolution scale g = m,. [31] from
fits to OPAL data from CERN LEP1. We choose the renormalization and initial- and final-
state factorization scales to be u = \/m, where mp is the D-meson mass. Using
the Reggeized-quark—photon effective vertex from Ref. [6], the square of the hard-scattering

amplitude is found to be

|M(Cry — ¢)]2 = 8rae’k}. (6)
It is understood that also the contribution from the charge-conjugate partonic subprocess is
to be included in Eq. (3]).

In the case of resolved photoproduction via the partonic subprocess C,R, — ¢, the

factorization formula reads:

do
v = [dv [ dz [ do, [dta [ doo f(a) Dot
X D2 (a1, by, 1)) (22, ta, 1) M (C, R, = P, (7)
where
preY pre Y L
"= QZEp’ T2 = 21"YZE6, 1 =12 — 2kT\/5COS d)Q + k%, 1ty = qu, kT — ?,
(8)



with ¢ being the angle enclosed between pr and ¢hr. Using the Reggeized-quark—Reggeized-

gluon effective vertex from Ref. [24], we have

BI(CR = P = gﬂas(;f)k%. (9)

Again, the charge-conjugate partonic subprocess is to be included in Eq. (7). Resolved
photoproduction via the partonic subprocess R,C, — c is treated very similarly.

In Figs.B(a) and (b), our results for D** and DF mesons, respectively, are broken down to
the C,y — ¢, C,R, — ¢, and R,C., — c contributions and are compared with the ZEUS data
[11, [12]. We find that the theoretical predictions are dominated by direct photoproduction

and agree rather well with the experimental data over the whole p; range considered.

V. D-MESON PRODUCTION AT THE TEVATRON

CDF [7] measured the pr distributions of D°, D* D** and D¥ mesons with rapidity
ly] < 1 inclusively produced in hadroproduction in run II at the Tevatron, with /S =
1.96 TeV. To LO in the QMRK approach, the factorization formula for the C,R; — ¢

channel reads:

d
vl = [ay [dz [ dt [ o *Desn(zp?)
pPr
X qﬂ;(%,tlaMz)@§($2,t2aﬂ2)|M(CpRﬁ — c)[?, (10)

where |M(C, Rz — ¢)|? is given by Eq. (),

_ preY _ pre’?

“ s TR

The result for the R,C5 — ¢ channel is similar and has to be included in Eq. (I0) together

2
T t2:t1—2p?T\/Ecos¢2+Z—§. (11)

with those from the charge-conjugate partonic subprocesses.

In Figs.Bla)—(d), our results for D°, D* D** and DF mesons, respectively, are compared
with the CDF data [7]. We find that the theoretical predictions generally agree rather well
with the experimental data, except perhaps for the slope. In fact, the predictions exhibit a
slight tendency to undershoot the data at small values of py and to overshoot them at large
values of pr. However, we have to bear in mind that these are just LO predictions, so that

there is room for improvement by including higher orders.



In the framework of the collinear parton model, comparisons with the experimental data
of Ref. [7] were performed beyond LO, namely in the fixed-order-next-to-leading-logarithm
(FONLL) scheme [8] and at NLO in the GM-VFNS [9, 132]. The FONLL predictions sys-
tematically undershoot the CDF data [7]. The GM-VFNS predictions of Ref. [9], which
are evaluated with FFs determined in the ZM-VFNS [31], describe these data within their
errors, but are still somewhat on the low side. The degree of agreement is further improved
[32] by evaluating the GM-VFENS predictions of Ref. [9] using FFs extracted [33] from a

global fit to B- and Z-factory data of eTe  annihilation in the very same scheme.

VI. CONCLUSIONS

In this paper, we explored the usefulness of the quark-Reggeization hypothesis in the
framework of the QMRK approach by studying several observables of inclusive charm pro-
duction at LO, namely the charm structure function F;. of the proton measured at HERA
[29,130] as well as the one-particle-inclusive cross sections of D** and DF photoproduction in
ep collisions at HERA [11,[12] and of D°, D*, D** and DZ hadroproduction in pp collisions
at the Tevatron [7]. In all three cases, we found satisfactory agreement between our default
predictions and the experimental data, which is quite encouraging in view of the simplicity
of our LO expressions for the partonic cross sections. By contrast, in the collinear parton
model of QCD, the inclusion of NLO corrections is necessary to achieve such a degree of
agreement. We thus recover the notion that the QMRK approach is a powerful tool for the
theoretical description of QCD processes in the high-energy limit and automatically accom-
modates an important class of corrections that lie beyond the reach of the collinear parton

model at LO [4].
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FIG. 1: Fy.(7p,Q?) as a function of zp at (a) Q? = 25, (b) 30, (c) 45, (d) 60, (e) 130, and

(f) 500 GeVZ2. The H1 [29] (open circles) and ZEUS [30] (filled circles) are compared with LO

predictions from the QMRK approach with the quark-Reggeization hypothesis.
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