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hez3, Mi
hael Ratz1,Kai S
hmidt-Hoberg1, Patri
k K. S. Vaudrevange41 Physik Department T30, Te
hnis
he Universit�at M�un
hen,James-Fran
k-Strasse, 85748 Gar
hing, Germany2 Bethe Center for Theoreti
al Physi
s and Physikalis
hes Institut der Universit�at Bonn,Nussallee 12, 53115 Bonn, Germany3 Deuts
hes Elektronen-Syn
hrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany4 Arnold Sommerfeld Center for Theoreti
al Physi
s,Ludwig-Maximilians-Universit�at M�un
hen, 80333 M�un
hen, GermanyWe show that hierar
hi
ally small va
uum expe
tation values of the superpotential in supersym-metri
 theories 
an be a 
onsequen
e of an approximate R symmetry. We brie
y dis
uss the roleof su
h small 
onstants in moduli stabilization and understanding the huge hierar
hy between thePlan
k and ele
troweak s
ales.I. INTRODUCTIONOne of the major puzzles in 
ontemporary physi
s isthe existen
e of large hierar
hies in nature, su
h as the ra-tio between the Plan
k and ele
troweak s
alesMP=mW �1017. Some of the most promising explanations of su
hhierar
hies rely on dimensional transmutation. Here thedynami
al s
ale � = MP e�a=g2 (with g and a denot-ing the gauge 
oupling and a 
onstant, respe
tively) 
anbe naturally mu
h smaller than the fundamental s
ale.However, if one is to embed this me
hanism in a morefundamental framework, one often en
ounters the prob-lem that there has to be a hierar
hi
ally small quantityright from the start. Con
retely, if one is to make useof the dynami
al s
ale in string theory, one has �rst to�x the modulus that determines the 
oupling strength.This in turn often requires the introdu
tion of a small
onstant. One fa
es then the well-known \
hi
ken-or-eggproblem".Motivated by results obtained in the framework ofstring theory model building, we present here a poten-tial resolution of the problem. We shall show that, ifthe superpotential in a supersymmetri
 theory exhibitsan approximate U(1)R symmetry, it generi
ally a
quiresa suppressed va
uum expe
tation value (VEV). Su
h a
-
idental U(1)R symmetries whi
h get broken at higherorders are naturally present in string 
ompa
ti�
ations.They arise as remnants from exa
t, dis
rete R symme-tries. Su
h symmetries allow us to 
ontrol the VEV ofthe (perturbative) superpotential and, in parti
ular, toavoid deep anti-de Sitter va
ua. We will dis
uss the roleof the resulting hierar
hi
ally small superpotential VEVsin the 
ontext of moduli stabilization in string theory, forgiving a plausible explanation of the huge hierar
hy be-tween MP and mW , and for providing, in the 
ontext ofa 
lass of promising string models [1℄, a solution to the �problem of the minimal supersymmetri
 standard model(MSSM).

II. SUPERSYMMETRIC MINKOWSKI VACUAAS A CONSEQUENCE OF A U(1)R SYMMETRYConsider a superpotential of the formW = X 
n1���nM�n11 � � ��nMM : (1)Here and in the following we work in Plan
k units, i.e.we set MP = 1 unless stated di�erently. Assume that Whas an exa
t R symmetry, under whi
h W has R 
harge2, W ! e2i�W ; (2)and the �elds transform as�j ! �0j = ei rj � �j (3)su
h that ea
h monomial in (1) has total R 
harge 2.Let h�ii denote a �eld 
on�guration whi
h solves theF -term equations,Fi = �W��i = 0 at �j = h�ji 8 i; j : (4)Consider now an in�nitesimal U(1)R transformation,W (�i) ! W (�0i) = W (�i) +Xj �W��j��j : (5)At �j = h�ji the superpotential goes into itself, whi
h
an only be 
onsistent with (2) if W = 0 at �j = h�ji.This proves that, if the F equations are satis�ed, W van-ishes.A few 
omments are in order. First, this statementholds regardless of whether the 
on�guration h�ii pre-serves U(1)R or breaks it spontaneously. Se
ond, in the
ontext of supergravity, the statements above imply thatthe DiW vanish for �i = h�ii, i.e. also the supergrav-ity F terms vanish and one obtains a supersymmetri
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2Minkowski va
uum. Third, our �ndings are related to anobservation by Nelson and Seiberg made in [2℄, where it isstated that, in order to have a theory without supersym-metri
 ground state, the superpotential has to exhibit a
ontinuous R symmetry. The statements do, however,not tell us whether or not a theory with a superpotentialexhibiting a 
ontinuous R symmetry has a supersymmet-ri
 ground state or not. Our �ndings and [2℄ imply that, ifthere is a 
ontinuous R symmetry, there are two options:1. there is a supersymmetri
 ground state with W = 0(with U(1)R spontaneously broken or unbroken);2. there is no supersymmetri
 ground state, and in theground state U(1)R is spontaneously broken [2℄.In this letter we fo
us on 
ase 1. If the U(1) that a
tson the s
alar 
omponents of the super�elds gets spon-taneously broken at �i = h�ii (whi
h is the 
ase if, forinstan
e, all h�ii are non-trivial), it follows then fromGoldstone's theorem that there is a massless mode, theso-
alled R axion.III. SMALL CONSTANTS FROMAPPROXIMATE U(1)R SYMMETRIESLet us now study what happens if the R symmetry is`slightly' broken, i.e. by higher order terms. We 
an writethe superpotential asW (�i) = W0(�i) +Xj Wj(�i) ; (6)where W0(�i) 
onsists of monomials up to order N � 1whi
h preserve the R symmetry while the Wj(�i) aremonomials of order � N whi
h break the R symme-try. This means that the superpotential transforms underU(1)R asW (�i)! e2i�W0(�i) +Xj ei�RjWj(�i)' W (�i) + i� 0�2W0(�i) +Xj Rj Wj(�i)1A (7)with Rj 6= 2, andW (�i)! W (ei� ri�i)' W (�i) + i�Xj �W��j rj �j : (8)Combining these two expressions and assuming that theF -terms vanish in our va
uum, �W��i = 0, we see thathW (�i)i = � 12Xj (Rj � 2)hWj(�i)i : (9)

This means that in the 
ase of an approximate U(1)Rsymmetry one obtains suppressed superpotential VEVs,written symboli
ally ashW i � h�i�N : (10)In many situations there is a mild hierar
hy betweenthe fundamental s
ale and a typi
al VEV, h�i=MP < 1.This is, for instan
e, the 
ase in string models where aU(1) fa
tor appears `anomalous', and where the one-loopFayet-Iliopoulos term for
es some VEVs to be roughlyone order of magnitude smaller than MP [3℄. A

ord-ing to the above dis
ussion, the suppression of hW i getsthen enhan
ed by the N th power of this mild hierar
hy,similarly to the Froggatt-Nielsen pi
ture [4℄.Further, we have seen that there might be a Goldstonemode �. With expli
it U(1)R breaking, it will generi
allyre
eive a mass, m� � h�i�N�2. (The \�2" 
omes fromthe se
ond derivative.) In supergravity theories, hW i setsthe gravitino mass, m3=2 ' hW i : (11)This leads then to the expe
tation that there is a modewhose (supersymmetri
) mass s
ales like m3=2,m� � m3=2h�i2 : (12)Let us 
omment that, if one is to in
lude supergravitye�e
ts, W 6= 0 does not ne
essarily imply anti-de Sittersolutions (see e.g. the dis
ussion in [5, se
tion 4℄).IV. EXPLICIT STRING THEORYREALIZATIONOne of the 
entral themes of string theory is the is-sue of moduli stabilization, whi
h is 
losely 
onne
tedto the question of supersymmetry breaking. In the tra-ditional approa
h, supersymmetry is broken by dimen-sional transmutation [6℄, e.g. by gaugino 
ondensation [7℄.However, for this elegant me
hanism to work, one needs�rst to �x the gauge 
oupling, whose strength is given bythe VEV of the dilaton S or another modulus in stringtheory. This 
an be a
hieved in various ways: for in-stan
e, in the ra
e-tra
k s
heme [8℄ one has two 
om-peting non-perturbative superpotentials whi
h provide anon-trivial minimum of the dilaton potential. The draw-ba
k of this me
hanism is that it only works if one hastwo rather large `hidden' gauge groups with rather spe-
ial matter 
ontents. A somewhat more e
onomi
 s
hemeis that of K�ahler stabilization [9, 10℄ where one needsonly one hidden se
tor. However, in the relevant regimewhere dilaton stabilization may be a
hieved the theoryis not 
al
ulable. More re
ently, an alternative has beenstudied (with the most prominent example being that ofKKLT [11℄) where the superpotential is of the formW = 
+A e�a S : (13)



3The �rst term 
 is a 
onstant and the se
ond term re
e
tshidden se
tor strong dynami
s, i.e. S is related to thegauge 
oupling, ReS / 1=g2, and a is related to the �-fun
tion of the hidden gauge group. In the KKLT setup,the 
onstant 
omes from 
uxes. The minimum of thes
alar potential for S o

urs at a point wherejaS A e�aS j � j
j : (14)The VEV of W , i.e. the gravitino mass, is of the sameorder. In order to haveMSSM superpartner masses at theTeV s
ale, the gravitino mass 
annot ex
eed O(100)TeV,hen
e j
j . 10�12 (15)in Plan
k units. The small s
ale in this setting is there-fore not explained by dimensional transmutation butoriginates from the smallness of the 
onstant 
. KKLTand others argue that, due to the large number of va
ua,some of them might have su
h 
 by a

ident.In what follows, we will exploit the observation of se
-tion III that small VEVs of the (perturbative) superpo-tential 
an be explained by an approximate U(1)R sym-metry. We will use this in order to dis
uss moduli sta-bilization in the 
ontext of the heteroti
 string. We fo-
us on orbifold 
ompa
ti�
ations [12℄ sin
e they possessmany (and well-understood) dis
rete symmetries, whi
h,as it turns out, imply approximate U(1)R symmetries ofthe superpotentials des
ribing the e�e
tive �eld theoriesderived from these 
onstru
tions. As we shall see, super-potential VEVs of the order 10�O(10) 
an naturally beobtained. Orbifold 
ompa
ti�
ations allow us to embedthe MSSM into string theory [14,13,1℄.In our 
al
ulations we fo
us on the models of the `het-eroti
 MiniLands
ape' [15,1℄. These models exhibit thestandard model gauge group and the 
hiral matter 
on-tent of the MSSM. They are based on the Z6-II orbifoldwith three fa
torizable tori (see [16,13℄ for details). Thedis
rete symmetry of the geometry leads to a large num-ber of dis
rete symmetries governing the 
ouplings of thee�e
tive �eld theory [17, 18℄ (
f. also [16,13,19℄). Apartfrom various bosoni
 dis
rete symmetries, one has a[Z6 � Z3 � Z2℄R (16)symmetry; other orbifolds have similar dis
rete symme-tries. Further, in almost all of the MiniLands
ape modelsthere is, at one-loop, a Fayet-Iliopoulos (FI) D-term,VD � g2  Xi qi j�ij2 + �!2 ; (17)where the qi denote the 
harges under the so-
alled`anomalous U(1)'. It turns out that, in all models withnon-vanishing FI term, � is of order 0:1 (see [13℄ for anexpli
it example). The �rst step of our analysis is to iden-tify a set of standard model singlets �i with the followingproperties:

� giving VEVs to the �i allows us to 
an
el the FIterm;� there is no other �eld that is singlet under the gaugesymmetries left unbroken by the �i VEVs.These properties ensure that the h�ii 
an be 
onsistentwith a vanishing D-term potential and that the F -termsof all other massless modes vanish, implying that it is suf-�
ient to derive the superpotential terms involving onlythe �i �elds. A 
ru
ial property of these superpotentialsis that they exhibit a

idental U(1)R symmetries that getonly broken at rather high orders N . As dis
ussed, this
an be regarded as a 
onsequen
e of high-power dis
reteR symmetries (equation (16)). N depends on the 
ho-sen �i 
on�guration; as a general rule we �nd that themore �i �elds are 
onsidered, the lower N values emerge.For instan
e, in a model where only seven �elds are 
on-sidered, we obtain N = 26, on the other hand, in themodel 1 of [1℄ with 24 �elds swit
hed on, U(1)R gets bro-ken at order 9.Given non-trivial solutions to the F -term equations,�i �W��i = 0 ; with �i 6= 0 ; (18)one 
an use 
omplexi�ed gauge transformations to en-sure vanishing D-terms as well [20℄. Although D-term
onstraints do not �x the s
ale of the h�ii in general, therequirement to 
an
el the FI term introdu
es the s
alep� � 0:3 into the problem. We sear
h for solutions ofVD = VF = 0 in the regime j�ij < 1, and �nd that theyexist. We expli
itly verify that for su
h solutions the su-perpotential is hierar
hi
ally small, hW i � h�iN , whereh�i denotes the typi
al size of a VEV. A very importantproperty of many of these 
on�gurations is that all �eldsa
quire (supersymmetri
) masses. Hereby typi
ally onlyone �eld has a mass of the order m� (see equation (12))while the others are mu
h heavier. We have also 
he
kedthat these features are robust under supergravity 
orre
-tions.Altogether we �nd that in the models under 
onsider-ation one obtains isolated supersymmetri
 �eld 
on�gu-rations with j�ij < 1 where the VEV of the perturbativesuperpotential hW i is hierar
hi
ally small.Before dis
ussing appli
ations, let us 
ompare our�ndings to other re
ent results [21℄. There, using thestringy sele
tion rules, so-
alled `maximal va
ua' were
onstru
ted in whi
h the superpotential vanishes termby term (and to all orders). In our approa
h, ea
h su-perpotential term 
omposed out of �i �elds a
quires anon-trivial VEV, but to the order at whi
h the a

identalU(1)R is exa
t, all terms 
an
el non-trivially. At higherorders, a non-trivial VEV of W gets indu
ed.Let us now brie
y sket
h how this 
an be used in orderto stabilize the dilaton, whose VEV determines the gauge
oupling. After integrating out the �i �elds, one is leftwith a superpotential of the form (13),We� = 
+A e�aS ; (19)



4where 
 = hW i = 10�O(10), and A e�aS des
ribes somenon-perturbative dynami
s, su
h as gaugino 
ondensa-tion [7,22,23,24℄. As we have dis
ussed before in equa-tion (14), this superpotential leads to a non-trivial mini-mum for the dilaton. In the MiniLands
ape models, real-isti
 gauge 
ouplings are 
orrelated with favorable sizes ofthe dynami
al s
ale, A e�a S=M2P � TeV [25℄. Hen
e, fortypi
al expe
tation values hW i = 10�O(10) one obtainsreasonable gauge 
ouplings. The �xing of the T -moduliand other issues su
h as `uplifting' will be studied else-where.Another appli
ation of our �ndings 
on
erns the �term of the MSSM. In [26℄ it has been proposed thatin models in whi
h the �eld 
ombination hu hd (with huand hd denoting the up-type and down-type Higgs �elds,respe
tively) is 
ompletely neutral w.r.t. all symmetriesthere is an interesting relation between the Higgs mass
oeÆ
ient � and hW i,� � hW i : (20)The heteroti
 MiniLands
ape [15℄ 
ontains many modelsin whi
h the Higgs pair (and only the Higgs pair) hasthis property. Apart from the above property, su
h mod-els exhibit `gauge-top uni�
ation', i.e. the top Yukawa
oupling is of the order of the gauge 
oupling, as well asmany other desirable properties. In a 
on
rete example,the ben
hmark model 1A of [1℄, it was found that solvingthe F -term equations for the superpotential up to order 6always leads to hW i = 0. We have now obtained a betterunderstanding of this fa
t: there is a U(1)R symmetrythat holds up to order 11, explaining this property. It isamazing to see that these models, 
onstru
ted in order toreprodu
e the MSSM spe
trum and gauge intera
tions,exhibit so many appealing properties automati
ally.

V. CONCLUSIONS
We have shown that approximate U(1)R symmetries
an explain the appearan
e of hierar
hi
ally small
onstants. We �nd that at 
on�gurations where theF -term equations are solved, the superpotential goeslike hW i � h�iN with h�i denoting a typi
al expe
tationvalue and N being the order at whi
h U(1)R gets broken.We have analyzed various heteroti
 orbifold models andfound that there, due to the presen
e of high-powerdis
rete R symmetries, approximate U(1)Rs are generi
.We have expli
itly solved the F -term equations in severalmodels, thus obtaining points in �eld spa
e in whi
h theF - and D-term potentials vanish, and 
on�rmed that,for j�ij < 1, the superpotential is hierar
hi
ally small.We have argued that su
h suppressed superpotentialexpe
tation values 
an be the origin for the appearan
eof large hierar
hies in nature: they �x the s
ale ofthe gravitino mass, whi
h in s
hemes with low-energysupersymmetry sets the weak s
ale, and 
an be used tostabilize the string theory moduli at realisti
 values.A
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