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TUM-HEP-705/08; DESY 08-189; LMU-ASC 60/08Large hierarhies from approximate R symmetriesRolf Kappl1, Hans Peter Nilles2, Sa�ul Ramos-S�anhez3, Mihael Ratz1,Kai Shmidt-Hoberg1, Patrik K. S. Vaudrevange41 Physik Department T30, Tehnishe Universit�at M�unhen,James-Frank-Strasse, 85748 Garhing, Germany2 Bethe Center for Theoretial Physis and Physikalishes Institut der Universit�at Bonn,Nussallee 12, 53115 Bonn, Germany3 Deutshes Elektronen-Synhrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany4 Arnold Sommerfeld Center for Theoretial Physis,Ludwig-Maximilians-Universit�at M�unhen, 80333 M�unhen, GermanyWe show that hierarhially small vauum expetation values of the superpotential in supersym-metri theories an be a onsequene of an approximate R symmetry. We briey disuss the roleof suh small onstants in moduli stabilization and understanding the huge hierarhy between thePlank and eletroweak sales.I. INTRODUCTIONOne of the major puzzles in ontemporary physis isthe existene of large hierarhies in nature, suh as the ra-tio between the Plank and eletroweak salesMP=mW �1017. Some of the most promising explanations of suhhierarhies rely on dimensional transmutation. Here thedynamial sale � = MP e�a=g2 (with g and a denot-ing the gauge oupling and a onstant, respetively) anbe naturally muh smaller than the fundamental sale.However, if one is to embed this mehanism in a morefundamental framework, one often enounters the prob-lem that there has to be a hierarhially small quantityright from the start. Conretely, if one is to make useof the dynamial sale in string theory, one has �rst to�x the modulus that determines the oupling strength.This in turn often requires the introdution of a smallonstant. One faes then the well-known \hiken-or-eggproblem".Motivated by results obtained in the framework ofstring theory model building, we present here a poten-tial resolution of the problem. We shall show that, ifthe superpotential in a supersymmetri theory exhibitsan approximate U(1)R symmetry, it generially aquiresa suppressed vauum expetation value (VEV). Suh a-idental U(1)R symmetries whih get broken at higherorders are naturally present in string ompati�ations.They arise as remnants from exat, disrete R symme-tries. Suh symmetries allow us to ontrol the VEV ofthe (perturbative) superpotential and, in partiular, toavoid deep anti-de Sitter vaua. We will disuss the roleof the resulting hierarhially small superpotential VEVsin the ontext of moduli stabilization in string theory, forgiving a plausible explanation of the huge hierarhy be-tween MP and mW , and for providing, in the ontext ofa lass of promising string models [1℄, a solution to the �problem of the minimal supersymmetri standard model(MSSM).

II. SUPERSYMMETRIC MINKOWSKI VACUAAS A CONSEQUENCE OF A U(1)R SYMMETRYConsider a superpotential of the formW = X n1���nM�n11 � � ��nMM : (1)Here and in the following we work in Plank units, i.e.we set MP = 1 unless stated di�erently. Assume that Whas an exat R symmetry, under whih W has R harge2, W ! e2i�W ; (2)and the �elds transform as�j ! �0j = ei rj � �j (3)suh that eah monomial in (1) has total R harge 2.Let h�ii denote a �eld on�guration whih solves theF -term equations,Fi = �W��i = 0 at �j = h�ji 8 i; j : (4)Consider now an in�nitesimal U(1)R transformation,W (�i) ! W (�0i) = W (�i) +Xj �W��j��j : (5)At �j = h�ji the superpotential goes into itself, whihan only be onsistent with (2) if W = 0 at �j = h�ji.This proves that, if the F equations are satis�ed, W van-ishes.A few omments are in order. First, this statementholds regardless of whether the on�guration h�ii pre-serves U(1)R or breaks it spontaneously. Seond, in theontext of supergravity, the statements above imply thatthe DiW vanish for �i = h�ii, i.e. also the supergrav-ity F terms vanish and one obtains a supersymmetri
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2Minkowski vauum. Third, our �ndings are related to anobservation by Nelson and Seiberg made in [2℄, where it isstated that, in order to have a theory without supersym-metri ground state, the superpotential has to exhibit aontinuous R symmetry. The statements do, however,not tell us whether or not a theory with a superpotentialexhibiting a ontinuous R symmetry has a supersymmet-ri ground state or not. Our �ndings and [2℄ imply that, ifthere is a ontinuous R symmetry, there are two options:1. there is a supersymmetri ground state with W = 0(with U(1)R spontaneously broken or unbroken);2. there is no supersymmetri ground state, and in theground state U(1)R is spontaneously broken [2℄.In this letter we fous on ase 1. If the U(1) that atson the salar omponents of the super�elds gets spon-taneously broken at �i = h�ii (whih is the ase if, forinstane, all h�ii are non-trivial), it follows then fromGoldstone's theorem that there is a massless mode, theso-alled R axion.III. SMALL CONSTANTS FROMAPPROXIMATE U(1)R SYMMETRIESLet us now study what happens if the R symmetry is`slightly' broken, i.e. by higher order terms. We an writethe superpotential asW (�i) = W0(�i) +Xj Wj(�i) ; (6)where W0(�i) onsists of monomials up to order N � 1whih preserve the R symmetry while the Wj(�i) aremonomials of order � N whih break the R symme-try. This means that the superpotential transforms underU(1)R asW (�i)! e2i�W0(�i) +Xj ei�RjWj(�i)' W (�i) + i� 0�2W0(�i) +Xj Rj Wj(�i)1A (7)with Rj 6= 2, andW (�i)! W (ei� ri�i)' W (�i) + i�Xj �W��j rj �j : (8)Combining these two expressions and assuming that theF -terms vanish in our vauum, �W��i = 0, we see thathW (�i)i = � 12Xj (Rj � 2)hWj(�i)i : (9)

This means that in the ase of an approximate U(1)Rsymmetry one obtains suppressed superpotential VEVs,written symbolially ashW i � h�i�N : (10)In many situations there is a mild hierarhy betweenthe fundamental sale and a typial VEV, h�i=MP < 1.This is, for instane, the ase in string models where aU(1) fator appears `anomalous', and where the one-loopFayet-Iliopoulos term fores some VEVs to be roughlyone order of magnitude smaller than MP [3℄. Aord-ing to the above disussion, the suppression of hW i getsthen enhaned by the N th power of this mild hierarhy,similarly to the Froggatt-Nielsen piture [4℄.Further, we have seen that there might be a Goldstonemode �. With expliit U(1)R breaking, it will generiallyreeive a mass, m� � h�i�N�2. (The \�2" omes fromthe seond derivative.) In supergravity theories, hW i setsthe gravitino mass, m3=2 ' hW i : (11)This leads then to the expetation that there is a modewhose (supersymmetri) mass sales like m3=2,m� � m3=2h�i2 : (12)Let us omment that, if one is to inlude supergravitye�ets, W 6= 0 does not neessarily imply anti-de Sittersolutions (see e.g. the disussion in [5, setion 4℄).IV. EXPLICIT STRING THEORYREALIZATIONOne of the entral themes of string theory is the is-sue of moduli stabilization, whih is losely onnetedto the question of supersymmetry breaking. In the tra-ditional approah, supersymmetry is broken by dimen-sional transmutation [6℄, e.g. by gaugino ondensation [7℄.However, for this elegant mehanism to work, one needs�rst to �x the gauge oupling, whose strength is given bythe VEV of the dilaton S or another modulus in stringtheory. This an be ahieved in various ways: for in-stane, in the rae-trak sheme [8℄ one has two om-peting non-perturbative superpotentials whih provide anon-trivial minimum of the dilaton potential. The draw-bak of this mehanism is that it only works if one hastwo rather large `hidden' gauge groups with rather spe-ial matter ontents. A somewhat more eonomi shemeis that of K�ahler stabilization [9, 10℄ where one needsonly one hidden setor. However, in the relevant regimewhere dilaton stabilization may be ahieved the theoryis not alulable. More reently, an alternative has beenstudied (with the most prominent example being that ofKKLT [11℄) where the superpotential is of the formW = +A e�a S : (13)



3The �rst term  is a onstant and the seond term reetshidden setor strong dynamis, i.e. S is related to thegauge oupling, ReS / 1=g2, and a is related to the �-funtion of the hidden gauge group. In the KKLT setup,the onstant omes from uxes. The minimum of thesalar potential for S ours at a point wherejaS A e�aS j � jj : (14)The VEV of W , i.e. the gravitino mass, is of the sameorder. In order to haveMSSM superpartner masses at theTeV sale, the gravitino mass annot exeed O(100)TeV,hene jj . 10�12 (15)in Plank units. The small sale in this setting is there-fore not explained by dimensional transmutation butoriginates from the smallness of the onstant . KKLTand others argue that, due to the large number of vaua,some of them might have suh  by aident.In what follows, we will exploit the observation of se-tion III that small VEVs of the (perturbative) superpo-tential an be explained by an approximate U(1)R sym-metry. We will use this in order to disuss moduli sta-bilization in the ontext of the heteroti string. We fo-us on orbifold ompati�ations [12℄ sine they possessmany (and well-understood) disrete symmetries, whih,as it turns out, imply approximate U(1)R symmetries ofthe superpotentials desribing the e�etive �eld theoriesderived from these onstrutions. As we shall see, super-potential VEVs of the order 10�O(10) an naturally beobtained. Orbifold ompati�ations allow us to embedthe MSSM into string theory [14,13,1℄.In our alulations we fous on the models of the `het-eroti MiniLandsape' [15,1℄. These models exhibit thestandard model gauge group and the hiral matter on-tent of the MSSM. They are based on the Z6-II orbifoldwith three fatorizable tori (see [16,13℄ for details). Thedisrete symmetry of the geometry leads to a large num-ber of disrete symmetries governing the ouplings of thee�etive �eld theory [17, 18℄ (f. also [16,13,19℄). Apartfrom various bosoni disrete symmetries, one has a[Z6 � Z3 � Z2℄R (16)symmetry; other orbifolds have similar disrete symme-tries. Further, in almost all of the MiniLandsape modelsthere is, at one-loop, a Fayet-Iliopoulos (FI) D-term,VD � g2  Xi qi j�ij2 + �!2 ; (17)where the qi denote the harges under the so-alled`anomalous U(1)'. It turns out that, in all models withnon-vanishing FI term, � is of order 0:1 (see [13℄ for anexpliit example). The �rst step of our analysis is to iden-tify a set of standard model singlets �i with the followingproperties:

� giving VEVs to the �i allows us to anel the FIterm;� there is no other �eld that is singlet under the gaugesymmetries left unbroken by the �i VEVs.These properties ensure that the h�ii an be onsistentwith a vanishing D-term potential and that the F -termsof all other massless modes vanish, implying that it is suf-�ient to derive the superpotential terms involving onlythe �i �elds. A ruial property of these superpotentialsis that they exhibit aidental U(1)R symmetries that getonly broken at rather high orders N . As disussed, thisan be regarded as a onsequene of high-power disreteR symmetries (equation (16)). N depends on the ho-sen �i on�guration; as a general rule we �nd that themore �i �elds are onsidered, the lower N values emerge.For instane, in a model where only seven �elds are on-sidered, we obtain N = 26, on the other hand, in themodel 1 of [1℄ with 24 �elds swithed on, U(1)R gets bro-ken at order 9.Given non-trivial solutions to the F -term equations,�i �W��i = 0 ; with �i 6= 0 ; (18)one an use omplexi�ed gauge transformations to en-sure vanishing D-terms as well [20℄. Although D-termonstraints do not �x the sale of the h�ii in general, therequirement to anel the FI term introdues the salep� � 0:3 into the problem. We searh for solutions ofVD = VF = 0 in the regime j�ij < 1, and �nd that theyexist. We expliitly verify that for suh solutions the su-perpotential is hierarhially small, hW i � h�iN , whereh�i denotes the typial size of a VEV. A very importantproperty of many of these on�gurations is that all �eldsaquire (supersymmetri) masses. Hereby typially onlyone �eld has a mass of the order m� (see equation (12))while the others are muh heavier. We have also hekedthat these features are robust under supergravity orre-tions.Altogether we �nd that in the models under onsider-ation one obtains isolated supersymmetri �eld on�gu-rations with j�ij < 1 where the VEV of the perturbativesuperpotential hW i is hierarhially small.Before disussing appliations, let us ompare our�ndings to other reent results [21℄. There, using thestringy seletion rules, so-alled `maximal vaua' wereonstruted in whih the superpotential vanishes termby term (and to all orders). In our approah, eah su-perpotential term omposed out of �i �elds aquires anon-trivial VEV, but to the order at whih the aidentalU(1)R is exat, all terms anel non-trivially. At higherorders, a non-trivial VEV of W gets indued.Let us now briey sketh how this an be used in orderto stabilize the dilaton, whose VEV determines the gaugeoupling. After integrating out the �i �elds, one is leftwith a superpotential of the form (13),We� = +A e�aS ; (19)



4where  = hW i = 10�O(10), and A e�aS desribes somenon-perturbative dynamis, suh as gaugino ondensa-tion [7,22,23,24℄. As we have disussed before in equa-tion (14), this superpotential leads to a non-trivial mini-mum for the dilaton. In the MiniLandsape models, real-isti gauge ouplings are orrelated with favorable sizes ofthe dynamial sale, A e�a S=M2P � TeV [25℄. Hene, fortypial expetation values hW i = 10�O(10) one obtainsreasonable gauge ouplings. The �xing of the T -moduliand other issues suh as `uplifting' will be studied else-where.Another appliation of our �ndings onerns the �term of the MSSM. In [26℄ it has been proposed thatin models in whih the �eld ombination hu hd (with huand hd denoting the up-type and down-type Higgs �elds,respetively) is ompletely neutral w.r.t. all symmetriesthere is an interesting relation between the Higgs massoeÆient � and hW i,� � hW i : (20)The heteroti MiniLandsape [15℄ ontains many modelsin whih the Higgs pair (and only the Higgs pair) hasthis property. Apart from the above property, suh mod-els exhibit `gauge-top uni�ation', i.e. the top Yukawaoupling is of the order of the gauge oupling, as well asmany other desirable properties. In a onrete example,the benhmark model 1A of [1℄, it was found that solvingthe F -term equations for the superpotential up to order 6always leads to hW i = 0. We have now obtained a betterunderstanding of this fat: there is a U(1)R symmetrythat holds up to order 11, explaining this property. It isamazing to see that these models, onstruted in order toreprodue the MSSM spetrum and gauge interations,exhibit so many appealing properties automatially.

V. CONCLUSIONS
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