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AbstratWe propose, using the example of the O(4) sigma model, a general method for solving integrabletwo dimensional relativisti sigma models in a �nite size periodi box. Our starting point is theso-alled Y-system, whih is equivalent to the thermodynami Bethe ansatz equations of Yang andYang. It is derived from the Zamolodhikov sattering theory in the ross hannel, for virtualpartiles along the non-ompat diretion of the spae-time ylinder. The method is based on theintegrable Hirota dynamis that follows from the Y-system. The outome is a nonlinear integralequation for a single omplex funtion, valid for an arbitrary quantum state and aompanied by the�nite size analogue of Bethe equations. It is lose in spirit to the Destri-deVega (DdV) equation.We present the numerial data for the energy of various states as a funtion of the size, and derivethe general L�usher-type formulas for the �nite size orretions. We also re-derive by our methodthe DdV equation for the SU(2) hiral Gross-Neveu model.
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1 Introdution and SummaryThe study of the properties of Quantum Field Theories (QFT's) in �nite volume, or at �nitetemperature, has a long history and numerous appliations. Matsubara desription [1℄ of �nitetemperature T thermodynamis, by onsidering the system in the periodi imaginary time t, haslead to the extensive study of the Eulidean QFT's with one ompati�ed dimension with numerousphysial appliations [2℄.L�usher found the leading �nite size orretions to the mass gap in relativisti two dimensionalQFT's [3, 4℄. These orretions depend solely on the asymptoti S-matrix of the theory. Reently,L�usher orretions to various multi-partile states in integrable 2D QFT were onjetured [5℄.For the integrable 2D QFT's, as understood during the last two deades, the ambitions an bemuh higher: these systems are usually solvable at any �nite size though a systemati approah tosuh solutions, as well as a good understanding of the working presriptions, are still missing.
s

t

Figure 1: Physial hannel, ross-hannel and �nite volume vs �nite temperature.There are two main shemes to address the �nite size alulations. The �rst, pioneered byDestry and deVega (DdV) [6℄, is based on the integrable disretization. One suh disretization isat hand, the system an be studied by the well established methods based on the transfer matrixapproah and the resulting non-linear integral equation (NLIE), often alled the DdV equation,alulates not only the ground state energy but also the spetrum of exited states. The methodappeared to be very powerful when applied to the Sine-Gordon model [7, 9, 11, 12, 13℄, or to moregeneral RSOS models [14℄, Toda theories [15℄, hard hexagon models [16℄, et.However, for generi integrable QFT it is far from easy to �nd the orresponding integrablelattie regularization and for many models suh disretization is not known. Nevertheless, theproblem an be usually takled by using a omputation sheme alternative to the DdV approah.As explained in the seminal work of Al.Zamolodhikov [17℄ this is ahieved by the double Wikrotation trik: using the Matsubara imaginary time formulation we an �rst �nd the free energy inthe in�nite volume but �nite temperature. Next we ip the meaning of eulidian time and spaediretions on the ylinder: � ! �; � ! � , and interpret the free energy as the ground state of thesystem in �nite volume L = 1T (see �g.1). In this way we an obtain the exat �nite volume groundstate energy. This omputational sheme is known by the name of Thermodynami Bethe Ansatz(TBA).The TBA equations, whose number is in�nite in many interesting models, an be usually on-isely asted into the so alled Y-system funtional equations [18, 19℄. Often the latter one an be3
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E L/2p

LFigure 2: Plots of energies E of a few exited states of O(4) model on a irle of a irumfereneL. The vertial axis orresponds to the values of L2�E, the horizontal axis - to the values of L in thelogarithmi sale. The lowest urve depits the vauum energy. The next one, labeled as �0, showsthe mass gap energy. The orresponding state is in the U(1) setor, with a single partile at rest,hene with the mode number = 0. The next states in the U(1) setor are denoted by �n1n2n3;���,aording to the mode numbers n1; n2; n3; : : : exited for the 1-st, 2-nd, 3-rd, et., partiles. Forall these states the SU(2)L and SU(2)R spins of the several partiles are pointing in the samediretion, say they are spin \up". The dashed line represents a state having a polarization out ofthe U(1) setor, with left and right \magnons" exited - it orresponds to the quantum state oftwo partiles where both SU(2)L and SU(2)R spins are in the singlet s = 0 state. The qualitativeexplanation of these graphs will be given in subsetion 5.2.rewritten in the form of DdV equations or some similar set of integral equations for a �nite set offuntions. The method was suessfully used for many relativisti models [20, 21, 22, 23, 24℄. Asexplained in the previous paragraph the omputation of the exat ground state energy by meansof this method is a relatively straightforward task with solid theoretial foundations.To obtain the exat spetrum omprising all exited states of the theory is, on the other hand,a muh more involved - and a very interesting - task. A possibility to desribe the exited stateswithin the TBA approah, by modifying the analytial properties of the thermodynami funtions,was �rst suggested in [24℄. Another possible way to obtain the spetrum of the theory, proposedaround the same time, is based on the analyti ontinuation of the ground state energy with respetto the parameters of the model, suh as the mass or the hemial potential, in order to �nd theexited states [25℄. If the integrable lattie regularization is absent, it is not well understood whythese methods work. Nevertheless, the results are usually in the exellent agreement with theperturbation theory, L�usher �nite size orretions and the diret Monte-Carlo study for a widerange of sizes L (see for example [26, 27, 28, 29, 30℄ for O(n) and related �-models).4
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Figure 3: Domains of appliability of di�erent desriptions of an integrable �eld theory at a �nitevolume L. In the ultra-violet regime, for small volume measured in units of a dynamially generatedmass, the theory ould be desribed by a onformal theory. In the infrared, at large volume, onean use the asymptoti Bethe equations. The leading order �nite size orretions are governed bythe (generalized) L�usher orretions. At any volume but for the ground state energy only one anuse Thermodynamial Bethe ansatz. Hirota equation, equivalent to Y-system but more eÆientwhen it omes to imposing appropriate analytiity properties, is a universal tool overing the wholediagram.For models with diagonal sattering, like the Sinh-Gordon theory [31℄, the whole lassi�ationof exited states is possible [32℄. The situation is muh more omplex when we deal with the non-diagonal sattering. The nested struture of the orresponding Bethe ansatz equations leads toompliated magnon-type exitations and bound states. Little is known about the exited statesin suh �nite size systems. The only models where the polarized exited states were investigated,using the DdV equations, are the Sine-Gordon model [7℄ and its supersymmetri version [11℄ as wellas the triritial Ising model [10℄. By the existing methods only the setors with diagonal satteringan be studied eÆiently, as was done for example for the O(4) sigma model in [30℄. A generaland uni�ed desription of all exited states of the �-models like O(n) or the SU(N) prinipal hiral�eld (PCF), and similar ones, having a \geometri" target spae, is still absent.The main goal of the present paper is to give a method of a general and systemati desription ofall the states of integrable QFT's in �nite volume. We will explain how to go beyond the asymptotispetrum and ompute the full �nite size spetrum omprising all exited states of integrable sigmamodels. We do it here on the example of O(4) sigma model and also for the SU(2) hiral Gross-Neveu model but our formalism is ertainly more general and is most probably appliable to anyintegrable 1+1 dimensional �-models. The main ingredients of the method are:� The two-partiles S-matrix for integrable system allows us to write the periodiity onditionquantizing the momenta of the physial partiles on a large irle of length R. The equationsfollowing from the periodiity ondition are so alled asymptoti Bethe ansatz (ABA) equa-tions desribing all states of the model. The details of this omputation for the SO(4) sigma5



model are given in Appendix A1. They are, however, valid only in a suÆiently big volumeompared to the typial interation distane, Rm � 1 where m is the in�nite volume massgap.� For the ground state, the double Wik rotation (�; �)! (�; �) allows to redue the problemto the thermodynamis. One an put the eulidian theory on the torus with one radius,R; very large and another one, L, arbitrary (see the �g.1). The ground state energy for a�nite radius is related to the thermodynami partition funtion. The exat equations for itan be found using the asymptoti spetrum given in the ross hannel by the asymptotiBethe equations. The resulting in�nite series of integral equations, thermodynami Betheansatz (TBA) equations, are asted into a funtional form alled Y-system. Here is the mainassumption: we assume that di�erent solutions of the Y-system desribe not only the groundstate but all the exited states. One should furthermore restrit the lass of solutions byassuming ertain analyti properties whih will in partiular identify the quantum numbersof the states we are onsidering.� Classial integrability of the Y-system, as a �nite di�erene equation equivalent to the Hirotadi�erene equation [34, 19℄, allows us to express expliitly the in�nite number of the unknownfuntions through a �nite number of the basi ones [35, 36℄.� The Baker-Akhiezer funtion of the Lax pair assoiated with the Hirota equation an beinterpreted as the Baxter funtion enoding the \magnon" Bethe roots, responsible for theSU(2)R and SU(2)L polarizations of states. The analytiity properties important for thefull formulation of the resulting non-linear integral equation, are also suggested by the Laxequations. The gauge symmetry of Hirota equations allows to expliitly �x the �nal nonlinearintegral equation (NLIE) for eah state of the theory.The resulting equation an be studied in various limits (suh as L�usher �nite size orretionsor small volume, onformal limit) or solved numerially in a rather eÆient way. The �g.2 showssome of our numerial results obtained from the new equation, plotting the energy of various statesas funtions of the volume. When the similar results are available in the literature the agrement isperfet.The general sheme elaborated in this paper on the example of the O(4) sigma-model shouldbe appliable to all integrable relativistially symmetri 2D QFT's. It should be also useful forthe study of �nite size e�ets when the system does not look expliitly relativisti but allows theS-matrix desription and this S-matrix obeys the rossing symmetry, like the AdS/CFT S-matrix[37, 38℄. Y-system and Hirota equations give a uni�ed and powerful point of view at all thissubjet sine they solve in an almost trivial way the \kinemati" part of the problem related to therepresentation theory, whatever is the symmetry or supersymmetry of the model [35, 39℄.Our method based on Hirota equation, being exat for any �nite size L of the system, reprodueswell various limiting ases (see the �g.3). For the large L, the energies of the states are well desribedby the L�usher orretions [3, 4, 5℄2. We derive them here for a general state with arbitrarypolarization, whih is also a new result, extending some hypothesis existing in the literature [5℄.For small L, our results are well desribed by the theory of three free bosons, as will be disussed1We are unaware of the existene of suh derivation of the Y-system for the PCF in the literature2Atually, as we will see from our numeris, L�usher orretions work surprisingly well all the way untilLm � 1. 6



in the paper. The results for various low-lying levels, inluding the ases of non-diagonal satteringwhih are new, are summarized in the �g.2.Our resulting NLIE an be brought sometimes to a form similar to the DdV equation. In theases when the latter is available it an even oinide with DdV equation (an example of the hiralGross-Neveu model is onsidered in our paper). It would be extremely interesting to understand therelation between the solution based on the integrable lattie disretization of [40℄ and our proposedintegral equations. Nevertheless we should stress that the real power of our method should be in itsuniversality: it should work in all situations when the TBA equations in the form of the Y-systemare available.2 TBA and Y-system for O(4) sigma model, or SU(2)Prinipal Chiral FieldThe method we are proposing it quite general and we hope that a wide range of models ould besolved using it. However for the sake of simpliity we will exemplify it on the SU(2) PrinipalChiral Field (PCF), equivalent to the O(4) sigma model. In setion 4 we will also onsider theSU(2) Chiral Gross-Neveu model.2.1 The ModelThe ation of the PCF is given by the usual expressionS� = 1e20 Z dt dx (��Xa)2; 4Xa=1(Xa)2 = 1 ; (1)whose target spae is S3. It is equivalent to the SU(2)
 SU(2) prinipal hiral �eld (PCF) whosein�nite volume solution was given in [41, 42, 43℄. Indeed, by paking the �elds Xi into an SU(2)group element h = X4 + iP3j=1Xj�j with �j being the usual Pauli matries, we an re-write theation as3 SPCF = � 12e20 Z dt dx tr(h�1��h)2 : (2)The spetrum of this asymptotially free theory in the in�nite volume onsists of a singlephysial partile of mass m = �e� 2�e20 , where � is a ut-o�. Its wave funtion transforms in thefundamental representation under eah of the SU(2) subgroups. Al. and A.Zamolodhikov [33℄proposed the exat elasti sattering matrix for suh partiles:Ŝ12(�) = S0(�) R̂(�)� � i 
 S0(�) R̂(�)� � i ; S0(�) = i� �12 � i�2 �� �+ i�2 �� �12 + i�2 �� �� i�2 � ; (3)where R̂(�) is the usual SU(2) R-matrix in the fundamental representation given by R̂(�) = �+ iP̂and P̂ is the permutation operator exhanging the spins of the partiles being sattered. This3In the AdS=CFT literature one usually uses p� = 4�e20 .7



S-matrix was established due to: (i) analytiity, (ii) unitarity, (iii) absene of bound states, (iv)rossing. In partiular, (ii) and (iv) lead to the following identityS0(� + i=2)S0(� � i=2) = � � i=2� + i=2 (4)on the salar (dressing) fator. We an use this S-matrix to study the spetrum of N partiles ina periodi spae irle of a suÆiently big irumferene L � m�1. The spetrum an be de�nedfrom the wave funtion periodiity onditionNYj=k+1 Ŝ(�k � �j) k�1Yj=1 Ŝ(�k � �j)j	i = e�imL sinh(��k)j	i ; (5)whih quantizes the momenta of the physial partiles. The asymptoti spetrum of the theory puton a large irle of length L is then given byE = NXj=1m osh(��j) (6)where �j are solutions to the Bethe equation (see Appendix A for more details). In what follows wewill measure all dimensional quantities in the units of m. Diagonalizing the periodiity ondition(5) in the physial spae by the usual methods (see an appendix in [39℄ for this model) we get themain Bethe equatione�iL sinh(��j) = �Yk S20(�j � �k)Qu(�j + i=2)Qu(�j � i=2)Qv(�j + i=2)Qv(�j � i=2) : (7)The magnon rapidities uj and vj are �xed by the auxiliary Bethe equations� Qu(uj + i)Qu(uj � i) = �(uj + i=2)�(uj � i=2) ; �Qv(vj + i)Qv(vj � i) = �(vj + i=2)�(vj � i=2) ; (8)where Qw(x) =Yj (x� wj) ; for w = u; v; (9)and �(x) =Qj(x� �j).2.2 TBA and Y-systemAs we mentioned in the introdution, the ground state energy E0(L) for arbitrary L an be om-puted starting from asymptotial Bethe ansatz in the ross-hannel. For SU(2) prinipal hiral�eld this is desribed in detail in the Appendix A. The output is that the ground state energy isgiven by E0(L) = �12 Z d� osh(��) log(1 + Y0) ; (10)where Y0 is one out of an in�nite number of Y -funtions Yn with n 2 Z obeying the TBA-typeequations log Yn + L osh(�x)Æn0 = s � log(1 + Yn+1)(1 + Yn�1) ; n = 0� 1;�2; : : : (11)8



with s = 12 osh(�x) and the sign � denoting the onvolution. If log(Yn(x)) for any n have nosingularities inside the physial strip �1=2 < Im x < 1=2 we an easily invert the operator s� to getsimply s�1 = e i2�x + e� i2�x and these integral equations an be rewritten in a funtional, Y -systemform Y +n Y �n = (1 + Yn+1)(1 + Yn�1) ; (12)supplemented with the asymptoti boundary onditions for large xYn � e�L osh(�x)Æn0 � onstn : (13)The supersripts � stand for shifts of the argument by �i=2 4,f� � f(x� i=2) : (14)Eq.(12) has however many solutions and only one of them really leads to the ground state energy.
Figure 4: Dynkin diagram (three entral nodes) and its extension for the magnon bound states(grey nodes) reeting the struture of the Y-system. The entral, blak node orresponds tothe U(1) setor exitations of the model (�-roots), the upper and lower nodes orrespond to themore general states for magnon exitations for the SU(2)L wing (u-roots) and the SU(2)R wing(v-roots).It is ommonly believed that ertain other solutions there desribe the exited states [25, 44℄. Theenergy of the N -partile exited states is again given in terms of Y0 but is modi�edE(L) = �12 Z d� osh(��) log(1 + Y0) + NXj=1m osh(��j) ; (15)where the extra terms are inspired by the analyti ontinuation in L and the points �j [25℄ aresingularities of the integrand in the �rst termY0(�j � i=2) = �1 ; j = 1; 2; : : : ; N : (16)As we shell see, the last equation is nothing but the Bethe ansatz equation for physial rapiditiesmodi�ed at the �nite volume. The last term in (15) is generated from the integral (10) by pikingup the logarithmi poles (16).Our goal in this setion is to make use of the integrability of the Y-system rewriting it in the formof lassial integrable disrete Hirota dynamis. This allows us to write down expliitly a solutionfor all Yn in terms of a �nite number of funtions. Then we will restrit ourself to a ertain sub-lassof physially relevant solutions with partiular analyti properties. The analytiity will allow us to�x the funtions ompletely and parameterize all the physial solutions for the exited N partilestates in terms of a �nite set of omplex parameters, Bethe roots, restrited by supplementaryBethe equations reduing in the in�nite volume to the usual Bethe equation.4We will often use even a more general notation, like f kz }| {++ : : :+ = f(x + ik=2) or f kz }| {�� : : :� = f(x �ik=2). 9



2.3 Hirota equationsThe Y -system equations eq.(12) an be seen as a gauge invariant version of the so alled Hirotaequation or T -systemTk(x+ i=2)Tk(x� i=2) � Tk�1(x)Tk+1(x) = ��x+ ik2� ���x� ik2� : (17)It an be easily heked [19℄ that Hirota equation is equivalent to the Y -system eq.(12) if we denoteYk(x) = Tk+1(x)Tk�1(x)� �x+ ik2� �� �x� ik2� : (18)At �rst sight, this is just another trivial rewriting of the TBA equations, however the Hirota formappears to be partiulary useful. Using Hirota equation we an also write1 + Yk(x) = Tk(x+ i=2)Tk(x� i=2)� �x+ ik2� �� �x� ik2� : (19)Let us point out here an important fat. By evaluating the above equation for k = 0 at �j � i=2where �j is a zero of T0 we observe thatT0(�j) = 0 ) Y0(�j � i=2) = �1 (20)whih is the Bethe ansatz eq.(16). We will use this fat to assoiate zeroes of T0 with physialrapidities.Sine Yk(x) are real funtions by their physial meaning (for ground state they are ratios ofdensities of omplexes and of their holes, see Appendix A) we an restrit ourself to the ase whenTk are real funtions and � and �� are omplex onjugated funtions.Hirota equation (17) is integrable and has a Lax representation through the auxiliary problem[35℄ Tk+1(x)Q�x+ ik2�� Tk �x� i2�Q�x+ ik2 + i� = +��x+ ik2� �Q�x� ik2 � i�Tk�1 (x) �Q�x� ik2 � i�� Tk �x� i2� �Q�x� ik2� = ����x� ik2�Q�x+ ik2� : (21)The ompatibility of these two equations for the bi-vetor of funtions fQ(x); �Q(x)g leads to theinitial Hirota equation. Here �Q is the omplex onjugate funtion to Q. Note that if Tk(x) are realfuntions then the seond equation is simply the omplex onjugate of the �rst one after shiftingk ! k + 1 and x! x+ i=2. Two partiularly useful relations from this Lax representation areT1(x) = T0(x� i=2)Q(x + i)Q(x) + �(x) �Q(x� i)Q(x) ;T�1(x) = T0(x+ i=2) Q(x)Q(x + i) � �(x) �Q(x)Q(x+ i) ; (22)Note that the �rst relation in (22) is a generalization of the famous Baxter equation usually writtenfor the spin hains. We will see that in the in�nite volume limit �(x) = T0(x + i=2) and that10



these equations redue to the usual Baxter equation for spin hains, where T1 plays the role of thetransfer matrix in fundamental representation for the magnons of the SUR(2) wing of the theory,whereas the seond equation plays a similar role for the SUL(2) wing (see Fig.4).The main advantage of the Lax equations (21) is that they are linear in Tk and we an easilyexpress any Tk in terms of T0;� and Q in the expliit form [35℄Tk(x) = Q �x+ ik+12 �Q �x� ik�12 �T0(x� ik=2) (23)+ Q�x+ ik + 12 � �Q�x� ik + 12 � kXj=1 � �x� ik+12 + ij�Q �x� ik�12 + ij�Q �x� ik+12 + ij� :This leads to a quite general and expliit solution of the Y -system via eq.(18). A nie feature of thisform is that one an eÆiently analyze the L ! 1 limit and reprodue the asymptoti spetrumdesribed by BAE eqs.(7,8). This will be the goal of the next setion.Hirota and Lax equations exhibit several important symmetries. First of all a disrete symmetryexhanging the u-wing and the v-wing (right and left SU(2)): Yk $ Y�k is indued byTk $ T�k ; �$ ��� ; Q$ �Q�� ; �Q$ Q++ ; (24)whih will be quite useful for our further onstrutions. Moreover, both equations (17) and (21)are invariant under the gauge transformationTk(x) ! g�x+ ik2� �g�x� ik2� Tk(x);�(x) ! g(x � i=2)g(x + i=2)�(x);��(x) ! �g(x� i=2)�g(x+ i=2)��(x);Q(x) ! g(x � i=2)Q(x): (25)To preserve the reality of Tk we should assume that �g is the omplex onjugated funtion to g.These transformations leave Yk(x) invariant.The general solution of Hirota equation (17) an be also presented in a determinant form [35℄Tk(x) = h(x+ ik=2) ���� Q(x+ ik+12 ) R(x+ ik+12 )�Q(x� ik+12 ) �R(x� ik+12 ) ���� (26)where h(x) is a periodi funtion: h++ � h(x + i) = h(x) and Q;R are two linearly independentsolutions of the Lax equations (21) related by the Wronskian relation�(x) = h(x+ i=2) ���� R(x) Q(x)R(x+ i) Q(x+ i) ���� : (27)This determinant form will be very useful when we will formulate the general solution of the �nitesize PCF system for any state. It is not absolutely neessary to use it, but it simpli�es somederivations. 11



2.4 Asymptoti Bethe Ansatz and Classi�ation of the SolutionsThe main problem in omputing the exat spetrum of the SU(2) PCF is to �nd the physialsolutions to the Y -system (12) or, alternatively, to the Hirota equation (17), i.e., obeying the rightasymptoti properties (13). Their lassi�ation is a ompliated task, espeially when we want totake into aount not only the exitations of U(1) setor but also the \magnon" type exitationsof SU(2)L and SU(2)R setors. The goal of this setion is thus to identify the large L solutionsto the Y -system (12). The disussion in this setion is not ompletely rigorous sine our only goalis to get an idea of how asymptoti Bethe ansatz (ABA) eqs.(7,8) appears from the Y -system.Together with the expression (6) the ABA equations must appear from the large L asymptoti ofexat solutions, as yielding the leading order value of the full spetrum.The main simpli�ation in the large L limit is that Y0 ! 0. From eq.(13) we see that Y0 !2e�L osh(�x) and we are left with two deoupled hains of equations for k > 0 and k < 0 [13℄.For eah wing we an introdue two sets of Tk desribing the orresponding solutions of the wholeT -system: T uk and T vk suh that Yk>0 (Yk<0 )an be expressed in terms of T uk (T vk ) by the formula(18). Then Y0 = 0 implies T u�1 = 0 ; T v1 = 0 : (28)Let us fous on T uk sine we an always use the wing exhange symmetry (24) to desribe T vk .We have to identify the solutions whih will lead to the asymptoti spetrum desribed by theABA. It turns out that in terms of Hirota potentials Tk it is enough in this limit to make verysimple assumptions, namely:� All T uk>0(x) are polynomials at L!1. We denote in this limit T u0 (x) �Qj(x� �j) � �(x):� Qu(x) is a polynomial with real roots whih we denote Qu(x) =Qj(x� uj).Then from eq.(22) we see that�u(x) = T u0 (x+ i=2) and T u1 (x) = T u0 (x+ i=2)Qu(x� i) + T u0 (x� i=2)Qu(x+ i)Qu(x) : (29)From the polynomiality ondition for T uk (x) and T vk (x) we get preisely the auxiliary Bethe equationseq.(8).Finally, we should note that eq.(7) for the physial rapidities �j is also satis�ed. This followsfrom imposing Y0(�j � i=2) = �1 for all zeros �j of T u0 , see (20). At �rst sight, this seems to beimpossible to satisfy sine, as we notied, Y0(x) is small. However this smallness appears beauseY0 is proportional to e�L osh(�x) whih is indeed small inside the physial strip �1=2 < Im x < 1=2but is of order 1 on the boundary of this strip. To impose this ondition we must �rst ompute Y0to the next order.From (12) at n = 0 we get Y +0 Y �0 = T u+1 T v+�1 T u�1 T v��1(�++���)2 : (30)De�ning S(x) =QNj=1 S0(x� �j) we have, from the rossing relation (4), S++S = �=�++ , so thatY +0 Y �0 = �T u1 (x)T v�1(x)S2(x+ i=2)�2(x� i=2) �+�T u1 (x)T v�1(x)S2(x+ i=2)�2(x� i=2) �� ; (31)12



from whih we an identify Y0 up to a zero mode fator of y0 = e�L osh �x whih obeys y+0 y�0 = 1.Suh fator should be inluded into Y0 to ensure the proper asymptoti (13). Thus we �ndY0(x) ' e�L osh(�x)T u1 (x)T v�1(x)S2(x+ i=2)�2(x� i=2) : (32)Evaluating it at x = �k � i=2 and using eq.(29) we get�1 ' eiL sinh(��k)Qu(�k + i=2)Qv(�k + i=2)Qu(�k � i=2)Qv(�k � i=2)Yj S20(�k � �j) ; (33)whih is nothing but the main ABA equation (7) for the middle node in �g.4. We use here thenotations Qv(x) = �Qv(x� i) ; Qu(x) = Qu(x) ; (34)to make the u- and v-wings more symmetri. The advantage of these notations is that the wingexhange symmetry eq.(24) simply exhanges Qv and Qu and in the large L limit they are realpolynomials.Finally, sine Y0(x) is exponentially suppressed for real x we an drop the integral ontributionin (15) whih leaves us with the energy as a sum of energies of individual partiles, preisely asexpeted from (6).Notie that the Zamolodhikov asymptoti sattering theory is impliitly ontained in the Y -system, as we see from the appearane of the salar sattering fator S2 in the formula (32).2.5 Probing the �nite volumeNow, having established the solution at in�nite volume, we need an insight into the analyti prop-erties of T -funtions in a �nite, though large, volume. Let us �nd perturbatively the �nite Lorretions for the simplest vauum solution whih for large L orresponds to Qu = Qv = 1; � = 1.From eq.(23) one an see that for this ase, to the leading order, T uk ' k + 1 whih implies forYk ' jkj2 + 2jkj. Thus we are looking for a solution in the formYk = jkj2 + 2jkj+ yk ; k = �1; : : : ;1 (35)where the �rst two terms in the r.h.s. are the trivial solution at L = 1, where as yk � Y0 aresmall. We will see that the solution for the perturbation is unique under the assumption that whenk !1 the perturbation goes to zero yk ! 0. The linearized Y -system in the Fourier form iskk + 2~s ~yk+1 � ~yk + k + 2k ~s ~yk�1 = 0 ; k � 0 (36)where ~yk is the Fourier transform of yk and ~s = 12 osh(!=2) is the Fourier transform of the kernels = 12 osh(��) . ~y0 = ~Y0 is a �xed funtion. We see that this is a seond order reurrene equationwhih in general has two linear independent solutions. Fortunately it an be solved expliitly.5 Thegeneral solution reads~yk = k(k + 1)(k + 2)2  "e� kj!j2k � e� (k+2)j!j2k + 2 #C1(!) + "e kj!j2k � e (k+2)j!j2k + 2 #C2(!)! :5One an use RSolve funtion in Mathematia to �nd the solution.13



The needed solution satisfying ~y0 = ~Y0 ; ~y1 = 0 orresponds to C1 = ~Y0; C2 = 0. Making theinverse fourier transformation we getyk = k(k + 1)(k + 2)� � 14x2 + k2 � 14x2 + (k + 2)2� � Y0 : (37)It an be easily heked that the approximate Tk yielding this solution through (18) areT uk�1 = T v1�k ' k + k=�4x2 + k2 � Y0 ; k � 0 : (38)and �(x) = 1 + 1=�4(x+ i=2 + i0)2 + 1 � Y0 : (39)The i0 in this expression an be dropped when omputing Yk>0 from (18) but is inluded in thisexpression so that (18) an also be used for k = 0, for more details see the disussion in the nextsubsetion.An important feature of this asymptoti solutions for Tk, whih should persist at any L, is thatit aquires two branh uts at x 2 R� ik=2 when L!1.62.6 Exat solution for the vauumWe will now extend the solution found in the previous setion to arbitrary L. First, we notie thatthe solution in terms of Tk is muh simpler than in terms of Yk. For the vauum we an use thefollowing ansatz inspired by eq.(38)Tk�1 = k + k=�4x2 + k2 � f; k = +0; 1; 2; : : : (40)where f is some funtion whih for large L beomes Y0. One an easily see from the linear systemeq.(21) at Q = �Q = 1 that this ansatz solves the Hirota equation and an be presented in the formeq.(23) with �(x) = T0(x+ i=2 + i0). Thus the Y-system equations eq.(12) for jkj � 2 are satis�edautomatially. Notie that none of the Tk's has singularities on the real axis, whih is of ourse aneessary feature of the solution: the physial quantities Yk should not be singular there.To hek that the equation for k = 1 is also satis�ed we have to de�ne Y0 in terms of Tk. Forthat we an simply analytially ontinue eq.(40) to the point k = +0 whih gives T�1(x) = f(x)=2.We also have �(x) = T0(x+i=2+i0), ��(x) = T0(x�i=2�i0) as mentioned above. These propertiesare supported by the seond equation (22) whih an be viewed as yielding the spetral density interms of a jump on any of two in�nite uts. Then we getY0(x) = T0(x+ i=2 � i0)T0(x� i=2 + i0)T0(x+ i=2 + i0)T0(x� i=2� i0) � 1 = T1(x)f(x)=2T0(x+ i=2 + i0)T0(x� i=2 � i0) (41)This equation relates Y0 and f . With Y0 so de�ned the Y-system equations at jkj = 1 are now alsosatis�ed. However the equation (11) for k = 0 is still not used. Using(1 + Y1)(1 + Y�1) = (1 + Y1)2 = �T1(x+ i=2)T1(x� i=2)T0(x+ i)T0(x� i) �26The term\branh ut" is not very appropriate here sine the in�nite ut has no branh points. However,as we shall see, a spetral representation will allow us to de�ne Tk(x) in the whole omplex plane in termsof spetral density integrals along the uts. 14



and realling that s is the inverse shift operator we obtain7Y0(x) = e�L osh(�x) T 21 (x)[T0(x+ i)T0(x� i)℄�2s : (42)Combining it with eq.(41) we getf(x) = 2T1(x)T0(x+ i=2 + i0)T0(x� i=2� i0)[T0(x+ i)T0(x� i)℄�2s e�L osh(�x) ; (43)whih, in virtue of the eq.(40), gives a losed equation for f(x).Notie that from eq.(43) T�1(x) = f(x)=2 is exponentially small for large L withT�1(x) ' 2e�L osh(�x): (44)The �nite L solution to equation (43) an be easily found by iterations, starting from this largeL asymptoti and gradually diminishing L. We solved this equation numerially and get a perfetmath with the existing results (see the Tab.1 omparing our results with [26℄).L Leading order Eq.(43) Results of [26℄L = 4 �0:015513 �0:015625736 �0:01562574(1)L = 2 �0:153121 �0:162028968 �0:16202897(1)L = 1 �0:555502 �0:64377457 �0:6437746(1)L = 1=2 �1:364756 �1:74046938 �1:7404694(2)L = 1=10 �7:494391 �11:2733646 �11:273364(1)Table 1: We solve numerially eq.(43) the use Y0 from eq.(41) to ompute the energy of theground state using eq.(10).In the next subsetion, we generalize this solution to the exited states in the U(1) setor.2.7 Generalization to U(1) setorIn this setion we will study in detail the U(1) setor of the theory where we onsider the stateswith N partiles with the same polarization, i.e. with no magnon exitations. Hene we an putall Q = 1. As mentioned before { see eq.(20) { for N partile states we expet T0(�j) = 0 for eahof N rapidities of the partiles �1; : : : ; �N .In the previous setion the vauum state, with no partiles exited, was analyzed. We saw thatT0(x) inside the physial strip, �(x) above the strip and ��(x) below the strip ould be desribedby a single funtion F(x) = 1 + 1=�4x2 + 1 � T�1 ; (45)suh that F (x) = 8<: �(x� i=2) ; Im (x) > 1=2T0(x) ; jIm (x)j < 1=2��(x+ i=2) ; Im (x) < �1=2 : (46)15



Figure 5: The funtion F (x) in (47) an be reast as a ontour integral as in (49) with theontours as represented in this �gure.Here we build a generalization of (45) for the ase when T0 has an arbitrary number of zeroesinside the physial strip for whih (46) holds:F (x) = �(x)�1� Z 1�1� 1�(y � i=2) 1x� y + i=2 � 1�(y + i=2) 1x� y � i=2� T�1(y)dy2�i � ; (47)with �(x) � QNj=1(x � �j). The overall fator of �(x) appears beause T0(�j) = 0. The spetralrepresentation of F (x) as two integrals over the two in�nite uts at Im (x) = �1=2 is inspired by(45) and an be also seen from the linear problem (21). Indeed, we haveT�1(x) = T0(x+ i=2) � �(x) = T0(x� i=2) � ��(x) (48)whih justi�es the hoie of spetral densities used in (47). To see that (46) indeed holds we write(47) asF (x) = �(x)�I dy2�i T0(y)=�(y)y � x + I+ dy2�i �(y � i=2)=�(y)y � x + I� dy2�i ��(y + i=2)=�(y)y � x � : (49)The ontours , + and � enirle respetively the physial strip, the region above the strip andthe region below the strip, see �gure 5. For this relation to be equivalent to (47) we require that forlarge x we should have T0(x);�(x � i=2); ��(x + i=2) ! �(x) at jxj ! 1 along the orrespondingontour. Finally, for (46) to hold, the ratios in (49) should be analyti inside the orrespondingontours. Notie that at large L the funtion T�1 is exponentially small and thus ��; T0; ��+ ! �(x)as expeted from our disussion in setion 2.4, to get the ABA equations. The large x limit shouldbe similar to the large L limit sine the soure term in the Y -system e�L osh(�x) is small in bothases.7We introdue a natural notation g�s � es�log g . 16



Let us now onsider the other Hirota funtions Tk. From (21) we have T1(x) = T0(x + i=2) +��(x) = �(x) + T0(x� i=2) whih in terms of the funtion F (x) readsT1(x) = F (x+ i=2 + i0) + F (x� i=2 + i0) = F (x+ i=2 � i0) + F (x� i=2 � i0) ; (50)so it is indeed regular on the real axis. Notie that T1 is regular at least inside the enlarged stripjIm (x)j < 1. In the same way we an easily see that Tk>0 is analyti inside the strip jIm (x)j < k+12 .Having expressed T0, � and T1 in terms of T�1 through the funtion F (x) we an �nd a losedequation of T�1 from the Y -system equation for n = 0. The derivation is parallel to the one in theprevious setion and it leads toT�1(x) = (F (x+ i=2) + F (x� i=2))F (x + i=2 + i0)F (x� i=2 � i0)[F (x+ i)F (x � i)℄�2s e�L osh(�x) ; (51)supplemented by the quantization ondition Y0(�j + i=2) = �1. As before, the solution to theseequations an be easily found from iterations as is explained in the Se.5. The numerially alulatedenergies of a few states of this U(1) setor are presented on the �g.2.In the next setion, we generalize these results to any exited states inluding the magnonpolarizations. We will use a di�erent strategy and inorporate the gauge invariane of Y -system to�nd the solutions of Y-system eq.(12) mathing the L =1 asymptoti of the Se.2.4.3 Finite size spetrum for a general state of PCFWe will now desribe how to onstrut the solution for the most general state of the PCF at �nitevolume L, having an arbitrary number of physial partiles with arbitrary polarizations in theSU(2)R and SU(2)L wings (haraterized by left and right \magnons" ui and vi). Our method isbased on the following observations and steps:� We know from eq.(32) the struture of the poles and zeroes of all Yk's in the limit L ! 1when Y0 = 0. We assume that this struture will qualitatively persist even for �nite L, andthe lassi�ation of the appropriate solutions of the Y-system will follow the same pattern ofpoles and zeroes.� We will reast the Y-system in terms of T-system (Hirota equation) sine the analyti stru-ture of Tk's is muh simpler than of Ys as we saw from the vauum solution (38) at L!1.� For any \good" solution of Y -system there is a family of solutions of Hirota equations relatedby gauge transformations (25). Hirota equation an be solved expliitly in terms of T0;� andQ as in eq.(23).� For L ! 1 we have two independent solutions for Tk's as we saw in the previous setion.For one solution T uk are asymptotially polynomials for k > 0 and for another one T vk withk < 0 are polynomials when L is large. We an then smoothly ontinue these two solutionsto �nite L's using the gauge freedom to preserve polynomiality of Q's.� We have two global solutions of Hirota equation whih an be parameterized by T u0 ;�u; Qu, and by T v0 ;�v; Qv. They represent however the same and unique solution of the Y-systemand thus should be related by a gauge transformation g : T vs = g Æ T us , see (25).17



� Using ertain assumptions about analytiity of T u0 and �u, supported by the Lax equations(21), we an express them as di�erent analyti branhes of the same analyti funtion Gu.The same an be done for T v0 and ���v in terms of Gv.� The solution will be ompletely �xed by the existene of suh a gauge transformation g(x)whih relates its u{ and the v{representations. At the end we will have one single non-linearintegral equation (NLIE) on g(x).The �nal equation for g(x) is new for the Prinipal Chiral Field. It is di�erent from the systemof 3 DdV type equations used for the same model in [30℄. Still it resembles in many aspets thenon-linear Destri-de Vega (DdV) equation whih appears when studying other integrable models.Indeed, our method is very general and it allows to generate DdV-like equations for large lasses ofsigma models in a systemati way. For the models for whih a DdV equation is known we expetour integral equation to oinide with it after an appropriate hange of variables. We hek thishypothesis on the SU(2) hiral Gross-Neveu model for whih we re-derive indeed the known integralequation.3.1 Exat equations for the �nite volume spetrumIn this setion, we will derive the �nite volume spetral equations of the previous setion in themost general form, valid for all exited states of the model with any number of physial partileswith arbitrary polarizations (i.e. with any quantum numbers).As we disussed below in the in�nite volume, the solution of Y-system with Y0 = 0 an bedesribed in terms of two independent sets of Hirota potentials T uk and T vk . Sine these two di�erentsolutions of Hirota equation orrespond to the same solution of Y-system they are related bya gauge transformation g(x). These two solutions of Hirota equation an be ontinuously andunambiguously deformed all the way from very large L, where we know the solution (see theprevious setion), to any �nite value of L. The gauge ambiguity for any of the two solutions, T uk orT vk , an be �xed by hoosing Qu and Qv to be polynomials for any L. Of ourse we an no longerassume T uk and T vk , as well as the orresponding �v and �u, to be polynomials. Instead we willassume ertain analyti properties for them and we will see their onsisteny with the solution we�nd at the end.We introdue a polynomial �(x) with real zeroes �j; j = 1; 2; : : : ; N of T u0 . They orrespond tothe rapidities of physial partiles on the irle. The gauge funtion g(x) relating the two solutionsof the T -system is assumed to be regular and to have no zeros on the physial strip, so thatT v0 = g�gT u0 has the same zeroes as T u0 there. We also assume that8� �u(x)�(x+i=2) ( ��u(x)�(x�i=2) ) is regular for Im x > �1=2 (Im x < 1=2) in the whole upper (lower) halfplane and goes to 1 for jxj ! 1 in all diretions in the upper (lower) half plane;� Tu0 (x)�(x) is regular and goes to 1 at x! �1 inside the physial strip �12 < Im x < 12 ;8When x ! 1 we know that Y0(x) ! e�L osh(�x) , i.e. it is exponentially small, as in the ase oflarge L, and the Y-system, as well as the T-system splits in to two independent u- and v-wings withT0(x) � �(x) � �(x) � xN : 18



The �rst property is somewhat similar to the forth property from the previous subsetion: thelarge x asymptotis is governed by the same exponential e�L osh�� as the large L asymptotis. Asa onsequene of the seond assumption, inspired by the integral representation (47) for the U(1)setor, T uk>0(x) are regular for �(k + 1)=2 < Im x < (k + 1)=2 .Similarly, for another solution we assume that� ��v(x)�(x+i=2) ( �v(x)�(x�i=2) ) is regular for Im x > �1=2 (Im x < 1=2) in the all upper (lower) half planeand goes to 1 when jxj ! 1 in all diretions in the upper (lower) half plane� T v0 (x)�(x) is regular and goes to 1 at x! �1 inside �12 < Im x < 12 strip.Note that with these properties all Yk 6=0 are automatially analyti in the physial strip, as wesee from (18). Y0 is, in the strit sense, only analyti on the real axis, but the detailed analysis ofthe Appendix D shows that we an expet its analytiity even in a �nite strip around the real axis.As onerns the T -funtions, although we use in di�erent irumstanes T uk or T vk , we will get thesame result for all Yk, sine they are related by a gauge transformation g(x). But analytiity willbe expliit only for one wing at a time: at k � 1 for T uk and at k � 1 for T vk .The listed properties are enough to expliitly relate T uk , T vk with the orresponding �v and �uusing a ertain integral representation for them. In Appendix B we follow this line of arguments toformulate the omplete set of equations for an arbitrary state, inluding a NLIE for g(x) and theassoiated equations for the Bethe roots. However, it appears to be more advantageous, espeiallyfor the numeris, to use the integral representations for the logarithms of T uk ; T vk ;�v;�u. We willderive in what follows the orresponding equations de�ning the energy of a general state.

Figure 6: The ratios indiated lose to eah ontour are analyti inside the orresponding ontour.Thus we an obtain them in eah of these regions using a single resolvent Gu(x) as in (52).Let us de�ne two new funtions analyti on a Riemann surfae with two in�nite uts at Im x =�i=2 Gw(x) = 12�i Z 1�1 �w(y)x� y � i=2dy � 12�i Z 1�1 ��w(y)x� y + i=2dy; (w = u; v) (52)19



with the following spetral densities along the in�nite uts9�u(x) = log�T u0 (x+ i=2)�u(x) � ; �v(x) = log�T v0 (x+ i=2)���v(x) � ; (53)and their omplex onjugates��u(x) = log�T u0 (x� i=2)��u(x) � ; ��v(x) = log�T v0 (x� i=2)��v(x) � : (54)Then from (18) we have log(1 + Y0) = �u + ��u = �v + ��v : (55)When L is large enough we know from the results of the setion 2.4 that Tw0 (x) ' �w(x� i=2) '��w(x + i=2) ' �(x) and thus to the leading order �w(x)'s are exponentially small. It is alsoimportant for our analytiity assumptions listed above to hold that �w(x) � e�L osh �x at x! �1along the real axis. Together with these analytiity assumptions the following formulae are true atany LGv(x) = 8>>>>>><>>>>>>: log ���v(x� i=2)�(x) Imx > +1=2log T v0 (x)�(x) jImxj < 1=2log ��v(x+ i=2)�(x) Imx < �1=2 ; Gu(x) = 8>>>>>><>>>>>>: log �u(x� i=2)�(x) Imx > +1=2log T u0 (x)�(x) jImxj < 1=2log ��u(x+ i=2)�(x) Imx < �1=2 :(56)These formulas are easily understood from simple ontour manipulation as depited in �gure6. Let us onsider the resolvent Gu, plug (53) and (54) into (52) and onsider separately theterms ontaining Tu0 (x)�(x) , �u(x�i=2)�(x) and ��u(x+i=2)�(x) . Sine T0(x)�(x) ! 1; x ! �1, we an lose theontour in the integrals ontaining log T0(x)�(x) around the physial strip and ontrating it aroundthe pole y = x we obtain the middle relations in (56) if x lies in the physial strip. Similarly,using the fat that in the upper half-plane �u(x�i=2)�(x) ! 1; x!1, we an lose the ontour in theintegrals ontaining log �u(x�i=2)�(x) (after the obvious shift of integration variable) around the upperhalf-plane and ontrating it around the pole y = x we obtain the upper relations in (56) providedIm(x) > 1=2. The integrals ontaining log ��u(x�i=2)�(x) are treated similarly with the ontours beinglosed in the lower half-plane. For the resolvent Gv the same sort of reasonings apply.As we mentioned above, the two solutions of Hirota equation we de�ned in this way, are relatedby a gauge transformation T vk = g Æ T uk . However, the polynomials Qu and Qv are not neessarilyrelated by this gauge transformation g(x). Instead, one an easily see that Qv is mapped to anotherlinearly independent solution of eq.(21) Ru = Qvg� . We an use eqs.(26,27) to express all Tk's and�'s in terms of Q's. In partiular, we have�u = h+�Q++u �Q��vg� � Qu �Qvg+ � ; T u0 = h�Q+uQ+v�g � �Q�u �Q�vg � : (57)9These spetral densities denoted by � should not be onfused with the densities of Bethe roots % used inappendix A in the derivation of the Y-system ground state equations.20



Similar relations for v wing an be obtained from the gauge transformation �v = g�g+�u andT v0 = �ggT u0 . For the densities (53-54) this yieldse�u = +T u+0�u = g+�g+Q++u Q++v � �Qu �Qvg+g�Q++u �Q��v �Qu �Qv ; e�v = �T v+0��v = g+�g+Q++v Q++u � �Qv �Qu�g��g+Q++v �Q��u �Qv �Qu : (58)Note that one an get �v from �u by exhanging indies u$ v and g ! 1=�g.We see that the densities and thus both Gu and Gv now an be expressed solely in terms ofthree polynomials Qv; Qu; � and a funtion g(x), generating the gauge transformation relating thetwo wings. It is left only to �nd a losed equation on g(x). We do it in the following subsetion.3.1.1 Closed equation on the gauge funtion g(x)In the previous subsetion, we managed to express all relevant quantities in terms of three poly-nomials Qv; Qu; � and a omplex funtion g(x). Using the ondition that two solutions of Hirotaequation are related by the gauge transformation generated by g(x) we an write a losed equationon that funtion. In partiular, using the fat that �v and �u are related by the gauge transfor-mations (25) we obtain �v = g+g��u : (59)It gives a losed relation on g whih we an rewrite, assuming that g is regular within the physialstrip, as follows g = ie 12 iL sinh(�x)���v�u��s ; (60)where the zero mode of the inverted operator was hosen to ensure the proper large x asymptoti.Indeed with this hoie T u�1 = T v�1g��g+ � e�L osh(�x) leading to the right behavior of Y0 (see eq.(18))at large L. Using (52) this an be re-asted asg = ie 12 iL sinh(�x)S(x) exp [s �Gv(x� i=2� i0) � s �Gu(x+ i=2 + i0)℄ (61)where we used (56) and the identity����+��s = �S+S���s = S ; (62)following from the rossing relation (4). We remind that �(x) = QNj=1(x � �j) and S(x) =QNj=1 S0(x� �j).The losed NLIE (61) for g(x) is our main result. Together with the expressions for the densitiesin terms of g (53-54) it allows us to alulate (1+Y0) and thus to obtain the energy of a state (15).In what follows in this setion we will rewrite it in a little more onvenient form whih will beuseful for the numerial omputations for partiular states.Conjugating the last equation we �nd�g = �ie�iL=2 sinh(�x)S�1(x) exp [s �Gv(x+ i=2 + i0) � s �Gu(x� i=2 � i0)℄ : (63)Finally it is useful to translate these equations into an equation for the phase g=�gg�g = �eiL sinh(�x)S2(x) exp�12 �K�0 � (�u + �v)�K+0 � (��u + ��v)�� ; (64)21



where K0 = 12�i�x logS20 and we usedGw(x+ i=2 + i0) �Gw(x� i=2 � i0) = K1(x+ i=2� i0) � ��w �K1(x� i=2 + i0) � �w (65)and the onvolution form of the dressing kernel as K0 = 2s�K1;K1(x) = 2�(4x2+1) . For the squarednorm g�g we get from eq.(60)g�g = ��v�u ��v��u��s = � �v ��vT v+0 T v�0 T u+0 T u�0�u��u ��s T v0T u0 = exp(Gv �Gu) ; (66)where we used 1Y0Y0 = 1 inside the square brakets to get the last equality. This equation anbe also obtained from the gauge transformation T v0 = g�gT u0 . As we shell see in setion 5 theseequations an be eÆiently solved numerially, by iteration, where at eah iteration step a singleonvolution integral arises involving the densities �u and �v.We use eq.(58) and eq.(59) together with our analytiity assumptions to onstrain g;�u;v andT u;v0 . In the next setion we will �x the remaining �nite number of omplex parameters - zerosof polynomials Qv;Qu and the real zeroes of �. After that one an use eq.(23) to onstrut allTk. In appendix C we show that all Tk obtained in this way will be real funtions and thus Hirotaequation for them is satis�ed. This means that we solved indeed the Y-system with the rightphysial analyti properties for the solutions.3.1.2 Finite size Bethe equations and the energyFinally it is left to explain how to �x the �nite number of onstants, the Bethe roots �j, uj and vj ,whih are zeros of the polynomials � ;Qu; Qv and whih ompletely haraterize a state. The zerosof � are by de�nition the zeros of T0 whih means that at these points e�u(�j�i=2) = e�v(�j�i=2) = 0as we an see from eq.(58). It an be also written as followsQ+uQ+v�Q�u �Q�v g�g = 1 ; at x = �j ; (67)whih we an rewrite using eq.(64) ase�iL sinh(��j) = �S2(�j)Q+uQ+v�Q�u �Q�v exp�12 �K�0 � (�u + �v)�K+0 � (��u + ��v)�� ; at x = �j : (68)Note that when L ! 1 we an neglet the last fator to get preisely the usual in�nite volumeABA eq.(7). The equations for the auxiliary Bethe roots uj an be derived in many alternativeways. The most standard way is to demand analytiity of T1 at x = uj (see eq.(22))�u �Q��u + T u�0 Q++u = 0 ; at x = uj : (69)We see that in general there is no reason to assume uj to be real when L is �nite. Using the resolventGu to represent T0 and �u appearing in this expression we get the auxiliary Bethe equationsfollowing from (69) in the form 1 = ���Q++u�+ �Q��u P (uj) ; (70)where P (x) is de�ned on the upper half plane byP (x) = exp [K1(x� i=2) � �u �K1(x+ i=2) � ��u℄ ; Im x > 0 ; (71)22



In the large L limit P (x) � 1 and we get the ABA eq.(8). A similar equation �xes the roots vj .The integral equation (61) together with the equations (68), (70) �xing the zeros of the polyno-mials Qu; Qv; � are the omplete set of equations whih one should solve to �nd the full spetrumof the SU(2) � SU(2) prinipal hiral �eld. One g(x) and the positions of the zeros �j; uj ; vj arefound, we an ompute the exat energy of the orresponding quantum state from eqs.(15,55) and(58) E = NXk=1 osh(��k) � 12 Z osh(�x)(�u + ��u)dx : (72)where we an use due to (58) �u + ��u = �v + ��v = log ����� g+�g+Q++u Q++v � �Qu �Qvg+g�Q++u �Q��v �Qu �Qv �����.Let us remark that our onstrution for a general state in this paper was based on the assumptionthat in the asymptoti regime L ! 1 all the roots uj ; vj beome real.However, it is well knownthat the omplex solutions are also possible. We hope that even in this ase our equations maintaintheir form, although this situation deserves a speial are.In setion 4 we will explain how to eÆiently implement these equations for numerial study.Before that, in the next setion we will study the large L behavior of these equations thus repro-duing not only the large volume results of setion 2.4 but also the subleading orretions (L�usherorretions).3.2 Large volume limit: ABA and L�usher orretionsThe SU(2) prinipal hiral �eld spetrum is given by (15), or (72). As we have seen in the previoussetion, in the large L limit the Bethe roots �j are given by their asymptoti values obtained froma solution to the asymptoti Bethe equations, and sine Y0 and �'s are exponentially small we androp the integral ontribution in (68) and (70) and reover the usual asymptoti spetrum. In thissetion we fous on the leading �nite size orretions to this result.Due to these orretions auxiliary roots uj and vj beome omplex even if they were realasymptotially at large L. In this setion we denote the real part of the roots uj; vj by Uj and Vjwhile the (small) imaginary parts we denote by �uj and �vj . The positions of the momentumarrying roots �j are also orreted, however they stay real. We will also use the notationQu(x) =Yj (x� Uj) ; Qv(x) =Yj (x� Vj) : (73)We have to ompute the �rst orretion to the positions of the Bethe roots. To the leading orderwe an drop the exponentially small densities �u and �v in eq.(61), to getg(x) ' iS(x)eiL=2 sinh(�x) (74)whih we an use to ompute the spetral densities from (53-54). We see that some terms in theexpression for �u are exponentially suppressed and we an expand�u ' �Qu �QuQu + e�L osh(�x)S+S� Q++u�+ Q++v �� +Q��v �+QvQu ' �Qu �QuQu + Q++u T u�1Qu�+ : (75)23



In the last equality we neglet the small imaginary part of the axillary roots and we use (22) tothe leading order together with the gauge transformation T v�1 = g��g+T u�1 and the rossing relationS+S� = ���+ .The poles at x = Uj should anel, due to eq.(70), among the �rst and the seond term sinethe density by de�nition is regular. We introdue the notations �(1)u and �(2)u for the �rst and theseond term in (75). The �rst one an be simply written as�(1)u 'Xj 2�ujx� Uj : (76)Sine the whole density is regular we an apply the prinipal part presription to the �nite integralsin (64) without hanging the result. Having done so we are free to split the onvolutions intoonvolutions with �(1) and �(2). In (68) we should then expand the fator�Q+u�Q�u exp�iIm �Z K�0 (x� y)�(1)u (y)�� exp�iIm �Z K�0 (x� y)�(2)u (y)� ; (77)and the similar fator for the v roots, to the next to leading order. We notie that �(1)u is purelyimaginary to the leading order, as seen from eq.(76), and therefore we an simplify the term in thesquare braketsQ+u�Q�u exp�12(K�0 +K+0 ) � �(1)u � ' Q+u�Q�u �1 +K1 � �(1)u � = Q+u�Q�u  1 + �(1)+u + �(1)�u2 ! ' Q+uQ�u (78)where the onvolutions are understood in the sense of prinipal value. Thus in the Bethe equations(67) in this approximation the imaginary parts of the axillary roots anel against the ontributionfrom �(1) and we simply get�eiL sinh(�x)S2Q+uQ+vQ�uQ�v = exp��iIm K�0 � h�(2)u + �(2)v i� at x = �j : (79)Proeeding in the same fashion in the eq.(70) for the auxiliary Bethe roots we arrive at a similaronlusion. Namely only the real parts of the auxiliary roots survive when we separate the densityinto �(1) and �(2) ����+ Q++uQ��u = exp��2iImK�1 � �(2)u � at x = Uj : (80)See appendix E for details. We see that all terms exept for the onvolutions with �(2) have a simplee�et of absorbing the imaginary parts of the Bethe roots.It turns out that the remaining onvolutions, ontaining �(2), an be niely written in terms ofthe leading order Y0 found before in (32),Y0(x) ' e�L osh(�x)�Q++u �� +Q��u �+Qu ��Q++v �� +Q��v �+Qv � (S+)2(��)2 ; (81)where the �j appear in � and S while the uj (vj) auxiliary roots appear in the orresponding Baxterpolynomials Qu (Qv). Notie that this quantity is already exponentially small, so we an take herethe asymptoti values for the auxiliary roots. As explained in detail in appendix E, the quantitiesinside the prinipal part integrals are related to the derivative of this funtion with respet to �k or24



uk and vk whih we treat in (81) as independent variables. More preisely we have the remarkableidentities i Im �K�0 (�i � y) h�(2)u (y) + �(2)v (y)i� = ���iY0(y)2�i ; (82)2i Im �K�1 (uj � y)�(2)u (y)� = +�uiY0(y)2�i : (83)Thus we �nally obtain the orreted Bethe ansatz equations in the following elegant form:� �+�� Q��uQ++u = exp��Z �UjY0(y)2�i dy� at x = Uj ;�eiL sinh(�x)S2Q+uQ+vQ�uQ�v = exp��Z ��jY0(y)2�i dy� at x = �j ; (84)��+�� Q��vQ++v = exp��Z �VjY0(y)2�i dy� at x = Vj :It is not ompletely surprising that we managed to express everything in terms of Y0. To the leadingorder, Y0 an be expressed in terms of S-matrix only: it is the relevant eigenvalue of the operatore�L osh(�x)tr�Ŝ01(x� �1)Ŝ02(x� �2) : : : Ŝ0N (x� �N )� : (85)We see that (84) orresponds preisely to the onjetured equation (27) in [5℄ only inside the U(1)setor. However, our result is di�erent from outside the U(1) setor when there are axillary rootsUj and Vj . Finally the equation for the energy of the state orreted by the �nite size e�ets isgiven by eq.(15) in terms of Y0 in the leading approximation and the orreted positions of theroots �j whih should be found from eq.(84).The right-hand sides of the orreted Bethe equations (84) have a simple interpretation: for themiddle equation, it reets the ontribution of sattering of the \physial" partiles o� the virtualones on the ylinder, whether as the other two reet the same e�et for the \magnons" responsiblefor the isotopi degrees of freedom of the partiles. Although these equations are derived here onlyfor a partiular model their form looks very universal and an be immediately generalized to anyother integrable sigma model where the exat sattering matrix is known.3.2.1 Single partile aseIn this setion we onsider the single partile ase for the L�usher-type orretion of the previoussubsetions. This analysis was done in a more general ontext in [5℄.When we have a single partile with momentum �1 (84) yields simplyL sinh (��1) = 2�n��Z dy2���1Y0(y) ; (86)whih orrets the leading order quantization onditionL sinh(��01) = 2�n : (87)25



Now, from (81) we see that the x dependene in Y0(x) omes from the exponential fator e�L� osh(�x)and also from the ombinations x� �j; x� uj and x� vj appearing in the remaining terms in thisexpression. Thus�yY0(y) = �L� sinh(�y)Y0(y)� NXk=1 ��kY0(y)� JuXk=1 �ukY0(y)� JvXk=1 �vkY0(y) ; (88)whih, in the ase we are onsidering, with N = 1 and Ju = Jv = 0, allows us to simplify (86) toL sinh (��1) = 2�n+ Z dy2 L sinh(�y)Y0(y) ; (89)so that the leading �nite size orretion to the energy (15) readsE(L)� osh(��01) ' �12 Z osh(�y) �1� tanh(�y) tanh(��01)� e�L osh(�y)tr Ŝ01(y � �01) ; (90)preisely as expeted for the L�usher orretions [4℄.4 SU(2) Chiral Gross-Neveu model and related modelsOur NLIE resembles the Destri-deVega equation and, at least in the ases the last one is known, aneven oinide with it. In the ases when the DdV equation is not known, like the SU(2)L�SU(2)RPCF, or O(4) model studied in this paper, we obtain a new, DdV-like equation. In this subsetion,to demonstrate our method, we show how to reprodue the DdV equation for the hiral SU(2)Gross-Neveu model on a �nite irle.The TBA equations for this model are given by the same Y -system (12) with an importantdi�erene that Ys<0 = 0 (see Fig.8). In partiular, sine Y�1 = 0 we have T�2 = 0 whih impliesdue to the eqs.(21,17) 0 = T���1 �Q� ��Q�� ; T+�1T��1 = �� ��+ : (91)Then it is immediate to hek that the quantityA � Q+�Q� T��1�� = Q+�Q� ��+T+�1 (92)satis�es, due to eq.(91), the relationA+A� = �Q+�Q��+�Q+�Q��� ��� : (93)Note that A is a pure phase on the real axe. Thus, restoring the proper zero mode exponential, we�nd A = eiL sinh(�x)Q+�Q� � �����s : (94)As before, to make this a losed equation on A we introdue the resolvent G and the density �G(x) = 12�i Z �(y)x� y � i=2dy � 12�i Z ��(y)x� y + i=2dy ; � = log T+0� : (95)26



Again analyti properties of T0 and � lead to eq.(56). Using the linear problem (21) we an writeT�1Q++ � T+0 Q = �� �Q and we see that� = log � �QQ �1 +A+�� : (96)Thus A satis�es the losed equation for A sine � = G(x + i=2 + i0). We see that A(x) plays asimilar role as g(x) in PCF. We an easily ompute Y0 in terms of A1 + Y0 = e�e�� = �1 +A+� �1 + 1=A�� : (97)We see that the fators of Q anel from this expression. It is also possible to write eq.(94) in asimpler form without fators of Q using the useful identities. First using eq.(65) and assuming thatthe density is regular not only on the real axes but also for �1=2 < Im x � 0 we write� �����s = S� exp�12K�0 � �� 12K+0 � ��� = S� exp�12K0 � [��+ � ��+� ℄� ; (98)where ��+ � �(x� i=2 + i0). Using the following relation12K0 � log � �Q+ �Q�Q�Q+� = log �S+uS+�u �Q�Q�� ; (99)where S�(x) = NYj=1S0(x� �j) ; Su(x) = JuYj=1S0(x� uj) ; S�u(x) = JuYj=1S0(x� �uj) (100)we an get rid of Q's in (98) and �nally obtain the known DdV equationA = eiL sinh(�x) S�S+�u S�u exp (iIm K0 � log [1 +A(x+ i0)℄) : (101)Then for Y0 we get the standard relation whih should be used to ompute the exat spetrum fromE(L) = �12 Z m osh(��) log(1 + Y0) +Xm osh(��j) : (102)Furthermore, both BAE { for the physial rapidities �j and for the magnon rapidities uj { an bewritten A(�j) = �1 ; A+(uj) = �1 : (103)We also notie that A(x) has poles at x = �uj + i=2. To see that we useT0(�j) = 0 ) 1 +A(�j) = Q�(�j)�Q�(�j) T0(�j)��(�j) = 0 ; (104)�(uj) � 1 ) 1 +A+(uj) = Q(uj)�Q(uj) T+0 (uj)�(uj) = 0 : (105)Equations (100),(97),(102) and (103) are preisely the DdV equations derived in [6, 7℄10! As shownin this setion our method an be diretly generalized to other models whose TBA Y -system10In these papers the sine-Gordon model was onsidered. The SU(2) Chiral Gross-Neveu model is a simplelimiting ase of this theory, see disussion in the paragraph below.27



equations are known. It would be very interesting to make a systemati study of suh models usingour formalism.For example, a simple generalization of the ase studied in this setion is obtained by onsideringthe funtions Tk, � as well as the Baxter funtions Q to be periodi in the imaginary diretionswith period i�. This amounts to onsidering the trigonometri solutions of Hirota equation (17)and the orresponding linear problem (21) { this should orrespond to the sine-Gordon model [13℄.We take the Baxter polynomials Q(x) and the large L limit of T0;��; �� ' ~� to be~Q(x) = JYj=1 sinh �� (x� uj)sinh �� ; ~�(x) = NYj=1 sinh �� (x� �j)sinh �� (106)instead of polynomials. Then most of the formulae in this setion go through with minor modi�-ations. For example, instead of the SU(2) Chiral Gross-Neveu S-matrix S0 = �x�i=2x+i=2��s we will�nd the sine-Gordon dressing fator~S0 = �sinh �� (x� i=2)sinh �� (x+ i=2)��s = �i expZ 10 sin(!x)! sinh ���12 !�osh �!2 � sinh ��2!� :Thus it seems that our method allows to derive the sine-Gordon DdV equations of [6, 7℄ in an easyway. For � ! 1 we reover the SU(2) hiral Gross-Neveu model. For an integer � the Y-systeman be trunated as represented in �gure 8, see e.g. [13℄.Another interesting lass of models whih one ould analyze using our formalism is representedby the so alled sausage model (see e.g. [45℄). This model an be onsidered as a generalization ofthe O(4) model, or SU(2) PCF, in the same sense as the sine-Gordon model is a generalization ofthe SU(2) hiral Gross-Neveu. The inhomogeneous XXX-spin hain present in the SU(2) Gross-Neveu model and desribing the isotopi degrees of freedom is generalized in sine-Gordon model tothe XXZ hain, with the anisotropy parameter � introdued above. Similarly, the sausage modelsan be seen as two interating inhomogeneous XXZ hains parameterized by the inhomogeneities�1; : : : ; �N and anisotropies � and � 0. It would be very interesting to generalize our O(4) modelresults to this more general lass of models.Our approah to deriving DdV like equations is strongly based on a smooth interpolationstarting from the IR asymptoti Bethe ansatz desription; hene, by onstrution, our states arevery well identi�ed. On the other hand we did not arry out a detailed study of omplex solutionssuh as the states represented by Bethe strings in the large L limit; for these states some ofour formulae might need to be modi�ed. Within the DdV approah based on desritizations ofintegrable models, many interesting omplex solutions were studied: e.g. holes, speial objets,wide roots, self-onjugate roots et. It would be interesting to omplete our approah to inludeall physial omplex solutions and thus obtain a preise ditionary between these two approahes.In partiular this would teah us whih solutions to DdV NLIE orrespond to physial states.5 NumerisIn this setion we explain how to eÆiently solve numerially the equations derived in the Se.3.
28



5.1 Implementation of numeris and Mathematia odeFor simpliity let us fous on the U(1) setor where we onsider M{partile quantum states withM spins pointing in the same diretion in SU(2)L and SU(2)R. Then our equations simplifyonsiderably as was explained in subsetion 2.7. First of all, sine there are no spins exited wehave trivial Baxter polynomials Qu = Qv = 1. Thus, from (58) we see that �u = �v = � with� = log g+�g+ � 1g+g� � 1 : (107)We also notie that sine this is a symmetri on�guration where the u and v root on�gurationsare the same (there are no roots at all) we have, see e.g. (66), g�g = 1 and thus g(x) is a pure phase.In partiular, for real x, we an simplify the density to�(x) = log (g+)2 � 1jg+j2 � 1 ; (108)from where we see that we an express it solely in terms of g+. Sine g is a pure phase we needonly to determine its argument from (64) whih now readsg2 = �eiL sinh(�x)S2(x) exp 2i Im "K�0 � log (g+)2 � 1jg+j2 � 1 #! : (109)This is almost perfet for numerial implementation but still needs to be slightly improved. Thereason is that we want to iterate this equation by evaluating the right hand side for real x. But thiswill yield the updated values of g(x) in the left hand side whereas for the next iteration we wouldneed g+(x). To �x it, we simply shift x! x+ i=2 in this equation and de�ne A(x) � (g+(x))2 togetA = �e�L osh(�x) MYj=1S20(x� �j + i=2) exp�K0 � log A� 1jAj � 1 �K++0 � log �A� 1jAj � 1 � log �A� 1jAj � 1� ;(110)where the onvolution of K++0 is understood in the prinipal part sense. We have expliitly writtenS(x) to render the presene of the Bethe rapidities more expliit. These are �xed by the mainBethe equation (67) whih in our notations is simply�eiL sinh(�x) MYj=1S20(x� �j) exp�2i Im �K�0 � log A� 1jAj � 1�� = 1 ; x = �i : (111)For ompleteness let us present here the Mathematia ode to solve these two equations by itera-tions11. It is a slightly simpli�ed, and thus less eÆient, version of the ode we used for the plotsin �gure 2.First we introdue the S-matrix S0 and the kernel K0,S0[x_℄=I*Gamma[-(x/(2I))℄Gamma[1/2+x/(2I)℄/(Gamma[x/(2I)℄Gamma[1/2-x/(2I)℄);K0[x_℄=D[Log[S0[x℄^2℄,x℄/(2*Pi*I);11One an opy the ode diretly to Mathematia from .pdf29



Next we speify the size L and the mode numbers n = fn1; : : : ; nMg. For example, if we wantto study the system with L = 1=2 and three partiles with zero mode numbers we writen = {0, 0, 0};M = Length[n℄;L = 1/2;We will perform several integrals from �1 to +1 but the integrands have exponential tails sothat it is quite useful to introdue a ut-o� X for all the integration intervals at this point. Areasonable ut-o� is given by e�L osh(�X) = 10�8. Furthermore, at eah iteration step we will haveto onstrut an updated funtion A(x) whih we do by means of an interpolation funtion,X=ArCosh[8Log[10℄/L℄/\[Pi℄;F[S_℄:=FuntionInterpolation[S,{x,-X,X},InterpolationPoints->30℄;Next we introdueeq[i_,v_℄:=L*Sinh[Pi*x[i℄℄+Sum[If[i==j,0,Log[S0[x[i℄-x[j℄℄^2℄/I℄,{j,M}℄-2n[[i℄℄Pi+v[[i℄℄;BAE[v_℄:=Table[x[i℄,{i,M}℄/.FindRoot[Table[Re[eq[j,v℄℄,{j,M}℄,Table[{x[i℄,2i/M-1/2},{i,M}℄℄;whih yields the solution to Bethe equations L sinh(��i) +Pj 6=i 1i logS20(�i� �j)� 2�ni+ vi wherevi is a perturbation to the equation number i. Comparing with (111) we see that this perturbationat step k will be given by the onvolution appearing in (111) evaluated at the solution �i omputedin the previous step. The leading order BAE's orrespond to vi = 0 and are thus given by\[Theta℄[0℄=BAE[Table[0,{j,M}℄℄Also to leading order the funtion A(x) will be simply given byA[0℄=F[-Exp[-L*Cosh[Pi*x℄℄*Produt[S0[x-\[Theta℄[0℄[[j℄℄+I/2℄^2,{j,M}℄℄Then we introdue the density � and its onjugate �� at the k-th iteration step asr[k_,y_℄:=Log[(A[k℄[y℄-1)/(Abs[A[k℄[y℄℄-1)℄;r[k_,y_℄:=Conjugate[r[k,y℄℄;Finally the odeA[k_℄:=A[k℄=F[-Exp[-L*Cosh[Pi*x℄℄Produt[S0[x-\[Theta℄[k-1℄[[j℄℄+I/2℄^2,{j,M}℄Exp[NIntegrate[K0[x-y℄r[k-1,y℄-K0[x-y+I℄*r[k-1,y℄+1,{y,-X,x,X},Method->PrinipalValue℄-2X-r[k-1,x℄℄℄;phase[k_℄[x_℄:=NIntegrate[2Im[K0[x-y-I/2℄r[k-1,y℄℄+1,{y,-X,X}℄-2X;\[Theta℄[k_℄:=\[Theta℄[k℄=BAE[Table[phase[k℄[\[Theta℄[k-1℄[[j℄℄℄,{j,M}℄℄;yields the k-th iteration quantities in terms of those omputed at the (k � 1)-th step. The energy30
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Figure 7: Di�erene between the preditions from the asymptoti Bethe ansatz and from thegeneralized L�usher formulas to the exat (numerial) results for the two partile state polarized inboth SU(2) [u; v; ��11℄. The solid (blue) line represents Eexat�EABAEexat while the dashed (red) urvedepits Eexat�ELusherEexat . It is lear that the latter approximates the exat results with exellentauray, espeially for large L of ourse.of the state is then given byEn[k_℄:=Sum[Cosh[Pi\[Theta℄[k℄[[j℄℄℄,{j, M}℄-NIntegrate[Re[r[k,y℄℄Cosh[Pi*y℄,{y,-X,X}℄;For example, to obtain the result of the �rst 8 iterations we simply runTable[En[k℄, {k, 0, 8}℄to get f10.2414,10.2425,10.2425,10.2424,10.2424,10.2424,10.2424,10.2424g where we notie that theiterations are learly onverging to the exat value 10:2424 up to the preision we are working at.It is instrutive to ompare these results to the value predited by the asymptoti Bethe equationsalone, EBAE = 10:3388and to that predited by the generalized Lusher formulae disussed in setion 3.2 whih givesEL�usher = 10:23965.2 Disussion of numerial resultsNow we will try to interpret the behavior of various states on the �g.1 as funtions of the volume L.Let us start from the vauum, the lowest plot there. At very small L, the O(4) model should beomea 2d CFT of three massless bosons: if we introdue in (112) a resaled �eld ~Y = e�10 (L) (X1;X2;X3)and X4 = p1� e20(L)(Y 21 + Y 22 + Y 23 ), where e20(L) ' 2�j logLj is the e�etive harge, very small inthis limit (the e�etive radius of the S3 sphere R(L) = e�10 (L) is very big), the ation will be31



S� = Z dt dx 3Xa=1(��Ya)2 + O �e40(L)� : (112)In the ground state, the Casimir e�et will de�ne the limiting energy: E0 ' � �6L+O(1= log4(L�1)),with the entral harge  = 3, whih gives E0 L2� ' �14 , the value ompatible with �0:18 of the�g.1. 12The energies of exited states areL2�E~n1~n2~n3���(L) ' �14 + NXk=1 3X�=1 jn(�)k j (113)where ~nk = (n(1)k ; n(2)k ; n(3)k ) are the momentum numbers of partiles onstituting the state. We seethat the small L asymptotis of our plots are well desribed by this formula: The exited statesin the U(1) setor, denoted in the �g.2 by �n1;n2n3;���, aording to the mode numbers n1; n2; n3,approah the values predited by (113) (up to the irumstane desribed in the last footnote). Inthis setor they have no exited left and right magnons (no u; v roots), and only one omponent isativated: L2�En1n2n3���(L) =PNk n(1)k . Say, the urves �0; �00; �000; �0000; approah �1=4 at L! 0,the urves �1; �01; �001 approah 3=4, the urve �2 approahes 7=4, et. The state with one left andone right magnon exited, denoted as [u; v; ��1;1℄, also approahes 7=4.The qualitative behavior of the states �0; �00; �000; �0000,et, at very small L's an be explainedby the fat that the quantum �elds are dominated by their zero modes. 13 Sine the momentummodes are not exited the �eld ~Y (�; �) does not depend on �. The ation and the hamiltonianbeome: S� � Le20(L) Z dt (���)2; Ĥ = 14 e20(L)L Ĵ2 (114)where the angle �(�) represents the oordinate of a material point (a top) on the main irle of theunit sphere, and Ĵ is the orresponding angular momentum. The quantum mehanial spetrumof this system is well known:L2� (E�f0; 0; : : : ; 0g| {z }m times �E0) = 18�e20(L)m(m+ 2) � m(m+ 2)4 log(!=L) (115)where ! =  + log �pep8 �(3=2)4� � ' 13:66 is a onstant [46℄. This formula explains well the fat thatthe orresponding plots on �g.2 onverge slowly, as inverse logarithm, to �1=4 and their spaing isapproximately linearly growing with the number m.The perturbative alulation of the mass gap [E�0(L)�E0(L)℄ for L� 1 was done in [46℄ andwas ompared with the numerial results following from the TBA approah in [26℄ . Sine ournumeris is in a perfet agreement with [26℄, for the states for whih their method works, we willnot review it here. We only reall that, in the logarithmi approximation,12The onvergene to the limiting value is very slow at L! 0. At L = 0:1 for our alulations we are stillfar from the limiting value of the energy. In [26℄, where the numeris reahed L = 10�6, the result is �0:226,onsiderably loser to the limiting value.13We would like to thank A.Tsvelik, P.Wiegmann and K.Zarembo for the explanations on this subjet.32



L2� [E�0(L)�E0(L)℄ � 34 1j logLj ; (L� 1) (116)whih is in the perfet agreement with eq.(115) at m=1. We also ompared eq.(115) for m = 2with our numeris and found a good agreement14. The inverse logarithm in eq.(115) explains wellthe slight divergene of various urves with zero mode numbers at inreasing L in �g.2. Mostprobably, the divergene of the other plots at inreasing L, orresponding to the same value ofPNk=1P3�=1 jn(�)k j an be also perturbatively desribed by the same inverse log terms. It would beinteresting to study the small L limit analytially to reover analyti properties of the perturbationtheory.At large L, we enter the realm of the asymptoti Bethe ansatz with L�usher-type exponentiallysmall orretions to these regime. Atually, they desribe very well our exat numerial plots for allthe onsidered states, onsiderably beyond the values of L allowed by the approximation, as seenin the plot 7.6 ConlusionsWe derived in this paper the non-linear equations yielding the energy of an arbitrary exited statein the O(4) two-dimensional sigma-model, equivalent to the SU(2) prinipal hiral �eld, de�nedon a spae irle of an arbitrary length L (measured in in�nite volume mass gap units). The mainformulae we found are reviewed in subsetion 6.1.Although we onsidered mostly the O(4) sigma model the new method whih we develop hereis very universal and should be appliable to any integrable relativisti sigma model, suh as theSU(N) priniple hiral �eld at any N , O(n) sigma models at any n, or more exoti models likeSS-model or supersymmetri Sine-Gordon model (see [29℄ for the examples and the ground stateenergy and [11℄ for some exited states). In �gure 8 the ground state Y-system diagrams for manyknown models are represented { it would be extremely interesting to perform a systemati studyof suh models using our formalism.We also hope that the method will eventually allow to alulate the spetrum of �nite sizeoperators (suh as the Konishi operator) in the N=4 SYM theory, when applied to its dual, theintegrable string sigma model on AdS5 � S5 bakground, on a world sheet ylinder of a �niteirumferene, as inspired by the works [38, 47, 48, 49℄. In spite of the last spetaular appliationsof the S-matrix approah for the perturbative alulation of wrapping interations for Konishi andother twist-2 operators [5℄, the problem of �nding the dimensions of suh operators at any ouplingis still open.The Hirota equation, whih is equivalent to Y-system, appears to be a remarkable tool forsolving the integrable sigma models in 2 spae time dimensions. Not only does it help to ollapsean in�nite system of equations into a few ones, but it also helps to guess the analyti properties ofthe remaining unknown quantities and thus formulate the problem in terms of a single equation fora omplex funtion g(x) 15 . This funtion has the transparent meaning of a gauge transformationbetween the T funtions in two di�erent solutions to the Hirota equation, but solving the sameY-system. This equation reminds of the famous Destri-deVega equation, and in the known ases,14The disrepany with the r.h.s. of eq.(115) for m = 2 and L = 1=10; 1=100; 1=1000 is 0:057; 0:034; 0:023.15It might be a few funtions for other sigma models but always a �nite number of them.33



like the hiral Gross-Neveu model, even oinides with it in ertain variables, as we demonstrated inthis paper. However, for many interesting sigma models the Destri-deVega equation is not known- in partiular for general states in �nite volume systems. Our method suggests a systemati wayof deriving suh DdV-like equations. For example, in the ase of SU(N) symmetry, we an expetthat the losed set of suh equations should not ontain more than 4 real funtions (or two omplex)- the total number of the gauge funtions for the general Hirota equations. It would be interestingto apply our method to the SU(N) prinipal hiral �eld [41, 42, 43℄, espeially in the large N limit,whih is expliitly solvable for a non-zero magneti �eld [50℄.There ould be interesting appliations of our method to onformal QFT's in two dimensionsif we onsider them as some limiting ases of massive theories. These limiting ases ould be theultraviolet limit of a small volume L!1 (see for example [14℄) or analyti ontinuation w.r.t. thenumber of omponents of a �eld, like in [51℄, or something else.Finally, one of the most promising grounds for the appliations of our method should be thease of supersymmetri sigma models, a quikly developing subjet, whih is very useful in manyphysial problems ranging from AdS/CFT orrespondene to disordered systems. The method ofsolution of Hirota equations applied for the supersymmetri spin hains with the symmetry algebrasgl(KjM), was worked out in [52, 53, 39, 54℄.6.1 Summary of the main formulaeIn this subsetion we summarize our �nal integral equations in a self-onsistent set of formulae.The main example onsidered in this paper was the O(4) sigma model where the partiles have twoSU(2) spins as internal degrees of freedom. To ompute the exat energy of N -partile states withJu left spins down (and thus N � Ju left spins up) and Jv right spins down (and thus N � Jv rightspins up) we should solve the single integral equation on a omplex funtion g(x)g(x) = ie i2L sinh(�x)S(x) exp [s �Gv(x� i=2 � i0)� s �Gu(x+ i=2 + i0)℄ ;where � stands for onvolution, s(x) = 12 osh �x , S(x) =QNj=1 S0(x��j), S0(x) = i�(1=2�ix=2)�(+ix=2)�(1=2+ix=2)�(�ix=2)and the resolvents are given byGw(x) = Z +1�1 dy2�i � �w(y)x� y � i=2 � ��w(y)x� y + i=2� ; w = u; v ;where the densities are parameterized in terms of g(x) ase�u = g+�g+Q++u Q++v � �Qu �Qvg+g�Q++u �Q��v �Qu �Qv ; e�v = g+�g+Q++v Q++u � �Qv �Qu�g��g+Q++v �Q��u �Qv �Qu ;with Qw(x) =QJwk=1(x�wk) and �Qw(x) =QJwk=1(x� �wk) being the Baxter funtions enoding theBethe roots of the left and right \magnons" (w = u; v). The supersripts � indiate the shifts by�i=2, so that e.g. Q++v = Qv(x + i) and the bars indiate the omplex onjugation. Finally theonstants �j, uj and vj are �xed by the �nite volume Bethe equationsQ+u (�j)Q+v (�j)�Q�u (�j) �Q�v (�j) g(�j)�g(�j) = 1 ; ���(uj)Q++u (uj)�+(uj) �Q��u (uj)Pu(uj) = 1 ; ���(vj)Q++v (vj)�+(vj) �Q��v (vj)Pv(vj) = 1 ;34



where Pw=u;v(x) is de�ned on the upper half plane byPw(x) = exp [K1(x� i=2) � �w �K1(x+ i=2) � ��w℄ ; K1(x) = 2� 14x2 + 1 ;and by its analyti ontinuation in the full omplex plane. The energy of the state is then given byE = NXk=1 osh(��k) � 12 Z +1�1 osh(�x)(�u(x) + ��u(x))dx :AknowledgementsThe work of NG was partly supported by the German Siene Foundation (DFG) under the Col-laborative Researh Center (SFB) 676. The work of NG and VK was partly supported by the ANRgrant INT-AdS/CFT (ontrat ANR36ADSCSTZ) and the grant RFFI 08-02-00287. The workof V.K. is also partly supported by the ANR grant GranMA BLAN-08-1-313695. N.G. and P.V.would like to thank Eole Normale Superieure where a substantial part of this work was done. N.G.would also like to thank Commissariat ^ l'Energie Atomique where a substantial part of this workwas done. V.K. would like to thank I.Kostov and Z.Tsuboi, P.Wiegmann for the useful disussions,and espeially Anton Zabrodin, who shared with him his profound knowledge of disrete lassialintegrability. He also thanks the AEI (Potsdam) for the kind hospitality during the work on im-portant parts of the projet and the Humboldt fundation for the support. We also would like tothank A.Tsvelik, J.Teshner, V.Shomerus, K.Zarembo for many enlightening disussions, as wellas A.Kozak who partiipated in this projet on its the early stage.A Derivation of the (ground state) Y -systemTo ompute the ground state energy E0(L) of the SU(2) prinipal hiral �eld in a periodi box of asize L we an ompute its Eulidean path integral Z with the �elds living on the spae-time torusof the size L�R , where the periodi imaginary \time"R is very bigZ = e�RE0(L) : (117)Following Al.Zamolodhikov [17℄ we an ompute this quantity exhanging the role of L and R sothat the latter beomes the spae variable whereas the former beomes the periodi time. SineR!1 the spetrum orresponding to the new Hamiltonian an be omputed from the asymptotiBethe ansatz and the �nite periodi time L means that we should onsider the system at a �niteinverse temperature L. Thus we onlude thatE0(L) = f(L) : (118)where f(L) is the free energy per unit length of the SU(2) PCF at the temperature 1=L in thethermodynamial limit, when R!1.To ompute the free energy we will start by reviewing the asymptoti spetrum of the theoryas given by the asymptoti Bethe ansatz. Then we will reall what are the magnon bound states(omplexes, or strings) and how they are organized in the omplex plane. We will see that thequantum states in the thermodynami limit an be desribed by the densities of these omplexes35



and their holes. From this desription we will write the entropy formula and thus �nd the desiredexat free energy as the result of the saddle point approximation at R ! 1. This will give theTBA equations.Partiles in the SU(2) prinipal hiral �eld transform in the bi-fundamental representation undertwo SU(2) groups. The theory is integrable and thus the general sattering proess fatorizes into asequene of two-body sattering events. The S-matrix [33℄ desribing the sattering of two partileswith momenta and energies given bypj = m sinh(��j) ; Ej = m osh(��j) ; (119)depends only on the di�erene of rapidities � = �1 � �2Ŝ12(�) = S0(�) R̂(�)� � i 
 S0(�) R̂(�)� � i ; S0(�) = i� �12 � i�2 �� �+ i�2 �� �12 + i�2 �� �� i�2 � ; (120)where R̂(�) is the usual SU(2) R-matrix in the fundamental representation given byR̂(�) = � + iP ; (121)where P is the permutation operator exhanging the spins of the sattered partiles.From now on, we will measure the length L in the units of the mass gap m, whih means thatwe will put m = 1.When N partiles are put on a large irle of length R the periodiity ondition to be imposedon the wave funtion reads �T̂ (�j) eiR sinh(��j)	 = 	 ; (122)where T is the transfer matrixT̂ (�) � tr0 �Ŝ01 (� � �1) : : : Ŝ0N (� � �N ))� ; (123)with the index 0 for an additional auxiliary partile whih we satter against all physial partiles.The trae is taken over this auxiliary spae. Indeed, when the transfer matrix is evaluated at a valueof the physial rapidity �j the orresponding S-matrix Ŝ0j(���j) beomes simply �P0j
P0j whihmeans that the auxiliary partile hanges the quantum numbers and beomes the physial partile�j. Then (122) beomes the periodiity ondition (5) whih physially states that one we pik thepartile j and arry it around the irle the total phase aquired by the wave funtion { whih willbe given by the free propagation Rpj plus the phase shifts do to the (fatorized) sattering witheah of the other partiles { must be a trivial multiple of 2�.Using the algebrai or analyti Bethe ansatz tehnologies it is possible to diagonalize T (�) forany value of � using the same eigenvetor basis (see an Appendix from [55℄ for the details). Multi-partile states with Ju left spins down (and thus N �Ju left spins up) and Jv right spins down (andthus N � Jv right spins up) are parameterized by Ju auxiliary Bethe roots uj and Jv roots vj andT̂ (�)	 = S2(�)�2(� � i)T u1 (� � i=2)T v1 (� � i=2)	 ; (124)where T u(v)1 is the transfer matrix in the fundamental representation assoiated with the left (right)SU(2) spins, Tw1 (�) � Qw(� + i)�(� � i=2) +Qw(� � i)�(� + i=2)Qw(�) ; (125)36



and�(�) � NYj=1(� � �j) ; S(�) = NYj=1S0(� � �j); Qu(�) = JuYj=1(� � uj); Qv(�) = JvYj=1(� � vj) : (126)The rapidities �j and uj; vj are then �xed by a set of nested Bethe equations. The Bethe equationsfor the physial rapidities �j are given by the periodiity ondition (122) whih an be written ase�imR sinh(��j) = � S2(�j)�2(�j � i)T u1 (�j � i=2)T v1 (�j � i=2) ; (127)or simply e�imR sinh(��j) = �S2(�j)Qu(�j + i=2)Qu(�j � i=2)Qv(�j + i=2)Qv(�j � i=2) : (128)The magnon rapidities uj and vj are �xed by the auxiliary Bethe equations� Qu(uj + i)Qu(uj � i) = �(uj + i=2)�(uj � i=2) ; �Qv(vj + i)Qv(vj � i) = �(vj + i=2)�(vj � i=2) ; (129)whih appear in the diagonalization of the left and right transfer matries. Notie that theseequations ensure that the apparent poles in (125) drop out and render Tw1 (�) polynomial as itought to be. For eah solution to these equations we obtain the energy of the orrespondingquantum state from E = NXj=1 osh(��j) : (130)To be able to ompute the free energy f(L) we need to understand how the solutions to theseBethe equations organize themselves so that we an introdue the entropy density. Let us onsiderthe auxiliary roots u, obviously the same onsiderations will apply for the v roots. These roots antake omplex values. When uj has a positive imaginary part the r.h.s of the Bethe equations in(129) diverges, �(uj + i=2)�(uj � i=2) N!1! 1 ; (131)whih means that Qu(uj + i)Qu(uj � i) (132)must diverge as well. This an be ahieved if there is another magnon rapidity uk suh thatuj � uk ' i. Thus, in the thermodynamial limit the magnon rapidities will organize themselvesinto a Bethe-string of n roots uj spaed by i. In partiular, a single real root orresponds to aBethe string with n = 1. The Bethe equations an then be multiplied for uj's belonging to thesame string so that this gives new Bethe equations, solely for the (real) enter of eah string. Thisis the usual fusion proedure applied at the level of the Bethe equations. The resulting equationslook as follows. Introdue the magnon bound states:u(n)j;a = u(n)j + i12(n+ 1)� ia; a = 1; : : : ; n:37



Multiplying the equations for a given n-bound state we get for eq.(129) and eq.(128)e�iRp(��) = Y� 6=� S 20 (�� � ��)Yj;n �� � u(n)j + in2�� � u(n)j � in2 ;Y� u(n)j � �� + in2u(n)j � �� � in2 = Y(k;m)6=(j;n) u(n)j � u(m)k � in+m2u(n)j � u(m)k + in+m2 � u(n)j � u(m)k � i jn�mj2u(n)j � u(m)k + i jn�mj2 n+m2Ys= jn�mj2  u(n)j � u(m)k + isu(n)j � u(m)k � is!2 :In the thermodynami limit we will have a large number of eah type of Bethe roots whih wean desribe by a density %n. We use n = 0 for the density of � partiles, n � 1 to desribe thedensity of u Bethe strings of size n and n � �1 for the v Bethe strings made out of �n roots.For eah density of partiles we also have the orresponding density of holes �%n. Bethe equationsin the thermodynami limit, obtained by taking the logarithmi derivatives of both sides of theseequations, read %n + �%n = R2 osh(��)Æn0 � 1Xm=�1Kn;m � %m ; (133)where � stands for the usual onvolutionf � g = Z +1�1 d�0f(� � �0)g(�0) ; (134)and Knm is the derivative of the logarithm of the e�etive S-matrix between the strings of size nand m. In partiular we have �K0;0(�) � K0(�) = 12�i dd� logS20(�) ; (135)for the interation between physial rapidities,K0;n(�) = �Kn;0(�) = 12�i dd� log � � ijnj=2� + ijnj=2 = 1� 2jnj4�2 + jnj2 � Kn(�) ; n 6= 0 ; (136)for the interation of � rapidities with Bethe strings of size jnj andKn;m(�) = K�n;�m(�) = n+m2Xs= jn�mj2 +1 2K2s(�)�Kn+m(�)+Kjn�mj(�)Æn 6=m ; n;m = 1; 2; : : : ; (137)for the interation of two Bethe strings. Obviously Kn;m = 0 if n�m < 0.It is interesting that even though these kernels appear as some quite ompliated funtions theyall exhibit very simple fourier transforms K̂n;m. More preisely we haveK̂0(!) = e�j!j=2osh !2 ; (138)and K̂n(!) = e�jnj!=2 ; n = 1; 2; : : : ; (139)38



so that the sum in (137) an be expliitly done yieldingK̂n;m = oth� j!j2 ��e� j!j2 jm�nj � e� j!j2 (m+n)�� Æn;m ; n;m = 1; 2; : : : (140)A very useful formula for what follows onerns the inversion of the operator Knm when bothindies n and m are restrited to be positive (or negative). In Fourier spae(K̂nm + Ænm)�1 = Æmn � ŝ (Æn;m+1 + Æn;m�1) ; (n;m > 0) ; (141)where the operator ŝ (and its fourier transform) has the following forms(�) = 12 osh �� ;  ŝ(!) = 12 osh �!2 �! : (142)In partiular we notie that K0 = 2s �K1: (143)Having introdued all the neessary kernels we an proeed to onstrut the quantity of interest,the free energy at the temperature 1=L. We havef(L) = min%n;�%n Z d� %0L osh�� � 1Xn=�1%n log�1 + �%n%n�+ �%n log�1 + %n�%n�! ; (144)where we should minimize the integral by varying the densities of partiles and holes keepingthe Bethe equations satis�ed. The �rst term in the integral is the energy density multiplied by theinverse temperature (whih is L) and the seond term given by the sum over n is the entropy density(see e.g. [17℄). We use Bethe equations to write the variation Æ�%n = �Æ%n�P1m=�1Knm � Æ%m sothat the extremum ondition Æf = 0 yields a set of TBA equations0 = ��n + L osh(��)Æn;0 + 1Xm=�1Kmn � log �1 + e��m� ; (145)where %n�%n = e��n . The free energy evaluated at this extremum an then be written in terms of �0alone, so that E0(L) = �Z d�2 osh(��) log �1 + e��0(�)� : (146)The last two equations yield the �nite size ground state energy of the SU(2) prinipal hiral �eld.Finally, we will show below that de�ning the inidene matrix Inm = Æn;m�1, the Y variablesYm = e�m (m 6= 0); Y0 = e��0 and using the operator (141) these equations an be transformedinto a loal (in the disrete variable n) set of integral equationslog (Yn) + L osh(��) Æn;0 = 1Xm=�1 Inm s � log (1 + Ym) ; �1 < n <1 (147)and E0(L) = �Z d�2 osh(��) log (1 + Y0) : (148)39



It is remarkable that non-loal kernels Knm disappear and at the end only a very simple kernel ŝappears in the �nal set of TBA equations. It is also remarkable, and still somewhat mysterious, thatthe SU(2)L and SU(2)R wings are smoothly glued into one Y-system on a disrete set�1 < n <1.To show (147) we should onsider (145) separately for n > 0, n < 0 and n = 0. Applyingthe operator (141) to (145) in the �rst two ases (it is onvenient to rearrange them to have theombination Æmn +Kmn), we easily verify (147), exept the ase n = 0 whih we should onsiderseparately. To �nd n = 0 equation of the Y-system we onsider (145) for n = �1; 0; 1. The kernelsKn;m entering these three equations are�K0;0 = K0 = 2s �K1 ; K0;�1 = K1 ; K�m;0 = �Km ; m > 0 (149)and, most importantly, K�m;�1 = Km+1 +Km�1Æm6=1 : (150)Thus if we onvolute (145) for n = 1 with the inverse shift operator s and use that s � (Km+1 +Km�1) = Km we get0 = �s �K1 � log �1 + e��0�+ 1Xm=1Km � log �1 + e��m�� s � log �1 + e+�1� : (151)Notie that the last term is separated from the in�nite sum beause them = 1 ase in (150) behavesslightly di�erently than for the other m's. Moreover the sign of the exponent inside this log di�ersfrom that inside the logs in the in�nite sum beause we absorbed the �rst term in (145) into thislast log. Similarly, for n = �1 we have0 = �s �K1 � log �1 + e��0�+ �1Xm=�1Kjmj � log �1 + e��m�� s � log �1 + e+��1� : (152)These two equations an then be used to simplify the n = 0 equation whih reads0 = �0 � L osh(��) +K0 � log �1 + e��0��Xm6=0Kjmj � log �1 + e��m� : (153)Indeed if we sum all these three equations we see that (i) the in�nite sums ompletely anel out,(ii) the onvolutions with log (1 + e��0) drop out as well by virtue of the identity K0 = 2s�K1. Weare thus left with the last terms in (151) and (152) plus the �rst two terms in (153) thus obtainingthe last Y -system equation (147) for n = 0.Moreover, for the funtions g(�) analyti inside the physial strip Im (�) < 1=2 we haves � [g(� + i=2) + g(� � i=2)℄ = g(�) (154)beause ZR g(� + i=2) + g(� � i=2)2 osh(�(� � x)) d� = 12i IPS g(�)sinh(�(� � x))d� = g(x) :Therefore if Yn is non-zero inside the physial strip we an invert the s operator to �nd a set offuntional equations, �nally rendering the Y -system for the PCF at a �nite temperature 1=LYn(� + i=2)Yn(� � i=2) = (1 + Yn�1(�))(1 + Yn+1(�)) (155)To �x a solution, this Y -system ought to be supplemented by the large � asymptotis Yn 'e�Æn0 L osh�� related to the relativisti dispersion relation. Notie that these funtional equationsdo not ontain the dispersion relation expliitly: it appears only through the asymptotis of theY -funtions. 40



B General solution in terms of Hirota funtionsIn this appendix, we will give an alternative approah to the onstrution of solution for theenergy of a general state of the SU(2) PCF in the periodi box. It will give a new NLIE de�ningthe spetrum, di�erent from the one of the setion 3. This approah is the generalization of theapproah we used in setion 2.7 for the states with N partiles and non-trivial polarizations enodedin the Baxter polynomials Qu and Qv.As explained in the beginning of the setion 3, for eah solution to the Y-system equations,there are two natural solutions to Hirota equation whih yield the same Y 's and are related bya gauge transformation. The expeted analyti properties of these funtions are desribed in thissetion. In partiular we have T v+1 = g+�g�T u+1T u�1 = 1g��g+T v�1�v = g+g��u (156)whih we will now use to ompletely solve our problem. First, as in the setion 3, we �nd the gaugefuntion g from the last relation,g = ieiL sinh(�x)=2��v�u��s ; �g = �ie�iL sinh(�x)=2 � ��v��u��s : (157)and plug it in the �rst two to �ndT v+1 = e�L osh(�x) �v ��vT u+1(�+u��v ��+v ���u )�s ;T u�1 = e�L osh(�x) �u ��uT v�1(�+u��v ��+v ���u )�s : (158)As in the setion 3, we still have to relate T u;v0 and �u;v, but we do it here by a di�erent relation.For that, let us de�ne in the whole omplex plane x the funtionsFu(x) = �(x)� �(x)2�i Z T u�1(y)Qu(y + i)=Qu(y)(y � x+ i=2)�(y + i=2) dy + �(x)2�i Z T u�1(y) �Qu(y � i)= �Qu(y)(y � x� i=2)�(y � i=2) dy (159)andFv(x) = �(x)� �(x)2�i Z T v+1(y)Qv(y + i)=Qv(y)(y � x+ i=2)�(y + i=2)dy + �(x)2�i Z T v+1(y) �Qv(y � i)= �Qv(y)(y � x� i=2)�(y � i=2)dy ; (160)where the integrals essentially go along the real axis, but we should pass the ontour in suh a waythat the zeroes uj ; vj of Qu;v remain below the ontour and the omplex onjugated zeroes �uj of�Qu;v stay above the ontour. Using eq.(22) we an show that T u;v0 and �u;v are related to the valuesof the same analyti funtion Fu;v inside and outside of the analytiity strip, respetively:Fu(x) = 8>>>>>><>>>>>>:
�Q�uQ�u ��u Imx > +1=2T u0 (x) jImxj < 1=2Q+u�Q+u ��+u Imx < �1=2 ; Fv(x) = 8>>>>>><>>>>>>: � �Q�vQ�v ���v Imx > +1=2T v0 (x) jImxj < 1=2�Q+v�Q+v �+v Imx < �1=2 : (161)
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Indeed, substituting from (22) T u�1 = (T u+0 Qu��u �Qu)=Qu++ and the onjugate T u�1 = (T u�0 �Qu���uQu)= �Qu�� into the �rst and seond terms of (159), respetively, we an separate the ontributionof two integrals in (159) ontaining T u0 into a single ontour integral going around the physial strip(to realize it is useful to make shifts by �i=2 for the integration variable). We shall also use thefat that Tu0�+ ! 1 at x! �1. If the point x is inside the physial strip we an ontrat the ontouraround the pole at y = x and thus verify the middle relation in eq.(161). The other two integralsin (161), ontaining � and ��, do not ontribute sine we an lose the ontours there around theupper and lower half-plane, respetively. The result is zero sine there are no singularities insideby our previous assumption. The poles related to zeroes of Qu;v do not ontribute sine they areoutside of these ontours by de�nition. We should ensure by hand the analytiity of �(x) lose tothe real axis T u+0 Qu = T u�1Qu++ ; x = �uj ; (162)whih is the �nite L deformation of the usual asymptoti axillary BAE for the u-roots. The relationsfor Fv are found in a similar way. This equation an be shown to be equivalent to the eq.(70) derivedin the main text.Notie that T u0 and T v0 are automatially analyti even slightly outside of the physial strip,beause we an deform the ontours to open further the physial strip. We will disuss this \extra"analytiity in the App.D.Finally, notie also thatT u1 (x) = Qu(x+ i)Qu(x) Fu(x� i=2) + �Qu(x� i)�Qu(x) Fu(x+ i=2) ;T v�1(x) = Qv(x+ i)Qv(x) Fv(x� i=2) + �Qv(x� i)�Qv(x) Fv(x+ i=2) ;so that (158) ompletely onstrain the funtions T u�1 and T v1 out of whih all other Tk and Yk anbe written down using the resolvents Fu and Fv .In the U(1) setor we have Qu = Qv = 1 and the two wings are obviously equivalent. We willhave in this ase T v1 = T u�1 and Fu = Fv will be given by (47). Equations (158) then redue to thepreviously derived equation (51).B.1 The main Bethe equationsThe main BAE reeting the periodiity of the wave funtion and onstraining the real zeroes �jis given by (16): Y0(�j � i=2) = T u1 (�j � i=2)T u�1(�j � i=2)�u ��j � i=2 � ��u (�j � i=2) = �1 : (163)Using the fat that T u1 has no zeros inside the physial strip and the denominator is regular for real�j we onlude that T u�1(�j � i=2) 6= 0. This ondition an be in fat interpreted as yet anotherform of the main BAE. It an be further simpli�ed: using (156) we getT u+�1 = 1g�g++T v+�1 = ��g ��+ug ��+v T v+�1 ; (164)where we an use that, due to (22), for the u-wing��+u = +T u0 �Q+uQ+u � T u+�1 �Q�uQ+u : (165)42



Substituting it into the eq.(164), and evaluating at �j whih is a zero of T0 we get1 = �gg �Q�uQ+u T v+�1��+v jx=�j ; (166)or, using (22) for the v-wing, we get the simplest form of the main equation, easy to ompare withthe large L limit 1 = �gg �Q�uQ+u �Q�vQ+v jx=�j : (167)whih was also derived in the main text eq.(67).C Proof of reality of TkIn this appendix we shall analyze the reality of the T -funtions. This is an important point toonsider beause the Hirota equation is solved expliitly by eq.(23) provided all Tk are real. Thegoal of this appendix is to show that one the following equations (see (58)) are satis�edT u+0�u = g+�g+Q++u Q++v � �Qu �Qvg+g�Q++u �Q��v �Qu �Qv ; (168)�T v+0��v = g+�g+Q++v Q++u � �Qv �Qu�g��g+Q++v �Q��u �Qv �Qu ; (169)�v = g+g��u ; (170)and T u0 and T v0 are real then all Tk are real and thus all the formulae in the main text go through andthe Y -system is indeed solved by (18). Before proving this statement we reall that eq.(66) followsdiretly from eq.(170) under ertain analytiity assumptions and also from Tu+0 Tu�0�u ��u = T v+0 T v�0�v ��v ,whih is a onsequene of eq.(168) and eq.(169). Thus we an add the equationT v0 = g�gT u0 (171)to the equations at hand and proeed to the proof of the reality of the T -funtions.Equation (168) implies�u = ih+1 �Q++u �Q��vg� � Qu �Qvg+ � ; T u0 = ih1�Q+uQ+v�g � �Q�u �Q�vg � ; (172)for some h1. Sine T u0 is real for real x the funtion h1 is a real funtion. Eq.(169) implies��v = �ih+2 ��g�Q++v �Q��u � �g+Qv �Qu� ; T v0 = ih2 �gQ+uQ+v � �g �Q�u �Q�v � ; (173)where again h2 is a real funtion. In virtue of (171) we have h1 = h2 � h and by onjugating the�rst equation in (173) we �nd�v = ih� �g+ �Q��v Q++u � g� �QvQu� = h�h+ g�g+�u ; (174)43



whih means that the real funtion h(x) is periodi in the imaginary diretion, h(x) = h(x + i).This in turn implies that the funtion h� is also a real funtion beauseh(x� i=2) = h(x+ i=2) = h(x� i=2) :Then it is simple to see that T u1 is real. We simply write, from eq.(172),T u1 = T u�0 Q++uQu +�u �Q��uQu = ih��QvQ++u�g� � �Qv �Q��ug+ � : (175)The reality of T u1 is now manifest beause the expression inside the brakets is purely imaginaryand, as we have just shown, h� is real. Proeeding in the same way one an see that all T uk arereal and thus the Hirota equation is satis�ed by our solution.D Proof of analytiity of T�1 in the physial stripD.1 Analytiity in the U(1) setorFrom (51) together with F (x� i=2 � i0) = F (x� i=2 � i0)� T�1(x) we haveT�1(x) = T1F++F�+[F++F��℄�2s eL osh(�x) + T1F++ = T1F+�F��[F++F��℄�2s eL osh(�x) + T1F�� : (176)Using respetively the �rst/seond equality we an smoothly move from real x into the upper/lowerhalf omplex plane provided T1 is analyti. In this way we an reah any x inside the enlarged stripjIm (x)j < 1 where T1 is regular.Notie that for large L we haveT�1(x) ' 8<: �� ;+1=2 < Im (x) < +10 ;�1=2 < Im (x) < +1=2�+ ;�1 < Im (x) < �1=2 (177)The denominator in the expression for T�1 at x = �j � i=2 is proportional to Bethe equationsS2eipjL+1 = 0. This is not a pole of T�1 beause the numerator at these points is proportional toT0(�j) = 0.However, for large volume, T�1 ould have poles at the analogue of the holes of the �j BAE,lose to the boundaries of the physial strip.D.2 General aseIn this subsetion we will study the analytiity of T u�1(x) and T v1 (x) for a general solution. Wewill show that for large enough L these funtions are analyti inside the physial strip �1=2 + � <Imx < 1=2� � where �! 0 when L!1. We start from eq.(158) and rewrite it asT u�1 = +e�L osh(�x) �T u�0 Qu � T u�1Q++u � ��uT v�1�Qu(�+u��v ��+v ���u )�s : (178)44



and similar for T v+1. Solving for T u�1 we getT u�1 = e�L osh(�x)T u�0 Qu�Qu(�+u��v ��+v ���u )�s � e�L osh(�x) ��uT v�1Q++u (179)Sine ��u is regular in the lower half plane and T v�1 is regular in the strip �1 < Imx < 1 where(�+u��v ��+v ���u )�s is also regular the singularities of T u�1 for �1 < Imx < 0 ould be only due tozeros of the denominator.As far as L or x are large for �1=2 < Imx < 0, the seond term in the denominator isexponentially suppressed and to get a zero of the denominator we should be lose to a zero of�Qu. The points lose to �uj where the denominator vanishes are in fat x = uj as follows fromthe auxiliary �nite volume BAE eq.(70). However these poles anel with zeroes of the numeratorrendering T�1 regular at these points, a result we were familiar with already. Thus, we see thatfor large L the only poles that ould appear must lie lose to the border of the physial stripImx = �1=2 where the exponent is osillating. It osillates faster for large x and we thus havepoles ondensing at in�nity along the borders of the physial strip.We onlude that for the general solution { at least for large L's { the funtion T u�1(x) is analytiinside almost the whole physial strip and ould have poles only very lose to the border. For smallL it an probably happen that the singularities approah the real axe. That ould indiate somesingular behavior of the energy levels as funtions of L suh as the one observed in [56℄ (see e.g.�gure 10 in this work). It would be interesting to investigate these points in greater detail.E Details on L�usher formulae derivationIf this setion we shall present some details of the omputation of the �rst �nite volume orretionto the asymptoti auxiliary Bethe equations, obtained by expanding (70) to the leading order (seesetion 3.2 for notation). We start by writingP (Uj) = exp [K1(Uj � i=2 + i0) � �u �K1(Uj + i=2 + i0) � ��u℄ : (180)Notie that we introdued the i0's beause P (x) was originally de�ned in (71) for x in the upper-half-plane. Removing the i0's by the use the Sokhatsky-Weierstrass formula we getP (Uj) = exp �K�1 � �u �K+1 � ��u + Y0=2�x=Uj ; (181)where the onvolutions are understood in the prinipal part sense and �u + ��u = log(1 + Y0) ' Y0was used. Next we split the density �u into �(1)u and �(2)u as explained in setion (3.2). The formerontribution is purely imaginary and therefore it ontributes to the exponent asK�1 � �(1)u �K+1 � (��(1)u ) = K2 � �(1)u : (182)Hene we �nally obtainP (Uj) = exp�K2 � �(1) + (K�1 � �(2) � ::) + Y02 �x=Uj ; (183)
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with all onvolutions understood as prinipal part integrals. It turns out that the �rst and the lastterms in this exponent simply onvert the Bethe roots uj in (70) into their real parts, namely,Q++u (ui)�Q��u (ui) exp�K2 � �(1)(ui)� = Q++u (ui)Q��u (ui) (184)��(ui)�+(ui)Q++u (ui)Q��u (ui) exp�Y0(Ui)2 � = ��(Ui)�+(Ui)Q++u (Ui)Q��u (Ui) : (185)The hek of the �rst equality goes exatly as in (78) and we will therefore not onsider it here.Let us explain how to hek the seond equality. Notie that this expression is equivalent to�uj �x log���(x)�+(x)Q++u (x)Q��u (x)�x=Uj = �Y0(Uj)2 : (186)Next, we write the right hand side ontaining Y0 ' T�1T1=�+�� as� Y0(Uj)2 = ��Q++u (Uj)T u�1(Uj)2�+(Uj)Q0u(Uj) �� T u1 (Uj)Q0u(Uj)Q++u (Uj)��(Uj)� : (187)The �rst fator in the r.h.s. is preisely �uj. This an be seen from expanding the seond equationfrom (22) at x = �uj = uj � 2�uj to leading order in �uj. Alternatively we an �nd the imaginarypart of uj by imposing regularity on the density (75) at x = uj. To simplify the seond fator in(187) we write T u1 (Uj) = (Q++u �� +Q��u �+)0Q0u �����x=Uj (188)Evaluating the derivative of the numerator and using the leading order auxiliary Bethe equationsQ��u (Uj)�+(Uj) +Q++u (Uj)��(Uj) ' 0 we �ndT u1 (Uj)Q0u(Uj)Q++u (Uj)��(Uj) = �x log���(x)�+(x)Q++u (x)Q��u (x)�x=Uj (189)thus identifying the seond fator in the left hand side of (186) and ompleting our proof. Thereforethe expansion of the auxiliary Bethe equation (70) simply redues to (80), as announed in the maintext.To simplify the Bethe equations (79) and (80) further we shall relate the onvolutions in theseexpressions to partiular derivatives of the Y -funtion Y0. To ompute these derivatives it is usefulto notie that we an write Y0 in terms of two simple pure phase funtions au and av,aw(x) = S(x)Q+w(x)Q�w(x)eiL=2 sinh(�x) (190)as Y0 = �a+u + 1=a�u � �a+v + 1=a�v � : (191)In this form, it is easy to ompute the derivative of Y0 with respet to �k, uk or vk beause we anuse a simple identity��iaw(x) = ��iK0(�i � x)aw(x) ; �wiaw(x) = 2�iK1(wi � x)aw(x) : (192)Furthermore if we notie that the densities �(2) an also be simply expressed in terms of these newfuntions as �(2)u = a+u �a+v + 1=a�v � ; �(2)v = a+v �a+u + 1=a�u � ; (193)It is then a straightforward exerise to hek the identities (83).46
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Figure 8: For several models the Y-system TBA equations for the ground state energy are knownand an be represented by the diagrams suh as the ones in this �gure. Using the tehniquesdeveloped in this paper it would be extremely interesting to ompute their omplete spetrum in asystemati way. 51
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