
*0
8∣
2.
∣2
45
*

 DESY 08-182
ar

X
iv

:0
81

2.
12

45
v1

  [
ph

ys
ic

s.
da

ta
-a

n]
  5

 D
ec

 2
00

8

DESY 08{182Deember 2008
Mathematial Frameworkfor Fast and Rigorous Trak Fitfor the ZEUS DetetorAlexander Spiridonov�DESYAbstratIn this note we present a mathematial framework for a rigorous approah to aommon trak �t for trakers loated in the inner region of the ZEUS detetor. Theapproah makes use of the Kalman �lter and o�ers a rigorous treatment of magneti�eld inhomogeneity, multiple sattering and energy loss. We desribe mathemat-ial details of the implementation of the Kalman �lter tehnique with a reduedamount of omputations for a ylindrial drift hamber, barrel and forward silionstrip detetors and a forward straw drift hamber. Options with homogeneous andinhomogeneous �eld are disussed. The �tting of traks in one ZEUS event takesabout of 20ms on standard PC.
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1 IntrodutionThe ZEUS experiment [1℄ was operated at the eletron-proton ollider HERA at DESYuntil 2007. The ZEUS detetor was a sophistiated, multi-omponent tool for studyingpartile reations provided by eletron-proton ollisions with an energy 27.5 GeV and920 GeV,respetively. The inner traking omponents of the ZEUS detetor were: thesilion strip Miro Vertex Detetor [2℄ with barrel (BMVD) and forward (FMVD) parts;the Central Traking Detetor (CTD) [3℄ onsisting of the ylindrial drift hamber; theForward Traking Devie (FTD) [1℄ and the forward Straw-Tube Traker (STT) [4℄. TheMVD was loated in the viinity of interation point, inside of the CTD.The magneti �eld in the entral region of the ZEUS detetor was produed by a thinsuperonduting solenoid. The �eld had a strength of 14.3 kGauss at the enter and wasdireted parallel to the proton beam. The barrel MVD and CTD were loated in the�eld whih was almost homogeneous with a small radial omponent far from the enter.Forward trakers were plaed outside of the solenoid or lose to its edge where the �eldis inhomogeneous.We onsider a mathematial framework for a rigorous approah to a ommon trak�t, whih an be performed with traks inluding all inner traking omponents or withany ombination of them. The approah o�ers a rigorous treatment of �eld inhomo-geneity, multiple sattering and energy loss. The trak �tting proedure makes use ofthe Kalman �lter tehnique and we disuss how to optimize omputations and make the�tting proedure fast.2 Overview of the traker layoutThe ZEUS oordinate system is a right-handed Cartesian system, with the z{axis pointingin the proton beam diretion (forward) and the x{axis pointing to the enter of the HERAring. The oordinate origin is at the nominal interation point.The barrel (BMVD) and forward (FMVD) setion of the MVD inludes 600 and 112sensors, respetively [2℄. A sensor is a silion single-sided strip detetor with a readoutpith of 120�m whih inludes �ve innermost strips for apaitive harge division. TheZEUS MVD has 307,200 and 53,730 readout hannels in the barrel and forward setions,respetively.The barrel setion, entered at the interation point, is about 63 m long. The silionsensors are arranged in three onentri ylindrial layers with radii about 5 m, 8 m and12 m. Two bak to bak sensors in a layer provide measurements of nominal r � � andz position. The FMVD is omposed of four transverse disks of 14 wedges eah, whihextend the angular overage down to 7Æ from the beam line. Eah wedge has two sensorlayers separated by approximately 8mm in z{diretion. They are mounted bak to bak,suh that the angle between strips is 2� 13Æ.The CTD [2℄ is a ylindrial drift hamber, with a sensitive volume approximately 2min length and 0.4 (1.6m) in inner (outer) diameter. The CTD wires are arranged into nine4



onentri superlayers numbered onseutively from the inside out. The odd-numberedsuperlayers have sense wires running parallel to the hamber axis (i.e. z{axis) whilethose in the even-numbered superlayers have a 5Æ stereo angle. We denote sense wiresin orresponding superlayers as axial and stereo, respetively. Eah superlayer ontainseight sense wire layers { there are 4608 sense wires in total. A set of eight sense wires issurrounded by �eld wires, azimuthally dividing a superlayer into ells of polygonal shape.Eah sense wire is read out by a ash ADC and, �nally a drift distane is evaluated for ahit. All axial wires in superlayer one and the odd numbered wires in superlayer three and�ve (in total 704 wires) are additionally equipped with the z-by-timing system, whihmeasures z position of a hit.The STT uses straw drift hambers with 7.5mm diameter apton tubes of varyinglength from 20 m to 75 m. There are in total 10,944 wires in 48 wedge shaped setors.Eah wedge overs an azimuthal span of 60Æ. Eah setor onsists of 3 layers of strawsperpendiular to the z{axis. A trak rossing the STT nominally delivers 24 drift timemeasurements.3 Trak Models and Likelihood Funtions in a Multi-Component TrakerThe likelihood funtion of a trak measurement has a meaning regardless of the detailsof any �tting method. The maximum-likelihood estimator is eÆient in the sense thatno other unbiased estimator has smaller varianes. A trak model whih is appropriatefor the likelihood funtion, together with a given method of trak �t, may produe aneÆient estimate of parameters. A general point of view of the information delivered by atraker an help to interpret behavior of varianes of �tted parameters and hit residuals.We an model a multi-omponent traker by a set of trak deteting elements andintermediate bloks of passive material, whih are loated in a stati magneti �eld.Trak parameters in the detetor element k are desribed by a vetor xk. For the ase ofa three-dimensional �t, the dimension of the vetor,xk, is 5. The trak measurement inthe traker element k, i.e. the kth hit, is a vetor denoted by mk. In general mk is thevetor with its dimension orresponding to that of the traking element. For example,mk has only 1 oordinate for a silion strip of the MVD, a drift tube of the STT ora stereo wire of the CTD and 2 oordinates (drift time and z position of a hit) for anaxial wire of the CTD whih is additionally equipped with the z-by-timing system. Themeasurement error an be desribed by the ovariane matrix Vk. We approximate theprobability (density) of the measurement mk given the vetor of trak parameters xkP (mkjxk) = G(mkjhmki;Vk) (1)by a Gaussian funtion with the mean value hmki and ovariane matrix Vk:G(mkjhmki;Vk) = C(Vk) exp n� 12(mk � hmki)TV �1k (mk � hmki)o; (2)5



where C(Vk) is a normalization onstant. An operator Hk projets the atual vetor xkinto the spae of measurement: hmki = Hk xk: (3)Suppose that we are interested in the trak parameters at the beginning of trak, x1.The likelihood funtion takes the form of a produt:L(m1; m2; :::; mN jx1) = P (x2; :::; xN jx1) � NYk=1G(mkjHk xk;Vk): (4)The �rst term is the probability for a partile to pass through the points x2; :::; xN giventhe parameters x1 at the beginning and the seond one is the probability to obtain themeasurements, m1; :::; mN , while measuring the points in the spae of trak parametersx1; :::; xN of the real (not the mean) trajetory. The probability, P (x2; :::; xN jx1), an beapproximated by a Gaussian distributionP (x2; :::; xN jx1) = G(x2; :::; xN jhx2(x1)i; :::; hxN(x1)i; �(x1)): (5)The mean trajetory is de�ned as: hxk(x1)i = Fkx1; (6)where the operator Fk swims trak parameters x1 into the detetor element k. The trakmodel may be desribed as a ontinuous urve for the mean trajetory with utuationsof atual parameters xk with respet to the mean trajetory,Dk(x1) = xk � Fkx1: (7)The utuation, Dk(x1), aumulates the e�et of multiple sattering on the pass fromthe beginning of the trak to the given element. Vetors fDk(x1)g are orrelated and,therefore, matrix �(x1) has dense struture (many non-zero elements). We an ombineGaussian funtions from (4) and (5):L(m1; m2; :::; mN jx1) = G(m1; m2; :::; mN jH1x1; H2F2x1; :::; HNFNx1;M(x1)); (8)where the non-diagonal ovariane matrix M(x1) has dimension equal to the sum ofdimensions of all measurements fmkg. The dimension of the M may be of order 102 formodern traking detetors. Maximization of the likelihood funtion of Gaussian type,i.e. least square �tting with large non-diagonal ovariane matrix M, requires a lotof omputations, although not more than 5 parameters are �tted. Beause of largeomputing time, the model is not onvenient for a trak �tting in a multi-omponenttraker. But the model inludes a small number of �tted parameters, and is suitablefor a subsequent update of detetor alignment parameters [5℄, where an expansion of hitresiduals w.r.t. �tted parameters is needed.A harged partile traversing a medium an be desribed by a stohasti proess withthe Markov property and, therefore, the onditional probability distribution of future6



states depends only upon the present state and not on any past states. The probabilityfuntion for a partile to pass through the points x2; :::; xN in (5) an be rewritten as:P (x2; :::; xN jx1) = NYk=2P (xkjxk�1) = NYk=2G(xkjhxk(xk�1)i;Qk(xk�1)): (9)We approximate the onditional probability (density), P (xkjxk�1), for trak parame-ters xk, given the parameters in the previous state xk�1, by the Gaussian distribution,G(xkjhxk(xk�1)i;Qk(xk�1)) with the mean hxk(xk�1)i and ovariane matrix Qk(xk�1).The mean trajetory in the traking element k ishxk(xk�1)i = Fkxk�1: (10)The operator Fk swims trak parameters xk�1 into the detetor element k aording tothe equations of motion.Suppose that we are interested in trak parameters in all points of trak measurement,i.e. x1; x2; :::; xN . The likelihood funtion takes a form:L(m1; :::; mN jx1; :::; xN) = G(m1jH1 x1;V1) � NYk=2G(xkjFk xk�1;Qk)G(mkjHk xk;Vk);(11)with Gaussian funtionsG(mkjHk xk;Vk) = C(Vk) exp n� 12(mk �Hk xk)TV �1k (mk �Hk xk)o (12)and G(xkjFk xk�1;Qk) = C(Qk) exp n� 12(xk � Fk xk�1)TQ�1k (xk � Fk xk�1)o; (13)where C(Vk) and C(Qk) are normalization onstants.The model for the total trak is not a ontinuous urve, but onsists of N � 1 ontin-uous segments. A variation of trak parameters in the point of disontinuityÆk = xk � Fkxk�1 (14)desribes the e�et of multiple sattering on the pass from the the previous element k�1to the element k. Vetors fÆkg are unorrelated. A spread of the Æk is de�ned by theovariane matrix Qk.The maximum likelihood estimation of parameters fxkg satis�es the system of equa-tions (� (�lnL)�xTk = 0) : (15)If operators Fk and Hk are non-linear (e.g. in magneti �eld) then the latter equa-tions are non-linear also. The problem an be solved iteratively using the well knownmethod of linearization of operations (3) and (10). Anyhow we an regard the funtional,7



�(�lnL)=�xTk , as a linear form w.r.t. vetors of estimated parameters fxkg. The vetor,xk, assoiates in (11) only with vetors in neighboring data points k � 1 and k + 1 and,therefore, the linear form �(�lnL)=�xTk inludes only 3 terms with vetors xk�1; xk andxk+11, respetively. Finally, the system (15) looks as0BBBBBBBBBB�
I11 I12I21 I22 I23I32 I33 I34::: ::: :::::: ::: :::IN�1N INN

1CCCCCCCCCCA
0BBBBBBBBBB�

x1x2x3::::::xN
1CCCCCCCCCCA = 0BBBBBBBBBB�

r1r2r3::::::rN
1CCCCCCCCCCA ; (16)

where submatries related to points i; j,Iij = �2(�lnL)�xTi �xj ;are parts of the information matrix. The sparse (with many zero elements), band stru-ture of the information matrix an be exploited to redue omputations drastially. Thisan be ahieved by using either a dediated algorithm of matrix inversion [6℄, or else (e.g.in the broken lines �t [7℄) by the matrix (Cholesky) deomposition into a unit triangle,U , and a diagonal, D, matrix U DUTx = rwhih requires two steps to solve for x:U y = r and DUTx = y:The trak model based on relations (10 { 14) is well suited also for an implementationof the progressive trak �t by the method [8℄ or for the appliation of the Kalman �lterformalism [9℄. Both methods are rather eonomial regarding omputing time beausethey inlude operations with matries of maximal size 5 by 5 for eah hit.4 Appliation of the Kalman �lter tehnique to trak�ttingIn [9℄ it was shown that an appropriate mathematial framework for the iterative proe-dure of trak �tting is the theory of linear �ltering, in partiular the Kalman �lter [10℄.To onsider the mathematial framework of a Kalman �lter, we try to follow the notationused in [11℄. In the following we desribe a ase with a linear system and a non-linearsystem will be disussed at Subse. 4.2.1Di�erentiating the latter linear form with respet to xi isolates a oeÆient in a orresponding linearterm. 8



4.1 Linear ModelThe Kalman �lter proeeds progressively from one measurement to the next and improvesthe knowledge about the partile trajetory by updating the trak parameters with eahnew measurement. The system state vetor (trak parameters) after inlusion of k � 1measurements is denoted by ~xk�1, and its ovariane matrix by Ck�1. The state vetorand its ovariane matrix are propagated to the loation of the next measurement withthe predition equations: ~xk�1k = Fk~xk�1; (17)and Ck�1k = FkCk�1F Tk +Qk; (18)where Fk is the transport matrix and Qk denotes the ovariane matrix of the proessnoise, whih ours due to the random perturbation of the partile's trajetory.The measurement of the vetor ~xk�1k and its ovariane matrix are denoted by mk andVk, respetively. The expeted measurement mk is desribed by the projetion matrix Hk.The estimated residuals are rk�1k = mk �Hk ~xk�1k (19)and its ovariane matrix beome:Rk�1k = Vk +Hk Ck�1k HTk : (20)The updating of the system state vetor after inlusion of the measurement k is de�nedby the �lter equations: Kk = Ck�1k HTk (Rk�1k )�1;~xk = ~xk�1k +Kk rk�1k ;Ck = (1�KkHk)Ck�1k ; (21)with the �ltered residuals and its ovariane matrixrk = (1�HkKk) rk�1k ; Rk = (1�HkKk)Vk = Vk �HkCkHTk : (22)The matrix, Kk, is alled the �ltering (gain ) matrix. The �ltered state vetor is pulledtowards the measurement and, therefore the quadrati mean of the �ltered residual issmaller than the measurement error. The �2 inrement after the �ltering of the statevetor is given by: �2k = rTk R�1k rk:The trak parameters after the �ltering proedure are known with optimal preisiononly at the last point of the �t. The smoothing part of the Kalman �lter is a very usefulomplement, whih solves the problem of optimal parameter estimation at every point ofthe trajetory. The smoothing is also a reursive proedure whih proeeds step by step
9



in the diretion opposite to that of the �lter with the smoother equations:Ak = Ck F Tk+1 (Ckk+1)�1;~xnk = ~xk + Ak(~xnk+1 � ~xkk+1);Cnk = Ck + Ak(Cnk+1 � Ckk+1)ATk ;rnk = mk �Hk~xnk ;Rnk = Rk �HkAk(Cnk+1 � Ckk+1)ATkHTk = Vk �HkCnkHTk : (23)The smoothed state vetor, ~xnk , is more preise, beause it inludes information fromall measurements. The variane of the smoothed state vetor, Cnk , is smaller than thevariane of the �ltered state vetor, Ck. The quadrati mean of the smoothed residual isloser to the measurement error (detetor resolution) than the �ltered one.4.2 Non{linear ModelA partile's motion in a detetor with magneti �eld is a nonlinear proess. In ase of anon-linear system, we have to replae the transport, Fk, and projetion, Hk, matries in(17) and (19), respetively, by exat non-linear funtions:~xk�1k = fk(~xk�1); rk�1k = mk � hk(~xk�1k ): (24)Jaobian matries of these funtions (Jaobians in the following)�(fk)�(~xk�1) ; �(hk)�(~xk�1k ) (25)will be used in equations for ovariane matrix propagation (18) and (20) instead of Fkand Hk, respetively. In pratie, estimation with Kalman �lter for a non-linear systemshows properties similar to those of maximum-likelihood estimation:� The estimator is asymptotially unbiased, i.e. its bias tends to zero as the numberof measurements inreases.� The distribution of deviations of estimated parameters from true values approahesa Gaussian distribution also asymptotially, i.e for suÆiently large number of mea-surements.5 Partile Motion in a Stati Magneti FieldThe equation of motion of a partile with momentum ~p (veloity ~v) and harge Q in astati magneti �eld ~B is: d ~pd t = � �Q � ~v � ~B; (26)10



where oordinates x; y; z are in m, p is in GeV/, the magneti �eld B is in kGauss,and parameter � is equal:� = 0:000299792458 (GeV=) kG�1 m�1:The distane along the trajetory of a partile (path length) is given by:s = j~vj � t:The unitary vetor ~n pointing along the diretion of the trajetory is:~n = d~xd s : (27)Equation (26) an be rewritten as:d~nd s = � � Qj~pj � ~n� ~B = � � q � ~n� ~B; (28)where q = Q=j~pj. The latter equation ombined with Eq. (27) gives a system of lineardi�erential equations: d x = d s = nx;d y = d s = ny;d z = d s = nz;d nx = d s = !z � ny � !y � nz;d ny = d s = !x � nz � !z � nx;d nz = d s = !y � nx � !x � ny;q = onst; (29)
where !i(s) = � � q �Bi(~x(s)).6 Multiple Sattering and Energy LossThe ZEUS inner traking detetors were designed using minimal material. We take a-ount of the e�et of multiple sattering in the approximation of thin satterers. Multiplesattering after traversing a material of small thikness, l, results in the perturbation ofangles and oordinates, but the e�et on the latter has an additional order of smallnesso(l) and an be negleted. The deetion of the partile momentum ~p due to multiplesattering is deomposed into deetions in two orthogonal planes. We de�ne two unitvetors ~n1; ~n2 whih in ombination with ~n form a right-handed Cartesian system:~n1 = ~ez � ~nj~ez � ~nj = 1nt 0BB� �nynx0 1CCA ; ~n2 = ~n1�~n = 1nt 0BB� nx � nzny � nz�n2t 1CCA ; withnt = qn2x + n2y: (30)The diretion of the momentum after the sattering is:~n 0 = ~n + �1 � ~n1 + �2 � ~n2; (31)11



where �1; �2 are random variables with< �1;2 >= 0; var (�1;2) = �2ms; ov(�1; �2) = 0: (32)Here �ms is the well-known Moli�ere theory expression for RMS of the deetion angle ofa harged partile traversing a medium [15℄�ms(t=X0) = 13:6MeV�p qt =X0 [1 + 0:038 ln(t=X0) ℄ ; (33)where t=X0 is the material thikness in radiation lengths, whih has to aount for thetrak inlination: t = l �q1 + (nx=nz)2 + (ny=nz)2: (34)We rewrite Eq. (31) for the deetion of omponents:Æ~n = 0BB� ÆnxÆnyÆnz 1CCA = �10BB� �ny = ntnx = nt0 1CCA + �20BB� nx � nz = ntny � nz = nt�nt 1CCA : (35)Taking into aount Eqs. (32), we derive:< ~n 0 > = ~n;var (n0x) = �2ms (n2y + n2xn2z)=n2t ;var (n0y) = �2ms (n2x + n2yn2z)=n2t ;var (n0z) = �2ms n2t ;ov (n0x; n0y) = �2ms nx ny(n2z � 1)=n2t ;ov (n0x; n0z) = ��2ms nx nz;ov (n0y; n0z) = ��2ms ny nz: (36)
An ionization energy loss is regarded as a deterministi orretion to a trak energy. Inthe approximation of thin satterer, trak energy, E, after the traversal of a material is:E 0 = E � (dE=dx)ion � t; (37)where (dE=dx)ion is the mean rate of ionization energy loss in the material.7 Spei�s of Kalman Filter Implementation for theZEUS Inner TrakersSeven equations (29) desribe a partile motion in a magneti �eld, although �ve param-eters suÆe to de�ne the trajetory at any point. A suitable trak parameterization maydepend on the detetor geometry and �eld shape. The magneti �eld in the entral partof the ZEUS detetor is direted parallel to the z{axis. For the large part of the MVD the�eld is almost homogeneous with only a small radial omponent (< 1% at the edge of the12



BMVD). For the most forward parts of the CTD and FMVD the inhomogeneity is larger,with redution of the axial omponent by 8% and inreasing of the radial omponent upto 15%. The STT detetor is loated outside the superonduting solenoid where the�eld is inhomogeneous. We hoose a di�erent way to proeed depending on the polarangle,�, of a trak (tan � = pt=pz):� we use an option with inhomogeneous �eld for \forward" traks (0 < � < 60Æ);� a homogeneous �eld model is used for \entral" traks (60Æ < � < 120Æ);� an inhomogeneous �eld is used also for \rear" traks (120Æ < � < 180Æ).The set of measurements, fmkg, with its ovariane matries, fVkg, and the map ofmagneti �eld, ~B, are input for the trak �t. To develop a mathematial framework forKalman �lter implementation we have to make the following steps:� Selet a onvenient parameterization of the state vetor, xk.� Find a solution of the predition equations, fk(xk�1), and a funtion to projet thevetor xk to the measurement, hk(xk).� Obtain Jaobians of latter funtions�(fk)�(xk�1) ; �(hk)�(xk) :� De�ne ovariane matrix of the proess noise, Qk.8 Cylindrial Parameterization for entral traksThe magneti �eld at the entral region of the ZEUS superonduting solenoid is nearlyparallel to the z{axis (Bx; By � 0) and has almost onstant strength. Therefore weapproximate it as homogeneous on the path from one point to the next. The system ofequation (29) looks asd x = d s = nx;d y = d s = ny;d z = d s = nz;d nx = d s = !z � nyd ny = d s = �!z � nx;d nz = d s = 0q = onst; (38)
where !z = � � q �Bz. The omponent nz is onstant and the angle (azimuthal), �, of thetrak diretion with the x{axis depends linearly on s:�(s) = �0 � !zs;nx(s) = nt os(�0 � !zs);ny(s) = nt sin(�0 � !zs);nz(s) = nz0; (39)13



where �0; nz0 are initial values at s = 0. A pair of onserved quantities an be derivedfrom (38): x(s) + 1!z ny(s) = x0 + 1!z ny0;y(s)� 1!z nx(s) = y0 � 1!z nx0; (40)with initial values, x0; y0; nx0; ny0. Coordinates an by expressed via the trak diretion:x(s) = x0 � 1!z ny(s) + 1!z ny0;y(s) = y0 + 1!z nx(s)� 1!z nx0: (41)In a homogeneous �eld, the partile trajetory is a helix. For the ase of axial (ylindrial)symmetry, a natural replaement of partile oordinates, x and y, are the radius, r, andthe r'{oordinate at radius r, whih we denote as u. The relation between these pairsof parameters reads:x = r os ur ;y = r sin ur ; (42)and r = px2 + y2;u = r artan yx = 2r artan yr + x = 2r artan r � xy : (43)With the usage of an ar-length in the xy-plane, st, orresponding urvature ! andparameter � = ot � (otangent of the polar angle of the partile diretion)st = s � nt; ! = !znt ; � = nznt ; (44)we obtain the solution for partile oordinates:x(t) = r0 os u0r0 � 1! sin(�0 � t) + 1! sin�0;y(t) = r0 sin u0r0 + 1! os(�0 � t)� 1! os�0;z(t) = z0 + �0! t;t = w � st; (45)
where r0; u0 are values at t = 0. The partile whih is loated at a radius, r0, given t = 0,then arrives at a radius, r, given the value of t, whih satis�es the equation:r2 = r20 + T + S sin�� (S sin� + T ) os t + S os� sin t;T = 2!2 ; S = 2r0! ; � = �0 � u0r0 : (46)Solutions of the latter equation aret1;2 = 2 artan24 S os�D � 2T � 2S sin� 0�1�s1� D � (D � 2T � 2S sin�)S2 os2 � 1A35D = r2 � r20 = �r(2r0 +�r); �r = r � r0: (47)14



The solution t2 (with minus sign) orresponds to a shorter path length. We desribea partile in a homogeneous magneti �eld by a state vetor at a referene ylindrialsurfae of radius rk: xTk = (uk; zk; �k; �k; qk) ; (48)whereuk = r'{oordinate at radius rk,zk = z-oordinate,�k = angle of xy-projetion of trak diretion with the x{axis,�k = ot � at radius rk,qk = Q=pk, inverse momentum signed aording to partile harge, Q.Suh ylindrial parameterization looks natural for the barrel traking detetors. Ananalogous state vetor was used for the implementation of the Kalman �lter formalismfor the ALEPH Time Projetion Chamber [12℄.8.1 Cylindrial Parameterization: Predition EquationsIn the predition stage of the Kalman �lter, the state vetor xk is propagated at the nextreferene radius, rk+1 = rk +�rk. We obtain this transformation from (42{45):uk+1 = 2rk+1 artan yk+1rk+1 + xk+1 = rk+1 artan yk+1xk+1 ;zk+1 = zk + �k!k tk;�k+1 = �k � tk;�k+1 = �k;qk+1 = qk; (49)where xk+1 = rk os ukrk � 1!k sin(�k � tk) + 1!k sin�kyk+1 = rk sin ukrk + 1!k os(�k � tk)� 1!k os�k;!k = � �Bzk � qk �q1 + �2k: (50)and the variable, tk, is evaluated from (47). We approximate the Jaobian of this trans-formation as:�(xk+1) = �(xk) = 0BBBBBBB� �uk+1=�uk 0 �uk+1=��k �uk+1=��k �uk+1=�qk�zk+1=�uk 1 �zk+1=��k �zk+1=��k �zk+1=�qk��k+1=�uk 0 1 ��k+1=��k ��k+1=�qk0 0 0 1 00 0 0 0 1
1CCCCCCCA : (51)Elements of the Jaobian whih always are very lose to zero or unity, we set expliitly to 0or 1, respetively. We exploit the sparse struture of the Jaobian to redue omputations,as will be disussed in Set. 11. Nontrivial elements of the Jaobian are presented inappendix A. 15



8.2 Cylindrial Parameterization: Projetion of State Vetorto MVD MeasurementThe origin of the loal oordinate system of a MVD sensor is given by the vetor ~r. Theunit vetor, ~n, is perpendiular to the sensor plane. We de�ne the axis of measurementby the unit vetor, ~m, whih is loated in the sensor plane and is perpendiular to strips.A state vetor xk is de�ned at a ylindrial referene surfae of a radius, rk. We ande�ne the radius, rk, in suh a way that the referene point will be lose to the sensor. Inthe immediate viinity of the referene point, we linearize equations (49,50) with respetto the variable, tk: x(tk) = xk + tk!k os�k;y(tk) = yk + tk!k sin�k;z(tk) = zk+1 + �k!k tk: (52)
A ondition of the trajetory intersetion with the sensor plane reads:[ (~r(tk)� ~r) � ~n ℄ = 0: (53)The variable advane, �tk, to travel from the radius, rk, to the sensor plane is:�tk = � bkak ;ak = nx!k os�k + ny!k sin�k + nz!k�k;bk = (xk � x)nx + (yk � x)ny + (zk � z)nz: (54)
To obtain the expeted measurement, hk(xk), we projet the position vetor in the loalframe, ~r(�tk)� ~r, to the measurement axis, ~m:hk(xk) = [ (~r(�tk)� ~r) � ~m ℄= �tk!k k + (xk � x)mx + (yk � y)my + (zk � z)mz;k = mx os�k +my sin�k +mz �k: (55)

16



Elements of the Jaobian, �(hk)=�(xk), are:�hk=�uk = k!k ��tk=�uk �mxykrk +my xkrk ;�hk=�zk = k nz!k ak +mz;�hk=��k = k!k ��tk=��k + �tk!k (�mx sin�k +my os�k);�hk=��k = �tk!k ��nz kak !k +mz� ;�hk=�qk = 0;
(56)

with derivatives of �tk��tk=�uk = 1ak �nxykrk � ny xkrk � ;��tk=��k = �tkak !k (nx sin�k � ny os�k) : (57)To exploit the sparse struture of the Jaobian and redue omputations we approximatethe Jaobian for spei� ases:�(hk)=�(xk) = � �hk�uk 1 �hk��k �hk��k 0 � ; for mz � 1;�(hk)=�(xk) = � �hk�uk 0 �hk��k 0 0 � ; for mz � 0: (58)8.3 Cylindrial Parameterization: Projetion of State Vetorto CTD MeasurementEah sense stereo wire runs at a small angle, �, and its loation in the xy-plane atoordinate z is: ~w = ~rw + (z � z) ~r0w; (59)where z is the z{oordinate of the nominal enter of the CTD . A \planar drift" approx-imation is used to render measurements in spae [13℄. Drift distane is measured alongthe \planar drift measurement axis", ~m:mx = �ny=j~nj;my = +nx=j~nj; (60)whih is obtained by rotating the vetor, ~n, through +90Æ. The vetor ~n depends linearlyon the z oordinate: ~n = ~pw + (z � z) ~p0w: (61)A state vetor xk is de�ned at a ylindrial referene surfae of a radius, rk. We de�nethe radius, rk, in a way that the referene point is lose to the point where the trajetory17



hits the planar drift plane. Close to the referene point, we use linearized equations ofmotion (52). A ondition of the trajetory intersetion with the planar drift plane reads:[ (~r(tk)� ~w) � ~n ℄ = 0: (62)The variable advane, �tk, to travel from the radius, rk, to the planar drift plane is asolution (of smallest absolute value) of a quadrati equation, (�tk)2 ak +�tk bk + k = 0:�tk1;2 = 12ak ��bk �qb2k � 4 ak k� ; (63)with oeÆientsak = Akx p0wx + Aky p0wy;bk = AkxPkx +Bkx p0wx + Aky Pky +Bky p0wy;k = BkxPkx +Bky Pky;Akx = (os�k � �kr0wx)=!k; Aky = (sin�k � �kr0wy)=!k;Bkx = xk � rwx � (zk � z)r0wx; Bky = yk � rwy � (zk � z)r0wy;Pkx = [pwx + (zk � z)p0wx℄!k=�k; Pky = hpwy + (zk � z)p0wyi!k=�k: (64)
The expeted measurement, hk(xk), is the drift distane. To evaluate it, we projet theposition vetor in the planar drift system of the wire, ~r(�tk) � ~w, to the measurementaxis ~m: hk(xk) = [ (~r(�tk)� ~w) � ~m ℄ : (65)To \streth" the projeted value aording to the stereo angle, �, we have to replae ~mby ~m= os� in the following formulas. The expeted measurement is a linear funtion ofthe �tk: hk(xk) = �tk Ck +mxBkx +myBky;Ck = (mxAkx +myAky)=!k: (66)We approximate the Jaobian, �(hk)=�(xk), by setting its elements whih are very loseto zero or unity, expliitly to 0 or 1:�(hk)=�(xk) = � 1 �hk�zk �hk��k �hk��k 0 � ; for j�tkj � 10�6;�(hk)=�(xk) = � 1 �hk�zk 0 0 0 � ; for j�tkj < 10�6: (67)Nontrivial elements of the Jaobian are de�ned in appendix B.The axial wires of the CTD run parallel to the z{axis and parameters ~r0w and ~p0wvanish in (59) and (61), respetively. A ondition of the intersetion of the trajetorywith the \planar drift plane" results in Eq. 62, whih has the solution�tk = �bk=ak;ak = (os�k pwx + sin�k pwy)=!k;bk = (xk � rwx) pwx + (yk � rwy) pwy: (68)18



A measurement vetor for an axial wire, mk, is either one-dimensional (drift distane)or two-dimensional (drift distane and z position). Let's onsider the vetor of expetedmeasurement, hk(xk), for a general, two-dimensional asehk(xk) =  hk1(xk)hk2(xk) ! ; (69)with the �rst omponent (drift distane) and seond (z position), whih are de�ned in(65) and (52), respetively:hk1(xk) = (xk + �tk!k os�k � rwx)mwx + (yk + �tk!k sin�k � rwy)mwy;hk2(xk) = zk + �k!k �tk: (70)We approximate the Jaobian, �(hk)=�(xk) as:�(hk)=�(xk) = 0B� 1 0 �hk1��k 0 0�hk2�uk 1 �hk2��k �hk2��k 0 1CA ; for j�tkj � 10�6; (71)and �(hk)=�(xk) = 0� 1 0 0 0 0�hk2�uk 1 0 0 0 1A ; for j�tkj < 10�6: (72)Elements of the Jaobian are presented in appendix B.8.4 Cylindrial Parameterization: Proess NoiseWe evaluate the omponents of a vetor of partile diretion, ~n, using parameters �; �:nx = os �p1 + �2 ; ny = sin�p1 + �2 ; nz = �p1 + �2 and nt = 1p1 + �2 : (73)We obtain deviations of parameters �; �, indued by multiple sattering, from Eq. (35):Æ� = �1p1 + �2; Æ� = ��2p1 + �2; (74)where �1; �2 are random variables de�ned by (32). Nonzero elements of the matrix,desribing multiple sattering in one satterer, are:Q�� = �2ms (1 + �2); Q�� = �2ms (1 + �2); (75)with RMS of the deetion angle, �ms, whih is de�ned by Eq. (33). The matrix, Qk, inEq.(18) takes into aount a summary e�et of multiple sattering:Qk =Xi FikQi F Tik; with Fik = �(xk)=�(xi); (76)and, therefore the index i runs over all elements of material on the path from (k � 1)thto kth state. 19



9 Cartesian Parameterization in an InhomogeneousMagneti FieldThe following hoie of trak parameters at a referene z{oordinate is suited for forwardtraks (nz > 0): ~xT = (x; y; tx; ty; q); (77)wherex = x{oordinate in the Cartesian oordinate system of ZEUS,y = y{oordinate in the Cartesian oordinate system,tx = nx=nz trak slope in xz{plane,ty = ny=nz trak slope in yz{plane,q = Q=j~pj, inverse momentum signed aording to partile harge, Q.This parametrization will be alled \artesian". The implementation of the Kalman �ltertehnique in an inhomogeneous magneti �eld is analogous to those desribed in [16℄. Inthe following we disuss the ase of forward traks. The rear traks are spei�ed inSubse. 9.7.9.1 Cartesian Parametrization: Equations of Motionin Inhomogeneous Magneti FieldFor forward traks we an use the z oordinate as independent variable instead of thepath length in Eqs. (29). The equations rewritten w.r.t. z oordinate read:dx=dz = tx;dy=dz = ty;dtx=dz = q � � � Ax(tx; ty; ~B);dty=dz = q � � � Ay(tx; ty; ~B);q = onst; (78)where the funtions Ax,Ay areAx = (1 + t2x + t2y) 12 � [ty � (txBx +Bz)� (1 + t2x)By℄ ;Ay = (1 + t2x + t2y) 12 � h�tx � (tyBy + Bz) + (1 + t2y)Bxi : (79)To transport trak parameters in the inhomogeneous �eld from plane z0 to plane z, wesolve the latter equations with initial values de�ned at z0~xT0 = (x0; y0; tx0; ty0; q0): (80)Three methods are used to solve Eqs. (78), depending on the distane, s = z � zo;between these planes.1. jsj < 10 m: a paraboli expansion of the partile trajetory is used20



x(z) = x0 + tx0 � s+ 12 � q0 � � � Ax � s2;y(z) = y0 + ty0 � s + 12 � q0 � � �Ay � s2;tx(z) = tx0 + q0 � � � Ax � s;ty(z) = ty0 + q0 � � � Ay � s;q(z) = q0: (81)2. 10 m � jsj < 60 m: the lassial fourth-order Runge-Kutta method [14℄ isseleted to �nd the solution of the equations (78) .3. jsj � 60 m: a �fth-order Runge-Kutta method with adaptive step size ontrol[14℄ is used.9.2 Cartesian Parametrization: Equations for DerivativesThe Jaobian of transformation of parameters given at z0 to z, �(~x)=�(~x0), is de�ned as:
�(~x)=�(~x0) = 0BBBBBBBBBBBB�

1 0 �x�tx0 �x�ty0 �x�q00 1 �y�tx0 �y�ty0 �y�q00 0 1 �tx�ty0 �tx�q00 0 �ty�tx0 1 �ty�q00 0 0 0 1;
1CCCCCCCCCCCCA : (82)

Elements of the latter Jaobian whih are very lose to zero or unity, are set to 0 or 1,respetively. Nontrivial elements of the Jaobian (82) for short distane (jsj < 10 m) weapproximate as: �x=�tx0 = s; �x=�ty0 = 12 q0 � s2 �Ax�ty0 ;�y=�tx0 = 12 q0 � s2 �Ay�tx0 ; �y=�ty0 = s;�tx=�ty0 = q0 � s �Ax�ty0 ; �ty=�tx0 = q0 � s �Ay�tx0 ;�x=�q0 = 12 � s2Ax; �y=�q0 = 12 � s2Ay;�tx=�q0 = � sAx; �ty=�q0 = � sAy; (83)
with derivatives �Ax=�ty0 and �Ay=�tx0, whih we de�ne below.To swim derivatives at long distane (jsj � 10 m), we de�ne equations for deriva-tives as desribed in [16℄ and solve them by a Runge-Kutta method simultaneously withequations of motion. The magneti �eld is smooth enough even in the STT area and,therefore we regard Eqs. (78) as almost invariant with respet to small shifts by x and y.Derivatives with respet to initial x0, y0 are trivial :�~xT =�x0 = (1; 0; 0; 0; 0);�~xT =�y0 = (0; 1; 0; 0; 0):21



To obtain equations for �~x=�tx0, we di�erentiate equations (78) with respet to tx0 andhange the order of the derivative operators �=�tx0 and d=dz on the left hand sides :d=dz(�x=�tx0) = �tx=�tx0;d=dz(�y=�tx0) = �ty=�tx0;d=dz(�tx=�tx0) = q0 � � � [(�Ax=�tx)(�tx=�tx0) + (�Ax=�ty)(�ty=�tx0)℄ ;d=dz(�ty=�tx0) = q0 � � � [(�Ay=�tx)(�tx=�tx0) + (�Ay=�ty)(�ty=�tx0)℄ ;�q=�tx0 = 0; (84)where�Ax=�tx = tx � Ax=(1 + t2x + t2y) + (1 + t2x + t2y) 12 � (ty �Bx � 2 � tx �By) ;�Ax=�ty = ty � Ax=(1 + t2x + t2y) + (1 + t2x + t2y) 12 � (tx �Bx +Bz) ;�Ay=�tx = tx � Ay=(1 + t2x + t2y) + (1 + t2x + t2y) 12 � (�ty �By � Bz) ;�Ay=�ty = ty � Ay=(1 + t2x + t2y) + (1 + t2x + t2y) 12 � (�tx �By + 2 � ty �Bx) :Initial values for the solution of latter equations are:�~xT =�tx0 = (0; 0; 1; 0; 0): (85)The equations for �~x=�ty0 are analogous to Eqs. (84) , but the initial values are :�~xT =�ty0 = (0; 0; 0; 1; 0) :To obtain equations for �~x=�q0, we di�erentiate Eqs. (78) with respet to q0 and hangethe order of the derivative operators �=�q0 and d=dz in the left parts :d=dz(�x=�q0) = �tx=�q0 ;d=dz(�y=�q0) = �ty=�q0 ;d=dz(�tx=�q0) = � � Ax + � � q0 � [(�Ax=�tx)(�tx=�q0) + (�Ax=�ty)(�ty=�q0)℄ ;d=dz(�ty=�q0) = � � Ay + � � q0 � [(�Ay=�tx)(�tx=�q0) + (�Ay=�ty)(�ty=�q0)℄ ;�q=�q0 = 1 : (86)Initial values for the solution of latter equations are :�~xT =�q0 = (0; 0; 0; 0; 1): (87)9.3 Cartesian Parameterization: Projetion of State Vetor toMVD MeasurementTo projet a state vetor (77) to a BMVD measurement we use the method desribedin Subset. 8.2. The state vetor, ~xk, is de�ned in the referene plane with oordinate,z = zk. We loate the referene plane lose to the MVD sensor and, therefore use a linearexpansion of the trajetory: x(sk) = xk + txk sky(sk) = yk + tyk skz(sk) = zk + sk: (88)22



A ondition of the trajetory intersetion with the sensor plane reads:[ (~r(sk)� ~r) � ~n ℄ = 0; (89)where ~r and ~n are the origin of a loal MVD sensor system and the unit vetor whihis perpendiular to the sensor plane, respetively. The variable advane, �sk, to travelfrom the referene plane at zk to the sensor plane is:�sk = � bkak ;ak = txk nx + tyk ny + nz;bk = (xk � x)nx + (yk � x)ny + (zk � z)nz: (90)Analogous to Eq. 55, we obtain the expeted measurement, hk(~xk), by projeting theposition vetor in the loal frame, ~r(�sk)� ~r, to the measurement axis, ~m:hk(~xk) = [ (~r(�sk)� ~r) � ~m ℄= �sk!k k + (xk � x)mx + (yk � y)my + (zk � z)mz;k = mx txk +my tyk +mz: (91)Nontrivial elements of the Jaobian, �(hk)=�(~xk), are:�hk=�xk = mx � k nx = ak; �hk=�yk = my � k ny = ak;�hk=�txk = �hk=�xk ��sk; �hk=�tyk = �hk=�yk ��sk: (92)Derivatives with respet to slopes have an additional order of smallness o(�sk) and weapproximate the Jaobian, �(hk)=�(~xk), for the BMVD:�(hk)=�(~xk) = � �hk�xk �hk�yk �hk�txk �hk�tyk 0 � ; for j�skj � 10�3;�(hk)=�(~xk) = � �hk�xk �hk�yk 0 0 0 � ; for j�skj < 10�3: (93)Sensors of the FMVD are almost perpendiular to the z{axis and, therefore nx;y � 0.We loate the referene plane at the position of the FMVD sensor (�sk = 0). Takinginto aount latter remarks, we obtain from Eq. (92) the Jaobian, �(hk)=�(~xk), for theFMVD �(hk)=�(~xk) = � mx my 0 0 0 � : (94)9.4 Cartesian Parameterization: Projetion of State Vetor toCTD MeasurementThe linear expansion of a partile trajetory (88) de�nes the partile oordinates in theimmediate viinity of a stereo wire. An approah to obtain the projetion of artesian23



state vetor to CTD stereo measurement is similar to those disussed in Subse. 8.3. Aondition of the trajetory intersetion with the planar drift plane reads:[ (~r(sk)� ~w) � ~n ℄ = 0; (95)where the oordinate of the wire, ~w, and vetor, ~n, are de�ned by (59) and (61), respe-tively. The variable advane, �sk, to travel from the referene plane to the planar driftplane is a solution of a quadrati equation, (�sk)2 ak +�sk bk + k = 0:�sk = 12ak ��bk +qb2k � 4 ak k� ; (96)with oeÆientsak = Akx p0wx + Aky p0wy;bk = AkxPkx +Bkx p0wx + Aky Pky +Bky p0wy;k = BkxPkx +Bky Pky;Akx = tkx � r0wx; Aky = tky � r0wy;Bkx = xk � rwx � (zk � z) r0wx; Bky = yk � rwy � (zk � z) r0wy;Pkx = pwx + (zk � z) p0wx; Pky = pwy + (zk � z) p0wy: (97)
We obtain the expeted measurement, hk(xk), i.e. drift distane, as in (65):hk(xk) = [xk + tkx�sk � rwx � (zk � z +�sk) r0wx℄ mx+ hyk + tky�sk � rwy � (zk � z +�sk) r0wyi my; (98)where the ~m have to by replaed by ~m= os� to take into aount the stereo angle, �.Derivatives with respet to slopes have an additional order of smallness o(�sk) and weapproximate the Jaobian, �(hk)=�(~xk), for the CTD stereo measurement:�(hk)=�(~xk) = � �hk�xk �hk�yk �hk�txk �hk�tyk 0 � ; for j�skj � 10�3;�(hk)=�(~xk) = � �hk�xk �hk�yk 0 0 0 � ; for j�skj < 10�3: (99)Elements of the Jaobian, �(hk)=�(~xk), are presented in appendix C.Axial wires of the CTD run parallel to the z{axis and parameters, ~r0w and ~p0w vanishin (59) and (61), respetively. A ondition of the intersetion of the trajetory with theplanar drift plane leads to Eq. (95), whih has the solution:�sk = �bk=ak;ak = txk pwx + tyk pwy;bk = (xk � rwx) pwx + (yk � rwy) pwy: (100)We onsider the vetor of expeted measurement, hk(xk), for the general, two-dimensionalase hk(xk) =  hk1(xk)hk2(xk) ! ; (101)24



with the �rst and seond omponent being a drift distane and z{position, respetively:hk1(xk) = (xk + tkx�sk � rwx) mx + (yk + tky�sk � rwy) my;hk2(xk) = zk +�sk: (102)We approximate the Jaobian, �(hk)=�(xk), as:�(hk)=�(xk) = 0B� �hk1�xk �hk1�yk �hk1�tkx �hk1�tky 0�hk2�xk �hk2�yk �hk2�tkx �hk2�tky 0 1CA ; for j�skj � 10�3; (103)and �(hk)=�(xk) = 0B� �hk1�xk �hk2�yk 0 0 0�hk2�xk �hk2�yk 0 0 0 1CA ; for j�skj < 10�3; (104)where we take into aount an additional order of smallness o(�sk) for derivatives withrespet to trak slopes. We obtain nontrivial elements of latter Jaobians in appendix C.9.5 Cartesian Parameterization: Projetion of State Vetor toSTT MeasurementSignal wires of a given STT layer are arranged in a plane perpendiular to the z{axiswith oordinate z = zw. We loate the referene plane at the position of the layer, i.e.zk = zw. The partile trajetory inside a straw tube we approximate by a straight line.The latter line and the signal wire are desribed as lines whih pass through points ~rkand ~rw and have diretions ~nk and ~nw, respetively:~rk = 0BB� xkykzw 1CCA ; ~rw = 0BB� xwywzw 1CCA ; ~nk = 0BB� nkxnkynkz 1CCA ; ~nw = 0BB� nwxnwy0 1CCA : (105)Components of the vetor of partile diretion, ~nk, we alulate using trak slopes tkx; tky:nkx = tkxq1 + t2kx + t2ky ; nky = tkyq1 + t2kx + t2ky ; nkz = 1q1 + t2kx + t2ky : (106)The expeted measurement is a drift distane2 in the straw, whih is evaluated as adistane between these two lines:hk(~xk) = (~rk � ~rw) � ~nk � ~nwj~nk � ~nwj : (107)2 We expet that left{right ambiguity of the drift distane is resolved and, therefore regard it as asigned value. 25



After simple alulations the expeted measurement reads:hk(~xk) = �(xk � xw)nwy + (yk � yw)nwxq1 + (tkx nwy � tky nwx)2 : (108)The Jaobian of the latter transformation we an approximate as:�(hk)=�(~xk) = � �hk�xk �hk�yk 0 0 0 � ; (109)with �hk=�xk = �nwy =q1 + (tkx nwy � tky nwx)2;�hk=�yk = nwx =q1 + (tkx nwy � tky nwx)2: (110)9.6 Cartesian Parameterization: Proess NoiseWe evaluate deviations of trak slopes indued by multiple sattering from Eq. (35):Ætkx = Æ �nkxnkz� = ��1 nkynkz nkt + �2 nkxn2kz nkt ;Ætky = Æ �nkynkz� = �1 nkxnkz nkt + �2 nkyn2kz nkt ; (111)where �1; �2 are random variables de�ned by (32). Nonzero elements of the matrix de-sribing multiple sattering in one satterer are:Qtx tx = �2ms (1 + t2kx) (1 + t2kx + t2ky);Qty ty = �2ms (1 + t2ky) (1 + t2kx + t2ky);Qtx ty = �2ms tkx tky (1 + t2kx + t2ky); (112)with RMS of the deetion angle, �ms, whih is de�ned by Eq. (33). The matrix, Qk, inpredition equation (18) has to aount for a summary e�et of multiple sattering on apath from (k � 1)th to kth state, and is therefore evaluated analogous to (76).9.7 Cartesian Parameterization for Rear TraksFor rear traks (nz < 0) we use a parameterization analogous to those for forward traks.The meaning of parameters x; y; q is idential with (77). For rear traks we de�ne slopesw.r.t. negative diretion of the z{axis:tx = �nx = nz;ty = �ny = nz: (113)Equations of partile motion for rear traks are idential to (78) for forward traks, butwith slightly di�erent de�nition of funtions Ax,Ay:Ax = (1 + t2x + t2y) 12 � [ty � (�txBx +Bz) + (1 + t2x)By℄ ;Ay = (1 + t2x + t2y) 12 � h�tx � (�tyBy +Bz)� (1 + t2y)Bxi : (114)Equations (88) for linear and (81) for paraboli expansions of trajetory an be used forrear traks also, if we regard the expansion w.r.t. z{oordinate derement, s = z0 � z.26



10 Global ParameterizationA global perigee parameterization of traks [13℄ is used for analyses in the ZEUS experi-ment. The perigee parameters are parameters of a helix, whih are de�ned at the trak'spoint of losest approah to the z{axis:~xT = (�H ; Q=RH ; QDH ; zH ; ot �) ; (115)where�H = angle of xy{projetion of trak diretion with the x{axis,Q=RH = helix urvature signed by a partile harge, Q,QDH = signed minimal distane to z{axis,zH = z{oordinate at point of losest approah,ot � = otangent of trak diretion w.r.t. z-axis.Transformations between loal parameters (ylindrial or artesian) and global ZEUSperigee parameters are given in appendix D.11 Fast Computations with Kalman Filter TehniqueMost of the alulation by the Kalman �lter tehnique is in the following proedures:� transportation and projetion of trak parameters (24) and evaluation of Jaobianmatries (25);� matrix operations in predition (18), �lter (21) and smoother (23) equations;� searh of a trak rossing with material to evaluate e�ets of multiple satteringand energy loss.Approahes to fast omputation with Kalman �lter tehnique were disussed for themagnet traking [17℄,[18℄ at the HERA-B detetor.To redue omputations we use a exible strategy for propagating trak parametersand derivatives in the inhomogeneous �eld, as desribed for forward and rear traks inSubse. 9.1. For long (s > 10 m) distanes we use numerial integration of the equationsof motion, but integrate derivatives together with a \zero trajetory" that allows toredue omputations. For short distanes (s < 10 m) we use paraboli expansion (81)of the partile trajetory, whih is very fast in omputations.To keep the omputational e�ort at a minimum we exploit the sparse strutures ofthe Jaobian matries. The Jaobian of trak propagation inludes elements whih arevery lose to 0 or 1, therefore we use Jaobian approximations and set suh elements to0 or 1. The Jaobians for ylindrial (51) and artesian (82) parameterization ontainonly 11 and 10 nontrivial elements, respetively. To alulate the produt of matriesFk Ck�1 F Tk in (18) we implement funtions, whih take into aount a sparse struture27



of the matrix Fk. For example, the funtion for 10 nontrivial elements of the Fk implies73 multipliations, whih is muh smaller than 200 multipliations needed for the ase ofthe ompletely �lled matrix Fk of size 5 by 5.The Jaobians of projetion transformation, Hk, are approximated also, as shown in(58), (67), (71), (72) et. We implement orresponding funtions for the alulation ofproduts of Ck�1k HTk and (1 � KkHk)Ck�1k in (21) or (1 � HkKk)Vk in (22). Thesefuntions take into aount the sparse struture of the matrix Hk. For example, only 20multipliations are suÆient to obtain the matrix (1�KkHk)Ck�1k for the option with onenontrivial element in the matrix Hk. This has to be ompared with 100 multipliationsneeded for the ompletely �lled matrix of size 5 by 1.To evaluate the e�ets of multiple sattering and energy loss, we desribe the distribu-tion of material in the ZEUS inner trakers by using about 1800 separate volumes. Afterrossing a given volume, a partile an reah only a limited number of other volumes. Weimplement an approah alled volume navigation [19℄ for fast searh of a trak's rossingswith these volumes. Using the Monte Carlo tehnique, we evaluate for eah volume alist of volumes, whih an be rossed subsequently. On average, one list inludes about7 subsequent volumes. The lists are used to navigate a fast searh of trak rossing withvolumes.The desribed approahes have been programmed [20℄ in C++. We follow reipes ofe�etive programming of numerial alulations [14℄ and implement STL ontainers tostore objets like hits, states, traks et.Table 1: Computing time of the trak �t per ZEUS event on a PC with proessor IntelCPU 3.06GHz for di�erent groups of traks.Fitted traks Fration Field model Time/eventForward (� < 60Æ) 59% inhomogeneous 12msCentral (60Æ < � < 120Æ) 23% homogeneous 7msRear (� > 120Æ) 18% inhomogeneous 1msAll traks in event 100% (in)homogeneous 20msA ZEUS event ontains up to 100 �tted traks and about 30 traks on average. Thelongest traks inlude about 80 hits in the entral area, 50 hits in a transition regionand 30 hits in the very forward diretion. Fitting all the traks in one event takes 20mson PC with proessor Intel CPU 3.06GHz (see Table 1) and 46ms with proessor IntelCPU 1GHz. About of 77% of traks are �tted using the inhomogeneous �eld as shown inTable 1. The omputing time for these traks is omparable with those whih are �ttedusing the homogeneous �eld approximation.
28
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Figure 1: Standard deviations of the pull distributions of �tted trak parameters in perigeeparameterization (115) for MC simulated muons versus the momentum.
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The preision of �tted parameters depends on the resolution and details of the per-formane of the ZEUS trakers and will be disussed in the next note [20℄. Here wewould like to mention that approximations implemented to redue omputations, are notmade at the expense of trak parameter preision. Evaluation of the ovariane matriesof �tted parameters in (21) and (23) are the most ompliated omputations, inludingoperation with the transport, projetion and proess noise matries. Calulated vari-anes of these matries are in good agreement with the residuals of the �tted parameters.Standard deviations of pull distribution (residuals normalized by their estimated error)are lose to unity for di�erent trak momenta, as shown in Fig. 1.12 ConlusionsWe onsider a mathematial framework for the rigorous approah to a ommon trak �tusing the trakers in the inner region of the ZEUS detetor: CTD, BMVD, FMVD andSTT. We disuss trak models and likelihood funtions in suh a multi-omponent traker.The approah o�ers a rigorous treatment of �eld inhomogeneity, multiple sattering andenergy loss. The trak �tting proedure makes use of the Kalman �lter tehnique.We desribe details of the mathematis for the fast implementation of a Kalman �lterfor the ylindrial drift hamber, barrel and forward silion strip detetors and straw drifthambers. The ases of homogeneous and inhomogeneous �eld are onsidered.We disuss how to redue omputations and make the trak �tting proedure fast.Average omputing time of trak �tting in one ZEUS event is about of 20ms on a PCwith proessor Intel CPU 3.06GHz.Aknowledgments: Fruitful disussions with R.Mankel helped me a lot to �nalizethe results. Cordial thanks to A.Antonov, C.Catteral and G.Hartner for their expertiseon the implementation of ZEUS trakers in the simulation and reonstrution software.I am grateful to O.Behnke and G.Hartner for the areful reading of the manusript. Iwould like to thank the ZEUS group at DESY for the kind hospitality extended to meduring my visit.Referenes[1℄ ZEUS Coll., U.Holm (ed.), The ZEUS Detetor. Status Report (unpublished), DESY(1993), http://www-zeus.desy.de/bluebook/bluebook.html[2℄ A. Polini et al., Nul. Instr. and Meth. A581 (2007) 656[3℄ B. Foster et al., Nul. Instr. and Meth. A228 (1994) 254[4℄ S. Fourletov (ZEUS STT Collaboration), Nul. Instr. and Meth. A535 (2004) 19130
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13 Appendix A: Jaobian of predition transforma-tion in ylindrial parameterizationWe use derivatives of tk to alulate the Jaobian (51) of predition transformation (49):�tk=�uk = os(�k � ukrk )� os(�k � ukrk � tk)rk os(�k � ukrk � tk) + 1!k sin tk ;�tk=�zk = 0;�tk=��k = �rk �tk=�uk;�tk=��k = !k�k1 + �2k �tk=�!k;�tk=�!k = 2 (1� os tk) + rk !k �sin(�� ukrk )� sin(�� ukrk � tk)�rk !2k os(�� ukrk � tk) + !k sin tk : (116)
Nontrivial elements of the Jaobian are:�uk+1=�uk = rk+1xk+1 hos ukrk + 1!k sin(�k � tk) �tk=�uki= rk+1yk+1 hsin ukrk � 1!k os(�k � tk) �tk=�uki ;�uk+1=��k = rk+1!k xk+1 [sin�k � sin(�k � tk) (1� �tk=��k)℄= rk+1!k yk+1 [� os�k + os(�k � tk) (1� �tk=��k)℄ ;�uk+1=��k = rk+1!k xk+1 "� �k1 + �2k (os(�k � tk)� os�k) + sin(�k � tk) �tk=��k#= rk+1!k yk+1 "� �k1 + �2k (sin(�k � tk)� sin�k)� os(�k � tk) �tk=��k# ;�uk+1=�qk = rk+1qk !k xk+1 [os�k � os(�k � tk) + !k sin(�k � tk) �tk=�!k℄= rk+1qk !k yk+1 [sin�k � sin(�k � tk)� !k os(�k � tk) �tk=�!k℄ ;�zk+1=�uk = �k!k �tk=�uk; �zk+1=��k = �k!k �tk=��k;�zk+1=��k = tk!k ; �zk+1=�qk = �kqk ��tk=�!k � tk!k � ;��k+1=�uk = ��tk=�uk; ��k+1=��k = �k!k1 + �2k �tk=�!k;��k+1=�qk = ��tk=�qk: (117)32



14 Appendix B: Jaobian of projetion transforma-tion for the CTD in ylindrial parameterizationElements of the Jaobian (67) of projetion transformation (66) for the stereo CTD are:�hk=�zk = Ck ��tk=�zk �mx r0wx �my r0wy;�hk=��k = Ck ��tk=��k + �tk!k (�mx sin�k +my os�k) ;�hk=��k = Ck ��tk=��k ��tk " �k Ck1 + �2k + 1!k �mx r0wx +my r0wy�# ; (118)with derivatives��tk=�zk = ��tk �bk=�zk + �k=�zk2�tk ak + bk ;��tk=��k = � �tk �bk=��k�tk2 �ak=��k + 2�tk ak + bk ;��tk=��k = � �tk �bk=��k + �k=��k�tk2 �ak=��k + 2�tk ak + bk ;�bk=�zk = !k�k �Akx p0wx + Aky p0wy�� p0wx r0wx � p0wy r0wy;�k=�zk = !k�k �Bkx p0wx +Bky p0wy�� Pkx r0wx � Pky r0wy;�ak=��k = 1!k �� sin�k p0wx + os �k p0wy� ;�bk=��k = 1!k (� sin�k Pkx + os�k Pky) ;�ak=��k = p0wx �Akx=��k + p0wy �Aky=��k;�bk=��k = Pkx �Akx=��k + Pky �Aky=��k� 1�k (1 + �2k) (AkxPkx + Aky Pky) ;�k=��k = � 1�k (1 + �2k) (BkxPkx +Bky Pky) ;�Akx=��k = � 1!k " �k1 + �2k (os �k � �kr0wx) + r0wx# ;�Aky=��k = � 1!k " �k1 + �2k (sin�k � �kr0wy) + r0wy# :
(119)

Elements of the orresponding Jaobian (71) for the axial CTD look as:�hk1=��k = mwx!k (��tk sin�k + ��tk��k os�k)+ mwy!k (�tk os�k + ��tk��k sin�k);�hk2=�uk = �kak !k (pwxykrk � pwyxkrk );�hk2=��k = �k!k ��tk��k ;�hk2=��k = �tk!k ;��tk=��k = �tkak !k (pwx sin�k � pwy os �k):
(120)
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15 Appendix C: Jaobian of projetion transforma-tion for the CTD in artesian parameterizationNontrivial elements of the Jaobian (99) of projetion transformation (98) for the stereoCTD are: �hk=�xk = mx +Mw ��sk�xk ; �hk=�yk = my +Mw ��sk�yk ;�hk=�txk = �hk�xk ��sk; �hk=�tyk = �hk�yk ��sk; (121)with ��sk=�xk = ��sk p0wx + Pkx2�sk ak + bk ; ��sk=�yk = ��sk p0wy + Pky2�sk ak + bk ;Mw = mwx (tkx � r0wx) +mwy (tky � r0wy):Elements of the orresponding Jaobian (103) for the axial CTD read as:�hk1=�xk = mx +Mw ��sk�xk ; �hk1�yk = my +Mw ��sk�yk ;�hk1=�txk = �hk1�xk ��sk; �hk1�tyk = �hk1�yk ��sk;�hk2=�xk = ��sk�xk ; �hk2�yk = ��sk�yk ;�hk2=�txk = ��sk�xk ��sk; �hk2�tyk = ��sk�yk ��sk; (122)
with ��sk=�xk = �pwxak ; ��sk=�yk = �pwyak ;Mw = mwx tkx +mwy tky:16 Appendix D: Conversions from Loal to GlobalParametersTrak parameters, u0; z0; �0; �0; q0, at the beginning of a entral trak, whih is �ttedusing the ylindrial parameterization (48), are onverted to perigee parameters (115):�H = �0 � tH ;Q=RH = �Bz q0q1 + �20;QDH = � r0 sin(u0r0 � �0 + tH) + (os tH � 1) = (Q=RH);zH = z0 + �0 tH = (Q=RH);ot � = �0; (123)
where tH = artan �1=(Q=RH)� r0 sin(u0=r0 � �0)r0 os(u0=r0 � �0) �� �2 sign(Q=RH):34



We onvert �tted artesian parameters at the beginning of a forward trak ,x0; y0; t0x; t0y; q0,into perigee parameters (115):�H = artan Y0X0 ;Q=RH = �Bz q0 q1 + t20x + t20yqt20x + t20y ;QDH = �1 + Y0 sin�H + X0 os�HQ=RH ;zH = z0 + �0 � �Hqt20x + t20y Q=RH ;ot �H = 1qt20x + t20y ;
(124)

where �0 = artan t0yt0x ;X0 = �y0Q=RH + t0xqt20x + t20y ;Y0 = x0Q=RH + t0yqt20x + t20y :The transformation from artesian to perigee parameterization for rear traks is similarto (124) for parameters �H ; Q=RH ; QDH , but di�ers for parameters zH and ot �H :zH = z0 � �0 � �Hqt20x + t20y Q=RH ;ot �H = � 1qt20x + t20y : (125)
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