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AdS3 �w (S3 � S3 � S1) Solutionsof Type IIB String Theory

Aristomenis Donos1, Jerome P. Gauntlett2 and James Sparks31DESY Theory Group, DESY HamburgNotkestrasse 85, D 22603 Hamburg, Germany2Theoreti
al Physi
s Group, Bla
kett Laboratory,Imperial College, London SW7 2AZ, U.K.2The Institute for Mathemati
al S
ien
es,Imperial College, London SW7 2PE, U.K.3Mathemati
al Institute, University of Oxford,24-29 St Giles', Oxford OX1 3LB, U.K.Abstra
tWe analyse a re
ently 
onstru
ted 
lass of lo
al solutions of type IIBsupergravity that 
onsist of a warped produ
t of AdS3 with a seven-dimensional internal spa
e. In one duality frame the only other non-vanishing �elds are the NS three-form and the dilaton. We analyse indetail how these lo
al solutions 
an be extended to globally well-de�nedsolutions of type IIB string theory, with the internal spa
e having topol-ogy S3 � S3 � S1 and with properly quantised three-form 
ux. We showthat many of the dual (0; 2) SCFTs are exa
tly marginal deformations ofthe (0; 2) SCFTs whose holographi
 duals are warped produ
ts of AdS3with seven-dimensional manifolds of topology S3 � S2 � T 2.
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tionSupersymmetri
 solutions of string or M-theory that 
ontain AdSd+1 fa
tors are dualto supersymmetri
 
onformal �eld theories in d spa
etime dimensions. Starting withthe work of [1℄, general 
hara
terisations of the geometries underlying su
h solutions,using G-stru
ture te
hniques [2, 3℄, have been a
hieved for various d and for variousamounts of supersymmetry [4℄{[24℄. With a few ex
eptions, mostly with sixteensupersymmetries, many of these geometries are still poorly understood, and it hasproved diÆ
ult to �nd expli
it solutions.One notable ex
eption is the 
lass of AdS3 solutions of type IIB string theorywith non-vanishing �ve-form 
ux, dual to d = 2 
onformal �eld theories with (0; 2)supersymmetry, that were 
lassi�ed in [7℄. It was shown that the seven-dimensionalinternal spa
e has a Killing ve
tor whi
h is dual to the R-symmetry of the dual SCFT.The Killing ve
tor de�nes a foliation and the solution is 
ompletely determined,1



lo
ally, by a K�ahler metri
 on the six-dimensional leaf spa
e whose Ri

i tensorsatis�es an additional di�erential 
ondition. Moreover, a ri
h set of expli
it solutionshave been 
onstru
ted in [25, 14, 26℄ and the 
orresponding 
entral 
harges of thedual SCFTs have also been 
al
ulated.More re
ently, it was understood how to generalise this 
lass of type IIB AdS3 so-lutions to also in
lude three-form 
ux [27℄. The solutions are again lo
ally determinedby a six-dimensional K�ahler metri
 and a 
hoi
e of a 
losed, primitive (1; 2)-form onthe K�ahler spa
e. On
e again additional expli
it solutions were 
onstru
ted withthe six-dimensional K�ahler spa
e having a two-torus fa
tor and the three-form 
uxbeing parametrised by a real parameter Q. After two T-dualities on the two-torusit was also shown that these expli
it solutions give type IIB AdS3 solutions withnon-vanishing dilaton and RR three-form 
ux only. After an additional S-dualitythe solutions only involve NS �elds.In [27℄ these expli
it solutions were examined in more detail for the spe
ial 
aseof Q = 0. It was shown that the parameters and ranges of the 
oordinates 
ould be
hosen to give globally de�ned supergravity solutions 
onsisting of a warped produ
tof AdS3 with a seven-dimensional internal manifold that is di�eomorphi
 to S2 �S3 � T 2. It was shown that the solutions, with properly quantised three-form 
ux,are spe
i�ed by a pair of positive 
oprime integers p; q.The purpose of this paper is to 
arry out a similar analysis when we swit
h on theparameter Q. We will �nd that we are led to in�nite 
lasses of solutions, with theseven-dimensional internal spa
e being di�eomorphi
 to S3 � S3 � S1. Furthermore,we will see that the 
entral 
harge is independent of Q and hen
e the Q deformationin many 
ases is dual to an exa
tly marginal perturbation in the dual SCFT.While the �nal topology of the solutions is simple, it is not easy to see this inthe lo
al 
oordinates in whi
h the solutions are presented. When Q = 0 the S2 � S3fa
tor is realised in a manner very similar to the Y p;q Sasaki-Einstein spa
es [28℄.When Q 6= 0 one of the 
ir
les in the T 2 fa
tor is �bred over the S2�S3 and we needto 
arefully 
he
k that the 
ir
le �bration is globally well-de�ned, leading to S3�S3.Furthermore we need to 
he
k that the three-form 
ux is properly quantised. This isnot straightforward sin
e it is not 
lear \where" the two S3 fa
tors are in the lo
al
oordinates. After some false starts we developed a workable pres
ription for ensuringthat the three-form is properly quantised, as we shall explain.The plan of the paper is as follows. In se
tion 2, we begin by re
alling the lo
alsolutions of [27℄ and then dis
uss how, after suitable 
hoi
es of parameters and periodsfor the 
oordinates, the seven-dimensional internal manifold has topology S3 � S3 �2



S1. We dis
uss some aspe
ts of the topology in detail, leading to a pres
ription for
arrying out 
ux quantisation whi
h is dealt with in se
tion 3. Our method uses aquotient 
onstru
tion, whi
h is explained in se
tion 2, as well as expli
it 
oordinatepat
hes. In se
tions 2 and 3, the solutions depend on a pair of 
oprime positiveintegers p; q, the ele
tri
 three-form 
ux, n1, the magneti
 three-form 
ux throughea
h of the two S3 fa
tors, M1 and M2, and the parameter Q. For these solutions,it turns out that M1 and M2 are not independent and are given by M1 =M(p + q)2and M2 = Mq2, where M is an integer. We 
al
ulate the 
entral 
harge and showthat it is given by the simple formula
 = 6n1 (M1 �M2)M2M1 : (1.1)In parti
ular it is independent of Q, and sin
e the solutions are spe
i�ed by thesame number of parameters as for the Q = 0 solutions that were analysed in [27℄ we
on
lude that these solutions 
orrespond to exa
tly marginal deformations of thosewith Q = 0.In se
tion 4, we generalise our 
onstru
tion by making more general identi�
ationson the 
oordinates, obtaining solutions that involve more parameters. We show thatthe 
entral 
harge has exa
tly the same form as in (1.1), but now, however, theintegers M1 and M2 labelling the three-form 
ux through the two S3's are no longer
onstrained. Thus not all of these more general solutions 
orrespond to exa
tlymarginal deformations of those that we 
onsider in se
tions 2 and 3. We 
on
lude inse
tion 5.We noted above that the S2 � S3 fa
tor in the AdS3 solutions 
onstru
ted in[27℄, with Q = 0, is realised in a similar way to the Y p;q Sasaki-Einstein spa
esfound in [28℄. In parti
ular, in both 
ases the metri
s on S2 � S3 are 
ohomogeneityone. Given that the Y p;q metri
s 
an be generalised to 
ohomogeneity two Sasaki-Einstein metri
s La;b;
 on S2 � S3 [29℄ (see also [30℄), it is natural to suspe
t thatthere are analogous AdS3 solutions, with �ve-form 
ux only, with internal spa
ehaving topology S2 � S3 � T 2 and with the metri
 on the S2 � S3 fa
tor having
ohomogeneity two. This is indeed possible, and moreover it is also possible to �ndgeneralisations with non-zero three-form 
ux and with the internal manifold havingtopology S3 � S3 � S1. We will present su
h solutions in appendix C, but we willleave a detailed analysis of the regularity and 
ux quantisation 
onditions for futurework.
3



2 The AdS3 solutions2.1 The lo
al solutionsWe start with the expli
it 
lass of AdS3 solutions of se
tion 4.3 of [27℄. The stringframe metri
 is given by 1L2ds2 = �y1=2 [ds2(AdS3) + ds2(X7)℄ (2.1)whereds2(X7) = �2 � 1 + 2y �Q2y24�2 Dz2 + U(y)4(�2 � 1 + 2y �Q2y2)D 2 + dy24�2y2U(y)+ 14�2ds2(S2) + (du1 � Qy2� [(1� g)D �Dz℄)2 + (du2)2 ; (2.2)where �;Q are positive 
onstants, L is an arbitrary length s
ale andU(y) = 1� 1�2 (1� y)2 �Q2y2 : (2.3)In addition, ds2(S2) is the standard1 metri
 on a two-sphere, ds2(S2) = d�2+sin2 �d�2,and we have de�ned D = d + P (2.4)with dP = Vol(S2) = sin �d� ^ d� � J : (2.5)Note that P is only a lo
ally de�ned one-form on S2. In fa
t, more pre
isely, P is a
onne
tion one-form on the U(1) prin
ipal bundle asso
iated to the tangent bundleof S2. The two-form J introdu
ed in (2.5) may be regarded as a K�ahler form on S2.We also have Dz = dz � g(y)D (2.6)with g(y) = y(1�Q2y)�2 � 1 + 2y �Q2y2 : (2.7)The only other non-trivial type IIB supergravity �elds are the dilaton and the RRthree-form. The dilaton is given by e2� = �2y (2.8)1Note that we have res
aled the metri
 on S2 appearing in [27℄ by a fa
tor of 4.
4



while the RR three-form �eld strength is given by1L2F (3) = � 14�2dy ^D ^Dz � y4�2J ^Dz + �1� yg4�2 �J ^D + Q2�du1 ^ [dy ^Dz � yJ � (1� g)dy ^D ℄ + 2Vol(AdS3) : (2.9)This is 
losed. After a further S-duality transformation we obtainAdS3 solutions withonly NS �elds non-vanishing, but we will 
ontinue to work with the above solution.In order to simplify some of the formulae it will be helpful to introdu
eZ � 1�p1 +Q2(�2 � 1) : (2.10)We next 
hange 
oordinates viadz = dw + 2Q�Z � 2 dvdu1 = dv + Q(1� �2)2�(Z � 2)dw (2.11)to bring the metri
 to the formds2(X7) = 2(1� Z)(1� �2 � yZ)(2� Z)(1� �2) Dv2 + (1� Z)(2y � yZ � 1 + �2)2�2(2� Z) Dw2+ (1� �2)U(y)4(1� �2 � Zy)(�2 � 1 + 2y � Zy)D 2 + dy24�2y2U(y) + 14�2ds2(S2) + (du2)2(2.12)where Dv = dv � AvD Dw = dw � AwD (2.13)and Av = Q(1� �2)y4�(1� �2 � yZ)Aw = (2� Z)y2(2y � yZ � 1 + �2) : (2.14)The three-form in the new 
oordinates is given by1L2F (3) = 2Vol (AdS3) + (1� �2)U(y)4(1� �2 � yZ)(�2 � 1 + 2y � yZ) J ^D (2.15)� Dw ^ � (Z � 1)(1� �2)4�2(Zy � 1 + �2)dy ^D + y(1� Z)4�2 J�� QDv ^� (1� Z)(1� �2)2�(Z � 2)(�Zy � 1 + �2 + 2y)dy ^D + y(1� Z)2�(2� Z)J�� Q(1� Z)�(2� Z) dy ^Dv ^Dw : 5



Finally, we note that the 
anoni
al Killing ve
tor related to supersymmetry is givenby � + �z : (2.16)In the new 
oordinates this reads� + (Z � 2)2(Z � 1)�w + Q(�2 � 1)4�(Z � 1)�v : (2.17)We now would like to �nd the restri
tions on the parameters �, Q so that theselo
al solutions extend to global solutions on a globally well-de�ned manifold X7.Having a
hieved that goal, we will analyse the additional 
onstraints imposed byensuring that the three-form is properly quantised. Note that when Q = 0 the
orresponding analysis was 
arried out in [27℄ and in parti
ular it was shown thatthere were in�nite 
lasses of solutions, labelled by a pair of positive 
oprime integers,p; q, with X7 having the topology of S3 � S2 � T 2.Our strategy is to build X7 in stages. The u2 
oordinate is taken to parama-terise an S1: for now the period of u2 is arbitrary but it will later be �xed by 
uxquantisation. We therefore write X7 =M6 � S1 withds2(M6) � 2(1� Z)(1� �2 � yZ)(2� Z)(1� �2) Dv2 + ds2(M5) ; (2.18)where ds2(M5) � (1� Z)(2y � yZ � 1 + �2)2�2(2� Z) Dw2 + ds2(B4) (2.19)andds2(B4) � (1� �2)U(y)4(1� �2 � Zy)(�2 � 1 + 2y � Zy)D 2 + dy24�2y2U(y) + 14�2ds2(S2) :(2.20)We will �rst analyse ds2(B4), showing that, by taking  to be a periodi
 
oordinatewith period 2�, B4 is a smooth manifold di�eomorphi
 to S2�S2. We then show that,by taking w to be a periodi
 
oordinate with a suitable period, with the parameter� �xed by two relatively prime positive integers p; q, M5 is the total spa
e of a
ir
le �bration over B4, and has topology S3 � S2. Here p and q have a topologi
alinterpretation as Chern numbers of the 
ir
le bundle over B4. These steps are familiarfrom the 
onstru
tion of the Sasaki-Einstein manifolds Y p;q [28℄. The �nal step is toshow that, by taking v to be periodi
 with a suitable period, M6 is the total spa
e ofa 
ir
le �bration over M5, and has topology S3 � S3.
6



It will be useful in the following to observe that the fun
tion U(y) is a quadrati
fun
tion of y with roots y1 and y2 given byy1 = 1� �21 + �(1� Z)y2 = 1� �21� �(1� Z) : (2.21)It will also be useful to know the values of the fun
tions Aw and Av appearing inds2(M6) at y1 and y2. We �ndAw(y1) = 2� Z2(1� Z)(1� �)Aw(y2) = 2� Z2(1� Z)(1 + �)Av(y1) = Q(1� �)4�(1� Z)Av(y2) = Q(1 + �)4�(1� Z) : (2.22)2.2 B4 = S2 � S2B4 is parametrised by �, �, y and  . We take the 
oordinate y to lie in the intervaly 2 [y1; y2℄ where yi are the two distin
t positive2 roots of U(y), given by (2.21). Thisrequires that we demand 0 < � < 1; 0 � Z < 1 : (2.23)We next observe that if we 
hoose the period of  to be 2�, then y;  parametrise asmooth two-sphere, with y a polar 
oordinate and  an azimuthal 
oordinate on themetri
ally squashed S2 �bre. In parti
ular, �xing a point on the round two-sphere,one 
an 
he
k that ds2(B4) is free from 
oni
al singularities at the poles y = y1 andy = y2. B4 is then a smooth S2 bundle over the round S2. The transition fun
tionsare in U(1), a
ting in the obvious way on the �bre. The �rst Chern number of theU(1) �bration is �2 and thus, as explained in [28℄, B4 is di�eomorphi
 to S2 � S2.We have H2(B4;Z) �= Z� Z. Three obvious two-spheres in B4 are the se
tions�1 = fy = y1g and �2 = fy = y2g, ea
h a 
opy of the two-sphere base, and a
opy of the �bre �f at some point on the two-sphere base (for 
on
reteness, say, thenorth pole f� = 0g). Call the 
orresponding homology 
lasses [�1℄, [�2℄ and [�f ℄,2We need y to be positive to ensure that the warp fa
tor is real.7



respe
tively. We 
an take [�2℄ and [�f ℄ to generate H2(B4;Z), but we note that thisis not the natural basis of S2�S2. In parti
ular, the interse
tions of the 2-
y
les are[�f ℄ \ [�f ℄ = 0; [�f ℄ \ [�2℄ = 1; [�2℄ \ [�2℄ = 2 : (2.24)The only non-obvious equality above is the last. This follows sin
e the self-interse
tionof a 2-
y
le in a 4-manifold is equal to the Chern number of the normal bundle. Similar
al
ulations show that [�1℄ = [�2℄� 2[�f ℄: (2.25)Later it will be useful to use a more natural basis given by [C1℄ = [�2℄ � [�f ℄ and[C2℄ = [�f ℄: indeed one 
an then 
he
k that [C1℄ \ [C1℄ = [C2℄ \ [C2℄ = 0 and[C1℄ \ [C2℄ = 1.By Poin
ar�e duality we have H2(B4;Z) �= H2(B4;Z). Re
all that, by de�nition,the Poin
are dual �� of a submanifold � �M satis�esZ� ! = ZM ! ^ �� (2.26)for any 
losed form !. We introdu
e the 
losed two-forms on B4�2 = 14�J�f = 12�[Aw(y1)� Aw(y2)℄ [(Aw(y2)� Aw)J � �y(Aw)dy ^D ℄ : (2.27)These forms satisfyZ�2 �2 = Z�f �f = 1; Z�2 �f = Z�f �2 = 0 ; (2.28)and one �nds that Poin
ar�e duality maps �f 7! �2 and �2 7! �f + 2�2.2.3 M5 = S3 � S2We next 
onstru
t M5 as the total spa
e of a 
ir
le bundle over B4, by letting wbe periodi
 with period 2�lw, for a suitably 
hosen lw. We begin by observing from(2.12) that the norm of the Killing ve
tor �w is nowhere-vanishing, and so the sizeof the S1 �bre doesn't degenerate anywhere. Re
alling that Dw = dw � AwD , werequire that l�1w AwD is a 
onne
tion on a bona �de U(1) �bration with �rst Chern
lass represented by (2�lw)�1d(AwD ).
8



It is straightforward to �rst 
he
k that (2�lw)�1d(AwD ) is indeed a globallyde�ned two-form on B4. We next impose that it has integer valued periods:12�lw Z�2 d (AwD ) = 2lwAw (y2) = p12�lw Z�f d (AwD ) = 1lw [Aw (y2)� Aw (y1)℄ = �q; (2.29)where p; q are positive integers. One 
an then 
al
ulate12�lw Z�1 d (AwD ) = 2lwAw (y1) = p + 2q (2.30)as expe
ted from (2.25). We then dedu
e that� = qp+ q (2.31)whi
h, remarkably, is independent of Q, andlw = 2� Zp(1� Z)(1 + �) : (2.32)With these 
hoi
es we have that M5 is the total spa
e of a 
ir
le bundle with �rstChern 
lass given by 
1 = p[�2℄� q[�f ℄ 2 H2(B4;Z) : (2.33)As in [28℄, taking p and q to be relatively prime, as we shall hen
eforth do, one 
anshow that M5 is simply-
onne
ted with H2(M5;Z) �= Z. Using Smale's theorem for�ve-manifolds [31℄, it follows that M5 is di�eomorphi
 to S3 � S2.Having 
onstru
ted M5, it will be useful later to know various topologi
al prop-erties of this manifold in terms of the 
oordinate system above. In the remainderof this subse
tion we write down expli
it generators for H2(M5;Z) �= Z, whi
h willbe useful for 
onstru
ting 
ir
le bundles over M5, and for H3(M5;Z) �= Z, whi
hwill be useful both for integration using Poin
ar�e duality and also for quantising thethree-form 
ux. We also �nd representatives of the generating 2-
y
le and 3-
y
le inH2(M5;Z) �= Z and H3(M5;Z) �= Z, respe
tively.The generator of H2(M5;Z) �= Z may be taken to be the pull-ba
k of the 
lass� = b[�2℄ + a[�f ℄ 2 H2(B4;Z) (2.34)under the proje
tion � :M5 ! B4 ; (2.35)9



where a and b are (any) integers satisfyingpa+ qb = 1 : (2.36)These exist and are unique up to b ! b +mp, a ! a � mq, for any integer m, byBezout's lemma. The non-uniqueness simply 
orresponds to the fa
t that the Chern
lass 
1 = p�2� q�f of the 
ir
le bundle over B4 is trivial when pulled ba
k to M5, asis the Chern 
lass of any tensor power of this 
ir
le bundle (the power 
orrespondsto the integer m above).To see that ��� is the generator of H2(M5;Z) as 
laimed, note that, a priori,��� is ne
essarily � times the generator, for some integer � 2 Z. Thus we write��� = � 2 H2(M5;Z) �= Z. Next note that the 
ir
le bundle � trivialises over any3smooth submanifold S � B4 that represents the 
y
le[S℄ = q[�2℄ + p[�f ℄ : (2.37)This is simply be
ause the �rst Chern 
lass 
1 evaluated on [S℄ is zero, as one seesusing (2.28). Hen
e we may take a se
tion s of � over S:s : S !M5 : (2.38)This de�nes a 2-
y
le [s(S)℄ in H2(M5;Z) �= Z, whi
h we may take to be � times thegenerator, for some integer �. But then by 
onstru
tionZs(S) ��� = ZS � = 1 ; (2.39)implying that �� = 1, and thus � and � are both�1. Hen
e ��� generatesH2(M5;Z),and s(S) generates H2(M5;Z).The only other non-trivial homology group is H3(M5;Z) �= Z. There are threenatural three-submanifolds of M5, whi
h we 
all E1, E2 and Ef . These are therestri
tion of the 
ir
le bundle � to the submanifolds �1, �2 and �f ofB4, respe
tively.These three-manifolds are all Lens spa
es4. Indeed, �1, �2, �f are all two-spheres.The Chern numbers are easily read o� from 
1 above to be p+ 2q, p and �q. ThusE1 �= S3=Zp+2q; E2 �= S3=Zp; Ef �= S3=Zq : (2.40)We may take the generator of H3(M5;Z) to beE = k[E1℄ + l[Ef ℄ (2.41)3Although S 
ertainly exists, in pra
ti
e it is not easy to de�ne su
h a smooth submanifold inthe above 
oordinate system.4See appendix A for some dis
ussion. 10



where k and l are (any) integers satisfyingpk + ql = 1 : (2.42)Noti
e this is the same as (2.36), so one 
ould 
hoose k = a and l = b. A simple wayto 
he
k this is to note that the generator has interse
tion number 1 with [s(S)℄. One
omputes [s(S)℄ \ E = pk + ql = 1 (2.43)whi
h uniquely identi�es E as the generator. We then have[E1℄ = pE; [E2℄ = (p+ 2q)E; [Ef ℄ = qE ; (2.44)whi
h again 
an be shown by taking interse
tion numbers with [s(S)℄.Finally, we may also write down a representative � of the generator of H3(M5;Z).By de�nition this is a 
losed three-form onM5 that integrates to 1 over E. We 
hoose� = 1(2�)2 l2w fDw ^ [(Aw (y1) + Aw (y2)� Aw (y)) J � �yAwdy ^D ℄� �A2w(y)� Aw (y) (Aw (y1) + Aw (y2)) + Aw (y1)Aw (y2)� J ^D 	 :(2.45)The three-form � is Poin
ar�e dual to the non-trivial two-
y
le in M5.2.4 M6 = S3 � S3We now 
onstru
t M6 as a 
ir
le bundle over M5. Sin
e H2(M5;Z) �= Z, su
h 
ir
lebundles are determined, up to isomorphism, by an integer. Sin
e M5 �= S3 � S2,taking this integer to be 1 (or �1) gives a total spa
e M6 �= S3 � S3. Taking theChern number to be n would instead lead to anM6 with �1(M6) �= Zn, whi
h we mayalways lift to the simply-
onne
ted 
over with n = �1. So, we will do this. However,as we shall see later, in �xing the three-form 
ux quantisation it will be helpful to
onsider su
h quotients of M6.Observe from (2.12) that the norm of the Killing ve
tor �v is nowhere-vanishing,and so the size of the S1 �bre doesn't degenerate anywhere. The period of v is takento be 2�lv, where lv will be �xed shortly. Re
alling that Dv = dv�AvD , we requirethat l�1v AvD is a 
onne
tion on a U(1) �bration with �rst Chern 
lass represented by(2�lv)�1d(AvD ). It is straightforward to 
he
k that (2�lv)�1d(AvD ) is a globallyde�ned two-form onM5. We next impose that it has unit period. To do this we would11



like to integrate (2�lv)�1d(AvD ) over a smooth submanifold in the same homology
lass as s(S), the generator of H2(M5;Z). However, as we have already noted, �ndingsu
h a smooth submanifold is not so easy. Lu
kily, we 
an use Poin
ar�e duality to
al
ulate the period instead. Re
alling that [�℄ is Poin
ar�e dual to [s(S)℄, we demandthat 12�lv Zs(S) d(AvD ) = 12�lv ZM5 d(AvD ) ^ �= 2lvlw [Av(y2)Aw(y1)� Av(y1)Aw(y2)℄= 1lv [2qAv(y2)� p(Av(y1)� Av(y2))℄ = 1; (2.46)so that the 
ir
le bundle has Chern number 1, whi
h 
an be a
hieved by settinglv = Q(p+ q)1� Z : (2.47)Let us denote this 
ir
le bundle over M5 by L, with 
orresponding proje
tion� :M6 !M5 : (2.48)Re
alling that the generator of H2(M5;Z) may be taken to be the pull-ba
k of � in(2.34) under the proje
tion � :M5 ! B4, we see that L may be regarded as the pull-ba
k of the 
ir
le bundle L� over B4 with �rst Chern 
lass given by � 2 H2(B4;Z).We write this as L = ��L� .Sin
e M6 �= S3 � S3, it follows that the only non-trivial homology group isH3(M6;Z) �= Z � Z. The two generators are 
learly the two 
opies of S3, at a�xed point on the other 
opy. However, be
ause of the way we have 
onstru
tedM6 above, it is not easy to see the di�eomorphism of M6 with S3 � S3 expli
itly.Nevertheless, we observe that one three-
y
le is represented by the total spa
e of the
ir
le bundle L over the S2 in M5 �= S3 � S2. Sin
e s(S) is homologous to the S2 inM5, it follows5 that taking the total spa
e of L over both submanifolds gives homol-ogous three-submanifolds of M6, whi
h is the total spa
e of L. Thus the total spa
eof the L 
ir
le bundle over s(S) is one of the generators of the homology of M6. Itshould be pointed out, though, that �nding a smooth representative of this generatoris not straightforward. For the other generator, the obvious thing to try is to takea representative for E, whi
h afterall is represented by S3 � M5, and then try to5Being homologous in M5 means there is a three-dimensional 
hain in M5 with boundary s(S)�S2. By taking the total spa
e of L over this 
hain, one obtains a 
hain in M6 with boundary givenby the total spa
e of L over s(S)� S2. 12



take a se
tion of � over this representative. However, unfortunately just be
ause twosubmanifolds are homologous in M5, with L trivial over one of them, this does notne
essarily guarantee that the 
ir
le bundle L is trivial over the other submanifold6.So, we 
annot ne
essarily do this. An additional observation is that, while a se
tionof � exists over E, it does not exist, in general, over the submanifolds E1, E2 andEf , as we explain in the appendix.In order to 
arry out the 
ux quantisation of the three-form in the supergravitysolutions, we need a pres
ription to integrate three-forms over a basis of H3(M6;Z).The 
omments in the last paragraph indi
ate that this is not as straightforward as itmight seem. Our approa
h, employing a quotient 
onstru
tion7, will be explained inthe next subse
tion.2.5 A quotient of M6 and integral three-formsIn this se
tion we want to explain how 
onsidering the periods of the three-form onthe quotient M̂6 = M6=Z(p+q)q leads to a pra
ti
al pro
edure for ensuring that athree-form, su
h as the suitably normalised RR three-form, has integral periods.In order to obtain more insight into the topology ofM6, it will be helpful to thinkof it as a group manifold,M6 = S3 � S3 �= SU(2)� SU(2) ; (2.49)and observe that taking the quotient by the maximal torus T 2 � SU(2) � SU(2)leads to B4: M6=T 2 = S2 � S2 = B4: (2.50)Now, re
all that we 
onstru
ted M5 as the total spa
e of a 
ir
le bundle over B4with winding numbers p and �q over �2 and �f , respe
tively. With respe
t to the6As a simple example, 
onsider the �ve-manifold T 1;1 �= S2�S3, whi
h re
all is naturally a 
ir
lebundle over S2 � S2. For our two three-submanifolds we take a 
ontra
tible S3, say the equatorialS3 on a 
ontra
tible S4 that links a point, and the \diagonally embedded" Lens spa
e S3=Z2. Sin
eT 1;1 is a 
ir
le bundle over S2�S2, we may des
ribe the latter three-submanifold more pre
isely asthe restri
tion of this 
ir
le bundle to the diagonal S2 in S2�S2, whi
h is the easiest way to see thatthe topology is indeed S3=Z2. Both three-
y
les are trivial { to see this for the latter 
onstru
t thegenerator of H3(T 1;1;Z) and integrate over the three-
y
le. However, if we pull ba
k the 
omplexline bundle O(1; 0)S2�S2 with winding numbers 1 and 0 on S2 � S2 to T 1;1, this is trivial over theS3 but non-trivial over the 
ontra
tible S3=Z2 (the latter follows using arguments similar to thosein appendix B).7We thank Domini
 Joy
e for suggesting this approa
h.13



natural basis [C1℄ = [�2℄� [�f ℄ and [C2℄ = [�f ℄ of B4 �= S2�S2 introdu
ed in se
tion2.2, we thus have Chern numbersZ[C1℄ 
1 = p+ q; Z[C2℄ 
1 = �q : (2.51)In this se
tion we make the U(1) �bration stru
ture ofM5 expli
it in the notation bydenoting the latter as M5(p; q).The key observation is that we may realise M5(p; q) as a quotient by the U(1)subgroup of T 2 with 
harges (q; p+ q), as illustrated in the following diagram:U(1)q;p+q. &T 2 ,! M6 ! B4# #T 2=U(1)q;p+q ,! M5(p; q) ! B4 : (2.52)
To see this more expli
itly, we introdu
e Euler angles,  1; �1; �1 and  2; �2; �2 forea
h of the two SU(2) fa
tors. We also introdu
e the 
orresponding left-invariantone-forms ��i for ea
h fa
tor, respe
tively, where � = 1; 2; i = 1; 2; 3. Thus��1 = 
os �d�� + sin �� sin �d����2 = � sin �d�� + sin �� 
os �d����3 = d � + 
os ��d�� : (2.53)Now  1;  2 2 [0; 4�) parametrise the T 2. The U(1)q;p+q 
ir
le a
tion is then givenexpli
itly by ( 1;  2) 7! ( 1 + q ;  2 + (p+ q) ) (2.54)where  2 [0; 4�) parametrises the 
ir
le subgroup. If we introdu
e 
oordinates ~v; ~wde�ned by ~v = �1q 1; ~w = (p+ q) 1 � q 2 (2.55)then the T 2 is parametrised by taking ~v; ~w 2 [0; 4�). In these 
oordinates theU(1)q;p+q 
ir
le a
tion reads (~v; ~w) 7! (~v �  ; ~w) (2.56)

14



and hen
e ~w parametrises the 
ir
le T 2=U(1)q;p+q. The globally de�ned 
onne
tionone-form on the total spa
e of the 
ir
le bundle on the bottom line of (2.52) is givenby � = 12((p+ q)�13 � q�23)= 12(d ~w + (p+ q) 
os �1d�1 � q 
os �2d�2) : (2.57)We 
an de�ne two natural 
opies of S2 in B4 to be C1 and C2, whi
h are round S2sat the north pole of the other. So, C1 = f�2 = 0g, C2 = f�1 = 0g. We observethat (2.57) gives rise to Chern numbers p+ q and �q for C1 and C2, respe
tively, asrequired for M5(p; q).Let us denote the total spa
e over ea
h sphere C1 and C2 inM5(p; q) to be F1 andF2, respe
tively. Then by following similar arguments as in (2.40){(2.44) we dedu
ethat F1 �= S3=Zp+q; F2 �= S3=Zq (2.58)and also the homology relations[F1℄ = (p+ q)[S3℄; [F2℄ = q[S3℄ : (2.59)In fa
t one 
an see (2.58) rather expli
itly from the above quotient 
onstru
tion. Wede�ne W1 �= S3 and W2 �= S3 to be the two natural 
opies of S3 in M6 given byW1 = f�2 = 0;  2 = 0g, W2 = f�1 = 0;  1 = 0g. Consider now f�2 = 0g � M6. Thisis W1 � S1 �= S3 � S1 ; (2.60)where the S1 is parametrised by  2. When we take the quotient by the U(1)q;p+q
ir
le a
tion (2.54) we may set  2 = 0. However, there is then a remaining gaugefreedom given by setting  = 4�kp+ q ; (2.61)with k = 1; : : : ; p + q, sin
e this also �xes  2 = 0. This then a
ts on  1, whi
h isthe Hopf �bre of W1 realised as an S1 bundle over S2, and we see expli
itly thatF1 �= S3=Zp+q. A similar argument applies to F2.We next observe that� = 18�2 [(p+ q)� ^ �11 ^ �12 + q� ^ �21 ^ �22℄ (2.62)15



is a 
losed globally de�ned three-form on M5(p; q). We see expli
itly thatZF1 � = p+ q8�2 ZF1 � ^ �11 ^ �12 = p+ q : (2.63)whi
h shows that � generates H3(M5(p; q);Z).Next it is 
onvenient to de�ne M̂6 to beM̂6 =M6=Z(p+q)q (2.64)where we embed Z(p+q)q along U(1)q;p+q. This de�nes a quotientf :M6 ! M̂6 : (2.65)The a
tion on the Euler angles is( 1;  2) 7! � 1 + 4�kq(p+ q)q ;  2 + 4�k(p+ q)(p+ q)q �= � 1 + 4�kp+ q ;  2 + 4�kq � : (2.66)Here k = 1; : : : ; (p + q)q. This realises the Z(p+q)q a
tion as a Zp+q � Zq a
tion (thegroups are isomorphi
 as p + q and q are 
oprime) and we haveM̂6 �= (S3=Zp+q)� (S3=Zq) : (2.67)In terms of ~v, ~w we have (~v; ~w) 7! (~v � 4�k(p+ q)q ; ~w) : (2.68)Thus on M̂6 we 
an introdu
e a new 
oordinate v̂ = (p+ q)q~v with period 4� and wealso have M̂6 �= (S3=Z(p+q)q)� S3 ; (2.69)A key point is that the v̂ 
ir
le bundle trivialises over both F1 and F2. One way tosee this is to observe that the v̂ 
ir
le bundle has �rst Chern 
lass being q(p+q) timesthe generator of H2(M5(p; q);Z) and then following the arguments in the appendi
es.We 
an also see this dire
tly. Consider againW1 � S1 (2.70)where the S1 is 
oordinatised by  2. The a
tion of Zp(p+q) is given by (2.66). We �rstset k = nq, with n = 1; : : : ; p+ q. This de�nes a Zp+q subgroup that a
ts trivially on16



 2, but a
ts non-trivially on W1, with quotient W1=Zp+q �= S3=Zp+q = F1. We maythen set k = 1; : : : ; q in the identi�
ation. This now a
ts trivially on W1=Zp+q, buta
ts non-trivially on S1 to give S1=Zq �= S1. This shows expli
itly that(W1 � S1)=Z(p+q)q �= F1 � S1 (2.71)whi
h in turn shows that the v̂ bundle restri
ted to F1 is trivial, as it is manifestly aprodu
t. Obviously, similar reasoning applies8 to F2.Let us now de�ne V1 and V2 to be the obvious 2 fa
tors of M̂6 in (2.67). Be
auseof the dis
rete identi�
ation (2.66), W1 is a (p+q)-fold 
over of V1, and W2 is a q-fold
over of V2. Thus for any three-form 	 on M̂6 we haveZW1 f �	 = (p+ q) ZV1 	ZW2 f �	 = q ZV2 	 : (2.72)Here f �	 is obtained by simply repla
ing v̂ in 	 with (p+ q)q~v.For example, if we let � : M6 ! M5(p; q) be the proje
tion for the �bration inthe se
ond 
olumn in (2.52), then ��� is a three-form on M6 that is invariant underf (it has no dependen
e on the 
oordinate ~v). It is therefore obviously the pull-ba
kof a three-form on the quotient M̂6, and hen
e we may use (2.72) to 
al
ulateZW1 ��� = (p+ q)2ZW2 ��� = q2: (2.73)Finally, we are in a position to provide our pres
ription for quantising the RR
ux. We �rst observe that while we may take C2 = �f , we 
annot quite take C1 tobe �2 [ (��f ), be
ause the two submanifolds interse
t at a point and we don't havea smooth submanifold. We may remedy this by 
utting out a small neighbourhoodof the intese
tion point and gluing in a 
ylinder. This results in a two-sphere, whi
hwe 
an take to be C1. We may then identifyF1 = E2 [ (�Ef )F2 = Ef �= S3=Zq ; (2.74)8A point we shall return to later, in passing, is that the above arguments show that for thequotient M6=Zp+q the 
orresponding 
ir
le bundle trivialises over F1, while for M6=Zq it trivialisesover F2. We 
onsider M6=Z(p+q)q as it trivialises over both.17



with the understanding that F1 is to be smoothed out into S3=Zp+q, rather thanthe union of S3=Zq with S3=Zp over the 
ir
le where they interse
t. As we haveshown, on M̂6 the v̂ 
ir
le �bration trivialises over F1 and F2, and hen
e we may takese
tions giving submanifolds V1 and V2. The 
orre
t quantisation 
ondition for anintegral three-form on M6 (su
h as our appropriately normalised RR three-form), ina workable form, is then given by (2.72), where the integrals over W1 and W2 areintegers M1, M2.3 Flux QuantisationIn order to obtain a good solution to string theory, we need to impose that both theele
tri
 and magneti
 RR three-form 
harges are properly quantised.3.1 Ele
tri
 and magneti
 
hargesFor the ele
tri
 
harge we requiren1 = 1(2�ls)6gs ZX7 �F (3) 2 Z : (3.1)Sin
e1L6 � F (3) = (Z � 1)8(Z � 2)�2y2J ^ dy ^D ^Dw ^ dv ^ du2 +Vol(AdS3) ^ (: : : ) (3.2)we have n1 = �Lls�6 1gs8�2 Q(p+ q)5p2q(p+ 2q)2�u2 ; (3.3)whi
h we interpret as �xing the period of the u2 
ir
le �u2.We next turn to the magneti
 three-form 
harge. We require that1(2�ls)2gs ZW F (3) 2 Z (3.4)when integrated over any three-
y
le W � X7 =M6 � S1. The relevant three-
y
lesare in M6, and so the quantisation 
ondition amounts to quantising the restri
tion ofF (3) to M6 at a point on the S1 
oordinatised by u2. In the previous subse
tion wegave a pres
ription for performing su
h integrals by instead 
al
ulating integrals onsubmanifolds of the quotient spa
e M̂6. In the next subse
tion we will 
al
ulate theseintegrals by introdu
ing expli
it 
oordinate pat
hes. This will illuminate and 
on�rm18



many of our observations about the topology in the previous se
tion. Furthermore,the te
hniques will be essential for the generalisation that we 
onsider in se
tion 4.In the present 
ase, however, there is a mu
h simpler way to impose 
ux quan-tisation. The key observation is that, remarkably, the relevant part of F (3) is in thesame 
ohomology 
lass as9 �. Indeed we have1L2F (3) � 2Vol(AdS3) = (2�)2lw(1� Z)(Z � 2)q� � + d fK1Dv ^Dw +K2Dw ^D g (3.5)where K1 = Q(�2y + 3Zy � Z2y + 1� �2 � Z + Z�2)�(Z � 2)2K2 = (1� �2)(1� Z)U(y)(�1 + �2 + 2y � Zy)(�1 + �2 + Zy)(2� Z) : (3.6)Note in parti
ular that the fun
tion K2 vanishes at y1 and y2, ensuring that thetwo-form K1Dv ^Dw +K2Dw ^D is globally de�ned. We thus 
on
lude that1(2�ls)2gs ZW F (3) = � L2l2sgs (p+ q)2pq2(p+ 2q) ZW � : (3.7)Furthermore, we have already 
al
ulated the periods of � (more pre
isely, ���) overa basis of three-
y
les on M6 in (2.73). We �nd that if the length s
ale is taken to beL2l2sgs = pq2(p+ 2q)M(p+ q)2 (3.8)for some positive integer M , thenM1 � �1(2�ls)2gs ZW1 F (3) =M(p+ q)2M2 � �1(2�ls)2gs ZW2 F (3) =Mq2 : (3.9)We may now 
al
ulate the 
entral 
harge of the dual SCFT. It is given by [32℄
 = 3RAdS32G(3) (3.10)where G(3) is the three-dimensional Newton's 
onstant and RAdS3 is radius of theAdS3 spa
e. In our 
onventions the type IIB supergravity Lagrangian has the form1(2�)7g2s l8sp� det ge�2�R + : : : (3.11)9Here we are not distiguishing between � and ���.19



and after a short 
al
ulation we �nd
 = 6n1�Lls�2 1gs= 6n1pq2(p+ 2q)M(p+ q)2 = 6n1 (M1 �M2)M2M1 : (3.12)This result is exa
tly the same as for the Q = 0 
ase [27℄. We thus 
on
lude thatswit
hing on Q is an exa
tly marginal deformation. Note that when Q = 0 thetopology of X7 
hanges to S3 � S2 � T 2. Thus the marginal deformation away fromQ = 0 
hanges the topology of the solution10.3.2 Computing periods using 
oordinate pat
hesIn this subse
tion we dire
tly 
ompute the 
ux of F (3) through the two three-
y
les ofM6 using 
oordinate pat
hes. This provides a ni
e 
ross-
he
k on various 
al
ulations
arried out so far. Furthermore, we will use this method in the next se
tion when we
onstru
t more general type IIB string theory solutions { there we will not be ableto use the approa
h in the last subse
tion sin
e the three-form 
ux will no longer bein the same 
ohomology 
lass as ���.Re
all from se
tion 2.5 that instead of 
onsidering the 
ir
le bundle L over M5with total spa
e M6 we should 
onsider the 
ir
le bundle L̂ = L(p+q)q with total spa
eM̂6 =M6=Z(p+q)q. This is useful sin
e L̂ trivialises over both the submanifolds F1, asmoothed out version of E2 [ �Ef , and F2 � Ef of M5. We may thus take se
tionsof L̂ over these submanifolds to obtain submanifolds V1 and V2 of M̂6. Then thequantisation of the three-form 
ux on M6, through the two three-
y
les W1, W2, isrelated to that on M̂6 via the general formulae (2.72).In parti
ular, this pro
edure involves trivialising the 
ir
le bundle L̂ over F1 andF2. Con
retely, this means that the 
orresponding 
onne
tion one-form is a globally-de�ned one-form over F1 and F2. However, to see this requires 
arefully 
overingthe manifold with 
oordinate pat
hes, so that the 
onne
tion form is represented bya globally de�ned one-form on ea
h pat
h, and then gluing these forms together onoverlaps using U(1) transition fun
tions. Only when one has pi
ked a gauge wherethe 
onne
tion one-form is globally de�ned on F1, F2 
an one then represent a se
tionby taking the (appropriately gauge transformed) v 
oordinate to be 
onstant in thethree-form 
ux F (3). This might sound overly-te
hni
al, but if one does not followthis 
arefully one obtains in
orre
t periods for the 
ux.10 There is an analogous 
hange of topology in the exa
tly marginal family of AdS5 solutionsfound in [33℄. 20



We begin by 
overing M5 with 4 
oordinate pat
hes: U1N , U2N , U1S, U2S . Here,for example, U1N is de�ned by removing fy = y2g and f� = �g, while U1S is de�nedby removing fy = y2g and f� = 0g. On B4 the points we remove in ea
h 
ase are twoS2s that interse
t over a point. It follows that, regarded as de�ning subsets of B4, theabove 
onditions give 4 pat
hes di�eomorphi
 to R4 . On M5 we thus obtain pat
hesdi�eomorphi
 to S1 � R4 , with the S1 in ea
h pat
h parametrised by a 
oordinatew1N ; w2N ; w1S; w2S, respe
tively.Re
all that B4 is 
onstru
ted as an S2 bundle over S2, where the �bre S2 haspoles fy = y1g, fy = y2g. Removing these, one 
an de�ne a global one-form:D = D N = d N + (1� 
os �)d�= D S = d S � (1 + 
os �)d� : (3.13)The 
orresponding spa
e is an I � S1 bundle over S2, where I = (y1; y2) is an openinterval, and the 
ir
le S1 is parametrised by  N and  S, ea
h with period 2�. Herethe �rst expression is valid on the 
omplement of the south pole f� = �g, while these
ond is valid on the 
omplement of the north pole f� = 0g. This is be
ause theazimuthal 
oordinate � degenerates at the poles of the base S2. On the overlap onehas  S �  N = 2� (3.14)whi
h shows that the S1 bundle has Chern number�2. This is be
ause the 
onne
tionform is lo
ally 
os �d�, and so has 
urvature form � sin �d� ^ d�, whi
h integrates to�2 � 2� over the S2. It is important that D is not de�ned at fy = yig, sin
e theseare 
oordinate singularities.Re
alling (2.13), we next de�ne the global one-form on M5:Dw = Dw1N = dw1N + Aw(y1)d N � AwD N= Dw2N = dw2N + Aw(y2)d N � AwD N= Dw1S = dw1S + Aw(y1)d S � AwD S= Dw2S = dw2S + Aw(y2)d S � AwD S : (3.15)These are de�ned on the 4 pat
hes U1N , U2N , U1S , U2S, respe
tively. Take, forexample, Dw1N .  N is a 
oordinate on the 
omplement of the south pole of the baseS2, although it degenerates at y = y1. However, at y = y1 we haveDw1N jfy=y1g= dw1N � Aw(y1)(1� 
os �)d� : (3.16)21



and we see that w1N is indeed a good 
oordinate on the S1 of U1N �= S1 � R4 . Theperiod of all the w 
oordinates above is 2�lw.One 
an immediately see the �bration stru
ture of the w 
ir
le bundle, with totalspa
e M5, from the above formulae. For example, on the overlap region where bothare de�ned, we have 1lw (w2N � w1N) = q N : (3.17)In parti
ular, restri
ting to f� = 0g, whi
h is Ef , we see that the 
ir
le bundle hasChern number �q and thus Ef �= S3=Zq. Similarly,1lw (w2S � w2N ) = �p� (3.18)showing that the Chern number over E2 = fy = y2g is p, thus proving that E2 �=S3=Zp.In ea
h of the pat
hes we de�ne the 
onne
tion one-form that appears in the v
ir
le �bration over M5 to give M6. Re
alling (2.13) we write Dv � dv � A0 andde�ne A01N = �Av(y1)d N + AvD N + lv�1N dw1NlwA02N = �Av(y2)d N + AvD N + lv�2N dw2NlwA01S = �Av(y1)d S + AvD S + lv�1S dw1SlwA02S = �Av(y2)d S + AvD S + lv�2S dw2Slw : (3.19)Here �1N ; �2N ; �1S; �2S are 
onstants to be �xed by the requirement that the (1=lv)A0pat
h together to give a 
onne
tion one-form. We 
hoose �1N = �2N = �1S = �2S � �with Av (y1)� Av (y2)lv + �q = �a2Av (y2)lv + �p = b: (3.20)where a; b are integers satisfying ap + bq = 1, whi
h is possible be
ause of (2.46).Consider �rst the overlap of U1N with U2N . On this overlap we have1lv [A02N � A01N ℄ = �ad N : (3.21)
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Sin
e  N has period 2� and a is an integer, we see that the two 
onne
tions do indeeddi�er by a U(1) gauge transformation. Next 
onsider the overlap of U2S with U2N .Here we have 1lv [A02S � A02N ℄ = �bd� : (3.22)It is illuminating to 
ompare with equations (2.36) and (B.4), (B.7) in appendix B.In parti
ular, we see that (3.21) and (3.22) give11 the torsion Chern 
lasses over Efand E2, respe
tively. As a 
he
k on this, we 
ompute1lv [A01S � A01N ℄ = �(b� 2a)d� ; (3.23)whi
h is equivalent to the Chern number of the w-�bration over �1 being p+2q andagrees with (B.6). Note that, 
onversely, if one allows general � in (3.19) and insteadimposes that the 
onne
tions di�er by U(1) gauge transformations (3.21), (3.22) onthe overlaps, then one �nds the solution (3.20).Now 
onsider M̂6, where we divide the period of v by q(p+ q). Note immediatelythat the 
onne
tion form on U2N \ U1N isq(p+ q)lv [A02N � A01N ℄ = �a(p + q) �dw2Nlw � dw1Nlw � : (3.24)Thus we may de�neq(p+ q)lv Â01N = q(p+ q)lv A01N + a(p+ q)dw1Nlwq(p+ q)lv Â02N = q(p+ q)lv A02N + a(p+ q)dw2Nlw : (3.25)These are good gauge transformations on ea
h pat
h. We see that Â01N and Â02Nagree on the overlap, and thus de�ne a globally de�ned one-form on the 
omplementof f� = �g. In parti
ular, this shows expli
itly that the v bundle over Ef (withthe period above) is trivial12. A globally de�ned 
onne
tion one-form is provided byq(p+q)lv Â0 above, restri
ted to f� = 0g.Remarkably, the fa
tors of a and b in Â0 now 
an
el, and the 
onne
tion formredu
es to Â01N = �Av(y1)d N + AvD N + lv2q(p+ q) dw1Nlw : (3.26)11For a more detailed explanation of the relation between the transition fun
tions (3.21), (3.22)and torsion Chern 
lasses, we refer to appendix A.12Note that we only need to quotient the period of v by q to be able to do this, not q(p + q), asexpe
ted from the 
omment in footnote 8. 23



We are now in a position to 
al
ulate the integral of the three-form 
ux over V2. InF (3) we set � = 0 and repla
e Dv = dv � A0 with �Â01N . After some 
al
ulation weobtain 1(2�ls)2gs ZV2 F (3) = � L2l2sgs (p+ q)2pq(p+ 2q) � �M2q : (3.27)where M2 is a positive integer.It remains to 
al
ulate the integral over V1. We 
over V1 by 3 pat
hes: U1N , U2Nand U2S . These will 
over the northern hemisphere, equatorial strip, and southernhemisphere pat
hes, respe
tively, of the S2 we get by gluing �2 to ��f . This isillustrated in Figure 1. To be more pre
ise we will 
over most of �f in U1N by setting� = 0, letting y 2 [y1; y2 � �℄ with  N the azimuthal angle. We will 
over most of �2in U2S by setting y = y2, letting � 2 [Æ; �℄ with � the azimuthal angle. Here �; Æ > 0are small. On the overlap in U2N the equatorial strip, Eq, is the line in the Æ; y planestret
hing from (�; y) = (Æ; y2) to (�; y) = (0; y2� �), over whi
h there is an azimuthalangle { at the �rst end of this line it is � and at the other end it is  N . In fa
t, onthis strip the azimuthal angles get identi�ed via� = � N ; (3.28)with the sign 
orresponding to an orientation 
ip.

Figure 1: Desingularisation of �2 [ ��f .
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We �rst examine the overlapsq(p+ q)lv [A02N � A01N ℄ = �aq(p + q)d N = q((b� a)q � 1)d Nq(p+ q)lv [A02S � A02N ℄ = �bq(p + q)d� = �q((b� a)p+ 1)d� : (3.29)This leads us to de�neq(p+ q)lv ~A02N = q(p+ q)lv A02N + qd N � q(b� a)dw2Nlw ; (3.30)whi
h is obtained via a good gauge transformation on this pat
h. We then �ndq(p+ q)lv h ~A02N � A01Ni = q2(b� a)d N � q(b� a)dw2Nlw= �q(b� a)dw1Nlw (3.31)q(p+ q)lv hA02S � ~A02Ni = �pq(b� a)d�+ q(b� a)dw2Nlw= q(b� a)dw2Slw : (3.32)This prompts us to de�neq(p+ q)lv ~A01N = q(p+ q)lv A01N � q(b� a)dw1Nlwq(p+ q)lv ~A02S = q(p+ q)lv A02S � q(b� a)dw2Slw ; (3.33)whi
h are again obtained via good gauge transformations on the pat
hes. After allthis, ~A0 is a globally de�ned one-form on F1, and thus we see expli
itly that the vbundle trivialises over it sin
e13 we have divided the period by (p + q)q. Moreover,one �nds that a and b end up 
ompletely 
an
elling, and that the 
orre
t 
onne
tionform to use on U1N and U2S is~A01N = �A�u(y1)d N + A�uD N � lv2q(p+ q) dw1Nlw~A02S = �A�u(y2)d S + A�uD S � lv2q(p+ q) dw1Slw : (3.34)By taking �; Æ ! 0 we e�e
tively use the gauge ~A01N over Ef and ~A02S over E2 andthen 
onsider the result for E2 minus the result for Ef . After some 
al
ulation thisgives the period 1(2�ls)2gs ZV1 F (3) = � L2l2sgs (p+ q)3pq2(p+ 2q) � � M1p+ q ; (3.35)13Note that to obtain this result we only needed to quotient the period of v by p + q here, not(p+ q)q. In parti
ular, all of the above gauge transformations are well-de�ned.25



where M1 is a positive integer.Consisten
y of (3.27) and (3.35) implies that we 
hooseM1 =M(p + q)2; M2 =Mq2 (3.36)for some positive integer M andL2l2sgs = pq2(p+ 2q)M(p+ q)2 : (3.37)We have thus re
overed the results (3.8) and (3.9), whi
h is very satisfying.4 More general identi�
ationsIn this se
tion we will generalise the 
lass of solutions that we have already 
on-stru
ted. We return to the lo
al solution (2.12), (2.8), (2.15) and then employ thegeneral linear 
oordinate transformationw = hw0 + rQZ v0v = sw0 + t2� v0 (4.1)for 
onstant r; t; s; h with � = h t2� � rQZ s 6= 0 : (4.2)The idea is to now make appropriate periodi
 identi�
ations of the new 
oordinatesv0; w0. As we shall see this will embed our solutions of type IIB string string theoryof the last two se
tions into larger families.We �rst observe that Dw = hDw0 + rQZ Dv0Dv = sDw0 + t2� Dv0 (4.3)where we have de�ned Dw0 = dw0 � Aw0 D Dv0 = dv0 � Av0 D (4.4)with Aw0 = t2�� Aw � r QZ� AvAv0 = h� Av � s� Aw : (4.5)26



We now 
onstru
t M5 as a 
ir
le �bration, with 
ir
le parametrised by w0, over B4and then 
onstru
t M6 as a 
ir
le �bration, with 
ir
le parametrised by v0, overM5. It is straightforward to write the metri
 in the primed 
oordinates and thenappropriately \
omplete the square" to make this �bration stru
ture manifest in themetri
. However, we will not need the expli
it details. Observe that what will be
omethe globally de�ned angular one-form on M5 for the w0 
ir
le �bration is Dw0. After
ompleting the square in the metri
 on M6 we obtain an expression for what willbe
ome the globally de�ned angular one-form 
orresponding to the v0 
ir
le �brationand it has the form dv � Av0D � k(y)Dw0 (4.6)for some smooth fun
tion k(y) that 
an easily be determined. The 
onne
tion one-form on M5 for this 
ir
le �bration is thus Av0D + k(y)Dw0. This will turn out tobe a lo
al 
onne
tion one-form on the same 
ir
le bundle as that for the 
onne
tionone-form Av0D , sin
e kDw0 will be globally de�ned on M5 (in parti
ular, the 
orre-sponding 
urvature two-forms are in the same 
ohomology 
lass on M5). Below, for
onvenien
e, we will use the 
onne
tion one-form Av0D .The analysis now pro
eeds in an almost identi
al fashion as in the last se
tions, sowe 
an be brief. We 
hoose the period of the w0 
ir
le to be 2�lw0 so that l�1w0 Aw0D is a 
onne
tion on a U(1) �bration. We demand that (2�lw)�1d(AwD ) has integerperiods on B4, as in (2.29), with primes on all w, for some integers p; q, now notne
essarily positive. When r + t = 0 we have q = 0, while when r � t = 0 we havep + q = 0 and these 
ases require a separate analysis whi
h we will return to later.We thus 
ontinue here with r 6= �t and 
on
lude that14� = t� rt+ r qp+ qlw0 = (2� Z)(r + t)2q(1� Z)(1� �2)� (4.7)The topology of M5 is again S3�S2. For the generator of H3 (M5;Z) we 
an use theprimed version of (2.45).We now turn to the v0 
ir
le �bration over M5 to give M6. We let v0 be a periodi

oordinate with period 2�lv0 , and the 
onne
tion one-form is given by l�1v0 Av0D . To14Note that if we 
hoose t = �(Z � 2)=(Z � 1), r = ��Z=(Z � 1), h = (Z � 2)=2(Z � 1)and s = Z(Z � 2)=4Q�(Z � 1), then we have w0 = z, v0 = u1, where z; u1 are the 
oordinatesthat we started with in (2.2). In this 
ase equation (4.7) be
omes � = (1 � Z)=(1 + X) andlw0 = 2(1 +X)=q(X + Z)(2 +X � Z), where X = p=q and this agrees with the results in equation(4.22) of [27℄. 27



ensure that the 
ir
le �bration is well-de�ned and that M6 = S3 � S3 we impose theprimed version of (2.46) to 
on
lude thatlv0 = 2qQ(r + t) (1� Z) : (4.8)Now we determine the 
ux quantisation 
onditions. The ele
tri
 
ux quantisation
ondition (3.1) �xes the period of u2 as before:n1 = L6l6sgs Q8�2�(1� �2)2�u2 : (4.9)For the magneti
 
ux quantisation, we follow the same pro
edure as before, by in-trodu
ing expli
it 
oordinate pat
hes and 
onsidering integrals on submanifolds ofM̂6 =M6=Z(p+q)q. By following the same steps as in se
tion 3.2 we �nd that1(2�ls)2 gs ZV2 F (3) = L2l2sgs 1q 1�2 � 1 � �M2q1(2�ls)2 gs ZV1 F (3) = L2l2sgs 1q r + tr � t 1� (1� �2) � � M1p + q (4.10)for integers M2;M1. Consisten
y implies that we must haveM2M1 = �2 = (r � t)2(r + t)2 q2(p+ q)2 ; (4.11)whi
h implies that (r+ t)2=(r� t)2 must be rational, and that the length s
ale is �xedby L2l2sgs = (1� �2)M2 = (M1 �M2)M2M1 (4.12)The 
entral 
harge 
an now be 
al
ulated, and we �nd that it 
an be expressed as
 = 6n1 (M1 �M2)M2M1 : (4.13)In parti
ular we note that, in addition to Q, there is also no dependen
e on theparameters r; s; t and h. We note that the only restri
tions on these parameters is(4.2), (4.11) with � given in (4.7) satisfying 0 < � < 1. We have thus 
onstru
tedlarge 
ontinuous families of solutions that are dual to SCFTs. Note that, in general,the solutions of this se
tion are not exa
tly marginal deformations of those in se
tion3: for example, in se
tion 3 we saw that the magneti
 three-form 
ux quantumnumbers were 
onstrained to be of the form (3.36), whereas here there is no su
h
onstraint. 28



When r = �t:When r = �t, we have Aw0(y1) = Aw0(y2) and hen
e in 
onsidering the w0 
ir
le�bration over B4 to 
onstru
t M5 we �nd that the period over C2 = �f vanishes,q = 0. We 
hoose p = 1, so that the period over C1 = �2 � �f is one, and hen
eM5 = S3 � S2, whi
h implies thatlw0 = 2Aw0(y2) = � t(Z � 2)�(�2 � 1)(Z � 1)� : (4.14)At this stage, there is no restri
tion on the parameter � (apart from the usual 0 <� < 1). We now �nd on M5 that E1; E2 �= S3, and [E1℄ = [E2℄ generate H3(M5;Z).On the other hand, now Ef �= S1 � S2 (and hen
e there is a se
tion of the w0 
ir
le�bration over �f ). The generator of H2(M5;Z) is � = �f i.e. a = 1; b = 0, in thenotation of se
tion 2.3.In order to 
onstru
t M6 = S3 � S3, we 
an again �x the period of the v0 
ir
leusing � as in (2.46) and we �nd thatlv0 = Av0(y2)� Av0(y1) = � �Q(Z � 1)t : (4.15)It is now easier to �nd representatives of the two generators of H3(M6;Z), and wewon't have to 
onsider a quotient of M6 in order to impose the 
ux quantisation
onditions. In parti
ular, one generator of H3(M6;Z), W1, 
an be taken to be, asabove, the se
tion of the v0 
ir
le �bration over a desingularised version of E2 [�Ef .For the other generator, W2, we 
an take the v0 
ir
le bundle over the se
tion s(S)on M5 where15 S = �f . We note that two other three-
y
les W 0, W 00 are obtainedby 
onsidering a se
tion of the v0 
ir
le �bration over E1, E2, respe
tively: we shallshow that [W 0℄ = [W 00℄ = [W1℄ + [W2℄.We now introdu
e pat
hes in exa
tly the same way as se
tion 3.2. The analogueof (3.17) now reads w02N = w01N and we expli
itly see that the w0 
ir
le �bration isindeed trivial over �f . To obtain the se
tion s[�f ℄ we 
an simply set w02N = 
onstant.Moving to M6, we have the analogue of the 
onne
tion one-forms as in (3.19),(3.20) with a = 1, b = 0, p = 1, q = 0. Equation (3.22) shows that the v0 
ir
le�bration is indeed trivial over E2 and we 
an take a se
tion to obtain the three-
y
leW 00. One 
an then obtain the integral of the three-form 
ux over W 00 by using the
onne
tion one form A02N , and after a 
al
ulation we �nd1(2�ls)2 gs ZW 00 F (3) = � L2l2sgs 1�2 : (4.16)15Before, when [S℄ = q[�2℄ + p[�f ℄, it was not 
lear how to take a smooth representative for S.29



The v0 
ir
le �bration is also trivial over E1. Indeed, after 
onsidering (3.22) we 
ansee that the 
onne
tion one-form A01S + 2lv0 dw01slw0 (4.17)is a globally de�ned one-form on E1. We 
an use this gauge to 
al
ulate the integralover W 0 and we �nd exa
tly the same result as for W 00.To 
al
ulate the integral of the 
ux over the three-
y
le W2, the v0 
ir
le bundleover the se
tion s(�f ), we just need to set w02N = 
onstant in the expression for thethree-form and then integrate. We therefore impose1(2�ls)2 gs ZW2 F (3) = L2l2sgs 1(1� �2) =M2 : (4.18)To 
arry out the 
ux integral over W1, a se
tion of the v0 
ir
le �bration overE2 [ �Ef , we de�ne 1lv0 ~A02N = 1lv0A02N + d N + dw2Nlw1lv0 ~A01N = 1lv0A01N + dw1Nlw1lv0 ~A02S = 1lv0A02S + dw2Slw : (4.19)Then ~A0 is a global one-form on E2 [�Ef . To 
al
ulate the integral of 
ux over these
tion over the v0 
ir
le bundle over E2 [ �Ef we use ~A02S on E2 and ~A01N on Ef .We �nd 1(2�ls)2 gs ZW1 F (3) = � L2l2sgs 1�2 (1� �2) = �M1 : (4.20)Comparing (4.16) with (4.18) and (4.20), we 
an dedu
e the homology relation [W 00℄ =[W 0℄ = [W1℄ + [W2℄, as mentioned above.Consisten
y of (4.18) and (4.20) implies that the length s
ale of the solution isagain as in (4.12) and that �2 is rational�2 = M2M1 : (4.21)The ele
tri
 
ux quantisation 
ondition is given again by (4.9) and the 
entral 
hargetakes the form (4.13).When r = t:When r = t, we have Aw0(y1) = �Aw0(y2) and hen
e in 
onsidering the w0 
ir
le�bration over B4 to 
onstru
tM5 we �nd that the period over C1 = �2��f vanishes,30



p + q = 0. We 
hoose q = 1 so that the period over C2 = �f is one, and hen
eM5 = S3 � S2, whi
h implies thatlw0 = �t(Z � 2)(�2 � 1)(Z � 1)� (4.22)with no restri
tion on the parameter �. We now �nd E1; E2; Ef �= S3, and �[E1℄ =[E2℄ = [Ef ℄ generate H3(M5;Z). The generator of H2(M5;Z) is � = b�2 + a�f withb� a = 1.In order to 
onstru
t M6 = S3 � S3, we �nd that the period of the v0 
ir
le islv0 = Av0(y1) + Av0(y2) = � Q(Z � 1)t : (4.23)For the generators of H3(M6;Z) we 
an take W1 to be the v0 
ir
le �bration over thea representative of the se
tion s(S) of M5, with [S℄ = [�2℄� [�f ℄. For W2 we take ase
tion of the v0 
ir
le �bration over Ef . We note that we 
an also obtain three-
y
lesW 0, W 00 whi
h are obtained by 
onsidering se
tions of the v0 
ir
le �bration over E1,E2 respe
tively: we shall see that �[W 0℄ = [W 00℄ = [W1℄ + [W2℄.We again introdu
e pat
hes in exa
tly the same way as se
tion 3.2. The 
onne
tionone-forms are as in (3.19), (3.20) with b � a = 1 and q = �p = 1. By taking a = 0,b = 1, we see from (3.21) that A02N is a globally de�ned 
onne
tion one-form on Ef .Cal
ulating the 
ux integral we �nd that we should impose1(2�ls)2 gs ZW2 F (3) = � L2l2sgs 1(1� �2) = �M2 : (4.24)To integrate the 
ux integrals for W 0 one should take b = 2, a = 1 while for W 00 weshould take b = 0, a = �1 and we �nd� 1(2�ls)2 gs ZW 0 F (3) = 1(2�ls)2 gs ZW 00 F (3) = L2l2sgs 1�2 : (4.25)We now turn to the 
ux integral over W1. For S we desingularise �2 � �f as inFigure 1. By making the gauge transformation w02N ! w02N � lw0d N in (3.15), we�nd that we obtain a globally de�ned 
onne
tion one-form on S � M5 and hen
ewe 
an take a se
tion. W1 is obtained by 
onsidering the v0 
ir
le �bration over thisse
tion. Thus to 
al
ulate the 
ux integral, one should set w01N = 
onstant in Dw01Nfor the �2 pie
e and w01S = 
onstant in Dw01S for the �f pie
e. After doing this we�nd 1(2�ls)2 gs ZW1 F (3) = � L2l2sgs 1�2 (1� �2) = �M1 : (4.26)We thus �nd the same 
onditions as for the r = �t 
ase above.31



5 Final CommentsWe have analysed in detail some lo
al supersymmetri
 AdS3 solutions of type IIBsupergravity, �rst found in [27℄, that have non-vanishing dilaton and RR three-form
ux. We have shown that the parameters 
an be 
hosen and 
oordinates identi�ed insu
h a way that the solutions extend to give ri
h 
lasses of globally de�ned solutionsof the form AdS3 �w (S3 � S3 � S1) with properly quantised 
ux. We have shownthat the solutions depend on 
ontinuous parameters and are hen
e dual to 
ontinuousfamilies of SCFTs in two spa
etime dimensions with (0; 2) supersymmetry.Although the internal 
ompa
t spa
es are di�eomorphi
 to S3 � S3 � S1, thedi�eomorphisms are far from apparent in the lo
al 
oordinates that the solutions arepresented in. It seems unlikely to us that there is a simple 
hange of 
oordinates thatwill make the topology more manifest. In this paper we used a number of te
hniquesto illuminate various aspe
ts of the topology whi
h, in parti
ular, allowed us to �nda workable pro
edure to impose 
ux quantisation. It seems likely that our approa
h,or generalisations thereof, will be very useful in other 
ontexts.In se
tion 4 we 
onsidered identi�
ations on the 
oordinates after we made ageneral linear transformation on the v; w 
oordinates. It is worth pointing out thatwe 
ould 
onsider more general linear 
oordinate transformations that also involvethe u2 
oordinate. This will lead to larger families of solutions that would be worthexploring. It seems possible that some of these solutions 
an be obtained as �-deformations using the te
hniques of [40℄. In fa
t returning to the solutions in se
tion2 and 3, where we showed thatQ was an exa
tly marginal deformation of the solutionswith Q = 0, one might wonder if Q 
orresponds to a �-deformation. One way to seethat it is not is to return to the lo
al solutions as written down at the beginning ofse
tion 4 of [27℄, whi
h are obtained after two T-dualities on the solutions we havedis
ussed in this paper. In this duality frame only the metri
 and the self-dual �ve-form are non-trivial for any Q, and in parti
ular the dilaton is 
onstant. However,looking at equation (A.16) of [40℄ we see that the �-deformation a
tivates a non-trivialdilaton and three-form.It is an important outstanding issue to identify the dual (0; 2) SCFTs for thesolutions dis
ussed here and in [25, 14, 26, 27℄. In the duality frame that we haveused in this paper, the amount of supersymmetry that is preserved 
ombined withthe 
uxes that are a
tive suggests that the dual SCFTs might arise on a D1-D5-branesystem that is wrapped on a holomorphi
 four-
y
le in a Calabi-Yau four-fold. Whilewe remain hopeful that progress will be made in this dire
tion, we note that the
32



SCFTs dual to the mu
h simpler type IIB AdS3 � S3 � S3 � S1 solutions of [34℄,whi
h have (4; 4) supersymmetry, are still not well-understood, despite interestingprogress [35, 36, 37, 38℄.The AdS3 solutions with Q = 0, that were analysed in [27℄, and with Q 6= 0 thatwe have dis
ussed here, 
an be generalised further and we have presented some detailsin appendix C. It will be interesting to 
arry out a 
omplete analysis of the 
onditionsfor regularity and 
ux quantisation 
onditions for these more general solutions.A
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h Fellowship.A U(1) bundles over Lens spa
esIn this se
tion we brie
y review the Lens spa
es S3=Zq, whi
h appear throughout themain text, and also the 
onstru
tion of U(1) prin
ipal bundles over these manifolds.We 
onstru
t S3=Zq as the total spa
e of a U(1) bundle over S2 with Chern numberq. Let �, � be standard 
oordinates on S2, and 
over the S2 with two pat
hes: VNwhi
h ex
ludes the south pole � = �, and VS whi
h ex
ludes the north pole � = 0. Wethen 
onsider the produ
ts S1�VN , S1�VS , and on ea
h spa
e de�ne the one-formsD�N = d�N � q2(1� 
os �)d�D�S = d�S + q2(1 + 
os �)d� : (A.1)Here �N and �S are 
oordinates on the S1s, ea
h with period 2�. If we now glue thetwo pat
hes together via �S � �N = �q� (A.2)on the overlap then note that D� = D�N = D�S (A.3)33



extends to a global one-form on the whole manifold, be
ause the two one-forms agreeon the overlap. This is a global 
onne
tion form on the total spa
e of the U(1)prin
ipal bundle p : S3=Zq ! S2 with U(1) �bre parametrised by �, and is sometimesalso 
alled the global angular form.Now 
onsider the 
onne
tion formAN = a2(1� 
os �)d�AS = �a2(1 + 
os �)d� (A.4)on the base S2. This has Chern number a 2 Z over the base S2. We denote the
orresponding U(1) prin
ipal bundle by P . We may pull ba
k P to a U(1) bundlep�P over S3=Zq. Pulling ba
k the 
onne
tion (A.4), on the overlap one �ndsAS � AN = �ad� = aq d(�S � �N ) : (A.5)Note that a�S=q is a multi-valued U(1) fun
tion on the pat
h S1�VS unless a=q 2 Z.If a=q 2 Z then in ea
h pat
h we 
an de�ne the new 
onne
tion one-forms AS�ad�S=qand AN �ad�N=q, and sin
e they agree on the overlap, this de�nes a globally de�ned
onne
tion one-form and hen
e p�P is trivial.Thus p�P is trivial if and only if a �= 0 mod q. One sees this in a more ab-stra
t way by re
alling that U(1) prin
ipal bundles are 
lassi�ed by H2(S3=Zq;Z) �=H1(S3=Zq;Z) �= Zq. Thus a 2 Zq is pre
isely the Chern number of p�P , and thelatter bundle is torsion. Be
ause of this, the topology 
annot be measured by inte-grating the 
urvature of a 
onne
tion A over a two-
y
le { to see torsion 
lasses usingthe 
onne
tion is more subtle. This is explained in general in the paper [39℄. Thelatter referen
e implies that the torsion �rst Chern 
lass may be 
omputed by pi
kinga 
at 
onne
tion on p�P , and then 
omputing the log of the holonomy of this 
at
onne
tion around the one-
y
les that generate H1(S3=Zq;Z). We may shift to a 
at
onne
tion here by de�ningA
atS = AS + aqD�S = aq d�SA
atN = AN + aqD�N = aq d�N (A.6)Here we have added a global one-form (a=q)D� to the original 
onne
tion { we aresimply pi
king a di�erent 
onne
tion on the same bundle. Then H1(S3=Zq;Z) �= Zqis generated by, for example, the  N 
ir
le at � = 0. Thus the log of the holonomy isi ZS1 A
atN = 2�iaq mod 2�i : (A.7)34



This implies that our 
onne
tion above is a times the generator of Zq.Finally, we make a 
omment about quotients. First note that quotienting theperiod of the U(1) �bre 
oordinate of P by q is the same as taking the qth power ofP . In parti
ular, the Zq quotient of the bundle p�P over S3=Zq is then trivial. Thisfollows simply be
ause the 
onne
tion on this bundle in the two pat
hes is qAS andqAN , or after a gauge transformation qAS � ad�S and qAN � ad�N , and from (A.5)we see that this is a globally de�ned 
onne
tion one-form, and hen
e the bundle istrivial.B More on the topology of M5Re
all that, in the main text, M6 is 
onstru
ted as the total spa
e of a 
ir
le bundleL over M5 �= S3 � S2. Here 
1(L) 2 H2(M5;Z) �= Z is the generator, so thatM6 �= S3 � S3. Although this is straightforward as stated, the issue is that we havein�nitely many 
oordinate systems on M5, labelled by the integers p and q, and thedi�eomorphism M5 �= S3 � S2 is not expli
it for general p and q. For ea
h p andq there are di�erent naturally-de�ned three-submanifolds of M5 { we are espe
iallyinterested in three-submanifolds sin
e we would like to quantise the RR three-form
ux. In this appendix we 
onsider these submanifolds in more detail, and in parti
ulardetermine the topology of L restri
ted to them.Consider restri
ting this 
ir
le bundle L over M5 to one of the three-submanifoldsof M5: E1, E2 or Ef . For example, take Ef �= S3=Zq. Re
all this is itself a 
ir
lebundle over �f �= S2 with Chern 
lass q. There is an in
lusion map if : Ef ,! M5,and we 
an de�ne a 
ir
le bundle Lf over Ef by pulling ba
kLf � i�fL : (B.1)Sin
e Ef is a lens spa
e, Ef = S3=Zq, 
ir
le bundles over Ef are 
lassi�ed up toisomorphism by 
1(Lf ) 2 H2(Ef ;Z) �= Zq : (B.2)To 
ompute this Chern 
lass, re
all that 
1(L) = ��� , where � 2 H2(B4;Z) wasde�ned in (2.34). Hen
e to 
ompute 
1(Lf ) = i�f��(�) we may instead �rst restri
t� to �f , and then pull ba
k using �� the 
orresponding 
ir
le bundle to Ef . This is
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summarised by the following 
ommutative square:H2(M5;Z) i�f�! H2(Ef ;Z)��x? x?��H2(B4;Z) ��f�! H2(�f ;Z) : (B.3)Here we have denoted the embedding of �f into B4 by �f : �f ! B4. Then ��f�de�nes an integer 
lass in H2(�f ;Z) �= Z. This in turn de�nes a 
ir
le bundle withChern number a, using (2.34). Using the results in appendix A, lifting this 
ir
lebundle to Ef then gives a bundle with Chern numbera = 
1(Lf) 2 H2(Ef ;Z) �= Zq : (B.4)Thus the bundle L restri
ted to Ef is trivialisable only if a = 0 mod q; in other words,if a = mq for some integer m. But if this were the 
ase, then we would have(mp+ b)q = 1 : (B.5)This is only possible if q = �1. Thus we see that for general q it is not possible totake a se
tion of L over Ef to obtain a three-submanifold of M6.One 
an do similar 
omputations for the three-submanifolds E1 and E2, withsimilar 
on
lusions. We haveL1 � i�1L ; 
1(L1) = b� 2a 2 H2(E1;Z) �= Zp+2q (B.6)L2 � i�2L ; 
1(L2) = b 2 H2(E2;Z) �= Zp : (B.7)Thus the 
orresponding bundles are trivial16 if and only if b = m2p, b� 2a = m1(p+2q), respe
tively, where m1; m2 2 Z, whi
h impliesp(a+ qm2) = 1(p+ 2q)(a+m1q) = 1 (B.8)respe
tively. These equations imply in parti
ular that p = �1 and (p + 2q) = �1.We thus 
on
lude that, for generi
 p and q, the 
ir
le bundle L restri
ted to E1, E2and Ef is non-trivial, and thus we 
annot globally take a se
tion of L. This meansthat these natural three-submanifolds of M5 
annot be used to 
onstru
t naturalthree-submanifolds of M6.16This analysis assumes that p, p+ 2q, q are non-zero.
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C More general AdS3 solutionsWe �rst re
all from [7℄, [27℄ the lo
al data that is suÆ
ient to 
onstru
t supersym-metri
 AdS3 solutions of type IIB supergravity with non-vanishing �ve-form 
ux and
omplex three-form 
ux G. We require a six-dimensional lo
al K�ahler metri
 ds26whose Ri

i tensor satis�es17�R � 12R2 +RijRij + 23GijkG�ijk = 0 (C.1)and G must be a 
losed, primitive and (1; 2) three-form on the six-dimensional spa
e.We refer to [7℄, [27℄ for details of how the full ten-dimensional solution is 
onstru
tedfrom this data.For the solutions that we have dis
ussed in this paper, whi
h we will now gener-alise, the lo
al six-dimensional Kahler metri
 has the formds26 = ds24 + ds2(T 2) (C.2)where ds2(T 2) = (du1)2 + (du2)2 is the standard metri
 on a two-torus, ds24 is afour-dimensional lo
al K�ahler metri
, andG = d�u ^W (C.3)where u = u1 + iu2 and W is a 
losed, primitive (1; 1)-form on the four-dimensionalK�ahler spa
e.Inspired18 by the six-dimensional K�ahler metri
s dis
ussed in equation 5.10 of[26℄, we start with the ansatz for a four-dimensional K�ahler metri
 given byds24 = Y4F dw2 + 2Xi=1 (w + qi) �d�2i + �2id�2i �+ F � 1Y  2Xi=1 �2id�i!2 (C.4)with 2Xi=1 �2i = 1; Y = 2Xi=1 �2iw + qi (C.5)and F an arbitrary fun
tion of w. To show that the metri
 is K�ahler we introdu
ethe orthonormal frameei = 12pF �ipw + qidw +pw + qid�i�ei =pF � 1Y �ipw + qi 2Xj=1 �2jd�j +pw + qi�i d�i (C.6)17Changing the sign of the last term leads to type IIB bubble solutions, as explained in [27℄. The
onstru
tion in this appendix 
an be easily adapted to 
onstru
t bubble solutions.18One 
an 
onsider the s
aling �3 ! ��, q3 ! 1=�2, � ! �=�2 in equation 5.10 of [26℄ and thentake �! 0. 37



with ds24 = 2Xi=1 (ei 
 ei + �ei 
 �ei) : (C.7)The K�ahler form 
an be writtenJ = i2 2Xi=1 (ei � i�ei) ^ (ei + i�ei) = � 2Xi=1 ei ^ �ei=� 12dw ^ 2Xi=1 �2id�i � 2Xi=1 (w + qi)�id�i ^ d�i (C.8)whi
h is 
learly 
losed for any 
hoi
e of F .The holomorphi
 (2; 0)-form 
 is given by
 = 2Yi=1 (ei � i�ei)=pw + q1pw + q2 � Y2pF dw ^ d� �pF 
os � sin � d�1 ^ d�2�� ipw + q1pw + q2 12pF 
os � sin � dw ^ � d�2w + q1 � d�1w + q2�+ ipw + q1pw + q2pF d� ^ �
os2 � d�1 + sin2 � d�2� (C.9)where we have introdu
ed �1 = 
os �, �2 = sin �, 0 < � < �2 . A 
al
ulation now showsthat d
 = iP ^ 
 (C.10)with P = 2pFYpw + q1pw + q2�w �pFpw + q1pw + q2� �
os2 � d�1 + sin2 � d�2�+ 1Y 
os 2� � d�2w + q1 � d�1w + q2� : (C.11)From this we dedu
e that the 
omplex stru
ture is integrable, and thus we do indeedhave a lo
al K�ahler metri
 with Ri

i form given by dP . It is helpful to observe thatwe 
an also writeP =�w [(F � 1) (w + q1) (w + q2)℄ P2i=1 �2id�iY (w + q1) (w + q2) + d�1 + d�2: (C.12)We now 
onstru
t a 
losed two-form W whi
h satis�es
 ^W = 0; (C.13)38



whi
h is the 
ondition for it to be a (1; 1)-form, and alsoJ ^W = 0; (C.14)whi
h is the 
ondition for it to be a primitive two-form. We make the ansatzW = d"f (w) P2i=1 �2id�iY (w + q1) (w + q2)# (C.15)whi
h satis�es the �rst equation. The se
ond equation readsJ ^W = � �wfY (w + q1) (w + q2) J ^ J = 0 (C.16)and so we take W = Qd" P2i=1 �2id�iY (w + q1) (w + q2)# (C.17)where Q is a 
onstant. The two-form W is anti-self dual and we note thatW ijWij = 16Q2[Y (w + q1) (w + q2)℄4 : (C.18)Having �xed W , and hen
e the three-form 
ux G, we just need to �x the fun
tionF to obtain the K�ahler metri
 ds24 by solving (C.1) whi
h reads�R � 12R2 +RijRij + 4W ijWij = 0: (C.19)We 
onsider the ansatzF = 1 + �w2 2Yi=1 1w + qi + � 2Yi=1 1w + qi ; (C.20)observing from (C.12) that the 
onstant � does not enter the Ri

i potential. A
al
ulation shows that the Ri

i s
alar is given byR = � 8�Y (w + q1) (w + q2) : (C.21)and that (C.19) boils down to solving�Y (w + q1) (w + q2)�2wR +W ijWij = 0 (C.22)whi
h implies that � = Q2� .
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In summary, supersymmetri
 AdS3 solutions of type IIB supergrvaity 
an be
onstru
ted from the six-dimensional K�ahler metri
 (C.2), with the four-dimensionalK�ahler metri
 given byds24 = Y4F dw2 + 2Xi=1 (w + qi) �d�2i + �2id�2i �+ F � 1Y  2Xi=1 �2id�i!2 (C.23)and F = 1 + ��w2 + Q2� � 1(w + q1) (w + q2) : (C.24)The three-form 
ux is given by (C.3) with the 
losed, primitive and (1; 1)-form Wgiven by W = Qd" P2i=1 �2id�iY (w + q1) (w + q2)# : (C.25)Observe that when q1 = q2 � q, the metri
 is pre
isely of the form found in [27℄leading to the AdS3 solutions that we have analysed in detail in this paper. To seethis we let w + q = 1=x and we also introdu
e Euler angles via�1ei�1 = 
os �2ei +�2�2ei�2 = sin �2ei ��2 : (C.26)We then �nd thatds24 = dx24x3U + 14x(d�2 + sin2 �d�2) + U4x(d + 
os �d�)2 (C.27)with U = 1 + �(1� qx)2 + Q2� x2 (C.28)whi
h should be 
ompared with equations C.1 and C.7 of [27℄. Furthermore,W = Q2 d[x(d + 
os �d�)℄ (C.29)whi
h should be 
ompared with equation C.5 of [27℄. When q1 = q2, the metri
 ds24has lo
al isometry group SU(2)� U(1) and the metri
 is 
ohomogeneity one. In themore general solutions with q1 6= q2 the lo
al isometry group is U(1)� U(1) and themetri
 is 
ohomogeneity two.It will be interesting to analyse these more general AdS3 solutions with q1 6= q2in more detail. When Q = 0 the internal spa
e will have topology S2 � S3 � T 2and when Q 6= 0 it will have topology S3 � S3 � S1. This 
an be shown using thete
hniques used in [29℄ and in this paper. When Q 6= 0, one will also need to 
he
kthe 
ux quantisation 
onditions and this will require generalising the te
hniques thatwe have used in this paper. We leave this for the future.40
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