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A Novel Formulation ofCabibbo-Kobayashi-Maskawa MatrixRenormalizationBernd A. Kniehl� and Alberto Sirliny� II. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germanyy Department of Physis, New York University,4 Washington Plae, New York, New York 10003, USAAbstratWe present a gauge-independent quark mass ounterterm for the on-shell renor-malization of the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the StandardModel that is diretly expressed in terms of the Lorentz-invariant self-energy fun-tions, and automatially satis�es the hermitiity onstraints of the mass matrix. Itis very onvenient for pratial appliations and leads to a gauge-independent CKMounterterm matrix that preserves unitarity and satis�es other highly desirable the-oretial properties, suh as avor demoray.PACS: 11.10.Gh, 12.15.Ff, 12.15.Lk, 13.38.Be
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Reently, a new approah to renormalize the Cabibbo-Kobayashi-Maskawa (CKM)matrix [1℄ at the one-loop level in the Standard Model (SM) framework was proposed[2, 3℄. It is based on a simple proedure to separate the external-leg mixing orretionsgenerated by the Feynman diagrams of Fig. 1 into gauge-independent self-mass (sm)and gauge-dependent wave-funtion renormalization (wfr) ontributions, and to adjustnon-diagonal ounterterm matries to anel the sm ontributions, subjet to onstraintsimposed by the hermitiity of the mass matries. Diagonalization of the omplete massmatries for up-type and down-type quarks leads then to an expliitly gauge-independentCKM ounterterm matrix that preserves unitarity.
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p(b)Figure 1: Fermion self-energy diagrams.In this paper we disuss an alternative on-shell approah that presents espeially at-trative features. It is a based on a gauge-independent mass ounterterm matrix that isdiretly expressed in terms of the Lorentz-invariant self-energy funtions and automati-ally satis�es the hermitiity onstraints of the mass matrix.On ovariane grounds, the self-energy �ii0(=p) assoiated with Fig. 1 is of the form�ii0(=p) = =pa��Lii0(p2) + =pa+�Rii0(p2) + a�ALii0(p2) + a+ARii0(p2); (1)where a� = (1�5)=2 are the hiral projetors and �L;Rii0 (p2) and AL;Rii0 (p2) are the invariantself-energy funtions. At one loop in the SM, we havemi0ALii0(p2) = miARii0(p2): (2)Expliit one-loop expressions for the SM in the R� gauges are given in the Appendix ofRef. [4℄ in ombination with the tadpole ontributions in Eq. (B.3) of Ref. [5℄ and Eq. (A5)of Ref. [6℄.The orresponding self-energy orretions to an external leg involving an outgoingquark is �Mlegii0 = ui(p) h�ii0(=p)� Æmii0i 1=p�mi0 ; (3)2



where i denotes the avor of the external quark of mass mi and four-momentum p, i0that of the virtual quark of mass mi0, and Æmii0 is the mass ounterterm matrix. Forde�niteness, we �rst onsider the ase in whih i and i0 in Fig. 1 are up-type quarks andl in the loop is a down-type quark. In this ase, the proposed mass ounterterm isÆmii0 = VilV yli0 Re�a+ �mi02 ~�Lii0(m2i ) + mi2 ~�Rii0(m2i ) + ~ARii0(m2i )�+ a� �mi2 ~�Lii0(m2i0) + mi02 ~�Rii0(m2i0) + ~ALii0(m2i0)�� ; (4)where ~�L;Rii0 (p2) and ~AL;Rii0 (p2) are the invariant self-energies with VilV yli0 fatored out and,following standard onventions, Vil is the CKM matrix element involving the up-typequark i and the down-type quark l.An expliit expression for Æmii0 in the SM an be obtained by using Eq. (21) of Ref. [3℄,whih provides the Feynman amplitude M (1)ii0 orresponding to Fig. 1 in the R� gauges.Realling that �ii0(=p) = iM (1)ii0 and taking into aount Eq. (1), one an readily determinethe ontributions of eah term of Eq. (21) to the invariant funtions and, via Eq. (4), toÆmii0 . One �nds that only the �rst three terms of Eq. (21) give non-vanishing ontributionsto Æmii0 . Separating out the hiral omponents,Æmii0 = a+Æm(+)ii0 + a�Æm(�)ii0 ; (5)we obtain the SM expressionsÆm(+)ii0 = g232�2VilV yli0 Re(mi  1 + m2i2m2W �!� mi0m2l2m2W [3� + I(m2i ; ml) + J(m2i ; ml)℄+ mi0  1 + m2i2m2W ! [I(m2i ; ml)� J(m2i ; ml)℄) ; (6)Æm(�)ii0 = g232�2VilV yli0 Re(mi0  1 + m2i02m2W �!� mim2l2m2W [3� + I(m2i0 ; ml) + J(m2i0 ; ml)℄+ mi  1 + m2i02m2W ! [I(m2i0 ; ml)� J(m2i0 ; ml)℄) ; (7)where g is the SU(2) gauge oupling, � = 1=(n � 4) + [E � ln(4�)℄=2 + ln(mW=�) theultraviolet divergene, n the spae-time dimensionality, E the Euler-Masheroni onstant,� the 't Hooft mass sale, andfI(p2; ml); J(p2; ml)g = Z 10 dx f1; xg lnm2l x +m2W (1� x)� p2x(1� x)� i"m2W : (8)The mass ounterterms Æm(�)ii0 and endowed with very important properties:1. They are gauge independent. Although �ii0(=p) ontains several gauge-dependentterms, they do not ontribute to Eq. (4). As explained in Ref. [3℄, suh gauge-dependent terms anel the (=p�mi0)�1 propagator in Eq. (3) and ontribute to thewfr. 3



2. Equations (6) and (7) automatially satisfy the hermitiity onstraint of the massmatrix, namely Æm(�)i0i = Æm(+)�ii0 ; Æm(+)i0i = Æm(�)�ii0 : (9)The gauge independene of Æmii0 is also easily veri�ed by inserting in Eq. (4) the ex-pressions for �L;Rii0 (p2) and AL;Rii0 (p2) given in Refs. [4, 5, 6℄. Alternatively, this an beestablished by means of Nielsen identities [7℄. In fat, these identities were employed inRef. [8℄ to show that the p2-dependent ombinationmimi0�Lii0(p2) + p2�Rii0(p2) +mi0ALii0(p2) +miARii0(p2) (10)is gauge independent. Inserting Eq. (2) in Eq. (10) and evaluating the resulting expressionat p2 = m2i and p2 = m2i0 , one immediately observes that Æmii0 is gauge independent.In the SM the funtions I(m2i ; ml), J(m2i ; ml), I(m2i0 ; ml), and J(m2i0 ; ml) are real wheni; i0 6= t. Thus, in suh ases the Re instrution is not neessary. On the other hand, wheni = t (i0 = t), the �rst two (last two) develop imaginary parts, and the Re instrutiontells us that only the real parts of I and J are inluded in the de�nition of Æm(�)ii0 .Inserting Eqs. (6) and (7) in Eq. (3), we �nd�Mlegii0 = �Mwfrii0 +�Mresii0 ; (11)where �Mwfrii0 is the wfr given in Eq. (30) of Ref. [3℄, and�Mresii0 = g232�2VilV yli0ui(p)(a+mi0i Im " 1 + m2i2m2W ! (I � J)(m2i ; ml)� m2l2m2W (I + J)(m2i ; ml)#+ a�mi " 1 + m2i02m2W ! ((I � J)(m2i ; ml)� Re(I � J)(m2i0 ; ml))� m2l2m2W ((I + J)(m2i ; ml)� Re(I + J)(m2i0 ; ml))#)� 1=p�mi0 (12)is a residual ontribution that arises beause the I and J funtions are evaluated atp2 = m2i in �ii0(=p) and Æm(+)ii0 [f. Eqs. (3) and (6)℄, at p2 = m2i0 in Æm(�)ii0 [f. Eq. (7)℄,and only their real parts are inluded in the ounterterms. When i; i0 6= t, the I and Jfuntions are real in the SM and Eq. (12) greatly simpli�es: the a+ omponent vanishesand the a� omponent involves di�erenes of real funtions evaluated at p2 = m2i andp2 = m2i0.It is important to note that �Mresii0 is �nite and gauge independent. Furthermore, itis non-singular in the limit mi0 ! mi, provided that mi < mW .1 In ontrast, �Mwfrii0 is1This does not prelude the possibility of a mass-degeneray singularity involving two quarks with thesame harges and masses mi;mi0 > mW . However, this hypothetial senario is not realized in the SMwith three generations. 4



gauge dependent and divergent, a standard property of wfrs. However, as explained inRefs. [2, 3℄, its ontribution to the physial W+ ! ui + dj amplitude does not involveCKM matrix elements exept for an overall fator Vij, and only depends on the masses miand mj of the external partiles, in omplete analogy with the proper vertex orretions.As a onsequene, the proof of �niteness and gauge independene of the W+ ! ui + djamplitude is redued to that in the unmixed, single-generation ase.For an inoming up-type quark of avor i0, mass mi0 , and four-momentum p, theexternal-leg orretion is obtained by multiplying �ii0(=p) � Æmii0 by ui0(p) on the rightand by (=p�mi)�1 on the left, where i denotes now the virtual up-type quark of avor iand mass mi, and �ii0(=p)� Æmii0 is the same amplitude disussed before. It is then easyto see that the residual ontributions in the inoming ase are obtained by interhanginga+ $ a� and mi $ mi0 between the urly brakets of Eq. (12), and multiplying theresulting expression by ui0(p) on the right hand and by (=p�mi)�1 on the left. Similarly,the wfr for an inoming up-type quark of avor i0 is obtained by interhanging a+ $ a�and mi $ mi0 between the urly brakets of Eq. (30) in Ref. [3℄ and multiplying theresulting expression by ui0(p) on the right. Finally, the expressions for an outgoing down-type quark of avor j are obtained from those of an outgoing up-type quark by substitutingi! j, i0 ! j 0, and VilV yli0 ! V yjlVlj0, where j 0 is the avor of the virtual down-type quarkand l that of the up-type quark in the loop. In the ase in whih the external partile is adown-type quark, the I and J funtions are real, and the Re instrution in Eqs. (4), (6),and (7) is not neessary.As disussed in Refs. [2, 3℄, diagonalization of the omplete mass matries for bothup-type and down-type quarks generates a CKM ounterterm matrix that is gauge in-dependent, preserves unitarity in the sense that both the bare and renormalized CKMmatries are unitary, and leads to renormalized amplitudes that are non-singular in thelimit mi0 ! mi for mi < mW . A omparative analysis of the alulations of the W -bosonhadroni widths in various CKM renormalization shemes, inluding the ones proposedhere and in Refs. [2, 3℄, is presented in Ref. [9℄.In summary, we have presented a novel mass ounterterm for CKM renormalizationthat is endowed with very attrative features:1. It is expressed in terms of the invariant self-energy funtions, a property that isvery useful for pratial appliations, sine suh funtions are routinely evaluatedin omputer odes.2. It is gauge independent, whih is a ruial property to ensure the gauge independeneof the assoiated CKM ounterterm matrix.3. It leads to renormalized amplitudes that are non-singular in the limit mi0 ! mi formi < mW .4. It automatially satis�es the hermitiity onstraints of the mass matrix, a propertythat eliminates the need for speial and somewhat arbitrary adjustments of theounterterms in spei� transition hannels. In fat, the ounterterm presented5
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