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Abstract

We propose, using the example of the O(4) sigma model, a general method for solving integrable
two dimensional relativistic sigma models in a finite size periodic box. Our starting point is the
so-called Y-system, which is equivalent to the thermodynamic Bethe ansatz equations of Yang and
Yang. It is derived from the Zamolodchikov scattering theory in the cross channel, for virtual
particles along the non-compact direction of the space-time cylinder. The method is based on the
integrable Hirota dynamics that follows from the Y-system. The outcome is a nonlinear integral
equation for a single complex function, valid for an arbitrary quantum state and accompanied by the
finite size analogue of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation.
We present the numerical data for the energy of various states as a function of the size, and derive
the general Liischer-type formulas for the finite size corrections. We also re-derive by our method
the DAV equation for the SU(2) chiral Gross-Neveu model.
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1 Introduction and Summary

The study of the properties of Quantum Field Theories (QFT’s) in finite volume, or at finite
temperature, has a long history and numerous applications. Matsubara description [1] of finite
temperature 17" thermodynamics, by considering the system in the periodic imaginary time ¢, has
lead to the extensive study of the Euclidean QFT’s with one compactified dimension with numerous
physical applications [2].

Liischer found the leading finite size corrections to the mass gap in relativistic two dimensional
QFT’s [3, 4]. These corrections depend solely on the asymptotic S-matrix of the theory. Recently,
Liischer corrections to various multi-particle states in integrable 2D QFT were conjectured [5].

For the integrable 2D QFT’s, as understood during the last two decades, the ambitions can be
much higher: these systems are usually solvable at any finite size though a systematic approach to
such solutions, as well as a good understanding of the working prescriptions, are still missing.

Figure 1: Physical channel, cross-channel and finite volume vs finite temperature.

There are two main schemes to address the finite size calculations. The first, pioneered by
Destry and deVega (DdV) [6], is based on the integrable discretization. Once such discretization is
at hand, the system can be studied by the well established methods based on the transfer matrix
approach and the resulting non-linear integral equation (NLIE), often called the DAV equation,
calculates not only the ground state energy but also the spectrum of excited states. The method
appeared to be very powerful when applied to the Sine-Gordon model [7, 9, 11, 12, 13], or to more
general RSOS models [14], Toda theories [15], hard hexagon models [16], etc.

However, for generic integrable QFT it is far from easy to find the corresponding integrable
lattice regularization and for many models such discretization is not known. Nevertheless, the
problem can be usually tackled by using a computation scheme alternative to the DAV approach.
As explained in the seminal work of Al.Zamolodchikov [17] this is achieved by the double Wick
rotation trick: using the Matsubara imaginary time formulation we can first find the free energy in
the infinite volume but finite temperature. Next we flip the meaning of euclidian time and space
directions on the cylinder: 7 — o, 0 — 7, and interpret the free energy as the ground state of the

1

system in finite volume L = 4 (see fig.1). In this way we can obtain the exact finite volume ground

state energy. This computational scheme is known by the name of Thermodynamic Bethe Ansatz
(TBA).

The TBA equations, whose number is infinite in many interesting models, can be usually con-
cisely casted into the so called Y-system functional equations [18, 19]. Often the latter one can be
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Figure 2: Plots of energies E of a few excited states of O(4) model on a circle of a circumference
L. The vertical axis corresponds to the values of %E, the horizontal axis - to the values of L in the
logarithmic scale. The lowest curve depicts the vacuum energy. The next one, labeled as 0y, shows
the mass gap energy. The corresponding state is in the U(1) sector, with a single particle at rest,
hence with the mode number = 0. The next states in the U(1) sector are denoted by 6p nons,..,
according to the mode numbers ny,no,ns, ... excited for the 1-st, 2-nd, 3-rd, etc., particles. For
all these states the SU(2);, and SU(2)g spins of the several particles are pointing in the same
direction, say they are spin “up”. The dashed line represents a state having a polarization out of
the U(1) sector, with left and right “magnons” excited - it corresponds to the quantum state of
two particles where both SU(2)r, and SU(2)r spins are in the singlet s = 0 state. The qualitative
explanation of these graphs will be given in subsection 5.2.

rewritten in the form of DAV equations or some similar set of integral equations for a finite set of
functions. The method was successfully used for many relativistic models [20, 21, 22, 23, 24]. As
explained in the previous paragraph the computation of the exact ground state energy by means
of this method is a relatively straightforward task with solid theoretical foundations.

To obtain the exact spectrum comprising all excited states of the theory is, on the other hand,
a much more involved - and a very interesting - task. A possibility to describe the excited states
within the TBA approach, by modifying the analytical properties of the thermodynamic functions,
was first suggested in [24]. Another possible way to obtain the spectrum of the theory, proposed
around the same time, is based on the analytic continuation of the ground state energy with respect
to the parameters of the model, such as the mass or the chemical potential, in order to find the
excited states [25]. If the integrable lattice regularization is absent, it is not well understood why
these methods work. Nevertheless, the results are usually in the excellent agreement with the
perturbation theory, Liischer finite size corrections and the direct Monte-Carlo study for a wide

range of sizes L (see for example [26, 27, 28, 29, 30] for O(n) and related o-models).
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Figure 3: Domains of applicability of different descriptions of an integrable field theory at a finite
volume L. In the ultra-violet regime, for small volume measured in units of a dynamically generated
mass, the theory could be described by a conformal theory. In the infrared, at large volume, one
can use the asymptotic Bethe equations. The leading order finite size corrections are governed by
the (generalized) Liischer corrections. At any volume but for the ground state energy only one can
use Thermodynamical Bethe ansatz. Hirota equation, equivalent to Y-system but more efficient
when it comes to imposing appropriate analyticity properties, is a universal tool covering the whole
diagram.

For models with diagonal scattering, like the Sinh-Gordon theory [31], the whole classification
of excited states is possible [32]. The situation is much more complex when we deal with the non-
diagonal scattering. The nested structure of the corresponding Bethe ansatz equations leads to
complicated magnon-type excitations and bound states. Little is known about the excited states
in such finite size systems. The only models where the polarized excited states were investigated,
using the DAV equations, are the Sine-Gordon model [7] and its supersymmetric version [1 1] as well
as the tricritical Ising model [10]. By the existing methods only the sectors with diagonal scattering
can be studied efficiently, as was done for example for the O(4) sigma model in [30]. A general
and unified description of all excited states of the o-models like O(n) or the SU(N) principal chiral
field (PCF), and similar ones, having a “geometric” target space, is still absent.

The main goal of the present paper is to give a method of a general and systematic description of
all the states of integrable QFT’s in finite volume. We will explain how to go beyond the asymptotic
spectrum and compute the full finite size spectrum comprising all excited states of integrable sigma
models. We do it here on the example of O(4) sigma model and also for the SU(2) chiral Gross-
Neveu model but our formalism is certainly more general and is most probably applicable to any
integrable 141 dimensional o-models. The main ingredients of the method are:

e The two-particles S-matrix for integrable system allows us to write the periodicity condition
quantizing the momenta of the physical particles on a large circle of length R. The equations
following from the periodicity condition are so called asymptotic Bethe ansatz (ABA) equa-
tions describing all states of the model. The details of this computation for the SO(4) sigma



model are given in Appendix A'. They are, however, valid only in a sufficiently big volume
compared to the typical interaction distance, Rm > 1 where m is the infinite volume mass

gap.

e For the ground state, the double Wick rotation (o, 7) — (7, 0) allows to reduce the problem
to the thermodynamics. One can put the euclidian theory on the torus with one radius,
R, very large and another one, L, arbitrary (see the fig.1). The ground state energy for a
finite radius is related to the thermodynamic partition function. The exact equations for it
can be found using the asymptotic spectrum given in the cross channel by the asymptotic
Bethe equations. The resulting infinite series of integral equations, thermodynamic Bethe
ansatz (TBA) equations, are casted into a functional form called Y-system. Here is the main
assumption: we assume that different solutions of the Y-system describe not only the ground
state but all the excited states. One should furthermore restrict the class of solutions by
assuming certain analytic properties which will in particular identify the quantum numbers
of the states we are considering.

e Classical integrability of the Y-system, as a finite difference equation equivalent to the Hirota
difference equation [34, 19], allows us to express explicitly the infinite number of the unknown
functions through a finite number of the basic ones [35, 36].

e The Baker-Akhiezer function of the Lax pair associated with the Hirota equation can be
interpreted as the Baxter function encoding the “magnon” Bethe roots, responsible for the
SU(2)g and SU(2)y polarizations of states. The analyticity properties important for the
full formulation of the resulting non-linear integral equation, are also suggested by the Lax
equations. The gauge symmetry of Hirota equations allows to explicitly fix the final nonlinear
integral equation (NLIE) for each state of the theory.

The resulting equation can be studied in various limits (such as Liischer finite size corrections
or small volume, conformal limit) or solved numerically in a rather efficient way. The fig.2 shows
some of our numerical results obtained from the new equation, plotting the energy of various states
as functions of the volume. When the similar results are available in the literature the agrement is
perfect.

The general scheme elaborated in this paper on the example of the O(4) sigma-model should
be applicable to all integrable relativistically symmetric 2D QFT’s. It should be also useful for
the study of finite size effects when the system does not look explicitly relativistic but allows the
S-matrix description and this S-matrix obeys the crossing symmetry, like the AdS/CFT S-matrix
[37, 38]. Y-system and Hirota equations give a unified and powerful point of view at all this
subject since they solve in an almost trivial way the “kinematic” part of the problem related to the
representation theory, whatever is the symmetry or supersymmetry of the model [35, 39].

Our method based on Hirota equation, being exact for any finite size L of the system, reproduces
well various limiting cases (see the fig.3). For the large L, the energies of the states are well described
by the Liischer corrections [3, 4, 5]>. We derive them here for a general state with arbitrary
polarization, which is also a new result, extending some hypothesis existing in the literature [5].

For small L, our results are well described by the theory of three free bosons, as will be discussed

!'We are unaware of the existence of such derivation of the Y-system for the PCF in the literature
2 Actually, as we will see from our numerics, Liischer corrections work surprisingly well all the way until
Lm ~ 1.



in the paper. The results for various low-lying levels, including the cases of non-diagonal scattering
which are new, are summarized in the fig.2.

Our resulting NLIE can be brought sometimes to a form similar to the DAV equation. In the
cases when the latter is available it can even coincide with DAV equation (an example of the chiral
Gross-Neveu model is considered in our paper). It would be extremely interesting to understand the
relation between the solution based on the integrable lattice discretization of [10] and our proposed
integral equations. Nevertheless we should stress that the real power of our method should be in its
universality: it should work in all situations when the TBA equations in the form of the Y-system
are available.

2 TBA and Y-system for O(4) sigma model, or SU(2)
Principal Chiral Field

The method we are proposing it quite general and we hope that a wide range of models could be
solved using it. However for the sake of simplicity we will exemplify it on the SU(2) Principal
Chiral Field (PCF), equivalent to the O(4) sigma model. In section 4 we will also consider the
SU(2) Chiral Gross-Neveu model.

2.1 The Model

The action of the PCF is given by the usual expression

Sy = %/dtdz (0aX,)?, (X, =1, (1)

€o

whose target space is S3. It is equivalent to the SU(2) ® SU(2) principal chiral field (PCF) whose
infinite volume solution was given in [41, 42, 43]. Indeed, by packing the fields X; into an SU(2)
group element h = X4 + 1 ij:l Xjo; with o; being the usual Pauli matrices, we can re-write the

action as®

1
Spcr = —=— [ dtdz tr(h '0,h)?. (2)
2ej

The spectrum of this asymptotically free theory in the infinite volume consists of a single
27

physical particle of mass m = Aeig, where A is a cut-off. Its wave function transforms in the
fundamental representation under each of the SU(2) subgroups. Al. and A.Zamolodchikov [33]
proposed the exact elastic scattering matrix for such particles:

. - 1_ 0 0
S12(6) = 50(9)5(_92 ® 80(9)5(_92 , So(0) = Z; E; n %; ; Ej%; ’ (3)

where R() is the usual SU(2) R-matrix in the fundamental representation given by R(#) = 0 + iP
and P is the permutation operator exchanging the spins of the particles being scattered. This

3In the AdS/CFT literature one usually uses VA = 2%.
0



S-matrix was established due to: (i) analyticity, (ii) unitarity, (iii) absence of bound states, (iv)
crossing. In particular, (ii) and (iv) lead to the following identity

. i/2
So(0 +1/2)S0(0 —i/2 4
o0+ 1/250(0~1/2) = T @
on the scalar (dressing) factor. We can use this S-matrix to study the spectrum of N particles in
a periodic space circle of a sufficiently big circumference L > m™'. The spectrum can be defined
from the wave function periodicity condition

N
H S(Gk _ H 9k _ — o imL sinh(7r0k)|\1j> ’ (5)

j=k+1 j=1

which quantizes the momenta of the physical particles. The asymptotic spectrum of the theory put
on a large circle of length L is then given by

N
E = Z m cosh(70;) (6)
7=1

where 6; are solutions to the Bethe equation (see Appendix A for more details). In what follows we
will measure all dimensional quantities in the units of m. Diagonalizing the periodicity condition
(5) in the physical space by the usual methods (see an appendix in [39] for this model) we get the
main Bethe equation

72Lsmh 7r9 (0 + 7’/2) QU (9 + 7’/2)
== 11880 =005, =iy 0t i) ™

The magnon rapidities u; and v; are fixed by the auxiliary Bethe equations

_Qului+i)  pluj+i/2)  Qu(vj+i)  plu;+i/2) (8)
Qu(uj —i)  Bluj —i/2) 7 Qulvj —i)  B(v; —i/2)’

where

Qul(z) = H(x —wj), for w=u,v, (9)
J

and ¢(z) = [[;(z — 0;).

2.2 TBA and Y-system

As we mentioned in the introduction, the ground state energy Ey(L) for arbitrary L can be com-
puted starting from asymptotical Bethe ansatz in the cross-channel. For SU(2) principal chiral
field this is described in detail in the Appendix A. The output is that the ground state energy is
given by

Fo(L) = —% /d0 cosh(r0) log(1 + Yp) | (10)

where Yy is one out of an infinite number of Y-functions Y,, with n € Z obeying the TBA-type
equations

logY,, + L cosh(mz)dno = s *log(1 + Y,11)(1 + Y1), n=0+1,%2,... (11)



with s = m and the sign * denoting the convolution. If log(Y,(z)) for any n have no

singularities inside the physical strip —1/2 < Im = < 1/2 we can easily invert the operator sx to get

1

simply s+ = e300 +¢e72% and these integral equations can be rewritten in a functional, Y -system

form
Y IV, = (1+ Y1)l + Yaq), (12)

supplemented with the asymptotic boundary conditions for large x
Yy, ~ e Leosh(m@)ono o congt,, . (13)
The superscripts & stand for shifts of the argument by 4i/2 *,
fE=flz+i)2). (14)
Eq.(12) has however many solutions and only one of them really leads to the ground state energy.

SUL(2) U() SU«2)

O o0

vV 6 u

Figure 4: Dynkin diagram (three central nodes) and its extension for the magnon bound states
(grey nodes) reflecting the structure of the Y-system. The central, black node corresponds to
the U(1) sector excitations of the model (6-roots), the upper and lower nodes correspond to the
more general states for magnon excitations for the SU(2);, wing (u-roots) and the SU(2)r wing
(v-roots).

It is commonly believed that certain other solutions there describe the excited states [25, 44]. The
energy of the N-particle excited states is again given in terms of Y{ but is modified

1 N
E(L) = ) /d0 cosh(m0) log(1 + Yp) + chosh(wﬁj) , (15)
7j=1

where the extra terms are inspired by the analytic continuation in L and the points 6; [25] are
singularities of the integrand in the first term

Yo(0;+i/2)=-1, j=12,...,N. (16)

As we shell see, the last equation is nothing but the Bethe ansatz equation for physical rapidities
modified at the finite volume. The last term in (15) is generated from the integral (10) by picking
up the logarithmic poles (16).

Our goal in this section is to make use of the integrability of the Y-system rewriting it in the form
of classical integrable discrete Hirota dynamics. This allows us to write down explicitly a solution
for all Y,, in terms of a finite number of functions. Then we will restrict ourself to a certain sub-class
of physically relevant solutions with particular analytic properties. The analyticity will allow us to
fix the functions completely and parameterize all the physical solutions for the excited IV particle
states in terms of a finite set of complex parameters, Bethe roots, restricted by supplementary
Bethe equations reducing in the infinite volume to the usual Bethe equation.

k k

——— ———
4We will often use even a more general notation, like f+ ot = flx+ik/2)or f~ 77 = f(z—

ik/2).



2.3 Hirota equations

The Y-system equations eq.(12) can be seen as a gauge invariant version of the so called Hirota
equation or 7-system

Ty(z +i/2)Ti(x —i/2) — Ti—1(2)Tpy1(z) = @ (m + %) o (w — %) : (17)

It can be easily checked [19] that Hirota equation is equivalent to the Y-system eq.(12) if we denote

Tp1(2)Tjo—1 (2) _
D (z+ik) @ (z —ik)

Yi(z) = (18)

At first sight, this is just another trivial rewriting of the TBA equations, however the Hirota form
appears to be particulary useful. Using Hirota equation we can also write

Tz 4i/2)Ty(x —i/2)
L) = T S (i) (19)

Let us point out here an important fact. By evaluating the above equation for £ = 0 at §; +4/2
where 0; is a zero of Ty we observe that

To(0;) =0 = Yp(0; £i/2) = -1 (20)
which is the Bethe ansatz eq.(16). We will use this fact to associate zeroes of T with physical
rapidities.

Since Y (x) are real functions by their physical meaning (for ground state they are ratios of
densities of complexes and of their holes, see Appendix A) we can restrict ourself to the case when
T} are real functions and ® and ® are complex conjugated functions.

Hirota equation (17) is integrable and has a Lax representation through the auxiliary problem

[35]
Thi1(2)Q <x+z§> — Ty (x — %) Q <x+z§ +i> +® (x+z§> Q (x —ig — z)

Tk_l(g;)Q(z—ig—i>—Tk<x—%>c‘2<x—ig> = —é(z—z‘g)Q(Hig). (21)

The compatibility of these two equations for the bi-vector of functions {Q(z), Q(z)} leads to the
initial Hirota equation. Here @ is the complex conjugate function to Q. Note that if T} (z) are real
functions then the second equation is simply the complex conjugate of the first one after shifting
k— k+1and x — = +4/2. Two particularly useful relations from this Lax representation are

C pe i @E D) o Qi)
e Q@) o Q)

Note that the first relation in (22) is a generalization of the famous Baxter equation usually written
for the spin chains. We will see that in the infinite volume limit ®(x) = Ty(z + i/2) and that

10



these equations reduce to the usual Baxter equation for spin chains, where T3 plays the role of the
transfer matrix in fundamental representation for the magnons of the SUr(2) wing of the theory,
whereas the second equation plays a similar role for the SUL(2) wing (see Fig.4).

The main advantage of the Lax equations (21) is that they are linear in T}, and we can easily
express any T} in terms of Ty, ® and @ in the explicit form [35]

Q(m—l—i%) .
T = & — i) 9
R A R A O (v — ik + i)
+ Q<x+z 5 )Q(w i— >;Q($—i%+2])Q( —i%wtij)'

This leads to a quite general and explicit solution of the Y-system via eq.(18). A nice feature of this
form is that one can efficiently analyze the L. — oo limit and reproduce the asymptotic spectrum
described by BAE eqs.(7,8). This will be the goal of the next section.

Hirota and Lax equations exhibit several important symmetries. First of all a discrete symmetry
exchanging the u-wing and the v-wing (right and left SU(2)): Yy <> Y_j is induced by

TkHT—kaq)H_(i)aQHQiiaQHQ++a (24)

which will be quite useful for our further constructions. Moreover, both equations (17) and (21)
are invariant under the gauge transformation

Te(z) — <x+zg> (m—z§> Ty (z),

d(z) — gz —1i/2)g9(z +i/2)®(z),
(z) — glz—i/2)g(x+1i/2)®(z),
Qz) — gz —1i/2)Q(x). (25)

(
(

To preserve the reality of T}, we should assume that g is the complex conjugated function to g.
These transformations leave Y (z) invariant.

The general solution of Hirota equation (17) can be also presented in a determinant form [35]

Ty (z) = h(z + ik/2)

‘ Qx+zk+1) R(z +ik$h) ‘ (26)

1) Rz - it

where h(z) is a periodic function: A" = h(z + i) = h(z) and Q, R are two linearly independent
solutions of the Lax equations (21) related by the Wronskian relation

<I>(a:):h(x+i/2)‘ Rfi(i)i) Qg?i) ‘ (27)

This determinant form will be very useful when we will formulate the general solution of the finite
size PCF system for any state. It is not absolutely necessary to use it, but it simplifies some
derivations.

11



2.4 Asymptotic Bethe Ansatz and Classification of the Solutions

The main problem in computing the exact spectrum of the SU(2) PCF is to find the physical
solutions to the Y-system (12) or, alternatively, to the Hirota equation (17), i.e., obeying the right
asymptotic properties (13). Their classification is a complicated task, especially when we want to
take into account not only the excitations of U(1) sector but also the “magnon” type excitations
of SU(2);, and SU(2)g sectors. The goal of this section is thus to identify the large L solutions
to the Y-system (12). The discussion in this section is not completely rigorous since our only goal
is to get an idea of how asymptotic Bethe ansatz (ABA) eqgs.(7,8) appears from the Y-system.
Together with the expression (6) the ABA equations must appear from the large L asymptotic of
exact solutions, as yielding the leading order value of the full spectrum.

The main simplification in the large L limit is that Yy — 0. From eq.(13) we see that Yy —
2e~lcosh(72) and we are left with two decoupled chains of equations for k > 0 and k& < 0 [13].
For each wing we can introduce two sets of T}, describing the corresponding solutions of the whole
T-system: T} and T} such that Yj~o (Yi<o )can be expressed in terms of T} (7}Y) by the formula
(18). Then Yy = 0 implies

T, =0, TY =0. (28)

Let us focus on T} since we can always use the wing exchange symmetry (24) to describe T} .

We have to identify the solutions which will lead to the asymptotic spectrum described by the
ABA. Tt turns out that in terms of Hirota potentials T} it is enough in this limit to make very
simple assumptions, namely:

o AT} o(z) are polynomials at L — co. We denote in this limit Tj(z) ~ [[;(z — 6;) = ¢(z).
e Q"(z) is a polynomial with real roots which we denote Q"(z) = [[;(z — u;).
Then from eq.(22) we see that
TU(x +i/2)Q%(z — i) + TY(x — i/2)Q%(z + i
BU(x) = TV(x +i/2) and Th(z) = D@ FIDQUw =) +Ti(w —i/2)Q"w +1) o

Q" (x)

From the polynomiality condition for T} (x) and T} (z) we get precisely the auxiliary Bethe equations
eq.(8).

Finally, we should note that eq.(7) for the physical rapidities #; is also satisfied. This follows
from imposing Yo(0; £1i/2) = —1 for all zeros 6; of T, see (20). At first sight, this seems to be
impossible to satisfy since, as we noticed, Yy(z) is small. However this smallness appears because
Yy is proportional to e~ sh(7%) which is indeed small inside the physical strip —1 /2<Imz<1/2
but is of order 1 on the boundary of this strip. To impose this condition we must first compute Yj
to the next order.

From (12) at n = 0 we get
T T T

(¢tFe—)?
So(z — 6;) we have, from the crossing relation (4), STTS = ¢/¢™" | so that

Yy, = (30)

Defining S(z) = H;VZI

T ()T ()82 (x + i/2)>+ <T1“(x)T”1(x)SQ($ + i/2)> | 51)

o
= (T P2
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from which we can identify Yy up to a zero mode factor of yg = e L2 which obeys yar Yo = L.

Such factor should be included into Yj to ensure the proper asymptotic (13). Thus we find

_ S%(x +i/2)
~ ,—Lcosh(mz)pu v
Yo(z) = e 107" (o) Sl (32)
Evaluating it at = 6 — i/2 and using eq.(29) we get
Qu(gk + Z/Q)Qu Ok + 2/2
l~e tL sinh(70y,) 82 _ 9 33
Q. (0 —/2)Q,(0k — i/2) 1:[ 0 (O (33)

which is nothing but the main ABA equation (7) for the middle node in fig.4. We use here the
notations

Qu(z) = Qu(z —1i) , Qu(x) = Qu(z) , (34)
to make the u- and v-wings more symmetric. The advantage of these notations is that the wing

exchange symmetry eq.(24) simply exchanges Q, and Q, and in the large L limit they are real
polynomials.

Finally, since Yj(x) is exponentially suppressed for real z we can drop the integral contribution
in (15) which leaves us with the energy as a sum of energies of individual particles, precisely as
expected from (6).

Notice that the Zamolodchikov asymptotic scattering theory is implicitly contained in the Y-
system, as we see from the appearance of the scalar scattering factor S? in the formula (32).

2.5 Probing the finite volume

Now, having established the solution at infinite volume, we need an insight into the analytic prop-
erties of T-functions in a finite, though large, volume. Let us find perturbatively the finite L
corrections for the simplest vacuum solution which for large L corresponds to Q" = Q" =1, ¢ = 1.
From eq.(23) one can see that for this case, to the leading order, T}' ~ k 4 1 which implies for
Vi = |k|? + 2|k|. Thus we are looking for a solution in the form

Yi = [k? 4+ 20k +yp , k= —o0,...,00 (35)

where the first two terms in the r.h.s. are the trivial solution at L = oo, where as y;, ~ Y, are
small. We will see that the solution for the perturbation is unique under the assumption that when
k — oo the perturbation goes to zero y; — 0. The linearized Y-system in the Fourier form is

k k+2
y SY.-1 =0, k>0 36
k+23yk+1 Yk + SYk-1 y k2 (36)
where ¢ is the Fourier transform of y; and § = m is the Fourier transform of the kernel

s = m 7o = Yp is a fixed function. We see that this is a second order recurrence equation

which in general has two linear independent solutions. Fortunately it can be solved explicitly.” The
general solution reads

klw| (k+2)|w] [w] (k+2)|w]
. k(E+1)(E+2) (e e ez e
k= 2 K iz | O T T | W)

50ne can use RSolve function in Mathematica to find the solution.
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The needed solution satisfying §o = Yy , §ec = 0 corresponds to C; = Yy, Cy = 0. Making the
inverse fourier transformation we get

k(k+1)(k +2) 1 1
_ _ Yo .
Yk 71' 2+ k2 42+ (k+22) 0 (37)

It can be easily checked that the approximate T}, yielding this solution through (18) are

. Y k/m
Tk—1:T1—k2k+m*Y0, k>0. (38)
and |
D(r) =1+ /[ Y. (39)

4(x +1/2410)% +1
The 40 in this expression can be dropped when computing Yi~o from (18) but is included in this

expression so that (18) can also be used for k£ = 0, for more details see the discussion in the next
subsection.

An important feature of this asymptotic solutions for T}, which should persist at any L, is that
it acquires two branch cuts at z € R +4k/2 when L — 00.°

2.6 Exact solution for the vacuum

We will now extend the solution found in the previous section to arbitrary L. First, we notice that
the solution in terms of T} is much simpler than in terms of Y. For the vacuum we can use the
following ansatz inspired by eq.(38)

Tklzk—i_%*fa k:+0,1,2, (40)
where f is some function which for large L becomes Y. One can easily see from the linear system
eq.(21) at @ = Q = 1 that this ansatz solves the Hirota equation and can be presented in the form
eq.(23) with ®(z) = To(x +4/2 +40). Thus the Y-system equations eq.(12) for |k| > 2 are satisfied
automatically. Notice that none of the T}’s has singularities on the real axis, which is of course a
necessary feature of the solution: the physical quantities Y should not be singular there.

To check that the equation for £ = 1 is also satisfied we have to define Yy in terms of T}. For
that we can simply analytically continue eq.(40) to the point & = 40 which gives T_1(z) = f(z)/2.
We also have ®(z) = Ty(z+14/2+1i0), ®(x) = To(z —i/2—1i0) as mentioned above. These properties
are supported by the second equation (22) which can be viewed as yielding the spectral density in
terms of a jump on any of two infinite cuts. Then we get

_ Ty(xz+1i/2 —i0)To(x — /2 +40) T (z)f(z)/2

O T e iaT R 20 Rtz -0

This equation relates Yy and f. With Yj so defined the Y-system equations at |k| = 1 are now also
satisfied. However the equation (11) for £ = 0 is still not used. Using

Ty (x +i/2)T (z — i/2)>2
To(z +9)To(z — 1)

(1 +Y1)(1 +Y—1) — (1 + Y1)2 _ (

6The term “branch cut” is not very appropriate here since the infinite cut has no branch points. However,
as we shall see, a spectral representation will allow us to define Ty (x) in the whole complex plane in terms
of spectral density integrals along the cuts.
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and recalling that s is the inverse shift operator we obtain”

Yg(.’L‘) — echosh(wx) Tf(l‘) ) (42)
[To(z + i)To(z — )]**
Combining it with eq.(41) we get
T /2 4+ 10)To(z — /2 — 40
f($) _ 2T1(l‘) 0(]7 +7’/ +? ) 0($ .2425 ¢ )echosh(wx) ’ (43)
[T[)(ﬂ? + Z)T()(H? — 'L)]
which, in virtue of the eq.(40), gives a closed equation for f(x).
Notice that from eq.(43) T—1(z) = f(z)/2 is exponentially small for large L with

T_1(z) ~ 2¢ Leosh(ma), (44)

The finite L solution to equation (43) can be easily found by iterations, starting from this large
L asymptotic and gradually diminishing L. We solved this equation numerically and get a perfect
match with the existing results (see the Tab.l comparing our results with [26]).

L Leading order Eq.(43) Results of [20]
L=4 —0.015513 —0.015625736 —0.01562574(1)
L=2 —0.153121 —0.162028968 —0.16202897(1)
L=1 —0.555502 —0.64377457  —0.6437746(1)
L=1/2 -—1.364756  —1.74046938 —1.7404694(2)
L=1/10 —7.494391 —11.2733646  —11.273364(1)

Table 1: We solve numerically eq.(43) the use Yy from eq.(41) to compute the energy of the
ground state using eq.(10).

In the next subsection, we generalize this solution to the excited states in the U(1) sector.

2.7 Generalization to U(1) sector

In this section we will study in detail the U(1) sector of the theory where we consider the states
with N particles with the same polarization, i.e. with no magnon excitations. Hence we can put
all @ =1. As mentioned before — see eq.(20) — for N particle states we expect Ty(6;) = 0 for each
of N rapidities of the particles 61,...,0y.

In the previous section the vacuum state, with no particles excited, was analyzed. We saw that
To(z) inside the physical strip, ®(z) above the strip and ®(z) below the strip could be described
by a single function

* T,1 s (45)
such that

To@) (@) <1/2 . (46)

O(x—i/2) ,Im (z) > 1/2
O(z+1i/2) ,Im(z) < —-1/2
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Figure 5: The function F(x) in (47) can be recast as a contour integral as in (49) with the
contours as represented in this figure.

Here we build a generalization of (45) for the case when Ty has an arbitrary number of zeroes
inside the physical strip for which (46) holds:

ro=o0 (- [ (Grtam e - wrme ) ) @

with ¢(x) = vazl(x — 0;). The overall factor of ¢(z) appears because Ty(6;) = 0. The spectral

representation of F(z) as two integrals over the two infinite cuts at Im (z) = £1/2 is inspired by
(45) and can be also seen from the linear problem (21). Indeed, we have

T_\(2) = To(x +i/2) — B(z) = To(z — i/2) — ®(«) (48)

which justifies the choice of spectral densities used in (47). To see that (46) indeed holds we write
(47) as

F(x):qs(x)(%@%(y)/ﬂy) +% dy ®(y —i/2)/9(y) +j£ ﬁ<1>(y+i/2)/¢(y)>_ (49)
Y Y Y

2 oy —=w + 271 Yy— - 27 Yy—

The contours v, ¥ and y~ encircle respectively the physical strip, the region above the strip and
the region below the strip, see figure 5. For this relation to be equivalent to (47) we require that for
large # we should have Ty(z), ®(z —i/2), ®(x +i/2) — ¢(x) at |z| — oo along the corresponding
contour. Finally, for (46) to hold, the ratios in (49) should be analytic inside the corresponding
contours. Notice that at large L the function T_; is exponentially small and thus ® , Ty, ®+ — ¢(z)
as expected from our discussion in section 2.4, to get the ABA equations. The large z limit should
be similar to the large L limit since the source term in the Y-system e~%csM(72) i gmall in both

cases.

"We introduce a natural notation ¢g** = es*1°89,
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_ Let us now consider the other Hirota functions 7. From (21) we have T'(z) = Ty(z +4/2) +
®(z) = ®(x) + To(r — 7/2) which in terms of the function F(z) reads

Ti(z)=F(x+i/2+i0)+ F(z —i/2+i0) = F(x +i/2 —i0) + F(x —i/2 —i0) , (50)
so it is indeed regular on the real axis. Notice that 77 is regular at least inside the enlarged strip

Im (z)| < 1. In the same way we can easily see that Tj~ is analytic inside the strip |Im (z)| < &L

Having expressed Ty, ® and T} in terms of T through the function F'(x) we can find a closed
equation of T_; from the Y-system equation for n = 0. The derivation is parallel to the one in the
previous section and it leads to

(l‘ + 7:/2 + ZO)F(I‘ — Z./2 — ZO) 67L cosh(mx)
[F(z 4 i) F(z —i)]™*

T () = (F(z +i/2) + Flz —i/2)) . (51)

supplemented by the quantization condition Yy(#; + i/2) = —1. As before, the solution to these
equations can be easily found from iterations as is explained in the Sec.5. The numerically calculated
energies of a few states of this U(1) sector are presented on the fig.2.

In the next section, we generalize these results to any excited states including the magnon
polarizations. We will use a different strategy and incorporate the gauge invariance of Y-system to
find the solutions of Y-system eq.(12) matching the L = oo asymptotic of the Sec.2.4.

3 Finite size spectrum for a general state of PCF

We will now describe how to construct the solution for the most general state of the PCF at finite
volume L, having an arbitrary number of physical particles with arbitrary polarizations in the
SU(2)r and SU(2)r, wings (characterized by left and right “magnons” u; and v;). Our method is
based on the following observations and steps:

e We know from eq.(32) the structure of the poles and zeroes of all Y;’s in the limit L — oo
when Yy = 0. We assume that this structure will qualitatively persist even for finite L, and
the classification of the appropriate solutions of the Y-system will follow the same pattern of
poles and zeroes.

e We will recast the Y-system in terms of T-system (Hirota equation) since the analytic struc-
ture of T}’s is much simpler than of Y as we saw from the vacuum solution (38) at L — oo.

e For any “good” solution of Y-system there is a family of solutions of Hirota equations related
by gauge transformations (25). Hirota equation can be solved explicitly in terms of Ty, ® and
Q as in eq.(23).

e For I — oo we have two independent solutions for T}’s as we saw in the previous section.
For one solution T} are asymptotically polynomials for k& > 0 and for another one T} with
k < 0 are polynomials when L is large. We can then smoothly continue these two solutions
to finite L’s using the gauge freedom to preserve polynomiality of Q)’s.

e We have two global solutions of Hirota equation which can be parameterized by T, ®,, Q"
, and by Ty, ®,, Q". They represent however the same and unique solution of the Y-system
and thus should be related by a gauge transformation g : 7Y = g o T}, see (25).
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e Using certain assumptions about analyticity of Tj' and ®,,, supported by the Lax equations
(21), we can express them as different analytic branches of the same analytic function G,.
The same can be done for 7|y and —®, in terms of G,.

e The solution will be completely fixed by the existence of such a gauge transformation g(z)
which relates its u— and the v—representations. At the end we will have one single non-linear
integral equation (NLIE) on g(z).

The final equation for g(z) is new for the Principal Chiral Field. It is different from the system
of 3 DAV type equations used for the same model in [30]. Still it resembles in many aspects the
non-linear Destri-de Vega (DdV) equation which appears when studying other integrable models.
Indeed, our method is very general and it allows to generate DdV-like equations for large classes of
sigma models in a systematic way. For the models for which a DAV equation is known we expect
our integral equation to coincide with it after an appropriate change of variables. We check this
hypothesis on the SU(2) chiral Gross-Neveu model for which we re-derive indeed the known integral
equation.

3.1 Exact equations for the finite volume spectrum

In this section, we will derive the finite volume spectral equations of the previous section in the
most general form, valid for all excited states of the model with any number of physical particles
with arbitrary polarizations (i.e. with any quantum numbers).

As we discussed below in the infinite volume, the solution of Y-system with Yy = 0 can be
described in terms of two independent sets of Hirota potentials 7}* and T}’. Since these two different
solutions of Hirota equation correspond to the same solution of Y-system they are related by
a gauge transformation g(z). These two solutions of Hirota equation can be continuously and
unambiguously deformed all the way from very large L, where we know the solution (see the
previous section), to any finite value of L. The gauge ambiguity for any of the two solutions, T} or
Ty, can be fixed by choosing @, and @, to be polynomials for any L. Of course we can no longer
assume T} and T}, as well as the corresponding ®, and ®,, to be polynomials. Instead we will
assume certain analytic properties for them and we will see their consistency with the solution we
find at the end.

We introduce a polynomial ¢(z) with real zeroes 6;, j = 1,2,..., N of Ti'. They correspond to
the rapidities of physical particles on the circle. The gauge function g(x) relating the two solutions
of the T-system is assumed to be regular and to have no zeros on the physical strip, so that
Ty = ggT{ has the same zeroes as T¢ there. We also assume that®

. ¢({;’jr(f/)2) (d)é’i(f/)m) is regular for Im z > —1/2 (Im z < 1/2) in the whole upper (lower) half

plane and goes to 1 for |z| — oo in all directions in the upper (lower) half plane;

g (x)
o(z)

° is regular and goes to 1 at £ — Fo0 inside the physical strip —% <Imzx < %;

8When » — oo we know that Yy(z) — e~ Leosh(mz) e it is exponentially small, as in the case of
large L, and the Y-system, as well as the T-system splits in to two independent u- and v-wings with
To(z) ~ ®(z) ~ d(z) ~ zN.
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The first property is somewhat similar to the forth property from the previous subsection: the
large - asymptotics is governed by the same exponential e~ <%h 70 a5 the large L asymptotics. As
a consequence of the second assumption, inspired by the integral representation (47) for the U(1)
sector, Ty o (z) are regular for —(k +1)/2 <Tmz < (k+1)/2.

Similarly, for another solution we assume that
. ¢(iqu(f/)2) (¢é’i(f/)2)) is regular for Im x > —1/2 (Im = < 1/2) in the all upper (lower) half plane
and goes to 1 when |z| — oo in all directions in the upper (lower) half plane

15 (z)

o) is regular and goes to 1 at x — Fo0 inside —% <Imz < % strip.

Note that with these properties all Y;.o are automatically analytic in the physical strip, as we
see from (18). Yy is, in the strict sense, only analytic on the real axis, but the detailed analysis of
the Appendix D shows that we can expect its analyticity even in a finite strip around the real axis.
As concerns the T-functions, although we use in different circumstances T}’ or T}/, we will get the
same result for all Yy, since they are related by a gauge transformation g(x). But analyticity will
be explicit only for one wing at a time: at k > 1 for T} and at k < 1 for T}.

The listed properties are enough to explicitly relate T} , T} with the corresponding ®, and @,
using a certain integral representation for them. In Appendix B we follow this line of arguments to
formulate the complete set of equations for an arbitrary state, including a NLIE for g(z) and the
associated equations for the Bethe roots. However, it appears to be more advantageous, especially
for the numerics, to use the integral representations for the logarithms of T}, T}, ®,, ®,. We will
derive in what follows the corresponding equations defining the energy of a general state.

e ————
— -

\
1/2 |

-1/2

Figure 6: The ratios indicated close to each contour are analytic inside the corresponding contour.
Thus we can obtain them in each of these regions using a single resolvent G, (z) as in (52).

Let us define two new functions analytic on a Riemann surface with two infinite cuts at Im = =

+i/2
_ 1 > Puw(Yy) 1 > Puw(y) -
Gulr) = 55 /oom—y—i/2dy 2mi ,ooz—y+z‘/2dy’ (w = u,v) (52)
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with the following spectral densities along the infinite cuts’

MMﬂ%@%ﬁyﬁ,mwﬂ%G&i@Q, (53)

and their complex conjugates

puli) =1tog (L) o) 1o (R (54)

Then from (18) we have

When L is large enough we know from the results of the section 2.4 that T3’ (z) ~ @ (z —/2) ~
®y(z +i/2) ~ ¢(x) and thus to the leading order p,(z)’s are exponentially small. It is also
important for our analyticity assumptions listed above to hold that py () ~ e L™ at 2 — 400
along the real axis. Together with these analyticity assumptions the following formulae are true at

any L

f logw Imz > +1/2 ' logW Imz > +1/2
Go(z) = { log YE((;”)) Tma| <1/2 , Gu)={ log if(g) Imz) < 1/2
k log% Imz < —1/2 \ logw Imz < —1/2 o

These formulas are easily understood from simple contour manipulation as depicted in figure

6. Let us consider the resolvent Gy, plug (53) and (54) into (52) and consider separately the
terms containing T‘;L(x), Sule=i/2) and LulEti/2) - gipce @ 1, x — +o0o, we can close the
¢(z) ¢(x) ¢(x) ()

contour in the integrals containing % around the physical strip and contracting it around

the pole y = z we obtain the middle relations in (56) if z lies in the physical strip. Similarly,

using the fact that in the upper half-plane Sul@=if2) 1, x — oo, we can close the contour in the

_ b(z)
integrals containing log % (after the obvious shift of integration variable) around the upper

half-plane and contracting it around the pole y = z we obtain the upper relations in (56) provided
Im(z) > 1/2. The integrals containing log W are treated similarly with the contours being

closed in the lower half-plane. For the resolvent GG, the same sort of reasonings apply.

As we mentioned above, the two solutions of Hirota equation we defined in this way, are related
by a gauge transformation T} = g o T}'. However, the polynomials @, and ), are not necessarily
related by this gauge transformation g(x). Instead, one can easily see that @, is mapped to another
linearly independent solution of eq.(21) R* = ?—_U. We can use eqs.(26,27) to express all T}’s and
®’s in terms of )’s. In particular, we have

++0—— ) + O+ YO~
(I)u — h+ <Qu ?v _ Qu?v) , Té" —p (Qu_Qv _ Qu Qv > ) (57)
g g g g

9These spectral densities denoted by p should not be confused with the densities of Bethe roots o used in
appendix A in the derivation of the Y-system ground state equations.

20



Similar relations for v wing can be obtained from the gauge transformation ®, = ¢ ¢*®, and
T3¢ = ggT§'. For the densities (53-54) this yields

’I'u+ QQZ_—'_Q;J"'_—QuQU Tw+ QQ;}"‘—QZ_—F_QUQU
ePr — + 0 — g+ Fa— — , efv = — 0 = ?7 ar— — . (58)
(I)u ZT w Qv - Qu QU '1),0 §_+ v Qu - Qv Qu

Note that one can get p, from p, by exchanging indices u <> v and g — 1/g.

We see that the densities and thus both G, and G, now can be expressed solely in terms of
three polynomials Q,, Q,, ¢ and a function g(z), generating the gauge transformation relating the
two wings. It is left only to find a closed equation on g(z). We do it in the following subsection.

3.1.1 Closed equation on the gauge function g(z)

In the previous subsection, we managed to express all relevant quantities in terms of three poly-
nomials Q,, Q,, ¢ and a complex function g(x). Using the condition that two solutions of Hirota
equation are related by the gauge transformation generated by g(z) we can write a closed equation
on that function. In particular, using the fact that ®, and @, are related by the gauge transfor-
mations (25) we obtain

d,=gT¢g P, . (59)
It gives a closed relation on g which we can rewrite, assuming that g is regular within the physical
strip, as follows
LiLsinh(rz) Py *S 60
= 4e2" -
g=ic (-3) - (60)

where the zero mode of the inverted operator was chosen to ensure the proper large = asymptotic.

Indeed with this choice T", = T:,L ~ e Leosh(72) Jeading to the right behavior of Yy (see eq.(18))
979

at large L. Using (52) this can be re-casted as

g= ie%iLSinh(”)S(x) exp [s *x Gy(z —i/2 —i0) — s * Gy(z +1i/2 +0)] (61)
where we used (56) and the identity
¢7 *S s
(¢_+ =($ts)" =85, (62)
following from the crossing relation (4). We remind that ¢(z) = H;V:1(33 —0;) and S(z) =
[1;2, So(z — 05).

The closed NLIE (61) for g(x) is our main result. Together with the expressions for the densities
in terms of g (53-54) it allows us to calculate (1+Yp) and thus to obtain the energy of a state (15).

In what follows in this section we will rewrite it in a little more convenient form which will be
useful for the numerical computations for particular states.

Conjugating the last equation we find

g = —ie /25000 6=l (1) exp [s % Gy (@ 4 /2 4 i0) — s % Gy (z — i/2 — i0)] . (63)
Finally it is useful to translate these equations into an equation for the phase g/g

o 1
_ _6st1nh(7r:v)S2(l,) exp (5 [K(; * (pu + po) — K(;r * (P + Pv)]) ) (64)

Q<
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L

50y log S§ and we used

where Ky =

Gz +1i/2+i0) — Gy(x —i/2 —i0) = Ky (z +i/2 — i0) % py — K1 (z —i/2 +i0) x py  (65)

and the convolution form of the dressing kernel as Ky = 2s+ K1, K1 (z) = m . For the squared
norm gg we get from eq.(60)
B b, D, \ " O,®, TETTY 17Ty
— (2 Zv) = ~ S0 G -G 66
99 (q)u (I)u> Té)—l—TS)— q)uq)u Té/, eXp( v u) ’ ( )

where we used YLOYU = 1 inside the square brackets to get the last equality. This equation can
be also obtained from the gauge transformation Ty = ¢ggTj;' . As we shell see in section 5 these
equations can be efficiently solved numerically, by iteration, where at each iteration step a single
convolution integral arises involving the densities p, and p,.

We use eq.(58) and eq.(59) together with our analyticity assumptions to constrain g, ®,, and
T,"". In the next section we will fix the remaining finite number of complex parameters - zeros
of polynomials Q,, Q, and the real zeroes of ¢. After that one can use eq.(23) to construct all
T). In appendix C we show that all T}, obtained in this way will be real functions and thus Hirota
equation for them is satisfied. This means that we solved indeed the Y-system with the right
physical analytic properties for the solutions.

3.1.2 Finite size Bethe equations and the energy

Finally it is left to explain how to fix the finite number of constants, the Bethe roots 0, u; and v;,
which are zeros of the polynomials ¢ , Q,, Q, and which completely characterize a state. The zeros
of ¢ are by definition the zeros of Ty which means that at these points e?v(0i£1/2) = epv(0;£1/2) —
as we can see from eq.(58). It can be also written as follows

QiQ7 g
0.9y

which we can rewrite using eq.(64) as

=1, atz=0;, (67)

. + 0o+ 1

gL sinh(r0;) — _52(9]') 911 91: exp <_ [K()_ * (pu +py) — K(Si— * (Pu + ﬁv)]) ) at x = 9]'- (68)
Qu Qy 2

Note that when L — oo we can neglect the last factor to get precisely the usual infinite volume

ABA eq.(7). The equations for the auxiliary Bethe roots u; can be derived in many alternative
ways. The most standard way is to demand analyticity of T} at = u; (see eq.(22))

2,0, +Tg Qft =0, at z=u;. (69)

We see that in general there is no reason to assume u; to be real when L is finite. Using the resolvent

G, to represent Ty and @, appearing in this expression we get the auxiliary Bethe equations

following from (69) in the form

o
¢+t Qu~

where P(z) is defined on the upper half plane by

1=

P(uj) (70)

P(z) =exp[Ki(x —i/2) % py — K1(z+i/2) xpy] , Imz >0, (71)
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In the large L limit P(z) ~ 1 and we get the ABA eq.(8). A similar equation fixes the roots v;.

The integral equation (61) together with the equations (68), (70) fixing the zeros of the polyno-
mials Q,, Q,, ¢ are the complete set of equations which one should solve to find the full spectrum
of the SU(2) x SU(2) principal chiral field. Once g(z) and the positions of the zeros 0;,u;,v; are
found, we can compute the exact energy of the corresponding quantum state from eqs.(15,55) and
(58)

N
1 _
E = Z cosh(mfy) — 3 /cosh(ww)(pu + pu)dz . (72)
k=1
9T oitoft-0.9,

g

Z—IQ#Q;‘—QuQU

where we can use due to (58) py, + pu = pv + py = log

Let us remark that our construction for a general state in this paper was based on the assumption
that in the asymptotic regime L — oo all the roots u;j,v; become real.However, it is well known
that the complex solutions are also possible. We hope that even in this case our equations maintain
their form, although this situation deserves a special care.

In section 4 we will explain how to efficiently implement these equations for numerical study.
Before that, in the next section we will study the large L behavior of these equations thus repro-
ducing not only the large volume results of section 2.4 but also the subleading corrections (Liischer
corrections).

3.2 Large volume limit: ABA and Liischer corrections

The SU(2) principal chiral field spectrum is given by (15), or (72). As we have seen in the previous
section, in the large L limit the Bethe roots 6; are given by their asymptotic values obtained from
a solution to the asymptotic Bethe equations, and since Yy and p’s are exponentially small we can
drop the integral contribution in (68) and (70) and recover the usual asymptotic spectrum. In this
section we focus on the leading finite size corrections to this result.

Due to these corrections auxiliary roots u; and v; become complex even if they were real
asymptotically at large L. In this section we denote the real part of the roots u;,v; by U; and V;
while the (small) imaginary parts we denote by Awu; and Av;. The positions of the momentum
carrying roots f; are also corrected, however they stay real. We will also use the notation

Q) =[[@-U) , Q@) =][@-V). (73)
J J
We have to compute the first correction to the positions of the Bethe roots. To the leading order
we can drop the exponentially small densities p, and p, in eq.(61), to get

g(x) ~ iS(l,)eiL/Qsinh(mv) (74)

which we can use to compute the spectral densities from (53-54). We see that some terms in the
expression for p, are exponentially suppressed and we can expand

Pu = M + e_LCOSh(mU)S_t Qj/:+ Q’j+¢7 + Q;7¢+ ~ Qu - Qu + Qq—i——'_Tgl
Qu S ¢t 0,9, Q. Quo™

(75)
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In the last equality we neglect the small imaginary part of the axillary roots and we use (22) to

the leading order together with the gauge transformation T, = g~g™T%, and the crossing relation
Sts— =<4

The poles at = U; should cancel, due to eq.(70), among the first and the second term since
the density by definition is regular. We introduce the notations pq(}) and pg) for the first and the
second term in (75). The first one can be simply written as

2Au;
(1) ~ J
Pu _;x—Uj' (76)

Since the whole density is regular we can apply the principal part prescription to the finite integrals
in (64) without changing the result. Having done so we are free to split the convolutions into
convolutions with p() and p®). In (68) we should then expand the factor

2 (i f 165 = 0000 [ e (30 f K - 0200 (77)

u
and the similar factor for the v roots, to the next to leading order. We notice that ,01(}) is purely
imaginary to the leading order, as seen from eq.(76), and therefore we can simplify the term in the
square brackets

orF | R e o) L 9 m\ _ 94 pg1)++p1(})— oy
Q—uexp<§(K0 + K) * py, _Q—;(l—l—Kl*pu)—Q—; 1+f = (78)

where the convolutions are understood in the sense of principal value. Thus in the Bethe equations
(67) in this approximation the imaginary parts of the axillary roots cancel against the contribution
from p™) and we simply get

o ++
—elLsmh(”)SQ% = exp (—iIm K, * {pq(f) + pq(?)]) at ©=46;. (79)
Qu Qy
Proceeding in the same fashion in the eq.(70) for the auxiliary Bethe roots we arrive at a similar
conclusion. Namely only the real parts of the auxiliary roots survive when we separate the density
into p() and p®
oo
e
See appendix E for details. We see that all terms except for the convolutions with p(2) have a simple
effect of absorbing the imaginary parts of the Bethe roots.

= exp (—2iIme * p&2)> at £ =Uj; . (80)

It turns out that the remaining convolutions, containing p(?), can be nicely written in terms of
the leading order Y} found before in (32),

~ o—Lcosh(mz) QzJ;Jrqsi + Qu¢+> <Q1J1r+¢ + Qv¢+> (S+)2
= (== 2, 62

where the 6; appear in ¢ and S while the u; (v;) auxiliary roots appear in the corresponding Baxter
polynomials Q,, (Q,). Notice that this quantity is already exponentially small, so we can take here
the asymptotic values for the auxiliary roots. As explained in detail in appendix E, the quantities
inside the principal part integrals are related to the derivative of this function with respect to 8 or

(81)
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ug and v which we treat in (81) as independent variables. More precisely we have the remarkable
identities

im (K0 =9) [o20) + 02 w)]) = -2 82)
2Tm (K7 (uw; — )pP(y)) = +8"1'2L7fi(y)- (83)

Thus we finally obtain the corrected Bethe ansatz equations in the following elegant form:

ot QT du; Yo(y)
o ++ 0p. Y\
_¢tLsinh(7z) g2 giigii = exp <][ HJTOZ(y)dy> at = 9] , (84)
o, 9v; Yo(y) _
_¢__D;—+ = exp ][7271_2 dy at ¢ = ‘/] .

It is not completely surprising that we managed to express everything in terms of Y. To the leading
order, Yy can be expressed in terms of S-matrix only: it is the relevant eigenvalue of the operator

o~ Lcosh(mz) ¢, (gOI (z — 91)5’02(;5 —6s)... S()N(x - 9]\7)) . (85)

We see that (84) corresponds precisely to the conjectured equation (27) in [5] only inside the U(1)
sector. However, our result is different from outside the U(1) sector when there are axillary roots
U; and V;. Finally the equation for the energy of the state corrected by the finite size effects is
given by eq.(15) in terms of Y in the leading approximation and the corrected positions of the
roots 6; which should be found from eq.(84).

The right-hand sides of the corrected Bethe equations (84) have a simple interpretation: for the
middle equation, it reflects the contribution of scattering of the “physical” particles off the virtual
ones on the cylinder, whether as the other two reflect the same effect for the “magnons” responsible
for the isotopic degrees of freedom of the particles. Although these equations are derived here only
for a particular model their form looks very universal and can be immediately generalized to any
other integrable sigma model where the exact scattering matrix is known.

3.2.1 Single particle case

In this section we consider the single particle case for the Liischer-type correction of the previous
subsections. This analysis was done in a more general context in [5].

When we have a single particle with momentum 6; (84) yields simply
. dy
Lsinh (76;) = 2wn — 2—891Y0(y) , (86)
T

which corrects the leading order quantization condition

Lsinh(76Y) = 27n.. (87)
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Now, from (81) we see that the z dependence in Yy (z) comes from the exponential factor e~ L7 cosh(rz)

and also from the combinations z — 6;,z — u; and = — v; appearing in the remaining terms in this
expression. Thus

9, Yo(y) = —Lr sinh(ry) Yo (y Z 9, Yoly Z A, Yoly Z A, Yoly (88)
which, in the case we are considering, with N =1 and J,, = J, = 0, allows us to simplify (86) to
. dy _ .
Lsinh (76) = 27n + 7L sinh(my)Yos(y), (89)

so that the leading finite size correction to the energy (15) reads
- 0\ ~ _l - 0 —Lcosh(my) ;.. § 0
E(L) — cosh(m#y) ~ 5 /cosh(wy) (1 — tanh(my) tanh(r6))) e trSo1(y —67),  (90)

precisely as expected for the Liischer corrections [4].

4 SU(2) Chiral Gross-Neveu model and related models

Our NLIE resembles the Destri-deVega equation and, at least in the cases the last one is known, can
even coincide with it. In the cases when the DAV equation is not known, like the SU(2);, x SU(2)r
PCF, or O(4) model studied in this paper, we obtain a new, DdV-like equation. In this subsection,
to demonstrate our method, we show how to reproduce the DAV equation for the chiral SU(2)
Gross-Neveu model on a finite circle.

The TBA equations for this model are given by the same Y-system (12) with an important
difference that Y;.9 = 0 (see Fig.8). In particular, since Y_1 = 0 we have T_s = 0 which implies
due to the eqs.(21,17)

0=T7Q-®Q  , THT, =3 " (91)

Then it is immediate to check that the quantity

% T o1,
satisfies, due to eq.(91), the relation
B Q-i— + Q—l— )
ATA ( =] —. (93)
Q- Q-) @
Note that A is a pure phase on the real axe. Thus, restoring the proper zero mode exponential, we
find ks
_ L sinh(nm)c_)_ @ 94
A= Q <<I>> | oy
As before, to make this a closed equation on A we introduce the resolvent G and the density p
1 p(y) 1 ply) Ty
Gr) = — dy — —— d =log —. 95
(z) 27Ti/x—y—i/2y omi | T—y+ij2 V> PT%g (95)
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Again analytic properties of Ty and @ lead to eq.(56). Using the linear problem (21) we can write
T QT — T, Q = —®Q and we see that

p = log [% (1+ A+)] : (96)

Thus A satisfies the closed equation for A since ® = G(z + /2 +i0). We see that A(z) plays a
similar role as g(z) in PCF. We can easily compute Y} in terms of A4

1+Yy=e’e’ = (1+ A7) (1+1/A7) . (97)

We see that the factors of @) cancel from this expression. It is also possible to write eq.(94) in a
simpler form without factors of @) using the useful identities. First using eq.(65) and assuming that
the density is regular not only on the real axes but also for —1/2 < Im z < 0 we write

i) *8 1 1 1
(6) = Spexp (§K0 * 0 — §K(;r * P) = Spexp (§K0 * [:O_Jr - ,0+]> ) (98)

where p~+ = p(z — i/2 4 i0). Using the following relation

1 Q*Q 1 _, [SiQ
where
N Ju Ju
Sola) =[] Sole ~0;) . Sulw) = [[ o —w) . Sule) = [[ Sole—5)  (100)
j=1 j=1 j=1
we can get rid of ’s in (98) and finally obtain the known DAV equation
A = €l Sinh(”)% exp (iIm Ky * log [1 + A(z +40)]) . (101)
Sa Su

Then for Yy we get the standard relation which should be used to compute the exact spectrum from

E(L) = —% /mcosh(wé‘) log(1+Yy) + chosh(wOj) . (102)

Furthermore, both BAE — for the physical rapidities ; and for the magnon rapidities u; — can be
written

A0;) =-1, AT(uj) =-1. (103)
We also notice that A(z) has poles at z = 4; + /2. To see that we use

To(6;) =0 = 1+ A(0;) = =0, (104)

=0. (105)

Equations (100),(97),(102) and (103) are precisely the DAV equations derived in [6, 7]'°!' As shown
in this section our method can be directly generalized to other models whose TBA Y-system

10T these papers the sine-Gordon model was considered. The SU(2) Chiral Gross-Neveu model is a simple
limiting case of this theory, see discussion in the paragraph below.
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equations are known. It would be very interesting to make a systematic study of such models using
our formalism.

For example, a simple generalization of the case studied in this section is obtained by considering
the functions T}, ¢ as well as the Baxter functions @ to be periodic in the imaginary directions
with period sv. This amounts to considering the trigonometric solutions of Hirota equation (17)
and the corresponding linear problem (21) — this should correspond to the sine-Gordon model [13].
We take the Baxter polynomials Q(z) and the large L limit of Ty, ®~, ® ~ é to be

J o N .
~ o yysinhP(z—wu;) 5 psinhl(z—0;)

instead of polynomials. Then most of the formulae in this section go through with minor modifi-

R *8
cations. For example, instead of the SU(2) Chiral Gross-Neveu S-matrix Sy = (i;;g) we will

find the sine-Gordon dressing factor

- (sinh%(m —i/2) ) s , /°° sin(wz)  sinh (5tw)
S() =\ =75 = —1exp - .
sinh 2 (z +i/2) 0 w  cosh (¥) sinh (4w)

Thus it seems that our method allows to derive the sine-Gordon DdV equations of [6, 7] in an easy
way. For v — oo we recover the SU(2) chiral Gross-Neveu model. For an integer v the Y-system
can be truncated as represented in figure 8, see e.g. [13].

Another interesting class of models which one could analyze using our formalism is represented
by the so called sausage model (see e.g. [45]). This model can be considered as a generalization of
the O(4) model, or SU(2) PCF, in the same sense as the sine-Gordon model is a generalization of
the SU(2) chiral Gross-Neveu. The inhomogeneous XXX-spin chain present in the SU(2) Gross-
Neveu model and describing the isotopic degrees of freedom is generalized in sine-Gordon model to
the XXZ chain, with the anisotropy parameter v introduced above. Similarly, the sausage models
can be seen as two interacting inhomogeneous XXZ chains parameterized by the inhomogeneities
01,...,0n and anisotropies v and /. It would be very interesting to generalize our O(4) model
results to this more general class of models.

Our approach to deriving DAV like equations is strongly based on a smooth interpolation
starting from the IR asymptotic Bethe ansatz description; hence, by construction, our states are
very well identified. On the other hand we did not carry out a detailed study of complex solutions
such as the states represented by Bethe strings in the large L limit; for these states some of
our formulae might need to be modified. Within the DAV approach based on descritizations of
integrable models, many interesting complex solutions were studied: e.g. holes, special objects,
wide roots, self-conjugate roots etc. It would be interesting to complete our approach to include
all physical complex solutions and thus obtain a precise dictionary between these two approaches.
In particular this would teach us which solutions to DAV NLIE correspond to physical states.

5 Numerics

In this section we explain how to efficiently solve numerically the equations derived in the Sec.3.
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5.1 Implementation of numerics and Mathematica code

For simplicity let us focus on the U(1) sector where we consider M—particle quantum states with
M spins pointing in the same direction in SU(2);, and SU(2)r. Then our equations simplify
considerably as was explained in subsection 2.7. First of all, since there are no spins excited we
have trivial Baxter polynomials Q, = Q, = 1. Thus, from (58) we see that p, = p, = p with

Qe
%
I
—

p = log (107)

+

SR
|
—

We also notice that since this is a symmetric configuration where the u and v root configurations
are the same (there are no roots at all) we have, see e.g. (66), gg = 1 and thus g(z) is a pure phase.
In particular, for real z, we can simplify the density to

(g1)° -1
p(z) = log “—5—,
(@) lg** =1

(108)
from where we see that we can express it solely in terms of g*. Since ¢ is a pure phase we need
only to determine its argument from (64) which now reads

iLei (g9)’ -1
92 — —€ZL Slrlh(Tl'&L')S'2 (:E) exp 27 Im K(; * IOg W . (109)

This is almost perfect for numerical implementation but still needs to be slightly improved. The
reason is that we want to iterate this equation by evaluating the right hand side for real . But this
will yield the updated values of g(x) in the left hand side whereas for the next iteration we would
need gt (z). To fix it, we simply shift x — x +4/2 in this equation and define A(z) = (g% (2))? to
get

1 A-1 A-1
— KT 1 —log ———
VTR °g|A|—1> ’
(110)
where the convolution of K(;" * is understood in the principal part sense. We have explicitly written
S(z) to render the presence of the Bethe rapidities more explicit. These are fixed by the main
Bethe equation (67) which in our notations is simply

M
A —
B —Lcosh(mz 2 . )
A — o Lcosh( )jl;[lgo($_gj+z/2)exp <K0*10g A =1

M
. . - 1
_ iLsinh(rz) | | Sg(q; —0;) exp <27j Im [Ko * log 7]> =1,z=0;. (111)
j=1

For completeness let us present here the Mathematica code to solve these two equations by itera-
tions''. It is a slightly simplified, and thus less efficient, version of the code we used for the plots
in figure 2.

First we introduce the S-matrix Sy and the kernel K,

SO[x_J]=Ix*Gammal[-(x/(2I))]Gamma[1/2+x/(2I)]/(Gamma[x/(2I)]Gammal[1/2-x/(21)]);
KO[x_]=D[Log[SO0[x]1"2],x]/(2*Pi*I);

"'One can copy the code directly to Mathematica from .pdf
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Next we specify the size L and the mode numbers n = {ni,...,nys}. For example, if we want
to study the system with L = 1/2 and three particles with zero mode numbers we write

n = {0, 0, 0};
M = Length[n];
L =1/2;

We will perform several integrals from —oo to 400 but the integrands have exponential tails so
that it is quite useful to introduce a cut-off X for all the integration intervals at this point. A
reasonable cut-off is given by e=% cosh(mX) — 10=8, Furthermore, at each iteration step we will have
to construct an updated function A(z) which we do by means of an interpolation function,

X=ArcCosh[8Log[10]1/L]1/\[Pi];
F[S_]:=FunctionInterpolation[S,{x,-X,X},InterpolationPoints->30];

Next we introduce

eqli_,v_]:=L*Sinh[Pi*x[i]]+Sum[If[i==j,0,Log[SO0[x[i1-x[j1]1°21/1],{j , M} -2n[[i]]1Pi+v[[i]];
BAE[v_]:=Table[x[i],{i,M}]/.FindRoot[Table[Rel[eq[j,v]1],{j,M}],
Table[{x[i],2i/M-1/2},{i,M}]];

which yields the solution to Bethe equations L sinh(76;) + Z#i og S2(6; — ;) — 2wn; + v; where

7
v; 18 a perturbation to the equation number ;. Comparing with (111) we see that this perturbation

at step k will be given by the convolution appearing in (111) evaluated at the solution #; computed
in the previous step. The leading order BAE’s correspond to v; = 0 and are thus given by
\[Theta] [0]=BAE[Table[0,{j,M}]]
Also to leading order the function A(z) will be simply given by
A[0]=F [-Exp[-L*Cosh [Pi*x]]*Product[SO[x-\[Theta] [0] [[j11+1/2]"2,{j,M}]]

Then we introduce the density p and its conjugate p at the k-th iteration step as

rlk_,y_l:=Logl[(Al[k][yl-1)/(Abs[A[k] [y11-1)1;
rc[k_,y_]:=Conjugate[r[k,yl];

Finally the code

Alk_] :=A[k]=F [-Exp[-L*Cosh[Pi*x]]Product [SO[x-\ [Thetal [k-1]1[[j11+I/2]1"2,{j,M}]

Exp[NIntegrate[KO[x-y]lr[k-1,y]-KO[x-y+I]*rc[k-1,y]+1,{y,-X,x,X},
Method->PrincipalValue]-2X-rc[k-1,x]]1];

phasel[k_][x_]:=NIntegrate[2Im[KO[x-y-I/2]r[k-1,y]1]1+1,{y,-X,X}]1-2X;

\[Theta] [k_] :=\[Theta] [k]=BAE[Table [phase[k] [\ [Theta] [k-11[[§11],{j,M}1];

yields the k-th iteration quantities in terms of those computed at the (k — 1)-th step. The energy
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Figure 7: Difference between the predictions from the asymptotic Bethe ansatz and from the
generalized Liischer formulas to the exact (numerical) results for the two particle state polarized in
both SU(2) [u,v,0_11]. The solid (blue) line represents W while the dashed (red) curve

depicts w It is clear that the latter approximates the exact results with excellent

exact

accuracy, especially for large L of course.

of the state is then given by

En[k_]:=Sum[Cosh[Pi\[Thetal [k1[[j11]1,{j, M}]-NIntegrate[Rel[r[k,yllCosh[Pixyl,{y,-X,X}]1;
For example, to obtain the result of the first 8 iterations we simply run

Table[En[k], {k, 0, 8}]

to get {10.2414,10.2425,10.2425,10.2424,10.2424,10.2424,10.2424,10.2424} where we notice that the
iterations are clearly converging to the exact value 10.2424 up to the precision we are working at.
It is instructive to compare these results to the value predicted by the asymptotic Bethe equations
alone,

Epagp = 10.3388
and to that predicted by the generalized Luscher formulae discussed in section 3.2 which gives

FElischer = 10.2396

5.2 Discussion of numerical results

Now we will try to interpret the behavior of various states on the fig.1 as functions of the volume L.
Let us start from the vacuum, the lowest plot there. At very small L, the O(4) model should become
a 2d CFT of three massless bosons: if we introduce in (112) a rescaled field Y = ej (L) (X1, X2, X3)

and Xy = \/1—€3(L)(Y? + Y} + YY), where e2(L) ~ II(?TWLI is the effective charge, very small in

this limit (the effective radius of the S® sphere R(L) = e; ' (L) is very big), the action will be
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3

S, :/dtdz D (0.Y,)*  + O(e(L)). (112)

a=1

In the ground state, the Casimir effect will define the limiting energy: Fy ~ —7+0(1/ log*(L~1)),

with the central charge ¢ = 3, which gives EO% o~ —i, the value compatible with —0.18 of the
fig.1. 2

The energies of excited states are

I, 1 N 3
o Bty (L) = = + S5 ) (113)
k=1 a=1

where 71}, = (n,(ﬁl),n,(f), n,(f’)) are the momentum numbers of particles constituting the state. We see

that the small L asymptotics of our plots are well described by this formula: The excited states
in the U(1) sector, denoted in the fig.2 by 6, nons,..., according to the mode numbers ny, ng, n3,
approach the values predicted by (113) (up to the circumstance described in the last footnote). In
this sector they have no excited left and right magnons (no u,v roots), and only one component is
activated: %Emmn?,...(L) = Ziv n,(cl). Say, the curves 6y, 00, @000, Boooo, approach —1/4 at L — 0,
the curves 01, 6p1,0001 approach 3/4, the curve 0y approaches 7/4, etc. The state with one left and
one right magnon excited, denoted as [u,v,60_; 1], also approaches 7/4.

The qualitative behavior of the states 6y, oo, B0, Poooo,etc, at very small L’s can be explained
by the fact that the quantum fields are dominated by their zero modes. '* Since the momentum
modes are not excited the field Y (o,7) does not depend on o. The action and the hamiltonian
become:

L N
Soe X Or 2a =
) e w

where the angle ¢(7) represents the coordinate of a material point (a top) on the main circle of the

unit sphere, and J is the corresponding angular momentum. The quantum mechanical spectrum
of this system is well known:

1 eg(L) Jj2

1L (114)

L 1 m(m + 2)

—(E — Ey) = —ei(L %)~ ———— 115

2 Bogg o, 0y ~ B0 = grea(Bymlm +2) ~ oo (115)
T

where w = v + log (%F(i/r 2)) ~ 13.66 is a constant [46]. This formula explains well the fact that

the corresponding plots on fig.2 converge slowly, as inverse logarithm, to —1/4 and their spacing is
approximately linearly growing with the number m.

The perturbative calculation of the mass gap [Ejy,(L) — Eo(L)] for L < 1 was done in [46] and
was compared with the numerical results following from the TBA approach in [26] . Since our
numerics is in a perfect agreement with [26], for the states for which their method works, we will
not review it here. We only recall that, in the logarithmic approximation,

12The convergence to the limiting value is very slow at L — 0. At L = 0.1 for our calculations we are still
far from the limiting value of the energy. In [26], where the numerics reached L = 10~°, the result is —0.226,
considerably closer to the limiting value.

BWe would like to thank A.Tsvelik, P.Wiegmann and K.Zarembo for the explanations on this subject.
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L 3 1
—|Ey, (L) — Eo(L)] = —

27
which is in the perfect agreement with eq.(115) at m=1. We also compared eq.(115) for m = 2
with our numerics and found a good agreement'*. The inverse logarithm in eq.(115) explains well
the slight divergence of various curves with zero mode numbers at increasing L in fig.2. Most
probably, the divergence of the other plots at increasing L, corresponding to the same value of

(L1 (116)

ch\;l 23:1 |n,(€a)| can be also perturbatively described by the same inverse log terms. It would be
interesting to study the small L limit analytically to recover analytic properties of the perturbation
theory.

At large L, we enter the realm of the asymptotic Bethe ansatz with Liischer-type exponentially
small corrections to these regime. Actually, they describe very well our exact numerical plots for all
the considered states, considerably beyond the values of L allowed by the approximation, as seen
in the plot 7.

6 Conclusions

We derived in this paper the non-linear equations yielding the energy of an arbitrary excited state
in the O(4) two-dimensional sigma-model, equivalent to the SU(2) principal chiral field, defined
on a space circle of an arbitrary length L (measured in infinite volume mass gap units). The main
formulae we found are reviewed in subsection 6.1.

Although we considered mostly the O(4) sigma model the new method which we develop here
is very universal and should be applicable to any integrable relativistic sigma model, such as the
SU(N) principle chiral field at any N , O(n) sigma models at any n, or more exotic models like
SS-model or supersymmetric Sine-Gordon model (see [29] for the examples and the ground state
energy and [11] for some excited states). In figure 8 the ground state Y-system diagrams for many
known models are represented — it would be extremely interesting to perform a systematic study
of such models using our formalism.

We also hope that the method will eventually allow to calculate the spectrum of finite size
operators (such as the Konishi operator) in the N=4 SYM theory, when applied to its dual, the
integrable string sigma model on AdSs; x S° background, on a world sheet cylinder of a finite
circumference, as inspired by the works [38, 47, 48, 49]. In spite of the last spectacular applications
of the S-matrix approach for the perturbative calculation of wrapping interactions for Konishi and
other twist-2 operators [5], the problem of finding the dimensions of such operators at any coupling
is still open.

The Hirota equation, which is equivalent to Y-system, appears to be a remarkable tool for
solving the integrable sigma models in 2 space time dimensions. Not only does it help to collapse
an infinite system of equations into a few ones, but it also helps to guess the analytic properties of
the remaining unknown quantities and thus formulate the problem in terms of a single equation for
a complex function g(z) '° . This function has the transparent meaning of a gauge transformation
between the T functions in two different solutions to the Hirota equation, but solving the same
Y-system. This equation reminds of the famous Destri-deVega equation, and in the known cases,

The discrepancy with the r.h.s. of eq.(115) for m =2 and L = 1/10,1/100,1/1000 is 0.057,0.034, 0.023.
15Tt might be a few functions for other sigma models but always a finite number of them.
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like the chiral Gross-Neveu model, even coincides with it in certain variables, as we demonstrated in
this paper. However, for many interesting sigma models the Destri-deVega equation is not known
- in particular for general states in finite volume systems. Our method suggests a systematic way
of deriving such DdV-like equations. For example, in the case of SU(N) symmetry, we can expect
that the closed set of such equations should not contain more than 4 real functions (or two complex)
- the total number of the gauge functions for the general Hirota equations. It would be interesting
to apply our method to the SU(N) principal chiral field [41, 42, 43], especially in the large N limit,
which is explicitly solvable for a non-zero magnetic field [50].

There could be interesting applications of our method to conformal QFT’s in two dimensions
if we consider them as some limiting cases of massive theories. These limiting cases could be the
ultraviolet limit of a small volume L — oo (see for example [14]) or analytic continuation w.r.t. the
number of components of a field, like in [51], or something else.

Finally, one of the most promising grounds for the applications of our method should be the
case of supersymmetric sigma models, a quickly developing subject, which is very useful in many
physical problems ranging from AdS/CFT correspondence to disordered systems. The method of
solution of Hirota equations applied for the supersymmetric spin chains with the symmetry algebras
gl(K|M), was worked out in [52, 53, 39, 54].

6.1 Summary of the main formulae

In this subsection we summarize our final integral equations in a self-consistent set of formulae.
The main example considered in this paper was the O(4) sigma model where the particles have two
SU(2) spins as internal degrees of freedom. To compute the exact energy of N-particle states with
Ju left spins down (and thus N — J,, left spins up) and J, right spins down (and thus N — J, right
spins up) we should solve the single integral equation on a complex function g(z)

g(z) = iez s § () exp [s * Gy(z — i/2 — i0) — s % Gy(z +i/2 +i0)]
where * stands for convolution, s(z) = m, S(z) = H;V:1 So(x—6;), So(x) = Z?gﬁlﬁ@?ﬁi%;
and the resolvents are given by

Gulr) = /+°°% (w —pz(g)m - x—pZ(—iy-)i/2> e

— 00
where the densities are parameterized in terms of g(x) as

+ ~ = + ~ =
£t Qi - 0,0, £t oft - 0,0,

elr = - — — , efr = 7 — —
gT 2T+Q;__ngv §_+ 1—1|—+Q27__Q’UQU
with Q,(z) = iil(x —wy) and Qy(z) = H,{il(x — wy) being the Baxter functions encoding the

Bethe roots of the left and right “magnons” (w = wu,v). The superscripts & indicate the shifts by
+i/2, so that e.g. QF " = Q,(z + i) and the bars indicate the complex conjugation. Finally the
constants 6;, u; and v; are fixed by the finite volume Bethe equations

¢~ (v)) 2" (vj)
¢t (v;) Qv (v))

Q{(%)Qi(@j)g(@j) _ () ()

Qu (OJ)Q;(HJ) g(é‘]) o _¢+(uj)Q1:_(U,j)Pu(uj) =1, —

Pv(’l)j) = ]-7
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where Py,—, ,(z) is defined on the upper half plane by

. . _ 2 1
Py(z) = exp[Ki(x —i/2) * py — K1(z +1i/2) % pu] , Ki(z) = ppoRE

and by its analytic continuation in the full complex plane. The energy of the state is then given by

N 100
E = Zcosh(wé‘k) - % / cosh(mz) (py(x) + pu(z))dx .
k=1

— 00
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A Derivation of the (ground state) Y-system

To compute the ground state energy Ey(L) of the SU(2) principal chiral field in a periodic box of a
size L we can compute its Euclidean path integral Z with the fields living on the space-time torus
of the size L X R , where the periodic imaginary “time” R is very big

Z = ¢ (L) (117)

Following Al.Zamolodchikov [17] we can compute this quantity exchanging the role of L and R so
that the latter becomes the space variable whereas the former becomes the periodic time. Since
R — oo the spectrum corresponding to the new Hamiltonian can be computed from the asymptotic
Bethe ansatz and the finite periodic time L means that we should consider the system at a finite
inverse temperature L. Thus we conclude that

Ey(L) = f(L). (118)
where f(L) is the free energy per unit length of the SU(2) PCF at the temperature 1/L in the

thermodynamical limit, when R — oo.

To compute the free energy we will start by reviewing the asymptotic spectrum of the theory
as given by the asymptotic Bethe ansatz. Then we will recall what are the magnon bound states
(complexes, or strings) and how they are organized in the complex plane. We will see that the
quantum states in the thermodynamic limit can be described by the densities of these complexes
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and their holes. From this description we will write the entropy formula and thus find the desired
exact free energy as the result of the saddle point approximation at R — oo. This will give the
TBA equations.

Particles in the SU(2) principal chiral field transform in the bi-fundamental representation under
two SU(2) groups. The theory is integrable and thus the general scattering process factorizes into a
sequence of two-body scattering events. The S-matrix [33] describing the scattering of two particles
with momenta and energies given by

pj = msinh(n6;) , E; = mcosh(nb;) , (119)
depends only on the difference of rapidities 6 = 6; — 65
; R(0) R(6) TG-5)T ()
512(9) = 50(9) Y 50(9) -, 80(0) =1 ; N (120)
7=i " T+ (D
where R(0) is the usual SU(2) R-matrix in the fundamental representation given by
R(0) =0 +iP, (121)

where P is the permutation operator exchanging the spins of the scattered particles.

From now on, we will measure the length L in the units of the mass gap m, which means that
we will put m = 1.

When N particles are put on a large circle of length R the periodicity condition to be imposed
on the wave function reads

_7-(9]) eiRsinh(ﬁﬂj)qj =, (122)

where 7T is the transfer matrix
70) = tro (Sm 0 —01)... S (0 - eN))) , (123)

with the index 0 for an additional auxiliary particle which we scatter against all physical particles.
The trace is taken over this auxiliary space. Indeed, when the transfer matrix is evaluated at a value
of the physical rapidity 6; the corresponding S-matrix S’gj(H —0;) becomes simply —Py; ® Py; which
means that the auxiliary particle changes the quantum numbers and becomes the physical particle
6;. Then (122) becomes the periodicity condition (5) which physically states that once we pick the
particle j and carry it around the circle the total phase acquired by the wave function — which will
be given by the free propagation Rp; plus the phase shifts do to the (factorized) scattering with
each of the other particles — must be a trivial multiple of 27.

Using the algebraic or analytic Bethe ansatz technologies it is possible to diagonalize T (6) for
any value of 0 using the same eigenvector basis (see an Appendix from [55] for the details). Multi-
particle states with J,, left spins down (and thus N — J, left spins up) and J, right spins down (and
thus N — J, right spins up) are parameterized by J,, auxiliary Bethe roots u; and .J, roots v; and

TO)U = &T“(O —i/2)TV (0 —i/2)V (124)
P20 —i)" 1 ’
where T}’ ) is the transfer matrix in the fundamental representation associated with the left (right)
SU(2) spins,
_ QuO+9)p0 —i/2) + Qu(0 —i)p(0 +i/2)
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and

N ]11, J'U

N
$(0) =[O0 —0;) , SO) =TS0 -0, QuO)=T[0-u), Qu®)=][O-v;). (126)
j=1

J=1 J=1 J=1

The rapidities 6; and u;,v; are then fixed by a set of nested Bethe equations. The Bethe equations
for the physical rapidities §; are given by the periodicity condition (122) which can be written as

erimmsinneoy) — SO o oyro e, i) (127)
$*(0; — i)
or simply
(imRS0) _ _ 62 ggz; fzg; SEZZ fzg; . (128)
The magnon rapidities u; and v; are fixed by the auxiliary Bethe equations
L Quluy+i) _ pluj+i/2)  Qulvj+i) _ $lvj+i/2) (129)

Quluj —i)  Pluj —if2) " Qulvj—i) v —i/2)’

which appear in the diagonalization of the left and right transfer matrices. Notice that these
equations ensure that the apparent poles in (125) drop out and render 77”(f) polynomial as it
ought to be. For each solution to these equations we obtain the energy of the corresponding
quantum state from

N
E =Y cosh(rt;). (130)
j=1

To be able to compute the free energy f(L) we need to understand how the solutions to these
Bethe equations organize themselves so that we can introduce the entropy density. Let us consider
the auxiliary roots u, obviously the same considerations will apply for the v roots. These roots can
take complex values. When u; has a positive imaginary part the r.h.s of the Bethe equations in
(129) diverges,

¢(uj +1i/2) Nooo

du i) .
which means that
Qu(u]- + Z)
- - 132
Qu(uj - 7’) ( & )

must diverge as well. This can be achieved if there is another magnon rapidity uj such that
uj — up ~ 1. Thus, in the thermodynamical limit the magnon rapidities will organize themselves
into a Bethe-string of n roots u; spaced by 7. In particular, a single real root corresponds to a
Bethe string with n = 1. The Bethe equations can then be multiplied for u;’s belonging to the
same string so that this gives new Bethe equations, solely for the (real) center of each string. This
is the usual fusion procedure applied at the level of the Bethe equations. The resulting equations
look as follows. Introduce the magnon bound states:

1
:u(n)+25(n+1)—za, a=1,...,n.

J,a J
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Multiplying the equations for a given n-bound state we get for eq.(129) and eq.(128)

. 0o — ul™ +i2
e—sz(aa) _ H SO N _0,8 H e J 2 ’
o jn0a—u§-)—i%
n+m
11 gn —bg+13 _ u§”’ - ui’”’ - ZHTm _ u§”) ~ “gcm) - '—|n§m| ﬁ (“§n) —u{™ +is

In the thermodynamic limit we will have a large number of each type of Bethe roots which we
can describe by a density p,. We use n = 0 for the density of 6 particles, n > 1 to describe the
density of u Bethe strings of size n and n < —1 for the v Bethe strings made out of —n roots.
For each density of particles we also have the corresponding density of holes g,,. Bethe equations
in the thermodynamic limit, obtained by taking the logarithmic derivatives of both sides of these
equations, read

o0
On + 0n = gcosh(w0)5n0 - mzoo Kpm * 0m , (133)
where * stands for the usual convolution
+00
fro=[ o509, (134)
— 00

and K, is the derivative of the logarithm of the effective S-matrix between the strings of size n
and m. In particular we have

~Koo(0) = Kof0) = 5= 1og S3(0) (135)
for the interaction between physical rapidities,
Ko (6) = ~Kool6) = 5 log gaihs = Lot s S K0) Lm0, (130)
for the interaction of 0 rapidities with Bethe strings of size |n| and
5
Kom@® =K_n-m(®) = > 2Ky (0) = Knym(0) + Kjp_yn)(0)0nsim » nom =1,2,... , (137)

_ln=m|
s=— 1

for the interaction of two Bethe strings. Obviously K, ,, = 0 if n x m < 0.

It is interesting that even though these kernels appear as some quite complicated functions they
all exhibit very simple fourier transforms K, ,,. More precisely we have

K, e 2 138
o(w) = m ) (138)

and K
Ko(w)=e M2 =12, (139)
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so that the sum in (137) can be explicitly done yielding
|w]

R’n,m = coth (%) (6_%‘"’_”‘ - e_T(m"'n)) —0pm s mym=1,2,... (140)

A very useful formula for what follows concerns the inversion of the operator K, when both
indices n and m are restricted to be positive (or negative). In Fourier space

(Knm + (Snm)_1 = 5mn -5 (5n,m+1 + 6n,m—1) > (n,m > 0) ) (141)

where the operator § (and its fourier transform) has the following form

1 . 1
s(0) = Cy— (s(w) = m) . (142)

In particular we notice that
Kg :28*K1. (143)

Having introduced all the necessary kernels we can proceed to construct the quantity of interest,
the free energy at the temperature 1/L. We have

o0 —
f(L) = min,, 5, /de (QUL coshmf — » " pylog <1 + 9_n> + o log (1 + @)) : (144)
On %

n=-—oo n

where we should minimize the integral by varying the densities of particles and holes keeping
the Bethe equations satisfied. The first term in the integral is the energy density multiplied by the
inverse temperature (which is L) and the second term given by the sum over n is the entropy density

(see e.g. [17]). We use Bethe equations to write the variation dg, = —d0p — Y ror o Kpm * 00m 80
that the extremum condition §f = 0 yields a set of TBA equations
o0
0= —€n + Leosh(m0)dng+ > Kpnxlog (L+e7) (145)

m=—00

where = e~ . The free energy evaluated at this extremum can then be written in terms of €
alone, so that

Eo(L) = — / %gcosh(wﬁ) log (1+e*€0<">) . (146)

The last two equations yield the finite size ground state energy of the SU(2) principal chiral field.

Finally, we will show below that defining the incidence matrix Iy, = 6,m+1, the Y variables
Y, = e (m # 0), Yo = e™ and using the operator (141) these equations can be transformed
into a local (in the discrete variable n) set of integral equations

o0
log (Y;,) + L cosh(n) §,,,0 = Z Inm s*xlog(1+Y,), —00 < n < 00 (147)
and "
Ey(L) = — / > cosh(mf)log (1 + Yp) . (148)
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It is remarkable that non-local kernels K,,, disappear and at the end only a very simple kernel §
appears in the final set of TBA equations. It is also remarkable, and still somewhat mysterious, that
the SU(2)1, and SU(2) r wings are smoothly glued into one Y-system on a discrete set —oo < n < oo.

To show (147) we should consider (145) separately for n > 0, n < 0 and n = 0. Applying
the operator (141) to (145) in the first two cases (it is convenient to rearrange them to have the
combination ., + Ky ), we easily verify (147), except the case n = 0 which we should consider
separately. To find n = 0 equation of the Y-system we consider (145) for n = —1,0, 1. The kernels
K, entering these three equations are

—KO,U = KO = 25 * K1 s KU,il = Kl , Kim,O = —Km , m > 0 (]_49)
and, most importantly,
Kim,il = Km+1 + Kmflém;él . (150)

Thus if we convolute (145) for n = 1 with the inverse shift operator s and use that s % (Kp41 +
Kpy—1) = K, we get

oo
0=—s*Kjxlog(l+e )+ Z Ky *log(1+e ") —sxlog(1+e™ ). (151)
m=1
Notice that the last term is separated from the infinite sum because the m = 1 case in (150) behaves
slightly differently than for the other m’s. Moreover the sign of the exponent inside this log differs
from that inside the logs in the infinite sum because we absorbed the first term in (145) into this
last log. Similarly, for n = —1 we have
—1
0=-sxKy*log(l+e )+ Z K #log (1+e ) —sxlog (1 +e™1) . (152)

m=—00
These two equations can then be used to simplify the n = 0 equation which reads
0 = €o — Lcosh(mf) + Ko * log (1L +e ) — Z K log (1+e7) . (153)
m#0

Indeed if we sum all these three equations we see that (i) the infinite sums completely cancel out,
(ii) the convolutions with log (1 4+ e °) drop out as well by virtue of the identity Ky = 2s* K1. We
are thus left with the last terms in (151) and (152) plus the first two terms in (153) thus obtaining
the last Y-system equation (147) for n = 0.

Moreover, for the functions ¢g(#) analytic inside the physical strip Im (0) < 1/2 we have
s [g(0+1i/2) +9(0 —i/2)] = g(0) (154)

because

df = — ———df = .
2 cosh(m(0 — 7)) % fo sinh(n(@ —2y) @ — 9

Therefore if Y, is non-zero inside the physical strip we can invert the s operator to find a set of
functional equations, finally rendering the Y-system for the PCF at a finite temperature 1/L

V(0 +i/2)Yn(0 —i/2) = (1 + Yo 1(0)) (1 + Yny1(0)) (155)

To fix a solution, this Y-system ought to be supplemented by the large 6 asymptotics Y, =~
e 0o Lcoshmd yelated to the relativistic dispersion relation. Notice that these functional equations
do not contain the dispersion relation explicitly: it appears only through the asymptotics of the
Y -functions.

/ 90 +i/2) +9(0 —i/2) 1 9(0)
R
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B General solution in terms of Hirota functions

In this appendix, we will give an alternative approach to the construction of solution for the
energy of a general state of the SU(2) PCF in the periodic box. It will give a new NLIE defining
the spectrum, different from the one of the section 3. This approach is the generalization of the
approach we used in section 2.7 for the states with IV particles and non-trivial polarizations encoded
in the Baxter polynomials Q, and Q,.

As explained in the beginning of the section 3, for each solution to the Y-system equations,
there are two natural solutions to Hirota equation which yield the same Y’s and are related by
a gauge transformation. The expected analytic properties of these functions are described in this
section. In particular we have

Y= 9+§7T$1
1
T, = —T"
! g gt !
o, = ¢gtg ®, (156)

which we will now use to completely solve our problem. First, as in the section 3, we find the gauge
function g from the last relation,

g= ieiL sinh(7z)/2 (‘I)_U>*s g= _Z-efiLsinh(mL’)/Z (g)m (157)
v ) 7’ u )
and plug it in the first two to find
v — L cosh(mz) q)v(i)j’T-lqél
i (B Dy O By )*s
T, = oL cosh(mz) ‘I)ui)qul . (158)

(B @, Bif Dy )*s
As in the section 3, we still have to relate Tg‘ Y and ®“", but we do it here by a different relation.
For that, let us define in the whole complex plane z the functions

_ d(x) [T (y)Quly +1i)/Qu(y) d(x) [T (y)Quly — i)/ Qu(y)
and
B d(z) [ T7(y)Qu(y +1)/Qu(y) d(x) [TV (y)Qu(y — i)/ Qu(y)
R =00 =53 | G s et | e (%0

where the integrals essentially go along the real axis, but we should pass the contour in such a way
that the zeroes uj,v; of Q,, remain below the contour and the complex conjugated zeroes u; of
Quﬂ, stay above the contour. Using eq.(22) we can show that TS“” and @, , are related to the values
of the same analytic function F, , inside and outside of the analyticity strip, respectively:

( (

g—gcbg Tmz > +1/2 —g—gci); Tmz > +1/2

Fy(r) =< Tg(z) |[Imz|<1/2 |, Fy(z)=<¢ T§(zr) [Imz|<1/2 . (161)
QU+ 1 1/2 % g+ 1 1/2
| 5% mz < —1/ | o % mz < —1/
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Indeed, substituting from (22) 7", = (Ty'* Q" — ®“Q")/Q"**+ and the conjugate T, = (T~ Q" —
d*Q")/Q%~ into the first and second terms of (159), respectively, we can separate the contribution
of two integrals in (159) containing 7§ into a single contour integral going around the physical strip
(to realize it is useful to make shifts by +i/2 for the integration variable). We shall also use the
fact that 2 + — 1 at x — Fo0. If the point z is inside the physical strip we can contract the contour
around the pole at y = x and thus verify the middle relation in eq.(161). The other two integrals
n (161), containing ® and @, do not contribute since we can close the contours there around the
upper and lower half-plane, respectively. The result is zero since there are no singularities inside
by our previous assumption. The poles related to zeroes of Q, , do not contribute since they are
outside of these contours by definition. We should ensure by hand the analyticity of ®(z) close to
the real axis

Ty Q" =T%H Q" | w=uy, (162)
which is the finite L deformation of the usual asymptotic axillary BAE for the u-roots. The relations
for F), are found in a similar way. This equation can be shown to be equivalent to the eq.(70) derived
in the main text.

Notice that T3 and Tjj are automatically analytic even slightly outside of the physical strip,
because we can deform the contours to open further the physical strip. We will discuss this “extra”
analyticity in the App.D.

Finally, notice also that

Ti(z) = 0. Fu( /2)+7Qu(x) Fu(z +1i/2),
Co Qi Qe i),
T (z) = o) Fy(z —i/2) + 2, () —5 o lz+i/2),

so that (158) completely constrain the functions 7%, and T} out of which all other T}, and Y}, can
be written down using the resolvents F;, and Fj,.

In the U(1) sector we have Q, = Q, = 1 and the two wings are obviously equivalent. We will
have in this case T{ = T", and F,, = F, will be given by (47). Equations (158) then reduce to the
previously derived equation (51).

B.1 The main Bethe equations

The main BAE reflecting the periodicity of the wave function and constraining the real zeroes 6;
is given by (16):

TE(O; £4/2)T" (0; £14/2)

D, (0; £i/2) @, (0; £i/2)
Using the fact that 77" has no zeros inside the physical strip and the denominator is regular for real
6; we conclude that T" (6; £i/2) # 0. This condition can be in fact interpreted as yet another
form of the main BAE. It can be further simplified: using (156) we get

Yo(b; £1i/2) =

(163)

1 g oF
u+ v+ U v+
TH = T = ST (164)
where we can use that, due to (22), for the u-wing
, + -
oF = 4TE=w Qi -7 Q+ : (165)
Qu u
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Substituting it into the eq.(164), and evaluating at 6; which is a zero of Ty we get

g9, T°7

1
= ;Q—;r(i)—;ruzaj : (166)

or, using (22) for the v-wing, we get the simplest form of the main equation, easy to compare with
the large L limit

99, 9y
1= ;Q—g—%bﬁ:eﬂ- : (167)

which was also derived in the main text eq.(67).

C Proof of reality of T;

In this appendix we shall analyze the reality of the T-functions. This is an important point to
consider because the Hirota equation is solved explicitly by eq.(23) provided all Ty are real. The
goal of this appendix is to show that once the following equations (see (58)) are satisfied

i OO - Q.9 (168)
(I)u g_i_ 1T+Q17__QuQv ’
+ — —
Tt SOOIt - 0,0 (169)
D, QO - Qi ’
o, = g'g 9, (170)

and 7' and T§j are real then all T}, are real and thus all the formulae in the main text go through and

the Y-system is indeed solved by (18). Before proving this statement we recall that eq.(66) follows

LTy LTy
Dudy, T Dy,

directly from eq.(170) under certain analyticity assumptions and also from
which is a consequence of eq.(168) and eq.(169). Thus we can add the equation

Ty = 99Ty (171)

to the equations at hand and proceed to the proof of the reality of the T-functions.
Equation (168) implies

++O—— o +0+ -0~
®,, = ih] (Q“ _Q“ — Q“?”) , To =iy (Q“_Q” _ & Q”) , (172)
g g g g

for some h;. Since T§ is real for real x the function h; is a real function. Eq.(169) implies
Oy = —ihy (§7Q;7QT 97 QQu) , Ty =ihe (9QU Q) 99, Qy), (173)

where again hso is a real function. In virtue of (171) we have hy = hy = h and by conjugating the
first equation in (173) we find

. S _ = h™ _
CI)U =1ih (g+QU Q;—-’_ -9 Q’UQU.) = h_+g g+q)u ) (174)
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which means that the real function h(z) is periodic in the imaginary direction, h(x) = h(x + ).
This in turn implies that the function A~ is also a real function because

h(z —1i/2) = h(x +1i/2) = h(z — i/2).
Then it is simple to see that 77" is real. We simply write, from eq.(172),

++ y—— ++ Y O
Qu +(I)u Qu — 'Lh_ <Qqu _ QUQU > .

T =T
=70 9, Q. g gt

(175)

The reality of T}* is now manifest because the expression inside the brackets is purely imaginary
and, as we have just shown, A~ is real. Proceeding in the same way one can see that all T}’ are
real and thus the Hirota equation is satisfied by our solution.

D Proof of analyticity of 7_; in the physical strip

D.1 Analyticity in the U(1) sector
From (51) together with F(z £i/2 +140) = F(x +£i/2 Fi0) — T_1(z) we have

T ( ) . T1F++F7+ . T1F+_F7_ (176)
—1\r) = [F++F——]*25 eLcosh(ﬂ-;p) + T1F++ - [F—|—+F——]*28 eLCOSh(Tr:E) +T1F_7 .

Using respectively the first /second equality we can smoothly move from real z into the upper/lower
half complex plane provided T} is analytic. In this way we can reach any x inside the enlarged strip
|Im (z)| < 1 where T} is regular.

Notice that for large L we have

¢~ ,+1/2 <Im (z) < +1
T 1(z) =~ 0 ,-1/2<Im(z) <+1/2 (177)
¢t -1 <Im(z) <-1/2

The denominator in the expression for 7_; at = 6; — i/2 is proportional to Bethe equations
S2ePil 41 = (0. This is not a pole of T_; because the numerator at these points is proportional to
To(0;) = 0.

However, for large volume, 7_; could have poles at the analogue of the holes of the §; BAE,
close to the boundaries of the physical strip.

D.2 General case

In this subsection we will study the analyticity of T",(x) and T} (z) for a general solution. We
will show that for large enough L these functions are analytic inside the physical strip —1/2 + € <
Imz < 1/2 — € where € — 0 when L — co. We start from eq.(158) and rewrite it as

—L cosh(mx) (Téti Qu — TE‘I QZ_—F) 'i)qul .

T = +e = ——
! Qu(®ef By Bof iy )*s

(178)
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and similar for T7,. Solving for T, we get

T = ~ e T Ou (179)

Qu(@;rq);q);rq);)*s _ e*LCOSh(”‘T)@uTEI :LrJr
Since @, is regular in the lower half plane and 7, is regular in the strip —1 < Imz < 1 where
(®F @, ®Fd,)* is also regular the singularities of 7% for —1 < Imz < 0 could be only due to
zeros of the denominator.

As far as L or z are large for —1/2 < Imz < 0, the second term in the denominator is
exponentially suppressed and to get a zero of the denominator we should be close to a zero of
Q.. The points close to @; where the denominator vanishes are in fact z = u; as follows from
the auxiliary finite volume BAE eq.(70). However these poles cancel with zeroes of the numerator
rendering T regular at these points, a result we were familiar with already. Thus, we see that
for large L the only poles that could appear must lie close to the border of the physical strip
Imz = —1/2 where the exponent is oscillating. It oscillates faster for large z and we thus have
poles condensing at infinity along the borders of the physical strip.

We conclude that for the general solution — at least for large L’s — the function 7% (z) is analytic
inside almost the whole physical strip and could have poles only very close to the border. For small
L it can probably happen that the singularities approach the real axe. That could indicate some
singular behavior of the energy levels as functions of L such as the one observed in [56] (see e.g.
figure 10 in this work). It would be interesting to investigate these points in greater detail.

E Details on Liischer formulae derivation

If this section we shall present some details of the computation of the first finite volume correction
to the asymptotic auxiliary Bethe equations, obtained by expanding (70) to the leading order (see
section 3.2 for notation). We start by writing

P(U;) = exp [K: (U; — i/2 4+ i0) % py — K1 (Uj + /2 +i0) % p] - (180)

Notice that we introduced the i0’s because P(z) was originally defined in (71) for z in the upper-
half-plane. Removing the 70’s by the use the Sokhatsky-Weierstrass formula we get

P(Uj) = exp [K[ % py — K{ % py + Yp/2] (181)

— L)
z=U;

where the convolutions are understood in the principal part sense and p, + p, = log(1 + Yy) ~ Yp
(1) (2)

was used. Next we split the density p, into py,’ and py’ as explained in section (3.2). The former
contribution is purely imaginary and therefore it contributes to the exponent as

K #pll) = K+ (=pl)) = Ky + p)). (182)
Hence we finally obtain
(1) SERC) Yo
P(Uj) =exp | Ky * p\") + (K] *p'Y —c.c.) + 5 , (183)
r=U
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with all convolutions understood as principal part integrals. It turns out that the first and the last
terms in this exponent simply convert the Bethe roots u; in (70) into their real parts, namely,

Q" (uy) (1) Q5 (u;)

=4 ——exp (K2 * p"/(u; = == 184

= @) = = (184)
o (i) Qi (ua) <Y0(Ui)> _ ¢~ (U) Qi ()
dT (uy) Qo (u4) 2 ¢t (Us) Qu ™ (Us)

The check of the first equality goes exactly as in (78) and we will therefore not consider it here.

Let us explain how to check the second equality. Notice that this expression is equivalent to

(185)

, ¢~ (z) Qi (2) _ YUy
R o) I o
Next, we write the right hand side containing Yo ~T 1T} /¢ ¢~ as
(- Q#(Uj)Tul(Uj)) (ZH0I%0) ) s
2 2% (U;) 2,,(U;) o (U)o (U)

The first factor in the r.h.s. is precisely Awu,;. This can be seen from expanding the second equation
from (22) at x = u; = uj — 2Au; to leading order in Au;. Alternatively we can find the imaginary
part of u; by imposing regularity on the density (75) at = u;. To simplify the second factor in
(187) we write

(QuT¢™ +Qu ™)
o/
Evaluating the derivative of the numerator and using the leading order auxiliary Bethe equations

Q. ~(U;)¢*(U;j) + Q" (U;)¢~ (Uj) ~ 0 we find
TR _ 1 (4 1) QL))
- Y _
SRICAIRC) P@) Qu (@) oy,
thus identifying the second factor in the left hand side of (186) and completing our proof. Therefore

the expansion of the auxiliary Bethe equation (70) simply reduces to (80), as announced in the main
text.

Ti'(U;) = (188)

z=U;

(189)

To simplify the Bethe equations (79) and (80) further we shall relate the convolutions in these
expressions to particular derivatives of the Y-function Yy. To compute these derivatives it is useful
to notice that we can write Yy in terms of two simple pure phase functions a, and a,,

aw(ac) — S(.’L‘) gggi; ez’L/2 sinh(7x) (190)
Yo = (af +1/ay) (af +1/ay) . (191)

In this form, it is easy to compute the derivative of Yy with respect to 0, ur or vy because we can
use a simple identity

Op,ap(x) = —miKo(0; — x)ay(x) , Ow,aw(r) = 2miK; (w; — T)ay(x) . (192)

Furthermore if we notice that the densities p(2) can also be simply expressed in terms of these new
functions as
oY) = ay (af +1/a,) , o7 = af (af +1/a,) (193)

It is then a straightforward exercise to check the identities (83).
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Figure 8: For several models the Y-system TBA equations for the ground state energy are known
and can be represented by the diagrams such as the ones in this figure. Using the techniques
developed in this paper it would be extremely interesting to compute their complete spectrum in a
systematic way.
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