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lear Resear
h, Russian A
ademy of S
ien
es,Mos
ow 117312, Russia(
) II. Institut f�ur Theoretis
he Physik,Universit�at Hamburg, 22761 Hamburg, GermanyAbstra
tIn this paper we 
ompute the three-loop 
orre
tions to the � fun
tion in a mo-mentum subtra
tion (MOM) s
heme with a massive quark. The 
al
ulation isperformed in the ba
kground �eld formalism applying asymptoti
 expansions forsmall and large momenta. Spe
ial emphasis is devoted to the relation between the
oupling 
onstant in the MOM and MS s
hemes as well as their ability to des
ribethe phenomenon of de
oupling.It is demonstrated by an expli
it 
omparison that the MS s
heme 
an be 
on-sistently used to relate the values of the MOM-s
heme strong-
oupling 
onstantin the energy regions higher and lower than the massive-quark produ
tion thresh-old. This pro
edure obviates the ne
essity to know the full mass dependen
e of theMOM � fun
tion and 
learly demonstrates the equivalen
e of both s
hemes for thedes
ription of physi
s outside the threshold region.PACS numbers: 12.38.-t, 12.38.Bx, 14.65.-q
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1 Introdu
tionWithin the perturbative framework, the MS s
heme [1, 2℄ based on dimensional regulariza-tion [3, 4, 5℄ is a well-established s
heme for the renormalization of �elds and parameters.This applies in parti
ular to �s, the 
oupling 
onstant of Quantum Chromodynami
s(QCD). One of the major advantages of the MS s
heme is its simpli
ity in pra
ti
alappli
ations. The main reason for this is that it belongs to the 
lass of so-
alled mass-independent s
hemes where the renormalization 
onstants are independent of the pre
ise
on�guration of masses and external momenta involved in the problem.Within the MS s
heme, the beta fun
tion governing the running of �s is know inthe four-loop approximation [6, 7℄. In order to 
orre
tly a

ount for the heavy-quarkthresholds, also the 
orresponding mat
hing (or de
oupling) 
onditions are needed, whi
hallows for a pre
ise relation of �s at widely separated energy s
ales like, e.g., the tau leptonand Z boson masses. Four-loop running goes along with three-loop mat
hing, whi
h isalso known sin
e more than ten years [8℄.1Other renormalization s
hemes whi
h do not have the ni
e property of mass-independen
e are signi�
antly more 
ompli
ated from the te
hni
al point of view |mainly be
ause one has to deal with Feynman integrals involving many mass s
ales. Still,at the level of pre
ision whi
h has been rea
hed in the re
ent years, it is ne
essary to havea 
ross 
he
k of the dependen
e on the renormalization s
heme. In this paper, we wantto provide an alternative set-up to the running and de
oupling of �s in the MS s
hemeand 
onsider a momentum subtra
tion (MOM) s
heme for the de�nition of �s. We willprovide MS to MOM 
onversion formulae and the MOM beta fun
tion in the three-looporder and are thus able to 
ross 
he
k the MS running of �s. A two-loop analysis has beenperformed in Ref. [11℄. In this paper we 
he
k the 
al
ulation of Ref. [11℄ and extend theanalysis to three loops.The remainder of the paper is organized as follows: In the next se
tion, we des
ribeour setup. In parti
ular, we derive the relation between the strong 
oupling in the MSs
heme and in two versions of the momentum subtra
tion s
heme and provide the 
or-responding beta fun
tions. In Se
tion 3, we present our analyti
al results for the gluonpolarization fun
tion in the ba
kground �eld formalism and dis
uss the phenomenologi
alappli
ations in Se
tion 4, where we 
ompare the running in the MS and MOM s
hemes.Our 
on
lusions are summarized in Se
tion 5.2 The strong 
oupling in the MOM s
hemeFor 
onvenien
e, we adopt Landau gauge, whi
h has the advantage that the renormaliza-tion group equations for the gauge parameter and �s de
ouple. Furthermore, we requirethat the polarization fun
tion of the gluon vanishes for Q2 � �q2 = �2 > 0.For the pra
ti
al 
al
ulation, we adopt the ba
kground �eld gauge [12℄, whi
h hasthe ni
e feature that the � fun
tion of the strong 
oupling is determined from the gluon1Re
ently, also the four-loop de
oupling 
onstants have been 
omputed [9, 10℄.1



polarization fun
tion alone. The latter is given by���(q) = ��g��q2 + q�q���(q2) ; (1)whi
h is 
onveniently de
omposed as follows�(q2) = Xi�1 �(i)(q2; �2; fM2Qg)��s� �i : (2)In the i-loop 
ontribution, the dependen
e on q, � and the various quark masses is ex-pli
itly displayed. Formulae (1) and (2) hold both in the MS and MOM s
hemes. The
orresponding fun
tions, �(q2) and �MOM(q2), 
an be used to obtain a relation between�s and �MOMs , the strong 
ouplings in the MS and MOM s
hemes, using the fundamental
on
ept of the invariant 
harge [13, 14℄:�MOMs (�2)1 + �MOM(q2) = �s(�2)1 + �(q2) : (3)It is an important and unique feature of the ba
kground �eld gauge that the invariant
harge is expressible in terms of the 
oupling 
onstant and the gluon polarization op-erator only in exa
tly the same simple way as in QED. We de�ne �MOM(q2) su
h that�MOM(��2) = 0 and, 
onsequently, we have�MOMs (�2) = �(nf )s (�2)241 + 
1�(nf )s (�2)� + 
2 �(nf )s (�2)� !2 + 
3 �(nf )s (�2)� !335 ;
1 = ��(1)0 ;
2 = ��(2)0 + ��(1)0 �2 ;
3 = ��(3)0 + 2�(1)0 �(2)0 � ��(1)0 �3 ; (4)where �(i)0 = �(i)(��2) has been introdu
ed. It is instru
tive to look at the expli
itexpressions in the massless limit with nf = nl massless quarks. In this 
ase, we obtain�MOMs (�2) = �(nl)s (�2)"1 + �(nl)s (�2)4� �20512 � 109 nl�+ �(nl)s (�2)4� !2�90391144� 5138 �(3) + ��206627 � 43�(3)�nl + 10081 n2l�+ �(nl)s (�2)4� !3�507657071728 � 233434 �(3)� 2488564 �(5) + ��860917162+ 2042354 �(3) + 23209 �(5)�nl + �209407972 + 289 �(3)�n2l � 1000729 n3l�# :(5)2



In analogy to the MS s
heme, the � fun
tion in the MOM s
heme is de�ned through�2 dd�2 �MOMs� = �MOM(�MOMs ) = ���MOMs� �2Xi�0 �MOMi ��MOMs� �i ; (6)where | in 
ontrast to the MS s
heme | the 
oeÆ
ients �MOMi are fun
tions of therenormalization s
ale � and the quark masses. With the help of Eq. (3), where we repla
eon the right-hand side the MS renormalized quantities by the bare ones, it is possible toobtain a relation between �MOM and the 
oeÆ
ients �(i);MOM = �(i);MOM(q2; �2; fM2Qg),whi
h reads �MOM(�MOMs ) = �MOMs� Pi�1 ��MOMs� �i �2 dd�2�(i);MOM1�Pi�1(i� 1)��MOMs� �i�(i);MOM : (7)From this equation, one 
an easily derive 
onvenient formulae for �MOMi . Note that theterm in the denominator of Eq. (7) 
ontributes for the �rst time at the three-loop order.Let us also mention that, starting at this order, a non-trivial q2 dependen
e o

urs on theright-hand side of Eq. (7) whi
h has to 
an
el in the proper 
ombination of the �(i);MOMfun
tions.The fun
tions �MOM0 and �MOM1 are known analyti
ally [11℄. The three-loop 
ontri-bution �MOM2 is evaluated in the asymptoti
 regions for large and small quark massesanalyti
ally in this paper. An approximate formula valid for arbitrary quark masses iseasily obtained by interpolation between the low- and high-energy regions.In the massless limit, the �rst three 
oeÆ
ients are given by�MOM0;ml = 14 �113 CA � 43Tnl� ;�MOM1;ml = 116 �343 C2A � 203 CATnl � 4CFTnl� ;�MOM2;ml = 164 ����300524 + 2098 �(3)�C3A � �186118 + 1196 �(3)�C2ATnl� �6059 � 1763 �(3)�CACFTnl � ��1309 � 323 �(3)�CAT 2n2l� ��1849 + 643 �(3)�CFT 2n2l + 2C2FTnl� ; (8)where CA = 3; CF = 4=3; T = 1=2 and nl is the number of massless quarks. Sin
ethe �rst two 
oeÆ
ients of the � fun
tion are s
heme independent �MOM0;ml and �MOM1;ml
oin
ide with their 
ounterparts in the MS s
heme. �MOM2;ml , however, di�ers from its MS
ounterpart [15, 16℄. It is worthwhile to mention that �MOM2;ml 
ontains the Riemann �fun
tion �(3), whi
h in the MS s
heme only appears at the four-loop order.3



The three-loop results in Eqs. (5) and (8) are new, and the two-loop expressions arein agreement with Ref. [11℄.The pra
ti
al evaluation of �MOM(q2) entering the equation for the beta fun
tion 
anbe redu
ed to the evaluation of �(q2) in the MS s
heme. The 
orresponding relation isobtained from Eq. (3), this time for arbitrary values of q2 and �2, whi
h 
an be solved for�MOM. After properly repla
ing �MOMs by �s using Eq. (4), one gets (the dependen
e onthe quark masses is suppressed)�(1);MOM(q2) = �(1)(q2)� �(1)0 ;�(2);MOM(q2) = �(2)(q2)� �(2)0 ;�(3);MOM(q2) = �(3)(q2)� �(3)0 +�(1)0 ��(2)(q2)� �(2)0 � ; (9)where �(i)0 is de�ned below Eq. (4). Note, that by 
onstru
tion we have �MOM(��2) = 0.The polarization fun
tion in the MS s
heme is obtained in the standard way by renor-malizing �s in the MS s
heme, the quark masses in the on-shell s
heme and taking 
areof the gluon wave fun
tion renormalization.In Ref. [11℄, it has been observed that there are relatively large 
oeÆ
ients in therelation between �s and �MOMs when running from �s(MZ) down to, say, �s(M� ). Thesituation was improved in Ref. [11℄ by a simple tri
k of res
aling the s
ale parameter �.Let us start from the massless limit 
orresponding to � � Mt. In this 
ase, relation (5)assumes the form�MOMs (�2) = �(6)s (�2)"1 + 10:417 �(6)s (�2)4� + 126:350  �(6)s (�2)4� !2+ 2000:062  �(6)s (�2)4� !3 # : (10)In a next step, we introdu
e a new, res
aled MOM s
heme with the help of�MOMs (�2) � �MOMs (x20�2) (11)or, equivalently (with L = ln(x20)),�MOMs � �MOMs "1 + r1�MOMs� + r2��MOMs� �2 + r3��MOMs� �3# ;r1 = �L�MOM0;ml ;r2 = �L�MOM0;ml �2 � L�MOM1;ml ;r3 = 52L2�MOM0;ml �MOM1;ml � L�MOM2;ml � �L�MOM0;ml �3 ; (12)4



where �MOMi;ml are given in Eq. (8). The 
orresponding generalization of Eq. (4) reads:�MOMs (�2) = �(nf )s (�2)241 + 
1�(nf )s (�2)� + 
2 �(nf )s (�2)� !2 + 
3 �(nf )s (�2)� !335 ;
1 = r1 � �(1)0 ;
2 = ��(2)0 + ��(1)0 �2 � 2�(1)0 r1 + r2;
3 = ��(3)0 + 2�(1)0 �(2)0 � ��(1)0 �3 + 3��(1)0 �2 r1� 2�(2)0 r1 � 3 �(1)0 r2 + r3 : (13)In a next step, following Ref. [11℄, we tune the parameter x0 so that the di�eren
e between�MOMs and �(6)s starts only in order �2s. The result reads2ln(x20) = 12584 ; x0 � 2:1044 ; (14)whi
h leads to r1 � �2:60417 ;r2 � 4:3635 ;r3 � 2:2313 : (15)It is instru
tive to look again at the relation between �MOMs and �(6)s for � � Mt,whi
h is now given by�MOMs (�2) = �(6)s (�2)8<:1 + ~k1�(6)s (�2)4� + ~k2 �(6)s (�2)4� !2 + ~k3 �(6)s (�2)4� !39=; ;(16)where ~k1 = 0;~k2 = 11063168 � 5778 �(3) � �20:8472 ;~k3 = 101389126 � 345779288 �(3) + 222305192 �(5) � 562:0541 : (17)As 
ompared to Eq. (10), we observe a signi�
ant redu
tion in the magnitude of the 
oeÆ-
ients in the res
aled relation (16), both at the two- and three-loop orders.3 Furthermore,2Note that there seems to be a misprint in the numeri
al value of x0 quoted in Ref. [11℄, however, inthe 
aption of Fig. 4 therein it is 
orre
t.3Note that our value for the two-loop 
oeÆ
ient in Eq. (16) (�20:8472) di�ers from the one obtainedin Ref. [11℄ (�32:46). 5



there is a di�erent sign in the three-loop 
oeÆ
ient as 
ompared to the two-loop one,whi
h points to a better 
onvergen
e of the perturbative expansion.In the massless limit, both de�nitions for �MOMs (�2), namely Eqs. (11) and (12), are
ompletely equivalent. Following again Ref. [11℄, we 
hoose Eq. (12) as the proper de�ni-tion of the �MOMs (�2) for all values of �. This 
hoi
e has the advantage that the thresholdsin the 
orresponding fun
tion �MOM remain \physi
al", that is lo
ated at ��2 = 4M2Q.This follows dire
tly from the relation between both � fun
tions:�MOM0 = �MOM0 ;�MOM1 = �MOM1 ;�MOM2 = �MOM2 � r1�MOM1 + �r2 � r21��MOM0 : (18)It is interesting to remark that the res
aling pro
edure signi�
antly improves the MOMto MS relations also for moderate and even rather low values of � (see below).In the appli
ations of Se
tion 4, we 
onsider the strong 
oupling both for energy s
alesof the order of or larger than and for those signi�
antly smaller than the top-quark mass.In the latter 
ase, we 
onstru
t di�erent MOM and MOM s
hemes, whi
h are derivedfrom the 
hoi
e nf = 5 as the massless limit. In this 
ase, we obtain the valuesx0 = e415=552 � 2:1208 ;~k2 = 1406891656 � 169924 �(3) � �0:1385 ;~k3 = 14340928189424 � 1225793864 �(3) + 518435576 �(5) � 831:5896 ;r1 = �415144 � �2:8819 ;r2 = 2228135476928 � 4:6719 ;r3 = �118870317568677632 + 70508555296 �(3) � �1:9809 : (19)The same 
omments and 
on
lusions hold as for nf = 6.3 ResultsLet us in a �rst step brie
y des
ribe the evaluation of the gluon polarization fun
tion upto three loops within the ba
kground �eld formalism involving heavy quarks with generi
mass MQ. The basi
 idea is to evaluate �(q2) for large and small external momenta andto obtain an approximation for all values of q2=M2Q by a simple interpolation pro
edure.Note that in our 
ase the external momentum is spa
e-like so that there are no problemswith parti
le thresholds. Up to the two-loop order, only one quark 
avour 
an o

ur in adiagram. At three loops, there are diagrams with a se
ond 
losed fermion loop so that inprin
iple a further mass s
ale 
an o

ur (see, e.g., the diagram in Fig. 1(g)). However, we6



(f)

(a) (b) (c) (d)

(h)(g)(e)Figure 1: Sample diagrams 
ontributing to the gluon propagator in the ba
kground �eldformalism at the two- and three-loop orders. Diagrams (a), (b), (e) and (f) only 
ontainmassless lines, while the others also 
ontain massive ones due to the presen
e of theheavy-quark loop (thi
k line). (We have used the pa
kage JaxoDraw [17, 18℄ to draw thediagrams.)assume a strong hierar
hy in the quark masses su
h that we 
an always negle
t the lightermass. Thus, in this se
tion, we 
onsider QCD with total number nf of quark 
avours.One quark, Q, has the (pole) mass MQ, and all other nl = nf � 1 quarks are 
onsideredas massless.As mentioned above, the MS renormalized polarization fun
tion is needed in Landaugauge. However, in our 
al
ulation we adopt a general gauge parameter � sin
e the
omplexity is 
omparable to Landau gauge.Some sample diagrams for �(q2) are shown in Fig. 1. The diagrams are divided intotwo 
lasses: 
ompletely massless diagrams and and diagrams involving massive-quarkloops. The only s
ale in the massless diagrams is the external momentum. Thus they 
anbe evaluated using MINCER [19, 20℄. In the se
ond 
lass, the mass of the heavy quark setsanother s
ale whi
h makes the 
al
ulation signi�
antly more diÆ
ult. The one- and two-loop 
al
ulations 
an be performed analyti
ally, and the results 
an be found in Ref. [11℄.At the three-loop order, however, an exa
t 
al
ulation is not yet possible. We performan asymptoti
 expansion in the limits q2 � M2Q and q2 � M2Q. Note that due to thediagrams 
ontaining massive-quark loops along with massless 
uts (see, e.g., Figs. 1(d)and (h)) also the small-q2 expansion turns out to be nontrivial. As a result, one en
ountersln(q2=M2Q) terms also in this limit.All Feynman diagrams are generated with QGRAF [21℄. The various diagram topologiesare identi�ed and transformed to FORM [22℄ with the help of q2e and exp [23, 24℄. Theprogram exp is also used in order to apply the asymptoti
 expansion (see, e.g., Ref. [25℄)in the various mass hierar
hies. The a
tual evaluation of the integrals is performed withthe pa
kages MATAD [26℄ and MINCER [20℄, resulting in an expansion in d � 4 for ea
h7



diagram, where d is the spa
e-time dimension.We 
omputed four expansion terms for small and six terms for large external momen-tum. In the following, we present only the leading and subleading terms of the 
orre-sponding expansions for the gluon polarization operator and the MOM � fun
tion for�2 = Q2 and provide the 
omplete expressions in a Mathemati
a �le.4 For 
ompleteness,we also list the one- and two-loop results, whi
h agree with the 
orresponding expansionsof the exa
t expressions [11℄. It is 
onvenient to 
ast the result in the form�(q2) = �ml(q2) + �mv(q2;M2Q) ; (20)and introdu
e the variable Z = Q24M2Q : (21)The results for the massless MS renormalized polarization fun
tion reads�(1);ml0 = �20548 + nl 518 ;�(2);ml0 = �2687128 + 513128�(3) + nl�347144 + 112�(3)� ;�(3);ml0 = �4133432048 + 583171024 �(3) + 248854096 �(5) + nl �147601341472 � 3797864 �(3)� 14536 �(5)�+ n2l ��6462762208 � 1432�(3)� : (22)In the limit Z ! 0, we get�(1);mv0 = 16 ln(4Z)� 215Z +O(Z2) ;�(2);mv0 = 724 + 1924 ln(4Z) + �5023997200 � 715 ln(4Z)�Z +O(Z2) ;�(3);mv0 = 58933124416 + �23 + 29 ln 2� �(2) + 8050727648�(3) + ln(4Z)�589396912 � 171256�(3)�+ 283576 ln2(4Z) + nl �� 247931104 � 19�(2) + ln(4Z)��11031728 � 172�(3)��+ Z �6252381359279936000 + 4954612332800 ln(4Z)� 64034608 ln2(4Z)� 815 �(2)� 845 �(2) ln 2� 62541531104 �(3) + nl ��118427291600 + 1240158320 ln(4Z)+ 612592 ln2(4Z) + 445 �(2)��+O(Z2) ; (23)4See http://www-ttp.parti
le.uni-karlsruhe.de/Progdata/ttp08/ttp08-50.8

http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp08/ttp08-50


and in the large-Z region, we obtain�(1);mv0 = 518 � 14Z +O� 1Z2� ;�(2);mv0 = 347144 + 112�(3)� 1Z �233128 + 38�(3)� 564 ln(4Z)�+O� 1Z2� ;�(3);mv0 = 4298785124416 � 3799864 �(3)� 14536 �(5) + nl ��6462731104 � 1216�(3)�+ 1Z ��1877156912 + 7935518432 ln(4Z)� 31276144 ln2(4Z) + �(2) + 13 �(2) ln 2�34985327648 �(3) + 15128 �(3) ln(4Z) + 8164 �(4) + 234253456 �(5) + nl �785576� 1811152 ln(4Z) + 11384 ln2(4Z)� 16 �(2) + 8996 �(3)��+O� 1Z2� : (24)The small- and large-Z expansions of the MOM � fun
tion read:�MOM0 ===Z!0 114 � nl6 � Z 215 +O �Z2� ;�MOM1 ===Z!0 518 � nl 1924 + Z � 487997200 � 715 ln(4Z)�+O �Z2� ;�MOM2 ===Z!0 27045512 � 5643512 �(3)�nl �7175768 � 337768 �(3)�+n2l � 9533456 + 172 �(3)�+ Z �5640101219279936000 + 9957731555200 ln(4Z)� 112697680 ln2(4Z)� 815 �(2)� 845 �(2) ln 2� 62541531104 �(3) + nl � 106387480 + 3055832 ln(4Z)+ 612592 ln2(4Z) + 445 �(2)��+O �Z2� ; (25)

9



�MOM0 ===Z!1 3112 � nl6 + 14Z +O� 1Z2� ;�MOM1 ===Z!1 6712 � nl 1924 + 1Z �243128 � 564 ln(4Z) + 38�(3)�+O� 1Z2� ;�MOM2 ===Z!1 60487713824 � 487014608 �(3)+nl ��607636912 + 10752304 �(3)�+n2l � 9533456 + 172 �(3)�+ 1Z �75172727648 � 320296144 ln(4Z) + 31276144 ln2(4Z)� �(2)� 13 �(2) ln 2+ 33847727648 �(3)� 15128 �(3) ln(4Z)� 8164 �(4)� 234253456 �(5) + nl ��12651152+ 79384 ln(4Z)� 11384 ln2(4Z) + 16 �(2)� 8596 �(3)��+O� 1Z2� : (26)Note that our result for the MOM � fun
tion expli
itly demonstrates the validity ofthe Applelquist-Carazonne theorem [27℄ at the three-loop level. Indeed, one 
an easily
he
k that, for i = 0; 1 and 2, one haslimZ!0�MOMi � �MOMi;ml (nf = nl);limZ!1�MOMi � �MOMi;ml (nf = nl + 1);where �MOMi;ml (nf) is the three-loop 
ontribution to the MOM � fun
tion in the masslesslimit (see Eq. (8)).In Fig. 2, we present the results for the MOM � fun
tion in graphi
al form, wherethe one-, two- and three-loop 
oeÆ
ients are shown as fun
tions of Z in the Eu
lidianregion. Next to the low- and high-energy approximations (dashes) in
luding the Z3 and1=Z5 terms, also the interpolation fun
tions (dotted) are shown. At the one- and two-looporders, these results are 
ompared against the exa
t result (solid line). For demonstrationpurpose, we have 
hosen nl = 5 at the three-loop order. Very similar results are obtainedfor other values of nl.4 Phenomenologi
al appli
ationsIn the following, we dis
uss the numeri
al impa
t of the results obtained in this paper.In parti
ular, we 
onsider the MS quantity �(5)s (MZ) as input value and evaluate thestrong 
oupling at lower and higher energy s
ales with di�erent numbers of a
tive 
avours.On the one hand, this 
an be done in the MS s
heme applying the usual running andde
oupling pro
edure (see, e.g., Refs. [8, 28℄). In this 
ase, one has to spe
ify a s
ale �Qwhere the heavy quark Q is integrated out. On the other hand, it is possible to swit
hfrom the MS to the MOM (MOM) s
heme for � =MZ and perform the running with thehelp of the MOM (MOM) � fun
tion. The results obtained at lower and higher energies10
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� (GeV) nf �(nf )s (�) nMOMf �MOMs (�) �MOMs (�s(�))2 loop 3 loop 2 loop 3 loop 2 loop 3 loop91.19 5 0.1180 0.1180 6 0.1324 0.1331 0.1324 0.1331200 5 0.1055 0.1055 6 0.1170 0.1175 0.1171 0.1175350 6 0.0989 0.0990 6 0.1082 0.1086 0.1084 0.1087500 6 0.0950 0.0951 6 0.1034 0.1037 0.1036 0.10381000 6 0.0884 0.0885 6 0.0953 0.0956 0.0955 0.0957Table 1: �s and �MOMs for various values of � from region A. As input, �s(MZ) = 0:118is used, whi
h is transformed with the help of Eq. (4) to �MOMs (MZ). The running todi�erent values of � is a
hieved with the help of the appropriate � fun
tion. �MOMs (�s(�))is obtained from �s(�) using Eq. (4).� (GeV) nf �(nf )s (�) nMOMf �MOMs (�) �MOMs (�s(�))2 loop 3 loop 2 loop 3 loop 2 loop 3 loop91.19 5 0.1180 0.1180 6 0.1192 0.1196 0.1192 0.1196200 5 0.1055 0.1055 6 0.1066 0.1068 0.1066 0.1068350 6 0.0989 0.0990 6 0.0993 0.0995 0.0993 0.0995500 6 0.0950 0.0951 6 0.0952 0.0954 0.0952 0.09541000 6 0.0884 0.0885 6 0.0884 0.0885 0.0884 0.0885Table 2: �s and �MOMs for various values of � from region A. As input, �s(MZ) = 0:118is used, whi
h is transformed with the help of Eq. (13) to �MOMs (MZ). The running todi�erent values of � is a
hieved with the help of the appropriate � fun
tion. �MOMs (�s(�))is obtained from �s(�) using Eq. (13).
an also be translated ba
k to the MS s
heme, and a 
omparison 
an be performed. Inthis way, we 
an 
he
k the 
onsisten
y between the two renormalization s
hemes.For our numeri
al analysis, we use the following input values�(5)s (MZ) = 0:118 ; Mb = 4:7 GeV ; Mt = 175 GeV ; (27)where MQ represent the pole quark masses and for the de
oupling s
ales we 
hoose �Q =2MQ. The running and de
oupling in the MS s
heme is performed with the help ofRunDe
 [29℄.We 
onsider two regions of energies. Region A starts from the Z-boson mass, MZ ,and extends to energies mu
h higher than the top-quark mass, say, 1000 GeV. In thisregion, we investigate the evolution of the strong-
oupling 
onstant in the MOM andMOM s
hemes with �ve massless and one heavy quark, the top quark. Thus in total sixquarks are present in the theory whi
h we denote as nMOMf = 6. On the other hand, inregion B, we 
onsider the evolution of �MOMs (�) and �MOMs (�) from � = MZ down to� = 3 GeV. The number of massless quarks for region B is set to four, and the heavyquark be should identi�ed with the bottom quark, i.e., we have nMOMf = 5.12



� (GeV) nf �(nf )s (�) nMOMf �MOMs (�) �MOMs (�s(�))2 loop 3 loop 2 loop 3 loop 2 loop 3 loop91.19 5 0.1180 0.1180 5 0.1328 0.1332 0.1328 0.133250 5 0.1298 0.1298 5 0.1480 0.1486 0.1480 0.148610 5 0.1779 0.1781 5 0.2177 0.2198 0.2160 0.21924 4 0.2288 0.2287 5 0.3074 0.3148 0.2988 0.30963 4 0.2536 0.2538 5 0.3556 0.3682 0.3404 0.3574Table 3: �s and �MOMs for various values of � from region B. As input, �s(MZ) = 0:118is used, whi
h is transformed with the help of Eq. (4) to �MOMs (MZ). The running todi�erent values of � is a
hieved with the help of the appropriate � fun
tion. �MOMs (�s(�))is obtained from �s(�) using Eq. (4).� (GeV) nf �(nf )s (�) nMOMf �MOMs (�) �MOMs (�s(�))2 loop 3 loop 2 loop 3 loop 2 loop 3 loop91.19 5 0.1180 0.1180 5 0.1180 0.1181 0.1180 0.118150 5 0.1298 0.1298 5 0.1298 0.1300 0.1298 0.130010 5 0.1779 0.1781 5 0.1797 0.1804 0.1798 0.18074 4 0.2288 0.2287 5 0.2350 0.2376 0.2352 0.23853 4 0.2536 0.2538 5 0.2612 0.2652 0.2615 0.2667Table 4: �s and �MOMs for various values of � from region B. As input, �s(MZ) = 0:118is used, whi
h is transformed with the help of Eq. (13) to �MOMs (MZ). The running todi�erent values of � is a
hieved with the help of the appropriate � fun
tion. �MOMs (�s(�))is obtained from �s(�) using Eq. (13).In Tab. 1, we 
ompare the values for �s for some sele
ted � values from region A inthe MS and MOM s
hemes. For all numbers, we 
hoose �(5)s (MZ) as the starting point,transform at � = MZ to the MOM s
heme and use the 
orresponding renormalizationgroup equation to arrive at the desired � values. The same 
omparison for the 
ase of theMOM s
heme is shown Tab. 2. In both tables, we show in the last two 
olumns the resultsof �MOMs (�) (Tab. 1) and �MOMs (�) (Tab. 2) as obtained from the MS-evolved value �s(�)using Eqs. (4) and (13), respe
tively. The 
orresponding results for region B are shownin Tabs. 3 and 4 (where, of 
ourse, the values given in Eq. (19) have been used).All four tables show good agreement between the values of the MOM 
oupling 
onstantobtained via dire
t integration of the (quark-mass-dependent) MOM � fun
tion and withthe help of the (simpler) 
onversion from the MS s
heme. For Tabs. 1 and 3 the agreementis even getting better after taking into a

ount the three-loop 
orre
tions. Note that theresults in the 
ase of the MOM s
heme be
ome slightly worse after swit
hing on the three-loop terms, as 
an be seen in Tabs. 2 and 4. The reason for this 
an be seen by 
omparingEq. (16) with Eq. (10). The former has (by 
onstru
tion) vanishing order �s 
orre
tionsand a two-loop 
oeÆ
ient whi
h is smaller by a fa
tor of six. However, the three-loop13
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1000Figure 3: 1=�s as a fun
tion of �. The (blue) upper solid line 
ontaining a step for� = 2Mt 
orresponds to the MS result and the (red) lower solid line to the result in theMOM s
heme. The (pink) dashed line represents 1=�s in the MOM s
heme. The (bla
k)dotted lines lying on top of the MOM and MOM result 
orrespond to the results obtainedfrom MS value of �s using the 
onversion formulae (4) and (13), respe
tively. For allresults the three-loop expressions have been used and nMOMf = 6 has been 
hosen.term is only redu
ed by a fa
tor of three and thus has bigger relative in
uen
e. Still, thedi�eren
e between �MOMs (�) and �MOMs (�s(�)) for � = 3 GeV is about a fa
tor of ten lessthan the 
urrent best value obtained, e.g., from hadroni
 � de
ay (see, e.g., Ref. [30℄).In Figs. 3 and 4, the results of Tabs. 1{4 are shown in graphi
al from. In parti
ular,we plot the inverse strong 
oupling as a fun
tion of � both for the MS, MOM and MOMs
hemes, where in all 
ases the three-loop approximation is used for the running and the
onversion between the s
hemes. We again 
hoose �(5)s (MZ) as the input quantity and
onvert at this s
ale to the other two s
hemes. The evolution of the MS 
oupling to lower� values is shown by the (upper) solid lines with a step at the values for �t = 2Mt and�b = 2Mb, respe
tively. Numeri
ally very 
lose is the dashed 
urve in the MOM s
heme,whi
h is expe
ted from the above dis
ussion. The lower solid line represents the resultin the MOM s
heme. Both for the MOM and MOM results, the 
onversion is performedfor � = MZ , and the running to other values of � is a
hieved using the 
orresponding �14
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hosen.fun
tion. The dotted lines on top of the MOM and MOM 
urves represent the resultswhere the transformation from the MS values is performed just at the 
onsidered valueof �.5 Con
lusionsWe have 
omputed the three-loop 
orre
tions to the � fun
tion of QCD with one heavyand nl massless quarks in a momentum subtra
tion s
heme (MOM). In our three-loop
al
ulation, we do not 
onsider the diagrams involving two di�erent quark masses. Al-though there are only a few diagrams of this type, their evaluation is signi�
antly morediÆ
ult.We have shown that our results des
ribe the MOM 
oupling 
onstant evolution in well-de�ned kinemati
al regions with three-loop a

ura
y. Moreover, the numeri
al analysisof our results has 
learly demonstrated the full equivalen
e of the s
hemes with expli
itlybuilt-in de
oupling (MOM and MOM) to the standard MS s
heme, whi
h, as is well-known, does not have su
h a property.From the more te
hni
al point of view, it has been shown that one 
an use the MS15



s
heme evolution along with simple 
onversion relations (derived for the regions eithersigni�
antly above or below the heavy-quark threshold) to relate the values of the MOMs
heme 
oupling 
onstant from both regions.Finally, we believe that our analysis should help to remove the last tra
es of doubtabout the usefulness of MS-like s
hemes, whi
h formally do not obey the the Applelquist-Carazzone theorem [27℄, for a uni�ed des
ription of mass e�e
ts in a broad region of �2values, from far below heavy-quark thresholds to well beyond them.A
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