
*0
80
6.
∣7
83
*

ar
X

iv
:0

80
6.

17
83

v3
  [

he
p-

th
] 

 2
3 

M
ay

 2
00

9

YITP-08-39DESY-08-142
D-branes and doubled geometryCeilia Albertsson1, Tetsuji Kimura1 and Ronald A. Reid-Edwards21Yukawa Institute for Theoretial PhysisKyoto UniversityKyoto 606-8502, Japan2II. Institut f�ur Theoretishe PhysikUniversit�at HamburgDESY, Luruper Chaussee 149D-22761 Hamburg, Germany
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torus �bres are doubled to inlude in the piture the torus de�ned by the dual oordinates. The �bredegrees of freedom are then doubled, and Hull de�ned a \doubled" nonlinear sigma model with thisnew extended geometry as its target spae, the worldsheet �elds orresponding to oordinates onboth the original and dual tori. The O(d; d;Z) T-duality transformation is then realised geometri-ally in this formalism as a large di�eomorphism of the doubled �bres sine O(d; d;Z) � GL(2d;Z).By imposing a ertain self-duality onstraint the number of �bre oordinates may be halved, toreover the standard sigma model on a physial target spae.A generalisation of the doubled formalism to a desription where all the oordinates, inludingthe base, of a given spae are doubled was introdued in [11℄, and spei� examples were exploredin [12℄. These papers outlined a target spae desription of the doubled geometry whih generalisedprevious onstrutions to bakgrounds whih are not torus �brations. These more general doubledspaes are loally group manifolds. The sigma model in the doubled torus onstrution [9℄ wasfurther generalised in [13℄. This sigma model allows for a desription of the doubled spaes onsid-ered in [11, 12℄ from the worldsheet perspetive. We shall not be onerned with the details of thissigma model here and will only introdue those aspets relevant to a study of open string boundaryonditions on the doubled spae. A thorough study of this model, inluding the tehniques whihallow a onventional desription of the bakground to be reovered (where this is possible), waspresented in [13℄.In ertain irumstanes one may desribe doubled geometry as generalised geometry [14, 15℄.In suh a desription the vetors of the doubled spae tangent bundle (or forms of the doubled spaeotangent bundle) are rewritten in terms of vetors and forms on the generalised tangent bundleT � T �. For the partiular bakgrounds onsidered in setion 4 this was done in1 [12℄. There areurrently only limited examples of (highly symmetri) bakgrounds for whih a doubled onstrutionis known (see, e.g., [18℄). However, it is antiipated that all bakgrounds admitting a desriptionin terms of generalised geometry should also have a desription in terms of an appropriate doubledformalism; see, e.g., [19, 20℄.Already in ref. [9℄ the neessary onditions were established for onsistent D-brane embeddingsin the doubled torus formalism. This was elaborated on by Lawrene et al [21℄, who demonstratedby expliit examples what additional onsiderations are neessary to realise and interpret onsistentD-branes in the doubled formalism for the at three-torus with NS-NS three-form ux (\H-ux").Here we promote their analysis to the more general doubled group framework, where all the oordi-nates are doubled, using the doubled sigma model in ref. [13℄ with boundaries introdued to deriveand lassify the allowed D-brane on�gurations in a systemati way. A three-dimensional toruswith onstant H-ux an be desribed by a six-dimensional doubled geometry, the loal strutureof whih is given by a six-dimensional Lie algebra. The struture onstants of this algebra areloally determined by the H-ux. Di�erent, possibly T-dual, desriptions of this bakground are1Another example is the Drinfel'd double, an objet de�ned [16℄ as the bialgebra of a Poisson-Lie group G. Thisbialgebra ats on the generalised tangent bundle TG � T �G, and it was shown by Lu and Weinstein [17℄ that theDrinfel'd double struture may be enoded in terms of a doubled group geometry.3



haraterised by the struture onstants, whih are often referred to as \uxes" [22℄. In morerealisti ompati�ations these strutures would be related to the four-dimensional low-energye�etive theory [5, 23, 24℄, but the spae onsidered here is just a toy model for the purpose ofdemonstrating the doubled geometry formalism.Performing T-duality on the doubled torus with H-ux yields an \f -ux" struture onstant onthe doubled spae, whih, as expeted, haraterises a nilmanifold when restrited to the physialdegrees of freedom. Further T-dualities, along other diretions on the doubled spae, yield the \Q-ux" struture onstant orresponding to a T-fold in the physial model, and so-alled \R-ux",whih hints at a loally non-geometri bakground [22℄. Eah of these struture onstants representloal values of the Wess-Zumino term in the doubled sigma model [13℄. To be well-de�ned on thedoubled spae the D-branes must be onsistent under all T-dualities, as well as satisfy the sigmamodel boundary onditions on eah loal path.The struture of the paper is as follows. In setion 2 we review the losed string nonlinearsigma model on the doubled geometry introdued in ref. [13℄. In setion 3 we extend their modelto an open string version with boundaries. We derive the equations of motion both in the bulkand on the boundary, in the proess introduing Neumann and Dirihlet projetors to de�ne D-branes. In setion 4 we solve the resulting boundary onditions, together with a geometriallymotivated orthogonality ondition as well as integrability, for the at three-torus with onstantNS-NS three-form ux embedded in doubled geometry, and �nd the most generi form of Dirihletprojetor allowed. We fous on solutions based on a slightly simplifying assumption, whih welassify, interpret in physial terms, and hek for global onsisteny, inluding ompatibility withT-duality transformations. We �nd four onsistent solutions, in H-ux orresponding to D0-branes(the same that was found in ref. [21℄), D1-branes, and two kinds of D2-brane foliations. Finally,setion 5 ontains a summary and disussion.2 Doubled sigma model without boundariesWe will be interested in the generalisation of the nonlinear sigma model for a losed string worldsheet� embedded in a 2d-dimensional doubled twisted torus X [13℄, to a worldsheet with boundaries.The target spae is onstruted as X = �nG ;where G is a possibly non-ompat 2d-dimensional Lie group and � is a disrete subgroup of Ghosen suh that X is ompat (� is \o-ompat"). We hoose � to at on G from the left so thatthe left-invariant one-forms P = G�1dG (for elements G 2 G ), whih are globally de�ned on G , areglobally de�ned also on2 X . The loal struture of X is given by the Lie algebra of G ,[TM ; TN ℄ = tMNPTP ;2Right-invariant objets suh as the one-forms dGG�1, although they are globally de�ned on G , are not in generalglobally de�ned on X = �nG . 4



where TM are the Lie algebra generators and tMNP the struture onstants. The sigma modeldesribing the physis of losed string worldsheets embedded in X , as introdued in ref. [13℄, readsS = 14 I�MMNPM ^ �PN + 112 ZV tMNPPM ^ PN ^ PP ; (2.1)where V is an extension of the worldsheet suh that3 �V = �. The left-invariant one-formsPM = PMIdXI , where XI are the oordinates on X , satisfy the Maurer-Cartan equations,dPM + 12 tNPMPN ^ PP = 0 ; (2.2)and the metriMMN , whih is independent of XI , takes values in the oset O(d)� O(d)nO(d; d).We require the Lie algebra on G to allow an O(d; d)-invariant onstant symmetri bilinear formLMN with signature (d; d). We work in a basis in whih it has the form (1I denotes the d�d identitymatrix) LMN =  0 1I1I 0 ! : (2.3)Using this metri the struture onstants of the Lie algebra on G may be expressed on the totallyantisymmetri form tMNP = LMQtNPQ.2.1 Reovering the physial modelTo reover the ordinary nonlinear sigma model on a physial target spae we need to eliminate halfof the degrees of freedom. This is done by imposing the self-duality onstraint [9, 13℄PM = LMNMNP � PP ; (2.4)where the star denotes Hodge duality on the worldsheet. One also needs to de�ne a projetion fromthe doubled spae to a \physial" subspae; this hoie of projetion is referred to as a polarisation[9℄.2.1.1 Polarisation of the Lie algebraIn ref. [13℄ the Lie algebra of G was given a polarisation by introduing a polarisation projetor� and its omplement e�, the latter projeting onto the omplement of the image of � in T �G .The hoie of polarisation enodes a hoie of subgroup GL(d;R) � O(d; d) under whih thefundamental representation of O(d; d) splits into the fundamental representation of GL(d;R) andits dual representation [25℄. The ranks of � and e� are thus equal. Then the Lie algebra generatorsin this polarisation may be written asXm = �mMLMNTN ; Zm = e�mMLMNTN :3The Wess-Zumino term should really be written as 112 RV tMNPPM ^PN ^PP where PM 2 TG 
T �V dependson the oordinates (�; �; v) on V suh that PM (�; �; v)j� = PM(�; �). By a slight abuse of notation we shall refer tothe pull-baks to both � and V of one-forms in T �G as P.5



Here it will be useful to de�ne the 2d� 2d matrix projetors�MN �  �mN0 ! ; e�MN �  0e�mN ! ;whih satisfy the standard projetion onditions�NM�MP = �NP ; e�NM e�MP = e�NP ; �NM e�MP = 0 ; �NM + e�NM = ÆNM :Then the left-invariant generators in a given polarisation may be represented as�MNLNPTP =  Xm0 ! ; e�MNLNPTP =  0Zm ! : (2.5)One an show that the self-duality onstraint (2.4) is well-de�ned only if � is null with respetto L, �T L � = 0. That is, the �-projetion de�nes a maximally isotropi subalgebra of the Liealgebra on G . We also require that � de�nes a subgroup, i.e., the Xm lose to form a subalgebra.2.1.2 Polarisation of the oordinatesIn a given open simply onneted path of X we an de�ne an analogous polarisation of theoordinates, xi = �iIXI ; ~xi = e�iIXI :The polarisation of the oordinates is not globally de�ned [11, 13℄ and it is not always possible tohoose a set of physial oordinates xi globally. It is useful to de�ne the projetors�IJ �  �iJ0 ! ; e�IJ �  0e�iJ ! ;and we may represent the oordinates xi and ~xi by the following quantities,XI � �IJXJ =  xi0 ! ; eXI � e�IJXJ =  0~xi ! :If we hoose the simple bakground MMN = ÆMN then in the oordinate frame the polariseddoubled metri takes the formMIJ =  gij �BikgklBlj Bikgkj�gikBkj gij ! ; (2.6)for a symmetri �eld gij and an antisymmetri �eld Bij. The vielbeins PMI are maps P : O(d; d)!O(d) � O(d) and an therefore be brought to lower blok-triangular form by an O(d) � O(d)transformation [12℄, so that PMI =  emi 0�emjBji emi ! ; (2.7)6



with emi the vielbein relating the metri g to the at metri,4 gij = eimÆmnenj . Note that if thevielbeins PMI are elements of O(d; d), then they preserve LMN so that also LIJ = LMNPMIPNJhas the form (2.3). In this ase the polarisation projetors in the oordinate frame are related tothe ones in the Lie algebra frame by�IJ = (P�1)IM�MNPNJ ; e�IJ = (P�1)IM e�MNPNJ :If one hooses a di�erent polarisation �0; e�0, the doubled metri will be unhanged, while theonstituent �elds g;B transform in a non-trivial way. This hange of bakground may also be viewedas the e�et of T-duality, in physial spae reduing to Busher's rules [1, 2℄. There is thus a diretorrespondene between hanging the polarisation and performing a T-duality transformation [9℄,as we will see more expliitly in setions 3.3 and 4.3 Inluding boundariesTo desribe the embedding of an open string in the doubled spae we need to generalise the sigmamodel (2.1) to inlude worldsheets with boundaries, �� 6= 0. Note that now we annot have� = �V . Instead, for the extension of the worldsheet to a three-dimensional spae V to be well-de�ned, we require �V = �+D ;where D is a region on the worldvolume of the D-brane bounded by the worldsheet boundarysuh that �� = ��D. However, the restrition of the Wess-Zumino term to D will yield an extraterm, whih must be ompensated for by adding a term to the losed string ation, so that the fullWess-Zumino part of the sigma model with boundaries reads [27℄SWZ = ZV T � ZD ! ;where T � 112 tMNPPM ^ PN ^ PP ;and ! is a two-form de�ned only on the D-brane, satisfying (� denotes interior produt)�T jD = �d! : (3.1)As we will see below, ! ontributes only to the boundary equations of motion. Therefore theself-duality onstraint (2.4) is not a�eted by the extra Wess-Zumino term.4Notie that the vielbein may be writtenPMI =  e 0�e�TB e�T ! =  e 00 e�T ! 1 0�B 1 ! ;i.e., as the produt of GL(d) and B-shift transformations [26℄. This makes expliit the fat that the vielbein is anelement of O(d; d). 7



For a general on�guration of n D-branes, the Wess-Zumino term is generalised toSWZ = ZV T � nXi=1 ZDi !i ; �T jDi = �d!i ; �V = �+ nXi=1 Di :3.1 Equations of motionThe total sigma model ation now readsS = 14 Z�MMNPM ^ �PN + 112 ZV tMNPPM ^ PN ^ PP � 12 ZD !MNPM ^ PN ; (3.2)and we next derive its equations of motion, in the bulk and on the boundary. Under in�nitesimalvariations in XI , the one-forms PM transform asÆPM = PMId(ÆXI ) + (�JPMI)ÆXJdXI :To derive the equations of motion we �rst vary the kineti term,ÆSkin = 12 Z� d �MMNPMIÆXI � PN��12 Z� �MMN d � PN +MPN tMQPPQ ^ �PN �PMIÆXI ; (3.3)where we have used the Bianhi identity (2.2). The �rst term in eq. (3.3) is a total derivative,giving the boundary termÆS�� = 12 Z� d �MMNÆXIPMI � PN� = �12 Z d� �PMIÆXIMMNPNJ��XJ ��� : (3.4)Next we vary the Wess-Zumino term in the ation (3.2), obtainingÆSWZ = ZV L" (T )� ZD L" (!) = ZV d (�"T )� ZD d (�"!)� ZD �" (d!) ;where L" = d�" + �"d is the Lie derivative along the vetor �eld " = ÆXI�I , and we have useddT = 0, whih follows from the Jaobi identity t[MNQtP ℄QR = 0. Inserting �V = �+D as well asthe de�nition (3.1) of !, the variation an be rewritten asÆSWZ = Z� �"T � ZD d (�"!) ;whih, beause �� = ��D, beomesÆSWZ = Z� �"T + Z�� �"!= 12 Z� ÆXI tMNPPMIPN ^ PP + Z�� ÆXI!IJdXJ : (3.5)From eqs. (3.3), (3.4) and (3.5) the equations of motion are found to be, in the bulk,d �MMNPN +MNP tMQPPQ ^ �PN � 12 tMNPPN ^ PP = 0 ; (3.6)8



and on the boundary,ÆXJ PMJ ��12MMNPNI��XI + !MNPNI��XI��� = 0 : (3.7)As expeted, the bulk equation of motion (3.6) agrees with that of the losed string in ref. [13℄, asit is of ourse not a�eted by the existene of a boundary. In partiular, the extra !-term appearsonly in the boundary equation of motion.3.2 Boundary onditionsThe analysis of the boundary ondition (3.7) is essentially idential to that performed by Hull[9℄ and Lawrene et al [21℄ for the doubled torus onstrution, leading to analogous results. Weintrodue projetors that de�ne D-branes in the doubled spae, namely,�I = �IJXJ Normal vetors: Dirihlet�I = �IJXJ Tangential vetors: Neumannwhere � and � are Dirihlet and Neumann projetors, respetively, satisfying�JI + �JI = ÆJ I ; �JK�KI = 0 ; �JK�KI = �JI ; �JK�KI = �JI :The projetors � and � are de�ned only on the brane and so all expressions involving them areassumed to be evaluated on the boundary ��. The projetors have ounterparts on the Lie algebraof G , or more onveniently on the otangent bundle,�P?�M = �MNPN 2 N�D ;�Pk�M = �MNPN 2 T �D ;where D is the D-brane worldvolume. These Lie algebra projetors satisfy the orrespondingprojetor onditions,�MN + �MN = ÆMN ; �MP�PN = 0 ; �MP�PN = �MN ; �MP�PN = �MN :We also require the Neumann projetor to be integrable, so that it loally de�nes the brane as asmooth submanifold of the target spae,�I0I�J 0J�[I0�KJ 0℄ = 0 : (3.8)The projetors are moreover required to be orthogonal with respet to the doubled metriMIJ ,0 = �IKMIJ�JL = �IKPMIMMNPNJ�JL : (3.9)We are now fully equipped to derive the �nal form of the boundary onditions for the doubledsigma model. The boundary equation of motion (3.7) may be written asÆXI ��12PMIMMNPNJ��XJ + !IJ��XJ��� = 0 : (3.10)9



It has solutions ÆXK�IK = �NMPMI��XI = 0 Dirihlet ondition (3.11a)�IK ��12PMIMMNPNJ��XJ + !IJ��XJ� = 0 Neumann ondition (3.11b)Note that the Dirihlet ondition an be written as0 = �JK��XK = �JK (P�1)KM PMI ��XI = (P�1)JN �NM PMI ��XI :The Dirihlet and Neumann onditions need to be onsistent with the self-duality onstraint (2.4).The latter implies (with worldsheet metri � = diag(1;�1) and antisymmetri symbol �01 = 1)PMI��XI = �LMNMNPPP J��XJ ; (3.12a)PMI��XI = �LMNMNPPP J��XJ : (3.12b)Using (3.12b) and (3.11a) in (3.10), as well as LMN =MMPLPQMQN , one �ndsÆXK�IK �12LIJ + !IJ��JL��XL = 0 :Sine LIJ is symmetri and !IJ antisymmetri the pull-bak of the two terms in parentheses to thebrane must vanish separately, �IK LIJ �JL = 0 ; (3.13)�IK !IJ �JL = 0 : (3.14)Condition (3.13) implies that any vetors tangent to the D-brane are null with respet to LIJ , sothe D-brane is a tangentially null spae with respet to LIJ , hene the D-brane is an isotropisubspae of X . The ondition (3.14) says that ! restrits to zero on the brane, and sine in fat !is de�ned only on the brane, we see that ! = 0. Given the de�nition (3.1) it follows immediatelythat �T jD = 0, so �IJ �IT jD = 0 ;and beause � is integrable, f. eq. (3.8), it follows that the Wess-Zumino term restrited to thebrane vanishes, T jD = 0, i.e.,�I0 [I�J 0J�K0K℄ tI0J 0K0 = 0 ; tI0J 0K0 � tMNPPMI0PNJ 0PPK0 : (3.15)Note that sine ! = 0 is a non-dynamial ondition, one ould set ! to zero already in the ation(3.2), at the expense of having to impose the ondition �T jD = 0 by hand.One �nds another ondition by substituting the self-duality onstraint (3.12a) into the Dirihletondition (3.11a), namely �QMLMNMNPPP J��XJ = 0 ;or �KILILPNLMNPPP J��XJ = �KILILMLJ��XJ = 0 : (3.16)10



From the Neumann ondition (3.11b) follows, upon insertion of (3.14) and (3.11a), that�IKPMIMMNPNJ��XJ = 0 ;so eq. (3.16) beomes �KILIL�L0LML0J��XJ = 0 ;from whih immediately follows that �IK LIJ �JL = 0 : (3.17)Hene both the Neumann and Dirihlet projetors are null with respet to L, so that the D-braneis a maximally isotropi subspae of the doubled geometry, and we see that�IKLIJ = LKL�LJ : (3.18)Thus for every Neumann ondition there is a Dirihlet ondition, and they are related by an ationof L, so that there are equal numbers of Neumann and Dirihlet onditions. The results (3.13) and(3.17) are just the doubled geometry extension of the null onditions in ref. [21℄, while the ondition(3.18) is the generalisation of the orresponding ondition in [9℄.To summarise, the set of boundary onditions de�ning smooth D-branes in the doubled spaeX are5 (where we have inluded the two geometrially motivated assumptions (3.8) and (3.9)):5It is unlear whether or not the boundary onditions for the doubled sigma model admit an analogue of thegluing matrix R de�ned for the onventional nonlinear sigma model, f. refs. [28, 29℄. In partiular, the gluing matrixof refs. [28, 29℄ enodes onformal invariane on the boundary, and it is not obvious how the onformal invariane ofthe onventional sigma model may be represented within the doubled formalism. We leave the question of existeneand interpretation of suh a doubled analogue of the gluing matrix to future investigations.
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� Null onditions (3.13) and (3.17):�IKLIJ�JL = �IKLIJ�JL = 0 (I)The D-brane must be a maximally isotropi subspae of X .� Struture onstant ondition (3.15):�I0 [I�J 0J�K0K℄tI0J 0K0 = 0 (II)The two-form ! on the D-brane must vanish and the Wess-Zumino termtIJK imposes a restrition on the orientation of the brane.� Orthogonality (3.9): �IKMIJ�JL = 0 (III)The Neumann and Dirihlet projetors are mutually orthogonal withrespet to the doubled metriMIJ .� Integrability (3.8): �I0I�J 0J�[I0�KJ 0℄ = 0 (IV)The D-brane is loally a smooth submanifold of X .3.3 T-dualitySine we will need to apply T-duality to our system, inluding boundaries, here we de�ne the T-duality transformations in expliit matrix representation. Of partiular interest are d-dimensionalbakgrounds onstruted as T d�1 �brations over a base irle. The doubled spae is a 2d-dimensionalgeometry on whih there is a natural ation of O(d; d;Z). The ation of O(d�1; d�1;Z) � O(d; d;Z)an be realised as a �brewise T-duality on the T d�1 �bres, and there is some evidene [5℄ that theation of the full O(d; d;Z) an be realised as a nonisometri generalisation of T-duality. ThenBusher's rules, where appliable, are reprodued by the ation of the matries [30, 31, 32, 33℄�i =  1I� Ti TiTi 1I� Ti ! ; (3.19)where the submatries Ti, i = 1; :::; d are zero everywhere, exept for a 1 in the i-th diagonal entry.The operator �i thus T-dualises along the i-th diretion, e.g., �xi exhanges xi with its dual ~xi (f.setion 2.1.2). The left-invariant one-forms transform asP(X) 7! P 0(X0) = TM �MN PNI(X0) dX0I ; X0I � �IJ XJ :This transformation may be viewed in two di�erent ways, the \ative" versus the \passive" approah[9, 25℄. In the ative transformation the polarisation is kept invariant while the geometry (doubled12



vielbeins, doubled metri, Neumann and Dirihlet projetors, as well as their arguments) hanges.The passive transformation on the other hand ats only on the polarisation, leaving the geometryunhanged. Here we use the ative transformation, for whih the expliit duality rules read [11, 12℄PMI(X) 7! P 0MI(X0) = �MNPNJ(�X) �JI ;MIJ(X) 7! M0IJ(X0) = �KIMKL(�X) �LJ ;�IJ(X) 7! �0IJ(X0) = �IK�KL(�X) �LJ : (3.20)The dual branes must satisfy the dual boundary onditions. The null ondition (I) transforms as�(X)TL �(X) 7! �0(X0)TL0 �0(X0)= (�T�(X0)T�T )(�T L �)(� �(X0) �) = �T �(X0)TL �(X0) � = 0 ;hene if � is null, then the dual �0 is automatially null, and the same holds for �. Similarly theorthogonality ondition (III) transforms in a trivial way,�(X)TM(X) �(X) 7! �0(X0)TM0(X0) �0(X0)= (�T�(X0)T �T ) (�TM(X0) �) (� �(X0) �)= �T �(X0)TM(X0) �(X0) � = 0 ;so that the duals of any pair of mutually orthogonal projetors � and � are always orthogonalto eah other. The pull-bak of the struture onstants by the vielbeins PMI , tIJK = LII0tI0JK ,transform astIJK 7! t0IJK = LII0t0I0JK = ��RILRS �SI0� h�I0R0 tR0J 0K0 (��1)J 0J (��1)K0Ki= �LI0RtRJ 0K0� �I0I(��1)J 0J (��1)K0K= tI0J 0K0 �I0I(��1)J 0J (��1)K0K = t � � �;whene follows the dual version of ondition (II), shematially (total antisymmetrisation is under-stood), �(X) �(X) �(X) t 7! �0(X0) �0(X0) �0(X0) t0= (� �(X0) �) (� �(X0) �) (� �(X0) �) � � � t= � � � �(X0) �(X0) �(X0) t = 0 ;i.e., it is automatially satis�ed if the original ondition is. Finally, the integrability ondition (IV)similarly transforms linearly,�(X)I [I0 �(X)J J 0℄ �I�(X)KJ 7! �0(X0)Î [Î0 �0(X0)Ĵ Ĵ 0℄ �Î�0(X0)K̂ Ĵ= (� �(X0) �)Î [Î0 (� �(X0) �)Ĵ Ĵ 0℄ �I Î �I�(X0)KJ �J Ĵ �K̂K= �I0 Î0 �J 0 Ĵ 0 �K̂K �(X0)I [I0 �(X0)JJ 0℄ �I�(X0)KJ = 0 ;hene the dual brane is always integrable if the original one is.Note that in the passive approah, where only the polarisation projetors transform, the invari-ane of onditions (I){(IV) is obvious sine the polarisation is not manifest in these onditions.13



4 An expliit exampleWe onsider a six-dimensional doubled group G and study the boundary onditions for the sigmamodel on the twisted torus X = �nG . The loal struture of X is given by the struture onstantsof the group G , t126 = t234 = t315 = �m 2 Z, whih appear in the Lie algebra[T1; T2℄ = �mT6 ; [T2; T3℄ = �mT4 ; [T3; T1℄ = �mT5 ; (4.1)with all other ommutators vanishing. A dual representation of this Lie algebra is given by theleft-invariant one-forms (obtained by solving the Bianhi identities (2.2))P1 = dX1 P4 = dX4 + 12mX2dX3 � 12mX3dX2P2 = dX2 P5 = dX5 + 12mX3dX1 � 12mX1dX3P3 = dX3 P6 = dX6 + 12mX1dX2 � 12mX2dX1 (4.2)where loal oordinates XI on X have been hosen. In this dual representation the loal strutureof X is �xed by the Bianhi identities for PM , while the global struture is determined by the o-ompat subgroup �, whih may be de�ned by its ation on the oordinates XI as the identi�ationsX1 � X1 + 1 X4 � X4 � 12mX32 + 12mX23 + 4X2 � X2 + 2 X5 � X5 � 12mX13 + 12mX31 + 5X3 � X3 + 3 X6 � X6 � 12mX21 + 12mX12 + 6 (4.3)where I are real onstants depending on the details of �. The Wess-Zumino term in the ation(3.2) an be written as (sine t123 = �m)T = �12m dX1 ^ dX2 ^ dX3 ; (4.4)and muh of our fous will be on the onstraints imposed by this three-form on the Dirihletand Neumann projetors. We shall proeed by hoosing a polarisation that orresponds to aonventional sigma model desribing the embedding of the worldsheet in a three-torus T 3 witha onstant H-ux bakground. Other, possibly T-dual, sigma models may be obtained from the\doubled" sigma model (3.2) by di�erent hoies of polarisation { e�etively di�erent oordinatehoies in the doubled spae. The relationship between hanging the polarisation, whih an beunderstood as an ation of an element of O(3; 3;Z), and T-duality was disussed in setion 3.3 andat length in refs. [9, 25℄.The doubled geometry allows for eight di�erent polarisations, related by O(3; 3;Z) transforma-tions summarised in the following diagram,hxyzy . &zfzxy fxyzz & .yQxyz  !x fyzxz . &yQyzx Qzxyy & .zRxyz14



where x; y; z are three of the oordinates XI , and the arrow with label x denotes a T-duality alongthe x-diretion, or along its dual ~x. The struture onstants h, f and Q �x the loal strutureof the H-ux, nilmanifold and T-fold bakgrounds, respetively, while the R-ux bakground doesnot have a desription as a onventional spaetime. Some of these dualities have been shown to betrue symmetries of string theory [34℄, others are only onjetural. The issue of whether or not theation of O(3; 3;Z) is a symmetry of string theory is an important one, but will not be disussedfurther here.The remainder of this setion is devoted to the derivation and desription of the D-branes livingon the eight bakgrounds in the above diagram, from the embedding in doubled geometry.4.1 T 3 with H-uxConsider the hoie of polarisation of oordinatesx = �xIXI = X1 ; y = �yIXI = X2 ; z = �zIXI = X3 ;~x = e�xIXI = X4 ; ~y = e�yIXI = X5 ; ~z = e�zIXI = X6 ; (4.5)whene the Wess-Zumino term in eq. (4.4) beomesT = �12mdx ^ dy ^ dz : (4.6)To simplify the disussion we hoose the doubled metri in the Lie algebra frame to be MMN =ÆMN . The pull-bak of this metri to the doubled spae is MIJ = PMIÆMNPNJ , so that, usingeq. (2.7) in this polarisation6 (m0 � m=2),
MIJ = 0BBBBBBBBB�

1 +m02y2 +m02z2 �m02xy �m02xz 0 m0z �m0y�m02xy 1 +m02z2 +m02x2 �m02yz �m0z 0 m0x�m02xz �m02yz 1 +m02x2 +m02y2 m0y �m0x 00 �m0z m0y 1 0 0m0z 0 �m0x 0 1 0�m0y m0x 0 0 0 1
1CCCCCCCCCA :

This polarisation gives rise to a physial bakground whih is a three-dimensional torus with on-stant H-ux. The \loal frame" version of the Lie algebra reads[Zx; Zy℄ = hxyzXz ; [Zy; Zz℄ = hyzxXx ; [Zz; Zx℄ = hzxyXy ;hxyz = hyzx = hzxy = �m;where Zi � (Zx; Zy; Zz) and Xi � (Xx;Xy;Xz) are obtained as ontrations of the orrespondinggenerators in eq. (2.5) with the inverse of vielbeins. The Zi and Xi are related, respetively, to theisometries of the three-torus and to the antisymmetri tensor transformation of the B-�eld.6Sine the three-torus is at, the three-dimensional vielbein is emi = Æmi , and we have gij = Æij . Moreover, wehave hosen B = m0(xdy ^ dz + ydz ^ dx+ zdx ^ dy). 15



4.1.1 Solving the boundary onditionsTo begin the analysis of D-brane embeddings, �rst note that due to the relation (3.18) betweenNeumann and Dirihlet projetors any given D-brane has equal numbers of Neumann and Dirihletdiretions in the doubled spae. Thus in this example eah brane has three Neumann and threeDirihlet diretions.The polarisation projetors and the O(3; 3) invariant metri in a given open ontratible pathan always be written as�IJ =  1I 00 0 ! ; e�IJ =  0 00 1I ! ; LIJ =  0 1I1I 0 ! : (4.7)The form of allowed Dirihlet projetors in this basis is determined by the four boundary onditions(I){(IV) listed in setion 3.2, and we start with ondition (I). That is, we solve the null ondition(3.17) together with the projetor ondition �2 = �. One �nds� =  a b 1I� aT ! ; (4.8a)where the 3� 3 submatries a; b;  satisfybT = �b ;T = � ; ab+ (ab)T = 0 ;a+ (a)T = 0 ;b = a(1I� a) : (4.8b)With the restritions (4.8b) the null ondition (3.13) for the Neumann projetor � = 1I� � is alsosatis�ed, and as a onsequene so is the relation (3.18).Next we impose the boundary ondition (II), i.e., we require that ! = 0 in eq. (3.1), so that�IJ �IT jD = 0 : (4.9)As shown in setion 3.2 this is equivalent to requiring�I0 [I�J 0J�K0K℄ tI0J 0K0 = �6m �x[I�yJ�zK℄ � 0 ; (4.10)and sinem 6= 0 this means that the totally antisymmetrised produt of Neumann projetor entriesin the x-, y- and z-rows must vanish. Thus we may keep only those of the Dirihlet projetors whihorrespond to suh Neumann projetors. The physial interpretation of this requirement is obtainedby inserting the projetor in the doubled Dirihlet ondition (3.11a), whih shows that the projetorde�nes one of the Dirihlet diretions in the doubled spae to inlude a omponent in the spaespanned by the x-, y- and z-axes. On the other hand, it is immediately lear that any brane withat least one Neumann diretion in the spae spanned by the ~x-, ~y- and ~z-axes will automatiallysatisfy (4.9), sine �~xT = �~yT = �~zT = 0. Thus boundary ondition (II) prohibits branes wrappingthe whole of the physial T 3. 16



Further limitations on the solutions (4.8) are imposed by boundary ondition (III), whih re-quires the Neumann and Dirihlet projetors to be orthogonal with respet to the doubled metri,�TM � = 0 : (4.11)Solving the system of equations (4.8b), (4.10) and (4.11) one �nds a generi form of the Dirihletprojetors allowed, plus a number of solutions orresponding to those values of the free parametersin a; b;  where the projetor (4.8a) blows up. The generi solution has the blok matrix form�0 =  a b 1I� aT ! ; (4.12a)with the matries a, b,  given bya = 0B� a11 m0xb13 �m0x(a32�m0zb13)b13m0yb13+a33�10 1� a33 + a11 (a33�1)(a32�m0zb13)m0yb13+a33�10 a32 a33 1CA ; (4.12b)
b = 0B� 0 (a32�m0zb13)b13m0yb13+a33�1 b13� (a32�m0zb13)b13m0yb13+a33�1 0 0�b13 0 0 1CA ;  = 0B� 0 a11a32b13 a11(a33�1)b13�a11a32b13 0 m0xa11�a11(a33�1)b13 �m0xa11 0 1CA ;(4.12)where there are two free parameters, here taken to be b13 and a33. The other matrix elementsdepend on these two parameters via the relations( 0 = a232 � 2m0zb13a32 + b213(1 +m02z2) + (m0yb13 + a33)(m0yb13 + a33 � 1) ;a11 = �[b213(1 +m02z2) +m0yb13(m0yb13 + a33 � 1)�m0zb13a32℄=(m0yb13 + a33 � 1) :(4.12d)There are a number of values for the parameters b13 and a33 for whih ertain elements in �0 blowup, in partiular when b13 = 0 or a33 = 1 � m0yb13. We an still make sense of the Dirihletprojetor � at these spei� values of the parameters by �rst setting the divergent elements in thesubmatries a, b,  to zero and then solving eqs. (4.8b), (4.10) and (4.11). In this way one �ndsthree independent solutions, eah evaluated at b13 = 0 and/or a33 = 1 �m0yb13, in addition to �0(whih is evaluated at b13 6= 0 and a33 6= 1�m0yb13). Two of these solutions will be given in eqs.(4.17) and (4.18) below, while the third is of the forma = 0B� 0 0 00 1� a33 a230 a23 a33 1CA ; b = O0 ; a223 = a33(1� a33) ; (4.13a) = 0B� 0 �m0za33 �m0ya23 m0y(1� a33) +m0za23m0za33 +m0ya23 0 0�m0y(1� a33)�m0za23 0 0 1CA ; (4.13b)17



where O0 denotes the 3�3 matrix of zeros. We have thus found that the Dirihlet projetors whihsatisfy the onditions (I), (II) and (III) of setion 3.2, fall into two lasses. The �rst, of the form(4.12), is valid when b13 6= 0 and a33 6= 1 �m0yb13. The seond lass, given in eqs. (4.13), (4.17)and (4.18), ontains projetors valid at the speial points b13 = 0 and/or a33 = 1 �m0yb13. Allother solutions an be derived from these four by permutation of the oordinates x, y, z, ~x, ~y, ~z,and by setting the free parameters to appropriate values or funtions.It remains to impose boundary ondition (IV), integrability. However, due to the omplexity ofthe generi solution (4.12) we failed to on�rm, or to derive onditions for integrability in general.We therefore hoose to fous on a subset of solutions, namely those for whih one of the x-, y- andz-rows in the Neumann projetor vanishes. Suh projetors trivially satisfy the struture onstantondition (4.10), and we single out the x-diretion so that�xI = (1I� �)xI = 0 : (4.14)In other words, (1I � a;�b)xI = 0 8 I 2 fx; y; z; ~x; ~y; ~zg. Inserting this projetor in the doubledDirihlet ondition (3.11a) tells us that what we have done is to hoose the x-diretion to be Dirih-let. Similarly, hoosing the y- or z-row to vanish renders the orresponding oordinate Dirihlet,and the respetive analysis is related to the one for x by a oordinate permutation.The system of equations (4.8b), (4.11) and (4.14) has four solutions (aording to Maple 9.5and 11).� The �rst solution is �1 =  1I 0B 0 ! ; (4.15)where B is the B-�eld appearing in the doubled metri, f. eq. (2.6).� The seond is �2 =  a 0 1I� aT ! ; (4.16a)where the submatries a and  are given bya =0B� 1 0 00 0 00 0 0 1CA ;  = 0B� 0 0 00 0 �m0x0 m0x 0 1CA : (4.16b)� The third solution is �3 =  a 0 1I� aT ! ; (4.17a)where a = 0B� 1 0 00 1� a33 a230 a23 a33 1CA ;  = 0B� 0 12 13�12 0 0�13 0 0 1CA ; (4.17b)18



and the entries in a and  satisfya223 = a33(1� a33) ; 12 = m0z(1� a33)�m0ya23 ; 13 = m0za23 �m0ya33 : (4.17)� The fourth and �nal solution is �4 =  a b 1I� aT ! ; (4.18a)where a = 0B� 1 0 0�m0yb23 a33 0�m0zb23 0 a33 1CA ; b = 0B� 0 0 00 0 b230 �b23 0 1CA ; (4.18b) = 0B� 0 m0za33 �m0ya33�m0za33 0 a33(a33 � 1)=b23m0ya33 �a33(a33 � 1)=b23 0 1CA ; (4.18)and b23 and a33 satisfyb23 = m0x(2a33 � 1)�p(m0x)2 � 4a33(a33 � 1)2(1 + (m0x)2) 6= 0 ; 4a33(a33 � 1) � (m0x)2 : (4.18d)Note that �2 is just a permuted version of the solution (4.13) with a33 = 1.The Dirihlet projetors given in eqs. (4.15) { (4.18) satisfy three of the onditions derived insetion 3.2, namely (I){(III), and the integrability ondition (IV) is now relatively straightforwardto solve. It is easy to see that integrability is automatially satis�ed for �1 and �2, whereas for�3 one �nds that only a33 = 0 and a33 = 1 give integrable Neumann projetors, and for �4 it isneessary that� a33 = 0 ; b23 = � m0x1 + (m0x)2 � or � a33 = 1 ; b23 = m0x1 + (m0x)2 � : (4.19)Note that sine b23 = 0 in �4 is a singular point, this projetor is ill-de�ned at x = 0. However,upon inspetion one �nds that in the limit x ! 0, �4 approahes �1 when a33 = 1, and �2 whena33 = 0.In the following subsetions we derive the expliit embeddings of branes orresponding to theprojetors (4.15) { (4.18), both in doubled spae and in physial spae.4.1.2 The Dirihlet projetor �1: D0-branesFor the Dirihlet projetor �1, solution (4.15) with non-trivial B-�eld, the Dirihlet onditions(3.11a) beome �IJ��XJ = 0 ) f��x = ��y = �� z = 0g : (4.20)19



Thus this brane is neessarily fully Dirihlet in the fx; y; zg dimensions, giving a D0-brane.7 Fromthe Neumann ondition (3.11b) we �nd�IKMIJ��XJ = 0 ) 8><>: ��~x�m0z��y �m0y��z = 0��~y +m0z��x�m0x��z = 0��~z +m0y��x+m0x��y = 0 (4.21)The solutions to (4.20) and (4.21) are of the form8><>: ~x(�; �) = f1(�) +m0z(�)y(�)~y(�; �) = f2(�) +m0 R d�[z(�)��x(�)� x(�)��z(�)℄~z(�; �) = f3(�)�m0x(�)y(�)for some arbitrary funtions fi. Sine the fi:s are mutually independent, the moduli spae ofallowed motions for the end-point of a string (whih by de�nition is at some �xed �) oinides withthe three dual dimensions. Thus the brane �lls up the dual f~x; ~y; ~zg dimensions, as expeted fromthe Dirihlet onditions (4.20) and the fat that the brane must have three Neumann diretions indoubled spae.Beause the brane is fully Dirihlet in the fx; y; zg diretions, the appliation of the self-dualityonstraint (2.4), whih we use to eliminate dual oordinates, yields no new information. In fat, theonstraint beomes just the Neumann onditions (4.21). Thus the Dirihlet projetor �1 de�nes aD0-brane loated at an arbitrary point in the physial spae, or rather, a foliation of D0-branes.4.1.3 The Dirihlet projetor �2: D2-branesThe Dirihlet onditions (3.11a) for the solution �2 in eqs. (4.16) beome�IJ��XJ = 0 ) 8><>: ��x = 0m0x��y + �� ~z = 0m0x�� z � �� ~y = 0 (4.22)This brane is always normal to the x-diretion (a requirement imposed by eq. (4.14)), but a straightline in the y-~z plane and a straight line in the z-~y plane, and it is inlined by an angle determinedby the position along the x-axis. From the Neumann ondition (3.11b) we �nd�IKMIJ��XJ = 0 ) f�� ~x = ��y = ��z = 0g : (4.23)Note that for x = 0 the diretions ~y and ~z are Dirihlet. This is a D2-brane loated at x = 0 and�lling up the y, z and ~x dimensions. The desription in terms of physial spae oordinates (x; y; z)is straightforward, sine the self-duality onstraint (2.4) redues to a trivial exhange of Neumannand Dirihlet onditions on original and dual oordinates: �� ~xi = ���xi, ��~xi = ���xi, wherexi � (x; y; z), ~xi � (~x; ~y; ~z).7In our notation a Dp-brane extends in p of the physial dimensions x, y, z. This is beause our target spae doesnot inlude the physial time diretion, whih is part of the external unompati�ed four-dimensional spaetime.20



For x 6= 0 eqs. (4.22) and (4.23) are solved by (f1 and f2 are arbitrary funtions)8><>: x = x(�)y = y(�)z = z(�) 8><>: ~x = ~x(�)~y =m0x(�)z(�) + f1(�)~z = �m0x(�)y(�) + f2(�) (4.24)The end-point (at �xed �) of this string moves freely along the ~x-diretion, while it is restrited to astraight line in the z-~y plane and a straight line in the y-~z plane, with inlinations parameterised bythe position of the brane along the x-axis. The values of the funtions f1(�) and f2(�) determinethe position of the lines in their respetive planes. Sine the number of Neumann degrees offreedom in the fy; z; ~y; ~zg diretions is two, given by y(�) and z(�), the brane de�nes a two-dimensional plane in these dimensions. Thus eqs. (4.24) de�ne a foliation of D-branes extendingalong the ~x-diretion, whose remaining two Neumann diretions span a two-dimensional surfaein the fy; z; ~y; ~zg diretions, with x-dependent orientation. Note how this embedding onsistentlyredues to the x = 0 ase analysed above, with the brane oriented along the y- and z-diretions.Thus there is a ontinuous foliation for all x.Sine this brane is rotated in a subspae of the doubled spae involving both physial anddual oordinates, it is not immediately obvious what kind of physial brane it orresponds to. To�nd out, we insert the solution (4.24) for ~y and ~z into the self-duality onstraint and solve theresulting system of equations. Imposing the Dirihlet and Neumann onditions (4.22) and (4.23)the self-duality onstraint (2.4) redues to8><>: �� ~x = m0z��y �m0y��z � ��x�� ~y = �m0z��x� ��y��~z = m0y��x� �� z (4.25)Beause y and z are both independent of �, the �rst equation implies that ��x is in fat a onstant.As a onsequene ��f1 and ��f2 are also onstants. The two equations for ��~y and ��~z in (4.25)beome, upon insertion of the solutions (4.24) for ~y and ~z, a system of partial di�erential equationsfor y and z, ( ��y(�) + 2m0z(�)��x+ ��f1 = 0�� z(�)� 2m0y(�)��x+ ��f2 = 0Disarding the trivial unphysial solution with all oordinates set to onstants, this system has twosolutions (Ci are arbitrary nonzero onstants),n x = C1 ; y = C2� + C3 ; z = C4� + C5 o (4.26)8><>: x = C6� +C7y = C8 sin(2C6m0�) + C9 os(2C6m0�) + C10z = C9 sin(2C6m0�)� C8 os(2C6m0�) + C11 (4.27)The solution (4.26) ditates that the string end-point move on a straight line in the y-z plane, whilethe solution (4.27) desribes a irular motion in the same plane. In physial terms, the straight21



line solution orresponds to an eletrially harged string end-point moving in an eletri �eld,while the irular motion is that of the harge in a magneti �eld. The atual path of a given stringis an arbitrary linear ombination of the two propagation modes, whene the number of Neumanndegrees of freedom is two. Hene the physial brane is a D2-brane normal to the x-axis, �llingup the y-z plane. Sine the x-position is also a free parameter, there is atually a foliation of thephysial spae by D2-branes normal to the x-axis.4.1.4 The Dirihlet projetor �3: D1-branesFor the Dirihlet projetor �3 in (4.17), the Dirihlet onditions (3.11a) beome�IJ��XJ = 0 ) 8>>>>>><>>>>>>: ��x = 0a23��y + a33�� z = 0(1� a33)��y + a23�� z = 0a23�� ~z � a33�� ~y = 0(1� a33)�� ~z � a23�� ~y = 0 (4.28)where a223 = a33(1� a33). Analogously to the previous analysis, we see immediately that the braneis always normal to the x-diretion (as required by eq. (4.14)), while the orientation in the y-z and~y-~z planes depends on a33. Reall that integrability restrits a33 to be either 0 or 1 (see setion4.1.1). For a33 = 0 the Neumann onditions (3.11b) read�IKMIJ��XJ = 0 ) 8><>: ��z = 0��~y +m0z��x = 0��~x�m0z��y = 0and the Dirihlet onditions (4.28) redue to��x = ��y = �� ~z = 0 :This is a foliation of D1-branes extending along the z-, ~x- and ~y-axes, for arbitrary x, y and ~z. Fora33 = 1 the Neumann onditions are�IKMIJ��XJ = 0 ) 8><>: ��y = 0��~z �m0y��x = 0��~x+m0y��z = 0and the Dirihlet onditions (4.28) beome��x = ��z = �� ~y = 0 ;so again we have a foliation of D1-branes, but now extending along the y-, ~x- and ~z-axes, forarbitrary x, z and ~y.The desription of these branes in terms of physial oordinates (x; y; z) is simple, sine the self-duality onstraint just reprodues the Neumann and Dirihlet onditions in eah of the two asesabove. Thus for a33 = 0 we have a foliation of physial D1-branes extending in the z-diretion, andfor a33 = 1 a foliation of physial D1-branes extending in the y-diretion.22



4.1.5 The Dirihlet projetor �4: D2-branesInserting the Dirihlet projetor �4, de�ned in eqs. (4.18), into the Dirihlet onditions (3.11a)yields �IJ��XJ = 0 ) 8><>: ��x = 0a33��y + b23�� ~z = 0a33�� z � b23�� ~y = 0 (4.29)and the Neumann onditions (3.11b) read
�IKMIJ��XJ = 0 ) 8>>>>>>>>><>>>>>>>>>:

��x = 0��~x�m0z��y +m0y��z = 0(b23 +m0x(m0xb23 � a33))��y+(m0xb23 � a33)��~z = 0(b23 +m0x(m0xb23 � a33))��z�(m0xb23 � a33)�� ~y = 0where a33 and b23 are restrited by integrability to the values (4.19). In partiular, reall thatx 6= 0. For a33 = 0 we have ��x = �� ~z = �� ~y = 0 ;i.e., a D2-brane oiniding with the y-z plane. For a33 = 1 the brane in doubled spae is a straightline in the y-~z plane and a straight line in the z-~y plane, with orientation determined by the positionon the x-axis. In the four dimensions fy; z; ~y; ~zg it is thus a two-dimensional plane, while it extendsalso along ~x and is normal to the x-diretion. This is similar to the situation in the analysis of�2 (see setion 4.1.3), and in the same way it projets to a physial D2-brane at arbitrary x 6= 0,oiniding with the y-z plane. Substituting the self-duality onstraint in the Neumann onditionsyields the partial di�erential equations( (m0xb23 � a33)��y + b23��z = 0 ;(m0xb23 � a33)��z � b23��y = 0 ;whih desribe a foliation of physial D2-branes normal to the x-axis. Thus �2 and �4 both de�neD2-branes, however they desribe di�erent foliations, beause of the di�erene in parameterisationof the orientation of the brane in doubled spae. After the physial projetion this translates intoa di�erene in dynamis of the end-points of strings.As noted in setion 4.1.1, in the singular limit x ! 0 (so that b23 ! 0), for a33 = 0, �4approahes �2 at x = 0. That is, also at x = 0 there is a D2-brane oiniding with the y-z plane,as there is for nonzero x, so the foliation is ontinuous. For a33 = 1 it is easy to see from eqs. (4.29)that �4 approahes �1 when x! 0. That is, as x approahes zero the two-dimensional surfae inthe fy; z; ~y; ~zg dimensions hanges orientation until it oinides entirely with the ~y-~z plane, leavingall the oordinates x; y; z Dirihlet, resulting in a D0-brane at x = 0. As a result, we have aninterpolation of sorts, between D2-branes and D0-branes, related by a rotation in doubled spae.23



It is more diÆult to see a diret onnetion with the D1-branes �3, but sine all solutions arein priniple related via the generi one in eq. (4.12) we expet them all to rotate into eah other,unless there are branh uts in the moduli spae of solutions.4.1.6 SummaryWe have found that the four boundary onditions (I){(IV) de�ning D-branes of the doubled spaesigma model, supplemented with the restrition (4.14), �xI = 0, allow only the following physialbranes on a at torus with H-ux (4.6):� Every D-brane has at least one Dirihlet diretion; we hose the x-diretion (�xI = 0).� �1: D0-branes (fully Dirihlet) at arbitrary position.� �2 and �4: D2-branes normal to the x-axis and �lling up the y-z plane, at arbitrary x-position.� �3: Straight line D1-branes along the y- and z-axes.All other branes are prohibited, inluding spae�lling D3-branes.In doubled spae, with the polarisation (4.7), the allowed on�gurations are illustrated in thetable below, where we denote worldvolume diretions by �, diretions perpendiular to the braneby -, and diretions with respet to whih the brane is inlined by = or n (same inlination of theslash indiates the plane in whih the brane is a straight line).Dirihlet Type ofprojetor brane x y z ~x ~y ~z�1 D0 - - - � � ��2, �4(a33 = 1) D2 - = n � n =�3(a33 = 0) D1 - - � � � -�3(a33 = 1) D1 - � - � - ��4(a33 = 0) D2 - � � � - -4.2 Nilmanifold (f-ux)Having ompleted the analysis of branes in the H-ux ase, we now apply T-duality to the set ofonsistent Dirihlet projetors �1, �2, �3(a33 = 0; 1), �4(a33 = 0; 1), and analyse the resulting dualprojetors for onsisteny. In terms of the doubled geometry, suh an ation entails a global trans-lation and rotation of the brane, or from another point of view, a di�erent hoie of polarisation.In terms of the physial target spae, the loal geometry as well as the ux are radially hanged,but we will see that the D-branes transform in a standard way.24



Stritly speaking, Busher's rules an only be applied along isometri diretions for whih thebakground is invariant. The solution to the Bianhi identities hosen in (4.2) is the most demoratione, but the orresponding vielbein (2.7) is not invariant along any of the T 3 diretions x; y; z. Onean therefore not perform a T-duality along these diretions. However, a di�erent parameterisation(or gauge hoie) of the solutions to the Bianhi identities may render some diretions isometryinvariant, along whih T-duality is then allowed.8 The solutions to the Bianhi identities on thedual side may be restored to the form (4.2) by an appropriate oordinate hange.We derive the dual bakgrounds and Dirihlet projetors in eah of the three f -ux on�gu-rations obtained by dualising one along, respetively, the x-, y- and z-diretions. The dualisedNeumann projetors are listed in appendix A.1, and they trivially satisfy all dual boundary ondi-tions. It is for instane straightforward to see that the struture onstant ondition (II) is satis�edon the dual side, as follows. Sine in the H-ux ase the only nonzero omponent of the strutureonstant is txyz = �m, after dualising one the only nonzero omponents are, respetively, t0~xyz,t0x~yz and t0xy~z. The orresponding onditions then read�0~x[I�0yJ�0zK℄t0~xyz = 0 ; �0x[I�0~yJ�0zK℄t0x~yz = 0 ; �0x[I�0yJ�0~zK℄t0xy~z = 0 :In the ase of T-duality along x, all of the dual Neumann projetors satisfy �0~xI = 0, while forduality along y or z they all satisfy �0xI = 0. Thus we see that all the branes orresponding to �1,�2, �3(a33 = 0; 1), �4(a33 = 0; 1) transform onsistently under one T-duality.4.2.1 Dual desription of the branesTo see what kind of branes the dual projetors orrespond to, one may simply exhange the relevantoordinates in the orresponding boundary onditions in the analysis in setion 4.1. For instanethe brane orresponding to the T-dual along x of �1 may be obtained by exhanging x$ ~x in theDirihlet onditions (4.20), so that �� ~x = ��y = �� z = 0 :We thus �nd a D1-brane along the x-axis, whih is onsistent with dualising a D0-brane along thex-axis. For the T-duals along y and z we �nd D1-branes along the y- and z-axes, respetively.Similarly, for �2 the T-dual along x is seen to be a D3-brane while the T-duals along y and z areD1-branes inlined in the y-z plane at angles parameterised by x. For �3(a33 = 0) the T-dualsalong x and y are D2-branes in the x-z and y-z planes, respetively, whereas the T-dual along zis a D0-brane at an arbitrary point. The same holds for �3(a33 = 1), exept the roles of y and zare exhanged. The D2-brane �4(a33 = 0) beomes a D3-brane under dualisation along x, while8For instane, in eq. (4.2) we an make the hange of oordinates X5 ! X05 = X5 � 12mX3X1 and X6 ! X06 =X6 � 12mX2X1, whih leaves the Bianhi identities invariant. The Maurer-Cartan one-forms then beome P5 =dX05 +mX3dX1 and P6 = dX06 +mX1dX2, whih orresponds to a duality twist redution with monodromy aroundthe x-diretion [11℄. 25



its dual in the y-diretion is a D1-brane along z and its dual in the z-diretion a D1-brane alongy. Finally, also �4(a33 = 1) T-dualises along x to a D3-brane, but its dual along y desribes astraight line in the y-z plane and a straight line in the ~y-~z plane, with one Neumann degree offreedom in eah plane. It thus projets to a physial D1-brane in the y-z plane, with orientationparameterised by x. The T-dual along z is analogous, again giving a D1-brane in the y-z plane,but with a di�erent orientation.All branes thus transform under T-duality in the standard way, and we summarise the analysisin tables below, together with the dual bakgrounds, for eah of the three dualisations along thex-, y- and z-diretions.4.2.2 Nilmanifold with struture onstant fyzx = �mPerforming a T-duality along x orresponds to hoosing the polarisationx = �xIXI = X4 ; y = �yIXI = X2 ; z = �zIXI = X3 ;~x = e�xIXI = X1 ; ~y = e�yIXI = X5 ; ~z = e�zIXI = X6 : (4.30)Note that the roles of X1 and X4 have been exhanged relative to the H-ux ase in setion 4.1.The expliit form of the Lie algebra is[Zy; Zz℄ = fyzxZx ; [Zz;Xx℄ = �fzyxXy ; [Xx; Zy℄ = fyzxXz ;fyzx = �m:The doubled metri in this polarisation isM0x = 0BBBBBB� 1 �m0z m0y 0 0 0�m0z 1 +m02~x2 +m02z2 �m02yz �m02~xy 0 m0~xm0y �m02yz 1 +m02~x2 +m02y2 �m02~xz �m0~x 00 �m02~xy �m02~xz 1 +m02y2 +m02z2 m0z �m0y0 0 �m0~x m0z 1 00 m0~x 0 �m0y 0 1
1CCCCCCA :After imposing the self-duality onstraint (2.4) the physial bakground is a three-dimensionalnilmanifold with zero B-�eld and no ux. The spetrum of allowed D-branes, whih all wrap thex-diretion (sine the original branes are all Dirihlet along x), are summarised in the table below.Duality Dirihlet Type ofdiretion projetor brane x y z ~x ~y ~zx �1 D1 � - - - � ��2, �4(a33 = 1) D3 � = n - n =�3(a33 = 0) D2 � - � - � -�3(a33 = 1) D2 � � - - - ��4(a33 = 0) D3 � � � - - -26



Note that the branes orresponding to the projetors �2 and �4(a33 = 1) are not fully Neumannalong the diretions x; y; z in doubled spae; they are inlined in the y-~z and ~y-z planes. Never-theless, after imposing the self-duality onstraint (2.4), with x; y; z beoming physial oordinates,these branes orrespond to D3-branes in physial spae, ompletely �lling up the x; y; z dimensions.4.2.3 Nilmanifold with struture onstant fzxy = �mHere we T-dualise along y, orresponding to the polarisationx = �xIXI = X1 ; y = �yIXI = X5 ; z = �zIXI = X3 ;~x = e�xIXI = X4 ; ~y = e�yIXI = X2 ; ~z = e�zIXI = X6 : (4.31)The Lie algebra in this ase reads[Zx;Xy ℄ = �fxzyXz ; [Xy; Zz℄ = fzxyXx ; [Zz; Zx℄ = fzxyZy ;fzxy = �m:The doubled metri in this polarisation isM0y = 0BBBBBB� 1 +m02~y2 +m02z2 m0z �m02xz 0 �m02x~y �m0~ym0z 1 �m0x 0 0 0�m02xz �m0x 1 +m02x2 +m02~y2 m0~y �m02~yz 00 0 m0~y 1 �m0z 0�m02x~y 0 �m02~yz �m0z 1 +m02x2 +m02z2 m0x�m0~y 0 0 0 m0x 1
1CCCCCCA :Again, the physial bakground orresponding to this polarisation is a nilmanifold, but with theroles of the oordinates x and y exhanged relative to the previous ase. The spetrum of allowedD-branes is given byDuality Dirihlet Type ofdiretion projetor brane x y z ~x ~y ~zy �1 D1 - � - � - ��2, �4(a33 = 1) D1 - n n � = =�3(a33 = 0) D2 - � � � - -�3(a33 = 1) D0 - - - � � ��4(a33 = 0) D1 - - � � � -4.2.4 Nilmanifold with struture onstant fxyz = �mT-dualising along z, with polarisationx = �xIXI = X1 ; y = �yIXI = X2 ; z = �zIXI = X6 ;~x = e�xIXI = X4 ; ~y = e�yIXI = X5 ; ~z = e�zIXI = X3 ; (4.32)27



and Lie algebra[Zx; Zy℄ = fxyzZz ; [Zy;Xz ℄ = �fyxzXx ; [Xz; Zx℄ = fxyzXy ;fxyz = �m;the doubled metri isM0z = 0BBBBBB� 1 +m02y2 +m02~z2 �m02xy �m0y 0 m0~z �m02x~z�m02xy 1 +m02x2 +m02~z2 m0x �m0~z 0 �m02y~z�m0y m0x 1 0 0 00 �m0~z 0 1 0 m0ym0~z 0 0 0 1 �m0x�m02x~z �m02y~z 0 m0y �m0x 1 +m02x2 +m02y2
1CCCCCCA :In this nilmanifold the oordinates x and z are interhanged with respet to the nilmanifold insetion 4.2.2. The spetrum of dual D-branes is given byDuality Dirihlet Type ofdiretion projetor brane x y z ~x ~y ~zz �1 D1 - - � � � -�2, �4(a33 = 1) D1 - = = � n n�3(a33 = 0) D0 - - - � � ��3(a33 = 1) D2 - � � � - -�4(a33 = 0) D1 - � - � - �4.3 T-fold (Q-ux)Performing a �brewise T-duality along two diretions of the T 3 with H-ux bakground gives aT-fold [4, 6℄. Suh bakgrounds are often referred to as tori with \Q-ux" [22℄. The dualisedNeumann projetors are listed in appendix A.2, and again they all satisfy the dual boundaryonditions. All branes orresponding to �1, �2, �3(a33 = 0; 1), �4(a33 = 0; 1) are thus onsistentunder two T-dualities. Below we list the branes appearing in eah of the three Q-ux ases.4.3.1 T-fold with struture onstant Qzxy = �mT-dualising suessively along x and y orresponds to the polarisationx = �xIXI = X4 ; y = �yIXI = X5 ; z = �zIXI = X3 ;~x = e�xIXI = X1 ; ~y = e�yIXI = X2 ; ~z = e�zIXI = X6 : (4.33)The Lie algebra in this polarisation is[Xx;Xy ℄ = QzxyXz ; [Xy; Zz℄ = �QzyxZx ; [Zz;Xx℄ = QzxyZy ;Qzxy = �m;28



and the doubled metri isM0xy = 0BBBBBB� 1 0 m0~y 0 �m0z 00 1 �m0~x m0z 0 0m0~y �m0~x 1 +m02~x2 +m02~y2 �m02~xz �m02~yz 00 m0z �m02~xz 1 +m02~y2 +m02z2 �m02~x~y �m0~y�m0z 0 �m02~yz �m02~x~y 1 +m02~x2 +m02z2 m0~x0 0 0 �m0~y m0~x 1
1CCCCCCA :The physial bakground is a T-fold onstruted as a T 2 �bration over the z oordinate. Thedual branes are interpreted in the same way as in the nilmanifold ase, by exhanging dualisedoordinates in the relevant boundary onditions, resulting in the following table.Duality Dirihlet Type ofdiretions projetor brane x y z ~x ~y ~zx, y �1 D2 � � - - - ��2, �4(a33 = 1) D2 � n n - = =�3(a33 = 0) D3 � � � - - -�3(a33 = 1) D1 � - - - � ��4(a33 = 0) D2 � - � - � -4.3.2 T-fold with struture onstant Qxyz = �mThe polarisation for duality along y and z isx = �xIXI = X1 ; y = �yIXI = X5 ; z = �zIXI = X6 ;~x = e�xIXI = X4 ; ~y = e�yIXI = X2 ; ~z = e�zIXI = X3 ; (4.34)the Lie algebra reads[Zx;Xy℄ = QxyzZz ; [Xy;Xz ℄ = QxyzXx ; [Xz ; Zx℄ = �QxzyZy ;Qxyz = �m;and the doubled metri in this polarisation isM0yz = 0BBBBBB� 1 +m02~y2 +m02~z2 m0~z �m0~y 0 �m02x~y �m02x~zm0~z 1 0 0 0 �m0x�m0~y 0 1 0 m0x 00 0 0 1 �m0~z m0~y�m02x~y 0 m0x �m0~z 1 +m02x2 +m02~z2 �m02~y~z�m02x~z �m0x 0 m0~y �m02~y~z 1 +m02x2 +m02~y2
1CCCCCCA :The T-fold here is given by a T 2 �bration over a irle with oordinate x. The resulting dual branesare 29



Duality Dirihlet Type ofdiretions projetor brane x y z ~x ~y ~zy, z �1 D2 - � � � - -�2, �4(a33 = 1) D2 - n = � = n�3(a33 = 0) D1 - � - � - ��3(a33 = 1) D1 - - � � � -�4(a33 = 0) D0 - - - � � �4.3.3 T-fold with struture onstant Qyzx = �mT-duality along x and z orresponds to the polarisationx = �xIXI = X4 ; y = �yIXI = X2 ; z = �zIXI = X6 ;~x = e�xIXI = X1 ; ~y = e�yIXI = X5 ; ~z = e�zIXI = X3 ; (4.35)with Lie algebra[Xx; Zy℄ = �QyxzZz ; [Zy;Xz ℄ = QyzxZx ; [Xz ;Xx℄ = QyzxXy ;Qyzx = �m;and dual doubled metriM0xz = 0BBBBBB� 1 �m0~z 0 0 0 m0y�m0~z 1 +m02~x2 +m02~z2 m0~x �m02~xy 0 �m02y~z0 m0~x 1 �m0y 0 00 �m02~xy �m0y 1 +m02y2 +m02~z2 m0~z �m02~x~z0 0 0 m0~z 1 �m0~xm0y �m02y~z 0 �m02~x~z �m0~x 1 +m02~x2 +m02y2
1CCCCCCA :The bakground is again a T-fold, but this time the �bration is over a irle with oordinate y.The dual branes areDuality Dirihlet Type ofdiretions projetor brane x y z ~x ~y ~zx, z �1 D2 � - � - � -�2, �4(a33 = 1) D2 � = = - n n�3(a33 = 0) D1 � - - - � ��3(a33 = 1) D3 � � � - - -�4(a33 = 0) D2 � � - - - �4.4 R-uxIt has been onjetured [5℄ that one an perform a T-duality along all three of the x, y and zdiretions of the three-torus with H-ux bakground. Following the nomenlature of [22℄, we refer30



to the onjetured resulting bakground as an \R-ux" bakground. The self-duality onstraint(2.4) annot be onsistently imposed on the bakground in suh polarisations so as to eliminatethe dual oordinates. It is unlear what the preise nature of suh bakgrounds is, but it has beenonjetured that onventional notions of Riemannian geometry break down loally (in ontrast tothe T-fold, where Riemannian geometry breaks down only globally). Regardless of what the �nalonlusion onerning suh bakgrounds may turn out to be, the only understanding we urrentlyhave is through the doubled formalism [11℄.Assuming one an dualise along all three diretions, in the present setup there is only one dual,to whih the projetors transform as � 7! �0 = �zyx � �xyz ;where �xyz � �x�y�z. The dualised Neumann projetors are listed in appendix A.3, and they allsatisfy the dual boundary onditions.The polarisation orresponding to the R-ux bakground isx = �xIXI = X4 ; y = �yIXI = X5 ; z = �zIXI = X6 ;~x = e�xIXI = X1 ; ~y = e�yIXI = X2 ; ~z = e�zIXI = X3 ; (4.36)and the assoiated Lie algebra is[Xx;Xy℄ = RxyzZz ; [Xy ;Xz℄ = RyzxZx ; [Xz ;Xx℄ = RzxyZy ;Rxyz = �m:The doubled metri in this polarisation isM0xyz = 0BBBBBB� 1 0 0 0 �m0~z m0~y0 1 0 m0~z 0 �m0~x0 0 1 �m0~y m0~x 00 m0~z �m0~y 1 +m02~y2 +m02~z2 �m02~x~y �m02~x~z�m0~z 0 m0~x �m02~x~y 1 +m02~x2 +m02~z2 �m02~y~zm0~y �m0~x 0 �m02~x~z �m02~y~z 1 +m02~x2 +m02~y2
1CCCCCCA :As was disussed in ref. [11℄ it is not possible in this ase to even loally de�ne a desription of thebakground as a onventional three-dimensional manifold. From the doubled metri one an reado� an e�etive metri g (f. eq. (2.6)),ds2xyz = ��1 �dx2 + dy2 + dz2 +m02(~xdx+ ~ydy + ~zdz)2� ;where � � 1 +m02(~x2 + ~y2 + ~z2) ;and a B-�eld, B0xyz = ���1m0 (~z dx ^ dy + ~x dy ^ dz + ~y dz ^ dx) :The doubled spae interpretation of our Dirihlet projetors in the R-ux frame is given in thefollowing table. 31



Duality Dirihlet Type ofdiretions projetor brane x y z ~x ~y ~zx, y, z �1 D3 � � � - - -�2, �4(a33 = 1) D3 � n = - = n�3(a33 = 0) D2 � � - - - ��3(a33 = 1) D2 � - � - � -�4(a33 = 0) D1 � - - - � �As in the nilmanifold ase there appears a \D3-brane" that is not ompletely Neumann alongx; y; z if viewed as embedded in doubled spae. Although there is no physial projetion here, foronsisteny of terminology we have hosen to all it a D3-brane.To summarise this setion, we have seen that all the Dirihlet projetors (4.15){(4.18) transformonsistently under all T-dualities, thus de�ning onsistent D-branes on the entire doubled spae X .The projetor �1 was found also in [21℄ using the �ve-dimensional doubled torus onstrution, butthe projetors �2, �3(a33 = 0; 1) and �4(a33 = 0; 1) are new solutions.5 DisussionWe have extended the doubled geometry losed string nonlinear sigma model [13℄ to a modelwith boundaries, orresponding to an open string worldsheet, and derived the assoiated boundaryonditions. Inluding two geometrially motivated assumptions, the result is a set of four onditions,whih are neessary and suÆient to de�ne onsistent loally smooth D-branes in the doubled targetspae: the brane must be a maximally isotropi submanifold; its orientation must be ompatiblewith the Lie algebra struture; its tangent and normal spaes must be orthogonal with respet tothe metri on the doubled geometry; it must be integrable.Solving these onditions, we derived and lassi�ed in a systemati way the allowed D-branesin a toy model, the doubled three-torus with onstant NS-NS ux. We obtained the most generalpossible Dirihlet projetors satisfying all boundary onditions exept integrability, and then anal-ysed a subset of solutions where we �xed one Dirihlet diretion. This hoie was made in order toavoid the omplexity of the most general solution, whih prevented us from solving the integrabilityondition. For these slightly simpler solutions the integrability ondition ould be solved, and eventhough our attention was on�ned to a subset of solutions, we established a lear strategy to derivethem and how to interpret them in physial terms. This inluded applying T-duality along allphysial diretions and analysing the dual boundary onditions, as well as imposing a self-dualityonstraint.We found four types of globally onsistent D-branes, de�ned by the Dirihlet projetors (4.15){(4.18) in the H-ux ase, whih orrespond to D0-branes, D1-branes along the y- and z-axes, andD2-branes in the y-z plane; D3-branes are prohibited. Lawrene et al [21℄ already found the D0-32



branes (here labelled �1) in their doubled-�bre approah to the same model, but the other solutionsare new. Our branes all transform in the standard way under T-duality, to the f -ux, Q-ux andR-ux frames. We moreover found that the D2-branes and D0-branes are related by rotations inthe doubled spae, as one would expet from solutions that stem from the same generi projetor.Our analysis here was done only on the lassial level, and should be extended to quantum the-ory. Quantum studies have been performed in ases of vanishing ux [35, 36℄ and for models wherethe T-duality twist redues to orbifolding [37℄. In the latter analysis the authors found frationalbranes apparently laking geometri ounterparts in the doubled formalism. More generally, theself-duality onstraint may be imposed on the quantum level via a gauging proedure [25, 13℄. Inthis paper we onsidered sigma models desribing the worldsheet in internal spae only. Moreover,the example in setion 4 took into aount only three ompat dimensions of the physial targetspae. In order to desribe viable string theory bakgrounds based on these toy models, the addi-tional spaetime diretions of the target spae need to be inluded in suh a way that the sigmamodel is a onformal �eld theory, desribing the embedding of the worldsheet into a target spaeof ritial dimension, so that the bakground �elds satisfy the string equations of motion. It wouldbe interesting to see how the onformal symmetry appears in the doubled formalism, and how it isrelated to the self-duality onstraint.Another example of a doubled geometry is Drinfel'd doubles, whih are relevant in Poisson-LieT-duality [38, 39, 40℄, a generalisation of T-duality to target spaes with nonabelian isometry, as wellas to nonisometri target spaes. The study of D-branes in that framework enountered problemsdue to nonloality issues [41℄, and we hope to resolve them by applying the present methodology.Aknowledgments: We wish to thank Chris Hull for allowing ertain details of the doubledgroup sigma model to be presented prior to the publiation of ref. [13℄. We are also grateful toChris Hull for useful disussions and omments, and for kindly reading our draft. We wish to thankLibor �Snobl and Ladislav Hlavat�y for useful omments. TK aknowledges support in part by theGrant-in-Aid for the 21st Century COE \Center for Diversity and Universality in Physis" fromthe Ministry of Eduation, Culture, Sports, Siene and Tehnology (MEXT) of Japan.A Dual projetorsHere we list the Neumann projetors obtained from the H-ux ones by applying T-duality alongvarious diretions.A.1 NilmanifoldT-dualising only along one diretion the on�gurations are translated to the f -ux frame, withdi�erent dual projetors depending on whih oordinate is dualised.33



A.1.1 Nilmanifold with struture onstant fyzx = �mDualising along the x-diretion the resulting Neumann projetors �0 = �x � �x read�x1 = 0BBBBBB� 1 �m0z m0y 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 �m0~x m0z 1 00 m0~x 0 �m0y 0 1
1CCCCCCA ; �x2 = 0BBBBBB� 1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 0 0 00 0 m0~x 0 0 00 �m0~x 0 0 0 0

1CCCCCCA ;
�x3(a33 = 0) = 0BBBBBB� 1 �m0z 0 0 0 00 0 0 0 0 00 0 1 0 0 00 0 0 0 0 00 0 0 m0z 1 00 0 0 0 0 0

1CCCCCCA ; �x3(a33 = 1) = 0BBBBBB� 1 0 m0y 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 �m0y 0 1
1CCCCCCA ;

�x4(a33 = 0) = 0BBBBBB� 1 0 0 0 �m0yb23 �m0zb230 1 0 m0yb23 0 �b230 0 1 m0zb23 b23 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;

�x4(a33 = 1) = 0BBBBBB� 1 �m0z m0y 0 �m0yb23 �m0zb230 0 0 m0yb23 0 �b230 0 0 m0zb23 b23 00 0 0 0 0 00 0 0 m0z 1 00 0 0 �m0y 0 1
1CCCCCCA ; b23 = m0x1 + (m0x)2 :

A.1.2 Nilmanifold with struture onstant fzxy = �mDualising along the y-diretion the Neumann projetors �0 = �y � �y read�y1 = 0BBBBBB� 0 0 0 0 0 0m0z 1 �m0x 0 0 00 0 0 0 0 00 0 m0~y 1 �m0z 00 0 0 0 0 0�m0~y 0 0 0 m0x 1
1CCCCCCA ; �y2 = 0BBBBBB� 0 0 0 0 0 00 0 m0x 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 �m0x 0

1CCCCCCA ;
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�y3(a33 = 0) = 0BBBBBB� 0 0 0 0 0 0m0z 1 0 0 0 00 0 1 0 0 00 0 0 1 �m0z 00 0 0 0 0 00 0 0 0 0 0
1CCCCCCA ; �y3(a33 = 1) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 m0~y 1 0 00 0 0 0 1 0�m0~y 0 0 0 0 1

1CCCCCCA ;
�y4(a33 = 0) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 0m0zb23 b23 1 0 0 00 �m0~yb23 0 1 0 �m0zb23m0~yb23 0 0 0 1 �b230 0 0 0 0 0

1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;
�y4(a33 = 1) = 0BBBBBB� 0 0 0 0 0 0m0z 1 0 0 0 0m0zb23 b23 0 0 0 00 �m0~yb23 m0~y 1 �m0z �m0zb23m0~yb23 0 0 0 0 �b23�m0~y 0 0 0 0 1

1CCCCCCA ; b23 = m0x1 + (m0x)2 :
A.1.3 Nilmanifold with struture onstant fxyz = �mDualising along the z-diretion the Neumann projetors �0 = �z � �z read�z1 =0BBBBBB� 0 0 0 0 0 00 0 0 0 0 0�m0y m0x 1 0 0 00 �m0~z 0 1 0 m0ym0~z 0 0 0 1 �m0x0 0 0 0 0 0

1CCCCCCA ; �z2 = 0BBBBBB� 0 0 0 0 0 00 1 0 0 0 00 �m0x 0 0 0 00 0 0 1 0 00 0 0 0 0 m0x0 0 0 0 0 1
1CCCCCCA ;

�z3(a33 = 0) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 �m0~z 0 1 0 0m0~z 0 0 0 1 00 0 0 0 0 1
1CCCCCCA ; �z3(a33 = 1) = 0BBBBBB� 0 0 0 0 0 00 1 0 0 0 0�m0y 0 1 0 0 00 0 0 1 0 m0y0 0 0 0 0 00 0 0 0 0 0

1CCCCCCA ;
�z4(a33 = 0) = 0BBBBBB� 0 0 0 0 0 0m0yb23 1 �b23 0 0 00 0 0 0 0 00 0 �m0~zb23 1 �m0yb23 00 0 0 0 0 0m0~zb23 0 0 0 b23 1

1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;35



�z4(a33 = 1) = 0BBBBBB� 0 0 0 0 0 0m0yb23 0 �b23 0 0 0�m0y 0 1 0 0 00 �m0~z �m0~zb23 1 �m0yb23 m0ym0~z 0 0 0 1 0m0~zb23 0 0 0 b23 0
1CCCCCCA ; b23 = m0x1 + (m0x)2 :

A.2 T-foldT-dualising along two diretions the on�gurations are translated to the Q-ux frame, with di�erentdual projetors depending on whih pair of oordinates is dualised.A.2.1 T-fold with struture onstant Qzxy = �mDualising along the (x; y)-diretions the resulting Neumann projetors �0 = �y�x � �x�y read�xy1 = 0BBBBBB� 1 0 m0~y 0 �m0z 00 1 �m0~x m0z 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 �m0~y m0~x 1
1CCCCCCA ; �xy2 = 0BBBBBB� 1 0 0 0 0 00 0 m0~x 0 0 00 0 1 0 0 00 0 0 0 0 00 0 0 0 1 00 0 0 0 �m0~x 0

1CCCCCCA ;
�xy3 (a33 = 0) = 0BBBBBB� 1 0 0 0 �m0z 00 1 0 m0z 0 00 0 1 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1CCCCCCA ; �xy3 (a33 = 1) = 0BBBBBB� 1 0 m0~y 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 1 00 0 0 �m0~y 0 1
1CCCCCCA ;

�xy4 (a33 = 0) = 0BBBBBB� 1 �m0~yb23 0 0 0 �m0zb230 0 0 0 0 00 b23 1 m0zb23 0 00 0 0 0 0 00 0 0 m0~yb23 1 �b230 0 0 0 0 0
1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;

�xy4 (a33 = 1) = 0BBBBBB� 1 �m0~yb23 m0~y 0 �m0z �m0zb230 1 0 m0z 0 00 b23 0 m0zb23 0 00 0 0 0 0 00 0 0 m0~yb23 0 �b230 0 0 �m0~y 0 1
1CCCCCCA ; b23 = m0x1 + (m0x)2 :
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A.2.2 T-fold with struture onstant Qxyz = �mDualising along the (y; z)-diretions the Neumann projetors �0 = �z�y � �y�z read�yz1 =0BBBBBB� 0 0 0 0 0 0m0~z 1 0 0 0 �m0x�m0~y 0 1 0 m0x 00 0 0 1 �m0~z m0~y0 0 0 0 0 00 0 0 0 0 0
1CCCCCCA ; �yz2 = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 m0x0 0 0 0 �m0x 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1

1CCCCCCA ;
�yz3 (a33 = 0) = 0BBBBBB� 0 0 0 0 0 0m0~z 1 0 0 0 00 0 0 0 0 00 0 0 1 �m0~z 00 0 0 0 0 00 0 0 0 0 1

1CCCCCCA ; �yz3 (a33 = 1) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 0�m0~y 0 1 0 0 00 0 0 1 0 m0~y0 0 0 0 1 00 0 0 0 0 0
1CCCCCCA ;

�yz4 (a33 = 0) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 �m0~yb23 �m0~zb23 1 0 0m0~yb23 0 �b23 0 1 0m0~zb23 b23 0 0 0 1
1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;

�yz4 (a33 = 1) = 0BBBBBB� 0 0 0 0 0 0m0~z 1 0 0 0 0�m0~y 0 1 0 0 00 �m0~yb23 �m0~zb23 1 �m0~z m0~ym0~yb23 0 �b23 0 0 0m0~zb23 b23 0 0 0 0
1CCCCCCA ; b23 = m0x1 + (m0x)2 :

A.2.3 T-fold with struture onstant Qyzx = �mDualising along the (x; z)-diretions the Neumann projetors �0 = �z�x � �x�z read�xz1 = 0BBBBBB� 1 �m0~z 0 0 0 m0y0 0 0 0 0 00 m0~x 1 �m0y 0 00 0 0 0 0 00 0 0 m0~z 1 �m0~x0 0 0 0 0 0
1CCCCCCA ; �xz2 = 0BBBBBB� 1 0 0 0 0 00 1 0 0 0 00 �m0~x 0 0 0 00 0 0 0 0 00 0 0 0 0 m0~x0 0 0 0 0 1

1CCCCCCA ;
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�xz3 (a33 = 0) =0BBBBBB� 1 �m0~z 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 m0~z 1 00 0 0 0 0 1
1CCCCCCA ; �xz3 (a33 = 1) = 0BBBBBB� 1 0 0 0 0 m0y0 1 0 0 0 00 0 1 �m0y 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1CCCCCCA ;
�xz4 (a33 = 0) = 0BBBBBB� 1 0 �m0~zb23 0 �m0yb23 00 1 �b23 m0yb23 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 m0~zb23 b23 1

1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;
�xz4 (a33 = 1) = 0BBBBBB� 1 �m0~z �m0~zb23 0 �m0yb23 m0y0 0 �b23 m0yb23 0 00 0 1 �m0y 0 00 0 0 0 0 00 0 0 m0~z 1 00 0 0 m0~zb23 b23 0

1CCCCCCA ; b23 = m0x1 + (m0x)2 :
A.3 R-uxT-dualising along all three diretions x; y; z the on�gurations are translated to the R-ux frame,with struture onstant Rxyz = �m and dual Neumann projetors given by �0 = �z�y�x � �x�y�z:�xyz1 =0BBBBBB� 1 0 0 0 �m0~z m0~y0 1 0 m0~z 0 �m0~x0 0 1 �m0~y m0~x 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1CCCCCCA ; �xyz2 = 0BBBBBB� 1 0 0 0 0 00 0 0 0 0 m0~x0 0 0 0 �m0~x 00 0 0 0 0 00 0 0 0 1 00 0 0 0 0 1
1CCCCCCA ;

�xyz3 (a33 = 0) = 0BBBBBB� 1 0 0 0 �m0~z 00 1 0 m0~z 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 1
1CCCCCCA ; �xyz3 (a33 = 1) = 0BBBBBB� 1 0 0 0 0 m0~y0 0 0 0 0 00 0 1 �m0~y 0 00 0 0 0 0 00 0 0 0 1 00 0 0 0 0 0

1CCCCCCA ;
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�xyz4 (a33 = 0) =0BBBBBB� 1 �m0~yb23 �m0~zb23 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 �b23 m0~yb23 1 00 b23 0 m0~zb23 0 1
1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;

�xyz4 (a33 = 1) = 0BBBBBB� 1 �m0~yb23 �m0~zb23 0 �m0~z m0~y0 1 0 m0~z 0 00 0 1 �m0~y 0 00 0 0 0 0 00 0 �b23 m0~yb23 0 00 b23 0 m0~zb23 0 0
1CCCCCCA ; b23 = m0x1 + (m0x)2 :
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