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1 IntrodutionRenormalizability endows the Standard Model (SM) with enhaned preditive power dueto the fat that ultraviolet (UV) divergenes from quantum e�ets an be eliminated bya rede�nition of a �nite number of independent parameters, suh as masses and ouplingonstants. Furthermore, it has been known for a long time that, in the most frequentlyemployed formulations in whih the omplete bare mass matries of quarks are diago-nalized, the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [1℄ must be alsorenormalized [2℄. In fat, this problem has been the objet of several interesting studiesover the last two deades [3, 4℄.A matter of onsiderable interest is the generalization of these onsiderations to min-imal renormalizable extensions of the SM. In partiular, in Refs. [5, 6℄ the mixing-matrixrenormalization was extended to theories that inlude isosinglet neutrinos and admit thepresene of lepton-number-violating Majorana masses. A minimal realization of suh atheory is the SM with right-handed Dira and Majorana neutrinos [5, 7℄, an appealingsenario that may explain the smallness of the observed neutrino masses and may leadto neutrino-less double beta deays. Furthermore, this minimal extension may give riseto a number of observable phenomena, suh as lepton-avor and/or lepton-number viola-tion in �, � [8℄ and Z-boson deays [9℄, or to possible lepton-number-violating signals athigh-energy olliders [10℄.The aim of this paper is to generalize the on-shell renormalization of the CKM matrixreently proposed in Ref. [4℄ to extensions of the SM in whih the lepton setor ontainsMajorana neutrinos. An important property is that this formulation omplies with UV�niteness and gauge independene,1 and also preserves the basi struture of the theory.In partiular, the texture zero (m00L = 0) in the neutrino mass matrix is preserved byrenormalization.This paper is organized as follows. After briey reviewing in Setion 2 the basiformalism of the seesaw mehanism in the minimal extension of the SM neutral-leptonsetor, we evaluate in Setion 3 the one-loop self-energy insertions (see Figs. 1 and 3) inan external harged-lepton or Majorana-neutrino leg, perform the separation into wave-funtion renormalization (wfr) and self-mass (sm) amplitudes, and show expliitly theanellation of gauge dependenes in the latter. As in the quark ase [4℄, the massounterterm matrix, to be disussed in Setion 4, is hosen to anel, as muh as possible,the sm ontributions. In Setion 5, we disuss the diagonalization of the omplete massmatrix and show expliitly how this proedure generates mixing ounterterm matries ina manner that preserves the basi struture of the theory, as well as gauge independeneand UV �niteness. Finally, our onlusions are summarized in Setion 6.1Throughout this paper, the term gauge independene is used as an abbreviation for gauge parameterindependene.
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2 Neutrino see-saw mehanismWe onsider a minimal, renormalizable extension of the SM, based on the SU(2)I
U(1)Ygauge group, that an naturally aommodate heavy Majorana neutrinos. We allowfor an arbitrary number NG of fermion generations. Similarly to the SM, eah leptonfamily ontains one weak-isospin (I) doublet (� 00L;i; l00L;i) of left-handed states with weakhyperharge Y = �1 and one right-handed harged-lepton state l00R;i with I = 0 andY = �2 (i = 1; 2; : : : ; NG). In addition, there is a total of NR right-handed neutrinos � 00R;iwith I = Y = 0 (i = 1; 2; : : : ; NR). The supersript 0 denotes bare quantities, while theprimes are to remind us that we are dealing with weak-interation eigenstates.The bare Lagrangian density ontains the neutrino mass termsL00;� = �12 �� 00L ; � 00CR �m00;� �� 00CL� 00R �+ h::; (1)where � 00L = �� 00L;1; : : : ; � 00L;NG�T , � 00R = �� 00R;1; : : : ; � 00R;NR�T , the supersript C denotes hargeonjugation, T means transpose, and m00;� is a omplex, symmetri matrix of the formm00;� = �m00L m00Dm00TD m00M � : (2)Unless the SM Higgs setor is supplemented by additional weak-isospin singlets and/ortriplets of Higgs �elds, invariane under SU(2)I�U(1)Y leads tom00L = 0. In the following,we do assume that m00L = 0. This allows for the implementation of the seesaw mehanism.The neutrino mass matrix (2) an always be diagonalized through a unitary trans-formation. For the reader's onveniene, we present a simple proof in Appendix B. Thenon-negative diagonal matrix then ontains the bare neutrino mass eigenvalues. Theorresponding mass eigenstates are given by�� 00L� 00CR �a =Xb U0;��ab �0L;b; �� 00CL� 00R �a =Xb U0;�ab �0R;b; (3)with a; b;  = 1; 2; : : : ; NG +NR. It is important to note that Eq. (3) leads to the relation�0R = �0CL : (4)This implies that the bare neutrino mass eigenstates �0L and �0R an be identi�ed with theleft and right-handed omponents of the Majorana �elds.�0 = �0L + �0CL = �0CR + �0R: (5)In Eqs. (3){(5) the �rst NG mass eigenstates are identi�ed with the ordinary light neu-trinos (assuming that NG = 3), and the remaining NR states represent the new neutralleptons predited by the theory. For onveniene, in what follows we denote the harged-lepton mass eigenstates using indies i; j; k; : : : and the Majorana-neutrino mass eigen-states using indies from the beginning of the alphabet a; b; ; : : :. Aordingly, sums over3



repeated harged-lepton indies i; j; k; : : : run from 1 to NG, while those over the neutrinoindies a; b; ; : : : extend from 1 to NG +NR.The parts of the bare Lagrangian desribing the ouplings of the W�, Z, and Higgs(H) bosons to the harged-lepton mass eigenstates, l0i , and Majorana-neutrino mass eigen-states, �0a, are given by:2L0W = � g0p2(W�� )0Xi;a l0iB0ia�a��0a + h::;L0�� = � g0p2m0W (��)0Xi;a l0iB0ia(m0i a� �m0aa+)�0a + h::;L0Z = � g040wZ0�Xa;b �0a�(C0aba� � C0�aba+)�0b ;L0�0 = ig04m0W (�0)0Xa;b �0a �(m0aC0�ab +m0bC0ab)a+ � (m0aC0ab +m0bC0�ab )a�)� �0b ;L0H = � g04m0WH0Xa;b �0a �(m0aC0�ab +m0bC0ab)a+ + (m0aC0ab +m0bC0�ab )a�)� �0b ; (6)where g is the SU(2)L gauge oupling, w the osine of the eletroweak mixing angle, ��and �0 are the harged and neutral Higgs-Kibble ghosts, respetively, and a� = (1�5)=2are the hiral projetors. B and C are NG � (NG + NR) and (NG + NR) � (NG + NR)non-unitary matries, respetively. The bare matries are de�ned by the expressionsB0ia =Xk V 0;lik U0;��ka ; C0ab =X U0;�Ta U0;��b ; (7)where V 0;l is the unitary NG �NG matrix relating the weak-interation and mass eigen-states of the harged leptons and U0;� is the unitary (NG + NR) � (NG + NR) matrixrelating the orresponding neutrino eigenstates, de�ned in Eq. (3). They obey a numberof basi identities, whih ensure the renormalizability of the theory, namely [5, 7℄X B0iB0�j = Æij; Xi B0�iaB0ib = C0ab; (8)X B0iC0a = B0ia; X C0aC0b = C0ab = C0yab ; (9)X m0B0iB0j = 0; X m0B0iC0a = 0; X m0C0aC0b = 0: (10)The last three relations are manifestations of the presene of lepton-number violation inthe neutrino setor.2In Eq. (6) we have not inluded the terms desribing the interations of the neutral bosons with theharged leptons, sine they are the same as in the SM.4
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pFigure 1: Charged-lepton self-energy diagrams at one loop.3 Self-energy orretions to an external legFollowing the approah of Ref. [4℄, the analysis of external-leg orretions leads to twolasses of ontributions:(i) terms proportional to the virtual-fermion propagator i=(=p�mf 0) with gauge-indepen-dent ofators not involving =p, where mf 0 stands generially for the mass of thevirtual fermion;(ii) terms in whih the virtual propagator is anelled in both the diagonal and o�-diagonal amplitudes.The gauge-independent ofators of lass (i) and the ontributions of lass (ii) are iden-ti�ed with the sm and wfr ontributions, respetively. In analogy with QED, the latterontain both gauge-dependent and UV-divergent parts but, in the evaluation of physialamplitudes, these piees anel the orresponding ontributions from the proper vertexdiagrams. On the other hand, also in analogy with QED, the UV-divergent sm ontribu-tions are anelled by the UV-divergent parts of the mass ounterterms.In order to implement the analysis of the external-leg orretions, we evaluate theontributions of Figs. 1 and 3 in the R� gauges and, applying the algorithm developed inRef. [4℄, we separate them into sm and wfr amplitudes. We do not enter into details, butrather present the results and emphasize the di�erenes with respet to the quark ase.We �rst treat the ase of an outgoing on-shell harged lepton in Setion 3.1 and thenthat of an outgoing on-shell Majorana neutrino in Setion 3.2. We have hosen to do so,sine the harged-lepton ase is very similar to that of quarks, while in the Majorana-neutrino ase additional interations involving avor mixing appear. For ompleteness, inSetion 3.3 we disuss also the ase of inoming harged leptons and Majorana neutrinos.3.1 Outgoing harged leptonIf i is an outgoing on-shell harged lepton, the external-leg amplitude is obtained bymultiplying the diagrams in Fig. 1 on the left by ui(p), the spinor of the outgoing hargedlepton, and on the right by i(=p � mj)�1, the propagator of the virtual harged lepton.5
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Figure 2: Proper Wl� vertex diagrams at one loop.Thus, the relevant amplitude assoiated with the external leg is:�Mlegij = ui(p)M (1)ij i=p�mj ; (11)where M (1)ij denotes the ontributions of Fig. 1.The sm ontributions to the external-leg orretions for an outgoing on-shell hargedlepton are:�Mleg;smij = g232�2ui(p)Xa BiaByaj�mi�1 + m2i2m2W�W�+ �mia� +mja+ + mimj2m2W (mia+ +mja�)�� �I(m2i ; mW ; ma)� J(m2i ; mW ; ma)�� m2a2m2W (mia� +mja+)� �3�W + I(m2i ; mW ; ma) + J(m2i ; mW ; ma)�� 1=p�mj : (12)The funtions I and J as well as the UV divergene �W are de�ned in Appendix A. Notethat Eq. (12) is a multiple of the virtual harged-lepton propagator i(=p � mj)�1 with aofator that is gauge and momentum independent. As expeted in a hiral theory, itinvolves the hiral projetors. At this point, we should emphasize that Eq. (12) is thesame as that for up-type quarks, given in Eq. (29) of Ref. [4℄, up to partile hanges.The only di�erene is that now no ompliations due to imaginary parts appear. Theamplitudes I(p2; m1; m2) and J(p2; m1; m2) may have absorptive parts only when theirarguments ful�ll the ondition p2 > (m1 +m2)2. In the present ase, we have p2 = m2i ,m1 = mW , and m2 = ma, whih ensures that the above inequality an not be satis�ed,sine the external-harged-lepton mass is muh smaller than that of the W boson.The wfr ontributions to the external-leg orretion for an outgoing on-shell harged6



lepton are given by�Mleg;wfrij = g232�2ui(p)Xa BiaByaj��I(m2i ; mW ; ma)� J(m2i ; mW ; ma)� a++ 12m2W �mimja� +m2aa+� ��W + I(m2i ; mW ; ma)� J(m2i ; mW ; ma)�� Æijm2im2a2m2W �I 0(m2i ; mW ; ma) + J 0(m2i ; mW ; ma)�+ Æijm2i �1 + m2i2m2W ��I 0(m2i ; mW ; ma)� J 0(m2i ; mW ; ma)�+ �1 + �W ��W � 12 + 12 ln �W�� a+ �N(mW ; mi; ma; �W )a+�: (13)Here I 0(m2i ; mW ; ma) and J 0(m2i ; mW ; ma) are the �rst derivatives of I(p2; mW ; ma) andJ(p2; mW ; ma) with respet to p2, evaluated at p2 = m2i , and the funtionN(mW ; mi; ma; �W )is de�ned in Appendix A.The UV-divergent part of Eq. (13) is then�Mleg;wfr;divij = g232�2ui(p)Xa BiaByaj �mimj2m2W a� + ��W + m2a2m2W � a+��W : (14)If Eq. (13) is inserted in the leptoni W -boson deay amplitude, important simpli�-ations take plae, in analogy with the analysis in Ref. [4℄. In fat, using Eqs. (8){(10)one readily �nds that the ontributions of the terms not involving I 0 and J 0 redue to ex-pressions that ombine naturally with the proper vertex diagrams of Fig. 2, an importantproperty to ensure the anellation of UV divergenes and gauge dependenes in the fullphysial amplitude. Although the orresponding ontributions from the terms involvingI 0 and J 0 do not simplify, we note that they are UV �nite and gauge independent.3.2 Outgoing Majorana neutrinoWhile the harged leptons ould be treated analogously to the quarks, the Majorananeutrinos require a more omprehensive analysis. In this ase, mixing ours not only inharged-urrent but also in neutral-urrent interations. For this reason, it is neessary toonsider the orretions in Fig. 3 indued by neutral urrents, as well as those emergingfrom the harged urrents, already present in the harged-lepton ase. Note that, ifneutrinos were Dira partiles, the seond diagram would be absent.As before, we evaluate the ontributions in Fig. 3 in the R� gauges. The tadpolediagrams are needed to remove the gauge dependene in the diagonal (aa) and in partsof the non-diagonal (ab) ontributions to the self-energy diagrams.We onsider the ase in whih a is an outgoing on-shell Majorana neutrino and b is avirtual Majorana neutrino. In analogy to the harged-lepton ase, the sm ontributions7
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+ 4m3 (CaC�ba+ + C�aCba�) ��H+ 14m2W X � (maC�a +mCa) (mCb +mbC�b) (maa� +mba+)+ (maCa +mC�a) (mC�b +mbCb) (maa+ +mba�) �� �I(m2a; mH ; m)� J(m2a; mH ; m)�+X m2m2W � (maC�a +mCa) (mC�b +mbCb) a++ (maCa +mC�a) (mCb +mbC�b) a��I(m2a; mH ; m)+ 122w �C�ab + mamb2m2Z Cab�Z� (maa+ +mba�)+ 122w �Cab + mamb2m2Z C�ab�Z� (maa� +mba+)� m3m2W�Z (CaC�ba+ + C�aCba�)+ 122w X ��1� m22m2Z� [CaCb(maa� +mba+) + C�aC�b(maa+ +mba�)℄+ 12m2Z (maa� +mba+)(maC�a +mCa)(mbC�b +mCb)+ 12m2Z (maa+ +mba�)(maCa +mC�a)(mbCb +mC�b)�� �I(m2a; mZ ; m)� J(m2a; mZ ; m)��X m24m2W [CaCb (maa� +mba+) + C�aC�b (maa+ +mba�)℄� �3�Z + I(m2a; mZ ; m) + J(m2a; mZ ; m)�+X m22w ��4� m2m2Z� (CaC�ba+ + C�aCba�)� mambm2Z (C�aCba+ + CaC�ba�)� I(m2a; mZ; m): (16)The I and J funtions, together with the UV divergenes �W , �Z , and �H are de�nedin Appendix A.Equations (15){(16) are muh lengthier than Eq. (12) beause of the additional lassof diagrams onsidered. However, their struture is similar.The wfr ontributions �Mleg;wfrab to the external-leg orretion for an outgoing on-shellMajorana neutrino a read: �Mleg;wfrab = ua(p)� g232�2Twfrab � ; (17)9



with Twfrab = (Caba+ + C�aba�) �1 + �W ��W � 12 + 12 ln �W��+ 122w (Caba+ + C�aba�) �1 + �Z ��Z � 12 + 12 ln �Z���Xk (B�kaBkba+ +BkaB�kba�)N(mW ; ma; mk; �W )� 122w X (CaCba+ + C�aC�ba�)N(mZ ; ma; m; �Z)+ 122w X mam (CaC�ba� + C�aCba+)M(mZ ; ma; m; �Z)+ 12m2W Xk �B�kaBkb �mamba� +m2ka+�+BkaB�kb �mamba+ +m2ka���� ��W + I(m2a; mW ; mk)� J(m2a; mW ; mk)�+Xk [B�kaBkba+ +BkaB�kba�℄ �I(m2a; mW ; mk)� J(m2a; mW ; mk)�+ 14m2W  mambC�ab +X m2CaCb!�Ha++ 14m2W  mambCab +X m2C�aC�b!�Ha�+ 14m2W X [(maC�a +mCa)(mCb +mbC�b)a++ (maCa +mC�a)(mC�b +mbCb)a�℄� �I(m2a; mH ; m)� J(m2a; mH ; m)�+ 122w X (CaCba+ + C�aC�ba�) �I(m2a; mZ ; m)� J(m2a; mZ ; m)�+ 14m2W X [(maCa +mC�a)(mC�b +mbCb)a�+ (maC�a +mCa)(mCb +mbC�b)a+℄� ��Z + I(m2a; mZ; m)� J(m2a; mZ; m)�� ÆabXk m2am2km2W B�kaBkb �I 0(m2a; mW ; mk) + J 0(m2a; mW ; mk)�+ 2Æabm2a �1 + m2a2m2W �Xk B�kaBkb �I 0(m2a; mW ; mk)� J 0(m2a; mW ; mk)�+ Æab m2a2m2W X (maCa +mC�a)(mC�b +mbCb)10



� �I 0(m2a; mH ; m)� J 0(m2a; mH ; m)�+ ÆabX mam2m2W [(maC�a +mCa)(mC�b +mbCb)a++ (maCa +mC�a)(mCb +mbC�b)a�℄ I 0(m2a; mH ; m)+ Æabm2a2w X � 12m2Z (maCa +mC�a)(mbCb +mC�b)+ CaCb�1� m22m2Z�� �I 0(m2a; mZ ; m)� J 0(m2a; mZ ; m)�� ÆabX m2am22m2W CaCb �I 0(m2a; mZ; m) + J 0(m2a; mZ; m)�+ ÆabX mam22w ��4� m2m2Z� (CaC�ba+ + C�aCba�)� m2am2Z (CaC�ba� + C�aCba+)� I 0(m2a; mZ ; m): (18)The UV-divergent part of Eq. (17) is:�Mleg;wfr;divab = g232�2ua(p)�(Caba+ + C�aba�)��W�W + 122w �Z�Z�+ mamb2m2W (C�aba+ + Caba�) (�W +�H)+Xk m2k2m2W (B�kaBkba+ +BkaB�kba�)�W+X m24m2W (CaCba+ + C�aC�ba�) (�H +�Z)�: (19)The disussion of the wfr ontributions at the end of Setion 3.1 remains valid. Infat, when inserted into the leptoni W -boson deay amplitude, Eq. (17) is also subjetto important simpli�ations. One then �nds that the wfr ontributions to the externalleg involving an outgoing Majorana neutrino an be ombined naturally with the propervertex diagrams of Fig. 2. To prove this, one needs to multiply Eq. (17) on the right by��ig=p2�B�ib�a�vi"�, where vi is the spinor assoiated with the harged lepton li and"� is the polarization four-vetor of the W boson, and to perform the summation over theindex b. Making use of Eqs. (8){(10), it an be veri�ed that the terms in Eq. (17) notinvolving derivatives of the amplitudes I and J lead to the strutures(i) B�iaf(mi; ma);(ii) PbB�ib (Cbaf1(mi; ma; mb) + C�baf2(mi; ma; mb)).The terms having the struture (i) ombine naturally with the proper vertex diagramsof Fig. 2(), while those having the struture (ii) are to be ombined with the diagrams11



depited in Figs. 2(a) and (b). We emphasize that, also here, these terms inlude allthe gauge-dependent and UV-divergent ontributions in Eq. (17). However, in Eq. (17)there are also terms proportional to derivatives of the funtions I and J , whih annotbe further simpli�ed, but are UV �nite and gauge independent.3.3 Inoming leptonsEquations (12), (13), (15), and (17) exhibit the sm and wfr ontributions to the external-leg orretions in the ase of an outgoing on-shell lepton. For the purpose of the followingdisussion, it is onvenient to all x and y the avors of the outgoing and virtual leptons.Thus, in Fig. 1, x = i and y = j, while in Fig. 3, x = a and y = b.The orresponding expressions for an inoming lepton of avor y is obtained by mul-tiplying the diagrams in Figs. 1 and 3, by uy(p) on the right and (=p�mx)�1 on the left,where x now denotes the virtual lepton. It is then easy to see that the sm ontributionsin the inoming ase are obtained by interhanging a+ $ a� and mx $ my between theurly brakets of Eqs. (12) and (15), and multiplying the resulting expression by uy(p)on the right and (=p�mx)�1 on the left. Similarly, the wfr ontributions for an inominglepton of avor y are obtained by interhanging a+ $ a� and mx $ my between theurly brakets of Eqs. (13) and (17), and multiplying the resulting expression by uy(p) onthe right.4 Mass renormalizationIn this setion, we study the anellation of the sm ontributions by suitably adjusting themass ounterterms. We start with the simpler ase of the harged leptons, whih is, up tothe partile ontent, idential to that of quarks [4℄. When treating the Majorana-neutrinoase, a new feature appears. One needs to keep in mind the fat that we are dealing withMajorana partiles, i.e. partiles and antipartiles are idential. As a onsequene, a newondition for the mass ounterterms arises.4.1 Charged-lepton mass ounterterm matrixIn order to generate mass ounterterms suitable for the renormalization of the sm on-tributions shown in Eq. (12), we proeed as in Ref. [4℄, where the ase of quark mixingwas onsidered. Deomposing the mass matrix as m0l0 = m0l + Æm0l, where m0l and Æm0ldenote the renormalized and mass ounterterm matries, and onsidering a bi-unitarytransformation of the harged-lepton �elds l0L;R that diagonalizes m0l, the mass term inthe Lagrangian density takes the form� l(ml + Æml(�)a� + Æml(+)a+)l; (20)where ml is real, diagonal, and positive, and Æml(�) and Æml(+) are arbitrary non-diagonalmatries subjet to the Hermitiity onditionÆml(+) = Æml(�)y: (21)12



The ontribution of the mass ounterterm to the external-leg amplitude is given by� iui(Æml(�)ij a� + Æml(+)ij a+) i=p�mj : (22)We now adjust Æml(�)ij and Æml(+)ij to anel, as muh as possible, the sm ontributionsin Eq. (12). The anellation of the UV-divergent part is ahieved by hoosing�Æml(�)div �ij =� g2mi64�2m2W�W  Æijm2i � 3Xa BiaByajm2a! ;�Æml(+)div �ij =� g2mj64�2m2W�W  Æijm2i � 3Xa BiaByajm2a! : (23)Note that �Æml(+)div �ij = �Æml(�)div ��ji ; (24)so that the Hermitiity ondition is ful�lled.We all ij hannel the amplitude in whih i labels the outgoing on-shell hargedlepton and j the virtual one. The ji hannel is then the amplitude in whih the rolesare reversed: j is the outgoing on-shell harged lepton, while i is the virtual one. Onthe basis of Eq. (22), we de�ne the mass ounterterms Æml(�)ij suh that they ompletelyanel the sm orretions in Eq. (12) for an outgoing harged lepton in the ij hannel.As a onsequene, we may writeÆml(�)ij = �g2mi32�2 �Æij �1 + m2i2m2W�W�+Xa BiaByaj �1 + m2j2m2W ��I(m2i ; mW ; ma)� J(m2i ; mW ; ma)��Xa BiaByaj m2a2m2W �3�W + I(m2i ; mW ; ma) + J(m2i ; mW ; ma)�) ;Æml(+)ij = �g2mj32�2 �Æij �1 + m2i2m2W�W�+Xa BiaByaj �1 + m2i2m2W ��I(m2i ; mW ; ma)� J(m2i ; mW ; ma)��Xa BiaByaj m2a2m2W �3�W + I(m2i ; mW ; ma) + J(m2i ; mW ; ma)�) : (25)One Æml(�)ij and Æml(+)ij are �xed, the mass ounterterms for the reverse ji hannelare determined by the Hermitiity onditionsÆml(�)ji = Æml(+)�ij ; Æml(+)ji = Æml(�)�ij : (26)13



We note that the funtions I and J in Eq. (25) are evaluated at p2 = m2i in the ijhannel and at p2 = m2j in the ji hannel. As a onsequene, the mass ounterterms annotompletely remove the sm ontributions in both amplitudes. Due to this restrition, wehoose Æmlii to anel, as is ustomary, all the diagonal ontributions in Eq. (12), whilefor the non-diagonal entries, we hoose Æmlij with i < j to anel the orresponding smontributions. One Æmlij with i < j are �xed, the mass ounterterms for the ji hannel,i.e. Æmlji, are �xed by the hermitiity onditions in Eq. (21).4.2 Majorana-neutrino mass ounterterm matrixIn the weak-eigenstate basis, the bare mass matrix m00;� for the neutrinos is symmetriand non-diagonal, and the orresponding terms in the Lagrangian density are given inEq. (1). Deomposing m00;� = m0� + Æm0�, where m0� and Æm0� denote the renormalizedand ounterterm mass matries, we envisage a unitary transformation of the Majorana-neutrino �elds that diagonalizes m0� , leading to a renormalized mass matrix m� thatis diagonal, real, and positive. As shown in Appendix B, this an be ahieved by thefollowing transformation: W Tm0�W = m�; (27)where W is unitary. This also transforms Æm0� into a new symmetri matrix Æm� , whih,in general, is non-diagonal. In the new framework, the mass term beomes� 12�(m� + Æm�(�)a� + Æm�(+)a+)�; (28)where m� is real, diagonal, and positive, and Æm�(�) and Æm�(+) are symmetri non-diagonal matries subjet to the onstraintÆm�(+) = Æm�(+)T = Æm�(�)� = Æm�(�)y: (29)As is ustomary, the mass ounterterms are inluded in the interation Lagrangiandensity. Their ontribution to the external-leg amplitude reads:� iua(p)(Æm�(�)ab a� + Æm�(+)ab a+) i=p�mb : (30)We now adjust Æm�(�)ab and Æm�(+)ab to anel, as muh as possible, the sm ontributionsgiven in Eq. (15). The anellation of the UV-divergent parts is ahieved by hoosing�Æm�(�)div �ab = � g264�2m2W �mamb(maC�ab +mbCab)��W + 12�H + 12�Z�� 3Xk m2k(maB�kaBkb +mbBkaB�kb)�W+X m2(maCaCb +mbC�aC�b)�52�H � 32�Z�14



+ 2X m3C�aCb(�H ��Z)�;�Æm�(+)div �ab = � g264�2m2W �mamb(maCab +mbC�ab)��W + 12�H + 12�Z�� 3Xk m2k(maBkaB�kb +mbB�kaBkb)�W+X m2(maC�aC�b +mbCaCb)�52�H � 32�Z�+ 2X m3CaC�b(�H ��Z)�: (31)It is easy to hek that�Æm�(+)div �ab = �Æm�(+)div �ba = �Æm�(�)div ��ab = �Æm�(�)div ��ba ; (32)so that Æm�(�)div and Æm�(+)div satisfy the requirements in Eq. (29).In order to disuss the anellation of the UV-�nite parts, as we did in the harged-lepton ase, we all ab hannel the amplitude in whih a labels the outgoing on-shellMajorana neutrino and b the virtual one. In the ab hannel, we de�ne then the massounterterms Æm�(�)ab suh that they fully anel the sm ontributions of Eq. (15) andobtain:� 32�2g2 Æm�(�)ab = �32�2g2 �Æm�(�)div �ab + (maCab +mbC�ab)�1 + 122w��Xk m2k2m2W (maB�kaBkb +mbBkaB�kb)� �I(m2a; mW ; mk) + J(m2a; mW ; mk)�+Xk �mamb2m2W (maBkaB�kb +mbB�kaBkb) + (maB�kaBkb +mbBkaB�kb)�� �I(m2a; mW ; mk)� J(m2a; mW ; mk)�+ 14m2W X �ma (maC�a +mCa) (mCb +mbC�b)+mb (maCa +mC�a) (mC�b +mbCb) �� �I(m2a; mH ; m)� J(m2a; mH ; m)�+X m2m2W (maCa +mC�a) (mCb +mbC�b) I(m2a; mH ; m)+ 122w X ��1� m22m2Z� (maCaCb +mbC�aC�b)+ ma2m2Z (maC�a +mCa)(mbC�b +mCb)15



+ mb2m2Z (maCa +mC�a)(mbCb +mC�b)�� �I(m2a; mZ ; m)� J(m2a; mZ ; m)��X m24m2W (maCaCb +mbC�aC�b)� �I(m2a; mZ ; m) + J(m2a; mZ ; m)�+X m22w ��4� m2m2Z�C�aCb � mambm2Z CaC�b� I(m2a; mZ ; m);�32�2g2 Æm�(+)ab = �32�2g2 �Æm�(+)div �ab + (maC�ab +mbCab)�1 + 122w��Xk m2k2m2W (maBkaB�kb +mbB�kaBkb)� �I(m2a; mW ; mk) + J(m2a; mW ; mk)�+Xk �mamb2m2W (maB�kaBkb +mbBkaB�kb) + (maBkaB�kb +mbB�kaBkb)�� �I(m2a; mW ; mk)� J(m2a; mW ; mk)�+ 14m2W X �mb (maC�a +mCa) (mCb +mbC�b)+ma (maCa +mC�a) (mC�b +mbCb) �� �I(m2a; mH ; m)� J(m2a; mH ; m)�+X m2m2W (maC�a +mCa) (mC�b +mbCb) I(m2a; mH ; m)+ 122w X ��1� m22m2Z� (mbCaCb +maC�aC�b)+ mb2m2Z (maC�a +mCa)(mbC�b +mCb)+ ma2m2Z (maCa +mC�a)(mbCb +mC�b)�� �I(m2a; mZ ; m)� J(m2a; mZ ; m)��X m24m2W (mbCaCb +maC�aC�b)� �I(m2a; mZ ; m) + J(m2a; mZ ; m)�+X m22w ��4� m2m2Z�CaC�b � mambm2Z C�aCb� I(m2a; mZ ; m): (33)Also here, the funtions I and J are evaluated at p2 = m2a in the ab hannel andat p2 = m2b in the ba hannel. Therefore, the mass ounterterms in Eq. (33) annot16



ompletely remove the sm ontributions of Eq. (15) in both hannels. We then hooseÆm�aa to anel all the diagonal ontributions in Eq. (15) and Æm�ab with a < b to fullyanel the orresponding sm ontributions. One Æm�ab with a < b are �xed, the massounterterms for the ba hannel, i.e. Æm�ba, are determined by the onditions in Eq. (29).5 Renormalization of mixing matriesIn the previous setion, we have shown how one an de�ne mass ounterterms on the basisof the sm ontributions alulated in Setion 3. In partiular, in both harged-lepton andMajorana-neutrino ases, the UV-divergent parts in the sm ontributions of Eqs. (12) and(15) are ompletely aneled by the mass ounterterms. In addition, also UV-�nite partsget aneled, up to the Hermitiity onditions (21) and (29). We wish to emphasize thatthe mass ounterterms onstruted in this way are expliitly gauge independent.In what follows, we proeed with the diagonalization of the omplete mass matries,whih inlude the renormalized and ounterterm mass matries. Similar to the quark ase[4℄, this proedure leads to mixing matrix ounterterms whih automatially satisfy thebasi properties (8){(10) and are gauge independent. As before, we �rst disuss the aseof harged leptons followed by that of Majorana neutrinos.The renormalized fermion masses thus resulting are the familiar on-shell masses, whihoinide with the pole masses [11℄ to the order of our alulation.5.1 Diagonalization of the harged-lepton mass matrixFollowing Ref. [4℄, we onsider a bi-unitary transformation that diagonalizes the ompleteharged-lepton mass matrix in Eq. (20) through terms of O(g2). Calling U lL and U lR theunitary matries in this transformation and writingU lL = 1 + ihlL; U lR = 1 + ihlR; (34)where hlL and hlR are hermitian matries of O(g2), one �nds that the o�-diagonal elements(i 6= j) are given by i(hlL)ij = �mliÆml(�)ij + Æml(+)ij mlj(mli)2 � (mlj)2 ;i(hlR)ij = �mliÆml(+)ij + Æml(�)ij mlj(mli)2 � (mlj)2 ; (35)while the diagonal elements an be hosen to vanish, namely (hlL;R)ii = 0. As shown inAppendix B in Ref. [4℄, the alternative hoie (hlL;R)ii 6= 0 has no physial e�et on theWl� interations through O(g2).
17



5.2 Diagonalization of the Majorana-neutrino mass matrixThe situation in the ase of Majorana neutrinos is similar to the one of the hargedleptons, exept that now one needs only one unitary matrix for the diagonalization of theomplete mass matrix. Writing U� = 1 + ih� ; (36)where h� is again a Hermitian matrix of O(g2), one �nds that the o�-diagonal elements(a 6= b) are given by i(h�)ab = �m�aÆm�(�)ab + Æm�(+)ab m�b(m�a)2 � (m�b )2 ; (37)and, in analogy with the harged-lepton ase, we hoose (h�)aa = 0.5.3 Mixing ounterterm matriesWe analyze next the e�et of the transformations of Eqs. (34){(37) on the Wl� ouplingin Eq. (6). Performing the above transformations, we �nd through terms of O(g2) thatLW = � gp2W�� l(B + ÆB)�a�� + h::; (38)where ÆB = i(Bh� � hlLB): (39)It is easy to verify that both the renormalized and bare mixing matries satisfy the �rstondition in Eq. (8) while, due to the seond ondition, one ÆB is �xed, ÆC is �xed aswell, leading to ÆC = i(Ch� � h�C): (40)One an further hek that all the other onditions in Eqs. (9) and (10) for the twomixing matries are satis�ed. Of ourse, all the equalities hold through the order of thealulation, namely O(g2).For ompleteness, we give the two ounterterm matries in omponent form:ÆBia = i"Xb Bib (h�)ba �Xj �hlL�ij Bja#= �Xb Bibm�b Æm�(�)ba + Æm�(+)ba m�a(m�b )2 � (m�a)2 +Xj mliÆml(�)ij + Æml(+)ij mlj(mli)2 � (mlj)2 Bja; (41)ÆCab = iX [Ca (h�)b � (h�)a Cb℄= �X Cam� Æm�(�)b + Æm�(+)b m�b(m� )2 � (m�b )2 +X m�aÆm�(�)a + Æm�(+)a m�(m�a)2 � (m� )2 Cb; (42)
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where Æml(�)ij and Æm�(�)ab are the o�-diagonal mass ounterterms determined in Setions 4.1and 4.2, respetively, and it is understood that b 6= a in the �rst and j 6= i in the seondterm of Eq. (41) and that  6= b in the �rst and  6= a in the seond term of Eq. (42).Sine the mass ounterterms are adjusted to anel the o�-diagonal sm ontributionsto the extent allowed by the properties of the mass matries, the same is true of the mixingounterterm matries ÆB and ÆC. In partiular, they fully anel the UV-divergent partsof the o�-diagonal sm ontributions.6 ConlusionsIn this paper, we have generalized the on-shell framework to renormalize the CKM matrixat the one-loop level proposed in Ref. [4℄ to extensions of the SM that inlude Majorananeutrinos, an appealing senario that may explain the smallness of the observed neutrinomasses and may lead to neutrino-less double beta deays. The presene of Majorananeutrinos requires a separate analysis, due to modi�ed interations and symmetry fatorsleading to a generially di�erent set of Feynman rules. Here, the mixing generally alsoours in neutral-urrent interations. However, one the Feynman rules are established,the proedure is similar to the ase of the CKM matrix.We showed how gauge-independent mass ounterterms an be �xed by means of thesm ontributions and how they lead to mixing ounterterm matries. We gave expliitexpressions for ÆB and ÆC. They are onsistent with the properties satis�ed by the twomixing matries and are expliitly gauge independent. We saw that one ÆB is �xed,ÆC is �xed as well, as a onsequene of the seond property in Eq. (8). However, oneould also hoose to �x the ÆC ounterterm separately, e.g. by hoosing to study the Z��oupling, with the same result.AknowledegmentsB.A.K. and A.S. are grateful to the Max Plank Institute for Physis in Munih forthe warm hospitality during a stay when part of this work was arried out. This workwas supported in part by the German Researh Foundation through the CollaborativeResearh Center No. 676 Partiles, Strings and the Early Universe | the Struture ofMatter and Spae Time. The work of A. Sirlin was supported in part by the NationalSiene Foundation through Grant Nos. PHY{0245068 and PHY{0758032.A De�nitionsIn this appendix, we gather important de�nitions used throughout this work. The UVdivergenes whih appear in the expressions of the sm and wfr ontributions and later in
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the mass and mixing ounterterm matries are de�ned by�B = 1n� 4 + 12 (E � ln 4�) + ln mB� � �+ ln mB� ; (43)where n is the spae-time dimension, E the Euler's onstant, � is the 't Hooft mass sale,and mB is the mass of boson B = W;Z;H.The funtions I, J , N , and M are de�ned through the integrals:fI; Jg(p2; m1; m2) = Z 10 dxf1; xg ln m22x+m21(1� x)� p2x(1� x)� i"m21 ;N(m1; m2; m3; �1) = 1m21 Z 10 dx �m22(1� x) +m23�� ln m23x +m21�1(1� x)�m22x(1� x)� i"m23x +m21(1� x)�m22x(1� x)� i" ;M(m1; m2; m3; �1) = 1m21 Z 10 dx x ln m23x +m21�1(1� x)�m22x(1� x)� i"m23x +m21(1� x)�m22x(1� x)� i" : (44)The above integrals are not all independent. In fat, the integrals J , N , and M anbe expressed by means of I asJ(p2; m1; m2) = 12p2 ��m22 +m21 +m22 ln m22m21 + (p2 �m22 +m21) I(p2; m1; m2)� ;M(m1; m2; m3; �1) = 1m21 hJ(m22; m1p�1; m3)� J(m22; m1; m3) + ln �1i ;N(m1; m2; m3; �1) = m22 +m23m21 hI(m22; m1p�1; m3)� I(m22; m1; m3) + ln �1i�m22M(m1; m2; m3; �1): (45)Note that these integrals represent UV-�nite parts of the standard salar one-loop integrals[12℄. In fat, we have I(p2; m1; m2) = �2�1 � B0(p2; m1; m2); (46)where �1 is de�ned by Eq. (43) and B0 is de�ned as in Ref. [13℄. Aording to Eq. (45),the integrals J , N , and M an be written in terms of the salar two-point funtion B0 aswell.B Majorana-neutrino mass matrix diagonalizationAording to the singular-value deomposition theorem, any omplex matrix M 0 an bediagonalized by a bi-unitary transformation of the formM = SyM 0U; (47)20
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