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Mathemati
al Frameworkfor Fast and Rigorous Tra
k Fitfor the ZEUS Dete
torAlexander Spiridonov�DESYAbstra
tIn this note we present a mathemati
al framework for a rigorous approa
h to a
ommon tra
k �t for tra
kers lo
ated in the inner region of the ZEUS dete
tor. Theapproa
h makes use of the Kalman �lter and o�ers a rigorous treatment of magneti
�eld inhomogeneity, multiple s
attering and energy loss. We des
ribe mathemat-i
al details of the implementation of the Kalman �lter te
hnique with a redu
edamount of 
omputations for a 
ylindri
al drift 
hamber, barrel and forward sili
onstrip dete
tors and a forward straw drift 
hamber. Options with homogeneous andinhomogeneous �eld are dis
ussed. The �tting of tra
ks in one ZEUS event takesabout of 20ms on standard PC.
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1 Introdu
tionThe ZEUS experiment [1℄ was operated at the ele
tron-proton 
ollider HERA at DESYuntil 2007. The ZEUS dete
tor was a sophisti
ated, multi-
omponent tool for studyingparti
le rea
tions provided by ele
tron-proton 
ollisions with an energy 27.5 GeV and920 GeV,respe
tively. The inner tra
king 
omponents of the ZEUS dete
tor were: thesili
on strip Mi
ro Vertex Dete
tor [2℄ with barrel (BMVD) and forward (FMVD) parts;the Central Tra
king Dete
tor (CTD) [3℄ 
onsisting of the 
ylindri
al drift 
hamber; theForward Tra
king Devi
e (FTD) [1℄ and the forward Straw-Tube Tra
ker (STT) [4℄. TheMVD was lo
ated in the vi
inity of intera
tion point, inside of the CTD.The magneti
 �eld in the 
entral region of the ZEUS dete
tor was produ
ed by a thinsuper
ondu
ting solenoid. The �eld had a strength of 14.3 kGauss at the 
enter and wasdire
ted parallel to the proton beam. The barrel MVD and CTD were lo
ated in the�eld whi
h was almost homogeneous with a small radial 
omponent far from the 
enter.Forward tra
kers were pla
ed outside of the solenoid or 
lose to its edge where the �eldis inhomogeneous.We 
onsider a mathemati
al framework for a rigorous approa
h to a 
ommon tra
k�t, whi
h 
an be performed with tra
ks in
luding all inner tra
king 
omponents or withany 
ombination of them. The approa
h o�ers a rigorous treatment of �eld inhomo-geneity, multiple s
attering and energy loss. The tra
k �tting pro
edure makes use ofthe Kalman �lter te
hnique and we dis
uss how to optimize 
omputations and make the�tting pro
edure fast.2 Overview of the tra
ker layoutThe ZEUS 
oordinate system is a right-handed Cartesian system, with the z{axis pointingin the proton beam dire
tion (forward) and the x{axis pointing to the 
enter of the HERAring. The 
oordinate origin is at the nominal intera
tion point.The barrel (BMVD) and forward (FMVD) se
tion of the MVD in
ludes 600 and 112sensors, respe
tively [2℄. A sensor is a sili
on single-sided strip dete
tor with a readoutpit
h of 120�m whi
h in
ludes �ve innermost strips for 
apa
itive 
harge division. TheZEUS MVD has 307,200 and 53,730 readout 
hannels in the barrel and forward se
tions,respe
tively.The barrel se
tion, 
entered at the intera
tion point, is about 63 
m long. The sili
onsensors are arranged in three 
on
entri
 
ylindri
al layers with radii about 5 
m, 8 
m and12 
m. Two ba
k to ba
k sensors in a layer provide measurements of nominal r � � andz position. The FMVD is 
omposed of four transverse disks of 14 wedges ea
h, whi
hextend the angular 
overage down to 7Æ from the beam line. Ea
h wedge has two sensorlayers separated by approximately 8mm in z{dire
tion. They are mounted ba
k to ba
k,su
h that the angle between strips is 2� 13Æ.The CTD [2℄ is a 
ylindri
al drift 
hamber, with a sensitive volume approximately 2min length and 0.4 (1.6m) in inner (outer) diameter. The CTD wires are arranged into nine4




on
entri
 superlayers numbered 
onse
utively from the inside out. The odd-numberedsuperlayers have sense wires running parallel to the 
hamber axis (i.e. z{axis) whilethose in the even-numbered superlayers have a 5Æ stereo angle. We denote sense wiresin 
orresponding superlayers as axial and stereo, respe
tively. Ea
h superlayer 
ontainseight sense wire layers { there are 4608 sense wires in total. A set of eight sense wires issurrounded by �eld wires, azimuthally dividing a superlayer into 
ells of polygonal shape.Ea
h sense wire is read out by a 
ash ADC and, �nally a drift distan
e is evaluated for ahit. All axial wires in superlayer one and the odd numbered wires in superlayer three and�ve (in total 704 wires) are additionally equipped with the z-by-timing system, whi
hmeasures z position of a hit.The STT uses straw drift 
hambers with 7.5mm diameter 
apton tubes of varyinglength from 20 
m to 75 
m. There are in total 10,944 wires in 48 wedge shaped se
tors.Ea
h wedge 
overs an azimuthal span of 60Æ. Ea
h se
tor 
onsists of 3 layers of strawsperpendi
ular to the z{axis. A tra
k 
rossing the STT nominally delivers 24 drift timemeasurements.3 Tra
k Models and Likelihood Fun
tions in a Multi-Component Tra
kerThe likelihood fun
tion of a tra
k measurement has a meaning regardless of the detailsof any �tting method. The maximum-likelihood estimator is eÆ
ient in the sense thatno other unbiased estimator has smaller varian
es. A tra
k model whi
h is appropriatefor the likelihood fun
tion, together with a given method of tra
k �t, may produ
e aneÆ
ient estimate of parameters. A general point of view of the information delivered by atra
ker 
an help to interpret behavior of varian
es of �tted parameters and hit residuals.We 
an model a multi-
omponent tra
ker by a set of tra
k dete
ting elements andintermediate blo
ks of passive material, whi
h are lo
ated in a stati
 magneti
 �eld.Tra
k parameters in the dete
tor element k are des
ribed by a ve
tor xk. For the 
ase ofa three-dimensional �t, the dimension of the ve
tor,xk, is 5. The tra
k measurement inthe tra
ker element k, i.e. the kth hit, is a ve
tor denoted by mk. In general mk is theve
tor with its dimension 
orresponding to that of the tra
king element. For example,mk has only 1 
oordinate for a sili
on strip of the MVD, a drift tube of the STT ora stereo wire of the CTD and 2 
oordinates (drift time and z position of a hit) for anaxial wire of the CTD whi
h is additionally equipped with the z-by-timing system. Themeasurement error 
an be des
ribed by the 
ovarian
e matrix Vk. We approximate theprobability (density) of the measurement mk given the ve
tor of tra
k parameters xkP (mkjxk) = G(mkjhmki;Vk) (1)by a Gaussian fun
tion with the mean value hmki and 
ovarian
e matrix Vk:G(mkjhmki;Vk) = C(Vk) exp n� 12(mk � hmki)TV �1k (mk � hmki)o; (2)5



where C(Vk) is a normalization 
onstant. An operator Hk proje
ts the a
tual ve
tor xkinto the spa
e of measurement: hmki = Hk xk: (3)Suppose that we are interested in the tra
k parameters at the beginning of tra
k, x1.The likelihood fun
tion takes the form of a produ
t:L(m1; m2; :::; mN jx1) = P (x2; :::; xN jx1) � NYk=1G(mkjHk xk;Vk): (4)The �rst term is the probability for a parti
le to pass through the points x2; :::; xN giventhe parameters x1 at the beginning and the se
ond one is the probability to obtain themeasurements, m1; :::; mN , while measuring the points in the spa
e of tra
k parametersx1; :::; xN of the real (not the mean) traje
tory. The probability, P (x2; :::; xN jx1), 
an beapproximated by a Gaussian distributionP (x2; :::; xN jx1) = G(x2; :::; xN jhx2(x1)i; :::; hxN(x1)i; �(x1)): (5)The mean traje
tory is de�ned as: hxk(x1)i = Fkx1; (6)where the operator Fk swims tra
k parameters x1 into the dete
tor element k. The tra
kmodel may be des
ribed as a 
ontinuous 
urve for the mean traje
tory with 
u
tuationsof a
tual parameters xk with respe
t to the mean traje
tory,Dk(x1) = xk � Fkx1: (7)The 
u
tuation, Dk(x1), a

umulates the e�e
t of multiple s
attering on the pass fromthe beginning of the tra
k to the given element. Ve
tors fDk(x1)g are 
orrelated and,therefore, matrix �(x1) has dense stru
ture (many non-zero elements). We 
an 
ombineGaussian fun
tions from (4) and (5):L(m1; m2; :::; mN jx1) = G(m1; m2; :::; mN jH1x1; H2F2x1; :::; HNFNx1;M(x1)); (8)where the non-diagonal 
ovarian
e matrix M(x1) has dimension equal to the sum ofdimensions of all measurements fmkg. The dimension of the M may be of order 102 formodern tra
king dete
tors. Maximization of the likelihood fun
tion of Gaussian type,i.e. least square �tting with large non-diagonal 
ovarian
e matrix M, requires a lotof 
omputations, although not more than 5 parameters are �tted. Be
ause of large
omputing time, the model is not 
onvenient for a tra
k �tting in a multi-
omponenttra
ker. But the model in
ludes a small number of �tted parameters, and is suitablefor a subsequent update of dete
tor alignment parameters [5℄, where an expansion of hitresiduals w.r.t. �tted parameters is needed.A 
harged parti
le traversing a medium 
an be des
ribed by a sto
hasti
 pro
ess withthe Markov property and, therefore, the 
onditional probability distribution of future6



states depends only upon the present state and not on any past states. The probabilityfun
tion for a parti
le to pass through the points x2; :::; xN in (5) 
an be rewritten as:P (x2; :::; xN jx1) = NYk=2P (xkjxk�1) = NYk=2G(xkjhxk(xk�1)i;Qk(xk�1)): (9)We approximate the 
onditional probability (density), P (xkjxk�1), for tra
k parame-ters xk, given the parameters in the previous state xk�1, by the Gaussian distribution,G(xkjhxk(xk�1)i;Qk(xk�1)) with the mean hxk(xk�1)i and 
ovarian
e matrix Qk(xk�1).The mean traje
tory in the tra
king element k ishxk(xk�1)i = Fkxk�1: (10)The operator Fk swims tra
k parameters xk�1 into the dete
tor element k a

ording tothe equations of motion.Suppose that we are interested in tra
k parameters in all points of tra
k measurement,i.e. x1; x2; :::; xN . The likelihood fun
tion takes a form:L(m1; :::; mN jx1; :::; xN) = G(m1jH1 x1;V1) � NYk=2G(xkjFk xk�1;Qk)G(mkjHk xk;Vk);(11)with Gaussian fun
tionsG(mkjHk xk;Vk) = C(Vk) exp n� 12(mk �Hk xk)TV �1k (mk �Hk xk)o (12)and G(xkjFk xk�1;Qk) = C(Qk) exp n� 12(xk � Fk xk�1)TQ�1k (xk � Fk xk�1)o; (13)where C(Vk) and C(Qk) are normalization 
onstants.The model for the total tra
k is not a 
ontinuous 
urve, but 
onsists of N � 1 
ontin-uous segments. A variation of tra
k parameters in the point of dis
ontinuityÆk = xk � Fkxk�1 (14)des
ribes the e�e
t of multiple s
attering on the pass from the the previous element k�1to the element k. Ve
tors fÆkg are un
orrelated. A spread of the Æk is de�ned by the
ovarian
e matrix Qk.The maximum likelihood estimation of parameters fxkg satis�es the system of equa-tions (� (�lnL)�xTk = 0) : (15)If operators Fk and Hk are non-linear (e.g. in magneti
 �eld) then the latter equa-tions are non-linear also. The problem 
an be solved iteratively using the well knownmethod of linearization of operations (3) and (10). Anyhow we 
an regard the fun
tional,7



�(�lnL)=�xTk , as a linear form w.r.t. ve
tors of estimated parameters fxkg. The ve
tor,xk, asso
iates in (11) only with ve
tors in neighboring data points k � 1 and k + 1 and,therefore, the linear form �(�lnL)=�xTk in
ludes only 3 terms with ve
tors xk�1; xk andxk+11, respe
tively. Finally, the system (15) looks as0BBBBBBBBBB�
I11 I12I21 I22 I23I32 I33 I34::: ::: :::::: ::: :::IN�1N INN

1CCCCCCCCCCA
0BBBBBBBBBB�

x1x2x3::::::xN
1CCCCCCCCCCA = 0BBBBBBBBBB�

r1r2r3::::::rN
1CCCCCCCCCCA ; (16)

where submatri
es related to points i; j,Iij = �2(�lnL)�xTi �xj ;are parts of the information matrix. The sparse (with many zero elements), band stru
-ture of the information matrix 
an be exploited to redu
e 
omputations drasti
ally. This
an be a
hieved by using either a dedi
ated algorithm of matrix inversion [6℄, or else (e.g.in the broken lines �t [7℄) by the matrix (Cholesky) de
omposition into a unit triangle,U , and a diagonal, D, matrix U DUTx = rwhi
h requires two steps to solve for x:U y = r and DUTx = y:The tra
k model based on relations (10 { 14) is well suited also for an implementationof the progressive tra
k �t by the method [8℄ or for the appli
ation of the Kalman �lterformalism [9℄. Both methods are rather e
onomi
al regarding 
omputing time be
ausethey in
lude operations with matri
es of maximal size 5 by 5 for ea
h hit.4 Appli
ation of the Kalman �lter te
hnique to tra
k�ttingIn [9℄ it was shown that an appropriate mathemati
al framework for the iterative pro
e-dure of tra
k �tting is the theory of linear �ltering, in parti
ular the Kalman �lter [10℄.To 
onsider the mathemati
al framework of a Kalman �lter, we try to follow the notationused in [11℄. In the following we des
ribe a 
ase with a linear system and a non-linearsystem will be dis
ussed at Subse
. 4.2.1Di�erentiating the latter linear form with respe
t to xi isolates a 
oeÆ
ient in a 
orresponding linearterm. 8



4.1 Linear ModelThe Kalman �lter pro
eeds progressively from one measurement to the next and improvesthe knowledge about the parti
le traje
tory by updating the tra
k parameters with ea
hnew measurement. The system state ve
tor (tra
k parameters) after in
lusion of k � 1measurements is denoted by ~xk�1, and its 
ovarian
e matrix by Ck�1. The state ve
torand its 
ovarian
e matrix are propagated to the lo
ation of the next measurement withthe predi
tion equations: ~xk�1k = Fk~xk�1; (17)and Ck�1k = FkCk�1F Tk +Qk; (18)where Fk is the transport matrix and Qk denotes the 
ovarian
e matrix of the pro
essnoise, whi
h o

urs due to the random perturbation of the parti
le's traje
tory.The measurement of the ve
tor ~xk�1k and its 
ovarian
e matrix are denoted by mk andVk, respe
tively. The expe
ted measurement mk is des
ribed by the proje
tion matrix Hk.The estimated residuals are rk�1k = mk �Hk ~xk�1k (19)and its 
ovarian
e matrix be
ome:Rk�1k = Vk +Hk Ck�1k HTk : (20)The updating of the system state ve
tor after in
lusion of the measurement k is de�nedby the �lter equations: Kk = Ck�1k HTk (Rk�1k )�1;~xk = ~xk�1k +Kk rk�1k ;Ck = (1�KkHk)Ck�1k ; (21)with the �ltered residuals and its 
ovarian
e matrixrk = (1�HkKk) rk�1k ; Rk = (1�HkKk)Vk = Vk �HkCkHTk : (22)The matrix, Kk, is 
alled the �ltering (gain ) matrix. The �ltered state ve
tor is pulledtowards the measurement and, therefore the quadrati
 mean of the �ltered residual issmaller than the measurement error. The �2 in
rement after the �ltering of the stateve
tor is given by: �2k = rTk R�1k rk:The tra
k parameters after the �ltering pro
edure are known with optimal pre
isiononly at the last point of the �t. The smoothing part of the Kalman �lter is a very useful
omplement, whi
h solves the problem of optimal parameter estimation at every point ofthe traje
tory. The smoothing is also a re
ursive pro
edure whi
h pro
eeds step by step
9



in the dire
tion opposite to that of the �lter with the smoother equations:Ak = Ck F Tk+1 (Ckk+1)�1;~xnk = ~xk + Ak(~xnk+1 � ~xkk+1);Cnk = Ck + Ak(Cnk+1 � Ckk+1)ATk ;rnk = mk �Hk~xnk ;Rnk = Rk �HkAk(Cnk+1 � Ckk+1)ATkHTk = Vk �HkCnkHTk : (23)The smoothed state ve
tor, ~xnk , is more pre
ise, be
ause it in
ludes information fromall measurements. The varian
e of the smoothed state ve
tor, Cnk , is smaller than thevarian
e of the �ltered state ve
tor, Ck. The quadrati
 mean of the smoothed residual is
loser to the measurement error (dete
tor resolution) than the �ltered one.4.2 Non{linear ModelA parti
le's motion in a dete
tor with magneti
 �eld is a nonlinear pro
ess. In 
ase of anon-linear system, we have to repla
e the transport, Fk, and proje
tion, Hk, matri
es in(17) and (19), respe
tively, by exa
t non-linear fun
tions:~xk�1k = fk(~xk�1); rk�1k = mk � hk(~xk�1k ): (24)Ja
obian matri
es of these fun
tions (Ja
obians in the following)�(fk)�(~xk�1) ; �(hk)�(~xk�1k ) (25)will be used in equations for 
ovarian
e matrix propagation (18) and (20) instead of Fkand Hk, respe
tively. In pra
ti
e, estimation with Kalman �lter for a non-linear systemshows properties similar to those of maximum-likelihood estimation:� The estimator is asymptoti
ally unbiased, i.e. its bias tends to zero as the numberof measurements in
reases.� The distribution of deviations of estimated parameters from true values approa
hesa Gaussian distribution also asymptoti
ally, i.e for suÆ
iently large number of mea-surements.5 Parti
le Motion in a Stati
 Magneti
 FieldThe equation of motion of a parti
le with momentum ~p (velo
ity ~v) and 
harge Q in astati
 magneti
 �eld ~B is: d ~pd t = � �Q � ~v � ~B; (26)10



where 
oordinates x; y; z are in 
m, p is in GeV/
, the magneti
 �eld B is in kGauss,and parameter � is equal:� = 0:000299792458 (GeV=
) kG�1 
m�1:The distan
e along the traje
tory of a parti
le (path length) is given by:s = j~vj � t:The unitary ve
tor ~n pointing along the dire
tion of the traje
tory is:~n = d~xd s : (27)Equation (26) 
an be rewritten as:d~nd s = � � Qj~pj � ~n� ~B = � � q � ~n� ~B; (28)where q = Q=j~pj. The latter equation 
ombined with Eq. (27) gives a system of lineardi�erential equations: d x = d s = nx;d y = d s = ny;d z = d s = nz;d nx = d s = !z � ny � !y � nz;d ny = d s = !x � nz � !z � nx;d nz = d s = !y � nx � !x � ny;q = 
onst; (29)
where !i(s) = � � q �Bi(~x(s)).6 Multiple S
attering and Energy LossThe ZEUS inner tra
king dete
tors were designed using minimal material. We take a
-
ount of the e�e
t of multiple s
attering in the approximation of thin s
atterers. Multiples
attering after traversing a material of small thi
kness, l, results in the perturbation ofangles and 
oordinates, but the e�e
t on the latter has an additional order of smallnesso(l) and 
an be negle
ted. The de
e
tion of the parti
le momentum ~p due to multiples
attering is de
omposed into de
e
tions in two orthogonal planes. We de�ne two unitve
tors ~n1; ~n2 whi
h in 
ombination with ~n form a right-handed Cartesian system:~n1 = ~ez � ~nj~ez � ~nj = 1nt 0BB� �nynx0 1CCA ; ~n2 = ~n1�~n = 1nt 0BB� nx � nzny � nz�n2t 1CCA ; withnt = qn2x + n2y: (30)The dire
tion of the momentum after the s
attering is:~n 0 = ~n + �1 � ~n1 + �2 � ~n2; (31)11



where �1; �2 are random variables with< �1;2 >= 0; var (�1;2) = �2ms; 
ov(�1; �2) = 0: (32)Here �ms is the well-known Moli�ere theory expression for RMS of the de
e
tion angle ofa 
harged parti
le traversing a medium [15℄�ms(t=X0) = 13:6MeV�
p qt =X0 [1 + 0:038 ln(t=X0) ℄ ; (33)where t=X0 is the material thi
kness in radiation lengths, whi
h has to a

ount for thetra
k in
lination: t = l �q1 + (nx=nz)2 + (ny=nz)2: (34)We rewrite Eq. (31) for the de
e
tion of 
omponents:Æ~n = 0BB� ÆnxÆnyÆnz 1CCA = �10BB� �ny = ntnx = nt0 1CCA + �20BB� nx � nz = ntny � nz = nt�nt 1CCA : (35)Taking into a

ount Eqs. (32), we derive:< ~n 0 > = ~n;var (n0x) = �2ms (n2y + n2xn2z)=n2t ;var (n0y) = �2ms (n2x + n2yn2z)=n2t ;var (n0z) = �2ms n2t ;
ov (n0x; n0y) = �2ms nx ny(n2z � 1)=n2t ;
ov (n0x; n0z) = ��2ms nx nz;
ov (n0y; n0z) = ��2ms ny nz: (36)
An ionization energy loss is regarded as a deterministi
 
orre
tion to a tra
k energy. Inthe approximation of thin s
atterer, tra
k energy, E, after the traversal of a material is:E 0 = E � (dE=dx)ion � t; (37)where (dE=dx)ion is the mean rate of ionization energy loss in the material.7 Spe
i�
s of Kalman Filter Implementation for theZEUS Inner Tra
kersSeven equations (29) des
ribe a parti
le motion in a magneti
 �eld, although �ve param-eters suÆ
e to de�ne the traje
tory at any point. A suitable tra
k parameterization maydepend on the dete
tor geometry and �eld shape. The magneti
 �eld in the 
entral partof the ZEUS dete
tor is dire
ted parallel to the z{axis. For the large part of the MVD the�eld is almost homogeneous with only a small radial 
omponent (< 1% at the edge of the12



BMVD). For the most forward parts of the CTD and FMVD the inhomogeneity is larger,with redu
tion of the axial 
omponent by 8% and in
reasing of the radial 
omponent upto 15%. The STT dete
tor is lo
ated outside the super
ondu
ting solenoid where the�eld is inhomogeneous. We 
hoose a di�erent way to pro
eed depending on the polarangle,�, of a tra
k (tan � = pt=pz):� we use an option with inhomogeneous �eld for \forward" tra
ks (0 < � < 60Æ);� a homogeneous �eld model is used for \
entral" tra
ks (60Æ < � < 120Æ);� an inhomogeneous �eld is used also for \rear" tra
ks (120Æ < � < 180Æ).The set of measurements, fmkg, with its 
ovarian
e matri
es, fVkg, and the map ofmagneti
 �eld, ~B, are input for the tra
k �t. To develop a mathemati
al framework forKalman �lter implementation we have to make the following steps:� Sele
t a 
onvenient parameterization of the state ve
tor, xk.� Find a solution of the predi
tion equations, fk(xk�1), and a fun
tion to proje
t theve
tor xk to the measurement, hk(xk).� Obtain Ja
obians of latter fun
tions�(fk)�(xk�1) ; �(hk)�(xk) :� De�ne 
ovarian
e matrix of the pro
ess noise, Qk.8 Cylindri
al Parameterization for 
entral tra
ksThe magneti
 �eld at the 
entral region of the ZEUS super
ondu
ting solenoid is nearlyparallel to the z{axis (Bx; By � 0) and has almost 
onstant strength. Therefore weapproximate it as homogeneous on the path from one point to the next. The system ofequation (29) looks asd x = d s = nx;d y = d s = ny;d z = d s = nz;d nx = d s = !z � nyd ny = d s = �!z � nx;d nz = d s = 0q = 
onst; (38)
where !z = � � q �Bz. The 
omponent nz is 
onstant and the angle (azimuthal), �, of thetra
k dire
tion with the x{axis depends linearly on s:�(s) = �0 � !zs;nx(s) = nt 
os(�0 � !zs);ny(s) = nt sin(�0 � !zs);nz(s) = nz0; (39)13



where �0; nz0 are initial values at s = 0. A pair of 
onserved quantities 
an be derivedfrom (38): x(s) + 1!z ny(s) = x0 + 1!z ny0;y(s)� 1!z nx(s) = y0 � 1!z nx0; (40)with initial values, x0; y0; nx0; ny0. Coordinates 
an by expressed via the tra
k dire
tion:x(s) = x0 � 1!z ny(s) + 1!z ny0;y(s) = y0 + 1!z nx(s)� 1!z nx0: (41)In a homogeneous �eld, the parti
le traje
tory is a helix. For the 
ase of axial (
ylindri
al)symmetry, a natural repla
ement of parti
le 
oordinates, x and y, are the radius, r, andthe r'{
oordinate at radius r, whi
h we denote as u. The relation between these pairsof parameters reads:x = r 
os ur ;y = r sin ur ; (42)and r = px2 + y2;u = r ar
tan yx = 2r ar
tan yr + x = 2r ar
tan r � xy : (43)With the usage of an ar
-length in the xy-plane, st, 
orresponding 
urvature ! andparameter � = 
ot � (
otangent of the polar angle of the parti
le dire
tion)st = s � nt; ! = !znt ; � = nznt ; (44)we obtain the solution for parti
le 
oordinates:x(t) = r0 
os u0r0 � 1! sin(�0 � t) + 1! sin�0;y(t) = r0 sin u0r0 + 1! 
os(�0 � t)� 1! 
os�0;z(t) = z0 + �0! t;t = w � st; (45)
where r0; u0 are values at t = 0. The parti
le whi
h is lo
ated at a radius, r0, given t = 0,then arrives at a radius, r, given the value of t, whi
h satis�es the equation:r2 = r20 + T + S sin�� (S sin� + T ) 
os t + S 
os� sin t;T = 2!2 ; S = 2r0! ; � = �0 � u0r0 : (46)Solutions of the latter equation aret1;2 = 2 ar
tan24 S 
os�D � 2T � 2S sin� 0�1�s1� D � (D � 2T � 2S sin�)S2 
os2 � 1A35D = r2 � r20 = �r(2r0 +�r); �r = r � r0: (47)14



The solution t2 (with minus sign) 
orresponds to a shorter path length. We des
ribea parti
le in a homogeneous magneti
 �eld by a state ve
tor at a referen
e 
ylindri
alsurfa
e of radius rk: xTk = (uk; zk; �k; �k; qk) ; (48)whereuk = r'{
oordinate at radius rk,zk = z-
oordinate,�k = angle of xy-proje
tion of tra
k dire
tion with the x{axis,�k = 
ot � at radius rk,qk = Q=pk, inverse momentum signed a

ording to parti
le 
harge, Q.Su
h 
ylindri
al parameterization looks natural for the barrel tra
king dete
tors. Ananalogous state ve
tor was used for the implementation of the Kalman �lter formalismfor the ALEPH Time Proje
tion Chamber [12℄.8.1 Cylindri
al Parameterization: Predi
tion EquationsIn the predi
tion stage of the Kalman �lter, the state ve
tor xk is propagated at the nextreferen
e radius, rk+1 = rk +�rk. We obtain this transformation from (42{45):uk+1 = 2rk+1 ar
tan yk+1rk+1 + xk+1 = rk+1 ar
tan yk+1xk+1 ;zk+1 = zk + �k!k tk;�k+1 = �k � tk;�k+1 = �k;qk+1 = qk; (49)where xk+1 = rk 
os ukrk � 1!k sin(�k � tk) + 1!k sin�kyk+1 = rk sin ukrk + 1!k 
os(�k � tk)� 1!k 
os�k;!k = � �Bzk � qk �q1 + �2k: (50)and the variable, tk, is evaluated from (47). We approximate the Ja
obian of this trans-formation as:�(xk+1) = �(xk) = 0BBBBBBB� �uk+1=�uk 0 �uk+1=��k �uk+1=��k �uk+1=�qk�zk+1=�uk 1 �zk+1=��k �zk+1=��k �zk+1=�qk��k+1=�uk 0 1 ��k+1=��k ��k+1=�qk0 0 0 1 00 0 0 0 1
1CCCCCCCA : (51)Elements of the Ja
obian whi
h always are very 
lose to zero or unity, we set expli
itly to 0or 1, respe
tively. We exploit the sparse stru
ture of the Ja
obian to redu
e 
omputations,as will be dis
ussed in Se
t. 11. Nontrivial elements of the Ja
obian are presented inappendix A. 15



8.2 Cylindri
al Parameterization: Proje
tion of State Ve
torto MVD MeasurementThe origin of the lo
al 
oordinate system of a MVD sensor is given by the ve
tor ~r
. Theunit ve
tor, ~n, is perpendi
ular to the sensor plane. We de�ne the axis of measurementby the unit ve
tor, ~m, whi
h is lo
ated in the sensor plane and is perpendi
ular to strips.A state ve
tor xk is de�ned at a 
ylindri
al referen
e surfa
e of a radius, rk. We 
ande�ne the radius, rk, in su
h a way that the referen
e point will be 
lose to the sensor. Inthe immediate vi
inity of the referen
e point, we linearize equations (49,50) with respe
tto the variable, tk: x(tk) = xk + tk!k 
os�k;y(tk) = yk + tk!k sin�k;z(tk) = zk+1 + �k!k tk: (52)
A 
ondition of the traje
tory interse
tion with the sensor plane reads:[ (~r(tk)� ~r
) � ~n ℄ = 0: (53)The variable advan
e, �tk, to travel from the radius, rk, to the sensor plane is:�tk = � bkak ;ak = nx!k 
os�k + ny!k sin�k + nz!k�k;bk = (xk � x
)nx + (yk � x
)ny + (zk � z
)nz: (54)
To obtain the expe
ted measurement, hk(xk), we proje
t the position ve
tor in the lo
alframe, ~r(�tk)� ~r
, to the measurement axis, ~m:hk(xk) = [ (~r(�tk)� ~r
) � ~m ℄= �tk!k 
k + (xk � x
)mx + (yk � y
)my + (zk � z
)mz;
k = mx 
os�k +my sin�k +mz �k: (55)

16



Elements of the Ja
obian, �(hk)=�(xk), are:�hk=�uk = 
k!k ��tk=�uk �mxykrk +my xkrk ;�hk=�zk = 
k nz!k ak +mz;�hk=��k = 
k!k ��tk=��k + �tk!k (�mx sin�k +my 
os�k);�hk=��k = �tk!k ��nz 
kak !k +mz� ;�hk=�qk = 0;
(56)

with derivatives of �tk��tk=�uk = 1ak �nxykrk � ny xkrk � ;��tk=��k = �tkak !k (nx sin�k � ny 
os�k) : (57)To exploit the sparse stru
ture of the Ja
obian and redu
e 
omputations we approximatethe Ja
obian for spe
i�
 
ases:�(hk)=�(xk) = � �hk�uk 1 �hk��k �hk��k 0 � ; for mz � 1;�(hk)=�(xk) = � �hk�uk 0 �hk��k 0 0 � ; for mz � 0: (58)8.3 Cylindri
al Parameterization: Proje
tion of State Ve
torto CTD MeasurementEa
h sense stereo wire runs at a small angle, �, and its lo
ation in the xy-plane at
oordinate z is: ~w = ~rw + (z � z
) ~r0w; (59)where z
 is the z{
oordinate of the nominal 
enter of the CTD . A \planar drift" approx-imation is used to render measurements in spa
e [13℄. Drift distan
e is measured alongthe \planar drift measurement axis", ~m:mx = �ny=j~nj;my = +nx=j~nj; (60)whi
h is obtained by rotating the ve
tor, ~n, through +90Æ. The ve
tor ~n depends linearlyon the z 
oordinate: ~n = ~pw + (z � z
) ~p0w: (61)A state ve
tor xk is de�ned at a 
ylindri
al referen
e surfa
e of a radius, rk. We de�nethe radius, rk, in a way that the referen
e point is 
lose to the point where the traje
tory17



hits the planar drift plane. Close to the referen
e point, we use linearized equations ofmotion (52). A 
ondition of the traje
tory interse
tion with the planar drift plane reads:[ (~r(tk)� ~w) � ~n ℄ = 0: (62)The variable advan
e, �tk, to travel from the radius, rk, to the planar drift plane is asolution (of smallest absolute value) of a quadrati
 equation, (�tk)2 ak +�tk bk + 
k = 0:�tk1;2 = 12ak ��bk �qb2k � 4 ak 
k� ; (63)with 
oeÆ
ientsak = Akx p0wx + Aky p0wy;bk = AkxPkx +Bkx p0wx + Aky Pky +Bky p0wy;
k = BkxPkx +Bky Pky;Akx = (
os�k � �kr0wx)=!k; Aky = (sin�k � �kr0wy)=!k;Bkx = xk � rwx � (zk � z
)r0wx; Bky = yk � rwy � (zk � z
)r0wy;Pkx = [pwx + (zk � z
)p0wx℄!k=�k; Pky = hpwy + (zk � z
)p0wyi!k=�k: (64)
The expe
ted measurement, hk(xk), is the drift distan
e. To evaluate it, we proje
t theposition ve
tor in the planar drift system of the wire, ~r(�tk) � ~w, to the measurementaxis ~m: hk(xk) = [ (~r(�tk)� ~w) � ~m ℄ : (65)To \stret
h" the proje
ted value a

ording to the stereo angle, �, we have to repla
e ~mby ~m= 
os� in the following formulas. The expe
ted measurement is a linear fun
tion ofthe �tk: hk(xk) = �tk Ck +mxBkx +myBky;Ck = (mxAkx +myAky)=!k: (66)We approximate the Ja
obian, �(hk)=�(xk), by setting its elements whi
h are very 
loseto zero or unity, expli
itly to 0 or 1:�(hk)=�(xk) = � 1 �hk�zk �hk��k �hk��k 0 � ; for j�tkj � 10�6;�(hk)=�(xk) = � 1 �hk�zk 0 0 0 � ; for j�tkj < 10�6: (67)Nontrivial elements of the Ja
obian are de�ned in appendix B.The axial wires of the CTD run parallel to the z{axis and parameters ~r0w and ~p0wvanish in (59) and (61), respe
tively. A 
ondition of the interse
tion of the traje
torywith the \planar drift plane" results in Eq. 62, whi
h has the solution�tk = �bk=ak;ak = (
os�k pwx + sin�k pwy)=!k;bk = (xk � rwx) pwx + (yk � rwy) pwy: (68)18



A measurement ve
tor for an axial wire, mk, is either one-dimensional (drift distan
e)or two-dimensional (drift distan
e and z position). Let's 
onsider the ve
tor of expe
tedmeasurement, hk(xk), for a general, two-dimensional 
asehk(xk) =  hk1(xk)hk2(xk) ! ; (69)with the �rst 
omponent (drift distan
e) and se
ond (z position), whi
h are de�ned in(65) and (52), respe
tively:hk1(xk) = (xk + �tk!k 
os�k � rwx)mwx + (yk + �tk!k sin�k � rwy)mwy;hk2(xk) = zk + �k!k �tk: (70)We approximate the Ja
obian, �(hk)=�(xk) as:�(hk)=�(xk) = 0B� 1 0 �hk1��k 0 0�hk2�uk 1 �hk2��k �hk2��k 0 1CA ; for j�tkj � 10�6; (71)and �(hk)=�(xk) = 0� 1 0 0 0 0�hk2�uk 1 0 0 0 1A ; for j�tkj < 10�6: (72)Elements of the Ja
obian are presented in appendix B.8.4 Cylindri
al Parameterization: Pro
ess NoiseWe evaluate the 
omponents of a ve
tor of parti
le dire
tion, ~n, using parameters �; �:nx = 
os �p1 + �2 ; ny = sin�p1 + �2 ; nz = �p1 + �2 and nt = 1p1 + �2 : (73)We obtain deviations of parameters �; �, indu
ed by multiple s
attering, from Eq. (35):Æ� = �1p1 + �2; Æ� = ��2p1 + �2; (74)where �1; �2 are random variables de�ned by (32). Nonzero elements of the matrix,des
ribing multiple s
attering in one s
atterer, are:Q�� = �2ms (1 + �2); Q�� = �2ms (1 + �2); (75)with RMS of the de
e
tion angle, �ms, whi
h is de�ned by Eq. (33). The matrix, Qk, inEq.(18) takes into a

ount a summary e�e
t of multiple s
attering:Qk =Xi FikQi F Tik; with Fik = �(xk)=�(xi); (76)and, therefore the index i runs over all elements of material on the path from (k � 1)thto kth state. 19



9 Cartesian Parameterization in an InhomogeneousMagneti
 FieldThe following 
hoi
e of tra
k parameters at a referen
e z{
oordinate is suited for forwardtra
ks (nz > 0): ~xT = (x; y; tx; ty; q); (77)wherex = x{
oordinate in the Cartesian 
oordinate system of ZEUS,y = y{
oordinate in the Cartesian 
oordinate system,tx = nx=nz tra
k slope in xz{plane,ty = ny=nz tra
k slope in yz{plane,q = Q=j~pj, inverse momentum signed a

ording to parti
le 
harge, Q.This parametrization will be 
alled \
artesian". The implementation of the Kalman �lterte
hnique in an inhomogeneous magneti
 �eld is analogous to those des
ribed in [16℄. Inthe following we dis
uss the 
ase of forward tra
ks. The rear tra
ks are spe
i�ed inSubse
. 9.7.9.1 Cartesian Parametrization: Equations of Motionin Inhomogeneous Magneti
 FieldFor forward tra
ks we 
an use the z 
oordinate as independent variable instead of thepath length in Eqs. (29). The equations rewritten w.r.t. z 
oordinate read:dx=dz = tx;dy=dz = ty;dtx=dz = q � � � Ax(tx; ty; ~B);dty=dz = q � � � Ay(tx; ty; ~B);q = 
onst; (78)where the fun
tions Ax,Ay areAx = (1 + t2x + t2y) 12 � [ty � (txBx +Bz)� (1 + t2x)By℄ ;Ay = (1 + t2x + t2y) 12 � h�tx � (tyBy + Bz) + (1 + t2y)Bxi : (79)To transport tra
k parameters in the inhomogeneous �eld from plane z0 to plane z, wesolve the latter equations with initial values de�ned at z0~xT0 = (x0; y0; tx0; ty0; q0): (80)Three methods are used to solve Eqs. (78), depending on the distan
e, s = z � zo;between these planes.1. jsj < 10 
m: a paraboli
 expansion of the parti
le traje
tory is used20



x(z) = x0 + tx0 � s+ 12 � q0 � � � Ax � s2;y(z) = y0 + ty0 � s + 12 � q0 � � �Ay � s2;tx(z) = tx0 + q0 � � � Ax � s;ty(z) = ty0 + q0 � � � Ay � s;q(z) = q0: (81)2. 10 
m � jsj < 60 
m: the 
lassi
al fourth-order Runge-Kutta method [14℄ issele
ted to �nd the solution of the equations (78) .3. jsj � 60 
m: a �fth-order Runge-Kutta method with adaptive step size 
ontrol[14℄ is used.9.2 Cartesian Parametrization: Equations for DerivativesThe Ja
obian of transformation of parameters given at z0 to z, �(~x)=�(~x0), is de�ned as:
�(~x)=�(~x0) = 0BBBBBBBBBBBB�

1 0 �x�tx0 �x�ty0 �x�q00 1 �y�tx0 �y�ty0 �y�q00 0 1 �tx�ty0 �tx�q00 0 �ty�tx0 1 �ty�q00 0 0 0 1;
1CCCCCCCCCCCCA : (82)

Elements of the latter Ja
obian whi
h are very 
lose to zero or unity, are set to 0 or 1,respe
tively. Nontrivial elements of the Ja
obian (82) for short distan
e (jsj < 10 
m) weapproximate as: �x=�tx0 = s; �x=�ty0 = 12 q0 � s2 �Ax�ty0 ;�y=�tx0 = 12 q0 � s2 �Ay�tx0 ; �y=�ty0 = s;�tx=�ty0 = q0 � s �Ax�ty0 ; �ty=�tx0 = q0 � s �Ay�tx0 ;�x=�q0 = 12 � s2Ax; �y=�q0 = 12 � s2Ay;�tx=�q0 = � sAx; �ty=�q0 = � sAy; (83)
with derivatives �Ax=�ty0 and �Ay=�tx0, whi
h we de�ne below.To swim derivatives at long distan
e (jsj � 10 
m), we de�ne equations for deriva-tives as des
ribed in [16℄ and solve them by a Runge-Kutta method simultaneously withequations of motion. The magneti
 �eld is smooth enough even in the STT area and,therefore we regard Eqs. (78) as almost invariant with respe
t to small shifts by x and y.Derivatives with respe
t to initial x0, y0 are trivial :�~xT =�x0 = (1; 0; 0; 0; 0);�~xT =�y0 = (0; 1; 0; 0; 0):21



To obtain equations for �~x=�tx0, we di�erentiate equations (78) with respe
t to tx0 and
hange the order of the derivative operators �=�tx0 and d=dz on the left hand sides :d=dz(�x=�tx0) = �tx=�tx0;d=dz(�y=�tx0) = �ty=�tx0;d=dz(�tx=�tx0) = q0 � � � [(�Ax=�tx)(�tx=�tx0) + (�Ax=�ty)(�ty=�tx0)℄ ;d=dz(�ty=�tx0) = q0 � � � [(�Ay=�tx)(�tx=�tx0) + (�Ay=�ty)(�ty=�tx0)℄ ;�q=�tx0 = 0; (84)where�Ax=�tx = tx � Ax=(1 + t2x + t2y) + (1 + t2x + t2y) 12 � (ty �Bx � 2 � tx �By) ;�Ax=�ty = ty � Ax=(1 + t2x + t2y) + (1 + t2x + t2y) 12 � (tx �Bx +Bz) ;�Ay=�tx = tx � Ay=(1 + t2x + t2y) + (1 + t2x + t2y) 12 � (�ty �By � Bz) ;�Ay=�ty = ty � Ay=(1 + t2x + t2y) + (1 + t2x + t2y) 12 � (�tx �By + 2 � ty �Bx) :Initial values for the solution of latter equations are:�~xT =�tx0 = (0; 0; 1; 0; 0): (85)The equations for �~x=�ty0 are analogous to Eqs. (84) , but the initial values are :�~xT =�ty0 = (0; 0; 0; 1; 0) :To obtain equations for �~x=�q0, we di�erentiate Eqs. (78) with respe
t to q0 and 
hangethe order of the derivative operators �=�q0 and d=dz in the left parts :d=dz(�x=�q0) = �tx=�q0 ;d=dz(�y=�q0) = �ty=�q0 ;d=dz(�tx=�q0) = � � Ax + � � q0 � [(�Ax=�tx)(�tx=�q0) + (�Ax=�ty)(�ty=�q0)℄ ;d=dz(�ty=�q0) = � � Ay + � � q0 � [(�Ay=�tx)(�tx=�q0) + (�Ay=�ty)(�ty=�q0)℄ ;�q=�q0 = 1 : (86)Initial values for the solution of latter equations are :�~xT =�q0 = (0; 0; 0; 0; 1): (87)9.3 Cartesian Parameterization: Proje
tion of State Ve
tor toMVD MeasurementTo proje
t a state ve
tor (77) to a BMVD measurement we use the method des
ribedin Subse
t. 8.2. The state ve
tor, ~xk, is de�ned in the referen
e plane with 
oordinate,z = zk. We lo
ate the referen
e plane 
lose to the MVD sensor and, therefore use a linearexpansion of the traje
tory: x(sk) = xk + txk sky(sk) = yk + tyk skz(sk) = zk + sk: (88)22



A 
ondition of the traje
tory interse
tion with the sensor plane reads:[ (~r(sk)� ~r
) � ~n ℄ = 0; (89)where ~r
 and ~n are the origin of a lo
al MVD sensor system and the unit ve
tor whi
his perpendi
ular to the sensor plane, respe
tively. The variable advan
e, �sk, to travelfrom the referen
e plane at zk to the sensor plane is:�sk = � bkak ;ak = txk nx + tyk ny + nz;bk = (xk � x
)nx + (yk � x
)ny + (zk � z
)nz: (90)Analogous to Eq. 55, we obtain the expe
ted measurement, hk(~xk), by proje
ting theposition ve
tor in the lo
al frame, ~r(�sk)� ~r
, to the measurement axis, ~m:hk(~xk) = [ (~r(�sk)� ~r
) � ~m ℄= �sk!k 
k + (xk � x
)mx + (yk � y
)my + (zk � z
)mz;
k = mx txk +my tyk +mz: (91)Nontrivial elements of the Ja
obian, �(hk)=�(~xk), are:�hk=�xk = mx � 
k nx = ak; �hk=�yk = my � 
k ny = ak;�hk=�txk = �hk=�xk ��sk; �hk=�tyk = �hk=�yk ��sk: (92)Derivatives with respe
t to slopes have an additional order of smallness o(�sk) and weapproximate the Ja
obian, �(hk)=�(~xk), for the BMVD:�(hk)=�(~xk) = � �hk�xk �hk�yk �hk�txk �hk�tyk 0 � ; for j�skj � 10�3;�(hk)=�(~xk) = � �hk�xk �hk�yk 0 0 0 � ; for j�skj < 10�3: (93)Sensors of the FMVD are almost perpendi
ular to the z{axis and, therefore nx;y � 0.We lo
ate the referen
e plane at the position of the FMVD sensor (�sk = 0). Takinginto a

ount latter remarks, we obtain from Eq. (92) the Ja
obian, �(hk)=�(~xk), for theFMVD �(hk)=�(~xk) = � mx my 0 0 0 � : (94)9.4 Cartesian Parameterization: Proje
tion of State Ve
tor toCTD MeasurementThe linear expansion of a parti
le traje
tory (88) de�nes the parti
le 
oordinates in theimmediate vi
inity of a stereo wire. An approa
h to obtain the proje
tion of 
artesian23



state ve
tor to CTD stereo measurement is similar to those dis
ussed in Subse
. 8.3. A
ondition of the traje
tory interse
tion with the planar drift plane reads:[ (~r(sk)� ~w) � ~n ℄ = 0; (95)where the 
oordinate of the wire, ~w, and ve
tor, ~n, are de�ned by (59) and (61), respe
-tively. The variable advan
e, �sk, to travel from the referen
e plane to the planar driftplane is a solution of a quadrati
 equation, (�sk)2 ak +�sk bk + 
k = 0:�sk = 12ak ��bk +qb2k � 4 ak 
k� ; (96)with 
oeÆ
ientsak = Akx p0wx + Aky p0wy;bk = AkxPkx +Bkx p0wx + Aky Pky +Bky p0wy;
k = BkxPkx +Bky Pky;Akx = tkx � r0wx; Aky = tky � r0wy;Bkx = xk � rwx � (zk � z
) r0wx; Bky = yk � rwy � (zk � z
) r0wy;Pkx = pwx + (zk � z
) p0wx; Pky = pwy + (zk � z
) p0wy: (97)
We obtain the expe
ted measurement, hk(xk), i.e. drift distan
e, as in (65):hk(xk) = [xk + tkx�sk � rwx � (zk � z
 +�sk) r0wx℄ mx+ hyk + tky�sk � rwy � (zk � z
 +�sk) r0wyi my; (98)where the ~m have to by repla
ed by ~m= 
os� to take into a

ount the stereo angle, �.Derivatives with respe
t to slopes have an additional order of smallness o(�sk) and weapproximate the Ja
obian, �(hk)=�(~xk), for the CTD stereo measurement:�(hk)=�(~xk) = � �hk�xk �hk�yk �hk�txk �hk�tyk 0 � ; for j�skj � 10�3;�(hk)=�(~xk) = � �hk�xk �hk�yk 0 0 0 � ; for j�skj < 10�3: (99)Elements of the Ja
obian, �(hk)=�(~xk), are presented in appendix C.Axial wires of the CTD run parallel to the z{axis and parameters, ~r0w and ~p0w vanishin (59) and (61), respe
tively. A 
ondition of the interse
tion of the traje
tory with theplanar drift plane leads to Eq. (95), whi
h has the solution:�sk = �bk=ak;ak = txk pwx + tyk pwy;bk = (xk � rwx) pwx + (yk � rwy) pwy: (100)We 
onsider the ve
tor of expe
ted measurement, hk(xk), for the general, two-dimensional
ase hk(xk) =  hk1(xk)hk2(xk) ! ; (101)24



with the �rst and se
ond 
omponent being a drift distan
e and z{position, respe
tively:hk1(xk) = (xk + tkx�sk � rwx) mx + (yk + tky�sk � rwy) my;hk2(xk) = zk +�sk: (102)We approximate the Ja
obian, �(hk)=�(xk), as:�(hk)=�(xk) = 0B� �hk1�xk �hk1�yk �hk1�tkx �hk1�tky 0�hk2�xk �hk2�yk �hk2�tkx �hk2�tky 0 1CA ; for j�skj � 10�3; (103)and �(hk)=�(xk) = 0B� �hk1�xk �hk2�yk 0 0 0�hk2�xk �hk2�yk 0 0 0 1CA ; for j�skj < 10�3; (104)where we take into a

ount an additional order of smallness o(�sk) for derivatives withrespe
t to tra
k slopes. We obtain nontrivial elements of latter Ja
obians in appendix C.9.5 Cartesian Parameterization: Proje
tion of State Ve
tor toSTT MeasurementSignal wires of a given STT layer are arranged in a plane perpendi
ular to the z{axiswith 
oordinate z = zw. We lo
ate the referen
e plane at the position of the layer, i.e.zk = zw. The parti
le traje
tory inside a straw tube we approximate by a straight line.The latter line and the signal wire are des
ribed as lines whi
h pass through points ~rkand ~rw and have dire
tions ~nk and ~nw, respe
tively:~rk = 0BB� xkykzw 1CCA ; ~rw = 0BB� xwywzw 1CCA ; ~nk = 0BB� nkxnkynkz 1CCA ; ~nw = 0BB� nwxnwy0 1CCA : (105)Components of the ve
tor of parti
le dire
tion, ~nk, we 
al
ulate using tra
k slopes tkx; tky:nkx = tkxq1 + t2kx + t2ky ; nky = tkyq1 + t2kx + t2ky ; nkz = 1q1 + t2kx + t2ky : (106)The expe
ted measurement is a drift distan
e2 in the straw, whi
h is evaluated as adistan
e between these two lines:hk(~xk) = (~rk � ~rw) � ~nk � ~nwj~nk � ~nwj : (107)2 We expe
t that left{right ambiguity of the drift distan
e is resolved and, therefore regard it as asigned value. 25



After simple 
al
ulations the expe
ted measurement reads:hk(~xk) = �(xk � xw)nwy + (yk � yw)nwxq1 + (tkx nwy � tky nwx)2 : (108)The Ja
obian of the latter transformation we 
an approximate as:�(hk)=�(~xk) = � �hk�xk �hk�yk 0 0 0 � ; (109)with �hk=�xk = �nwy =q1 + (tkx nwy � tky nwx)2;�hk=�yk = nwx =q1 + (tkx nwy � tky nwx)2: (110)9.6 Cartesian Parameterization: Pro
ess NoiseWe evaluate deviations of tra
k slopes indu
ed by multiple s
attering from Eq. (35):Ætkx = Æ �nkxnkz� = ��1 nkynkz nkt + �2 nkxn2kz nkt ;Ætky = Æ �nkynkz� = �1 nkxnkz nkt + �2 nkyn2kz nkt ; (111)where �1; �2 are random variables de�ned by (32). Nonzero elements of the matrix de-s
ribing multiple s
attering in one s
atterer are:Qtx tx = �2ms (1 + t2kx) (1 + t2kx + t2ky);Qty ty = �2ms (1 + t2ky) (1 + t2kx + t2ky);Qtx ty = �2ms tkx tky (1 + t2kx + t2ky); (112)with RMS of the de
e
tion angle, �ms, whi
h is de�ned by Eq. (33). The matrix, Qk, inpredi
tion equation (18) has to a

ount for a summary e�e
t of multiple s
attering on apath from (k � 1)th to kth state, and is therefore evaluated analogous to (76).9.7 Cartesian Parameterization for Rear Tra
ksFor rear tra
ks (nz < 0) we use a parameterization analogous to those for forward tra
ks.The meaning of parameters x; y; q is identi
al with (77). For rear tra
ks we de�ne slopesw.r.t. negative dire
tion of the z{axis:tx = �nx = nz;ty = �ny = nz: (113)Equations of parti
le motion for rear tra
ks are identi
al to (78) for forward tra
ks, butwith slightly di�erent de�nition of fun
tions Ax,Ay:Ax = (1 + t2x + t2y) 12 � [ty � (�txBx +Bz) + (1 + t2x)By℄ ;Ay = (1 + t2x + t2y) 12 � h�tx � (�tyBy +Bz)� (1 + t2y)Bxi : (114)Equations (88) for linear and (81) for paraboli
 expansions of traje
tory 
an be used forrear tra
ks also, if we regard the expansion w.r.t. z{
oordinate de
rement, s = z0 � z.26



10 Global ParameterizationA global perigee parameterization of tra
ks [13℄ is used for analyses in the ZEUS experi-ment. The perigee parameters are parameters of a helix, whi
h are de�ned at the tra
k'spoint of 
losest approa
h to the z{axis:~xT = (�H ; Q=RH ; QDH ; zH ; 
ot �) ; (115)where�H = angle of xy{proje
tion of tra
k dire
tion with the x{axis,Q=RH = helix 
urvature signed by a parti
le 
harge, Q,QDH = signed minimal distan
e to z{axis,zH = z{
oordinate at point of 
losest approa
h,
ot � = 
otangent of tra
k dire
tion w.r.t. z-axis.Transformations between lo
al parameters (
ylindri
al or 
artesian) and global ZEUSperigee parameters are given in appendix D.11 Fast Computations with Kalman Filter Te
hniqueMost of the 
al
ulation by the Kalman �lter te
hnique is in the following pro
edures:� transportation and proje
tion of tra
k parameters (24) and evaluation of Ja
obianmatri
es (25);� matrix operations in predi
tion (18), �lter (21) and smoother (23) equations;� sear
h of a tra
k 
rossing with material to evaluate e�e
ts of multiple s
atteringand energy loss.Approa
hes to fast 
omputation with Kalman �lter te
hnique were dis
ussed for themagnet tra
king [17℄,[18℄ at the HERA-B dete
tor.To redu
e 
omputations we use a 
exible strategy for propagating tra
k parametersand derivatives in the inhomogeneous �eld, as des
ribed for forward and rear tra
ks inSubse
. 9.1. For long (s > 10 
m) distan
es we use numeri
al integration of the equationsof motion, but integrate derivatives together with a \zero traje
tory" that allows toredu
e 
omputations. For short distan
es (s < 10 
m) we use paraboli
 expansion (81)of the parti
le traje
tory, whi
h is very fast in 
omputations.To keep the 
omputational e�ort at a minimum we exploit the sparse stru
tures ofthe Ja
obian matri
es. The Ja
obian of tra
k propagation in
ludes elements whi
h arevery 
lose to 0 or 1, therefore we use Ja
obian approximations and set su
h elements to0 or 1. The Ja
obians for 
ylindri
al (51) and 
artesian (82) parameterization 
ontainonly 11 and 10 nontrivial elements, respe
tively. To 
al
ulate the produ
t of matri
esFk Ck�1 F Tk in (18) we implement fun
tions, whi
h take into a

ount a sparse stru
ture27



of the matrix Fk. For example, the fun
tion for 10 nontrivial elements of the Fk implies73 multipli
ations, whi
h is mu
h smaller than 200 multipli
ations needed for the 
ase ofthe 
ompletely �lled matrix Fk of size 5 by 5.The Ja
obians of proje
tion transformation, Hk, are approximated also, as shown in(58), (67), (71), (72) et
. We implement 
orresponding fun
tions for the 
al
ulation ofprodu
ts of Ck�1k HTk and (1 � KkHk)Ck�1k in (21) or (1 � HkKk)Vk in (22). Thesefun
tions take into a

ount the sparse stru
ture of the matrix Hk. For example, only 20multipli
ations are suÆ
ient to obtain the matrix (1�KkHk)Ck�1k for the option with onenontrivial element in the matrix Hk. This has to be 
ompared with 100 multipli
ationsneeded for the 
ompletely �lled matrix of size 5 by 1.To evaluate the e�e
ts of multiple s
attering and energy loss, we des
ribe the distribu-tion of material in the ZEUS inner tra
kers by using about 1800 separate volumes. After
rossing a given volume, a parti
le 
an rea
h only a limited number of other volumes. Weimplement an approa
h 
alled volume navigation [19℄ for fast sear
h of a tra
k's 
rossingswith these volumes. Using the Monte Carlo te
hnique, we evaluate for ea
h volume alist of volumes, whi
h 
an be 
rossed subsequently. On average, one list in
ludes about7 subsequent volumes. The lists are used to navigate a fast sear
h of tra
k 
rossing withvolumes.The des
ribed approa
hes have been programmed [20℄ in C++. We follow re
ipes ofe�e
tive programming of numeri
al 
al
ulations [14℄ and implement STL 
ontainers tostore obje
ts like hits, states, tra
ks et
.Table 1: Computing time of the tra
k �t per ZEUS event on a PC with pro
essor IntelCPU 3.06GHz for di�erent groups of tra
ks.Fitted tra
ks Fra
tion Field model Time/eventForward (� < 60Æ) 59% inhomogeneous 12msCentral (60Æ < � < 120Æ) 23% homogeneous 7msRear (� > 120Æ) 18% inhomogeneous 1msAll tra
ks in event 100% (in)homogeneous 20msA ZEUS event 
ontains up to 100 �tted tra
ks and about 30 tra
ks on average. Thelongest tra
ks in
lude about 80 hits in the 
entral area, 50 hits in a transition regionand 30 hits in the very forward dire
tion. Fitting all the tra
ks in one event takes 20mson PC with pro
essor Intel CPU 3.06GHz (see Table 1) and 46ms with pro
essor IntelCPU 1GHz. About of 77% of tra
ks are �tted using the inhomogeneous �eld as shown inTable 1. The 
omputing time for these tra
ks is 
omparable with those whi
h are �ttedusing the homogeneous �eld approximation.
28
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Figure 1: Standard deviations of the pull distributions of �tted tra
k parameters in perigeeparameterization (115) for MC simulated muons versus the momentum.
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The pre
ision of �tted parameters depends on the resolution and details of the per-forman
e of the ZEUS tra
kers and will be dis
ussed in the next note [20℄. Here wewould like to mention that approximations implemented to redu
e 
omputations, are notmade at the expense of tra
k parameter pre
ision. Evaluation of the 
ovarian
e matri
esof �tted parameters in (21) and (23) are the most 
ompli
ated 
omputations, in
ludingoperation with the transport, proje
tion and pro
ess noise matri
es. Cal
ulated vari-an
es of these matri
es are in good agreement with the residuals of the �tted parameters.Standard deviations of pull distribution (residuals normalized by their estimated error)are 
lose to unity for di�erent tra
k momenta, as shown in Fig. 1.12 Con
lusionsWe 
onsider a mathemati
al framework for the rigorous approa
h to a 
ommon tra
k �tusing the tra
kers in the inner region of the ZEUS dete
tor: CTD, BMVD, FMVD andSTT. We dis
uss tra
k models and likelihood fun
tions in su
h a multi-
omponent tra
ker.The approa
h o�ers a rigorous treatment of �eld inhomogeneity, multiple s
attering andenergy loss. The tra
k �tting pro
edure makes use of the Kalman �lter te
hnique.We des
ribe details of the mathemati
s for the fast implementation of a Kalman �lterfor the 
ylindri
al drift 
hamber, barrel and forward sili
on strip dete
tors and straw drift
hambers. The 
ases of homogeneous and inhomogeneous �eld are 
onsidered.We dis
uss how to redu
e 
omputations and make the tra
k �tting pro
edure fast.Average 
omputing time of tra
k �tting in one ZEUS event is about of 20ms on a PCwith pro
essor Intel CPU 3.06GHz.A
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13 Appendix A: Ja
obian of predi
tion transforma-tion in 
ylindri
al parameterizationWe use derivatives of tk to 
al
ulate the Ja
obian (51) of predi
tion transformation (49):�tk=�uk = 
os(�k � ukrk )� 
os(�k � ukrk � tk)rk 
os(�k � ukrk � tk) + 1!k sin tk ;�tk=�zk = 0;�tk=��k = �rk �tk=�uk;�tk=��k = !k�k1 + �2k �tk=�!k;�tk=�!k = 2 (1� 
os tk) + rk !k �sin(�� ukrk )� sin(�� ukrk � tk)�rk !2k 
os(�� ukrk � tk) + !k sin tk : (116)
Nontrivial elements of the Ja
obian are:�uk+1=�uk = rk+1xk+1 h
os ukrk + 1!k sin(�k � tk) �tk=�uki= rk+1yk+1 hsin ukrk � 1!k 
os(�k � tk) �tk=�uki ;�uk+1=��k = rk+1!k xk+1 [sin�k � sin(�k � tk) (1� �tk=��k)℄= rk+1!k yk+1 [� 
os�k + 
os(�k � tk) (1� �tk=��k)℄ ;�uk+1=��k = rk+1!k xk+1 "� �k1 + �2k (
os(�k � tk)� 
os�k) + sin(�k � tk) �tk=��k#= rk+1!k yk+1 "� �k1 + �2k (sin(�k � tk)� sin�k)� 
os(�k � tk) �tk=��k# ;�uk+1=�qk = rk+1qk !k xk+1 [
os�k � 
os(�k � tk) + !k sin(�k � tk) �tk=�!k℄= rk+1qk !k yk+1 [sin�k � sin(�k � tk)� !k 
os(�k � tk) �tk=�!k℄ ;�zk+1=�uk = �k!k �tk=�uk; �zk+1=��k = �k!k �tk=��k;�zk+1=��k = tk!k ; �zk+1=�qk = �kqk ��tk=�!k � tk!k � ;��k+1=�uk = ��tk=�uk; ��k+1=��k = �k!k1 + �2k �tk=�!k;��k+1=�qk = ��tk=�qk: (117)32



14 Appendix B: Ja
obian of proje
tion transforma-tion for the CTD in 
ylindri
al parameterizationElements of the Ja
obian (67) of proje
tion transformation (66) for the stereo CTD are:�hk=�zk = Ck ��tk=�zk �mx r0wx �my r0wy;�hk=��k = Ck ��tk=��k + �tk!k (�mx sin�k +my 
os�k) ;�hk=��k = Ck ��tk=��k ��tk " �k Ck1 + �2k + 1!k �mx r0wx +my r0wy�# ; (118)with derivatives��tk=�zk = ��tk �bk=�zk + �
k=�zk2�tk ak + bk ;��tk=��k = � �tk �bk=��k�tk2 �ak=��k + 2�tk ak + bk ;��tk=��k = � �tk �bk=��k + �
k=��k�tk2 �ak=��k + 2�tk ak + bk ;�bk=�zk = !k�k �Akx p0wx + Aky p0wy�� p0wx r0wx � p0wy r0wy;�
k=�zk = !k�k �Bkx p0wx +Bky p0wy�� Pkx r0wx � Pky r0wy;�ak=��k = 1!k �� sin�k p0wx + 
os �k p0wy� ;�bk=��k = 1!k (� sin�k Pkx + 
os�k Pky) ;�ak=��k = p0wx �Akx=��k + p0wy �Aky=��k;�bk=��k = Pkx �Akx=��k + Pky �Aky=��k� 1�k (1 + �2k) (AkxPkx + Aky Pky) ;�
k=��k = � 1�k (1 + �2k) (BkxPkx +Bky Pky) ;�Akx=��k = � 1!k " �k1 + �2k (
os �k � �kr0wx) + r0wx# ;�Aky=��k = � 1!k " �k1 + �2k (sin�k � �kr0wy) + r0wy# :
(119)

Elements of the 
orresponding Ja
obian (71) for the axial CTD look as:�hk1=��k = mwx!k (��tk sin�k + ��tk��k 
os�k)+ mwy!k (�tk 
os�k + ��tk��k sin�k);�hk2=�uk = �kak !k (pwxykrk � pwyxkrk );�hk2=��k = �k!k ��tk��k ;�hk2=��k = �tk!k ;��tk=��k = �tkak !k (pwx sin�k � pwy 
os �k):
(120)
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15 Appendix C: Ja
obian of proje
tion transforma-tion for the CTD in 
artesian parameterizationNontrivial elements of the Ja
obian (99) of proje
tion transformation (98) for the stereoCTD are: �hk=�xk = mx +Mw ��sk�xk ; �hk=�yk = my +Mw ��sk�yk ;�hk=�txk = �hk�xk ��sk; �hk=�tyk = �hk�yk ��sk; (121)with ��sk=�xk = ��sk p0wx + Pkx2�sk ak + bk ; ��sk=�yk = ��sk p0wy + Pky2�sk ak + bk ;Mw = mwx (tkx � r0wx) +mwy (tky � r0wy):Elements of the 
orresponding Ja
obian (103) for the axial CTD read as:�hk1=�xk = mx +Mw ��sk�xk ; �hk1�yk = my +Mw ��sk�yk ;�hk1=�txk = �hk1�xk ��sk; �hk1�tyk = �hk1�yk ��sk;�hk2=�xk = ��sk�xk ; �hk2�yk = ��sk�yk ;�hk2=�txk = ��sk�xk ��sk; �hk2�tyk = ��sk�yk ��sk; (122)
with ��sk=�xk = �pwxak ; ��sk=�yk = �pwyak ;Mw = mwx tkx +mwy tky:16 Appendix D: Conversions from Lo
al to GlobalParametersTra
k parameters, u0; z0; �0; �0; q0, at the beginning of a 
entral tra
k, whi
h is �ttedusing the 
ylindri
al parameterization (48), are 
onverted to perigee parameters (115):�H = �0 � tH ;Q=RH = �Bz q0q1 + �20;QDH = � r0 sin(u0r0 � �0 + tH) + (
os tH � 1) = (Q=RH);zH = z0 + �0 tH = (Q=RH);
ot � = �0; (123)
where tH = ar
tan �1=(Q=RH)� r0 sin(u0=r0 � �0)r0 
os(u0=r0 � �0) �� �2 sign(Q=RH):34



We 
onvert �tted 
artesian parameters at the beginning of a forward tra
k ,x0; y0; t0x; t0y; q0,into perigee parameters (115):�H = ar
tan Y0X0 ;Q=RH = �Bz q0 q1 + t20x + t20yqt20x + t20y ;QDH = �1 + Y0 sin�H + X0 
os�HQ=RH ;zH = z0 + �0 � �Hqt20x + t20y Q=RH ;
ot �H = 1qt20x + t20y ;
(124)

where �0 = ar
tan t0yt0x ;X0 = �y0Q=RH + t0xqt20x + t20y ;Y0 = x0Q=RH + t0yqt20x + t20y :The transformation from 
artesian to perigee parameterization for rear tra
ks is similarto (124) for parameters �H ; Q=RH ; QDH , but di�ers for parameters zH and 
ot �H :zH = z0 � �0 � �Hqt20x + t20y Q=RH ;
ot �H = � 1qt20x + t20y : (125)

35


	Introduction
	Overview of the tracker layout
	Track Models and Likelihood Functions in a Multi-Component Tracker
	Application of the Kalman filter technique to track fitting
	Linear Model
	Non--linear Model

	Particle Motion in a Static Magnetic Field
	Multiple Scattering and Energy Loss
	Specifics of Kalman Filter Implementation for the ZEUS Inner Trackers
	Cylindrical Parameterization for central tracks 
	Cylindrical Parameterization: Prediction Equations
	Cylindrical Parameterization: Projection of State Vector to MVD Measurement
	Cylindrical Parameterization: Projection of State Vector to CTD Measurement
	Cylindrical Parameterization: Process Noise

	Cartesian Parameterization in an Inhomogeneous Magnetic Field
	Cartesian Parametrization: Equations of Motion  in Inhomogeneous Magnetic Field
	Cartesian Parametrization: Equations for Derivatives
	Cartesian Parameterization: Projection of State Vector to MVD Measurement
	Cartesian Parameterization: Projection of State Vector to CTD Measurement
	Cartesian Parameterization: Projection of State Vector to STT Measurement
	Cartesian Parameterization: Process Noise
	Cartesian Parameterization for Rear Tracks

	Global Parameterization
	Fast Computations with Kalman Filter Technique
	Conclusions
	References
	Appendix A: Jacobian of prediction transformation in cylindrical parameterization
	Appendix B: Jacobian of projection transformation for the CTD in cylindrical parameterization
	Appendix C: Jacobian of projection transformation for the CTD in cartesian parameterization
	Appendix D: Conversions from Local to Global Parameters

