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AdS3 �w (S3 � S3 � S1) Solutionsof Type IIB String Theory

Aristomenis Donos1, Jerome P. Gauntlett2 and James Sparks31DESY Theory Group, DESY HamburgNotkestrasse 85, D 22603 Hamburg, Germany2Theoretial Physis Group, Blakett Laboratory,Imperial College, London SW7 2AZ, U.K.2The Institute for Mathematial Sienes,Imperial College, London SW7 2PE, U.K.3Mathematial Institute, University of Oxford,24-29 St Giles', Oxford OX1 3LB, U.K.AbstratWe analyse a reently onstruted lass of loal solutions of type IIBsupergravity that onsist of a warped produt of AdS3 with a seven-dimensional internal spae. In one duality frame the only other non-vanishing �elds are the NS three-form and the dilaton. We analyse indetail how these loal solutions an be extended to globally well-de�nedsolutions of type IIB string theory, with the internal spae having topol-ogy S3 � S3 � S1 and with properly quantised three-form ux. We showthat many of the dual (0; 2) SCFTs are exatly marginal deformations ofthe (0; 2) SCFTs whose holographi duals are warped produts of AdS3with seven-dimensional manifolds of topology S3 � S2 � T 2.
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Contents1 Introdution 12 The AdS3 solutions 42.1 The loal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 B4 = S2 � S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 M5 = S3 � S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4 M6 = S3 � S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.5 A quotient of M6 and integral three-forms . . . . . . . . . . . . . . . 133 Flux Quantisation 183.1 Eletri and magneti harges . . . . . . . . . . . . . . . . . . . . . . 183.2 Computing periods using oordinate pathes . . . . . . . . . . . . . . 204 More general identi�ations 265 Final Comments 32A U(1) bundles over Lens spaes 33B More on the topology of M5 35C More general AdS3 solutions 371 IntrodutionSupersymmetri solutions of string or M-theory that ontain AdSd+1 fators are dualto supersymmetri onformal �eld theories in d spaetime dimensions. Starting withthe work of [1℄, general haraterisations of the geometries underlying suh solutions,using G-struture tehniques [2, 3℄, have been ahieved for various d and for variousamounts of supersymmetry [4℄{[24℄. With a few exeptions, mostly with sixteensupersymmetries, many of these geometries are still poorly understood, and it hasproved diÆult to �nd expliit solutions.One notable exeption is the lass of AdS3 solutions of type IIB string theorywith non-vanishing �ve-form ux, dual to d = 2 onformal �eld theories with (0; 2)supersymmetry, that were lassi�ed in [7℄. It was shown that the seven-dimensionalinternal spae has a Killing vetor whih is dual to the R-symmetry of the dual SCFT.The Killing vetor de�nes a foliation and the solution is ompletely determined,1



loally, by a K�ahler metri on the six-dimensional leaf spae whose Rii tensorsatis�es an additional di�erential ondition. Moreover, a rih set of expliit solutionshave been onstruted in [25, 14, 26℄ and the orresponding entral harges of thedual SCFTs have also been alulated.More reently, it was understood how to generalise this lass of type IIB AdS3 so-lutions to also inlude three-form ux [27℄. The solutions are again loally determinedby a six-dimensional K�ahler metri and a hoie of a losed, primitive (1; 2)-form onthe K�ahler spae. One again additional expliit solutions were onstruted withthe six-dimensional K�ahler spae having a two-torus fator and the three-form uxbeing parametrised by a real parameter Q. After two T-dualities on the two-torusit was also shown that these expliit solutions give type IIB AdS3 solutions withnon-vanishing dilaton and RR three-form ux only. After an additional S-dualitythe solutions only involve NS �elds.In [27℄ these expliit solutions were examined in more detail for the speial aseof Q = 0. It was shown that the parameters and ranges of the oordinates ould behosen to give globally de�ned supergravity solutions onsisting of a warped produtof AdS3 with a seven-dimensional internal manifold that is di�eomorphi to S2 �S3 � T 2. It was shown that the solutions, with properly quantised three-form ux,are spei�ed by a pair of positive oprime integers p; q.The purpose of this paper is to arry out a similar analysis when we swith on theparameter Q. We will �nd that we are led to in�nite lasses of solutions, with theseven-dimensional internal spae being di�eomorphi to S3 � S3 � S1. Furthermore,we will see that the entral harge is independent of Q and hene the Q deformationin many ases is dual to an exatly marginal perturbation in the dual SCFT.While the �nal topology of the solutions is simple, it is not easy to see this inthe loal oordinates in whih the solutions are presented. When Q = 0 the S2 � S3fator is realised in a manner very similar to the Y p;q Sasaki-Einstein spaes [28℄.When Q 6= 0 one of the irles in the T 2 fator is �bred over the S2�S3 and we needto arefully hek that the irle �bration is globally well-de�ned, leading to S3�S3.Furthermore we need to hek that the three-form ux is properly quantised. This isnot straightforward sine it is not lear \where" the two S3 fators are in the loaloordinates. After some false starts we developed a workable presription for ensuringthat the three-form is properly quantised, as we shall explain.The plan of the paper is as follows. In setion 2, we begin by realling the loalsolutions of [27℄ and then disuss how, after suitable hoies of parameters and periodsfor the oordinates, the seven-dimensional internal manifold has topology S3 � S3 �2



S1. We disuss some aspets of the topology in detail, leading to a presription forarrying out ux quantisation whih is dealt with in setion 3. Our method uses aquotient onstrution, whih is explained in setion 2, as well as expliit oordinatepathes. In setions 2 and 3, the solutions depend on a pair of oprime positiveintegers p; q, the eletri three-form ux, n1, the magneti three-form ux througheah of the two S3 fators, M1 and M2, and the parameter Q. For these solutions,it turns out that M1 and M2 are not independent and are given by M1 =M(p + q)2and M2 = Mq2, where M is an integer. We alulate the entral harge and showthat it is given by the simple formula = 6n1 (M1 �M2)M2M1 : (1.1)In partiular it is independent of Q, and sine the solutions are spei�ed by thesame number of parameters as for the Q = 0 solutions that were analysed in [27℄ weonlude that these solutions orrespond to exatly marginal deformations of thosewith Q = 0.In setion 4, we generalise our onstrution by making more general identi�ationson the oordinates, obtaining solutions that involve more parameters. We show thatthe entral harge has exatly the same form as in (1.1), but now, however, theintegers M1 and M2 labelling the three-form ux through the two S3's are no longeronstrained. Thus not all of these more general solutions orrespond to exatlymarginal deformations of those that we onsider in setions 2 and 3. We onlude insetion 5.We noted above that the S2 � S3 fator in the AdS3 solutions onstruted in[27℄, with Q = 0, is realised in a similar way to the Y p;q Sasaki-Einstein spaesfound in [28℄. In partiular, in both ases the metris on S2 � S3 are ohomogeneityone. Given that the Y p;q metris an be generalised to ohomogeneity two Sasaki-Einstein metris La;b; on S2 � S3 [29℄ (see also [30℄), it is natural to suspet thatthere are analogous AdS3 solutions, with �ve-form ux only, with internal spaehaving topology S2 � S3 � T 2 and with the metri on the S2 � S3 fator havingohomogeneity two. This is indeed possible, and moreover it is also possible to �ndgeneralisations with non-zero three-form ux and with the internal manifold havingtopology S3 � S3 � S1. We will present suh solutions in appendix C, but we willleave a detailed analysis of the regularity and ux quantisation onditions for futurework.
3



2 The AdS3 solutions2.1 The loal solutionsWe start with the expliit lass of AdS3 solutions of setion 4.3 of [27℄. The stringframe metri is given by 1L2ds2 = �y1=2 [ds2(AdS3) + ds2(X7)℄ (2.1)whereds2(X7) = �2 � 1 + 2y �Q2y24�2 Dz2 + U(y)4(�2 � 1 + 2y �Q2y2)D 2 + dy24�2y2U(y)+ 14�2ds2(S2) + (du1 � Qy2� [(1� g)D �Dz℄)2 + (du2)2 ; (2.2)where �;Q are positive onstants, L is an arbitrary length sale andU(y) = 1� 1�2 (1� y)2 �Q2y2 : (2.3)In addition, ds2(S2) is the standard1 metri on a two-sphere, ds2(S2) = d�2+sin2 �d�2,and we have de�ned D = d + P (2.4)with dP = Vol(S2) = sin �d� ^ d� � J : (2.5)Note that P is only a loally de�ned one-form on S2. In fat, more preisely, P is aonnetion one-form on the U(1) prinipal bundle assoiated to the tangent bundleof S2. The two-form J introdued in (2.5) may be regarded as a K�ahler form on S2.We also have Dz = dz � g(y)D (2.6)with g(y) = y(1�Q2y)�2 � 1 + 2y �Q2y2 : (2.7)The only other non-trivial type IIB supergravity �elds are the dilaton and the RRthree-form. The dilaton is given by e2� = �2y (2.8)1Note that we have resaled the metri on S2 appearing in [27℄ by a fator of 4.
4



while the RR three-form �eld strength is given by1L2F (3) = � 14�2dy ^D ^Dz � y4�2J ^Dz + �1� yg4�2 �J ^D + Q2�du1 ^ [dy ^Dz � yJ � (1� g)dy ^D ℄ + 2Vol(AdS3) : (2.9)This is losed. After a further S-duality transformation we obtainAdS3 solutions withonly NS �elds non-vanishing, but we will ontinue to work with the above solution.In order to simplify some of the formulae it will be helpful to introdueZ � 1�p1 +Q2(�2 � 1) : (2.10)We next hange oordinates viadz = dw + 2Q�Z � 2 dvdu1 = dv + Q(1� �2)2�(Z � 2)dw (2.11)to bring the metri to the formds2(X7) = 2(1� Z)(1� �2 � yZ)(2� Z)(1� �2) Dv2 + (1� Z)(2y � yZ � 1 + �2)2�2(2� Z) Dw2+ (1� �2)U(y)4(1� �2 � Zy)(�2 � 1 + 2y � Zy)D 2 + dy24�2y2U(y) + 14�2ds2(S2) + (du2)2(2.12)where Dv = dv � AvD Dw = dw � AwD (2.13)and Av = Q(1� �2)y4�(1� �2 � yZ)Aw = (2� Z)y2(2y � yZ � 1 + �2) : (2.14)The three-form in the new oordinates is given by1L2F (3) = 2Vol (AdS3) + (1� �2)U(y)4(1� �2 � yZ)(�2 � 1 + 2y � yZ) J ^D (2.15)� Dw ^ � (Z � 1)(1� �2)4�2(Zy � 1 + �2)dy ^D + y(1� Z)4�2 J�� QDv ^� (1� Z)(1� �2)2�(Z � 2)(�Zy � 1 + �2 + 2y)dy ^D + y(1� Z)2�(2� Z)J�� Q(1� Z)�(2� Z) dy ^Dv ^Dw : 5



Finally, we note that the anonial Killing vetor related to supersymmetry is givenby � + �z : (2.16)In the new oordinates this reads� + (Z � 2)2(Z � 1)�w + Q(�2 � 1)4�(Z � 1)�v : (2.17)We now would like to �nd the restritions on the parameters �, Q so that theseloal solutions extend to global solutions on a globally well-de�ned manifold X7.Having ahieved that goal, we will analyse the additional onstraints imposed byensuring that the three-form is properly quantised. Note that when Q = 0 theorresponding analysis was arried out in [27℄ and in partiular it was shown thatthere were in�nite lasses of solutions, labelled by a pair of positive oprime integers,p; q, with X7 having the topology of S3 � S2 � T 2.Our strategy is to build X7 in stages. The u2 oordinate is taken to parama-terise an S1: for now the period of u2 is arbitrary but it will later be �xed by uxquantisation. We therefore write X7 =M6 � S1 withds2(M6) � 2(1� Z)(1� �2 � yZ)(2� Z)(1� �2) Dv2 + ds2(M5) ; (2.18)where ds2(M5) � (1� Z)(2y � yZ � 1 + �2)2�2(2� Z) Dw2 + ds2(B4) (2.19)andds2(B4) � (1� �2)U(y)4(1� �2 � Zy)(�2 � 1 + 2y � Zy)D 2 + dy24�2y2U(y) + 14�2ds2(S2) :(2.20)We will �rst analyse ds2(B4), showing that, by taking  to be a periodi oordinatewith period 2�, B4 is a smooth manifold di�eomorphi to S2�S2. We then show that,by taking w to be a periodi oordinate with a suitable period, with the parameter� �xed by two relatively prime positive integers p; q, M5 is the total spae of airle �bration over B4, and has topology S3 � S2. Here p and q have a topologialinterpretation as Chern numbers of the irle bundle over B4. These steps are familiarfrom the onstrution of the Sasaki-Einstein manifolds Y p;q [28℄. The �nal step is toshow that, by taking v to be periodi with a suitable period, M6 is the total spae ofa irle �bration over M5, and has topology S3 � S3.
6



It will be useful in the following to observe that the funtion U(y) is a quadratifuntion of y with roots y1 and y2 given byy1 = 1� �21 + �(1� Z)y2 = 1� �21� �(1� Z) : (2.21)It will also be useful to know the values of the funtions Aw and Av appearing inds2(M6) at y1 and y2. We �ndAw(y1) = 2� Z2(1� Z)(1� �)Aw(y2) = 2� Z2(1� Z)(1 + �)Av(y1) = Q(1� �)4�(1� Z)Av(y2) = Q(1 + �)4�(1� Z) : (2.22)2.2 B4 = S2 � S2B4 is parametrised by �, �, y and  . We take the oordinate y to lie in the intervaly 2 [y1; y2℄ where yi are the two distint positive2 roots of U(y), given by (2.21). Thisrequires that we demand 0 < � < 1; 0 � Z < 1 : (2.23)We next observe that if we hoose the period of  to be 2�, then y;  parametrise asmooth two-sphere, with y a polar oordinate and  an azimuthal oordinate on themetrially squashed S2 �bre. In partiular, �xing a point on the round two-sphere,one an hek that ds2(B4) is free from onial singularities at the poles y = y1 andy = y2. B4 is then a smooth S2 bundle over the round S2. The transition funtionsare in U(1), ating in the obvious way on the �bre. The �rst Chern number of theU(1) �bration is �2 and thus, as explained in [28℄, B4 is di�eomorphi to S2 � S2.We have H2(B4;Z) �= Z� Z. Three obvious two-spheres in B4 are the setions�1 = fy = y1g and �2 = fy = y2g, eah a opy of the two-sphere base, and aopy of the �bre �f at some point on the two-sphere base (for onreteness, say, thenorth pole f� = 0g). Call the orresponding homology lasses [�1℄, [�2℄ and [�f ℄,2We need y to be positive to ensure that the warp fator is real.7



respetively. We an take [�2℄ and [�f ℄ to generate H2(B4;Z), but we note that thisis not the natural basis of S2�S2. In partiular, the intersetions of the 2-yles are[�f ℄ \ [�f ℄ = 0; [�f ℄ \ [�2℄ = 1; [�2℄ \ [�2℄ = 2 : (2.24)The only non-obvious equality above is the last. This follows sine the self-intersetionof a 2-yle in a 4-manifold is equal to the Chern number of the normal bundle. Similaralulations show that [�1℄ = [�2℄� 2[�f ℄: (2.25)Later it will be useful to use a more natural basis given by [C1℄ = [�2℄ � [�f ℄ and[C2℄ = [�f ℄: indeed one an then hek that [C1℄ \ [C1℄ = [C2℄ \ [C2℄ = 0 and[C1℄ \ [C2℄ = 1.By Poinar�e duality we have H2(B4;Z) �= H2(B4;Z). Reall that, by de�nition,the Poinare dual �� of a submanifold � �M satis�esZ� ! = ZM ! ^ �� (2.26)for any losed form !. We introdue the losed two-forms on B4�2 = 14�J�f = 12�[Aw(y1)� Aw(y2)℄ [(Aw(y2)� Aw)J � �y(Aw)dy ^D ℄ : (2.27)These forms satisfyZ�2 �2 = Z�f �f = 1; Z�2 �f = Z�f �2 = 0 ; (2.28)and one �nds that Poinar�e duality maps �f 7! �2 and �2 7! �f + 2�2.2.3 M5 = S3 � S2We next onstrut M5 as the total spae of a irle bundle over B4, by letting wbe periodi with period 2�lw, for a suitably hosen lw. We begin by observing from(2.12) that the norm of the Killing vetor �w is nowhere-vanishing, and so the sizeof the S1 �bre doesn't degenerate anywhere. Realling that Dw = dw � AwD , werequire that l�1w AwD is a onnetion on a bona �de U(1) �bration with �rst Chernlass represented by (2�lw)�1d(AwD ).
8



It is straightforward to �rst hek that (2�lw)�1d(AwD ) is indeed a globallyde�ned two-form on B4. We next impose that it has integer valued periods:12�lw Z�2 d (AwD ) = 2lwAw (y2) = p12�lw Z�f d (AwD ) = 1lw [Aw (y2)� Aw (y1)℄ = �q; (2.29)where p; q are positive integers. One an then alulate12�lw Z�1 d (AwD ) = 2lwAw (y1) = p + 2q (2.30)as expeted from (2.25). We then dedue that� = qp+ q (2.31)whih, remarkably, is independent of Q, andlw = 2� Zp(1� Z)(1 + �) : (2.32)With these hoies we have that M5 is the total spae of a irle bundle with �rstChern lass given by 1 = p[�2℄� q[�f ℄ 2 H2(B4;Z) : (2.33)As in [28℄, taking p and q to be relatively prime, as we shall heneforth do, one anshow that M5 is simply-onneted with H2(M5;Z) �= Z. Using Smale's theorem for�ve-manifolds [31℄, it follows that M5 is di�eomorphi to S3 � S2.Having onstruted M5, it will be useful later to know various topologial prop-erties of this manifold in terms of the oordinate system above. In the remainderof this subsetion we write down expliit generators for H2(M5;Z) �= Z, whih willbe useful for onstruting irle bundles over M5, and for H3(M5;Z) �= Z, whihwill be useful both for integration using Poinar�e duality and also for quantising thethree-form ux. We also �nd representatives of the generating 2-yle and 3-yle inH2(M5;Z) �= Z and H3(M5;Z) �= Z, respetively.The generator of H2(M5;Z) �= Z may be taken to be the pull-bak of the lass� = b[�2℄ + a[�f ℄ 2 H2(B4;Z) (2.34)under the projetion � :M5 ! B4 ; (2.35)9



where a and b are (any) integers satisfyingpa+ qb = 1 : (2.36)These exist and are unique up to b ! b +mp, a ! a � mq, for any integer m, byBezout's lemma. The non-uniqueness simply orresponds to the fat that the Chernlass 1 = p�2� q�f of the irle bundle over B4 is trivial when pulled bak to M5, asis the Chern lass of any tensor power of this irle bundle (the power orrespondsto the integer m above).To see that ��� is the generator of H2(M5;Z) as laimed, note that, a priori,��� is neessarily � times the generator, for some integer � 2 Z. Thus we write��� = � 2 H2(M5;Z) �= Z. Next note that the irle bundle � trivialises over any3smooth submanifold S � B4 that represents the yle[S℄ = q[�2℄ + p[�f ℄ : (2.37)This is simply beause the �rst Chern lass 1 evaluated on [S℄ is zero, as one seesusing (2.28). Hene we may take a setion s of � over S:s : S !M5 : (2.38)This de�nes a 2-yle [s(S)℄ in H2(M5;Z) �= Z, whih we may take to be � times thegenerator, for some integer �. But then by onstrutionZs(S) ��� = ZS � = 1 ; (2.39)implying that �� = 1, and thus � and � are both�1. Hene ��� generatesH2(M5;Z),and s(S) generates H2(M5;Z).The only other non-trivial homology group is H3(M5;Z) �= Z. There are threenatural three-submanifolds of M5, whih we all E1, E2 and Ef . These are therestrition of the irle bundle � to the submanifolds �1, �2 and �f ofB4, respetively.These three-manifolds are all Lens spaes4. Indeed, �1, �2, �f are all two-spheres.The Chern numbers are easily read o� from 1 above to be p+ 2q, p and �q. ThusE1 �= S3=Zp+2q; E2 �= S3=Zp; Ef �= S3=Zq : (2.40)We may take the generator of H3(M5;Z) to beE = k[E1℄ + l[Ef ℄ (2.41)3Although S ertainly exists, in pratie it is not easy to de�ne suh a smooth submanifold inthe above oordinate system.4See appendix A for some disussion. 10



where k and l are (any) integers satisfyingpk + ql = 1 : (2.42)Notie this is the same as (2.36), so one ould hoose k = a and l = b. A simple wayto hek this is to note that the generator has intersetion number 1 with [s(S)℄. Oneomputes [s(S)℄ \ E = pk + ql = 1 (2.43)whih uniquely identi�es E as the generator. We then have[E1℄ = pE; [E2℄ = (p+ 2q)E; [Ef ℄ = qE ; (2.44)whih again an be shown by taking intersetion numbers with [s(S)℄.Finally, we may also write down a representative � of the generator of H3(M5;Z).By de�nition this is a losed three-form onM5 that integrates to 1 over E. We hoose� = 1(2�)2 l2w fDw ^ [(Aw (y1) + Aw (y2)� Aw (y)) J � �yAwdy ^D ℄� �A2w(y)� Aw (y) (Aw (y1) + Aw (y2)) + Aw (y1)Aw (y2)� J ^D 	 :(2.45)The three-form � is Poinar�e dual to the non-trivial two-yle in M5.2.4 M6 = S3 � S3We now onstrut M6 as a irle bundle over M5. Sine H2(M5;Z) �= Z, suh irlebundles are determined, up to isomorphism, by an integer. Sine M5 �= S3 � S2,taking this integer to be 1 (or �1) gives a total spae M6 �= S3 � S3. Taking theChern number to be n would instead lead to anM6 with �1(M6) �= Zn, whih we mayalways lift to the simply-onneted over with n = �1. So, we will do this. However,as we shall see later, in �xing the three-form ux quantisation it will be helpful toonsider suh quotients of M6.Observe from (2.12) that the norm of the Killing vetor �v is nowhere-vanishing,and so the size of the S1 �bre doesn't degenerate anywhere. The period of v is takento be 2�lv, where lv will be �xed shortly. Realling that Dv = dv�AvD , we requirethat l�1v AvD is a onnetion on a U(1) �bration with �rst Chern lass represented by(2�lv)�1d(AvD ). It is straightforward to hek that (2�lv)�1d(AvD ) is a globallyde�ned two-form onM5. We next impose that it has unit period. To do this we would11



like to integrate (2�lv)�1d(AvD ) over a smooth submanifold in the same homologylass as s(S), the generator of H2(M5;Z). However, as we have already noted, �ndingsuh a smooth submanifold is not so easy. Lukily, we an use Poinar�e duality toalulate the period instead. Realling that [�℄ is Poinar�e dual to [s(S)℄, we demandthat 12�lv Zs(S) d(AvD ) = 12�lv ZM5 d(AvD ) ^ �= 2lvlw [Av(y2)Aw(y1)� Av(y1)Aw(y2)℄= 1lv [2qAv(y2)� p(Av(y1)� Av(y2))℄ = 1; (2.46)so that the irle bundle has Chern number 1, whih an be ahieved by settinglv = Q(p+ q)1� Z : (2.47)Let us denote this irle bundle over M5 by L, with orresponding projetion� :M6 !M5 : (2.48)Realling that the generator of H2(M5;Z) may be taken to be the pull-bak of � in(2.34) under the projetion � :M5 ! B4, we see that L may be regarded as the pull-bak of the irle bundle L� over B4 with �rst Chern lass given by � 2 H2(B4;Z).We write this as L = ��L� .Sine M6 �= S3 � S3, it follows that the only non-trivial homology group isH3(M6;Z) �= Z � Z. The two generators are learly the two opies of S3, at a�xed point on the other opy. However, beause of the way we have onstrutedM6 above, it is not easy to see the di�eomorphism of M6 with S3 � S3 expliitly.Nevertheless, we observe that one three-yle is represented by the total spae of theirle bundle L over the S2 in M5 �= S3 � S2. Sine s(S) is homologous to the S2 inM5, it follows5 that taking the total spae of L over both submanifolds gives homol-ogous three-submanifolds of M6, whih is the total spae of L. Thus the total spaeof the L irle bundle over s(S) is one of the generators of the homology of M6. Itshould be pointed out, though, that �nding a smooth representative of this generatoris not straightforward. For the other generator, the obvious thing to try is to takea representative for E, whih afterall is represented by S3 � M5, and then try to5Being homologous in M5 means there is a three-dimensional hain in M5 with boundary s(S)�S2. By taking the total spae of L over this hain, one obtains a hain in M6 with boundary givenby the total spae of L over s(S)� S2. 12



take a setion of � over this representative. However, unfortunately just beause twosubmanifolds are homologous in M5, with L trivial over one of them, this does notneessarily guarantee that the irle bundle L is trivial over the other submanifold6.So, we annot neessarily do this. An additional observation is that, while a setionof � exists over E, it does not exist, in general, over the submanifolds E1, E2 andEf , as we explain in the appendix.In order to arry out the ux quantisation of the three-form in the supergravitysolutions, we need a presription to integrate three-forms over a basis of H3(M6;Z).The omments in the last paragraph indiate that this is not as straightforward as itmight seem. Our approah, employing a quotient onstrution7, will be explained inthe next subsetion.2.5 A quotient of M6 and integral three-formsIn this setion we want to explain how onsidering the periods of the three-form onthe quotient M̂6 = M6=Z(p+q)q leads to a pratial proedure for ensuring that athree-form, suh as the suitably normalised RR three-form, has integral periods.In order to obtain more insight into the topology ofM6, it will be helpful to thinkof it as a group manifold,M6 = S3 � S3 �= SU(2)� SU(2) ; (2.49)and observe that taking the quotient by the maximal torus T 2 � SU(2) � SU(2)leads to B4: M6=T 2 = S2 � S2 = B4: (2.50)Now, reall that we onstruted M5 as the total spae of a irle bundle over B4with winding numbers p and �q over �2 and �f , respetively. With respet to the6As a simple example, onsider the �ve-manifold T 1;1 �= S2�S3, whih reall is naturally a irlebundle over S2 � S2. For our two three-submanifolds we take a ontratible S3, say the equatorialS3 on a ontratible S4 that links a point, and the \diagonally embedded" Lens spae S3=Z2. SineT 1;1 is a irle bundle over S2�S2, we may desribe the latter three-submanifold more preisely asthe restrition of this irle bundle to the diagonal S2 in S2�S2, whih is the easiest way to see thatthe topology is indeed S3=Z2. Both three-yles are trivial { to see this for the latter onstrut thegenerator of H3(T 1;1;Z) and integrate over the three-yle. However, if we pull bak the omplexline bundle O(1; 0)S2�S2 with winding numbers 1 and 0 on S2 � S2 to T 1;1, this is trivial over theS3 but non-trivial over the ontratible S3=Z2 (the latter follows using arguments similar to thosein appendix B).7We thank Domini Joye for suggesting this approah.13



natural basis [C1℄ = [�2℄� [�f ℄ and [C2℄ = [�f ℄ of B4 �= S2�S2 introdued in setion2.2, we thus have Chern numbersZ[C1℄ 1 = p+ q; Z[C2℄ 1 = �q : (2.51)In this setion we make the U(1) �bration struture ofM5 expliit in the notation bydenoting the latter as M5(p; q).The key observation is that we may realise M5(p; q) as a quotient by the U(1)subgroup of T 2 with harges (q; p+ q), as illustrated in the following diagram:U(1)q;p+q. &T 2 ,! M6 ! B4# #T 2=U(1)q;p+q ,! M5(p; q) ! B4 : (2.52)
To see this more expliitly, we introdue Euler angles,  1; �1; �1 and  2; �2; �2 foreah of the two SU(2) fators. We also introdue the orresponding left-invariantone-forms ��i for eah fator, respetively, where � = 1; 2; i = 1; 2; 3. Thus��1 = os �d�� + sin �� sin �d����2 = � sin �d�� + sin �� os �d����3 = d � + os ��d�� : (2.53)Now  1;  2 2 [0; 4�) parametrise the T 2. The U(1)q;p+q irle ation is then givenexpliitly by ( 1;  2) 7! ( 1 + q ;  2 + (p+ q) ) (2.54)where  2 [0; 4�) parametrises the irle subgroup. If we introdue oordinates ~v; ~wde�ned by ~v = �1q 1; ~w = (p+ q) 1 � q 2 (2.55)then the T 2 is parametrised by taking ~v; ~w 2 [0; 4�). In these oordinates theU(1)q;p+q irle ation reads (~v; ~w) 7! (~v �  ; ~w) (2.56)
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and hene ~w parametrises the irle T 2=U(1)q;p+q. The globally de�ned onnetionone-form on the total spae of the irle bundle on the bottom line of (2.52) is givenby � = 12((p+ q)�13 � q�23)= 12(d ~w + (p+ q) os �1d�1 � q os �2d�2) : (2.57)We an de�ne two natural opies of S2 in B4 to be C1 and C2, whih are round S2sat the north pole of the other. So, C1 = f�2 = 0g, C2 = f�1 = 0g. We observethat (2.57) gives rise to Chern numbers p+ q and �q for C1 and C2, respetively, asrequired for M5(p; q).Let us denote the total spae over eah sphere C1 and C2 inM5(p; q) to be F1 andF2, respetively. Then by following similar arguments as in (2.40){(2.44) we deduethat F1 �= S3=Zp+q; F2 �= S3=Zq (2.58)and also the homology relations[F1℄ = (p+ q)[S3℄; [F2℄ = q[S3℄ : (2.59)In fat one an see (2.58) rather expliitly from the above quotient onstrution. Wede�ne W1 �= S3 and W2 �= S3 to be the two natural opies of S3 in M6 given byW1 = f�2 = 0;  2 = 0g, W2 = f�1 = 0;  1 = 0g. Consider now f�2 = 0g � M6. Thisis W1 � S1 �= S3 � S1 ; (2.60)where the S1 is parametrised by  2. When we take the quotient by the U(1)q;p+qirle ation (2.54) we may set  2 = 0. However, there is then a remaining gaugefreedom given by setting  = 4�kp+ q ; (2.61)with k = 1; : : : ; p + q, sine this also �xes  2 = 0. This then ats on  1, whih isthe Hopf �bre of W1 realised as an S1 bundle over S2, and we see expliitly thatF1 �= S3=Zp+q. A similar argument applies to F2.We next observe that� = 18�2 [(p+ q)� ^ �11 ^ �12 + q� ^ �21 ^ �22℄ (2.62)15



is a losed globally de�ned three-form on M5(p; q). We see expliitly thatZF1 � = p+ q8�2 ZF1 � ^ �11 ^ �12 = p+ q : (2.63)whih shows that � generates H3(M5(p; q);Z).Next it is onvenient to de�ne M̂6 to beM̂6 =M6=Z(p+q)q (2.64)where we embed Z(p+q)q along U(1)q;p+q. This de�nes a quotientf :M6 ! M̂6 : (2.65)The ation on the Euler angles is( 1;  2) 7! � 1 + 4�kq(p+ q)q ;  2 + 4�k(p+ q)(p+ q)q �= � 1 + 4�kp+ q ;  2 + 4�kq � : (2.66)Here k = 1; : : : ; (p + q)q. This realises the Z(p+q)q ation as a Zp+q � Zq ation (thegroups are isomorphi as p + q and q are oprime) and we haveM̂6 �= (S3=Zp+q)� (S3=Zq) : (2.67)In terms of ~v, ~w we have (~v; ~w) 7! (~v � 4�k(p+ q)q ; ~w) : (2.68)Thus on M̂6 we an introdue a new oordinate v̂ = (p+ q)q~v with period 4� and wealso have M̂6 �= (S3=Z(p+q)q)� S3 ; (2.69)A key point is that the v̂ irle bundle trivialises over both F1 and F2. One way tosee this is to observe that the v̂ irle bundle has �rst Chern lass being q(p+q) timesthe generator of H2(M5(p; q);Z) and then following the arguments in the appendies.We an also see this diretly. Consider againW1 � S1 (2.70)where the S1 is oordinatised by  2. The ation of Zp(p+q) is given by (2.66). We �rstset k = nq, with n = 1; : : : ; p+ q. This de�nes a Zp+q subgroup that ats trivially on16



 2, but ats non-trivially on W1, with quotient W1=Zp+q �= S3=Zp+q = F1. We maythen set k = 1; : : : ; q in the identi�ation. This now ats trivially on W1=Zp+q, butats non-trivially on S1 to give S1=Zq �= S1. This shows expliitly that(W1 � S1)=Z(p+q)q �= F1 � S1 (2.71)whih in turn shows that the v̂ bundle restrited to F1 is trivial, as it is manifestly aprodut. Obviously, similar reasoning applies8 to F2.Let us now de�ne V1 and V2 to be the obvious 2 fators of M̂6 in (2.67). Beauseof the disrete identi�ation (2.66), W1 is a (p+q)-fold over of V1, and W2 is a q-foldover of V2. Thus for any three-form 	 on M̂6 we haveZW1 f �	 = (p+ q) ZV1 	ZW2 f �	 = q ZV2 	 : (2.72)Here f �	 is obtained by simply replaing v̂ in 	 with (p+ q)q~v.For example, if we let � : M6 ! M5(p; q) be the projetion for the �bration inthe seond olumn in (2.52), then ��� is a three-form on M6 that is invariant underf (it has no dependene on the oordinate ~v). It is therefore obviously the pull-bakof a three-form on the quotient M̂6, and hene we may use (2.72) to alulateZW1 ��� = (p+ q)2ZW2 ��� = q2: (2.73)Finally, we are in a position to provide our presription for quantising the RRux. We �rst observe that while we may take C2 = �f , we annot quite take C1 tobe �2 [ (��f ), beause the two submanifolds interset at a point and we don't havea smooth submanifold. We may remedy this by utting out a small neighbourhoodof the intesetion point and gluing in a ylinder. This results in a two-sphere, whihwe an take to be C1. We may then identifyF1 = E2 [ (�Ef )F2 = Ef �= S3=Zq ; (2.74)8A point we shall return to later, in passing, is that the above arguments show that for thequotient M6=Zp+q the orresponding irle bundle trivialises over F1, while for M6=Zq it trivialisesover F2. We onsider M6=Z(p+q)q as it trivialises over both.17



with the understanding that F1 is to be smoothed out into S3=Zp+q, rather thanthe union of S3=Zq with S3=Zp over the irle where they interset. As we haveshown, on M̂6 the v̂ irle �bration trivialises over F1 and F2, and hene we may takesetions giving submanifolds V1 and V2. The orret quantisation ondition for anintegral three-form on M6 (suh as our appropriately normalised RR three-form), ina workable form, is then given by (2.72), where the integrals over W1 and W2 areintegers M1, M2.3 Flux QuantisationIn order to obtain a good solution to string theory, we need to impose that both theeletri and magneti RR three-form harges are properly quantised.3.1 Eletri and magneti hargesFor the eletri harge we requiren1 = 1(2�ls)6gs ZX7 �F (3) 2 Z : (3.1)Sine1L6 � F (3) = (Z � 1)8(Z � 2)�2y2J ^ dy ^D ^Dw ^ dv ^ du2 +Vol(AdS3) ^ (: : : ) (3.2)we have n1 = �Lls�6 1gs8�2 Q(p+ q)5p2q(p+ 2q)2�u2 ; (3.3)whih we interpret as �xing the period of the u2 irle �u2.We next turn to the magneti three-form harge. We require that1(2�ls)2gs ZW F (3) 2 Z (3.4)when integrated over any three-yle W � X7 =M6 � S1. The relevant three-ylesare in M6, and so the quantisation ondition amounts to quantising the restrition ofF (3) to M6 at a point on the S1 oordinatised by u2. In the previous subsetion wegave a presription for performing suh integrals by instead alulating integrals onsubmanifolds of the quotient spae M̂6. In the next subsetion we will alulate theseintegrals by introduing expliit oordinate pathes. This will illuminate and on�rm18



many of our observations about the topology in the previous setion. Furthermore,the tehniques will be essential for the generalisation that we onsider in setion 4.In the present ase, however, there is a muh simpler way to impose ux quan-tisation. The key observation is that, remarkably, the relevant part of F (3) is in thesame ohomology lass as9 �. Indeed we have1L2F (3) � 2Vol(AdS3) = (2�)2lw(1� Z)(Z � 2)q� � + d fK1Dv ^Dw +K2Dw ^D g (3.5)where K1 = Q(�2y + 3Zy � Z2y + 1� �2 � Z + Z�2)�(Z � 2)2K2 = (1� �2)(1� Z)U(y)(�1 + �2 + 2y � Zy)(�1 + �2 + Zy)(2� Z) : (3.6)Note in partiular that the funtion K2 vanishes at y1 and y2, ensuring that thetwo-form K1Dv ^Dw +K2Dw ^D is globally de�ned. We thus onlude that1(2�ls)2gs ZW F (3) = � L2l2sgs (p+ q)2pq2(p+ 2q) ZW � : (3.7)Furthermore, we have already alulated the periods of � (more preisely, ���) overa basis of three-yles on M6 in (2.73). We �nd that if the length sale is taken to beL2l2sgs = pq2(p+ 2q)M(p+ q)2 (3.8)for some positive integer M , thenM1 � �1(2�ls)2gs ZW1 F (3) =M(p+ q)2M2 � �1(2�ls)2gs ZW2 F (3) =Mq2 : (3.9)We may now alulate the entral harge of the dual SCFT. It is given by [32℄ = 3RAdS32G(3) (3.10)where G(3) is the three-dimensional Newton's onstant and RAdS3 is radius of theAdS3 spae. In our onventions the type IIB supergravity Lagrangian has the form1(2�)7g2s l8sp� det ge�2�R + : : : (3.11)9Here we are not distiguishing between � and ���.19



and after a short alulation we �nd = 6n1�Lls�2 1gs= 6n1pq2(p+ 2q)M(p+ q)2 = 6n1 (M1 �M2)M2M1 : (3.12)This result is exatly the same as for the Q = 0 ase [27℄. We thus onlude thatswithing on Q is an exatly marginal deformation. Note that when Q = 0 thetopology of X7 hanges to S3 � S2 � T 2. Thus the marginal deformation away fromQ = 0 hanges the topology of the solution10.3.2 Computing periods using oordinate pathesIn this subsetion we diretly ompute the ux of F (3) through the two three-yles ofM6 using oordinate pathes. This provides a nie ross-hek on various alulationsarried out so far. Furthermore, we will use this method in the next setion when weonstrut more general type IIB string theory solutions { there we will not be ableto use the approah in the last subsetion sine the three-form ux will no longer bein the same ohomology lass as ���.Reall from setion 2.5 that instead of onsidering the irle bundle L over M5with total spae M6 we should onsider the irle bundle L̂ = L(p+q)q with total spaeM̂6 =M6=Z(p+q)q. This is useful sine L̂ trivialises over both the submanifolds F1, asmoothed out version of E2 [ �Ef , and F2 � Ef of M5. We may thus take setionsof L̂ over these submanifolds to obtain submanifolds V1 and V2 of M̂6. Then thequantisation of the three-form ux on M6, through the two three-yles W1, W2, isrelated to that on M̂6 via the general formulae (2.72).In partiular, this proedure involves trivialising the irle bundle L̂ over F1 andF2. Conretely, this means that the orresponding onnetion one-form is a globally-de�ned one-form over F1 and F2. However, to see this requires arefully overingthe manifold with oordinate pathes, so that the onnetion form is represented bya globally de�ned one-form on eah path, and then gluing these forms together onoverlaps using U(1) transition funtions. Only when one has piked a gauge wherethe onnetion one-form is globally de�ned on F1, F2 an one then represent a setionby taking the (appropriately gauge transformed) v oordinate to be onstant in thethree-form ux F (3). This might sound overly-tehnial, but if one does not followthis arefully one obtains inorret periods for the ux.10 There is an analogous hange of topology in the exatly marginal family of AdS5 solutionsfound in [33℄. 20



We begin by overing M5 with 4 oordinate pathes: U1N , U2N , U1S, U2S . Here,for example, U1N is de�ned by removing fy = y2g and f� = �g, while U1S is de�nedby removing fy = y2g and f� = 0g. On B4 the points we remove in eah ase are twoS2s that interset over a point. It follows that, regarded as de�ning subsets of B4, theabove onditions give 4 pathes di�eomorphi to R4 . On M5 we thus obtain pathesdi�eomorphi to S1 � R4 , with the S1 in eah path parametrised by a oordinatew1N ; w2N ; w1S; w2S, respetively.Reall that B4 is onstruted as an S2 bundle over S2, where the �bre S2 haspoles fy = y1g, fy = y2g. Removing these, one an de�ne a global one-form:D = D N = d N + (1� os �)d�= D S = d S � (1 + os �)d� : (3.13)The orresponding spae is an I � S1 bundle over S2, where I = (y1; y2) is an openinterval, and the irle S1 is parametrised by  N and  S, eah with period 2�. Herethe �rst expression is valid on the omplement of the south pole f� = �g, while theseond is valid on the omplement of the north pole f� = 0g. This is beause theazimuthal oordinate � degenerates at the poles of the base S2. On the overlap onehas  S �  N = 2� (3.14)whih shows that the S1 bundle has Chern number�2. This is beause the onnetionform is loally os �d�, and so has urvature form � sin �d� ^ d�, whih integrates to�2 � 2� over the S2. It is important that D is not de�ned at fy = yig, sine theseare oordinate singularities.Realling (2.13), we next de�ne the global one-form on M5:Dw = Dw1N = dw1N + Aw(y1)d N � AwD N= Dw2N = dw2N + Aw(y2)d N � AwD N= Dw1S = dw1S + Aw(y1)d S � AwD S= Dw2S = dw2S + Aw(y2)d S � AwD S : (3.15)These are de�ned on the 4 pathes U1N , U2N , U1S , U2S, respetively. Take, forexample, Dw1N .  N is a oordinate on the omplement of the south pole of the baseS2, although it degenerates at y = y1. However, at y = y1 we haveDw1N jfy=y1g= dw1N � Aw(y1)(1� os �)d� : (3.16)21



and we see that w1N is indeed a good oordinate on the S1 of U1N �= S1 � R4 . Theperiod of all the w oordinates above is 2�lw.One an immediately see the �bration struture of the w irle bundle, with totalspae M5, from the above formulae. For example, on the overlap region where bothare de�ned, we have 1lw (w2N � w1N) = q N : (3.17)In partiular, restriting to f� = 0g, whih is Ef , we see that the irle bundle hasChern number �q and thus Ef �= S3=Zq. Similarly,1lw (w2S � w2N ) = �p� (3.18)showing that the Chern number over E2 = fy = y2g is p, thus proving that E2 �=S3=Zp.In eah of the pathes we de�ne the onnetion one-form that appears in the virle �bration over M5 to give M6. Realling (2.13) we write Dv � dv � A0 andde�ne A01N = �Av(y1)d N + AvD N + lv�1N dw1NlwA02N = �Av(y2)d N + AvD N + lv�2N dw2NlwA01S = �Av(y1)d S + AvD S + lv�1S dw1SlwA02S = �Av(y2)d S + AvD S + lv�2S dw2Slw : (3.19)Here �1N ; �2N ; �1S; �2S are onstants to be �xed by the requirement that the (1=lv)A0path together to give a onnetion one-form. We hoose �1N = �2N = �1S = �2S � �with Av (y1)� Av (y2)lv + �q = �a2Av (y2)lv + �p = b: (3.20)where a; b are integers satisfying ap + bq = 1, whih is possible beause of (2.46).Consider �rst the overlap of U1N with U2N . On this overlap we have1lv [A02N � A01N ℄ = �ad N : (3.21)
22



Sine  N has period 2� and a is an integer, we see that the two onnetions do indeeddi�er by a U(1) gauge transformation. Next onsider the overlap of U2S with U2N .Here we have 1lv [A02S � A02N ℄ = �bd� : (3.22)It is illuminating to ompare with equations (2.36) and (B.4), (B.7) in appendix B.In partiular, we see that (3.21) and (3.22) give11 the torsion Chern lasses over Efand E2, respetively. As a hek on this, we ompute1lv [A01S � A01N ℄ = �(b� 2a)d� ; (3.23)whih is equivalent to the Chern number of the w-�bration over �1 being p+2q andagrees with (B.6). Note that, onversely, if one allows general � in (3.19) and insteadimposes that the onnetions di�er by U(1) gauge transformations (3.21), (3.22) onthe overlaps, then one �nds the solution (3.20).Now onsider M̂6, where we divide the period of v by q(p+ q). Note immediatelythat the onnetion form on U2N \ U1N isq(p+ q)lv [A02N � A01N ℄ = �a(p + q) �dw2Nlw � dw1Nlw � : (3.24)Thus we may de�neq(p+ q)lv Â01N = q(p+ q)lv A01N + a(p+ q)dw1Nlwq(p+ q)lv Â02N = q(p+ q)lv A02N + a(p+ q)dw2Nlw : (3.25)These are good gauge transformations on eah path. We see that Â01N and Â02Nagree on the overlap, and thus de�ne a globally de�ned one-form on the omplementof f� = �g. In partiular, this shows expliitly that the v bundle over Ef (withthe period above) is trivial12. A globally de�ned onnetion one-form is provided byq(p+q)lv Â0 above, restrited to f� = 0g.Remarkably, the fators of a and b in Â0 now anel, and the onnetion formredues to Â01N = �Av(y1)d N + AvD N + lv2q(p+ q) dw1Nlw : (3.26)11For a more detailed explanation of the relation between the transition funtions (3.21), (3.22)and torsion Chern lasses, we refer to appendix A.12Note that we only need to quotient the period of v by q to be able to do this, not q(p + q), asexpeted from the omment in footnote 8. 23



We are now in a position to alulate the integral of the three-form ux over V2. InF (3) we set � = 0 and replae Dv = dv � A0 with �Â01N . After some alulation weobtain 1(2�ls)2gs ZV2 F (3) = � L2l2sgs (p+ q)2pq(p+ 2q) � �M2q : (3.27)where M2 is a positive integer.It remains to alulate the integral over V1. We over V1 by 3 pathes: U1N , U2Nand U2S . These will over the northern hemisphere, equatorial strip, and southernhemisphere pathes, respetively, of the S2 we get by gluing �2 to ��f . This isillustrated in Figure 1. To be more preise we will over most of �f in U1N by setting� = 0, letting y 2 [y1; y2 � �℄ with  N the azimuthal angle. We will over most of �2in U2S by setting y = y2, letting � 2 [Æ; �℄ with � the azimuthal angle. Here �; Æ > 0are small. On the overlap in U2N the equatorial strip, Eq, is the line in the Æ; y planestrething from (�; y) = (Æ; y2) to (�; y) = (0; y2� �), over whih there is an azimuthalangle { at the �rst end of this line it is � and at the other end it is  N . In fat, onthis strip the azimuthal angles get identi�ed via� = � N ; (3.28)with the sign orresponding to an orientation ip.

Figure 1: Desingularisation of �2 [ ��f .
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We �rst examine the overlapsq(p+ q)lv [A02N � A01N ℄ = �aq(p + q)d N = q((b� a)q � 1)d Nq(p+ q)lv [A02S � A02N ℄ = �bq(p + q)d� = �q((b� a)p+ 1)d� : (3.29)This leads us to de�neq(p+ q)lv ~A02N = q(p+ q)lv A02N + qd N � q(b� a)dw2Nlw ; (3.30)whih is obtained via a good gauge transformation on this path. We then �ndq(p+ q)lv h ~A02N � A01Ni = q2(b� a)d N � q(b� a)dw2Nlw= �q(b� a)dw1Nlw (3.31)q(p+ q)lv hA02S � ~A02Ni = �pq(b� a)d�+ q(b� a)dw2Nlw= q(b� a)dw2Slw : (3.32)This prompts us to de�neq(p+ q)lv ~A01N = q(p+ q)lv A01N � q(b� a)dw1Nlwq(p+ q)lv ~A02S = q(p+ q)lv A02S � q(b� a)dw2Slw ; (3.33)whih are again obtained via good gauge transformations on the pathes. After allthis, ~A0 is a globally de�ned one-form on F1, and thus we see expliitly that the vbundle trivialises over it sine13 we have divided the period by (p + q)q. Moreover,one �nds that a and b end up ompletely anelling, and that the orret onnetionform to use on U1N and U2S is~A01N = �A�u(y1)d N + A�uD N � lv2q(p+ q) dw1Nlw~A02S = �A�u(y2)d S + A�uD S � lv2q(p+ q) dw1Slw : (3.34)By taking �; Æ ! 0 we e�etively use the gauge ~A01N over Ef and ~A02S over E2 andthen onsider the result for E2 minus the result for Ef . After some alulation thisgives the period 1(2�ls)2gs ZV1 F (3) = � L2l2sgs (p+ q)3pq2(p+ 2q) � � M1p+ q ; (3.35)13Note that to obtain this result we only needed to quotient the period of v by p + q here, not(p+ q)q. In partiular, all of the above gauge transformations are well-de�ned.25



where M1 is a positive integer.Consisteny of (3.27) and (3.35) implies that we hooseM1 =M(p + q)2; M2 =Mq2 (3.36)for some positive integer M andL2l2sgs = pq2(p+ 2q)M(p+ q)2 : (3.37)We have thus reovered the results (3.8) and (3.9), whih is very satisfying.4 More general identi�ationsIn this setion we will generalise the lass of solutions that we have already on-struted. We return to the loal solution (2.12), (2.8), (2.15) and then employ thegeneral linear oordinate transformationw = hw0 + rQZ v0v = sw0 + t2� v0 (4.1)for onstant r; t; s; h with � = h t2� � rQZ s 6= 0 : (4.2)The idea is to now make appropriate periodi identi�ations of the new oordinatesv0; w0. As we shall see this will embed our solutions of type IIB string string theoryof the last two setions into larger families.We �rst observe that Dw = hDw0 + rQZ Dv0Dv = sDw0 + t2� Dv0 (4.3)where we have de�ned Dw0 = dw0 � Aw0 D Dv0 = dv0 � Av0 D (4.4)with Aw0 = t2�� Aw � r QZ� AvAv0 = h� Av � s� Aw : (4.5)26



We now onstrut M5 as a irle �bration, with irle parametrised by w0, over B4and then onstrut M6 as a irle �bration, with irle parametrised by v0, overM5. It is straightforward to write the metri in the primed oordinates and thenappropriately \omplete the square" to make this �bration struture manifest in themetri. However, we will not need the expliit details. Observe that what will beomethe globally de�ned angular one-form on M5 for the w0 irle �bration is Dw0. Afterompleting the square in the metri on M6 we obtain an expression for what willbeome the globally de�ned angular one-form orresponding to the v0 irle �brationand it has the form dv � Av0D � k(y)Dw0 (4.6)for some smooth funtion k(y) that an easily be determined. The onnetion one-form on M5 for this irle �bration is thus Av0D + k(y)Dw0. This will turn out tobe a loal onnetion one-form on the same irle bundle as that for the onnetionone-form Av0D , sine kDw0 will be globally de�ned on M5 (in partiular, the orre-sponding urvature two-forms are in the same ohomology lass on M5). Below, foronveniene, we will use the onnetion one-form Av0D .The analysis now proeeds in an almost idential fashion as in the last setions, sowe an be brief. We hoose the period of the w0 irle to be 2�lw0 so that l�1w0 Aw0D is a onnetion on a U(1) �bration. We demand that (2�lw)�1d(AwD ) has integerperiods on B4, as in (2.29), with primes on all w, for some integers p; q, now notneessarily positive. When r + t = 0 we have q = 0, while when r � t = 0 we havep + q = 0 and these ases require a separate analysis whih we will return to later.We thus ontinue here with r 6= �t and onlude that14� = t� rt+ r qp+ qlw0 = (2� Z)(r + t)2q(1� Z)(1� �2)� (4.7)The topology of M5 is again S3�S2. For the generator of H3 (M5;Z) we an use theprimed version of (2.45).We now turn to the v0 irle �bration over M5 to give M6. We let v0 be a periodioordinate with period 2�lv0 , and the onnetion one-form is given by l�1v0 Av0D . To14Note that if we hoose t = �(Z � 2)=(Z � 1), r = ��Z=(Z � 1), h = (Z � 2)=2(Z � 1)and s = Z(Z � 2)=4Q�(Z � 1), then we have w0 = z, v0 = u1, where z; u1 are the oordinatesthat we started with in (2.2). In this ase equation (4.7) beomes � = (1 � Z)=(1 + X) andlw0 = 2(1 +X)=q(X + Z)(2 +X � Z), where X = p=q and this agrees with the results in equation(4.22) of [27℄. 27



ensure that the irle �bration is well-de�ned and that M6 = S3 � S3 we impose theprimed version of (2.46) to onlude thatlv0 = 2qQ(r + t) (1� Z) : (4.8)Now we determine the ux quantisation onditions. The eletri ux quantisationondition (3.1) �xes the period of u2 as before:n1 = L6l6sgs Q8�2�(1� �2)2�u2 : (4.9)For the magneti ux quantisation, we follow the same proedure as before, by in-troduing expliit oordinate pathes and onsidering integrals on submanifolds ofM̂6 =M6=Z(p+q)q. By following the same steps as in setion 3.2 we �nd that1(2�ls)2 gs ZV2 F (3) = L2l2sgs 1q 1�2 � 1 � �M2q1(2�ls)2 gs ZV1 F (3) = L2l2sgs 1q r + tr � t 1� (1� �2) � � M1p + q (4.10)for integers M2;M1. Consisteny implies that we must haveM2M1 = �2 = (r � t)2(r + t)2 q2(p+ q)2 ; (4.11)whih implies that (r+ t)2=(r� t)2 must be rational, and that the length sale is �xedby L2l2sgs = (1� �2)M2 = (M1 �M2)M2M1 (4.12)The entral harge an now be alulated, and we �nd that it an be expressed as = 6n1 (M1 �M2)M2M1 : (4.13)In partiular we note that, in addition to Q, there is also no dependene on theparameters r; s; t and h. We note that the only restritions on these parameters is(4.2), (4.11) with � given in (4.7) satisfying 0 < � < 1. We have thus onstrutedlarge ontinuous families of solutions that are dual to SCFTs. Note that, in general,the solutions of this setion are not exatly marginal deformations of those in setion3: for example, in setion 3 we saw that the magneti three-form ux quantumnumbers were onstrained to be of the form (3.36), whereas here there is no suhonstraint. 28



When r = �t:When r = �t, we have Aw0(y1) = Aw0(y2) and hene in onsidering the w0 irle�bration over B4 to onstrut M5 we �nd that the period over C2 = �f vanishes,q = 0. We hoose p = 1, so that the period over C1 = �2 � �f is one, and heneM5 = S3 � S2, whih implies thatlw0 = 2Aw0(y2) = � t(Z � 2)�(�2 � 1)(Z � 1)� : (4.14)At this stage, there is no restrition on the parameter � (apart from the usual 0 <� < 1). We now �nd on M5 that E1; E2 �= S3, and [E1℄ = [E2℄ generate H3(M5;Z).On the other hand, now Ef �= S1 � S2 (and hene there is a setion of the w0 irle�bration over �f ). The generator of H2(M5;Z) is � = �f i.e. a = 1; b = 0, in thenotation of setion 2.3.In order to onstrut M6 = S3 � S3, we an again �x the period of the v0 irleusing � as in (2.46) and we �nd thatlv0 = Av0(y2)� Av0(y1) = � �Q(Z � 1)t : (4.15)It is now easier to �nd representatives of the two generators of H3(M6;Z), and wewon't have to onsider a quotient of M6 in order to impose the ux quantisationonditions. In partiular, one generator of H3(M6;Z), W1, an be taken to be, asabove, the setion of the v0 irle �bration over a desingularised version of E2 [�Ef .For the other generator, W2, we an take the v0 irle bundle over the setion s(S)on M5 where15 S = �f . We note that two other three-yles W 0, W 00 are obtainedby onsidering a setion of the v0 irle �bration over E1, E2, respetively: we shallshow that [W 0℄ = [W 00℄ = [W1℄ + [W2℄.We now introdue pathes in exatly the same way as setion 3.2. The analogueof (3.17) now reads w02N = w01N and we expliitly see that the w0 irle �bration isindeed trivial over �f . To obtain the setion s[�f ℄ we an simply set w02N = onstant.Moving to M6, we have the analogue of the onnetion one-forms as in (3.19),(3.20) with a = 1, b = 0, p = 1, q = 0. Equation (3.22) shows that the v0 irle�bration is indeed trivial over E2 and we an take a setion to obtain the three-yleW 00. One an then obtain the integral of the three-form ux over W 00 by using theonnetion one form A02N , and after a alulation we �nd1(2�ls)2 gs ZW 00 F (3) = � L2l2sgs 1�2 : (4.16)15Before, when [S℄ = q[�2℄ + p[�f ℄, it was not lear how to take a smooth representative for S.29



The v0 irle �bration is also trivial over E1. Indeed, after onsidering (3.22) we ansee that the onnetion one-form A01S + 2lv0 dw01slw0 (4.17)is a globally de�ned one-form on E1. We an use this gauge to alulate the integralover W 0 and we �nd exatly the same result as for W 00.To alulate the integral of the ux over the three-yle W2, the v0 irle bundleover the setion s(�f ), we just need to set w02N = onstant in the expression for thethree-form and then integrate. We therefore impose1(2�ls)2 gs ZW2 F (3) = L2l2sgs 1(1� �2) =M2 : (4.18)To arry out the ux integral over W1, a setion of the v0 irle �bration overE2 [ �Ef , we de�ne 1lv0 ~A02N = 1lv0A02N + d N + dw2Nlw1lv0 ~A01N = 1lv0A01N + dw1Nlw1lv0 ~A02S = 1lv0A02S + dw2Slw : (4.19)Then ~A0 is a global one-form on E2 [�Ef . To alulate the integral of ux over thesetion over the v0 irle bundle over E2 [ �Ef we use ~A02S on E2 and ~A01N on Ef .We �nd 1(2�ls)2 gs ZW1 F (3) = � L2l2sgs 1�2 (1� �2) = �M1 : (4.20)Comparing (4.16) with (4.18) and (4.20), we an dedue the homology relation [W 00℄ =[W 0℄ = [W1℄ + [W2℄, as mentioned above.Consisteny of (4.18) and (4.20) implies that the length sale of the solution isagain as in (4.12) and that �2 is rational�2 = M2M1 : (4.21)The eletri ux quantisation ondition is given again by (4.9) and the entral hargetakes the form (4.13).When r = t:When r = t, we have Aw0(y1) = �Aw0(y2) and hene in onsidering the w0 irle�bration over B4 to onstrutM5 we �nd that the period over C1 = �2��f vanishes,30



p + q = 0. We hoose q = 1 so that the period over C2 = �f is one, and heneM5 = S3 � S2, whih implies thatlw0 = �t(Z � 2)(�2 � 1)(Z � 1)� (4.22)with no restrition on the parameter �. We now �nd E1; E2; Ef �= S3, and �[E1℄ =[E2℄ = [Ef ℄ generate H3(M5;Z). The generator of H2(M5;Z) is � = b�2 + a�f withb� a = 1.In order to onstrut M6 = S3 � S3, we �nd that the period of the v0 irle islv0 = Av0(y1) + Av0(y2) = � Q(Z � 1)t : (4.23)For the generators of H3(M6;Z) we an take W1 to be the v0 irle �bration over thea representative of the setion s(S) of M5, with [S℄ = [�2℄� [�f ℄. For W2 we take asetion of the v0 irle �bration over Ef . We note that we an also obtain three-ylesW 0, W 00 whih are obtained by onsidering setions of the v0 irle �bration over E1,E2 respetively: we shall see that �[W 0℄ = [W 00℄ = [W1℄ + [W2℄.We again introdue pathes in exatly the same way as setion 3.2. The onnetionone-forms are as in (3.19), (3.20) with b � a = 1 and q = �p = 1. By taking a = 0,b = 1, we see from (3.21) that A02N is a globally de�ned onnetion one-form on Ef .Calulating the ux integral we �nd that we should impose1(2�ls)2 gs ZW2 F (3) = � L2l2sgs 1(1� �2) = �M2 : (4.24)To integrate the ux integrals for W 0 one should take b = 2, a = 1 while for W 00 weshould take b = 0, a = �1 and we �nd� 1(2�ls)2 gs ZW 0 F (3) = 1(2�ls)2 gs ZW 00 F (3) = L2l2sgs 1�2 : (4.25)We now turn to the ux integral over W1. For S we desingularise �2 � �f as inFigure 1. By making the gauge transformation w02N ! w02N � lw0d N in (3.15), we�nd that we obtain a globally de�ned onnetion one-form on S � M5 and henewe an take a setion. W1 is obtained by onsidering the v0 irle �bration over thissetion. Thus to alulate the ux integral, one should set w01N = onstant in Dw01Nfor the �2 piee and w01S = onstant in Dw01S for the �f piee. After doing this we�nd 1(2�ls)2 gs ZW1 F (3) = � L2l2sgs 1�2 (1� �2) = �M1 : (4.26)We thus �nd the same onditions as for the r = �t ase above.31



5 Final CommentsWe have analysed in detail some loal supersymmetri AdS3 solutions of type IIBsupergravity, �rst found in [27℄, that have non-vanishing dilaton and RR three-formux. We have shown that the parameters an be hosen and oordinates identi�ed insuh a way that the solutions extend to give rih lasses of globally de�ned solutionsof the form AdS3 �w (S3 � S3 � S1) with properly quantised ux. We have shownthat the solutions depend on ontinuous parameters and are hene dual to ontinuousfamilies of SCFTs in two spaetime dimensions with (0; 2) supersymmetry.Although the internal ompat spaes are di�eomorphi to S3 � S3 � S1, thedi�eomorphisms are far from apparent in the loal oordinates that the solutions arepresented in. It seems unlikely to us that there is a simple hange of oordinates thatwill make the topology more manifest. In this paper we used a number of tehniquesto illuminate various aspets of the topology whih, in partiular, allowed us to �nda workable proedure to impose ux quantisation. It seems likely that our approah,or generalisations thereof, will be very useful in other ontexts.In setion 4 we onsidered identi�ations on the oordinates after we made ageneral linear transformation on the v; w oordinates. It is worth pointing out thatwe ould onsider more general linear oordinate transformations that also involvethe u2 oordinate. This will lead to larger families of solutions that would be worthexploring. It seems possible that some of these solutions an be obtained as �-deformations using the tehniques of [40℄. In fat returning to the solutions in setion2 and 3, where we showed thatQ was an exatly marginal deformation of the solutionswith Q = 0, one might wonder if Q orresponds to a �-deformation. One way to seethat it is not is to return to the loal solutions as written down at the beginning ofsetion 4 of [27℄, whih are obtained after two T-dualities on the solutions we havedisussed in this paper. In this duality frame only the metri and the self-dual �ve-form are non-trivial for any Q, and in partiular the dilaton is onstant. However,looking at equation (A.16) of [40℄ we see that the �-deformation ativates a non-trivialdilaton and three-form.It is an important outstanding issue to identify the dual (0; 2) SCFTs for thesolutions disussed here and in [25, 14, 26, 27℄. In the duality frame that we haveused in this paper, the amount of supersymmetry that is preserved ombined withthe uxes that are ative suggests that the dual SCFTs might arise on a D1-D5-branesystem that is wrapped on a holomorphi four-yle in a Calabi-Yau four-fold. Whilewe remain hopeful that progress will be made in this diretion, we note that the
32



SCFTs dual to the muh simpler type IIB AdS3 � S3 � S3 � S1 solutions of [34℄,whih have (4; 4) supersymmetry, are still not well-understood, despite interestingprogress [35, 36, 37, 38℄.The AdS3 solutions with Q = 0, that were analysed in [27℄, and with Q 6= 0 thatwe have disussed here, an be generalised further and we have presented some detailsin appendix C. It will be interesting to arry out a omplete analysis of the onditionsfor regularity and ux quantisation onditions for these more general solutions.AknowledgementsWe would like to thank Jaume Gomis, Domini Joye, Spiro Karigiannis, NakwooKim, Tommaso Paini and David Tong for helpful disussions, and Bob MNees forhelp with Inksape. AD would also like to thank the Institute for MathematialSienes at Imperial College for hospitality. JPG would like to thank the PerimeterInstitute for hospitality. JPG is supported by an EPSRC Senior Fellowship anda Royal Soiety Wolfson Award. JFS is supported by a Royal Soiety UniversityResearh Fellowship.A U(1) bundles over Lens spaesIn this setion we briey review the Lens spaes S3=Zq, whih appear throughout themain text, and also the onstrution of U(1) prinipal bundles over these manifolds.We onstrut S3=Zq as the total spae of a U(1) bundle over S2 with Chern numberq. Let �, � be standard oordinates on S2, and over the S2 with two pathes: VNwhih exludes the south pole � = �, and VS whih exludes the north pole � = 0. Wethen onsider the produts S1�VN , S1�VS , and on eah spae de�ne the one-formsD�N = d�N � q2(1� os �)d�D�S = d�S + q2(1 + os �)d� : (A.1)Here �N and �S are oordinates on the S1s, eah with period 2�. If we now glue thetwo pathes together via �S � �N = �q� (A.2)on the overlap then note that D� = D�N = D�S (A.3)33



extends to a global one-form on the whole manifold, beause the two one-forms agreeon the overlap. This is a global onnetion form on the total spae of the U(1)prinipal bundle p : S3=Zq ! S2 with U(1) �bre parametrised by �, and is sometimesalso alled the global angular form.Now onsider the onnetion formAN = a2(1� os �)d�AS = �a2(1 + os �)d� (A.4)on the base S2. This has Chern number a 2 Z over the base S2. We denote theorresponding U(1) prinipal bundle by P . We may pull bak P to a U(1) bundlep�P over S3=Zq. Pulling bak the onnetion (A.4), on the overlap one �ndsAS � AN = �ad� = aq d(�S � �N ) : (A.5)Note that a�S=q is a multi-valued U(1) funtion on the path S1�VS unless a=q 2 Z.If a=q 2 Z then in eah path we an de�ne the new onnetion one-forms AS�ad�S=qand AN �ad�N=q, and sine they agree on the overlap, this de�nes a globally de�nedonnetion one-form and hene p�P is trivial.Thus p�P is trivial if and only if a �= 0 mod q. One sees this in a more ab-strat way by realling that U(1) prinipal bundles are lassi�ed by H2(S3=Zq;Z) �=H1(S3=Zq;Z) �= Zq. Thus a 2 Zq is preisely the Chern number of p�P , and thelatter bundle is torsion. Beause of this, the topology annot be measured by inte-grating the urvature of a onnetion A over a two-yle { to see torsion lasses usingthe onnetion is more subtle. This is explained in general in the paper [39℄. Thelatter referene implies that the torsion �rst Chern lass may be omputed by pikinga at onnetion on p�P , and then omputing the log of the holonomy of this atonnetion around the one-yles that generate H1(S3=Zq;Z). We may shift to a atonnetion here by de�ningAatS = AS + aqD�S = aq d�SAatN = AN + aqD�N = aq d�N (A.6)Here we have added a global one-form (a=q)D� to the original onnetion { we aresimply piking a di�erent onnetion on the same bundle. Then H1(S3=Zq;Z) �= Zqis generated by, for example, the  N irle at � = 0. Thus the log of the holonomy isi ZS1 AatN = 2�iaq mod 2�i : (A.7)34



This implies that our onnetion above is a times the generator of Zq.Finally, we make a omment about quotients. First note that quotienting theperiod of the U(1) �bre oordinate of P by q is the same as taking the qth power ofP . In partiular, the Zq quotient of the bundle p�P over S3=Zq is then trivial. Thisfollows simply beause the onnetion on this bundle in the two pathes is qAS andqAN , or after a gauge transformation qAS � ad�S and qAN � ad�N , and from (A.5)we see that this is a globally de�ned onnetion one-form, and hene the bundle istrivial.B More on the topology of M5Reall that, in the main text, M6 is onstruted as the total spae of a irle bundleL over M5 �= S3 � S2. Here 1(L) 2 H2(M5;Z) �= Z is the generator, so thatM6 �= S3 � S3. Although this is straightforward as stated, the issue is that we havein�nitely many oordinate systems on M5, labelled by the integers p and q, and thedi�eomorphism M5 �= S3 � S2 is not expliit for general p and q. For eah p andq there are di�erent naturally-de�ned three-submanifolds of M5 { we are espeiallyinterested in three-submanifolds sine we would like to quantise the RR three-formux. In this appendix we onsider these submanifolds in more detail, and in partiulardetermine the topology of L restrited to them.Consider restriting this irle bundle L over M5 to one of the three-submanifoldsof M5: E1, E2 or Ef . For example, take Ef �= S3=Zq. Reall this is itself a irlebundle over �f �= S2 with Chern lass q. There is an inlusion map if : Ef ,! M5,and we an de�ne a irle bundle Lf over Ef by pulling bakLf � i�fL : (B.1)Sine Ef is a lens spae, Ef = S3=Zq, irle bundles over Ef are lassi�ed up toisomorphism by 1(Lf ) 2 H2(Ef ;Z) �= Zq : (B.2)To ompute this Chern lass, reall that 1(L) = ��� , where � 2 H2(B4;Z) wasde�ned in (2.34). Hene to ompute 1(Lf ) = i�f��(�) we may instead �rst restrit� to �f , and then pull bak using �� the orresponding irle bundle to Ef . This is
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summarised by the following ommutative square:H2(M5;Z) i�f�! H2(Ef ;Z)��x? x?��H2(B4;Z) ��f�! H2(�f ;Z) : (B.3)Here we have denoted the embedding of �f into B4 by �f : �f ! B4. Then ��f�de�nes an integer lass in H2(�f ;Z) �= Z. This in turn de�nes a irle bundle withChern number a, using (2.34). Using the results in appendix A, lifting this irlebundle to Ef then gives a bundle with Chern numbera = 1(Lf) 2 H2(Ef ;Z) �= Zq : (B.4)Thus the bundle L restrited to Ef is trivialisable only if a = 0 mod q; in other words,if a = mq for some integer m. But if this were the ase, then we would have(mp+ b)q = 1 : (B.5)This is only possible if q = �1. Thus we see that for general q it is not possible totake a setion of L over Ef to obtain a three-submanifold of M6.One an do similar omputations for the three-submanifolds E1 and E2, withsimilar onlusions. We haveL1 � i�1L ; 1(L1) = b� 2a 2 H2(E1;Z) �= Zp+2q (B.6)L2 � i�2L ; 1(L2) = b 2 H2(E2;Z) �= Zp : (B.7)Thus the orresponding bundles are trivial16 if and only if b = m2p, b� 2a = m1(p+2q), respetively, where m1; m2 2 Z, whih impliesp(a+ qm2) = 1(p+ 2q)(a+m1q) = 1 (B.8)respetively. These equations imply in partiular that p = �1 and (p + 2q) = �1.We thus onlude that, for generi p and q, the irle bundle L restrited to E1, E2and Ef is non-trivial, and thus we annot globally take a setion of L. This meansthat these natural three-submanifolds of M5 annot be used to onstrut naturalthree-submanifolds of M6.16This analysis assumes that p, p+ 2q, q are non-zero.
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C More general AdS3 solutionsWe �rst reall from [7℄, [27℄ the loal data that is suÆient to onstrut supersym-metri AdS3 solutions of type IIB supergravity with non-vanishing �ve-form ux andomplex three-form ux G. We require a six-dimensional loal K�ahler metri ds26whose Rii tensor satis�es17�R � 12R2 +RijRij + 23GijkG�ijk = 0 (C.1)and G must be a losed, primitive and (1; 2) three-form on the six-dimensional spae.We refer to [7℄, [27℄ for details of how the full ten-dimensional solution is onstrutedfrom this data.For the solutions that we have disussed in this paper, whih we will now gener-alise, the loal six-dimensional Kahler metri has the formds26 = ds24 + ds2(T 2) (C.2)where ds2(T 2) = (du1)2 + (du2)2 is the standard metri on a two-torus, ds24 is afour-dimensional loal K�ahler metri, andG = d�u ^W (C.3)where u = u1 + iu2 and W is a losed, primitive (1; 1)-form on the four-dimensionalK�ahler spae.Inspired18 by the six-dimensional K�ahler metris disussed in equation 5.10 of[26℄, we start with the ansatz for a four-dimensional K�ahler metri given byds24 = Y4F dw2 + 2Xi=1 (w + qi) �d�2i + �2id�2i �+ F � 1Y  2Xi=1 �2id�i!2 (C.4)with 2Xi=1 �2i = 1; Y = 2Xi=1 �2iw + qi (C.5)and F an arbitrary funtion of w. To show that the metri is K�ahler we introduethe orthonormal frameei = 12pF �ipw + qidw +pw + qid�i�ei =pF � 1Y �ipw + qi 2Xj=1 �2jd�j +pw + qi�i d�i (C.6)17Changing the sign of the last term leads to type IIB bubble solutions, as explained in [27℄. Theonstrution in this appendix an be easily adapted to onstrut bubble solutions.18One an onsider the saling �3 ! ��, q3 ! 1=�2, � ! �=�2 in equation 5.10 of [26℄ and thentake �! 0. 37



with ds24 = 2Xi=1 (ei 
 ei + �ei 
 �ei) : (C.7)The K�ahler form an be writtenJ = i2 2Xi=1 (ei � i�ei) ^ (ei + i�ei) = � 2Xi=1 ei ^ �ei=� 12dw ^ 2Xi=1 �2id�i � 2Xi=1 (w + qi)�id�i ^ d�i (C.8)whih is learly losed for any hoie of F .The holomorphi (2; 0)-form 
 is given by
 = 2Yi=1 (ei � i�ei)=pw + q1pw + q2 � Y2pF dw ^ d� �pF os � sin � d�1 ^ d�2�� ipw + q1pw + q2 12pF os � sin � dw ^ � d�2w + q1 � d�1w + q2�+ ipw + q1pw + q2pF d� ^ �os2 � d�1 + sin2 � d�2� (C.9)where we have introdued �1 = os �, �2 = sin �, 0 < � < �2 . A alulation now showsthat d
 = iP ^ 
 (C.10)with P = 2pFYpw + q1pw + q2�w �pFpw + q1pw + q2� �os2 � d�1 + sin2 � d�2�+ 1Y os 2� � d�2w + q1 � d�1w + q2� : (C.11)From this we dedue that the omplex struture is integrable, and thus we do indeedhave a loal K�ahler metri with Rii form given by dP . It is helpful to observe thatwe an also writeP =�w [(F � 1) (w + q1) (w + q2)℄ P2i=1 �2id�iY (w + q1) (w + q2) + d�1 + d�2: (C.12)We now onstrut a losed two-form W whih satis�es
 ^W = 0; (C.13)38



whih is the ondition for it to be a (1; 1)-form, and alsoJ ^W = 0; (C.14)whih is the ondition for it to be a primitive two-form. We make the ansatzW = d"f (w) P2i=1 �2id�iY (w + q1) (w + q2)# (C.15)whih satis�es the �rst equation. The seond equation readsJ ^W = � �wfY (w + q1) (w + q2) J ^ J = 0 (C.16)and so we take W = Qd" P2i=1 �2id�iY (w + q1) (w + q2)# (C.17)where Q is a onstant. The two-form W is anti-self dual and we note thatW ijWij = 16Q2[Y (w + q1) (w + q2)℄4 : (C.18)Having �xed W , and hene the three-form ux G, we just need to �x the funtionF to obtain the K�ahler metri ds24 by solving (C.1) whih reads�R � 12R2 +RijRij + 4W ijWij = 0: (C.19)We onsider the ansatzF = 1 + �w2 2Yi=1 1w + qi + � 2Yi=1 1w + qi ; (C.20)observing from (C.12) that the onstant � does not enter the Rii potential. Aalulation shows that the Rii salar is given byR = � 8�Y (w + q1) (w + q2) : (C.21)and that (C.19) boils down to solving�Y (w + q1) (w + q2)�2wR +W ijWij = 0 (C.22)whih implies that � = Q2� .
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In summary, supersymmetri AdS3 solutions of type IIB supergrvaity an beonstruted from the six-dimensional K�ahler metri (C.2), with the four-dimensionalK�ahler metri given byds24 = Y4F dw2 + 2Xi=1 (w + qi) �d�2i + �2id�2i �+ F � 1Y  2Xi=1 �2id�i!2 (C.23)and F = 1 + ��w2 + Q2� � 1(w + q1) (w + q2) : (C.24)The three-form ux is given by (C.3) with the losed, primitive and (1; 1)-form Wgiven by W = Qd" P2i=1 �2id�iY (w + q1) (w + q2)# : (C.25)Observe that when q1 = q2 � q, the metri is preisely of the form found in [27℄leading to the AdS3 solutions that we have analysed in detail in this paper. To seethis we let w + q = 1=x and we also introdue Euler angles via�1ei�1 = os �2ei +�2�2ei�2 = sin �2ei ��2 : (C.26)We then �nd thatds24 = dx24x3U + 14x(d�2 + sin2 �d�2) + U4x(d + os �d�)2 (C.27)with U = 1 + �(1� qx)2 + Q2� x2 (C.28)whih should be ompared with equations C.1 and C.7 of [27℄. Furthermore,W = Q2 d[x(d + os �d�)℄ (C.29)whih should be ompared with equation C.5 of [27℄. When q1 = q2, the metri ds24has loal isometry group SU(2)� U(1) and the metri is ohomogeneity one. In themore general solutions with q1 6= q2 the loal isometry group is U(1)� U(1) and themetri is ohomogeneity two.It will be interesting to analyse these more general AdS3 solutions with q1 6= q2in more detail. When Q = 0 the internal spae will have topology S2 � S3 � T 2and when Q 6= 0 it will have topology S3 � S3 � S1. This an be shown using thetehniques used in [29℄ and in this paper. When Q 6= 0, one will also need to hekthe ux quantisation onditions and this will require generalising the tehniques thatwe have used in this paper. We leave this for the future.40
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