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1 IntrodutionWithin the perturbative framework, the MS sheme [1, 2℄ based on dimensional regulariza-tion [3, 4, 5℄ is a well-established sheme for the renormalization of �elds and parameters.This applies in partiular to �s, the oupling onstant of Quantum Chromodynamis(QCD). One of the major advantages of the MS sheme is its simpliity in pratialappliations. The main reason for this is that it belongs to the lass of so-alled mass-independent shemes where the renormalization onstants are independent of the preiseon�guration of masses and external momenta involved in the problem.Within the MS sheme, the beta funtion governing the running of �s is know inthe four-loop approximation [6, 7℄. In order to orretly aount for the heavy-quarkthresholds, also the orresponding mathing (or deoupling) onditions are needed, whihallows for a preise relation of �s at widely separated energy sales like, e.g., the tau leptonand Z boson masses. Four-loop running goes along with three-loop mathing, whih isalso known sine more than ten years [8℄.1Other renormalization shemes whih do not have the nie property of mass-independene are signi�antly more ompliated from the tehnial point of view |mainly beause one has to deal with Feynman integrals involving many mass sales. Still,at the level of preision whih has been reahed in the reent years, it is neessary to havea ross hek of the dependene on the renormalization sheme. In this paper, we wantto provide an alternative set-up to the running and deoupling of �s in the MS shemeand onsider a momentum subtration (MOM) sheme for the de�nition of �s. We willprovide MS to MOM onversion formulae and the MOM beta funtion in the three-looporder and are thus able to ross hek the MS running of �s. A two-loop analysis has beenperformed in Ref. [11℄. In this paper we hek the alulation of Ref. [11℄ and extend theanalysis to three loops.The remainder of the paper is organized as follows: In the next setion, we desribeour setup. In partiular, we derive the relation between the strong oupling in the MSsheme and in two versions of the momentum subtration sheme and provide the or-responding beta funtions. In Setion 3, we present our analytial results for the gluonpolarization funtion in the bakground �eld formalism and disuss the phenomenologialappliations in Setion 4, where we ompare the running in the MS and MOM shemes.Our onlusions are summarized in Setion 5.2 The strong oupling in the MOM shemeFor onveniene, we adopt Landau gauge, whih has the advantage that the renormaliza-tion group equations for the gauge parameter and �s deouple. Furthermore, we requirethat the polarization funtion of the gluon vanishes for Q2 � �q2 = �2 > 0.For the pratial alulation, we adopt the bakground �eld gauge [12℄, whih hasthe nie feature that the � funtion of the strong oupling is determined from the gluon1Reently, also the four-loop deoupling onstants have been omputed [9, 10℄.1



polarization funtion alone. The latter is given by���(q) = ��g��q2 + q�q���(q2) ; (1)whih is onveniently deomposed as follows�(q2) = Xi�1 �(i)(q2; �2; fM2Qg)��s� �i : (2)In the i-loop ontribution, the dependene on q, � and the various quark masses is ex-pliitly displayed. Formulae (1) and (2) hold both in the MS and MOM shemes. Theorresponding funtions, �(q2) and �MOM(q2), an be used to obtain a relation between�s and �MOMs , the strong ouplings in the MS and MOM shemes, using the fundamentalonept of the invariant harge [13, 14℄:�MOMs (�2)1 + �MOM(q2) = �s(�2)1 + �(q2) : (3)It is an important and unique feature of the bakground �eld gauge that the invariantharge is expressible in terms of the oupling onstant and the gluon polarization op-erator only in exatly the same simple way as in QED. We de�ne �MOM(q2) suh that�MOM(��2) = 0 and, onsequently, we have�MOMs (�2) = �(nf )s (�2)241 + 1�(nf )s (�2)� + 2 �(nf )s (�2)� !2 + 3 �(nf )s (�2)� !335 ;1 = ��(1)0 ;2 = ��(2)0 + ��(1)0 �2 ;3 = ��(3)0 + 2�(1)0 �(2)0 � ��(1)0 �3 ; (4)where �(i)0 = �(i)(��2) has been introdued. It is instrutive to look at the expliitexpressions in the massless limit with nf = nl massless quarks. In this ase, we obtain�MOMs (�2) = �(nl)s (�2)"1 + �(nl)s (�2)4� �20512 � 109 nl�+ �(nl)s (�2)4� !2�90391144� 5138 �(3) + ��206627 � 43�(3)�nl + 10081 n2l�+ �(nl)s (�2)4� !3�507657071728 � 233434 �(3)� 2488564 �(5) + ��860917162+ 2042354 �(3) + 23209 �(5)�nl + �209407972 + 289 �(3)�n2l � 1000729 n3l�# :(5)2



In analogy to the MS sheme, the � funtion in the MOM sheme is de�ned through�2 dd�2 �MOMs� = �MOM(�MOMs ) = ���MOMs� �2Xi�0 �MOMi ��MOMs� �i ; (6)where | in ontrast to the MS sheme | the oeÆients �MOMi are funtions of therenormalization sale � and the quark masses. With the help of Eq. (3), where we replaeon the right-hand side the MS renormalized quantities by the bare ones, it is possible toobtain a relation between �MOM and the oeÆients �(i);MOM = �(i);MOM(q2; �2; fM2Qg),whih reads �MOM(�MOMs ) = �MOMs� Pi�1 ��MOMs� �i �2 dd�2�(i);MOM1�Pi�1(i� 1)��MOMs� �i�(i);MOM : (7)From this equation, one an easily derive onvenient formulae for �MOMi . Note that theterm in the denominator of Eq. (7) ontributes for the �rst time at the three-loop order.Let us also mention that, starting at this order, a non-trivial q2 dependene ours on theright-hand side of Eq. (7) whih has to anel in the proper ombination of the �(i);MOMfuntions.The funtions �MOM0 and �MOM1 are known analytially [11℄. The three-loop ontri-bution �MOM2 is evaluated in the asymptoti regions for large and small quark massesanalytially in this paper. An approximate formula valid for arbitrary quark masses iseasily obtained by interpolation between the low- and high-energy regions.In the massless limit, the �rst three oeÆients are given by�MOM0;ml = 14 �113 CA � 43Tnl� ;�MOM1;ml = 116 �343 C2A � 203 CATnl � 4CFTnl� ;�MOM2;ml = 164 ����300524 + 2098 �(3)�C3A � �186118 + 1196 �(3)�C2ATnl� �6059 � 1763 �(3)�CACFTnl � ��1309 � 323 �(3)�CAT 2n2l� ��1849 + 643 �(3)�CFT 2n2l + 2C2FTnl� ; (8)where CA = 3; CF = 4=3; T = 1=2 and nl is the number of massless quarks. Sinethe �rst two oeÆients of the � funtion are sheme independent �MOM0;ml and �MOM1;mloinide with their ounterparts in the MS sheme. �MOM2;ml , however, di�ers from its MSounterpart [15, 16℄. It is worthwhile to mention that �MOM2;ml ontains the Riemann �funtion �(3), whih in the MS sheme only appears at the four-loop order.3



The three-loop results in Eqs. (5) and (8) are new, and the two-loop expressions arein agreement with Ref. [11℄.The pratial evaluation of �MOM(q2) entering the equation for the beta funtion anbe redued to the evaluation of �(q2) in the MS sheme. The orresponding relation isobtained from Eq. (3), this time for arbitrary values of q2 and �2, whih an be solved for�MOM. After properly replaing �MOMs by �s using Eq. (4), one gets (the dependene onthe quark masses is suppressed)�(1);MOM(q2) = �(1)(q2)� �(1)0 ;�(2);MOM(q2) = �(2)(q2)� �(2)0 ;�(3);MOM(q2) = �(3)(q2)� �(3)0 +�(1)0 ��(2)(q2)� �(2)0 � ; (9)where �(i)0 is de�ned below Eq. (4). Note, that by onstrution we have �MOM(��2) = 0.The polarization funtion in the MS sheme is obtained in the standard way by renor-malizing �s in the MS sheme, the quark masses in the on-shell sheme and taking areof the gluon wave funtion renormalization.In Ref. [11℄, it has been observed that there are relatively large oeÆients in therelation between �s and �MOMs when running from �s(MZ) down to, say, �s(M� ). Thesituation was improved in Ref. [11℄ by a simple trik of resaling the sale parameter �.Let us start from the massless limit orresponding to � � Mt. In this ase, relation (5)assumes the form�MOMs (�2) = �(6)s (�2)"1 + 10:417 �(6)s (�2)4� + 126:350  �(6)s (�2)4� !2+ 2000:062  �(6)s (�2)4� !3 # : (10)In a next step, we introdue a new, resaled MOM sheme with the help of�MOMs (�2) � �MOMs (x20�2) (11)or, equivalently (with L = ln(x20)),�MOMs � �MOMs "1 + r1�MOMs� + r2��MOMs� �2 + r3��MOMs� �3# ;r1 = �L�MOM0;ml ;r2 = �L�MOM0;ml �2 � L�MOM1;ml ;r3 = 52L2�MOM0;ml �MOM1;ml � L�MOM2;ml � �L�MOM0;ml �3 ; (12)4



where �MOMi;ml are given in Eq. (8). The orresponding generalization of Eq. (4) reads:�MOMs (�2) = �(nf )s (�2)241 + 1�(nf )s (�2)� + 2 �(nf )s (�2)� !2 + 3 �(nf )s (�2)� !335 ;1 = r1 � �(1)0 ;2 = ��(2)0 + ��(1)0 �2 � 2�(1)0 r1 + r2;3 = ��(3)0 + 2�(1)0 �(2)0 � ��(1)0 �3 + 3��(1)0 �2 r1� 2�(2)0 r1 � 3 �(1)0 r2 + r3 : (13)In a next step, following Ref. [11℄, we tune the parameter x0 so that the di�erene between�MOMs and �(6)s starts only in order �2s. The result reads2ln(x20) = 12584 ; x0 � 2:1044 ; (14)whih leads to r1 � �2:60417 ;r2 � 4:3635 ;r3 � 2:2313 : (15)It is instrutive to look again at the relation between �MOMs and �(6)s for � � Mt,whih is now given by�MOMs (�2) = �(6)s (�2)8<:1 + ~k1�(6)s (�2)4� + ~k2 �(6)s (�2)4� !2 + ~k3 �(6)s (�2)4� !39=; ;(16)where ~k1 = 0;~k2 = 11063168 � 5778 �(3) � �20:8472 ;~k3 = 101389126 � 345779288 �(3) + 222305192 �(5) � 562:0541 : (17)As ompared to Eq. (10), we observe a signi�ant redution in the magnitude of the oeÆ-ients in the resaled relation (16), both at the two- and three-loop orders.3 Furthermore,2Note that there seems to be a misprint in the numerial value of x0 quoted in Ref. [11℄, however, inthe aption of Fig. 4 therein it is orret.3Note that our value for the two-loop oeÆient in Eq. (16) (�20:8472) di�ers from the one obtainedin Ref. [11℄ (�32:46). 5



there is a di�erent sign in the three-loop oeÆient as ompared to the two-loop one,whih points to a better onvergene of the perturbative expansion.In the massless limit, both de�nitions for �MOMs (�2), namely Eqs. (11) and (12), areompletely equivalent. Following again Ref. [11℄, we hoose Eq. (12) as the proper de�ni-tion of the �MOMs (�2) for all values of �. This hoie has the advantage that the thresholdsin the orresponding funtion �MOM remain \physial", that is loated at ��2 = 4M2Q.This follows diretly from the relation between both � funtions:�MOM0 = �MOM0 ;�MOM1 = �MOM1 ;�MOM2 = �MOM2 � r1�MOM1 + �r2 � r21��MOM0 : (18)It is interesting to remark that the resaling proedure signi�antly improves the MOMto MS relations also for moderate and even rather low values of � (see below).In the appliations of Setion 4, we onsider the strong oupling both for energy salesof the order of or larger than and for those signi�antly smaller than the top-quark mass.In the latter ase, we onstrut di�erent MOM and MOM shemes, whih are derivedfrom the hoie nf = 5 as the massless limit. In this ase, we obtain the valuesx0 = e415=552 � 2:1208 ;~k2 = 1406891656 � 169924 �(3) � �0:1385 ;~k3 = 14340928189424 � 1225793864 �(3) + 518435576 �(5) � 831:5896 ;r1 = �415144 � �2:8819 ;r2 = 2228135476928 � 4:6719 ;r3 = �118870317568677632 + 70508555296 �(3) � �1:9809 : (19)The same omments and onlusions hold as for nf = 6.3 ResultsLet us in a �rst step briey desribe the evaluation of the gluon polarization funtion upto three loops within the bakground �eld formalism involving heavy quarks with generimass MQ. The basi idea is to evaluate �(q2) for large and small external momenta andto obtain an approximation for all values of q2=M2Q by a simple interpolation proedure.Note that in our ase the external momentum is spae-like so that there are no problemswith partile thresholds. Up to the two-loop order, only one quark avour an our in adiagram. At three loops, there are diagrams with a seond losed fermion loop so that inpriniple a further mass sale an our (see, e.g., the diagram in Fig. 1(g)). However, we6



(f)

(a) (b) (c) (d)

(h)(g)(e)Figure 1: Sample diagrams ontributing to the gluon propagator in the bakground �eldformalism at the two- and three-loop orders. Diagrams (a), (b), (e) and (f) only ontainmassless lines, while the others also ontain massive ones due to the presene of theheavy-quark loop (thik line). (We have used the pakage JaxoDraw [17, 18℄ to draw thediagrams.)assume a strong hierarhy in the quark masses suh that we an always neglet the lightermass. Thus, in this setion, we onsider QCD with total number nf of quark avours.One quark, Q, has the (pole) mass MQ, and all other nl = nf � 1 quarks are onsideredas massless.As mentioned above, the MS renormalized polarization funtion is needed in Landaugauge. However, in our alulation we adopt a general gauge parameter � sine theomplexity is omparable to Landau gauge.Some sample diagrams for �(q2) are shown in Fig. 1. The diagrams are divided intotwo lasses: ompletely massless diagrams and and diagrams involving massive-quarkloops. The only sale in the massless diagrams is the external momentum. Thus they anbe evaluated using MINCER [19, 20℄. In the seond lass, the mass of the heavy quark setsanother sale whih makes the alulation signi�antly more diÆult. The one- and two-loop alulations an be performed analytially, and the results an be found in Ref. [11℄.At the three-loop order, however, an exat alulation is not yet possible. We performan asymptoti expansion in the limits q2 � M2Q and q2 � M2Q. Note that due to thediagrams ontaining massive-quark loops along with massless uts (see, e.g., Figs. 1(d)and (h)) also the small-q2 expansion turns out to be nontrivial. As a result, one enountersln(q2=M2Q) terms also in this limit.All Feynman diagrams are generated with QGRAF [21℄. The various diagram topologiesare identi�ed and transformed to FORM [22℄ with the help of q2e and exp [23, 24℄. Theprogram exp is also used in order to apply the asymptoti expansion (see, e.g., Ref. [25℄)in the various mass hierarhies. The atual evaluation of the integrals is performed withthe pakages MATAD [26℄ and MINCER [20℄, resulting in an expansion in d � 4 for eah7



diagram, where d is the spae-time dimension.We omputed four expansion terms for small and six terms for large external momen-tum. In the following, we present only the leading and subleading terms of the orre-sponding expansions for the gluon polarization operator and the MOM � funtion for�2 = Q2 and provide the omplete expressions in a Mathematia �le.4 For ompleteness,we also list the one- and two-loop results, whih agree with the orresponding expansionsof the exat expressions [11℄. It is onvenient to ast the result in the form�(q2) = �ml(q2) + �mv(q2;M2Q) ; (20)and introdue the variable Z = Q24M2Q : (21)The results for the massless MS renormalized polarization funtion reads�(1);ml0 = �20548 + nl 518 ;�(2);ml0 = �2687128 + 513128�(3) + nl�347144 + 112�(3)� ;�(3);ml0 = �4133432048 + 583171024 �(3) + 248854096 �(5) + nl �147601341472 � 3797864 �(3)� 14536 �(5)�+ n2l ��6462762208 � 1432�(3)� : (22)In the limit Z ! 0, we get�(1);mv0 = 16 ln(4Z)� 215Z +O(Z2) ;�(2);mv0 = 724 + 1924 ln(4Z) + �5023997200 � 715 ln(4Z)�Z +O(Z2) ;�(3);mv0 = 58933124416 + �23 + 29 ln 2� �(2) + 8050727648�(3) + ln(4Z)�589396912 � 171256�(3)�+ 283576 ln2(4Z) + nl �� 247931104 � 19�(2) + ln(4Z)��11031728 � 172�(3)��+ Z �6252381359279936000 + 4954612332800 ln(4Z)� 64034608 ln2(4Z)� 815 �(2)� 845 �(2) ln 2� 62541531104 �(3) + nl ��118427291600 + 1240158320 ln(4Z)+ 612592 ln2(4Z) + 445 �(2)��+O(Z2) ; (23)4See http://www-ttp.partile.uni-karlsruhe.de/Progdata/ttp08/ttp08-50.8
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and in the large-Z region, we obtain�(1);mv0 = 518 � 14Z +O� 1Z2� ;�(2);mv0 = 347144 + 112�(3)� 1Z �233128 + 38�(3)� 564 ln(4Z)�+O� 1Z2� ;�(3);mv0 = 4298785124416 � 3799864 �(3)� 14536 �(5) + nl ��6462731104 � 1216�(3)�+ 1Z ��1877156912 + 7935518432 ln(4Z)� 31276144 ln2(4Z) + �(2) + 13 �(2) ln 2�34985327648 �(3) + 15128 �(3) ln(4Z) + 8164 �(4) + 234253456 �(5) + nl �785576� 1811152 ln(4Z) + 11384 ln2(4Z)� 16 �(2) + 8996 �(3)��+O� 1Z2� : (24)The small- and large-Z expansions of the MOM � funtion read:�MOM0 ===Z!0 114 � nl6 � Z 215 +O �Z2� ;�MOM1 ===Z!0 518 � nl 1924 + Z � 487997200 � 715 ln(4Z)�+O �Z2� ;�MOM2 ===Z!0 27045512 � 5643512 �(3)�nl �7175768 � 337768 �(3)�+n2l � 9533456 + 172 �(3)�+ Z �5640101219279936000 + 9957731555200 ln(4Z)� 112697680 ln2(4Z)� 815 �(2)� 845 �(2) ln 2� 62541531104 �(3) + nl � 106387480 + 3055832 ln(4Z)+ 612592 ln2(4Z) + 445 �(2)��+O �Z2� ; (25)

9



�MOM0 ===Z!1 3112 � nl6 + 14Z +O� 1Z2� ;�MOM1 ===Z!1 6712 � nl 1924 + 1Z �243128 � 564 ln(4Z) + 38�(3)�+O� 1Z2� ;�MOM2 ===Z!1 60487713824 � 487014608 �(3)+nl ��607636912 + 10752304 �(3)�+n2l � 9533456 + 172 �(3)�+ 1Z �75172727648 � 320296144 ln(4Z) + 31276144 ln2(4Z)� �(2)� 13 �(2) ln 2+ 33847727648 �(3)� 15128 �(3) ln(4Z)� 8164 �(4)� 234253456 �(5) + nl ��12651152+ 79384 ln(4Z)� 11384 ln2(4Z) + 16 �(2)� 8596 �(3)��+O� 1Z2� : (26)Note that our result for the MOM � funtion expliitly demonstrates the validity ofthe Applelquist-Carazonne theorem [27℄ at the three-loop level. Indeed, one an easilyhek that, for i = 0; 1 and 2, one haslimZ!0�MOMi � �MOMi;ml (nf = nl);limZ!1�MOMi � �MOMi;ml (nf = nl + 1);where �MOMi;ml (nf) is the three-loop ontribution to the MOM � funtion in the masslesslimit (see Eq. (8)).In Fig. 2, we present the results for the MOM � funtion in graphial form, wherethe one-, two- and three-loop oeÆients are shown as funtions of Z in the Eulidianregion. Next to the low- and high-energy approximations (dashes) inluding the Z3 and1=Z5 terms, also the interpolation funtions (dotted) are shown. At the one- and two-looporders, these results are ompared against the exat result (solid line). For demonstrationpurpose, we have hosen nl = 5 at the three-loop order. Very similar results are obtainedfor other values of nl.4 Phenomenologial appliationsIn the following, we disuss the numerial impat of the results obtained in this paper.In partiular, we onsider the MS quantity �(5)s (MZ) as input value and evaluate thestrong oupling at lower and higher energy sales with di�erent numbers of ative avours.On the one hand, this an be done in the MS sheme applying the usual running anddeoupling proedure (see, e.g., Refs. [8, 28℄). In this ase, one has to speify a sale �Qwhere the heavy quark Q is integrated out. On the other hand, it is possible to swithfrom the MS to the MOM (MOM) sheme for � =MZ and perform the running with thehelp of the MOM (MOM) � funtion. The results obtained at lower and higher energies10
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� (GeV) nf �(nf )s (�) nMOMf �MOMs (�) �MOMs (�s(�))2 loop 3 loop 2 loop 3 loop 2 loop 3 loop91.19 5 0.1180 0.1180 6 0.1324 0.1331 0.1324 0.1331200 5 0.1055 0.1055 6 0.1170 0.1175 0.1171 0.1175350 6 0.0989 0.0990 6 0.1082 0.1086 0.1084 0.1087500 6 0.0950 0.0951 6 0.1034 0.1037 0.1036 0.10381000 6 0.0884 0.0885 6 0.0953 0.0956 0.0955 0.0957Table 1: �s and �MOMs for various values of � from region A. As input, �s(MZ) = 0:118is used, whih is transformed with the help of Eq. (4) to �MOMs (MZ). The running todi�erent values of � is ahieved with the help of the appropriate � funtion. �MOMs (�s(�))is obtained from �s(�) using Eq. (4).� (GeV) nf �(nf )s (�) nMOMf �MOMs (�) �MOMs (�s(�))2 loop 3 loop 2 loop 3 loop 2 loop 3 loop91.19 5 0.1180 0.1180 6 0.1192 0.1196 0.1192 0.1196200 5 0.1055 0.1055 6 0.1066 0.1068 0.1066 0.1068350 6 0.0989 0.0990 6 0.0993 0.0995 0.0993 0.0995500 6 0.0950 0.0951 6 0.0952 0.0954 0.0952 0.09541000 6 0.0884 0.0885 6 0.0884 0.0885 0.0884 0.0885Table 2: �s and �MOMs for various values of � from region A. As input, �s(MZ) = 0:118is used, whih is transformed with the help of Eq. (13) to �MOMs (MZ). The running todi�erent values of � is ahieved with the help of the appropriate � funtion. �MOMs (�s(�))is obtained from �s(�) using Eq. (13).an also be translated bak to the MS sheme, and a omparison an be performed. Inthis way, we an hek the onsisteny between the two renormalization shemes.For our numerial analysis, we use the following input values�(5)s (MZ) = 0:118 ; Mb = 4:7 GeV ; Mt = 175 GeV ; (27)where MQ represent the pole quark masses and for the deoupling sales we hoose �Q =2MQ. The running and deoupling in the MS sheme is performed with the help ofRunDe [29℄.We onsider two regions of energies. Region A starts from the Z-boson mass, MZ ,and extends to energies muh higher than the top-quark mass, say, 1000 GeV. In thisregion, we investigate the evolution of the strong-oupling onstant in the MOM andMOM shemes with �ve massless and one heavy quark, the top quark. Thus in total sixquarks are present in the theory whih we denote as nMOMf = 6. On the other hand, inregion B, we onsider the evolution of �MOMs (�) and �MOMs (�) from � = MZ down to� = 3 GeV. The number of massless quarks for region B is set to four, and the heavyquark be should identi�ed with the bottom quark, i.e., we have nMOMf = 5.12



� (GeV) nf �(nf )s (�) nMOMf �MOMs (�) �MOMs (�s(�))2 loop 3 loop 2 loop 3 loop 2 loop 3 loop91.19 5 0.1180 0.1180 5 0.1328 0.1332 0.1328 0.133250 5 0.1298 0.1298 5 0.1480 0.1486 0.1480 0.148610 5 0.1779 0.1781 5 0.2177 0.2198 0.2160 0.21924 4 0.2288 0.2287 5 0.3074 0.3148 0.2988 0.30963 4 0.2536 0.2538 5 0.3556 0.3682 0.3404 0.3574Table 3: �s and �MOMs for various values of � from region B. As input, �s(MZ) = 0:118is used, whih is transformed with the help of Eq. (4) to �MOMs (MZ). The running todi�erent values of � is ahieved with the help of the appropriate � funtion. �MOMs (�s(�))is obtained from �s(�) using Eq. (4).� (GeV) nf �(nf )s (�) nMOMf �MOMs (�) �MOMs (�s(�))2 loop 3 loop 2 loop 3 loop 2 loop 3 loop91.19 5 0.1180 0.1180 5 0.1180 0.1181 0.1180 0.118150 5 0.1298 0.1298 5 0.1298 0.1300 0.1298 0.130010 5 0.1779 0.1781 5 0.1797 0.1804 0.1798 0.18074 4 0.2288 0.2287 5 0.2350 0.2376 0.2352 0.23853 4 0.2536 0.2538 5 0.2612 0.2652 0.2615 0.2667Table 4: �s and �MOMs for various values of � from region B. As input, �s(MZ) = 0:118is used, whih is transformed with the help of Eq. (13) to �MOMs (MZ). The running todi�erent values of � is ahieved with the help of the appropriate � funtion. �MOMs (�s(�))is obtained from �s(�) using Eq. (13).In Tab. 1, we ompare the values for �s for some seleted � values from region A inthe MS and MOM shemes. For all numbers, we hoose �(5)s (MZ) as the starting point,transform at � = MZ to the MOM sheme and use the orresponding renormalizationgroup equation to arrive at the desired � values. The same omparison for the ase of theMOM sheme is shown Tab. 2. In both tables, we show in the last two olumns the resultsof �MOMs (�) (Tab. 1) and �MOMs (�) (Tab. 2) as obtained from the MS-evolved value �s(�)using Eqs. (4) and (13), respetively. The orresponding results for region B are shownin Tabs. 3 and 4 (where, of ourse, the values given in Eq. (19) have been used).All four tables show good agreement between the values of the MOM oupling onstantobtained via diret integration of the (quark-mass-dependent) MOM � funtion and withthe help of the (simpler) onversion from the MS sheme. For Tabs. 1 and 3 the agreementis even getting better after taking into aount the three-loop orretions. Note that theresults in the ase of the MOM sheme beome slightly worse after swithing on the three-loop terms, as an be seen in Tabs. 2 and 4. The reason for this an be seen by omparingEq. (16) with Eq. (10). The former has (by onstrution) vanishing order �s orretionsand a two-loop oeÆient whih is smaller by a fator of six. However, the three-loop13
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