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Abstra
tWe propose, using the example of the O(4) sigma model, a general method for solving integrabletwo dimensional relativisti
 sigma models in a �nite size periodi
 box. Our starting point is theso-
alled Y-system, whi
h is equivalent to the thermodynami
 Bethe ansatz equations of Yang andYang. It is derived from the Zamolod
hikov s
attering theory in the 
ross 
hannel, for virtualparti
les along the non-
ompa
t dire
tion of the spa
e-time 
ylinder. The method is based on theintegrable Hirota dynami
s that follows from the Y-system. The out
ome is a nonlinear integralequation for a single 
omplex fun
tion, valid for an arbitrary quantum state and a

ompanied by the�nite size analogue of Bethe equations. It is 
lose in spirit to the Destri-deVega (DdV) equation.We present the numeri
al data for the energy of various states as a fun
tion of the size, and derivethe general L�us
her-type formulas for the �nite size 
orre
tions. We also re-derive by our methodthe DdV equation for the SU(2) 
hiral Gross-Neveu model.
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1 Introdu
tion and SummaryThe study of the properties of Quantum Field Theories (QFT's) in �nite volume, or at �nitetemperature, has a long history and numerous appli
ations. Matsubara des
ription [1℄ of �nitetemperature T thermodynami
s, by 
onsidering the system in the periodi
 imaginary time t, haslead to the extensive study of the Eu
lidean QFT's with one 
ompa
ti�ed dimension with numerousphysi
al appli
ations [2℄.L�us
her found the leading �nite size 
orre
tions to the mass gap in relativisti
 two dimensionalQFT's [3, 4℄. These 
orre
tions depend solely on the asymptoti
 S-matrix of the theory. Re
ently,L�us
her 
orre
tions to various multi-parti
le states in integrable 2D QFT were 
onje
tured [5℄.For the integrable 2D QFT's, as understood during the last two de
ades, the ambitions 
an bemu
h higher: these systems are usually solvable at any �nite size though a systemati
 approa
h tosu
h solutions, as well as a good understanding of the working pres
riptions, are still missing.
s

t

Figure 1: Physi
al 
hannel, 
ross-
hannel and �nite volume vs �nite temperature.There are two main s
hemes to address the �nite size 
al
ulations. The �rst, pioneered byDestry and deVega (DdV) [6℄, is based on the integrable dis
retization. On
e su
h dis
retization isat hand, the system 
an be studied by the well established methods based on the transfer matrixapproa
h and the resulting non-linear integral equation (NLIE), often 
alled the DdV equation,
al
ulates not only the ground state energy but also the spe
trum of ex
ited states. The methodappeared to be very powerful when applied to the Sine-Gordon model [7, 9, 11, 12, 13℄, or to moregeneral RSOS models [14℄, Toda theories [15℄, hard hexagon models [16℄, et
.However, for generi
 integrable QFT it is far from easy to �nd the 
orresponding integrablelatti
e regularization and for many models su
h dis
retization is not known. Nevertheless, theproblem 
an be usually ta
kled by using a 
omputation s
heme alternative to the DdV approa
h.As explained in the seminal work of Al.Zamolod
hikov [17℄ this is a
hieved by the double Wi
krotation tri
k: using the Matsubara imaginary time formulation we 
an �rst �nd the free energy inthe in�nite volume but �nite temperature. Next we 
ip the meaning of eu
lidian time and spa
edire
tions on the 
ylinder: � ! �; � ! � , and interpret the free energy as the ground state of thesystem in �nite volume L = 1T (see �g.1). In this way we 
an obtain the exa
t �nite volume groundstate energy. This 
omputational s
heme is known by the name of Thermodynami
 Bethe Ansatz(TBA).The TBA equations, whose number is in�nite in many interesting models, 
an be usually 
on-
isely 
asted into the so 
alled Y-system fun
tional equations [18, 19℄. Often the latter one 
an be3
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E L/2p

LFigure 2: Plots of energies E of a few ex
ited states of O(4) model on a 
ir
le of a 
ir
umferen
eL. The verti
al axis 
orresponds to the values of L2�E, the horizontal axis - to the values of L in thelogarithmi
 s
ale. The lowest 
urve depi
ts the va
uum energy. The next one, labeled as �0, showsthe mass gap energy. The 
orresponding state is in the U(1) se
tor, with a single parti
le at rest,hen
e with the mode number = 0. The next states in the U(1) se
tor are denoted by �n1n2n3;���,a

ording to the mode numbers n1; n2; n3; : : : ex
ited for the 1-st, 2-nd, 3-rd, et
., parti
les. Forall these states the SU(2)L and SU(2)R spins of the several parti
les are pointing in the samedire
tion, say they are spin \up". The dashed line represents a state having a polarization out ofthe U(1) se
tor, with left and right \magnons" ex
ited - it 
orresponds to the quantum state oftwo parti
les where both SU(2)L and SU(2)R spins are in the singlet s = 0 state. The qualitativeexplanation of these graphs will be given in subse
tion 5.2.rewritten in the form of DdV equations or some similar set of integral equations for a �nite set offun
tions. The method was su

essfully used for many relativisti
 models [20, 21, 22, 23, 24℄. Asexplained in the previous paragraph the 
omputation of the exa
t ground state energy by meansof this method is a relatively straightforward task with solid theoreti
al foundations.To obtain the exa
t spe
trum 
omprising all ex
ited states of the theory is, on the other hand,a mu
h more involved - and a very interesting - task. A possibility to des
ribe the ex
ited stateswithin the TBA approa
h, by modifying the analyti
al properties of the thermodynami
 fun
tions,was �rst suggested in [24℄. Another possible way to obtain the spe
trum of the theory, proposedaround the same time, is based on the analyti
 
ontinuation of the ground state energy with respe
tto the parameters of the model, su
h as the mass or the 
hemi
al potential, in order to �nd theex
ited states [25℄. If the integrable latti
e regularization is absent, it is not well understood whythese methods work. Nevertheless, the results are usually in the ex
ellent agreement with theperturbation theory, L�us
her �nite size 
orre
tions and the dire
t Monte-Carlo study for a widerange of sizes L (see for example [26, 27, 28, 29, 30℄ for O(n) and related �-models).4
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Figure 3: Domains of appli
ability of di�erent des
riptions of an integrable �eld theory at a �nitevolume L. In the ultra-violet regime, for small volume measured in units of a dynami
ally generatedmass, the theory 
ould be des
ribed by a 
onformal theory. In the infrared, at large volume, one
an use the asymptoti
 Bethe equations. The leading order �nite size 
orre
tions are governed bythe (generalized) L�us
her 
orre
tions. At any volume but for the ground state energy only one 
anuse Thermodynami
al Bethe ansatz. Hirota equation, equivalent to Y-system but more eÆ
ientwhen it 
omes to imposing appropriate analyti
ity properties, is a universal tool 
overing the wholediagram.For models with diagonal s
attering, like the Sinh-Gordon theory [31℄, the whole 
lassi�
ationof ex
ited states is possible [32℄. The situation is mu
h more 
omplex when we deal with the non-diagonal s
attering. The nested stru
ture of the 
orresponding Bethe ansatz equations leads to
ompli
ated magnon-type ex
itations and bound states. Little is known about the ex
ited statesin su
h �nite size systems. The only models where the polarized ex
ited states were investigated,using the DdV equations, are the Sine-Gordon model [7℄ and its supersymmetri
 version [11℄ as wellas the tri
riti
al Ising model [10℄. By the existing methods only the se
tors with diagonal s
attering
an be studied eÆ
iently, as was done for example for the O(4) sigma model in [30℄. A generaland uni�ed des
ription of all ex
ited states of the �-models like O(n) or the SU(N) prin
ipal 
hiral�eld (PCF), and similar ones, having a \geometri
" target spa
e, is still absent.The main goal of the present paper is to give a method of a general and systemati
 des
ription ofall the states of integrable QFT's in �nite volume. We will explain how to go beyond the asymptoti
spe
trum and 
ompute the full �nite size spe
trum 
omprising all ex
ited states of integrable sigmamodels. We do it here on the example of O(4) sigma model and also for the SU(2) 
hiral Gross-Neveu model but our formalism is 
ertainly more general and is most probably appli
able to anyintegrable 1+1 dimensional �-models. The main ingredients of the method are:� The two-parti
les S-matrix for integrable system allows us to write the periodi
ity 
onditionquantizing the momenta of the physi
al parti
les on a large 
ir
le of length R. The equationsfollowing from the periodi
ity 
ondition are so 
alled asymptoti
 Bethe ansatz (ABA) equa-tions des
ribing all states of the model. The details of this 
omputation for the SO(4) sigma5



model are given in Appendix A1. They are, however, valid only in a suÆ
iently big volume
ompared to the typi
al intera
tion distan
e, Rm � 1 where m is the in�nite volume massgap.� For the ground state, the double Wi
k rotation (�; �)! (�; �) allows to redu
e the problemto the thermodynami
s. One 
an put the eu
lidian theory on the torus with one radius,R; very large and another one, L, arbitrary (see the �g.1). The ground state energy for a�nite radius is related to the thermodynami
 partition fun
tion. The exa
t equations for it
an be found using the asymptoti
 spe
trum given in the 
ross 
hannel by the asymptoti
Bethe equations. The resulting in�nite series of integral equations, thermodynami
 Betheansatz (TBA) equations, are 
asted into a fun
tional form 
alled Y-system. Here is the mainassumption: we assume that di�erent solutions of the Y-system des
ribe not only the groundstate but all the ex
ited states. One should furthermore restri
t the 
lass of solutions byassuming 
ertain analyti
 properties whi
h will in parti
ular identify the quantum numbersof the states we are 
onsidering.� Classi
al integrability of the Y-system, as a �nite di�eren
e equation equivalent to the Hirotadi�eren
e equation [34, 19℄, allows us to express expli
itly the in�nite number of the unknownfun
tions through a �nite number of the basi
 ones [35, 36℄.� The Baker-Akhiezer fun
tion of the Lax pair asso
iated with the Hirota equation 
an beinterpreted as the Baxter fun
tion en
oding the \magnon" Bethe roots, responsible for theSU(2)R and SU(2)L polarizations of states. The analyti
ity properties important for thefull formulation of the resulting non-linear integral equation, are also suggested by the Laxequations. The gauge symmetry of Hirota equations allows to expli
itly �x the �nal nonlinearintegral equation (NLIE) for ea
h state of the theory.The resulting equation 
an be studied in various limits (su
h as L�us
her �nite size 
orre
tionsor small volume, 
onformal limit) or solved numeri
ally in a rather eÆ
ient way. The �g.2 showssome of our numeri
al results obtained from the new equation, plotting the energy of various statesas fun
tions of the volume. When the similar results are available in the literature the agrement isperfe
t.The general s
heme elaborated in this paper on the example of the O(4) sigma-model shouldbe appli
able to all integrable relativisti
ally symmetri
 2D QFT's. It should be also useful forthe study of �nite size e�e
ts when the system does not look expli
itly relativisti
 but allows theS-matrix des
ription and this S-matrix obeys the 
rossing symmetry, like the AdS/CFT S-matrix[37, 38℄. Y-system and Hirota equations give a uni�ed and powerful point of view at all thissubje
t sin
e they solve in an almost trivial way the \kinemati
" part of the problem related to therepresentation theory, whatever is the symmetry or supersymmetry of the model [35, 39℄.Our method based on Hirota equation, being exa
t for any �nite size L of the system, reprodu
eswell various limiting 
ases (see the �g.3). For the large L, the energies of the states are well des
ribedby the L�us
her 
orre
tions [3, 4, 5℄2. We derive them here for a general state with arbitrarypolarization, whi
h is also a new result, extending some hypothesis existing in the literature [5℄.For small L, our results are well des
ribed by the theory of three free bosons, as will be dis
ussed1We are unaware of the existen
e of su
h derivation of the Y-system for the PCF in the literature2A
tually, as we will see from our numeri
s, L�us
her 
orre
tions work surprisingly well all the way untilLm � 1. 6



in the paper. The results for various low-lying levels, in
luding the 
ases of non-diagonal s
atteringwhi
h are new, are summarized in the �g.2.Our resulting NLIE 
an be brought sometimes to a form similar to the DdV equation. In the
ases when the latter is available it 
an even 
oin
ide with DdV equation (an example of the 
hiralGross-Neveu model is 
onsidered in our paper). It would be extremely interesting to understand therelation between the solution based on the integrable latti
e dis
retization of [40℄ and our proposedintegral equations. Nevertheless we should stress that the real power of our method should be in itsuniversality: it should work in all situations when the TBA equations in the form of the Y-systemare available.2 TBA and Y-system for O(4) sigma model, or SU(2)Prin
ipal Chiral FieldThe method we are proposing it quite general and we hope that a wide range of models 
ould besolved using it. However for the sake of simpli
ity we will exemplify it on the SU(2) Prin
ipalChiral Field (PCF), equivalent to the O(4) sigma model. In se
tion 4 we will also 
onsider theSU(2) Chiral Gross-Neveu model.2.1 The ModelThe a
tion of the PCF is given by the usual expressionS� = 1e20 Z dt dx (��Xa)2; 4Xa=1(Xa)2 = 1 ; (1)whose target spa
e is S3. It is equivalent to the SU(2)
 SU(2) prin
ipal 
hiral �eld (PCF) whosein�nite volume solution was given in [41, 42, 43℄. Indeed, by pa
king the �elds Xi into an SU(2)group element h = X4 + iP3j=1Xj�j with �j being the usual Pauli matri
es, we 
an re-write thea
tion as3 SPCF = � 12e20 Z dt dx tr(h�1��h)2 : (2)The spe
trum of this asymptoti
ally free theory in the in�nite volume 
onsists of a singlephysi
al parti
le of mass m = �e� 2�e20 , where � is a 
ut-o�. Its wave fun
tion transforms in thefundamental representation under ea
h of the SU(2) subgroups. Al. and A.Zamolod
hikov [33℄proposed the exa
t elasti
 s
attering matrix for su
h parti
les:Ŝ12(�) = S0(�) R̂(�)� � i 
 S0(�) R̂(�)� � i ; S0(�) = i� �12 � i�2 �� �+ i�2 �� �12 + i�2 �� �� i�2 � ; (3)where R̂(�) is the usual SU(2) R-matrix in the fundamental representation given by R̂(�) = �+ iP̂and P̂ is the permutation operator ex
hanging the spins of the parti
les being s
attered. This3In the AdS=CFT literature one usually uses p� = 4�e20 .7



S-matrix was established due to: (i) analyti
ity, (ii) unitarity, (iii) absen
e of bound states, (iv)
rossing. In parti
ular, (ii) and (iv) lead to the following identityS0(� + i=2)S0(� � i=2) = � � i=2� + i=2 (4)on the s
alar (dressing) fa
tor. We 
an use this S-matrix to study the spe
trum of N parti
les ina periodi
 spa
e 
ir
le of a suÆ
iently big 
ir
umferen
e L � m�1. The spe
trum 
an be de�nedfrom the wave fun
tion periodi
ity 
onditionNYj=k+1 Ŝ(�k � �j) k�1Yj=1 Ŝ(�k � �j)j	i = e�imL sinh(��k)j	i ; (5)whi
h quantizes the momenta of the physi
al parti
les. The asymptoti
 spe
trum of the theory puton a large 
ir
le of length L is then given byE = NXj=1m 
osh(��j) (6)where �j are solutions to the Bethe equation (see Appendix A for more details). In what follows wewill measure all dimensional quantities in the units of m. Diagonalizing the periodi
ity 
ondition(5) in the physi
al spa
e by the usual methods (see an appendix in [39℄ for this model) we get themain Bethe equatione�iL sinh(��j) = �Yk S20(�j � �k)Qu(�j + i=2)Qu(�j � i=2)Qv(�j + i=2)Qv(�j � i=2) : (7)The magnon rapidities uj and vj are �xed by the auxiliary Bethe equations� Qu(uj + i)Qu(uj � i) = �(uj + i=2)�(uj � i=2) ; �Qv(vj + i)Qv(vj � i) = �(vj + i=2)�(vj � i=2) ; (8)where Qw(x) =Yj (x� wj) ; for w = u; v; (9)and �(x) =Qj(x� �j).2.2 TBA and Y-systemAs we mentioned in the introdu
tion, the ground state energy E0(L) for arbitrary L 
an be 
om-puted starting from asymptoti
al Bethe ansatz in the 
ross-
hannel. For SU(2) prin
ipal 
hiral�eld this is des
ribed in detail in the Appendix A. The output is that the ground state energy isgiven by E0(L) = �12 Z d� 
osh(��) log(1 + Y0) ; (10)where Y0 is one out of an in�nite number of Y -fun
tions Yn with n 2 Z obeying the TBA-typeequations log Yn + L 
osh(�x)Æn0 = s � log(1 + Yn+1)(1 + Yn�1) ; n = 0� 1;�2; : : : (11)8



with s = 12 
osh(�x) and the sign � denoting the 
onvolution. If log(Yn(x)) for any n have nosingularities inside the physi
al strip �1=2 < Im x < 1=2 we 
an easily invert the operator s� to getsimply s�1 = e i2�x + e� i2�x and these integral equations 
an be rewritten in a fun
tional, Y -systemform Y +n Y �n = (1 + Yn+1)(1 + Yn�1) ; (12)supplemented with the asymptoti
 boundary 
onditions for large xYn � e�L 
osh(�x)Æn0 � 
onstn : (13)The supers
ripts � stand for shifts of the argument by �i=2 4,f� � f(x� i=2) : (14)Eq.(12) has however many solutions and only one of them really leads to the ground state energy.
Figure 4: Dynkin diagram (three 
entral nodes) and its extension for the magnon bound states(grey nodes) re
e
ting the stru
ture of the Y-system. The 
entral, bla
k node 
orresponds tothe U(1) se
tor ex
itations of the model (�-roots), the upper and lower nodes 
orrespond to themore general states for magnon ex
itations for the SU(2)L wing (u-roots) and the SU(2)R wing(v-roots).It is 
ommonly believed that 
ertain other solutions there des
ribe the ex
ited states [25, 44℄. Theenergy of the N -parti
le ex
ited states is again given in terms of Y0 but is modi�edE(L) = �12 Z d� 
osh(��) log(1 + Y0) + NXj=1m 
osh(��j) ; (15)where the extra terms are inspired by the analyti
 
ontinuation in L and the points �j [25℄ aresingularities of the integrand in the �rst termY0(�j � i=2) = �1 ; j = 1; 2; : : : ; N : (16)As we shell see, the last equation is nothing but the Bethe ansatz equation for physi
al rapiditiesmodi�ed at the �nite volume. The last term in (15) is generated from the integral (10) by pi
kingup the logarithmi
 poles (16).Our goal in this se
tion is to make use of the integrability of the Y-system rewriting it in the formof 
lassi
al integrable dis
rete Hirota dynami
s. This allows us to write down expli
itly a solutionfor all Yn in terms of a �nite number of fun
tions. Then we will restri
t ourself to a 
ertain sub-
lassof physi
ally relevant solutions with parti
ular analyti
 properties. The analyti
ity will allow us to�x the fun
tions 
ompletely and parameterize all the physi
al solutions for the ex
ited N parti
lestates in terms of a �nite set of 
omplex parameters, Bethe roots, restri
ted by supplementaryBethe equations redu
ing in the in�nite volume to the usual Bethe equation.4We will often use even a more general notation, like f kz }| {++ : : :+ = f(x + ik=2) or f kz }| {�� : : :� = f(x �ik=2). 9



2.3 Hirota equationsThe Y -system equations eq.(12) 
an be seen as a gauge invariant version of the so 
alled Hirotaequation or T -systemTk(x+ i=2)Tk(x� i=2) � Tk�1(x)Tk+1(x) = ��x+ ik2� ���x� ik2� : (17)It 
an be easily 
he
ked [19℄ that Hirota equation is equivalent to the Y -system eq.(12) if we denoteYk(x) = Tk+1(x)Tk�1(x)� �x+ ik2� �� �x� ik2� : (18)At �rst sight, this is just another trivial rewriting of the TBA equations, however the Hirota formappears to be parti
ulary useful. Using Hirota equation we 
an also write1 + Yk(x) = Tk(x+ i=2)Tk(x� i=2)� �x+ ik2� �� �x� ik2� : (19)Let us point out here an important fa
t. By evaluating the above equation for k = 0 at �j � i=2where �j is a zero of T0 we observe thatT0(�j) = 0 ) Y0(�j � i=2) = �1 (20)whi
h is the Bethe ansatz eq.(16). We will use this fa
t to asso
iate zeroes of T0 with physi
alrapidities.Sin
e Yk(x) are real fun
tions by their physi
al meaning (for ground state they are ratios ofdensities of 
omplexes and of their holes, see Appendix A) we 
an restri
t ourself to the 
ase whenTk are real fun
tions and � and �� are 
omplex 
onjugated fun
tions.Hirota equation (17) is integrable and has a Lax representation through the auxiliary problem[35℄ Tk+1(x)Q�x+ ik2�� Tk �x� i2�Q�x+ ik2 + i� = +��x+ ik2� �Q�x� ik2 � i�Tk�1 (x) �Q�x� ik2 � i�� Tk �x� i2� �Q�x� ik2� = ����x� ik2�Q�x+ ik2� : (21)The 
ompatibility of these two equations for the bi-ve
tor of fun
tions fQ(x); �Q(x)g leads to theinitial Hirota equation. Here �Q is the 
omplex 
onjugate fun
tion to Q. Note that if Tk(x) are realfun
tions then the se
ond equation is simply the 
omplex 
onjugate of the �rst one after shiftingk ! k + 1 and x! x+ i=2. Two parti
ularly useful relations from this Lax representation areT1(x) = T0(x� i=2)Q(x + i)Q(x) + �(x) �Q(x� i)Q(x) ;T�1(x) = T0(x+ i=2) Q(x)Q(x + i) � �(x) �Q(x)Q(x+ i) ; (22)Note that the �rst relation in (22) is a generalization of the famous Baxter equation usually writtenfor the spin 
hains. We will see that in the in�nite volume limit �(x) = T0(x + i=2) and that10



these equations redu
e to the usual Baxter equation for spin 
hains, where T1 plays the role of thetransfer matrix in fundamental representation for the magnons of the SUR(2) wing of the theory,whereas the se
ond equation plays a similar role for the SUL(2) wing (see Fig.4).The main advantage of the Lax equations (21) is that they are linear in Tk and we 
an easilyexpress any Tk in terms of T0;� and Q in the expli
it form [35℄Tk(x) = Q �x+ ik+12 �Q �x� ik�12 �T0(x� ik=2) (23)+ Q�x+ ik + 12 � �Q�x� ik + 12 � kXj=1 � �x� ik+12 + ij�Q �x� ik�12 + ij�Q �x� ik+12 + ij� :This leads to a quite general and expli
it solution of the Y -system via eq.(18). A ni
e feature of thisform is that one 
an eÆ
iently analyze the L ! 1 limit and reprodu
e the asymptoti
 spe
trumdes
ribed by BAE eqs.(7,8). This will be the goal of the next se
tion.Hirota and Lax equations exhibit several important symmetries. First of all a dis
rete symmetryex
hanging the u-wing and the v-wing (right and left SU(2)): Yk $ Y�k is indu
ed byTk $ T�k ; �$ ��� ; Q$ �Q�� ; �Q$ Q++ ; (24)whi
h will be quite useful for our further 
onstru
tions. Moreover, both equations (17) and (21)are invariant under the gauge transformationTk(x) ! g�x+ ik2� �g�x� ik2� Tk(x);�(x) ! g(x � i=2)g(x + i=2)�(x);��(x) ! �g(x� i=2)�g(x+ i=2)��(x);Q(x) ! g(x � i=2)Q(x): (25)To preserve the reality of Tk we should assume that �g is the 
omplex 
onjugated fun
tion to g.These transformations leave Yk(x) invariant.The general solution of Hirota equation (17) 
an be also presented in a determinant form [35℄Tk(x) = h(x+ ik=2) ���� Q(x+ ik+12 ) R(x+ ik+12 )�Q(x� ik+12 ) �R(x� ik+12 ) ���� (26)where h(x) is a periodi
 fun
tion: h++ � h(x + i) = h(x) and Q;R are two linearly independentsolutions of the Lax equations (21) related by the Wronskian relation�(x) = h(x+ i=2) ���� R(x) Q(x)R(x+ i) Q(x+ i) ���� : (27)This determinant form will be very useful when we will formulate the general solution of the �nitesize PCF system for any state. It is not absolutely ne
essary to use it, but it simpli�es somederivations. 11



2.4 Asymptoti
 Bethe Ansatz and Classi�
ation of the SolutionsThe main problem in 
omputing the exa
t spe
trum of the SU(2) PCF is to �nd the physi
alsolutions to the Y -system (12) or, alternatively, to the Hirota equation (17), i.e., obeying the rightasymptoti
 properties (13). Their 
lassi�
ation is a 
ompli
ated task, espe
ially when we want totake into a

ount not only the ex
itations of U(1) se
tor but also the \magnon" type ex
itationsof SU(2)L and SU(2)R se
tors. The goal of this se
tion is thus to identify the large L solutionsto the Y -system (12). The dis
ussion in this se
tion is not 
ompletely rigorous sin
e our only goalis to get an idea of how asymptoti
 Bethe ansatz (ABA) eqs.(7,8) appears from the Y -system.Together with the expression (6) the ABA equations must appear from the large L asymptoti
 ofexa
t solutions, as yielding the leading order value of the full spe
trum.The main simpli�
ation in the large L limit is that Y0 ! 0. From eq.(13) we see that Y0 !2e�L 
osh(�x) and we are left with two de
oupled 
hains of equations for k > 0 and k < 0 [13℄.For ea
h wing we 
an introdu
e two sets of Tk des
ribing the 
orresponding solutions of the wholeT -system: T uk and T vk su
h that Yk>0 (Yk<0 )
an be expressed in terms of T uk (T vk ) by the formula(18). Then Y0 = 0 implies T u�1 = 0 ; T v1 = 0 : (28)Let us fo
us on T uk sin
e we 
an always use the wing ex
hange symmetry (24) to des
ribe T vk .We have to identify the solutions whi
h will lead to the asymptoti
 spe
trum des
ribed by theABA. It turns out that in terms of Hirota potentials Tk it is enough in this limit to make verysimple assumptions, namely:� All T uk>0(x) are polynomials at L!1. We denote in this limit T u0 (x) �Qj(x� �j) � �(x):� Qu(x) is a polynomial with real roots whi
h we denote Qu(x) =Qj(x� uj).Then from eq.(22) we see that�u(x) = T u0 (x+ i=2) and T u1 (x) = T u0 (x+ i=2)Qu(x� i) + T u0 (x� i=2)Qu(x+ i)Qu(x) : (29)From the polynomiality 
ondition for T uk (x) and T vk (x) we get pre
isely the auxiliary Bethe equationseq.(8).Finally, we should note that eq.(7) for the physi
al rapidities �j is also satis�ed. This followsfrom imposing Y0(�j � i=2) = �1 for all zeros �j of T u0 , see (20). At �rst sight, this seems to beimpossible to satisfy sin
e, as we noti
ed, Y0(x) is small. However this smallness appears be
auseY0 is proportional to e�L 
osh(�x) whi
h is indeed small inside the physi
al strip �1=2 < Im x < 1=2but is of order 1 on the boundary of this strip. To impose this 
ondition we must �rst 
ompute Y0to the next order.From (12) at n = 0 we get Y +0 Y �0 = T u+1 T v+�1 T u�1 T v��1(�++���)2 : (30)De�ning S(x) =QNj=1 S0(x� �j) we have, from the 
rossing relation (4), S++S = �=�++ , so thatY +0 Y �0 = �T u1 (x)T v�1(x)S2(x+ i=2)�2(x� i=2) �+�T u1 (x)T v�1(x)S2(x+ i=2)�2(x� i=2) �� ; (31)12



from whi
h we 
an identify Y0 up to a zero mode fa
tor of y0 = e�L 
osh �x whi
h obeys y+0 y�0 = 1.Su
h fa
tor should be in
luded into Y0 to ensure the proper asymptoti
 (13). Thus we �ndY0(x) ' e�L 
osh(�x)T u1 (x)T v�1(x)S2(x+ i=2)�2(x� i=2) : (32)Evaluating it at x = �k � i=2 and using eq.(29) we get�1 ' eiL sinh(��k)Qu(�k + i=2)Qv(�k + i=2)Qu(�k � i=2)Qv(�k � i=2)Yj S20(�k � �j) ; (33)whi
h is nothing but the main ABA equation (7) for the middle node in �g.4. We use here thenotations Qv(x) = �Qv(x� i) ; Qu(x) = Qu(x) ; (34)to make the u- and v-wings more symmetri
. The advantage of these notations is that the wingex
hange symmetry eq.(24) simply ex
hanges Qv and Qu and in the large L limit they are realpolynomials.Finally, sin
e Y0(x) is exponentially suppressed for real x we 
an drop the integral 
ontributionin (15) whi
h leaves us with the energy as a sum of energies of individual parti
les, pre
isely asexpe
ted from (6).Noti
e that the Zamolod
hikov asymptoti
 s
attering theory is impli
itly 
ontained in the Y -system, as we see from the appearan
e of the s
alar s
attering fa
tor S2 in the formula (32).2.5 Probing the �nite volumeNow, having established the solution at in�nite volume, we need an insight into the analyti
 prop-erties of T -fun
tions in a �nite, though large, volume. Let us �nd perturbatively the �nite L
orre
tions for the simplest va
uum solution whi
h for large L 
orresponds to Qu = Qv = 1; � = 1.From eq.(23) one 
an see that for this 
ase, to the leading order, T uk ' k + 1 whi
h implies forYk ' jkj2 + 2jkj. Thus we are looking for a solution in the formYk = jkj2 + 2jkj+ yk ; k = �1; : : : ;1 (35)where the �rst two terms in the r.h.s. are the trivial solution at L = 1, where as yk � Y0 aresmall. We will see that the solution for the perturbation is unique under the assumption that whenk !1 the perturbation goes to zero yk ! 0. The linearized Y -system in the Fourier form iskk + 2~s ~yk+1 � ~yk + k + 2k ~s ~yk�1 = 0 ; k � 0 (36)where ~yk is the Fourier transform of yk and ~s = 12 
osh(!=2) is the Fourier transform of the kernels = 12 
osh(��) . ~y0 = ~Y0 is a �xed fun
tion. We see that this is a se
ond order re
urren
e equationwhi
h in general has two linear independent solutions. Fortunately it 
an be solved expli
itly.5 Thegeneral solution reads~yk = k(k + 1)(k + 2)2  "e� kj!j2k � e� (k+2)j!j2k + 2 #C1(!) + "e kj!j2k � e (k+2)j!j2k + 2 #C2(!)! :5One 
an use RSolve fun
tion in Mathemati
a to �nd the solution.13



The needed solution satisfying ~y0 = ~Y0 ; ~y1 = 0 
orresponds to C1 = ~Y0; C2 = 0. Making theinverse fourier transformation we getyk = k(k + 1)(k + 2)� � 14x2 + k2 � 14x2 + (k + 2)2� � Y0 : (37)It 
an be easily 
he
ked that the approximate Tk yielding this solution through (18) areT uk�1 = T v1�k ' k + k=�4x2 + k2 � Y0 ; k � 0 : (38)and �(x) = 1 + 1=�4(x+ i=2 + i0)2 + 1 � Y0 : (39)The i0 in this expression 
an be dropped when 
omputing Yk>0 from (18) but is in
luded in thisexpression so that (18) 
an also be used for k = 0, for more details see the dis
ussion in the nextsubse
tion.An important feature of this asymptoti
 solutions for Tk, whi
h should persist at any L, is thatit a
quires two bran
h 
uts at x 2 R� ik=2 when L!1.62.6 Exa
t solution for the va
uumWe will now extend the solution found in the previous se
tion to arbitrary L. First, we noti
e thatthe solution in terms of Tk is mu
h simpler than in terms of Yk. For the va
uum we 
an use thefollowing ansatz inspired by eq.(38)Tk�1 = k + k=�4x2 + k2 � f; k = +0; 1; 2; : : : (40)where f is some fun
tion whi
h for large L be
omes Y0. One 
an easily see from the linear systemeq.(21) at Q = �Q = 1 that this ansatz solves the Hirota equation and 
an be presented in the formeq.(23) with �(x) = T0(x+ i=2 + i0). Thus the Y-system equations eq.(12) for jkj � 2 are satis�edautomati
ally. Noti
e that none of the Tk's has singularities on the real axis, whi
h is of 
ourse ane
essary feature of the solution: the physi
al quantities Yk should not be singular there.To 
he
k that the equation for k = 1 is also satis�ed we have to de�ne Y0 in terms of Tk. Forthat we 
an simply analyti
ally 
ontinue eq.(40) to the point k = +0 whi
h gives T�1(x) = f(x)=2.We also have �(x) = T0(x+i=2+i0), ��(x) = T0(x�i=2�i0) as mentioned above. These propertiesare supported by the se
ond equation (22) whi
h 
an be viewed as yielding the spe
tral density interms of a jump on any of two in�nite 
uts. Then we getY0(x) = T0(x+ i=2 � i0)T0(x� i=2 + i0)T0(x+ i=2 + i0)T0(x� i=2� i0) � 1 = T1(x)f(x)=2T0(x+ i=2 + i0)T0(x� i=2 � i0) (41)This equation relates Y0 and f . With Y0 so de�ned the Y-system equations at jkj = 1 are now alsosatis�ed. However the equation (11) for k = 0 is still not used. Using(1 + Y1)(1 + Y�1) = (1 + Y1)2 = �T1(x+ i=2)T1(x� i=2)T0(x+ i)T0(x� i) �26The term\bran
h 
ut" is not very appropriate here sin
e the in�nite 
ut has no bran
h points. However,as we shall see, a spe
tral representation will allow us to de�ne Tk(x) in the whole 
omplex plane in termsof spe
tral density integrals along the 
uts. 14



and re
alling that s is the inverse shift operator we obtain7Y0(x) = e�L 
osh(�x) T 21 (x)[T0(x+ i)T0(x� i)℄�2s : (42)Combining it with eq.(41) we getf(x) = 2T1(x)T0(x+ i=2 + i0)T0(x� i=2� i0)[T0(x+ i)T0(x� i)℄�2s e�L 
osh(�x) ; (43)whi
h, in virtue of the eq.(40), gives a 
losed equation for f(x).Noti
e that from eq.(43) T�1(x) = f(x)=2 is exponentially small for large L withT�1(x) ' 2e�L 
osh(�x): (44)The �nite L solution to equation (43) 
an be easily found by iterations, starting from this largeL asymptoti
 and gradually diminishing L. We solved this equation numeri
ally and get a perfe
tmat
h with the existing results (see the Tab.1 
omparing our results with [26℄).L Leading order Eq.(43) Results of [26℄L = 4 �0:015513 �0:015625736 �0:01562574(1)L = 2 �0:153121 �0:162028968 �0:16202897(1)L = 1 �0:555502 �0:64377457 �0:6437746(1)L = 1=2 �1:364756 �1:74046938 �1:7404694(2)L = 1=10 �7:494391 �11:2733646 �11:273364(1)Table 1: We solve numeri
ally eq.(43) the use Y0 from eq.(41) to 
ompute the energy of theground state using eq.(10).In the next subse
tion, we generalize this solution to the ex
ited states in the U(1) se
tor.2.7 Generalization to U(1) se
torIn this se
tion we will study in detail the U(1) se
tor of the theory where we 
onsider the stateswith N parti
les with the same polarization, i.e. with no magnon ex
itations. Hen
e we 
an putall Q = 1. As mentioned before { see eq.(20) { for N parti
le states we expe
t T0(�j) = 0 for ea
hof N rapidities of the parti
les �1; : : : ; �N .In the previous se
tion the va
uum state, with no parti
les ex
ited, was analyzed. We saw thatT0(x) inside the physi
al strip, �(x) above the strip and ��(x) below the strip 
ould be des
ribedby a single fun
tion F(x) = 1 + 1=�4x2 + 1 � T�1 ; (45)su
h that F (x) = 8<: �(x� i=2) ; Im (x) > 1=2T0(x) ; jIm (x)j < 1=2��(x+ i=2) ; Im (x) < �1=2 : (46)15



Figure 5: The fun
tion F (x) in (47) 
an be re
ast as a 
ontour integral as in (49) with the
ontours as represented in this �gure.Here we build a generalization of (45) for the 
ase when T0 has an arbitrary number of zeroesinside the physi
al strip for whi
h (46) holds:F (x) = �(x)�1� Z 1�1� 1�(y � i=2) 1x� y + i=2 � 1�(y + i=2) 1x� y � i=2� T�1(y)dy2�i � ; (47)with �(x) � QNj=1(x � �j). The overall fa
tor of �(x) appears be
ause T0(�j) = 0. The spe
tralrepresentation of F (x) as two integrals over the two in�nite 
uts at Im (x) = �1=2 is inspired by(45) and 
an be also seen from the linear problem (21). Indeed, we haveT�1(x) = T0(x+ i=2) � �(x) = T0(x� i=2) � ��(x) (48)whi
h justi�es the 
hoi
e of spe
tral densities used in (47). To see that (46) indeed holds we write(47) asF (x) = �(x)�I
 dy2�i T0(y)=�(y)y � x + I
+ dy2�i �(y � i=2)=�(y)y � x + I
� dy2�i ��(y + i=2)=�(y)y � x � : (49)The 
ontours 
, 
+ and 
� en
ir
le respe
tively the physi
al strip, the region above the strip andthe region below the strip, see �gure 5. For this relation to be equivalent to (47) we require that forlarge x we should have T0(x);�(x � i=2); ��(x + i=2) ! �(x) at jxj ! 1 along the 
orresponding
ontour. Finally, for (46) to hold, the ratios in (49) should be analyti
 inside the 
orresponding
ontours. Noti
e that at large L the fun
tion T�1 is exponentially small and thus ��; T0; ��+ ! �(x)as expe
ted from our dis
ussion in se
tion 2.4, to get the ABA equations. The large x limit shouldbe similar to the large L limit sin
e the sour
e term in the Y -system e�L 
osh(�x) is small in both
ases.7We introdu
e a natural notation g�s � es�log g . 16



Let us now 
onsider the other Hirota fun
tions Tk. From (21) we have T1(x) = T0(x + i=2) +��(x) = �(x) + T0(x� i=2) whi
h in terms of the fun
tion F (x) readsT1(x) = F (x+ i=2 + i0) + F (x� i=2 + i0) = F (x+ i=2 � i0) + F (x� i=2 � i0) ; (50)so it is indeed regular on the real axis. Noti
e that T1 is regular at least inside the enlarged stripjIm (x)j < 1. In the same way we 
an easily see that Tk>0 is analyti
 inside the strip jIm (x)j < k+12 .Having expressed T0, � and T1 in terms of T�1 through the fun
tion F (x) we 
an �nd a 
losedequation of T�1 from the Y -system equation for n = 0. The derivation is parallel to the one in theprevious se
tion and it leads toT�1(x) = (F (x+ i=2) + F (x� i=2))F (x + i=2 + i0)F (x� i=2 � i0)[F (x+ i)F (x � i)℄�2s e�L 
osh(�x) ; (51)supplemented by the quantization 
ondition Y0(�j + i=2) = �1. As before, the solution to theseequations 
an be easily found from iterations as is explained in the Se
.5. The numeri
ally 
al
ulatedenergies of a few states of this U(1) se
tor are presented on the �g.2.In the next se
tion, we generalize these results to any ex
ited states in
luding the magnonpolarizations. We will use a di�erent strategy and in
orporate the gauge invarian
e of Y -system to�nd the solutions of Y-system eq.(12) mat
hing the L =1 asymptoti
 of the Se
.2.4.3 Finite size spe
trum for a general state of PCFWe will now des
ribe how to 
onstru
t the solution for the most general state of the PCF at �nitevolume L, having an arbitrary number of physi
al parti
les with arbitrary polarizations in theSU(2)R and SU(2)L wings (
hara
terized by left and right \magnons" ui and vi). Our method isbased on the following observations and steps:� We know from eq.(32) the stru
ture of the poles and zeroes of all Yk's in the limit L ! 1when Y0 = 0. We assume that this stru
ture will qualitatively persist even for �nite L, andthe 
lassi�
ation of the appropriate solutions of the Y-system will follow the same pattern ofpoles and zeroes.� We will re
ast the Y-system in terms of T-system (Hirota equation) sin
e the analyti
 stru
-ture of Tk's is mu
h simpler than of Ys as we saw from the va
uum solution (38) at L!1.� For any \good" solution of Y -system there is a family of solutions of Hirota equations relatedby gauge transformations (25). Hirota equation 
an be solved expli
itly in terms of T0;� andQ as in eq.(23).� For L ! 1 we have two independent solutions for Tk's as we saw in the previous se
tion.For one solution T uk are asymptoti
ally polynomials for k > 0 and for another one T vk withk < 0 are polynomials when L is large. We 
an then smoothly 
ontinue these two solutionsto �nite L's using the gauge freedom to preserve polynomiality of Q's.� We have two global solutions of Hirota equation whi
h 
an be parameterized by T u0 ;�u; Qu, and by T v0 ;�v; Qv. They represent however the same and unique solution of the Y-systemand thus should be related by a gauge transformation g : T vs = g Æ T us , see (25).17



� Using 
ertain assumptions about analyti
ity of T u0 and �u, supported by the Lax equations(21), we 
an express them as di�erent analyti
 bran
hes of the same analyti
 fun
tion Gu.The same 
an be done for T v0 and ���v in terms of Gv.� The solution will be 
ompletely �xed by the existen
e of su
h a gauge transformation g(x)whi
h relates its u{ and the v{representations. At the end we will have one single non-linearintegral equation (NLIE) on g(x).The �nal equation for g(x) is new for the Prin
ipal Chiral Field. It is di�erent from the systemof 3 DdV type equations used for the same model in [30℄. Still it resembles in many aspe
ts thenon-linear Destri-de Vega (DdV) equation whi
h appears when studying other integrable models.Indeed, our method is very general and it allows to generate DdV-like equations for large 
lasses ofsigma models in a systemati
 way. For the models for whi
h a DdV equation is known we expe
tour integral equation to 
oin
ide with it after an appropriate 
hange of variables. We 
he
k thishypothesis on the SU(2) 
hiral Gross-Neveu model for whi
h we re-derive indeed the known integralequation.3.1 Exa
t equations for the �nite volume spe
trumIn this se
tion, we will derive the �nite volume spe
tral equations of the previous se
tion in themost general form, valid for all ex
ited states of the model with any number of physi
al parti
leswith arbitrary polarizations (i.e. with any quantum numbers).As we dis
ussed below in the in�nite volume, the solution of Y-system with Y0 = 0 
an bedes
ribed in terms of two independent sets of Hirota potentials T uk and T vk . Sin
e these two di�erentsolutions of Hirota equation 
orrespond to the same solution of Y-system they are related bya gauge transformation g(x). These two solutions of Hirota equation 
an be 
ontinuously andunambiguously deformed all the way from very large L, where we know the solution (see theprevious se
tion), to any �nite value of L. The gauge ambiguity for any of the two solutions, T uk orT vk , 
an be �xed by 
hoosing Qu and Qv to be polynomials for any L. Of 
ourse we 
an no longerassume T uk and T vk , as well as the 
orresponding �v and �u, to be polynomials. Instead we willassume 
ertain analyti
 properties for them and we will see their 
onsisten
y with the solution we�nd at the end.We introdu
e a polynomial �(x) with real zeroes �j; j = 1; 2; : : : ; N of T u0 . They 
orrespond tothe rapidities of physi
al parti
les on the 
ir
le. The gauge fun
tion g(x) relating the two solutionsof the T -system is assumed to be regular and to have no zeros on the physi
al strip, so thatT v0 = g�gT u0 has the same zeroes as T u0 there. We also assume that8� �u(x)�(x+i=2) ( ��u(x)�(x�i=2) ) is regular for Im x > �1=2 (Im x < 1=2) in the whole upper (lower) halfplane and goes to 1 for jxj ! 1 in all dire
tions in the upper (lower) half plane;� Tu0 (x)�(x) is regular and goes to 1 at x! �1 inside the physi
al strip �12 < Im x < 12 ;8When x ! 1 we know that Y0(x) ! e�L 
osh(�x) , i.e. it is exponentially small, as in the 
ase oflarge L, and the Y-system, as well as the T-system splits in to two independent u- and v-wings withT0(x) � �(x) � �(x) � xN : 18



The �rst property is somewhat similar to the forth property from the previous subse
tion: thelarge x asymptoti
s is governed by the same exponential e�L 
osh�� as the large L asymptoti
s. Asa 
onsequen
e of the se
ond assumption, inspired by the integral representation (47) for the U(1)se
tor, T uk>0(x) are regular for �(k + 1)=2 < Im x < (k + 1)=2 .Similarly, for another solution we assume that� ��v(x)�(x+i=2) ( �v(x)�(x�i=2) ) is regular for Im x > �1=2 (Im x < 1=2) in the all upper (lower) half planeand goes to 1 when jxj ! 1 in all dire
tions in the upper (lower) half plane� T v0 (x)�(x) is regular and goes to 1 at x! �1 inside �12 < Im x < 12 strip.Note that with these properties all Yk 6=0 are automati
ally analyti
 in the physi
al strip, as wesee from (18). Y0 is, in the stri
t sense, only analyti
 on the real axis, but the detailed analysis ofthe Appendix D shows that we 
an expe
t its analyti
ity even in a �nite strip around the real axis.As 
on
erns the T -fun
tions, although we use in di�erent 
ir
umstan
es T uk or T vk , we will get thesame result for all Yk, sin
e they are related by a gauge transformation g(x). But analyti
ity willbe expli
it only for one wing at a time: at k � 1 for T uk and at k � 1 for T vk .The listed properties are enough to expli
itly relate T uk , T vk with the 
orresponding �v and �uusing a 
ertain integral representation for them. In Appendix B we follow this line of arguments toformulate the 
omplete set of equations for an arbitrary state, in
luding a NLIE for g(x) and theasso
iated equations for the Bethe roots. However, it appears to be more advantageous, espe
iallyfor the numeri
s, to use the integral representations for the logarithms of T uk ; T vk ;�v;�u. We willderive in what follows the 
orresponding equations de�ning the energy of a general state.

Figure 6: The ratios indi
ated 
lose to ea
h 
ontour are analyti
 inside the 
orresponding 
ontour.Thus we 
an obtain them in ea
h of these regions using a single resolvent Gu(x) as in (52).Let us de�ne two new fun
tions analyti
 on a Riemann surfa
e with two in�nite 
uts at Im x =�i=2 Gw(x) = 12�i Z 1�1 �w(y)x� y � i=2dy � 12�i Z 1�1 ��w(y)x� y + i=2dy; (w = u; v) (52)19



with the following spe
tral densities along the in�nite 
uts9�u(x) = log�T u0 (x+ i=2)�u(x) � ; �v(x) = log�T v0 (x+ i=2)���v(x) � ; (53)and their 
omplex 
onjugates��u(x) = log�T u0 (x� i=2)��u(x) � ; ��v(x) = log�T v0 (x� i=2)��v(x) � : (54)Then from (18) we have log(1 + Y0) = �u + ��u = �v + ��v : (55)When L is large enough we know from the results of the se
tion 2.4 that Tw0 (x) ' �w(x� i=2) '��w(x + i=2) ' �(x) and thus to the leading order �w(x)'s are exponentially small. It is alsoimportant for our analyti
ity assumptions listed above to hold that �w(x) � e�L 
osh �x at x! �1along the real axis. Together with these analyti
ity assumptions the following formulae are true atany LGv(x) = 8>>>>>><>>>>>>: log ���v(x� i=2)�(x) Imx > +1=2log T v0 (x)�(x) jImxj < 1=2log ��v(x+ i=2)�(x) Imx < �1=2 ; Gu(x) = 8>>>>>><>>>>>>: log �u(x� i=2)�(x) Imx > +1=2log T u0 (x)�(x) jImxj < 1=2log ��u(x+ i=2)�(x) Imx < �1=2 :(56)These formulas are easily understood from simple 
ontour manipulation as depi
ted in �gure6. Let us 
onsider the resolvent Gu, plug (53) and (54) into (52) and 
onsider separately theterms 
ontaining Tu0 (x)�(x) , �u(x�i=2)�(x) and ��u(x+i=2)�(x) . Sin
e T0(x)�(x) ! 1; x ! �1, we 
an 
lose the
ontour in the integrals 
ontaining log T0(x)�(x) around the physi
al strip and 
ontra
ting it aroundthe pole y = x we obtain the middle relations in (56) if x lies in the physi
al strip. Similarly,using the fa
t that in the upper half-plane �u(x�i=2)�(x) ! 1; x!1, we 
an 
lose the 
ontour in theintegrals 
ontaining log �u(x�i=2)�(x) (after the obvious shift of integration variable) around the upperhalf-plane and 
ontra
ting it around the pole y = x we obtain the upper relations in (56) providedIm(x) > 1=2. The integrals 
ontaining log ��u(x�i=2)�(x) are treated similarly with the 
ontours being
losed in the lower half-plane. For the resolvent Gv the same sort of reasonings apply.As we mentioned above, the two solutions of Hirota equation we de�ned in this way, are relatedby a gauge transformation T vk = g Æ T uk . However, the polynomials Qu and Qv are not ne
essarilyrelated by this gauge transformation g(x). Instead, one 
an easily see that Qv is mapped to anotherlinearly independent solution of eq.(21) Ru = Qvg� . We 
an use eqs.(26,27) to express all Tk's and�'s in terms of Q's. In parti
ular, we have�u = h+�Q++u �Q��vg� � Qu �Qvg+ � ; T u0 = h�Q+uQ+v�g � �Q�u �Q�vg � : (57)9These spe
tral densities denoted by � should not be 
onfused with the densities of Bethe roots % used inappendix A in the derivation of the Y-system ground state equations.20



Similar relations for v wing 
an be obtained from the gauge transformation �v = g�g+�u andT v0 = �ggT u0 . For the densities (53-54) this yieldse�u = +T u+0�u = g+�g+Q++u Q++v � �Qu �Qvg+g�Q++u �Q��v �Qu �Qv ; e�v = �T v+0��v = g+�g+Q++v Q++u � �Qv �Qu�g��g+Q++v �Q��u �Qv �Qu : (58)Note that one 
an get �v from �u by ex
hanging indi
es u$ v and g ! 1=�g.We see that the densities and thus both Gu and Gv now 
an be expressed solely in terms ofthree polynomials Qv; Qu; � and a fun
tion g(x), generating the gauge transformation relating thetwo wings. It is left only to �nd a 
losed equation on g(x). We do it in the following subse
tion.3.1.1 Closed equation on the gauge fun
tion g(x)In the previous subse
tion, we managed to express all relevant quantities in terms of three poly-nomials Qv; Qu; � and a 
omplex fun
tion g(x). Using the 
ondition that two solutions of Hirotaequation are related by the gauge transformation generated by g(x) we 
an write a 
losed equationon that fun
tion. In parti
ular, using the fa
t that �v and �u are related by the gauge transfor-mations (25) we obtain �v = g+g��u : (59)It gives a 
losed relation on g whi
h we 
an rewrite, assuming that g is regular within the physi
alstrip, as follows g = ie 12 iL sinh(�x)���v�u��s ; (60)where the zero mode of the inverted operator was 
hosen to ensure the proper large x asymptoti
.Indeed with this 
hoi
e T u�1 = T v�1g��g+ � e�L 
osh(�x) leading to the right behavior of Y0 (see eq.(18))at large L. Using (52) this 
an be re-
asted asg = ie 12 iL sinh(�x)S(x) exp [s �Gv(x� i=2� i0) � s �Gu(x+ i=2 + i0)℄ (61)where we used (56) and the identity����+��s = �S+S���s = S ; (62)following from the 
rossing relation (4). We remind that �(x) = QNj=1(x � �j) and S(x) =QNj=1 S0(x� �j).The 
losed NLIE (61) for g(x) is our main result. Together with the expressions for the densitiesin terms of g (53-54) it allows us to 
al
ulate (1+Y0) and thus to obtain the energy of a state (15).In what follows in this se
tion we will rewrite it in a little more 
onvenient form whi
h will beuseful for the numeri
al 
omputations for parti
ular states.Conjugating the last equation we �nd�g = �ie�iL=2 sinh(�x)S�1(x) exp [s �Gv(x+ i=2 + i0) � s �Gu(x� i=2 � i0)℄ : (63)Finally it is useful to translate these equations into an equation for the phase g=�gg�g = �eiL sinh(�x)S2(x) exp�12 �K�0 � (�u + �v)�K+0 � (��u + ��v)�� ; (64)21



where K0 = 12�i�x logS20 and we usedGw(x+ i=2 + i0) �Gw(x� i=2 � i0) = K1(x+ i=2� i0) � ��w �K1(x� i=2 + i0) � �w (65)and the 
onvolution form of the dressing kernel as K0 = 2s�K1;K1(x) = 2�(4x2+1) . For the squarednorm g�g we get from eq.(60)g�g = ��v�u ��v��u��s = � �v ��vT v+0 T v�0 T u+0 T u�0�u��u ��s T v0T u0 = exp(Gv �Gu) ; (66)where we used 1Y0Y0 = 1 inside the square bra
kets to get the last equality. This equation 
anbe also obtained from the gauge transformation T v0 = g�gT u0 . As we shell see in se
tion 5 theseequations 
an be eÆ
iently solved numeri
ally, by iteration, where at ea
h iteration step a single
onvolution integral arises involving the densities �u and �v.We use eq.(58) and eq.(59) together with our analyti
ity assumptions to 
onstrain g;�u;v andT u;v0 . In the next se
tion we will �x the remaining �nite number of 
omplex parameters - zerosof polynomials Qv;Qu and the real zeroes of �. After that one 
an use eq.(23) to 
onstru
t allTk. In appendix C we show that all Tk obtained in this way will be real fun
tions and thus Hirotaequation for them is satis�ed. This means that we solved indeed the Y-system with the rightphysi
al analyti
 properties for the solutions.3.1.2 Finite size Bethe equations and the energyFinally it is left to explain how to �x the �nite number of 
onstants, the Bethe roots �j, uj and vj ,whi
h are zeros of the polynomials � ;Qu; Qv and whi
h 
ompletely 
hara
terize a state. The zerosof � are by de�nition the zeros of T0 whi
h means that at these points e�u(�j�i=2) = e�v(�j�i=2) = 0as we 
an see from eq.(58). It 
an be also written as followsQ+uQ+v�Q�u �Q�v g�g = 1 ; at x = �j ; (67)whi
h we 
an rewrite using eq.(64) ase�iL sinh(��j) = �S2(�j)Q+uQ+v�Q�u �Q�v exp�12 �K�0 � (�u + �v)�K+0 � (��u + ��v)�� ; at x = �j : (68)Note that when L ! 1 we 
an negle
t the last fa
tor to get pre
isely the usual in�nite volumeABA eq.(7). The equations for the auxiliary Bethe roots uj 
an be derived in many alternativeways. The most standard way is to demand analyti
ity of T1 at x = uj (see eq.(22))�u �Q��u + T u�0 Q++u = 0 ; at x = uj : (69)We see that in general there is no reason to assume uj to be real when L is �nite. Using the resolventGu to represent T0 and �u appearing in this expression we get the auxiliary Bethe equationsfollowing from (69) in the form 1 = ���Q++u�+ �Q��u P (uj) ; (70)where P (x) is de�ned on the upper half plane byP (x) = exp [K1(x� i=2) � �u �K1(x+ i=2) � ��u℄ ; Im x > 0 ; (71)22



In the large L limit P (x) � 1 and we get the ABA eq.(8). A similar equation �xes the roots vj .The integral equation (61) together with the equations (68), (70) �xing the zeros of the polyno-mials Qu; Qv; � are the 
omplete set of equations whi
h one should solve to �nd the full spe
trumof the SU(2) � SU(2) prin
ipal 
hiral �eld. On
e g(x) and the positions of the zeros �j; uj ; vj arefound, we 
an 
ompute the exa
t energy of the 
orresponding quantum state from eqs.(15,55) and(58) E = NXk=1 
osh(��k) � 12 Z 
osh(�x)(�u + ��u)dx : (72)where we 
an use due to (58) �u + ��u = �v + ��v = log ����� g+�g+Q++u Q++v � �Qu �Qvg+g�Q++u �Q��v �Qu �Qv �����.Let us remark that our 
onstru
tion for a general state in this paper was based on the assumptionthat in the asymptoti
 regime L ! 1 all the roots uj ; vj be
ome real.However, it is well knownthat the 
omplex solutions are also possible. We hope that even in this 
ase our equations maintaintheir form, although this situation deserves a spe
ial 
are.In se
tion 4 we will explain how to eÆ
iently implement these equations for numeri
al study.Before that, in the next se
tion we will study the large L behavior of these equations thus repro-du
ing not only the large volume results of se
tion 2.4 but also the subleading 
orre
tions (L�us
her
orre
tions).3.2 Large volume limit: ABA and L�us
her 
orre
tionsThe SU(2) prin
ipal 
hiral �eld spe
trum is given by (15), or (72). As we have seen in the previousse
tion, in the large L limit the Bethe roots �j are given by their asymptoti
 values obtained froma solution to the asymptoti
 Bethe equations, and sin
e Y0 and �'s are exponentially small we 
androp the integral 
ontribution in (68) and (70) and re
over the usual asymptoti
 spe
trum. In thisse
tion we fo
us on the leading �nite size 
orre
tions to this result.Due to these 
orre
tions auxiliary roots uj and vj be
ome 
omplex even if they were realasymptoti
ally at large L. In this se
tion we denote the real part of the roots uj; vj by Uj and Vjwhile the (small) imaginary parts we denote by �uj and �vj . The positions of the momentum
arrying roots �j are also 
orre
ted, however they stay real. We will also use the notationQu(x) =Yj (x� Uj) ; Qv(x) =Yj (x� Vj) : (73)We have to 
ompute the �rst 
orre
tion to the positions of the Bethe roots. To the leading orderwe 
an drop the exponentially small densities �u and �v in eq.(61), to getg(x) ' iS(x)eiL=2 sinh(�x) (74)whi
h we 
an use to 
ompute the spe
tral densities from (53-54). We see that some terms in theexpression for �u are exponentially suppressed and we 
an expand�u ' �Qu �QuQu + e�L 
osh(�x)S+S� Q++u�+ Q++v �� +Q��v �+QvQu ' �Qu �QuQu + Q++u T u�1Qu�+ : (75)23



In the last equality we negle
t the small imaginary part of the axillary roots and we use (22) tothe leading order together with the gauge transformation T v�1 = g��g+T u�1 and the 
rossing relationS+S� = ���+ .The poles at x = Uj should 
an
el, due to eq.(70), among the �rst and the se
ond term sin
ethe density by de�nition is regular. We introdu
e the notations �(1)u and �(2)u for the �rst and these
ond term in (75). The �rst one 
an be simply written as�(1)u 'Xj 2�ujx� Uj : (76)Sin
e the whole density is regular we 
an apply the prin
ipal part pres
ription to the �nite integralsin (64) without 
hanging the result. Having done so we are free to split the 
onvolutions into
onvolutions with �(1) and �(2). In (68) we should then expand the fa
tor�Q+u�Q�u exp�iIm �Z K�0 (x� y)�(1)u (y)�� exp�iIm �Z K�0 (x� y)�(2)u (y)� ; (77)and the similar fa
tor for the v roots, to the next to leading order. We noti
e that �(1)u is purelyimaginary to the leading order, as seen from eq.(76), and therefore we 
an simplify the term in thesquare bra
ketsQ+u�Q�u exp�12(K�0 +K+0 ) � �(1)u � ' Q+u�Q�u �1 +K1 � �(1)u � = Q+u�Q�u  1 + �(1)+u + �(1)�u2 ! ' Q+uQ�u (78)where the 
onvolutions are understood in the sense of prin
ipal value. Thus in the Bethe equations(67) in this approximation the imaginary parts of the axillary roots 
an
el against the 
ontributionfrom �(1) and we simply get�eiL sinh(�x)S2Q+uQ+vQ�uQ�v = exp��iIm K�0 � h�(2)u + �(2)v i� at x = �j : (79)Pro
eeding in the same fashion in the eq.(70) for the auxiliary Bethe roots we arrive at a similar
on
lusion. Namely only the real parts of the auxiliary roots survive when we separate the densityinto �(1) and �(2) ����+ Q++uQ��u = exp��2iImK�1 � �(2)u � at x = Uj : (80)See appendix E for details. We see that all terms ex
ept for the 
onvolutions with �(2) have a simplee�e
t of absorbing the imaginary parts of the Bethe roots.It turns out that the remaining 
onvolutions, 
ontaining �(2), 
an be ni
ely written in terms ofthe leading order Y0 found before in (32),Y0(x) ' e�L 
osh(�x)�Q++u �� +Q��u �+Qu ��Q++v �� +Q��v �+Qv � (S+)2(��)2 ; (81)where the �j appear in � and S while the uj (vj) auxiliary roots appear in the 
orresponding Baxterpolynomials Qu (Qv). Noti
e that this quantity is already exponentially small, so we 
an take herethe asymptoti
 values for the auxiliary roots. As explained in detail in appendix E, the quantitiesinside the prin
ipal part integrals are related to the derivative of this fun
tion with respe
t to �k or24



uk and vk whi
h we treat in (81) as independent variables. More pre
isely we have the remarkableidentities i Im �K�0 (�i � y) h�(2)u (y) + �(2)v (y)i� = ���iY0(y)2�i ; (82)2i Im �K�1 (uj � y)�(2)u (y)� = +�uiY0(y)2�i : (83)Thus we �nally obtain the 
orre
ted Bethe ansatz equations in the following elegant form:� �+�� Q��uQ++u = exp��Z �UjY0(y)2�i dy� at x = Uj ;�eiL sinh(�x)S2Q+uQ+vQ�uQ�v = exp��Z ��jY0(y)2�i dy� at x = �j ; (84)��+�� Q��vQ++v = exp��Z �VjY0(y)2�i dy� at x = Vj :It is not 
ompletely surprising that we managed to express everything in terms of Y0. To the leadingorder, Y0 
an be expressed in terms of S-matrix only: it is the relevant eigenvalue of the operatore�L 
osh(�x)tr�Ŝ01(x� �1)Ŝ02(x� �2) : : : Ŝ0N (x� �N )� : (85)We see that (84) 
orresponds pre
isely to the 
onje
tured equation (27) in [5℄ only inside the U(1)se
tor. However, our result is di�erent from outside the U(1) se
tor when there are axillary rootsUj and Vj . Finally the equation for the energy of the state 
orre
ted by the �nite size e�e
ts isgiven by eq.(15) in terms of Y0 in the leading approximation and the 
orre
ted positions of theroots �j whi
h should be found from eq.(84).The right-hand sides of the 
orre
ted Bethe equations (84) have a simple interpretation: for themiddle equation, it re
e
ts the 
ontribution of s
attering of the \physi
al" parti
les o� the virtualones on the 
ylinder, whether as the other two re
e
t the same e�e
t for the \magnons" responsiblefor the isotopi
 degrees of freedom of the parti
les. Although these equations are derived here onlyfor a parti
ular model their form looks very universal and 
an be immediately generalized to anyother integrable sigma model where the exa
t s
attering matrix is known.3.2.1 Single parti
le 
aseIn this se
tion we 
onsider the single parti
le 
ase for the L�us
her-type 
orre
tion of the previoussubse
tions. This analysis was done in a more general 
ontext in [5℄.When we have a single parti
le with momentum �1 (84) yields simplyL sinh (��1) = 2�n��Z dy2���1Y0(y) ; (86)whi
h 
orre
ts the leading order quantization 
onditionL sinh(��01) = 2�n : (87)25



Now, from (81) we see that the x dependen
e in Y0(x) 
omes from the exponential fa
tor e�L� 
osh(�x)and also from the 
ombinations x� �j; x� uj and x� vj appearing in the remaining terms in thisexpression. Thus�yY0(y) = �L� sinh(�y)Y0(y)� NXk=1 ��kY0(y)� JuXk=1 �ukY0(y)� JvXk=1 �vkY0(y) ; (88)whi
h, in the 
ase we are 
onsidering, with N = 1 and Ju = Jv = 0, allows us to simplify (86) toL sinh (��1) = 2�n+ Z dy2 L sinh(�y)Y0(y) ; (89)so that the leading �nite size 
orre
tion to the energy (15) readsE(L)� 
osh(��01) ' �12 Z 
osh(�y) �1� tanh(�y) tanh(��01)� e�L 
osh(�y)tr Ŝ01(y � �01) ; (90)pre
isely as expe
ted for the L�us
her 
orre
tions [4℄.4 SU(2) Chiral Gross-Neveu model and related modelsOur NLIE resembles the Destri-deVega equation and, at least in the 
ases the last one is known, 
aneven 
oin
ide with it. In the 
ases when the DdV equation is not known, like the SU(2)L�SU(2)RPCF, or O(4) model studied in this paper, we obtain a new, DdV-like equation. In this subse
tion,to demonstrate our method, we show how to reprodu
e the DdV equation for the 
hiral SU(2)Gross-Neveu model on a �nite 
ir
le.The TBA equations for this model are given by the same Y -system (12) with an importantdi�eren
e that Ys<0 = 0 (see Fig.8). In parti
ular, sin
e Y�1 = 0 we have T�2 = 0 whi
h impliesdue to the eqs.(21,17) 0 = T���1 �Q� ��Q�� ; T+�1T��1 = �� ��+ : (91)Then it is immediate to 
he
k that the quantityA � Q+�Q� T��1�� = Q+�Q� ��+T+�1 (92)satis�es, due to eq.(91), the relationA+A� = �Q+�Q��+�Q+�Q��� ��� : (93)Note that A is a pure phase on the real axe. Thus, restoring the proper zero mode exponential, we�nd A = eiL sinh(�x)Q+�Q� � �����s : (94)As before, to make this a 
losed equation on A we introdu
e the resolvent G and the density �G(x) = 12�i Z �(y)x� y � i=2dy � 12�i Z ��(y)x� y + i=2dy ; � = log T+0� : (95)26



Again analyti
 properties of T0 and � lead to eq.(56). Using the linear problem (21) we 
an writeT�1Q++ � T+0 Q = �� �Q and we see that� = log � �QQ �1 +A+�� : (96)Thus A satis�es the 
losed equation for A sin
e � = G(x + i=2 + i0). We see that A(x) plays asimilar role as g(x) in PCF. We 
an easily 
ompute Y0 in terms of A1 + Y0 = e�e�� = �1 +A+� �1 + 1=A�� : (97)We see that the fa
tors of Q 
an
el from this expression. It is also possible to write eq.(94) in asimpler form without fa
tors of Q using the useful identities. First using eq.(65) and assuming thatthe density is regular not only on the real axes but also for �1=2 < Im x � 0 we write� �����s = S� exp�12K�0 � �� 12K+0 � ��� = S� exp�12K0 � [��+ � ��+� ℄� ; (98)where ��+ � �(x� i=2 + i0). Using the following relation12K0 � log � �Q+ �Q�Q�Q+� = log �S+uS+�u �Q�Q�� ; (99)where S�(x) = NYj=1S0(x� �j) ; Su(x) = JuYj=1S0(x� uj) ; S�u(x) = JuYj=1S0(x� �uj) (100)we 
an get rid of Q's in (98) and �nally obtain the known DdV equationA = eiL sinh(�x) S�S+�u S�u exp (iIm K0 � log [1 +A(x+ i0)℄) : (101)Then for Y0 we get the standard relation whi
h should be used to 
ompute the exa
t spe
trum fromE(L) = �12 Z m 
osh(��) log(1 + Y0) +Xm 
osh(��j) : (102)Furthermore, both BAE { for the physi
al rapidities �j and for the magnon rapidities uj { 
an bewritten A(�j) = �1 ; A+(uj) = �1 : (103)We also noti
e that A(x) has poles at x = �uj + i=2. To see that we useT0(�j) = 0 ) 1 +A(�j) = Q�(�j)�Q�(�j) T0(�j)��(�j) = 0 ; (104)�(uj) � 1 ) 1 +A+(uj) = Q(uj)�Q(uj) T+0 (uj)�(uj) = 0 : (105)Equations (100),(97),(102) and (103) are pre
isely the DdV equations derived in [6, 7℄10! As shownin this se
tion our method 
an be dire
tly generalized to other models whose TBA Y -system10In these papers the sine-Gordon model was 
onsidered. The SU(2) Chiral Gross-Neveu model is a simplelimiting 
ase of this theory, see dis
ussion in the paragraph below.27



equations are known. It would be very interesting to make a systemati
 study of su
h models usingour formalism.For example, a simple generalization of the 
ase studied in this se
tion is obtained by 
onsideringthe fun
tions Tk, � as well as the Baxter fun
tions Q to be periodi
 in the imaginary dire
tionswith period i�. This amounts to 
onsidering the trigonometri
 solutions of Hirota equation (17)and the 
orresponding linear problem (21) { this should 
orrespond to the sine-Gordon model [13℄.We take the Baxter polynomials Q(x) and the large L limit of T0;��; �� ' ~� to be~Q(x) = JYj=1 sinh �� (x� uj)sinh �� ; ~�(x) = NYj=1 sinh �� (x� �j)sinh �� (106)instead of polynomials. Then most of the formulae in this se
tion go through with minor modi�-
ations. For example, instead of the SU(2) Chiral Gross-Neveu S-matrix S0 = �x�i=2x+i=2��s we will�nd the sine-Gordon dressing fa
tor~S0 = �sinh �� (x� i=2)sinh �� (x+ i=2)��s = �i expZ 10 sin(!x)! sinh ���12 !�
osh �!2 � sinh ��2!� :Thus it seems that our method allows to derive the sine-Gordon DdV equations of [6, 7℄ in an easyway. For � ! 1 we re
over the SU(2) 
hiral Gross-Neveu model. For an integer � the Y-system
an be trun
ated as represented in �gure 8, see e.g. [13℄.Another interesting 
lass of models whi
h one 
ould analyze using our formalism is representedby the so 
alled sausage model (see e.g. [45℄). This model 
an be 
onsidered as a generalization ofthe O(4) model, or SU(2) PCF, in the same sense as the sine-Gordon model is a generalization ofthe SU(2) 
hiral Gross-Neveu. The inhomogeneous XXX-spin 
hain present in the SU(2) Gross-Neveu model and des
ribing the isotopi
 degrees of freedom is generalized in sine-Gordon model tothe XXZ 
hain, with the anisotropy parameter � introdu
ed above. Similarly, the sausage models
an be seen as two intera
ting inhomogeneous XXZ 
hains parameterized by the inhomogeneities�1; : : : ; �N and anisotropies � and � 0. It would be very interesting to generalize our O(4) modelresults to this more general 
lass of models.Our approa
h to deriving DdV like equations is strongly based on a smooth interpolationstarting from the IR asymptoti
 Bethe ansatz des
ription; hen
e, by 
onstru
tion, our states arevery well identi�ed. On the other hand we did not 
arry out a detailed study of 
omplex solutionssu
h as the states represented by Bethe strings in the large L limit; for these states some ofour formulae might need to be modi�ed. Within the DdV approa
h based on des
ritizations ofintegrable models, many interesting 
omplex solutions were studied: e.g. holes, spe
ial obje
ts,wide roots, self-
onjugate roots et
. It would be interesting to 
omplete our approa
h to in
ludeall physi
al 
omplex solutions and thus obtain a pre
ise di
tionary between these two approa
hes.In parti
ular this would tea
h us whi
h solutions to DdV NLIE 
orrespond to physi
al states.5 Numeri
sIn this se
tion we explain how to eÆ
iently solve numeri
ally the equations derived in the Se
.3.
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5.1 Implementation of numeri
s and Mathemati
a 
odeFor simpli
ity let us fo
us on the U(1) se
tor where we 
onsider M{parti
le quantum states withM spins pointing in the same dire
tion in SU(2)L and SU(2)R. Then our equations simplify
onsiderably as was explained in subse
tion 2.7. First of all, sin
e there are no spins ex
ited wehave trivial Baxter polynomials Qu = Qv = 1. Thus, from (58) we see that �u = �v = � with� = log g+�g+ � 1g+g� � 1 : (107)We also noti
e that sin
e this is a symmetri
 
on�guration where the u and v root 
on�gurationsare the same (there are no roots at all) we have, see e.g. (66), g�g = 1 and thus g(x) is a pure phase.In parti
ular, for real x, we 
an simplify the density to�(x) = log (g+)2 � 1jg+j2 � 1 ; (108)from where we see that we 
an express it solely in terms of g+. Sin
e g is a pure phase we needonly to determine its argument from (64) whi
h now readsg2 = �eiL sinh(�x)S2(x) exp 2i Im "K�0 � log (g+)2 � 1jg+j2 � 1 #! : (109)This is almost perfe
t for numeri
al implementation but still needs to be slightly improved. Thereason is that we want to iterate this equation by evaluating the right hand side for real x. But thiswill yield the updated values of g(x) in the left hand side whereas for the next iteration we wouldneed g+(x). To �x it, we simply shift x! x+ i=2 in this equation and de�ne A(x) � (g+(x))2 togetA = �e�L 
osh(�x) MYj=1S20(x� �j + i=2) exp�K0 � log A� 1jAj � 1 �K++0 � log �A� 1jAj � 1 � log �A� 1jAj � 1� ;(110)where the 
onvolution of K++0 is understood in the prin
ipal part sense. We have expli
itly writtenS(x) to render the presen
e of the Bethe rapidities more expli
it. These are �xed by the mainBethe equation (67) whi
h in our notations is simply�eiL sinh(�x) MYj=1S20(x� �j) exp�2i Im �K�0 � log A� 1jAj � 1�� = 1 ; x = �i : (111)For 
ompleteness let us present here the Mathemati
a 
ode to solve these two equations by itera-tions11. It is a slightly simpli�ed, and thus less eÆ
ient, version of the 
ode we used for the plotsin �gure 2.First we introdu
e the S-matrix S0 and the kernel K0,S0[x_℄=I*Gamma[-(x/(2I))℄Gamma[1/2+x/(2I)℄/(Gamma[x/(2I)℄Gamma[1/2-x/(2I)℄);K0[x_℄=D[Log[S0[x℄^2℄,x℄/(2*Pi*I);11One 
an 
opy the 
ode dire
tly to Mathemati
a from .pdf29



Next we spe
ify the size L and the mode numbers n = fn1; : : : ; nMg. For example, if we wantto study the system with L = 1=2 and three parti
les with zero mode numbers we writen = {0, 0, 0};M = Length[n℄;L = 1/2;We will perform several integrals from �1 to +1 but the integrands have exponential tails sothat it is quite useful to introdu
e a 
ut-o� X for all the integration intervals at this point. Areasonable 
ut-o� is given by e�L 
osh(�X) = 10�8. Furthermore, at ea
h iteration step we will haveto 
onstru
t an updated fun
tion A(x) whi
h we do by means of an interpolation fun
tion,X=Ar
Cosh[8Log[10℄/L℄/\[Pi℄;F[S_℄:=Fun
tionInterpolation[S,{x,-X,X},InterpolationPoints->30℄;Next we introdu
eeq[i_,v_℄:=L*Sinh[Pi*x[i℄℄+Sum[If[i==j,0,Log[S0[x[i℄-x[j℄℄^2℄/I℄,{j,M}℄-2n[[i℄℄Pi+v[[i℄℄;BAE[v_℄:=Table[x[i℄,{i,M}℄/.FindRoot[Table[Re[eq[j,v℄℄,{j,M}℄,Table[{x[i℄,2i/M-1/2},{i,M}℄℄;whi
h yields the solution to Bethe equations L sinh(��i) +Pj 6=i 1i logS20(�i� �j)� 2�ni+ vi wherevi is a perturbation to the equation number i. Comparing with (111) we see that this perturbationat step k will be given by the 
onvolution appearing in (111) evaluated at the solution �i 
omputedin the previous step. The leading order BAE's 
orrespond to vi = 0 and are thus given by\[Theta℄[0℄=BAE[Table[0,{j,M}℄℄Also to leading order the fun
tion A(x) will be simply given byA[0℄=F[-Exp[-L*Cosh[Pi*x℄℄*Produ
t[S0[x-\[Theta℄[0℄[[j℄℄+I/2℄^2,{j,M}℄℄Then we introdu
e the density � and its 
onjugate �� at the k-th iteration step asr[k_,y_℄:=Log[(A[k℄[y℄-1)/(Abs[A[k℄[y℄℄-1)℄;r
[k_,y_℄:=Conjugate[r[k,y℄℄;Finally the 
odeA[k_℄:=A[k℄=F[-Exp[-L*Cosh[Pi*x℄℄Produ
t[S0[x-\[Theta℄[k-1℄[[j℄℄+I/2℄^2,{j,M}℄Exp[NIntegrate[K0[x-y℄r[k-1,y℄-K0[x-y+I℄*r
[k-1,y℄+1,{y,-X,x,X},Method->Prin
ipalValue℄-2X-r
[k-1,x℄℄℄;phase[k_℄[x_℄:=NIntegrate[2Im[K0[x-y-I/2℄r[k-1,y℄℄+1,{y,-X,X}℄-2X;\[Theta℄[k_℄:=\[Theta℄[k℄=BAE[Table[phase[k℄[\[Theta℄[k-1℄[[j℄℄℄,{j,M}℄℄;yields the k-th iteration quantities in terms of those 
omputed at the (k � 1)-th step. The energy30
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Figure 7: Di�eren
e between the predi
tions from the asymptoti
 Bethe ansatz and from thegeneralized L�us
her formulas to the exa
t (numeri
al) results for the two parti
le state polarized inboth SU(2) [u; v; ��11℄. The solid (blue) line represents Eexa
t�EABAEexa
t while the dashed (red) 
urvedepi
ts Eexa
t�ELus
herEexa
t . It is 
lear that the latter approximates the exa
t results with ex
ellenta

ura
y, espe
ially for large L of 
ourse.of the state is then given byEn[k_℄:=Sum[Cosh[Pi\[Theta℄[k℄[[j℄℄℄,{j, M}℄-NIntegrate[Re[r[k,y℄℄Cosh[Pi*y℄,{y,-X,X}℄;For example, to obtain the result of the �rst 8 iterations we simply runTable[En[k℄, {k, 0, 8}℄to get f10.2414,10.2425,10.2425,10.2424,10.2424,10.2424,10.2424,10.2424g where we noti
e that theiterations are 
learly 
onverging to the exa
t value 10:2424 up to the pre
ision we are working at.It is instru
tive to 
ompare these results to the value predi
ted by the asymptoti
 Bethe equationsalone, EBAE = 10:3388and to that predi
ted by the generalized Lus
her formulae dis
ussed in se
tion 3.2 whi
h givesEL�us
her = 10:23965.2 Dis
ussion of numeri
al resultsNow we will try to interpret the behavior of various states on the �g.1 as fun
tions of the volume L.Let us start from the va
uum, the lowest plot there. At very small L, the O(4) model should be
omea 2d CFT of three massless bosons: if we introdu
e in (112) a res
aled �eld ~Y = e�10 (L) (X1;X2;X3)and X4 = p1� e20(L)(Y 21 + Y 22 + Y 23 ), where e20(L) ' 2�j logLj is the e�e
tive 
harge, very small inthis limit (the e�e
tive radius of the S3 sphere R(L) = e�10 (L) is very big), the a
tion will be31



S� = Z dt dx 3Xa=1(��Ya)2 + O �e40(L)� : (112)In the ground state, the Casimir e�e
t will de�ne the limiting energy: E0 ' � �
6L+O(1= log4(L�1)),with the 
entral 
harge 
 = 3, whi
h gives E0 L2� ' �14 , the value 
ompatible with �0:18 of the�g.1. 12The energies of ex
ited states areL2�E~n1~n2~n3���(L) ' �14 + NXk=1 3X�=1 jn(�)k j (113)where ~nk = (n(1)k ; n(2)k ; n(3)k ) are the momentum numbers of parti
les 
onstituting the state. We seethat the small L asymptoti
s of our plots are well des
ribed by this formula: The ex
ited statesin the U(1) se
tor, denoted in the �g.2 by �n1;n2n3;���, a

ording to the mode numbers n1; n2; n3,approa
h the values predi
ted by (113) (up to the 
ir
umstan
e des
ribed in the last footnote). Inthis se
tor they have no ex
ited left and right magnons (no u; v roots), and only one 
omponent isa
tivated: L2�En1n2n3���(L) =PNk n(1)k . Say, the 
urves �0; �00; �000; �0000; approa
h �1=4 at L! 0,the 
urves �1; �01; �001 approa
h 3=4, the 
urve �2 approa
hes 7=4, et
. The state with one left andone right magnon ex
ited, denoted as [u; v; ��1;1℄, also approa
hes 7=4.The qualitative behavior of the states �0; �00; �000; �0000,et
, at very small L's 
an be explainedby the fa
t that the quantum �elds are dominated by their zero modes. 13 Sin
e the momentummodes are not ex
ited the �eld ~Y (�; �) does not depend on �. The a
tion and the hamiltonianbe
ome: S� � Le20(L) Z dt (���)2; Ĥ = 14 e20(L)L Ĵ2 (114)where the angle �(�) represents the 
oordinate of a material point (a top) on the main 
ir
le of theunit sphere, and Ĵ is the 
orresponding angular momentum. The quantum me
hani
al spe
trumof this system is well known:L2� (E�f0; 0; : : : ; 0g| {z }m times �E0) = 18�e20(L)m(m+ 2) � m(m+ 2)4 log(!=L) (115)where ! = 
 + log �pep8 �(3=2)4� � ' 13:66 is a 
onstant [46℄. This formula explains well the fa
t thatthe 
orresponding plots on �g.2 
onverge slowly, as inverse logarithm, to �1=4 and their spa
ing isapproximately linearly growing with the number m.The perturbative 
al
ulation of the mass gap [E�0(L)�E0(L)℄ for L� 1 was done in [46℄ andwas 
ompared with the numeri
al results following from the TBA approa
h in [26℄ . Sin
e ournumeri
s is in a perfe
t agreement with [26℄, for the states for whi
h their method works, we willnot review it here. We only re
all that, in the logarithmi
 approximation,12The 
onvergen
e to the limiting value is very slow at L! 0. At L = 0:1 for our 
al
ulations we are stillfar from the limiting value of the energy. In [26℄, where the numeri
s rea
hed L = 10�6, the result is �0:226,
onsiderably 
loser to the limiting value.13We would like to thank A.Tsvelik, P.Wiegmann and K.Zarembo for the explanations on this subje
t.32



L2� [E�0(L)�E0(L)℄ � 34 1j logLj ; (L� 1) (116)whi
h is in the perfe
t agreement with eq.(115) at m=1. We also 
ompared eq.(115) for m = 2with our numeri
s and found a good agreement14. The inverse logarithm in eq.(115) explains wellthe slight divergen
e of various 
urves with zero mode numbers at in
reasing L in �g.2. Mostprobably, the divergen
e of the other plots at in
reasing L, 
orresponding to the same value ofPNk=1P3�=1 jn(�)k j 
an be also perturbatively des
ribed by the same inverse log terms. It would beinteresting to study the small L limit analyti
ally to re
over analyti
 properties of the perturbationtheory.At large L, we enter the realm of the asymptoti
 Bethe ansatz with L�us
her-type exponentiallysmall 
orre
tions to these regime. A
tually, they des
ribe very well our exa
t numeri
al plots for allthe 
onsidered states, 
onsiderably beyond the values of L allowed by the approximation, as seenin the plot 7.6 Con
lusionsWe derived in this paper the non-linear equations yielding the energy of an arbitrary ex
ited statein the O(4) two-dimensional sigma-model, equivalent to the SU(2) prin
ipal 
hiral �eld, de�nedon a spa
e 
ir
le of an arbitrary length L (measured in in�nite volume mass gap units). The mainformulae we found are reviewed in subse
tion 6.1.Although we 
onsidered mostly the O(4) sigma model the new method whi
h we develop hereis very universal and should be appli
able to any integrable relativisti
 sigma model, su
h as theSU(N) prin
iple 
hiral �eld at any N , O(n) sigma models at any n, or more exoti
 models likeSS-model or supersymmetri
 Sine-Gordon model (see [29℄ for the examples and the ground stateenergy and [11℄ for some ex
ited states). In �gure 8 the ground state Y-system diagrams for manyknown models are represented { it would be extremely interesting to perform a systemati
 studyof su
h models using our formalism.We also hope that the method will eventually allow to 
al
ulate the spe
trum of �nite sizeoperators (su
h as the Konishi operator) in the N=4 SYM theory, when applied to its dual, theintegrable string sigma model on AdS5 � S5 ba
kground, on a world sheet 
ylinder of a �nite
ir
umferen
e, as inspired by the works [38, 47, 48, 49℄. In spite of the last spe
ta
ular appli
ationsof the S-matrix approa
h for the perturbative 
al
ulation of wrapping intera
tions for Konishi andother twist-2 operators [5℄, the problem of �nding the dimensions of su
h operators at any 
ouplingis still open.The Hirota equation, whi
h is equivalent to Y-system, appears to be a remarkable tool forsolving the integrable sigma models in 2 spa
e time dimensions. Not only does it help to 
ollapsean in�nite system of equations into a few ones, but it also helps to guess the analyti
 properties ofthe remaining unknown quantities and thus formulate the problem in terms of a single equation fora 
omplex fun
tion g(x) 15 . This fun
tion has the transparent meaning of a gauge transformationbetween the T fun
tions in two di�erent solutions to the Hirota equation, but solving the sameY-system. This equation reminds of the famous Destri-deVega equation, and in the known 
ases,14The dis
repan
y with the r.h.s. of eq.(115) for m = 2 and L = 1=10; 1=100; 1=1000 is 0:057; 0:034; 0:023.15It might be a few fun
tions for other sigma models but always a �nite number of them.33



like the 
hiral Gross-Neveu model, even 
oin
ides with it in 
ertain variables, as we demonstrated inthis paper. However, for many interesting sigma models the Destri-deVega equation is not known- in parti
ular for general states in �nite volume systems. Our method suggests a systemati
 wayof deriving su
h DdV-like equations. For example, in the 
ase of SU(N) symmetry, we 
an expe
tthat the 
losed set of su
h equations should not 
ontain more than 4 real fun
tions (or two 
omplex)- the total number of the gauge fun
tions for the general Hirota equations. It would be interestingto apply our method to the SU(N) prin
ipal 
hiral �eld [41, 42, 43℄, espe
ially in the large N limit,whi
h is expli
itly solvable for a non-zero magneti
 �eld [50℄.There 
ould be interesting appli
ations of our method to 
onformal QFT's in two dimensionsif we 
onsider them as some limiting 
ases of massive theories. These limiting 
ases 
ould be theultraviolet limit of a small volume L!1 (see for example [14℄) or analyti
 
ontinuation w.r.t. thenumber of 
omponents of a �eld, like in [51℄, or something else.Finally, one of the most promising grounds for the appli
ations of our method should be the
ase of supersymmetri
 sigma models, a qui
kly developing subje
t, whi
h is very useful in manyphysi
al problems ranging from AdS/CFT 
orresponden
e to disordered systems. The method ofsolution of Hirota equations applied for the supersymmetri
 spin 
hains with the symmetry algebrasgl(KjM), was worked out in [52, 53, 39, 54℄.6.1 Summary of the main formulaeIn this subse
tion we summarize our �nal integral equations in a self-
onsistent set of formulae.The main example 
onsidered in this paper was the O(4) sigma model where the parti
les have twoSU(2) spins as internal degrees of freedom. To 
ompute the exa
t energy of N -parti
le states withJu left spins down (and thus N � Ju left spins up) and Jv right spins down (and thus N � Jv rightspins up) we should solve the single integral equation on a 
omplex fun
tion g(x)g(x) = ie i2L sinh(�x)S(x) exp [s �Gv(x� i=2 � i0)� s �Gu(x+ i=2 + i0)℄ ;where � stands for 
onvolution, s(x) = 12 
osh �x , S(x) =QNj=1 S0(x��j), S0(x) = i�(1=2�ix=2)�(+ix=2)�(1=2+ix=2)�(�ix=2)and the resolvents are given byGw(x) = Z +1�1 dy2�i � �w(y)x� y � i=2 � ��w(y)x� y + i=2� ; w = u; v ;where the densities are parameterized in terms of g(x) ase�u = g+�g+Q++u Q++v � �Qu �Qvg+g�Q++u �Q��v �Qu �Qv ; e�v = g+�g+Q++v Q++u � �Qv �Qu�g��g+Q++v �Q��u �Qv �Qu ;with Qw(x) =QJwk=1(x�wk) and �Qw(x) =QJwk=1(x� �wk) being the Baxter fun
tions en
oding theBethe roots of the left and right \magnons" (w = u; v). The supers
ripts � indi
ate the shifts by�i=2, so that e.g. Q++v = Qv(x + i) and the bars indi
ate the 
omplex 
onjugation. Finally the
onstants �j, uj and vj are �xed by the �nite volume Bethe equationsQ+u (�j)Q+v (�j)�Q�u (�j) �Q�v (�j) g(�j)�g(�j) = 1 ; ���(uj)Q++u (uj)�+(uj) �Q��u (uj)Pu(uj) = 1 ; ���(vj)Q++v (vj)�+(vj) �Q��v (vj)Pv(vj) = 1 ;34



where Pw=u;v(x) is de�ned on the upper half plane byPw(x) = exp [K1(x� i=2) � �w �K1(x+ i=2) � ��w℄ ; K1(x) = 2� 14x2 + 1 ;and by its analyti
 
ontinuation in the full 
omplex plane. The energy of the state is then given byE = NXk=1 
osh(��k) � 12 Z +1�1 
osh(�x)(�u(x) + ��u(x))dx :A
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t on its the early stage.A Derivation of the (ground state) Y -systemTo 
ompute the ground state energy E0(L) of the SU(2) prin
ipal 
hiral �eld in a periodi
 box of asize L we 
an 
ompute its Eu
lidean path integral Z with the �elds living on the spa
e-time torusof the size L�R , where the periodi
 imaginary \time"R is very bigZ = e�RE0(L) : (117)Following Al.Zamolod
hikov [17℄ we 
an 
ompute this quantity ex
hanging the role of L and R sothat the latter be
omes the spa
e variable whereas the former be
omes the periodi
 time. Sin
eR!1 the spe
trum 
orresponding to the new Hamiltonian 
an be 
omputed from the asymptoti
Bethe ansatz and the �nite periodi
 time L means that we should 
onsider the system at a �niteinverse temperature L. Thus we 
on
lude thatE0(L) = f(L) : (118)where f(L) is the free energy per unit length of the SU(2) PCF at the temperature 1=L in thethermodynami
al limit, when R!1.To 
ompute the free energy we will start by reviewing the asymptoti
 spe
trum of the theoryas given by the asymptoti
 Bethe ansatz. Then we will re
all what are the magnon bound states(
omplexes, or strings) and how they are organized in the 
omplex plane. We will see that thequantum states in the thermodynami
 limit 
an be des
ribed by the densities of these 
omplexes35



and their holes. From this des
ription we will write the entropy formula and thus �nd the desiredexa
t free energy as the result of the saddle point approximation at R ! 1. This will give theTBA equations.Parti
les in the SU(2) prin
ipal 
hiral �eld transform in the bi-fundamental representation undertwo SU(2) groups. The theory is integrable and thus the general s
attering pro
ess fa
torizes into asequen
e of two-body s
attering events. The S-matrix [33℄ des
ribing the s
attering of two parti
leswith momenta and energies given bypj = m sinh(��j) ; Ej = m 
osh(��j) ; (119)depends only on the di�eren
e of rapidities � = �1 � �2Ŝ12(�) = S0(�) R̂(�)� � i 
 S0(�) R̂(�)� � i ; S0(�) = i� �12 � i�2 �� �+ i�2 �� �12 + i�2 �� �� i�2 � ; (120)where R̂(�) is the usual SU(2) R-matrix in the fundamental representation given byR̂(�) = � + iP ; (121)where P is the permutation operator ex
hanging the spins of the s
attered parti
les.From now on, we will measure the length L in the units of the mass gap m, whi
h means thatwe will put m = 1.When N parti
les are put on a large 
ir
le of length R the periodi
ity 
ondition to be imposedon the wave fun
tion reads �T̂ (�j) eiR sinh(��j)	 = 	 ; (122)where T is the transfer matrixT̂ (�) � tr0 �Ŝ01 (� � �1) : : : Ŝ0N (� � �N ))� ; (123)with the index 0 for an additional auxiliary parti
le whi
h we s
atter against all physi
al parti
les.The tra
e is taken over this auxiliary spa
e. Indeed, when the transfer matrix is evaluated at a valueof the physi
al rapidity �j the 
orresponding S-matrix Ŝ0j(���j) be
omes simply �P0j
P0j whi
hmeans that the auxiliary parti
le 
hanges the quantum numbers and be
omes the physi
al parti
le�j. Then (122) be
omes the periodi
ity 
ondition (5) whi
h physi
ally states that on
e we pi
k theparti
le j and 
arry it around the 
ir
le the total phase a
quired by the wave fun
tion { whi
h willbe given by the free propagation Rpj plus the phase shifts do to the (fa
torized) s
attering withea
h of the other parti
les { must be a trivial multiple of 2�.Using the algebrai
 or analyti
 Bethe ansatz te
hnologies it is possible to diagonalize T (�) forany value of � using the same eigenve
tor basis (see an Appendix from [55℄ for the details). Multi-parti
le states with Ju left spins down (and thus N �Ju left spins up) and Jv right spins down (andthus N � Jv right spins up) are parameterized by Ju auxiliary Bethe roots uj and Jv roots vj andT̂ (�)	 = S2(�)�2(� � i)T u1 (� � i=2)T v1 (� � i=2)	 ; (124)where T u(v)1 is the transfer matrix in the fundamental representation asso
iated with the left (right)SU(2) spins, Tw1 (�) � Qw(� + i)�(� � i=2) +Qw(� � i)�(� + i=2)Qw(�) ; (125)36



and�(�) � NYj=1(� � �j) ; S(�) = NYj=1S0(� � �j); Qu(�) = JuYj=1(� � uj); Qv(�) = JvYj=1(� � vj) : (126)The rapidities �j and uj; vj are then �xed by a set of nested Bethe equations. The Bethe equationsfor the physi
al rapidities �j are given by the periodi
ity 
ondition (122) whi
h 
an be written ase�imR sinh(��j) = � S2(�j)�2(�j � i)T u1 (�j � i=2)T v1 (�j � i=2) ; (127)or simply e�imR sinh(��j) = �S2(�j)Qu(�j + i=2)Qu(�j � i=2)Qv(�j + i=2)Qv(�j � i=2) : (128)The magnon rapidities uj and vj are �xed by the auxiliary Bethe equations� Qu(uj + i)Qu(uj � i) = �(uj + i=2)�(uj � i=2) ; �Qv(vj + i)Qv(vj � i) = �(vj + i=2)�(vj � i=2) ; (129)whi
h appear in the diagonalization of the left and right transfer matri
es. Noti
e that theseequations ensure that the apparent poles in (125) drop out and render Tw1 (�) polynomial as itought to be. For ea
h solution to these equations we obtain the energy of the 
orrespondingquantum state from E = NXj=1 
osh(��j) : (130)To be able to 
ompute the free energy f(L) we need to understand how the solutions to theseBethe equations organize themselves so that we 
an introdu
e the entropy density. Let us 
onsiderthe auxiliary roots u, obviously the same 
onsiderations will apply for the v roots. These roots 
antake 
omplex values. When uj has a positive imaginary part the r.h.s of the Bethe equations in(129) diverges, �(uj + i=2)�(uj � i=2) N!1! 1 ; (131)whi
h means that Qu(uj + i)Qu(uj � i) (132)must diverge as well. This 
an be a
hieved if there is another magnon rapidity uk su
h thatuj � uk ' i. Thus, in the thermodynami
al limit the magnon rapidities will organize themselvesinto a Bethe-string of n roots uj spa
ed by i. In parti
ular, a single real root 
orresponds to aBethe string with n = 1. The Bethe equations 
an then be multiplied for uj's belonging to thesame string so that this gives new Bethe equations, solely for the (real) 
enter of ea
h string. Thisis the usual fusion pro
edure applied at the level of the Bethe equations. The resulting equationslook as follows. Introdu
e the magnon bound states:u(n)j;a = u(n)j + i12(n+ 1)� ia; a = 1; : : : ; n:37



Multiplying the equations for a given n-bound state we get for eq.(129) and eq.(128)e�iRp(��) = Y� 6=� S 20 (�� � ��)Yj;n �� � u(n)j + in2�� � u(n)j � in2 ;Y� u(n)j � �� + in2u(n)j � �� � in2 = Y(k;m)6=(j;n) u(n)j � u(m)k � in+m2u(n)j � u(m)k + in+m2 � u(n)j � u(m)k � i jn�mj2u(n)j � u(m)k + i jn�mj2 n+m2Ys= jn�mj2  u(n)j � u(m)k + isu(n)j � u(m)k � is!2 :In the thermodynami
 limit we will have a large number of ea
h type of Bethe roots whi
h we
an des
ribe by a density %n. We use n = 0 for the density of � parti
les, n � 1 to des
ribe thedensity of u Bethe strings of size n and n � �1 for the v Bethe strings made out of �n roots.For ea
h density of parti
les we also have the 
orresponding density of holes �%n. Bethe equationsin the thermodynami
 limit, obtained by taking the logarithmi
 derivatives of both sides of theseequations, read %n + �%n = R2 
osh(��)Æn0 � 1Xm=�1Kn;m � %m ; (133)where � stands for the usual 
onvolutionf � g = Z +1�1 d�0f(� � �0)g(�0) ; (134)and Knm is the derivative of the logarithm of the e�e
tive S-matrix between the strings of size nand m. In parti
ular we have �K0;0(�) � K0(�) = 12�i dd� logS20(�) ; (135)for the intera
tion between physi
al rapidities,K0;n(�) = �Kn;0(�) = 12�i dd� log � � ijnj=2� + ijnj=2 = 1� 2jnj4�2 + jnj2 � Kn(�) ; n 6= 0 ; (136)for the intera
tion of � rapidities with Bethe strings of size jnj andKn;m(�) = K�n;�m(�) = n+m2Xs= jn�mj2 +1 2K2s(�)�Kn+m(�)+Kjn�mj(�)Æn 6=m ; n;m = 1; 2; : : : ; (137)for the intera
tion of two Bethe strings. Obviously Kn;m = 0 if n�m < 0.It is interesting that even though these kernels appear as some quite 
ompli
ated fun
tions theyall exhibit very simple fourier transforms K̂n;m. More pre
isely we haveK̂0(!) = e�j!j=2
osh !2 ; (138)and K̂n(!) = e�jnj!=2 ; n = 1; 2; : : : ; (139)38



so that the sum in (137) 
an be expli
itly done yieldingK̂n;m = 
oth� j!j2 ��e� j!j2 jm�nj � e� j!j2 (m+n)�� Æn;m ; n;m = 1; 2; : : : (140)A very useful formula for what follows 
on
erns the inversion of the operator Knm when bothindi
es n and m are restri
ted to be positive (or negative). In Fourier spa
e(K̂nm + Ænm)�1 = Æmn � ŝ (Æn;m+1 + Æn;m�1) ; (n;m > 0) ; (141)where the operator ŝ (and its fourier transform) has the following forms(�) = 12 
osh �� ;  ŝ(!) = 12 
osh �!2 �! : (142)In parti
ular we noti
e that K0 = 2s �K1: (143)Having introdu
ed all the ne
essary kernels we 
an pro
eed to 
onstru
t the quantity of interest,the free energy at the temperature 1=L. We havef(L) = min%n;�%n Z d� %0L 
osh�� � 1Xn=�1%n log�1 + �%n%n�+ �%n log�1 + %n�%n�! ; (144)where we should minimize the integral by varying the densities of parti
les and holes keepingthe Bethe equations satis�ed. The �rst term in the integral is the energy density multiplied by theinverse temperature (whi
h is L) and the se
ond term given by the sum over n is the entropy density(see e.g. [17℄). We use Bethe equations to write the variation Æ�%n = �Æ%n�P1m=�1Knm � Æ%m sothat the extremum 
ondition Æf = 0 yields a set of TBA equations0 = ��n + L 
osh(��)Æn;0 + 1Xm=�1Kmn � log �1 + e��m� ; (145)where %n�%n = e��n . The free energy evaluated at this extremum 
an then be written in terms of �0alone, so that E0(L) = �Z d�2 
osh(��) log �1 + e��0(�)� : (146)The last two equations yield the �nite size ground state energy of the SU(2) prin
ipal 
hiral �eld.Finally, we will show below that de�ning the in
iden
e matrix Inm = Æn;m�1, the Y variablesYm = e�m (m 6= 0); Y0 = e��0 and using the operator (141) these equations 
an be transformedinto a lo
al (in the dis
rete variable n) set of integral equationslog (Yn) + L 
osh(��) Æn;0 = 1Xm=�1 Inm s � log (1 + Ym) ; �1 < n <1 (147)and E0(L) = �Z d�2 
osh(��) log (1 + Y0) : (148)39



It is remarkable that non-lo
al kernels Knm disappear and at the end only a very simple kernel ŝappears in the �nal set of TBA equations. It is also remarkable, and still somewhat mysterious, thatthe SU(2)L and SU(2)R wings are smoothly glued into one Y-system on a dis
rete set�1 < n <1.To show (147) we should 
onsider (145) separately for n > 0, n < 0 and n = 0. Applyingthe operator (141) to (145) in the �rst two 
ases (it is 
onvenient to rearrange them to have the
ombination Æmn +Kmn), we easily verify (147), ex
ept the 
ase n = 0 whi
h we should 
onsiderseparately. To �nd n = 0 equation of the Y-system we 
onsider (145) for n = �1; 0; 1. The kernelsKn;m entering these three equations are�K0;0 = K0 = 2s �K1 ; K0;�1 = K1 ; K�m;0 = �Km ; m > 0 (149)and, most importantly, K�m;�1 = Km+1 +Km�1Æm6=1 : (150)Thus if we 
onvolute (145) for n = 1 with the inverse shift operator s and use that s � (Km+1 +Km�1) = Km we get0 = �s �K1 � log �1 + e��0�+ 1Xm=1Km � log �1 + e��m�� s � log �1 + e+�1� : (151)Noti
e that the last term is separated from the in�nite sum be
ause them = 1 
ase in (150) behavesslightly di�erently than for the other m's. Moreover the sign of the exponent inside this log di�ersfrom that inside the logs in the in�nite sum be
ause we absorbed the �rst term in (145) into thislast log. Similarly, for n = �1 we have0 = �s �K1 � log �1 + e��0�+ �1Xm=�1Kjmj � log �1 + e��m�� s � log �1 + e+��1� : (152)These two equations 
an then be used to simplify the n = 0 equation whi
h reads0 = �0 � L 
osh(��) +K0 � log �1 + e��0��Xm6=0Kjmj � log �1 + e��m� : (153)Indeed if we sum all these three equations we see that (i) the in�nite sums 
ompletely 
an
el out,(ii) the 
onvolutions with log (1 + e��0) drop out as well by virtue of the identity K0 = 2s�K1. Weare thus left with the last terms in (151) and (152) plus the �rst two terms in (153) thus obtainingthe last Y -system equation (147) for n = 0.Moreover, for the fun
tions g(�) analyti
 inside the physi
al strip Im (�) < 1=2 we haves � [g(� + i=2) + g(� � i=2)℄ = g(�) (154)be
ause ZR g(� + i=2) + g(� � i=2)2 
osh(�(� � x)) d� = 12i IPS g(�)sinh(�(� � x))d� = g(x) :Therefore if Yn is non-zero inside the physi
al strip we 
an invert the s operator to �nd a set offun
tional equations, �nally rendering the Y -system for the PCF at a �nite temperature 1=LYn(� + i=2)Yn(� � i=2) = (1 + Yn�1(�))(1 + Yn+1(�)) (155)To �x a solution, this Y -system ought to be supplemented by the large � asymptoti
s Yn 'e�Æn0 L 
osh�� related to the relativisti
 dispersion relation. Noti
e that these fun
tional equationsdo not 
ontain the dispersion relation expli
itly: it appears only through the asymptoti
s of theY -fun
tions. 40



B General solution in terms of Hirota fun
tionsIn this appendix, we will give an alternative approa
h to the 
onstru
tion of solution for theenergy of a general state of the SU(2) PCF in the periodi
 box. It will give a new NLIE de�ningthe spe
trum, di�erent from the one of the se
tion 3. This approa
h is the generalization of theapproa
h we used in se
tion 2.7 for the states with N parti
les and non-trivial polarizations en
odedin the Baxter polynomials Qu and Qv.As explained in the beginning of the se
tion 3, for ea
h solution to the Y-system equations,there are two natural solutions to Hirota equation whi
h yield the same Y 's and are related bya gauge transformation. The expe
ted analyti
 properties of these fun
tions are des
ribed in thisse
tion. In parti
ular we have T v+1 = g+�g�T u+1T u�1 = 1g��g+T v�1�v = g+g��u (156)whi
h we will now use to 
ompletely solve our problem. First, as in the se
tion 3, we �nd the gaugefun
tion g from the last relation,g = ieiL sinh(�x)=2��v�u��s ; �g = �ie�iL sinh(�x)=2 � ��v��u��s : (157)and plug it in the �rst two to �ndT v+1 = e�L 
osh(�x) �v ��vT u+1(�+u��v ��+v ���u )�s ;T u�1 = e�L 
osh(�x) �u ��uT v�1(�+u��v ��+v ���u )�s : (158)As in the se
tion 3, we still have to relate T u;v0 and �u;v, but we do it here by a di�erent relation.For that, let us de�ne in the whole 
omplex plane x the fun
tionsFu(x) = �(x)� �(x)2�i Z T u�1(y)Qu(y + i)=Qu(y)(y � x+ i=2)�(y + i=2) dy + �(x)2�i Z T u�1(y) �Qu(y � i)= �Qu(y)(y � x� i=2)�(y � i=2) dy (159)andFv(x) = �(x)� �(x)2�i Z T v+1(y)Qv(y + i)=Qv(y)(y � x+ i=2)�(y + i=2)dy + �(x)2�i Z T v+1(y) �Qv(y � i)= �Qv(y)(y � x� i=2)�(y � i=2)dy ; (160)where the integrals essentially go along the real axis, but we should pass the 
ontour in su
h a waythat the zeroes uj ; vj of Qu;v remain below the 
ontour and the 
omplex 
onjugated zeroes �uj of�Qu;v stay above the 
ontour. Using eq.(22) we 
an show that T u;v0 and �u;v are related to the valuesof the same analyti
 fun
tion Fu;v inside and outside of the analyti
ity strip, respe
tively:Fu(x) = 8>>>>>><>>>>>>:
�Q�uQ�u ��u Imx > +1=2T u0 (x) jImxj < 1=2Q+u�Q+u ��+u Imx < �1=2 ; Fv(x) = 8>>>>>><>>>>>>: � �Q�vQ�v ���v Imx > +1=2T v0 (x) jImxj < 1=2�Q+v�Q+v �+v Imx < �1=2 : (161)
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Indeed, substituting from (22) T u�1 = (T u+0 Qu��u �Qu)=Qu++ and the 
onjugate T u�1 = (T u�0 �Qu���uQu)= �Qu�� into the �rst and se
ond terms of (159), respe
tively, we 
an separate the 
ontributionof two integrals in (159) 
ontaining T u0 into a single 
ontour integral going around the physi
al strip(to realize it is useful to make shifts by �i=2 for the integration variable). We shall also use thefa
t that Tu0�+ ! 1 at x! �1. If the point x is inside the physi
al strip we 
an 
ontra
t the 
ontouraround the pole at y = x and thus verify the middle relation in eq.(161). The other two integralsin (161), 
ontaining � and ��, do not 
ontribute sin
e we 
an 
lose the 
ontours there around theupper and lower half-plane, respe
tively. The result is zero sin
e there are no singularities insideby our previous assumption. The poles related to zeroes of Qu;v do not 
ontribute sin
e they areoutside of these 
ontours by de�nition. We should ensure by hand the analyti
ity of �(x) 
lose tothe real axis T u+0 Qu = T u�1Qu++ ; x = �uj ; (162)whi
h is the �nite L deformation of the usual asymptoti
 axillary BAE for the u-roots. The relationsfor Fv are found in a similar way. This equation 
an be shown to be equivalent to the eq.(70) derivedin the main text.Noti
e that T u0 and T v0 are automati
ally analyti
 even slightly outside of the physi
al strip,be
ause we 
an deform the 
ontours to open further the physi
al strip. We will dis
uss this \extra"analyti
ity in the App.D.Finally, noti
e also thatT u1 (x) = Qu(x+ i)Qu(x) Fu(x� i=2) + �Qu(x� i)�Qu(x) Fu(x+ i=2) ;T v�1(x) = Qv(x+ i)Qv(x) Fv(x� i=2) + �Qv(x� i)�Qv(x) Fv(x+ i=2) ;so that (158) 
ompletely 
onstrain the fun
tions T u�1 and T v1 out of whi
h all other Tk and Yk 
anbe written down using the resolvents Fu and Fv .In the U(1) se
tor we have Qu = Qv = 1 and the two wings are obviously equivalent. We willhave in this 
ase T v1 = T u�1 and Fu = Fv will be given by (47). Equations (158) then redu
e to thepreviously derived equation (51).B.1 The main Bethe equationsThe main BAE re
e
ting the periodi
ity of the wave fun
tion and 
onstraining the real zeroes �jis given by (16): Y0(�j � i=2) = T u1 (�j � i=2)T u�1(�j � i=2)�u ��j � i=2 � ��u (�j � i=2) = �1 : (163)Using the fa
t that T u1 has no zeros inside the physi
al strip and the denominator is regular for real�j we 
on
lude that T u�1(�j � i=2) 6= 0. This 
ondition 
an be in fa
t interpreted as yet anotherform of the main BAE. It 
an be further simpli�ed: using (156) we getT u+�1 = 1g�g++T v+�1 = ��g ��+ug ��+v T v+�1 ; (164)where we 
an use that, due to (22), for the u-wing��+u = +T u0 �Q+uQ+u � T u+�1 �Q�uQ+u : (165)42



Substituting it into the eq.(164), and evaluating at �j whi
h is a zero of T0 we get1 = �gg �Q�uQ+u T v+�1��+v jx=�j ; (166)or, using (22) for the v-wing, we get the simplest form of the main equation, easy to 
ompare withthe large L limit 1 = �gg �Q�uQ+u �Q�vQ+v jx=�j : (167)whi
h was also derived in the main text eq.(67).C Proof of reality of TkIn this appendix we shall analyze the reality of the T -fun
tions. This is an important point to
onsider be
ause the Hirota equation is solved expli
itly by eq.(23) provided all Tk are real. Thegoal of this appendix is to show that on
e the following equations (see (58)) are satis�edT u+0�u = g+�g+Q++u Q++v � �Qu �Qvg+g�Q++u �Q��v �Qu �Qv ; (168)�T v+0��v = g+�g+Q++v Q++u � �Qv �Qu�g��g+Q++v �Q��u �Qv �Qu ; (169)�v = g+g��u ; (170)and T u0 and T v0 are real then all Tk are real and thus all the formulae in the main text go through andthe Y -system is indeed solved by (18). Before proving this statement we re
all that eq.(66) followsdire
tly from eq.(170) under 
ertain analyti
ity assumptions and also from Tu+0 Tu�0�u ��u = T v+0 T v�0�v ��v ,whi
h is a 
onsequen
e of eq.(168) and eq.(169). Thus we 
an add the equationT v0 = g�gT u0 (171)to the equations at hand and pro
eed to the proof of the reality of the T -fun
tions.Equation (168) implies�u = ih+1 �Q++u �Q��vg� � Qu �Qvg+ � ; T u0 = ih1�Q+uQ+v�g � �Q�u �Q�vg � ; (172)for some h1. Sin
e T u0 is real for real x the fun
tion h1 is a real fun
tion. Eq.(169) implies��v = �ih+2 ��g�Q++v �Q��u � �g+Qv �Qu� ; T v0 = ih2 �gQ+uQ+v � �g �Q�u �Q�v � ; (173)where again h2 is a real fun
tion. In virtue of (171) we have h1 = h2 � h and by 
onjugating the�rst equation in (173) we �nd�v = ih� �g+ �Q��v Q++u � g� �QvQu� = h�h+ g�g+�u ; (174)43



whi
h means that the real fun
tion h(x) is periodi
 in the imaginary dire
tion, h(x) = h(x + i).This in turn implies that the fun
tion h� is also a real fun
tion be
auseh(x� i=2) = h(x+ i=2) = h(x� i=2) :Then it is simple to see that T u1 is real. We simply write, from eq.(172),T u1 = T u�0 Q++uQu +�u �Q��uQu = ih��QvQ++u�g� � �Qv �Q��ug+ � : (175)The reality of T u1 is now manifest be
ause the expression inside the bra
kets is purely imaginaryand, as we have just shown, h� is real. Pro
eeding in the same way one 
an see that all T uk arereal and thus the Hirota equation is satis�ed by our solution.D Proof of analyti
ity of T�1 in the physi
al stripD.1 Analyti
ity in the U(1) se
torFrom (51) together with F (x� i=2 � i0) = F (x� i=2 � i0)� T�1(x) we haveT�1(x) = T1F++F�+[F++F��℄�2s eL 
osh(�x) + T1F++ = T1F+�F��[F++F��℄�2s eL 
osh(�x) + T1F�� : (176)Using respe
tively the �rst/se
ond equality we 
an smoothly move from real x into the upper/lowerhalf 
omplex plane provided T1 is analyti
. In this way we 
an rea
h any x inside the enlarged stripjIm (x)j < 1 where T1 is regular.Noti
e that for large L we haveT�1(x) ' 8<: �� ;+1=2 < Im (x) < +10 ;�1=2 < Im (x) < +1=2�+ ;�1 < Im (x) < �1=2 (177)The denominator in the expression for T�1 at x = �j � i=2 is proportional to Bethe equationsS2eipjL+1 = 0. This is not a pole of T�1 be
ause the numerator at these points is proportional toT0(�j) = 0.However, for large volume, T�1 
ould have poles at the analogue of the holes of the �j BAE,
lose to the boundaries of the physi
al strip.D.2 General 
aseIn this subse
tion we will study the analyti
ity of T u�1(x) and T v1 (x) for a general solution. Wewill show that for large enough L these fun
tions are analyti
 inside the physi
al strip �1=2 + � <Imx < 1=2� � where �! 0 when L!1. We start from eq.(158) and rewrite it asT u�1 = +e�L 
osh(�x) �T u�0 Qu � T u�1Q++u � ��uT v�1�Qu(�+u��v ��+v ���u )�s : (178)44



and similar for T v+1. Solving for T u�1 we getT u�1 = e�L 
osh(�x)T u�0 Qu�Qu(�+u��v ��+v ���u )�s � e�L 
osh(�x) ��uT v�1Q++u (179)Sin
e ��u is regular in the lower half plane and T v�1 is regular in the strip �1 < Imx < 1 where(�+u��v ��+v ���u )�s is also regular the singularities of T u�1 for �1 < Imx < 0 
ould be only due tozeros of the denominator.As far as L or x are large for �1=2 < Imx < 0, the se
ond term in the denominator isexponentially suppressed and to get a zero of the denominator we should be 
lose to a zero of�Qu. The points 
lose to �uj where the denominator vanishes are in fa
t x = uj as follows fromthe auxiliary �nite volume BAE eq.(70). However these poles 
an
el with zeroes of the numeratorrendering T�1 regular at these points, a result we were familiar with already. Thus, we see thatfor large L the only poles that 
ould appear must lie 
lose to the border of the physi
al stripImx = �1=2 where the exponent is os
illating. It os
illates faster for large x and we thus havepoles 
ondensing at in�nity along the borders of the physi
al strip.We 
on
lude that for the general solution { at least for large L's { the fun
tion T u�1(x) is analyti
inside almost the whole physi
al strip and 
ould have poles only very 
lose to the border. For smallL it 
an probably happen that the singularities approa
h the real axe. That 
ould indi
ate somesingular behavior of the energy levels as fun
tions of L su
h as the one observed in [56℄ (see e.g.�gure 10 in this work). It would be interesting to investigate these points in greater detail.E Details on L�us
her formulae derivationIf this se
tion we shall present some details of the 
omputation of the �rst �nite volume 
orre
tionto the asymptoti
 auxiliary Bethe equations, obtained by expanding (70) to the leading order (seese
tion 3.2 for notation). We start by writingP (Uj) = exp [K1(Uj � i=2 + i0) � �u �K1(Uj + i=2 + i0) � ��u℄ : (180)Noti
e that we introdu
ed the i0's be
ause P (x) was originally de�ned in (71) for x in the upper-half-plane. Removing the i0's by the use the Sokhatsky-Weierstrass formula we getP (Uj) = exp �K�1 � �u �K+1 � ��u + Y0=2�x=Uj ; (181)where the 
onvolutions are understood in the prin
ipal part sense and �u + ��u = log(1 + Y0) ' Y0was used. Next we split the density �u into �(1)u and �(2)u as explained in se
tion (3.2). The former
ontribution is purely imaginary and therefore it 
ontributes to the exponent asK�1 � �(1)u �K+1 � (��(1)u ) = K2 � �(1)u : (182)Hen
e we �nally obtainP (Uj) = exp�K2 � �(1) + (K�1 � �(2) � 
:
:) + Y02 �x=Uj ; (183)
45



with all 
onvolutions understood as prin
ipal part integrals. It turns out that the �rst and the lastterms in this exponent simply 
onvert the Bethe roots uj in (70) into their real parts, namely,Q++u (ui)�Q��u (ui) exp�K2 � �(1)(ui)� = Q++u (ui)Q��u (ui) (184)��(ui)�+(ui)Q++u (ui)Q��u (ui) exp�Y0(Ui)2 � = ��(Ui)�+(Ui)Q++u (Ui)Q��u (Ui) : (185)The 
he
k of the �rst equality goes exa
tly as in (78) and we will therefore not 
onsider it here.Let us explain how to 
he
k the se
ond equality. Noti
e that this expression is equivalent to�uj �x log���(x)�+(x)Q++u (x)Q��u (x)�x=Uj = �Y0(Uj)2 : (186)Next, we write the right hand side 
ontaining Y0 ' T�1T1=�+�� as� Y0(Uj)2 = ��Q++u (Uj)T u�1(Uj)2�+(Uj)Q0u(Uj) �� T u1 (Uj)Q0u(Uj)Q++u (Uj)��(Uj)� : (187)The �rst fa
tor in the r.h.s. is pre
isely �uj. This 
an be seen from expanding the se
ond equationfrom (22) at x = �uj = uj � 2�uj to leading order in �uj. Alternatively we 
an �nd the imaginarypart of uj by imposing regularity on the density (75) at x = uj. To simplify the se
ond fa
tor in(187) we write T u1 (Uj) = (Q++u �� +Q��u �+)0Q0u �����x=Uj (188)Evaluating the derivative of the numerator and using the leading order auxiliary Bethe equationsQ��u (Uj)�+(Uj) +Q++u (Uj)��(Uj) ' 0 we �ndT u1 (Uj)Q0u(Uj)Q++u (Uj)��(Uj) = �x log���(x)�+(x)Q++u (x)Q��u (x)�x=Uj (189)thus identifying the se
ond fa
tor in the left hand side of (186) and 
ompleting our proof. Thereforethe expansion of the auxiliary Bethe equation (70) simply redu
es to (80), as announ
ed in the maintext.To simplify the Bethe equations (79) and (80) further we shall relate the 
onvolutions in theseexpressions to parti
ular derivatives of the Y -fun
tion Y0. To 
ompute these derivatives it is usefulto noti
e that we 
an write Y0 in terms of two simple pure phase fun
tions au and av,aw(x) = S(x)Q+w(x)Q�w(x)eiL=2 sinh(�x) (190)as Y0 = �a+u + 1=a�u � �a+v + 1=a�v � : (191)In this form, it is easy to 
ompute the derivative of Y0 with respe
t to �k, uk or vk be
ause we 
anuse a simple identity��iaw(x) = ��iK0(�i � x)aw(x) ; �wiaw(x) = 2�iK1(wi � x)aw(x) : (192)Furthermore if we noti
e that the densities �(2) 
an also be simply expressed in terms of these newfun
tions as �(2)u = a+u �a+v + 1=a�v � ; �(2)v = a+v �a+u + 1=a�u � ; (193)It is then a straightforward exer
ise to 
he
k the identities (83).46
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Figure 8: For several models the Y-system TBA equations for the ground state energy are knownand 
an be represented by the diagrams su
h as the ones in this �gure. Using the te
hniquesdeveloped in this paper it would be extremely interesting to 
ompute their 
omplete spe
trum in asystemati
 way. 51
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