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Abstra
tWe de�ne the open string version of the nonlinear sigma model on doubled geometry intro-du
ed by Hull and Reid-Edwards, and derive its boundary 
onditions. These 
onditions in
ludethe restri
tion of D-branes to maximally isotropi
 submanifolds as well as a 
ompatibility 
ondi-tion with the Lie algebra stru
ture on the doubled spa
e. We demonstrate a systemati
 methodto derive and 
lassify D-branes from the boundary 
onditions, in terms of embeddings both inthe doubled geometry and in the physi
al target spa
e. We apply it to the doubled three-toruswith 
onstant H-
ux and �nd D0-, D1-, and D2-branes, whi
h we verify transform 
onsistentlyunder T-dualities mapping the system to f -, Q- and R-
ux ba
kgrounds.
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e of a string ba
kground generated by an abelian isometryof the metri
 
an be used to 
onstru
t a T-dual ba
kground { an alternative des
ription of thesame physi
s. If the isometry is globally de�ned the T-dual ba
kground is a 
onventional geometry,perhaps with non-trivial 
urvature, B-�eld or H-
ux [3℄. If the isometry is not globally de�ned,there is eviden
e that T-duality 
an still be performed, but that it gives rise to a non-geometri
ba
kground [4, 5℄. For example, a
ting with T-duality on
e on a 
at three-torus with 
onstantH-
ux yields a nilmanifold { a two-torus �bration over a 
ir
le with monodromy in SL(2;Z), themapping 
lass group of the �bres. A se
ond duality, whi
h must be performed �brewise, produ
esa spa
e whi
h is lo
ally geometri
 but globally non-geometri
 [4℄. That is, its group of transitionfun
tions between 
harts is generalised with respe
t to geometri
 manifolds, to in
lude T-dualitytransformations. This spa
e is an example of a T-fold [5, 6, 7℄, a 
lass of non-geometri
 spa
esthat lo
ally 
an be des
ribed as torus �brations, with transition fun
tions in the T-duality groupO(d; d;Z). It has been spe
ulated that analogous spa
es, with transition fun
tions whi
h in
ludeU-dualities, 
alled U-folds [8, 9, 10℄, would provide good M-theory ba
kgrounds. Sin
e the Hilbertspa
e of the quantum 
onformal �eld theory arising from a two-dimensional nonlinear sigma modelon the worldsheet of the string is invariant under T-duality, even though the lo
al target spa
egeometry might 
hange, T-folds make 
onsistent perturbative string ba
kgrounds.Hull [9℄ introdu
ed a geometri
 des
ription for T-folds by means of doubled formalism, where the2



torus �bres are doubled to in
lude in the pi
ture the torus de�ned by the dual 
oordinates. The �bredegrees of freedom are then doubled, and Hull de�ned a \doubled" nonlinear sigma model with thisnew extended geometry as its target spa
e, the worldsheet �elds 
orresponding to 
oordinates onboth the original and dual tori. The O(d; d;Z) T-duality transformation is then realised geometri-
ally in this formalism as a large di�eomorphism of the doubled �bres sin
e O(d; d;Z) � GL(2d;Z).By imposing a 
ertain self-duality 
onstraint the number of �bre 
oordinates may be halved, tore
over the standard sigma model on a physi
al target spa
e.A generalisation of the doubled formalism to a des
ription where all the 
oordinates, in
ludingthe base, of a given spa
e are doubled was introdu
ed in [11℄, and spe
i�
 examples were exploredin [12℄. These papers outlined a target spa
e des
ription of the doubled geometry whi
h generalisedprevious 
onstru
tions to ba
kgrounds whi
h are not torus �brations. These more general doubledspa
es are lo
ally group manifolds. The sigma model in the doubled torus 
onstru
tion [9℄ wasfurther generalised in [13℄. This sigma model allows for a des
ription of the doubled spa
es 
onsid-ered in [11, 12℄ from the worldsheet perspe
tive. We shall not be 
on
erned with the details of thissigma model here and will only introdu
e those aspe
ts relevant to a study of open string boundary
onditions on the doubled spa
e. A thorough study of this model, in
luding the te
hniques whi
hallow a 
onventional des
ription of the ba
kground to be re
overed (where this is possible), waspresented in [13℄.In 
ertain 
ir
umstan
es one may des
ribe doubled geometry as generalised geometry [14, 15℄.In su
h a des
ription the ve
tors of the doubled spa
e tangent bundle (or forms of the doubled spa
e
otangent bundle) are rewritten in terms of ve
tors and forms on the generalised tangent bundleT � T �. For the parti
ular ba
kgrounds 
onsidered in se
tion 4 this was done in1 [12℄. There are
urrently only limited examples of (highly symmetri
) ba
kgrounds for whi
h a doubled 
onstru
tionis known (see, e.g., [18℄). However, it is anti
ipated that all ba
kgrounds admitting a des
riptionin terms of generalised geometry should also have a des
ription in terms of an appropriate doubledformalism; see, e.g., [19, 20℄.Already in ref. [9℄ the ne
essary 
onditions were established for 
onsistent D-brane embeddingsin the doubled torus formalism. This was elaborated on by Lawren
e et al [21℄, who demonstratedby expli
it examples what additional 
onsiderations are ne
essary to realise and interpret 
onsistentD-branes in the doubled formalism for the 
at three-torus with NS-NS three-form 
ux (\H-
ux").Here we promote their analysis to the more general doubled group framework, where all the 
oordi-nates are doubled, using the doubled sigma model in ref. [13℄ with boundaries introdu
ed to deriveand 
lassify the allowed D-brane 
on�gurations in a systemati
 way. A three-dimensional toruswith 
onstant H-
ux 
an be des
ribed by a six-dimensional doubled geometry, the lo
al stru
tureof whi
h is given by a six-dimensional Lie algebra. The stru
ture 
onstants of this algebra arelo
ally determined by the H-
ux. Di�erent, possibly T-dual, des
riptions of this ba
kground are1Another example is the Drinfel'd double, an obje
t de�ned [16℄ as the bialgebra of a Poisson-Lie group G. Thisbialgebra a
ts on the generalised tangent bundle TG � T �G, and it was shown by Lu and Weinstein [17℄ that theDrinfel'd double stru
ture may be en
oded in terms of a doubled group geometry.3




hara
terised by the stru
ture 
onstants, whi
h are often referred to as \
uxes" [22℄. In morerealisti
 
ompa
ti�
ations these stru
tures would be related to the four-dimensional low-energye�e
tive theory [5, 23, 24℄, but the spa
e 
onsidered here is just a toy model for the purpose ofdemonstrating the doubled geometry formalism.Performing T-duality on the doubled torus with H-
ux yields an \f -
ux" stru
ture 
onstant onthe doubled spa
e, whi
h, as expe
ted, 
hara
terises a nilmanifold when restri
ted to the physi
aldegrees of freedom. Further T-dualities, along other dire
tions on the doubled spa
e, yield the \Q-
ux" stru
ture 
onstant 
orresponding to a T-fold in the physi
al model, and so-
alled \R-
ux",whi
h hints at a lo
ally non-geometri
 ba
kground [22℄. Ea
h of these stru
ture 
onstants representlo
al values of the Wess-Zumino term in the doubled sigma model [13℄. To be well-de�ned on thedoubled spa
e the D-branes must be 
onsistent under all T-dualities, as well as satisfy the sigmamodel boundary 
onditions on ea
h lo
al pat
h.The stru
ture of the paper is as follows. In se
tion 2 we review the 
losed string nonlinearsigma model on the doubled geometry introdu
ed in ref. [13℄. In se
tion 3 we extend their modelto an open string version with boundaries. We derive the equations of motion both in the bulkand on the boundary, in the pro
ess introdu
ing Neumann and Diri
hlet proje
tors to de�ne D-branes. In se
tion 4 we solve the resulting boundary 
onditions, together with a geometri
allymotivated orthogonality 
ondition as well as integrability, for the 
at three-torus with 
onstantNS-NS three-form 
ux embedded in doubled geometry, and �nd the most generi
 form of Diri
hletproje
tor allowed. We fo
us on solutions based on a slightly simplifying assumption, whi
h we
lassify, interpret in physi
al terms, and 
he
k for global 
onsisten
y, in
luding 
ompatibility withT-duality transformations. We �nd four 
onsistent solutions, in H-
ux 
orresponding to D0-branes(the same that was found in ref. [21℄), D1-branes, and two kinds of D2-brane foliations. Finally,se
tion 5 
ontains a summary and dis
ussion.2 Doubled sigma model without boundariesWe will be interested in the generalisation of the nonlinear sigma model for a 
losed string worldsheet� embedded in a 2d-dimensional doubled twisted torus X [13℄, to a worldsheet with boundaries.The target spa
e is 
onstru
ted as X = �nG ;where G is a possibly non-
ompa
t 2d-dimensional Lie group and � is a dis
rete subgroup of G
hosen su
h that X is 
ompa
t (� is \
o-
ompa
t"). We 
hoose � to a
t on G from the left so thatthe left-invariant one-forms P = G�1dG (for elements G 2 G ), whi
h are globally de�ned on G , areglobally de�ned also on2 X . The lo
al stru
ture of X is given by the Lie algebra of G ,[TM ; TN ℄ = tMNPTP ;2Right-invariant obje
ts su
h as the one-forms dGG�1, although they are globally de�ned on G , are not in generalglobally de�ned on X = �nG . 4



where TM are the Lie algebra generators and tMNP the stru
ture 
onstants. The sigma modeldes
ribing the physi
s of 
losed string worldsheets embedded in X , as introdu
ed in ref. [13℄, readsS = 14 I�MMNPM ^ �PN + 112 ZV tMNPPM ^ PN ^ PP ; (2.1)where V is an extension of the worldsheet su
h that3 �V = �. The left-invariant one-formsPM = PMIdXI , where XI are the 
oordinates on X , satisfy the Maurer-Cartan equations,dPM + 12 tNPMPN ^ PP = 0 ; (2.2)and the metri
MMN , whi
h is independent of XI , takes values in the 
oset O(d)� O(d)nO(d; d).We require the Lie algebra on G to allow an O(d; d)-invariant 
onstant symmetri
 bilinear formLMN with signature (d; d). We work in a basis in whi
h it has the form (1I denotes the d�d identitymatrix) LMN =  0 1I1I 0 ! : (2.3)Using this metri
 the stru
ture 
onstants of the Lie algebra on G may be expressed on the totallyantisymmetri
 form tMNP = LMQtNPQ.2.1 Re
overing the physi
al modelTo re
over the ordinary nonlinear sigma model on a physi
al target spa
e we need to eliminate halfof the degrees of freedom. This is done by imposing the self-duality 
onstraint [9, 13℄PM = LMNMNP � PP ; (2.4)where the star denotes Hodge duality on the worldsheet. One also needs to de�ne a proje
tion fromthe doubled spa
e to a \physi
al" subspa
e; this 
hoi
e of proje
tion is referred to as a polarisation[9℄.2.1.1 Polarisation of the Lie algebraIn ref. [13℄ the Lie algebra of G was given a polarisation by introdu
ing a polarisation proje
tor� and its 
omplement e�, the latter proje
ting onto the 
omplement of the image of � in T �G .The 
hoi
e of polarisation en
odes a 
hoi
e of subgroup GL(d;R) � O(d; d) under whi
h thefundamental representation of O(d; d) splits into the fundamental representation of GL(d;R) andits dual representation [25℄. The ranks of � and e� are thus equal. Then the Lie algebra generatorsin this polarisation may be written asXm = �mMLMNTN ; Zm = e�mMLMNTN :3The Wess-Zumino term should really be written as 112 RV tMNPPM ^PN ^PP where PM 2 TG 
T �V dependson the 
oordinates (�; �; v) on V su
h that PM (�; �; v)j� = PM(�; �). By a slight abuse of notation we shall refer tothe pull-ba
ks to both � and V of one-forms in T �G as P.5



Here it will be useful to de�ne the 2d� 2d matrix proje
tors�MN �  �mN0 ! ; e�MN �  0e�mN ! ;whi
h satisfy the standard proje
tion 
onditions�NM�MP = �NP ; e�NM e�MP = e�NP ; �NM e�MP = 0 ; �NM + e�NM = ÆNM :Then the left-invariant generators in a given polarisation may be represented as�MNLNPTP =  Xm0 ! ; e�MNLNPTP =  0Zm ! : (2.5)One 
an show that the self-duality 
onstraint (2.4) is well-de�ned only if � is null with respe
tto L, �T L � = 0. That is, the �-proje
tion de�nes a maximally isotropi
 subalgebra of the Liealgebra on G . We also require that � de�nes a subgroup, i.e., the Xm 
lose to form a subalgebra.2.1.2 Polarisation of the 
oordinatesIn a given open simply 
onne
ted pat
h of X we 
an de�ne an analogous polarisation of the
oordinates, xi = �iIXI ; ~xi = e�iIXI :The polarisation of the 
oordinates is not globally de�ned [11, 13℄ and it is not always possible to
hoose a set of physi
al 
oordinates xi globally. It is useful to de�ne the proje
tors�IJ �  �iJ0 ! ; e�IJ �  0e�iJ ! ;and we may represent the 
oordinates xi and ~xi by the following quantities,XI � �IJXJ =  xi0 ! ; eXI � e�IJXJ =  0~xi ! :If we 
hoose the simple ba
kground MMN = ÆMN then in the 
oordinate frame the polariseddoubled metri
 takes the formMIJ =  gij �BikgklBlj Bikgkj�gikBkj gij ! ; (2.6)for a symmetri
 �eld gij and an antisymmetri
 �eld Bij. The vielbeins PMI are maps P : O(d; d)!O(d) � O(d) and 
an therefore be brought to lower blo
k-triangular form by an O(d) � O(d)transformation [12℄, so that PMI =  emi 0�emjBji emi ! ; (2.7)6



with emi the vielbein relating the metri
 g to the 
at metri
,4 gij = eimÆmnenj . Note that if thevielbeins PMI are elements of O(d; d), then they preserve LMN so that also LIJ = LMNPMIPNJhas the form (2.3). In this 
ase the polarisation proje
tors in the 
oordinate frame are related tothe ones in the Lie algebra frame by�IJ = (P�1)IM�MNPNJ ; e�IJ = (P�1)IM e�MNPNJ :If one 
hooses a di�erent polarisation �0; e�0, the doubled metri
 will be un
hanged, while the
onstituent �elds g;B transform in a non-trivial way. This 
hange of ba
kground may also be viewedas the e�e
t of T-duality, in physi
al spa
e redu
ing to Bus
her's rules [1, 2℄. There is thus a dire
t
orresponden
e between 
hanging the polarisation and performing a T-duality transformation [9℄,as we will see more expli
itly in se
tions 3.3 and 4.3 In
luding boundariesTo des
ribe the embedding of an open string in the doubled spa
e we need to generalise the sigmamodel (2.1) to in
lude worldsheets with boundaries, �� 6= 0. Note that now we 
annot have� = �V . Instead, for the extension of the worldsheet to a three-dimensional spa
e V to be well-de�ned, we require �V = �+D ;where D is a region on the worldvolume of the D-brane bounded by the worldsheet boundarysu
h that �� = ��D. However, the restri
tion of the Wess-Zumino term to D will yield an extraterm, whi
h must be 
ompensated for by adding a term to the 
losed string a
tion, so that the fullWess-Zumino part of the sigma model with boundaries reads [27℄SWZ = ZV T � ZD ! ;where T � 112 tMNPPM ^ PN ^ PP ;and ! is a two-form de�ned only on the D-brane, satisfying (� denotes interior produ
t)�T jD = �d! : (3.1)As we will see below, ! 
ontributes only to the boundary equations of motion. Therefore theself-duality 
onstraint (2.4) is not a�e
ted by the extra Wess-Zumino term.4Noti
e that the vielbein may be writtenPMI =  e 0�e�TB e�T ! =  e 00 e�T ! 1 0�B 1 ! ;i.e., as the produ
t of GL(d) and B-shift transformations [26℄. This makes expli
it the fa
t that the vielbein is anelement of O(d; d). 7



For a general 
on�guration of n D-branes, the Wess-Zumino term is generalised toSWZ = ZV T � nXi=1 ZDi !i ; �T jDi = �d!i ; �V = �+ nXi=1 Di :3.1 Equations of motionThe total sigma model a
tion now readsS = 14 Z�MMNPM ^ �PN + 112 ZV tMNPPM ^ PN ^ PP � 12 ZD !MNPM ^ PN ; (3.2)and we next derive its equations of motion, in the bulk and on the boundary. Under in�nitesimalvariations in XI , the one-forms PM transform asÆPM = PMId(ÆXI ) + (�JPMI)ÆXJdXI :To derive the equations of motion we �rst vary the kineti
 term,ÆSkin = 12 Z� d �MMNPMIÆXI � PN��12 Z� �MMN d � PN +MPN tMQPPQ ^ �PN �PMIÆXI ; (3.3)where we have used the Bian
hi identity (2.2). The �rst term in eq. (3.3) is a total derivative,giving the boundary termÆS�� = 12 Z� d �MMNÆXIPMI � PN� = �12 Z d� �PMIÆXIMMNPNJ��XJ ��� : (3.4)Next we vary the Wess-Zumino term in the a
tion (3.2), obtainingÆSWZ = ZV L" (T )� ZD L" (!) = ZV d (�"T )� ZD d (�"!)� ZD �" (d!) ;where L" = d�" + �"d is the Lie derivative along the ve
tor �eld " = ÆXI�I , and we have useddT = 0, whi
h follows from the Ja
obi identity t[MNQtP ℄QR = 0. Inserting �V = �+D as well asthe de�nition (3.1) of !, the variation 
an be rewritten asÆSWZ = Z� �"T � ZD d (�"!) ;whi
h, be
ause �� = ��D, be
omesÆSWZ = Z� �"T + Z�� �"!= 12 Z� ÆXI tMNPPMIPN ^ PP + Z�� ÆXI!IJdXJ : (3.5)From eqs. (3.3), (3.4) and (3.5) the equations of motion are found to be, in the bulk,d �MMNPN +MNP tMQPPQ ^ �PN � 12 tMNPPN ^ PP = 0 ; (3.6)8



and on the boundary,ÆXJ PMJ ��12MMNPNI��XI + !MNPNI��XI��� = 0 : (3.7)As expe
ted, the bulk equation of motion (3.6) agrees with that of the 
losed string in ref. [13℄, asit is of 
ourse not a�e
ted by the existen
e of a boundary. In parti
ular, the extra !-term appearsonly in the boundary equation of motion.3.2 Boundary 
onditionsThe analysis of the boundary 
ondition (3.7) is essentially identi
al to that performed by Hull[9℄ and Lawren
e et al [21℄ for the doubled torus 
onstru
tion, leading to analogous results. Weintrodu
e proje
tors that de�ne D-branes in the doubled spa
e, namely,�I = �IJXJ Normal ve
tors: Diri
hlet�I = �IJXJ Tangential ve
tors: Neumannwhere � and � are Diri
hlet and Neumann proje
tors, respe
tively, satisfying�JI + �JI = ÆJ I ; �JK�KI = 0 ; �JK�KI = �JI ; �JK�KI = �JI :The proje
tors � and � are de�ned only on the brane and so all expressions involving them areassumed to be evaluated on the boundary ��. The proje
tors have 
ounterparts on the Lie algebraof G , or more 
onveniently on the 
otangent bundle,�P?�M = �MNPN 2 N�D ;�Pk�M = �MNPN 2 T �D ;where D is the D-brane worldvolume. These Lie algebra proje
tors satisfy the 
orrespondingproje
tor 
onditions,�MN + �MN = ÆMN ; �MP�PN = 0 ; �MP�PN = �MN ; �MP�PN = �MN :We also require the Neumann proje
tor to be integrable, so that it lo
ally de�nes the brane as asmooth submanifold of the target spa
e,�I0I�J 0J�[I0�KJ 0℄ = 0 : (3.8)The proje
tors are moreover required to be orthogonal with respe
t to the doubled metri
MIJ ,0 = �IKMIJ�JL = �IKPMIMMNPNJ�JL : (3.9)We are now fully equipped to derive the �nal form of the boundary 
onditions for the doubledsigma model. The boundary equation of motion (3.7) may be written asÆXI ��12PMIMMNPNJ��XJ + !IJ��XJ��� = 0 : (3.10)9



It has solutions ÆXK�IK = �NMPMI��XI = 0 Diri
hlet 
ondition (3.11a)�IK ��12PMIMMNPNJ��XJ + !IJ��XJ� = 0 Neumann 
ondition (3.11b)Note that the Diri
hlet 
ondition 
an be written as0 = �JK��XK = �JK (P�1)KM PMI ��XI = (P�1)JN �NM PMI ��XI :The Diri
hlet and Neumann 
onditions need to be 
onsistent with the self-duality 
onstraint (2.4).The latter implies (with worldsheet metri
 � = diag(1;�1) and antisymmetri
 symbol �01 = 1)PMI��XI = �LMNMNPPP J��XJ ; (3.12a)PMI��XI = �LMNMNPPP J��XJ : (3.12b)Using (3.12b) and (3.11a) in (3.10), as well as LMN =MMPLPQMQN , one �ndsÆXK�IK �12LIJ + !IJ��JL��XL = 0 :Sin
e LIJ is symmetri
 and !IJ antisymmetri
 the pull-ba
k of the two terms in parentheses to thebrane must vanish separately, �IK LIJ �JL = 0 ; (3.13)�IK !IJ �JL = 0 : (3.14)Condition (3.13) implies that any ve
tors tangent to the D-brane are null with respe
t to LIJ , sothe D-brane is a tangentially null spa
e with respe
t to LIJ , hen
e the D-brane is an isotropi
subspa
e of X . The 
ondition (3.14) says that ! restri
ts to zero on the brane, and sin
e in fa
t !is de�ned only on the brane, we see that ! = 0. Given the de�nition (3.1) it follows immediatelythat �T jD = 0, so �IJ �IT jD = 0 ;and be
ause � is integrable, 
f. eq. (3.8), it follows that the Wess-Zumino term restri
ted to thebrane vanishes, T jD = 0, i.e.,�I0 [I�J 0J�K0K℄ tI0J 0K0 = 0 ; tI0J 0K0 � tMNPPMI0PNJ 0PPK0 : (3.15)Note that sin
e ! = 0 is a non-dynami
al 
ondition, one 
ould set ! to zero already in the a
tion(3.2), at the expense of having to impose the 
ondition �T jD = 0 by hand.One �nds another 
ondition by substituting the self-duality 
onstraint (3.12a) into the Diri
hlet
ondition (3.11a), namely �QMLMNMNPPP J��XJ = 0 ;or �KILILPNLMNPPP J��XJ = �KILILMLJ��XJ = 0 : (3.16)10



From the Neumann 
ondition (3.11b) follows, upon insertion of (3.14) and (3.11a), that�IKPMIMMNPNJ��XJ = 0 ;so eq. (3.16) be
omes �KILIL�L0LML0J��XJ = 0 ;from whi
h immediately follows that �IK LIJ �JL = 0 : (3.17)Hen
e both the Neumann and Diri
hlet proje
tors are null with respe
t to L, so that the D-braneis a maximally isotropi
 subspa
e of the doubled geometry, and we see that�IKLIJ = LKL�LJ : (3.18)Thus for every Neumann 
ondition there is a Diri
hlet 
ondition, and they are related by an a
tionof L, so that there are equal numbers of Neumann and Diri
hlet 
onditions. The results (3.13) and(3.17) are just the doubled geometry extension of the null 
onditions in ref. [21℄, while the 
ondition(3.18) is the generalisation of the 
orresponding 
ondition in [9℄.To summarise, the set of boundary 
onditions de�ning smooth D-branes in the doubled spa
eX are5 (where we have in
luded the two geometri
ally motivated assumptions (3.8) and (3.9)):5It is un
lear whether or not the boundary 
onditions for the doubled sigma model admit an analogue of thegluing matrix R de�ned for the 
onventional nonlinear sigma model, 
f. refs. [28, 29℄. In parti
ular, the gluing matrixof refs. [28, 29℄ en
odes 
onformal invarian
e on the boundary, and it is not obvious how the 
onformal invarian
e ofthe 
onventional sigma model may be represented within the doubled formalism. We leave the question of existen
eand interpretation of su
h a doubled analogue of the gluing matrix to future investigations.
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� Null 
onditions (3.13) and (3.17):�IKLIJ�JL = �IKLIJ�JL = 0 (I)The D-brane must be a maximally isotropi
 subspa
e of X .� Stru
ture 
onstant 
ondition (3.15):�I0 [I�J 0J�K0K℄tI0J 0K0 = 0 (II)The two-form ! on the D-brane must vanish and the Wess-Zumino termtIJK imposes a restri
tion on the orientation of the brane.� Orthogonality (3.9): �IKMIJ�JL = 0 (III)The Neumann and Diri
hlet proje
tors are mutually orthogonal withrespe
t to the doubled metri
MIJ .� Integrability (3.8): �I0I�J 0J�[I0�KJ 0℄ = 0 (IV)The D-brane is lo
ally a smooth submanifold of X .3.3 T-dualitySin
e we will need to apply T-duality to our system, in
luding boundaries, here we de�ne the T-duality transformations in expli
it matrix representation. Of parti
ular interest are d-dimensionalba
kgrounds 
onstru
ted as T d�1 �brations over a base 
ir
le. The doubled spa
e is a 2d-dimensionalgeometry on whi
h there is a natural a
tion of O(d; d;Z). The a
tion of O(d�1; d�1;Z) � O(d; d;Z)
an be realised as a �brewise T-duality on the T d�1 �bres, and there is some eviden
e [5℄ that thea
tion of the full O(d; d;Z) 
an be realised as a nonisometri
 generalisation of T-duality. ThenBus
her's rules, where appli
able, are reprodu
ed by the a
tion of the matri
es [30, 31, 32, 33℄�i =  1I� Ti TiTi 1I� Ti ! ; (3.19)where the submatri
es Ti, i = 1; :::; d are zero everywhere, ex
ept for a 1 in the i-th diagonal entry.The operator �i thus T-dualises along the i-th dire
tion, e.g., �xi ex
hanges xi with its dual ~xi (
f.se
tion 2.1.2). The left-invariant one-forms transform asP(X) 7! P 0(X0) = TM �MN PNI(X0) dX0I ; X0I � �IJ XJ :This transformation may be viewed in two di�erent ways, the \a
tive" versus the \passive" approa
h[9, 25℄. In the a
tive transformation the polarisation is kept invariant while the geometry (doubled12



vielbeins, doubled metri
, Neumann and Diri
hlet proje
tors, as well as their arguments) 
hanges.The passive transformation on the other hand a
ts only on the polarisation, leaving the geometryun
hanged. Here we use the a
tive transformation, for whi
h the expli
it duality rules read [11, 12℄PMI(X) 7! P 0MI(X0) = �MNPNJ(�X) �JI ;MIJ(X) 7! M0IJ(X0) = �KIMKL(�X) �LJ ;�IJ(X) 7! �0IJ(X0) = �IK�KL(�X) �LJ : (3.20)The dual branes must satisfy the dual boundary 
onditions. The null 
ondition (I) transforms as�(X)TL �(X) 7! �0(X0)TL0 �0(X0)= (�T�(X0)T�T )(�T L �)(� �(X0) �) = �T �(X0)TL �(X0) � = 0 ;hen
e if � is null, then the dual �0 is automati
ally null, and the same holds for �. Similarly theorthogonality 
ondition (III) transforms in a trivial way,�(X)TM(X) �(X) 7! �0(X0)TM0(X0) �0(X0)= (�T�(X0)T �T ) (�TM(X0) �) (� �(X0) �)= �T �(X0)TM(X0) �(X0) � = 0 ;so that the duals of any pair of mutually orthogonal proje
tors � and � are always orthogonalto ea
h other. The pull-ba
k of the stru
ture 
onstants by the vielbeins PMI , tIJK = LII0tI0JK ,transform astIJK 7! t0IJK = LII0t0I0JK = ��RILRS �SI0� h�I0R0 tR0J 0K0 (��1)J 0J (��1)K0Ki= �LI0RtRJ 0K0� �I0I(��1)J 0J (��1)K0K= tI0J 0K0 �I0I(��1)J 0J (��1)K0K = t � � �;when
e follows the dual version of 
ondition (II), s
hemati
ally (total antisymmetrisation is under-stood), �(X) �(X) �(X) t 7! �0(X0) �0(X0) �0(X0) t0= (� �(X0) �) (� �(X0) �) (� �(X0) �) � � � t= � � � �(X0) �(X0) �(X0) t = 0 ;i.e., it is automati
ally satis�ed if the original 
ondition is. Finally, the integrability 
ondition (IV)similarly transforms linearly,�(X)I [I0 �(X)J J 0℄ �I�(X)KJ 7! �0(X0)Î [Î0 �0(X0)Ĵ Ĵ 0℄ �Î�0(X0)K̂ Ĵ= (� �(X0) �)Î [Î0 (� �(X0) �)Ĵ Ĵ 0℄ �I Î �I�(X0)KJ �J Ĵ �K̂K= �I0 Î0 �J 0 Ĵ 0 �K̂K �(X0)I [I0 �(X0)JJ 0℄ �I�(X0)KJ = 0 ;hen
e the dual brane is always integrable if the original one is.Note that in the passive approa
h, where only the polarisation proje
tors transform, the invari-an
e of 
onditions (I){(IV) is obvious sin
e the polarisation is not manifest in these 
onditions.13



4 An expli
it exampleWe 
onsider a six-dimensional doubled group G and study the boundary 
onditions for the sigmamodel on the twisted torus X = �nG . The lo
al stru
ture of X is given by the stru
ture 
onstantsof the group G , t126 = t234 = t315 = �m 2 Z, whi
h appear in the Lie algebra[T1; T2℄ = �mT6 ; [T2; T3℄ = �mT4 ; [T3; T1℄ = �mT5 ; (4.1)with all other 
ommutators vanishing. A dual representation of this Lie algebra is given by theleft-invariant one-forms (obtained by solving the Bian
hi identities (2.2))P1 = dX1 P4 = dX4 + 12mX2dX3 � 12mX3dX2P2 = dX2 P5 = dX5 + 12mX3dX1 � 12mX1dX3P3 = dX3 P6 = dX6 + 12mX1dX2 � 12mX2dX1 (4.2)where lo
al 
oordinates XI on X have been 
hosen. In this dual representation the lo
al stru
tureof X is �xed by the Bian
hi identities for PM , while the global stru
ture is determined by the 
o-
ompa
t subgroup �, whi
h may be de�ned by its a
tion on the 
oordinates XI as the identi�
ationsX1 � X1 + 
1 X4 � X4 � 12mX3
2 + 12mX2
3 + 
4X2 � X2 + 
2 X5 � X5 � 12mX1
3 + 12mX3
1 + 
5X3 � X3 + 
3 X6 � X6 � 12mX2
1 + 12mX1
2 + 
6 (4.3)where 
I are real 
onstants depending on the details of �. The Wess-Zumino term in the a
tion(3.2) 
an be written as (sin
e t123 = �m)T = �12m dX1 ^ dX2 ^ dX3 ; (4.4)and mu
h of our fo
us will be on the 
onstraints imposed by this three-form on the Diri
hletand Neumann proje
tors. We shall pro
eed by 
hoosing a polarisation that 
orresponds to a
onventional sigma model des
ribing the embedding of the worldsheet in a three-torus T 3 witha 
onstant H-
ux ba
kground. Other, possibly T-dual, sigma models may be obtained from the\doubled" sigma model (3.2) by di�erent 
hoi
es of polarisation { e�e
tively di�erent 
oordinate
hoi
es in the doubled spa
e. The relationship between 
hanging the polarisation, whi
h 
an beunderstood as an a
tion of an element of O(3; 3;Z), and T-duality was dis
ussed in se
tion 3.3 andat length in refs. [9, 25℄.The doubled geometry allows for eight di�erent polarisations, related by O(3; 3;Z) transforma-tions summarised in the following diagram,hxyzy . &zfzxy fxyzz & .yQxyz  !x fyzxz . &yQyzx Qzxyy & .zRxyz14



where x; y; z are three of the 
oordinates XI , and the arrow with label x denotes a T-duality alongthe x-dire
tion, or along its dual ~x. The stru
ture 
onstants h, f and Q �x the lo
al stru
tureof the H-
ux, nilmanifold and T-fold ba
kgrounds, respe
tively, while the R-
ux ba
kground doesnot have a des
ription as a 
onventional spa
etime. Some of these dualities have been shown to betrue symmetries of string theory [34℄, others are only 
onje
tural. The issue of whether or not thea
tion of O(3; 3;Z) is a symmetry of string theory is an important one, but will not be dis
ussedfurther here.The remainder of this se
tion is devoted to the derivation and des
ription of the D-branes livingon the eight ba
kgrounds in the above diagram, from the embedding in doubled geometry.4.1 T 3 with H-
uxConsider the 
hoi
e of polarisation of 
oordinatesx = �xIXI = X1 ; y = �yIXI = X2 ; z = �zIXI = X3 ;~x = e�xIXI = X4 ; ~y = e�yIXI = X5 ; ~z = e�zIXI = X6 ; (4.5)when
e the Wess-Zumino term in eq. (4.4) be
omesT = �12mdx ^ dy ^ dz : (4.6)To simplify the dis
ussion we 
hoose the doubled metri
 in the Lie algebra frame to be MMN =ÆMN . The pull-ba
k of this metri
 to the doubled spa
e is MIJ = PMIÆMNPNJ , so that, usingeq. (2.7) in this polarisation6 (m0 � m=2),
MIJ = 0BBBBBBBBB�

1 +m02y2 +m02z2 �m02xy �m02xz 0 m0z �m0y�m02xy 1 +m02z2 +m02x2 �m02yz �m0z 0 m0x�m02xz �m02yz 1 +m02x2 +m02y2 m0y �m0x 00 �m0z m0y 1 0 0m0z 0 �m0x 0 1 0�m0y m0x 0 0 0 1
1CCCCCCCCCA :

This polarisation gives rise to a physi
al ba
kground whi
h is a three-dimensional torus with 
on-stant H-
ux. The \lo
al frame" version of the Lie algebra reads[Zx; Zy℄ = hxyzXz ; [Zy; Zz℄ = hyzxXx ; [Zz; Zx℄ = hzxyXy ;hxyz = hyzx = hzxy = �m;where Zi � (Zx; Zy; Zz) and Xi � (Xx;Xy;Xz) are obtained as 
ontra
tions of the 
orrespondinggenerators in eq. (2.5) with the inverse of vielbeins. The Zi and Xi are related, respe
tively, to theisometries of the three-torus and to the antisymmetri
 tensor transformation of the B-�eld.6Sin
e the three-torus is 
at, the three-dimensional vielbein is emi = Æmi , and we have gij = Æij . Moreover, wehave 
hosen B = m0(xdy ^ dz + ydz ^ dx+ zdx ^ dy). 15



4.1.1 Solving the boundary 
onditionsTo begin the analysis of D-brane embeddings, �rst note that due to the relation (3.18) betweenNeumann and Diri
hlet proje
tors any given D-brane has equal numbers of Neumann and Diri
hletdire
tions in the doubled spa
e. Thus in this example ea
h brane has three Neumann and threeDiri
hlet dire
tions.The polarisation proje
tors and the O(3; 3) invariant metri
 in a given open 
ontra
tible pat
h
an always be written as�IJ =  1I 00 0 ! ; e�IJ =  0 00 1I ! ; LIJ =  0 1I1I 0 ! : (4.7)The form of allowed Diri
hlet proje
tors in this basis is determined by the four boundary 
onditions(I){(IV) listed in se
tion 3.2, and we start with 
ondition (I). That is, we solve the null 
ondition(3.17) together with the proje
tor 
ondition �2 = �. One �nds� =  a b
 1I� aT ! ; (4.8a)where the 3� 3 submatri
es a; b; 
 satisfybT = �b ;
T = �
 ; ab+ (ab)T = 0 ;
a+ (
a)T = 0 ;b
 = a(1I� a) : (4.8b)With the restri
tions (4.8b) the null 
ondition (3.13) for the Neumann proje
tor � = 1I� � is alsosatis�ed, and as a 
onsequen
e so is the relation (3.18).Next we impose the boundary 
ondition (II), i.e., we require that ! = 0 in eq. (3.1), so that�IJ �IT jD = 0 : (4.9)As shown in se
tion 3.2 this is equivalent to requiring�I0 [I�J 0J�K0K℄ tI0J 0K0 = �6m �x[I�yJ�zK℄ � 0 ; (4.10)and sin
em 6= 0 this means that the totally antisymmetrised produ
t of Neumann proje
tor entriesin the x-, y- and z-rows must vanish. Thus we may keep only those of the Diri
hlet proje
tors whi
h
orrespond to su
h Neumann proje
tors. The physi
al interpretation of this requirement is obtainedby inserting the proje
tor in the doubled Diri
hlet 
ondition (3.11a), whi
h shows that the proje
torde�nes one of the Diri
hlet dire
tions in the doubled spa
e to in
lude a 
omponent in the spa
espanned by the x-, y- and z-axes. On the other hand, it is immediately 
lear that any brane withat least one Neumann dire
tion in the spa
e spanned by the ~x-, ~y- and ~z-axes will automati
allysatisfy (4.9), sin
e �~xT = �~yT = �~zT = 0. Thus boundary 
ondition (II) prohibits branes wrappingthe whole of the physi
al T 3. 16



Further limitations on the solutions (4.8) are imposed by boundary 
ondition (III), whi
h re-quires the Neumann and Diri
hlet proje
tors to be orthogonal with respe
t to the doubled metri
,�TM � = 0 : (4.11)Solving the system of equations (4.8b), (4.10) and (4.11) one �nds a generi
 form of the Diri
hletproje
tors allowed, plus a number of solutions 
orresponding to those values of the free parametersin a; b; 
 where the proje
tor (4.8a) blows up. The generi
 solution has the blo
k matrix form�0 =  a b
 1I� aT ! ; (4.12a)with the matri
es a, b, 
 given bya = 0B� a11 m0xb13 �m0x(a32�m0zb13)b13m0yb13+a33�10 1� a33 + a11 (a33�1)(a32�m0zb13)m0yb13+a33�10 a32 a33 1CA ; (4.12b)
b = 0B� 0 (a32�m0zb13)b13m0yb13+a33�1 b13� (a32�m0zb13)b13m0yb13+a33�1 0 0�b13 0 0 1CA ; 
 = 0B� 0 a11a32b13 a11(a33�1)b13�a11a32b13 0 m0xa11�a11(a33�1)b13 �m0xa11 0 1CA ;(4.12
)where there are two free parameters, here taken to be b13 and a33. The other matrix elementsdepend on these two parameters via the relations( 0 = a232 � 2m0zb13a32 + b213(1 +m02z2) + (m0yb13 + a33)(m0yb13 + a33 � 1) ;a11 = �[b213(1 +m02z2) +m0yb13(m0yb13 + a33 � 1)�m0zb13a32℄=(m0yb13 + a33 � 1) :(4.12d)There are a number of values for the parameters b13 and a33 for whi
h 
ertain elements in �0 blowup, in parti
ular when b13 = 0 or a33 = 1 � m0yb13. We 
an still make sense of the Diri
hletproje
tor � at these spe
i�
 values of the parameters by �rst setting the divergent elements in thesubmatri
es a, b, 
 to zero and then solving eqs. (4.8b), (4.10) and (4.11). In this way one �ndsthree independent solutions, ea
h evaluated at b13 = 0 and/or a33 = 1 �m0yb13, in addition to �0(whi
h is evaluated at b13 6= 0 and a33 6= 1�m0yb13). Two of these solutions will be given in eqs.(4.17) and (4.18) below, while the third is of the forma = 0B� 0 0 00 1� a33 a230 a23 a33 1CA ; b = O0 ; a223 = a33(1� a33) ; (4.13a)
 = 0B� 0 �m0za33 �m0ya23 m0y(1� a33) +m0za23m0za33 +m0ya23 0 0�m0y(1� a33)�m0za23 0 0 1CA ; (4.13b)17



where O0 denotes the 3�3 matrix of zeros. We have thus found that the Diri
hlet proje
tors whi
hsatisfy the 
onditions (I), (II) and (III) of se
tion 3.2, fall into two 
lasses. The �rst, of the form(4.12), is valid when b13 6= 0 and a33 6= 1 �m0yb13. The se
ond 
lass, given in eqs. (4.13), (4.17)and (4.18), 
ontains proje
tors valid at the spe
ial points b13 = 0 and/or a33 = 1 �m0yb13. Allother solutions 
an be derived from these four by permutation of the 
oordinates x, y, z, ~x, ~y, ~z,and by setting the free parameters to appropriate values or fun
tions.It remains to impose boundary 
ondition (IV), integrability. However, due to the 
omplexity ofthe generi
 solution (4.12) we failed to 
on�rm, or to derive 
onditions for integrability in general.We therefore 
hoose to fo
us on a subset of solutions, namely those for whi
h one of the x-, y- andz-rows in the Neumann proje
tor vanishes. Su
h proje
tors trivially satisfy the stru
ture 
onstant
ondition (4.10), and we single out the x-dire
tion so that�xI = (1I� �)xI = 0 : (4.14)In other words, (1I � a;�b)xI = 0 8 I 2 fx; y; z; ~x; ~y; ~zg. Inserting this proje
tor in the doubledDiri
hlet 
ondition (3.11a) tells us that what we have done is to 
hoose the x-dire
tion to be Diri
h-let. Similarly, 
hoosing the y- or z-row to vanish renders the 
orresponding 
oordinate Diri
hlet,and the respe
tive analysis is related to the one for x by a 
oordinate permutation.The system of equations (4.8b), (4.11) and (4.14) has four solutions (a

ording to Maple 9.5and 11).� The �rst solution is �1 =  1I 0B 0 ! ; (4.15)where B is the B-�eld appearing in the doubled metri
, 
f. eq. (2.6).� The se
ond is �2 =  a 0
 1I� aT ! ; (4.16a)where the submatri
es a and 
 are given bya =0B� 1 0 00 0 00 0 0 1CA ; 
 = 0B� 0 0 00 0 �m0x0 m0x 0 1CA : (4.16b)� The third solution is �3 =  a 0
 1I� aT ! ; (4.17a)where a = 0B� 1 0 00 1� a33 a230 a23 a33 1CA ; 
 = 0B� 0 
12 
13�
12 0 0�
13 0 0 1CA ; (4.17b)18



and the entries in a and 
 satisfya223 = a33(1� a33) ; 
12 = m0z(1� a33)�m0ya23 ; 
13 = m0za23 �m0ya33 : (4.17
)� The fourth and �nal solution is �4 =  a b
 1I� aT ! ; (4.18a)where a = 0B� 1 0 0�m0yb23 a33 0�m0zb23 0 a33 1CA ; b = 0B� 0 0 00 0 b230 �b23 0 1CA ; (4.18b)
 = 0B� 0 m0za33 �m0ya33�m0za33 0 a33(a33 � 1)=b23m0ya33 �a33(a33 � 1)=b23 0 1CA ; (4.18
)and b23 and a33 satisfyb23 = m0x(2a33 � 1)�p(m0x)2 � 4a33(a33 � 1)2(1 + (m0x)2) 6= 0 ; 4a33(a33 � 1) � (m0x)2 : (4.18d)Note that �2 is just a permuted version of the solution (4.13) with a33 = 1.The Diri
hlet proje
tors given in eqs. (4.15) { (4.18) satisfy three of the 
onditions derived inse
tion 3.2, namely (I){(III), and the integrability 
ondition (IV) is now relatively straightforwardto solve. It is easy to see that integrability is automati
ally satis�ed for �1 and �2, whereas for�3 one �nds that only a33 = 0 and a33 = 1 give integrable Neumann proje
tors, and for �4 it isne
essary that� a33 = 0 ; b23 = � m0x1 + (m0x)2 � or � a33 = 1 ; b23 = m0x1 + (m0x)2 � : (4.19)Note that sin
e b23 = 0 in �4 is a singular point, this proje
tor is ill-de�ned at x = 0. However,upon inspe
tion one �nds that in the limit x ! 0, �4 approa
hes �1 when a33 = 1, and �2 whena33 = 0.In the following subse
tions we derive the expli
it embeddings of branes 
orresponding to theproje
tors (4.15) { (4.18), both in doubled spa
e and in physi
al spa
e.4.1.2 The Diri
hlet proje
tor �1: D0-branesFor the Diri
hlet proje
tor �1, solution (4.15) with non-trivial B-�eld, the Diri
hlet 
onditions(3.11a) be
ome �IJ��XJ = 0 ) f��x = ��y = �� z = 0g : (4.20)19



Thus this brane is ne
essarily fully Diri
hlet in the fx; y; zg dimensions, giving a D0-brane.7 Fromthe Neumann 
ondition (3.11b) we �nd�IKMIJ��XJ = 0 ) 8><>: ��~x�m0z��y �m0y��z = 0��~y +m0z��x�m0x��z = 0��~z +m0y��x+m0x��y = 0 (4.21)The solutions to (4.20) and (4.21) are of the form8><>: ~x(�; �) = f1(�) +m0z(�)y(�)~y(�; �) = f2(�) +m0 R d�[z(�)��x(�)� x(�)��z(�)℄~z(�; �) = f3(�)�m0x(�)y(�)for some arbitrary fun
tions fi. Sin
e the fi:s are mutually independent, the moduli spa
e ofallowed motions for the end-point of a string (whi
h by de�nition is at some �xed �) 
oin
ides withthe three dual dimensions. Thus the brane �lls up the dual f~x; ~y; ~zg dimensions, as expe
ted fromthe Diri
hlet 
onditions (4.20) and the fa
t that the brane must have three Neumann dire
tions indoubled spa
e.Be
ause the brane is fully Diri
hlet in the fx; y; zg dire
tions, the appli
ation of the self-duality
onstraint (2.4), whi
h we use to eliminate dual 
oordinates, yields no new information. In fa
t, the
onstraint be
omes just the Neumann 
onditions (4.21). Thus the Diri
hlet proje
tor �1 de�nes aD0-brane lo
ated at an arbitrary point in the physi
al spa
e, or rather, a foliation of D0-branes.4.1.3 The Diri
hlet proje
tor �2: D2-branesThe Diri
hlet 
onditions (3.11a) for the solution �2 in eqs. (4.16) be
ome�IJ��XJ = 0 ) 8><>: ��x = 0m0x��y + �� ~z = 0m0x�� z � �� ~y = 0 (4.22)This brane is always normal to the x-dire
tion (a requirement imposed by eq. (4.14)), but a straightline in the y-~z plane and a straight line in the z-~y plane, and it is in
lined by an angle determinedby the position along the x-axis. From the Neumann 
ondition (3.11b) we �nd�IKMIJ��XJ = 0 ) f�� ~x = ��y = ��z = 0g : (4.23)Note that for x = 0 the dire
tions ~y and ~z are Diri
hlet. This is a D2-brane lo
ated at x = 0 and�lling up the y, z and ~x dimensions. The des
ription in terms of physi
al spa
e 
oordinates (x; y; z)is straightforward, sin
e the self-duality 
onstraint (2.4) redu
es to a trivial ex
hange of Neumannand Diri
hlet 
onditions on original and dual 
oordinates: �� ~xi = ���xi, ��~xi = ���xi, wherexi � (x; y; z), ~xi � (~x; ~y; ~z).7In our notation a Dp-brane extends in p of the physi
al dimensions x, y, z. This is be
ause our target spa
e doesnot in
lude the physi
al time dire
tion, whi
h is part of the external un
ompa
ti�ed four-dimensional spa
etime.20



For x 6= 0 eqs. (4.22) and (4.23) are solved by (f1 and f2 are arbitrary fun
tions)8><>: x = x(�)y = y(�)z = z(�) 8><>: ~x = ~x(�)~y =m0x(�)z(�) + f1(�)~z = �m0x(�)y(�) + f2(�) (4.24)The end-point (at �xed �) of this string moves freely along the ~x-dire
tion, while it is restri
ted to astraight line in the z-~y plane and a straight line in the y-~z plane, with in
linations parameterised bythe position of the brane along the x-axis. The values of the fun
tions f1(�) and f2(�) determinethe position of the lines in their respe
tive planes. Sin
e the number of Neumann degrees offreedom in the fy; z; ~y; ~zg dire
tions is two, given by y(�) and z(�), the brane de�nes a two-dimensional plane in these dimensions. Thus eqs. (4.24) de�ne a foliation of D-branes extendingalong the ~x-dire
tion, whose remaining two Neumann dire
tions span a two-dimensional surfa
ein the fy; z; ~y; ~zg dire
tions, with x-dependent orientation. Note how this embedding 
onsistentlyredu
es to the x = 0 
ase analysed above, with the brane oriented along the y- and z-dire
tions.Thus there is a 
ontinuous foliation for all x.Sin
e this brane is rotated in a subspa
e of the doubled spa
e involving both physi
al anddual 
oordinates, it is not immediately obvious what kind of physi
al brane it 
orresponds to. To�nd out, we insert the solution (4.24) for ~y and ~z into the self-duality 
onstraint and solve theresulting system of equations. Imposing the Diri
hlet and Neumann 
onditions (4.22) and (4.23)the self-duality 
onstraint (2.4) redu
es to8><>: �� ~x = m0z��y �m0y��z � ��x�� ~y = �m0z��x� ��y��~z = m0y��x� �� z (4.25)Be
ause y and z are both independent of �, the �rst equation implies that ��x is in fa
t a 
onstant.As a 
onsequen
e ��f1 and ��f2 are also 
onstants. The two equations for ��~y and ��~z in (4.25)be
ome, upon insertion of the solutions (4.24) for ~y and ~z, a system of partial di�erential equationsfor y and z, ( ��y(�) + 2m0z(�)��x+ ��f1 = 0�� z(�)� 2m0y(�)��x+ ��f2 = 0Dis
arding the trivial unphysi
al solution with all 
oordinates set to 
onstants, this system has twosolutions (Ci are arbitrary nonzero 
onstants),n x = C1 ; y = C2� + C3 ; z = C4� + C5 o (4.26)8><>: x = C6� +C7y = C8 sin(2C6m0�) + C9 
os(2C6m0�) + C10z = C9 sin(2C6m0�)� C8 
os(2C6m0�) + C11 (4.27)The solution (4.26) di
tates that the string end-point move on a straight line in the y-z plane, whilethe solution (4.27) des
ribes a 
ir
ular motion in the same plane. In physi
al terms, the straight21



line solution 
orresponds to an ele
tri
ally 
harged string end-point moving in an ele
tri
 �eld,while the 
ir
ular motion is that of the 
harge in a magneti
 �eld. The a
tual path of a given stringis an arbitrary linear 
ombination of the two propagation modes, when
e the number of Neumanndegrees of freedom is two. Hen
e the physi
al brane is a D2-brane normal to the x-axis, �llingup the y-z plane. Sin
e the x-position is also a free parameter, there is a
tually a foliation of thephysi
al spa
e by D2-branes normal to the x-axis.4.1.4 The Diri
hlet proje
tor �3: D1-branesFor the Diri
hlet proje
tor �3 in (4.17), the Diri
hlet 
onditions (3.11a) be
ome�IJ��XJ = 0 ) 8>>>>>><>>>>>>: ��x = 0a23��y + a33�� z = 0(1� a33)��y + a23�� z = 0a23�� ~z � a33�� ~y = 0(1� a33)�� ~z � a23�� ~y = 0 (4.28)where a223 = a33(1� a33). Analogously to the previous analysis, we see immediately that the braneis always normal to the x-dire
tion (as required by eq. (4.14)), while the orientation in the y-z and~y-~z planes depends on a33. Re
all that integrability restri
ts a33 to be either 0 or 1 (see se
tion4.1.1). For a33 = 0 the Neumann 
onditions (3.11b) read�IKMIJ��XJ = 0 ) 8><>: ��z = 0��~y +m0z��x = 0��~x�m0z��y = 0and the Diri
hlet 
onditions (4.28) redu
e to��x = ��y = �� ~z = 0 :This is a foliation of D1-branes extending along the z-, ~x- and ~y-axes, for arbitrary x, y and ~z. Fora33 = 1 the Neumann 
onditions are�IKMIJ��XJ = 0 ) 8><>: ��y = 0��~z �m0y��x = 0��~x+m0y��z = 0and the Diri
hlet 
onditions (4.28) be
ome��x = ��z = �� ~y = 0 ;so again we have a foliation of D1-branes, but now extending along the y-, ~x- and ~z-axes, forarbitrary x, z and ~y.The des
ription of these branes in terms of physi
al 
oordinates (x; y; z) is simple, sin
e the self-duality 
onstraint just reprodu
es the Neumann and Diri
hlet 
onditions in ea
h of the two 
asesabove. Thus for a33 = 0 we have a foliation of physi
al D1-branes extending in the z-dire
tion, andfor a33 = 1 a foliation of physi
al D1-branes extending in the y-dire
tion.22



4.1.5 The Diri
hlet proje
tor �4: D2-branesInserting the Diri
hlet proje
tor �4, de�ned in eqs. (4.18), into the Diri
hlet 
onditions (3.11a)yields �IJ��XJ = 0 ) 8><>: ��x = 0a33��y + b23�� ~z = 0a33�� z � b23�� ~y = 0 (4.29)and the Neumann 
onditions (3.11b) read
�IKMIJ��XJ = 0 ) 8>>>>>>>>><>>>>>>>>>:

��x = 0��~x�m0z��y +m0y��z = 0(b23 +m0x(m0xb23 � a33))��y+(m0xb23 � a33)��~z = 0(b23 +m0x(m0xb23 � a33))��z�(m0xb23 � a33)�� ~y = 0where a33 and b23 are restri
ted by integrability to the values (4.19). In parti
ular, re
all thatx 6= 0. For a33 = 0 we have ��x = �� ~z = �� ~y = 0 ;i.e., a D2-brane 
oin
iding with the y-z plane. For a33 = 1 the brane in doubled spa
e is a straightline in the y-~z plane and a straight line in the z-~y plane, with orientation determined by the positionon the x-axis. In the four dimensions fy; z; ~y; ~zg it is thus a two-dimensional plane, while it extendsalso along ~x and is normal to the x-dire
tion. This is similar to the situation in the analysis of�2 (see se
tion 4.1.3), and in the same way it proje
ts to a physi
al D2-brane at arbitrary x 6= 0,
oin
iding with the y-z plane. Substituting the self-duality 
onstraint in the Neumann 
onditionsyields the partial di�erential equations( (m0xb23 � a33)��y + b23��z = 0 ;(m0xb23 � a33)��z � b23��y = 0 ;whi
h des
ribe a foliation of physi
al D2-branes normal to the x-axis. Thus �2 and �4 both de�neD2-branes, however they des
ribe di�erent foliations, be
ause of the di�eren
e in parameterisationof the orientation of the brane in doubled spa
e. After the physi
al proje
tion this translates intoa di�eren
e in dynami
s of the end-points of strings.As noted in se
tion 4.1.1, in the singular limit x ! 0 (so that b23 ! 0), for a33 = 0, �4approa
hes �2 at x = 0. That is, also at x = 0 there is a D2-brane 
oin
iding with the y-z plane,as there is for nonzero x, so the foliation is 
ontinuous. For a33 = 1 it is easy to see from eqs. (4.29)that �4 approa
hes �1 when x! 0. That is, as x approa
hes zero the two-dimensional surfa
e inthe fy; z; ~y; ~zg dimensions 
hanges orientation until it 
oin
ides entirely with the ~y-~z plane, leavingall the 
oordinates x; y; z Diri
hlet, resulting in a D0-brane at x = 0. As a result, we have aninterpolation of sorts, between D2-branes and D0-branes, related by a rotation in doubled spa
e.23



It is more diÆ
ult to see a dire
t 
onne
tion with the D1-branes �3, but sin
e all solutions arein prin
iple related via the generi
 one in eq. (4.12) we expe
t them all to rotate into ea
h other,unless there are bran
h 
uts in the moduli spa
e of solutions.4.1.6 SummaryWe have found that the four boundary 
onditions (I){(IV) de�ning D-branes of the doubled spa
esigma model, supplemented with the restri
tion (4.14), �xI = 0, allow only the following physi
albranes on a 
at torus with H-
ux (4.6):� Every D-brane has at least one Diri
hlet dire
tion; we 
hose the x-dire
tion (�xI = 0).� �1: D0-branes (fully Diri
hlet) at arbitrary position.� �2 and �4: D2-branes normal to the x-axis and �lling up the y-z plane, at arbitrary x-position.� �3: Straight line D1-branes along the y- and z-axes.All other branes are prohibited, in
luding spa
e�lling D3-branes.In doubled spa
e, with the polarisation (4.7), the allowed 
on�gurations are illustrated in thetable below, where we denote worldvolume dire
tions by �, dire
tions perpendi
ular to the braneby -, and dire
tions with respe
t to whi
h the brane is in
lined by = or n (same in
lination of theslash indi
ates the plane in whi
h the brane is a straight line).Diri
hlet Type ofproje
tor brane x y z ~x ~y ~z�1 D0 - - - � � ��2, �4(a33 = 1) D2 - = n � n =�3(a33 = 0) D1 - - � � � -�3(a33 = 1) D1 - � - � - ��4(a33 = 0) D2 - � � � - -4.2 Nilmanifold (f-
ux)Having 
ompleted the analysis of branes in the H-
ux 
ase, we now apply T-duality to the set of
onsistent Diri
hlet proje
tors �1, �2, �3(a33 = 0; 1), �4(a33 = 0; 1), and analyse the resulting dualproje
tors for 
onsisten
y. In terms of the doubled geometry, su
h an a
tion entails a global trans-lation and rotation of the brane, or from another point of view, a di�erent 
hoi
e of polarisation.In terms of the physi
al target spa
e, the lo
al geometry as well as the 
ux are radi
ally 
hanged,but we will see that the D-branes transform in a standard way.24



Stri
tly speaking, Bus
her's rules 
an only be applied along isometri
 dire
tions for whi
h theba
kground is invariant. The solution to the Bian
hi identities 
hosen in (4.2) is the most demo
rati
one, but the 
orresponding vielbein (2.7) is not invariant along any of the T 3 dire
tions x; y; z. One
an therefore not perform a T-duality along these dire
tions. However, a di�erent parameterisation(or gauge 
hoi
e) of the solutions to the Bian
hi identities may render some dire
tions isometryinvariant, along whi
h T-duality is then allowed.8 The solutions to the Bian
hi identities on thedual side may be restored to the form (4.2) by an appropriate 
oordinate 
hange.We derive the dual ba
kgrounds and Diri
hlet proje
tors in ea
h of the three f -
ux 
on�gu-rations obtained by dualising on
e along, respe
tively, the x-, y- and z-dire
tions. The dualisedNeumann proje
tors are listed in appendix A.1, and they trivially satisfy all dual boundary 
ondi-tions. It is for instan
e straightforward to see that the stru
ture 
onstant 
ondition (II) is satis�edon the dual side, as follows. Sin
e in the H-
ux 
ase the only nonzero 
omponent of the stru
ture
onstant is txyz = �m, after dualising on
e the only nonzero 
omponents are, respe
tively, t0~xyz,t0x~yz and t0xy~z. The 
orresponding 
onditions then read�0~x[I�0yJ�0zK℄t0~xyz = 0 ; �0x[I�0~yJ�0zK℄t0x~yz = 0 ; �0x[I�0yJ�0~zK℄t0xy~z = 0 :In the 
ase of T-duality along x, all of the dual Neumann proje
tors satisfy �0~xI = 0, while forduality along y or z they all satisfy �0xI = 0. Thus we see that all the branes 
orresponding to �1,�2, �3(a33 = 0; 1), �4(a33 = 0; 1) transform 
onsistently under one T-duality.4.2.1 Dual des
ription of the branesTo see what kind of branes the dual proje
tors 
orrespond to, one may simply ex
hange the relevant
oordinates in the 
orresponding boundary 
onditions in the analysis in se
tion 4.1. For instan
ethe brane 
orresponding to the T-dual along x of �1 may be obtained by ex
hanging x$ ~x in theDiri
hlet 
onditions (4.20), so that �� ~x = ��y = �� z = 0 :We thus �nd a D1-brane along the x-axis, whi
h is 
onsistent with dualising a D0-brane along thex-axis. For the T-duals along y and z we �nd D1-branes along the y- and z-axes, respe
tively.Similarly, for �2 the T-dual along x is seen to be a D3-brane while the T-duals along y and z areD1-branes in
lined in the y-z plane at angles parameterised by x. For �3(a33 = 0) the T-dualsalong x and y are D2-branes in the x-z and y-z planes, respe
tively, whereas the T-dual along zis a D0-brane at an arbitrary point. The same holds for �3(a33 = 1), ex
ept the roles of y and zare ex
hanged. The D2-brane �4(a33 = 0) be
omes a D3-brane under dualisation along x, while8For instan
e, in eq. (4.2) we 
an make the 
hange of 
oordinates X5 ! X05 = X5 � 12mX3X1 and X6 ! X06 =X6 � 12mX2X1, whi
h leaves the Bian
hi identities invariant. The Maurer-Cartan one-forms then be
ome P5 =dX05 +mX3dX1 and P6 = dX06 +mX1dX2, whi
h 
orresponds to a duality twist redu
tion with monodromy aroundthe x-dire
tion [11℄. 25



its dual in the y-dire
tion is a D1-brane along z and its dual in the z-dire
tion a D1-brane alongy. Finally, also �4(a33 = 1) T-dualises along x to a D3-brane, but its dual along y des
ribes astraight line in the y-z plane and a straight line in the ~y-~z plane, with one Neumann degree offreedom in ea
h plane. It thus proje
ts to a physi
al D1-brane in the y-z plane, with orientationparameterised by x. The T-dual along z is analogous, again giving a D1-brane in the y-z plane,but with a di�erent orientation.All branes thus transform under T-duality in the standard way, and we summarise the analysisin tables below, together with the dual ba
kgrounds, for ea
h of the three dualisations along thex-, y- and z-dire
tions.4.2.2 Nilmanifold with stru
ture 
onstant fyzx = �mPerforming a T-duality along x 
orresponds to 
hoosing the polarisationx = �xIXI = X4 ; y = �yIXI = X2 ; z = �zIXI = X3 ;~x = e�xIXI = X1 ; ~y = e�yIXI = X5 ; ~z = e�zIXI = X6 : (4.30)Note that the roles of X1 and X4 have been ex
hanged relative to the H-
ux 
ase in se
tion 4.1.The expli
it form of the Lie algebra is[Zy; Zz℄ = fyzxZx ; [Zz;Xx℄ = �fzyxXy ; [Xx; Zy℄ = fyzxXz ;fyzx = �m:The doubled metri
 in this polarisation isM0x = 0BBBBBB� 1 �m0z m0y 0 0 0�m0z 1 +m02~x2 +m02z2 �m02yz �m02~xy 0 m0~xm0y �m02yz 1 +m02~x2 +m02y2 �m02~xz �m0~x 00 �m02~xy �m02~xz 1 +m02y2 +m02z2 m0z �m0y0 0 �m0~x m0z 1 00 m0~x 0 �m0y 0 1
1CCCCCCA :After imposing the self-duality 
onstraint (2.4) the physi
al ba
kground is a three-dimensionalnilmanifold with zero B-�eld and no 
ux. The spe
trum of allowed D-branes, whi
h all wrap thex-dire
tion (sin
e the original branes are all Diri
hlet along x), are summarised in the table below.Duality Diri
hlet Type ofdire
tion proje
tor brane x y z ~x ~y ~zx �1 D1 � - - - � ��2, �4(a33 = 1) D3 � = n - n =�3(a33 = 0) D2 � - � - � -�3(a33 = 1) D2 � � - - - ��4(a33 = 0) D3 � � � - - -26



Note that the branes 
orresponding to the proje
tors �2 and �4(a33 = 1) are not fully Neumannalong the dire
tions x; y; z in doubled spa
e; they are in
lined in the y-~z and ~y-z planes. Never-theless, after imposing the self-duality 
onstraint (2.4), with x; y; z be
oming physi
al 
oordinates,these branes 
orrespond to D3-branes in physi
al spa
e, 
ompletely �lling up the x; y; z dimensions.4.2.3 Nilmanifold with stru
ture 
onstant fzxy = �mHere we T-dualise along y, 
orresponding to the polarisationx = �xIXI = X1 ; y = �yIXI = X5 ; z = �zIXI = X3 ;~x = e�xIXI = X4 ; ~y = e�yIXI = X2 ; ~z = e�zIXI = X6 : (4.31)The Lie algebra in this 
ase reads[Zx;Xy ℄ = �fxzyXz ; [Xy; Zz℄ = fzxyXx ; [Zz; Zx℄ = fzxyZy ;fzxy = �m:The doubled metri
 in this polarisation isM0y = 0BBBBBB� 1 +m02~y2 +m02z2 m0z �m02xz 0 �m02x~y �m0~ym0z 1 �m0x 0 0 0�m02xz �m0x 1 +m02x2 +m02~y2 m0~y �m02~yz 00 0 m0~y 1 �m0z 0�m02x~y 0 �m02~yz �m0z 1 +m02x2 +m02z2 m0x�m0~y 0 0 0 m0x 1
1CCCCCCA :Again, the physi
al ba
kground 
orresponding to this polarisation is a nilmanifold, but with theroles of the 
oordinates x and y ex
hanged relative to the previous 
ase. The spe
trum of allowedD-branes is given byDuality Diri
hlet Type ofdire
tion proje
tor brane x y z ~x ~y ~zy �1 D1 - � - � - ��2, �4(a33 = 1) D1 - n n � = =�3(a33 = 0) D2 - � � � - -�3(a33 = 1) D0 - - - � � ��4(a33 = 0) D1 - - � � � -4.2.4 Nilmanifold with stru
ture 
onstant fxyz = �mT-dualising along z, with polarisationx = �xIXI = X1 ; y = �yIXI = X2 ; z = �zIXI = X6 ;~x = e�xIXI = X4 ; ~y = e�yIXI = X5 ; ~z = e�zIXI = X3 ; (4.32)27



and Lie algebra[Zx; Zy℄ = fxyzZz ; [Zy;Xz ℄ = �fyxzXx ; [Xz; Zx℄ = fxyzXy ;fxyz = �m;the doubled metri
 isM0z = 0BBBBBB� 1 +m02y2 +m02~z2 �m02xy �m0y 0 m0~z �m02x~z�m02xy 1 +m02x2 +m02~z2 m0x �m0~z 0 �m02y~z�m0y m0x 1 0 0 00 �m0~z 0 1 0 m0ym0~z 0 0 0 1 �m0x�m02x~z �m02y~z 0 m0y �m0x 1 +m02x2 +m02y2
1CCCCCCA :In this nilmanifold the 
oordinates x and z are inter
hanged with respe
t to the nilmanifold inse
tion 4.2.2. The spe
trum of dual D-branes is given byDuality Diri
hlet Type ofdire
tion proje
tor brane x y z ~x ~y ~zz �1 D1 - - � � � -�2, �4(a33 = 1) D1 - = = � n n�3(a33 = 0) D0 - - - � � ��3(a33 = 1) D2 - � � � - -�4(a33 = 0) D1 - � - � - �4.3 T-fold (Q-
ux)Performing a �brewise T-duality along two dire
tions of the T 3 with H-
ux ba
kground gives aT-fold [4, 6℄. Su
h ba
kgrounds are often referred to as tori with \Q-
ux" [22℄. The dualisedNeumann proje
tors are listed in appendix A.2, and again they all satisfy the dual boundary
onditions. All branes 
orresponding to �1, �2, �3(a33 = 0; 1), �4(a33 = 0; 1) are thus 
onsistentunder two T-dualities. Below we list the branes appearing in ea
h of the three Q-
ux 
ases.4.3.1 T-fold with stru
ture 
onstant Qzxy = �mT-dualising su

essively along x and y 
orresponds to the polarisationx = �xIXI = X4 ; y = �yIXI = X5 ; z = �zIXI = X3 ;~x = e�xIXI = X1 ; ~y = e�yIXI = X2 ; ~z = e�zIXI = X6 : (4.33)The Lie algebra in this polarisation is[Xx;Xy ℄ = QzxyXz ; [Xy; Zz℄ = �QzyxZx ; [Zz;Xx℄ = QzxyZy ;Qzxy = �m;28



and the doubled metri
 isM0xy = 0BBBBBB� 1 0 m0~y 0 �m0z 00 1 �m0~x m0z 0 0m0~y �m0~x 1 +m02~x2 +m02~y2 �m02~xz �m02~yz 00 m0z �m02~xz 1 +m02~y2 +m02z2 �m02~x~y �m0~y�m0z 0 �m02~yz �m02~x~y 1 +m02~x2 +m02z2 m0~x0 0 0 �m0~y m0~x 1
1CCCCCCA :The physi
al ba
kground is a T-fold 
onstru
ted as a T 2 �bration over the z 
oordinate. Thedual branes are interpreted in the same way as in the nilmanifold 
ase, by ex
hanging dualised
oordinates in the relevant boundary 
onditions, resulting in the following table.Duality Diri
hlet Type ofdire
tions proje
tor brane x y z ~x ~y ~zx, y �1 D2 � � - - - ��2, �4(a33 = 1) D2 � n n - = =�3(a33 = 0) D3 � � � - - -�3(a33 = 1) D1 � - - - � ��4(a33 = 0) D2 � - � - � -4.3.2 T-fold with stru
ture 
onstant Qxyz = �mThe polarisation for duality along y and z isx = �xIXI = X1 ; y = �yIXI = X5 ; z = �zIXI = X6 ;~x = e�xIXI = X4 ; ~y = e�yIXI = X2 ; ~z = e�zIXI = X3 ; (4.34)the Lie algebra reads[Zx;Xy℄ = QxyzZz ; [Xy;Xz ℄ = QxyzXx ; [Xz ; Zx℄ = �QxzyZy ;Qxyz = �m;and the doubled metri
 in this polarisation isM0yz = 0BBBBBB� 1 +m02~y2 +m02~z2 m0~z �m0~y 0 �m02x~y �m02x~zm0~z 1 0 0 0 �m0x�m0~y 0 1 0 m0x 00 0 0 1 �m0~z m0~y�m02x~y 0 m0x �m0~z 1 +m02x2 +m02~z2 �m02~y~z�m02x~z �m0x 0 m0~y �m02~y~z 1 +m02x2 +m02~y2
1CCCCCCA :The T-fold here is given by a T 2 �bration over a 
ir
le with 
oordinate x. The resulting dual branesare 29



Duality Diri
hlet Type ofdire
tions proje
tor brane x y z ~x ~y ~zy, z �1 D2 - � � � - -�2, �4(a33 = 1) D2 - n = � = n�3(a33 = 0) D1 - � - � - ��3(a33 = 1) D1 - - � � � -�4(a33 = 0) D0 - - - � � �4.3.3 T-fold with stru
ture 
onstant Qyzx = �mT-duality along x and z 
orresponds to the polarisationx = �xIXI = X4 ; y = �yIXI = X2 ; z = �zIXI = X6 ;~x = e�xIXI = X1 ; ~y = e�yIXI = X5 ; ~z = e�zIXI = X3 ; (4.35)with Lie algebra[Xx; Zy℄ = �QyxzZz ; [Zy;Xz ℄ = QyzxZx ; [Xz ;Xx℄ = QyzxXy ;Qyzx = �m;and dual doubled metri
M0xz = 0BBBBBB� 1 �m0~z 0 0 0 m0y�m0~z 1 +m02~x2 +m02~z2 m0~x �m02~xy 0 �m02y~z0 m0~x 1 �m0y 0 00 �m02~xy �m0y 1 +m02y2 +m02~z2 m0~z �m02~x~z0 0 0 m0~z 1 �m0~xm0y �m02y~z 0 �m02~x~z �m0~x 1 +m02~x2 +m02y2
1CCCCCCA :The ba
kground is again a T-fold, but this time the �bration is over a 
ir
le with 
oordinate y.The dual branes areDuality Diri
hlet Type ofdire
tions proje
tor brane x y z ~x ~y ~zx, z �1 D2 � - � - � -�2, �4(a33 = 1) D2 � = = - n n�3(a33 = 0) D1 � - - - � ��3(a33 = 1) D3 � � � - - -�4(a33 = 0) D2 � � - - - �4.4 R-
uxIt has been 
onje
tured [5℄ that one 
an perform a T-duality along all three of the x, y and zdire
tions of the three-torus with H-
ux ba
kground. Following the nomen
lature of [22℄, we refer30



to the 
onje
tured resulting ba
kground as an \R-
ux" ba
kground. The self-duality 
onstraint(2.4) 
annot be 
onsistently imposed on the ba
kground in su
h polarisations so as to eliminatethe dual 
oordinates. It is un
lear what the pre
ise nature of su
h ba
kgrounds is, but it has been
onje
tured that 
onventional notions of Riemannian geometry break down lo
ally (in 
ontrast tothe T-fold, where Riemannian geometry breaks down only globally). Regardless of what the �nal
on
lusion 
on
erning su
h ba
kgrounds may turn out to be, the only understanding we 
urrentlyhave is through the doubled formalism [11℄.Assuming one 
an dualise along all three dire
tions, in the present setup there is only one dual,to whi
h the proje
tors transform as � 7! �0 = �zyx � �xyz ;where �xyz � �x�y�z. The dualised Neumann proje
tors are listed in appendix A.3, and they allsatisfy the dual boundary 
onditions.The polarisation 
orresponding to the R-
ux ba
kground isx = �xIXI = X4 ; y = �yIXI = X5 ; z = �zIXI = X6 ;~x = e�xIXI = X1 ; ~y = e�yIXI = X2 ; ~z = e�zIXI = X3 ; (4.36)and the asso
iated Lie algebra is[Xx;Xy℄ = RxyzZz ; [Xy ;Xz℄ = RyzxZx ; [Xz ;Xx℄ = RzxyZy ;Rxyz = �m:The doubled metri
 in this polarisation isM0xyz = 0BBBBBB� 1 0 0 0 �m0~z m0~y0 1 0 m0~z 0 �m0~x0 0 1 �m0~y m0~x 00 m0~z �m0~y 1 +m02~y2 +m02~z2 �m02~x~y �m02~x~z�m0~z 0 m0~x �m02~x~y 1 +m02~x2 +m02~z2 �m02~y~zm0~y �m0~x 0 �m02~x~z �m02~y~z 1 +m02~x2 +m02~y2
1CCCCCCA :As was dis
ussed in ref. [11℄ it is not possible in this 
ase to even lo
ally de�ne a des
ription of theba
kground as a 
onventional three-dimensional manifold. From the doubled metri
 one 
an reado� an e�e
tive metri
 g (
f. eq. (2.6)),ds2xyz = ��1 �dx2 + dy2 + dz2 +m02(~xdx+ ~ydy + ~zdz)2� ;where � � 1 +m02(~x2 + ~y2 + ~z2) ;and a B-�eld, B0xyz = ���1m0 (~z dx ^ dy + ~x dy ^ dz + ~y dz ^ dx) :The doubled spa
e interpretation of our Diri
hlet proje
tors in the R-
ux frame is given in thefollowing table. 31



Duality Diri
hlet Type ofdire
tions proje
tor brane x y z ~x ~y ~zx, y, z �1 D3 � � � - - -�2, �4(a33 = 1) D3 � n = - = n�3(a33 = 0) D2 � � - - - ��3(a33 = 1) D2 � - � - � -�4(a33 = 0) D1 � - - - � �As in the nilmanifold 
ase there appears a \D3-brane" that is not 
ompletely Neumann alongx; y; z if viewed as embedded in doubled spa
e. Although there is no physi
al proje
tion here, for
onsisten
y of terminology we have 
hosen to 
all it a D3-brane.To summarise this se
tion, we have seen that all the Diri
hlet proje
tors (4.15){(4.18) transform
onsistently under all T-dualities, thus de�ning 
onsistent D-branes on the entire doubled spa
e X .The proje
tor �1 was found also in [21℄ using the �ve-dimensional doubled torus 
onstru
tion, butthe proje
tors �2, �3(a33 = 0; 1) and �4(a33 = 0; 1) are new solutions.5 Dis
ussionWe have extended the doubled geometry 
losed string nonlinear sigma model [13℄ to a modelwith boundaries, 
orresponding to an open string worldsheet, and derived the asso
iated boundary
onditions. In
luding two geometri
ally motivated assumptions, the result is a set of four 
onditions,whi
h are ne
essary and suÆ
ient to de�ne 
onsistent lo
ally smooth D-branes in the doubled targetspa
e: the brane must be a maximally isotropi
 submanifold; its orientation must be 
ompatiblewith the Lie algebra stru
ture; its tangent and normal spa
es must be orthogonal with respe
t tothe metri
 on the doubled geometry; it must be integrable.Solving these 
onditions, we derived and 
lassi�ed in a systemati
 way the allowed D-branesin a toy model, the doubled three-torus with 
onstant NS-NS 
ux. We obtained the most generalpossible Diri
hlet proje
tors satisfying all boundary 
onditions ex
ept integrability, and then anal-ysed a subset of solutions where we �xed one Diri
hlet dire
tion. This 
hoi
e was made in order toavoid the 
omplexity of the most general solution, whi
h prevented us from solving the integrability
ondition. For these slightly simpler solutions the integrability 
ondition 
ould be solved, and eventhough our attention was 
on�ned to a subset of solutions, we established a 
lear strategy to derivethem and how to interpret them in physi
al terms. This in
luded applying T-duality along allphysi
al dire
tions and analysing the dual boundary 
onditions, as well as imposing a self-duality
onstraint.We found four types of globally 
onsistent D-branes, de�ned by the Diri
hlet proje
tors (4.15){(4.18) in the H-
ux 
ase, whi
h 
orrespond to D0-branes, D1-branes along the y- and z-axes, andD2-branes in the y-z plane; D3-branes are prohibited. Lawren
e et al [21℄ already found the D0-32



branes (here labelled �1) in their doubled-�bre approa
h to the same model, but the other solutionsare new. Our branes all transform in the standard way under T-duality, to the f -
ux, Q-
ux andR-
ux frames. We moreover found that the D2-branes and D0-branes are related by rotations inthe doubled spa
e, as one would expe
t from solutions that stem from the same generi
 proje
tor.Our analysis here was done only on the 
lassi
al level, and should be extended to quantum the-ory. Quantum studies have been performed in 
ases of vanishing 
ux [35, 36℄ and for models wherethe T-duality twist redu
es to orbifolding [37℄. In the latter analysis the authors found fra
tionalbranes apparently la
king geometri
 
ounterparts in the doubled formalism. More generally, theself-duality 
onstraint may be imposed on the quantum level via a gauging pro
edure [25, 13℄. Inthis paper we 
onsidered sigma models des
ribing the worldsheet in internal spa
e only. Moreover,the example in se
tion 4 took into a

ount only three 
ompa
t dimensions of the physi
al targetspa
e. In order to des
ribe viable string theory ba
kgrounds based on these toy models, the addi-tional spa
etime dire
tions of the target spa
e need to be in
luded in su
h a way that the sigmamodel is a 
onformal �eld theory, des
ribing the embedding of the worldsheet into a target spa
eof 
riti
al dimension, so that the ba
kground �elds satisfy the string equations of motion. It wouldbe interesting to see how the 
onformal symmetry appears in the doubled formalism, and how it isrelated to the self-duality 
onstraint.Another example of a doubled geometry is Drinfel'd doubles, whi
h are relevant in Poisson-LieT-duality [38, 39, 40℄, a generalisation of T-duality to target spa
es with nonabelian isometry, as wellas to nonisometri
 target spa
es. The study of D-branes in that framework en
ountered problemsdue to nonlo
ality issues [41℄, and we hope to resolve them by applying the present methodology.A
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torsHere we list the Neumann proje
tors obtained from the H-
ux ones by applying T-duality alongvarious dire
tions.A.1 NilmanifoldT-dualising only along one dire
tion the 
on�gurations are translated to the f -
ux frame, withdi�erent dual proje
tors depending on whi
h 
oordinate is dualised.33



A.1.1 Nilmanifold with stru
ture 
onstant fyzx = �mDualising along the x-dire
tion the resulting Neumann proje
tors �0 = �x � �x read�x1 = 0BBBBBB� 1 �m0z m0y 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 �m0~x m0z 1 00 m0~x 0 �m0y 0 1
1CCCCCCA ; �x2 = 0BBBBBB� 1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 0 0 00 0 m0~x 0 0 00 �m0~x 0 0 0 0

1CCCCCCA ;
�x3(a33 = 0) = 0BBBBBB� 1 �m0z 0 0 0 00 0 0 0 0 00 0 1 0 0 00 0 0 0 0 00 0 0 m0z 1 00 0 0 0 0 0

1CCCCCCA ; �x3(a33 = 1) = 0BBBBBB� 1 0 m0y 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 �m0y 0 1
1CCCCCCA ;

�x4(a33 = 0) = 0BBBBBB� 1 0 0 0 �m0yb23 �m0zb230 1 0 m0yb23 0 �b230 0 1 m0zb23 b23 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;

�x4(a33 = 1) = 0BBBBBB� 1 �m0z m0y 0 �m0yb23 �m0zb230 0 0 m0yb23 0 �b230 0 0 m0zb23 b23 00 0 0 0 0 00 0 0 m0z 1 00 0 0 �m0y 0 1
1CCCCCCA ; b23 = m0x1 + (m0x)2 :

A.1.2 Nilmanifold with stru
ture 
onstant fzxy = �mDualising along the y-dire
tion the Neumann proje
tors �0 = �y � �y read�y1 = 0BBBBBB� 0 0 0 0 0 0m0z 1 �m0x 0 0 00 0 0 0 0 00 0 m0~y 1 �m0z 00 0 0 0 0 0�m0~y 0 0 0 m0x 1
1CCCCCCA ; �y2 = 0BBBBBB� 0 0 0 0 0 00 0 m0x 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 �m0x 0

1CCCCCCA ;
34



�y3(a33 = 0) = 0BBBBBB� 0 0 0 0 0 0m0z 1 0 0 0 00 0 1 0 0 00 0 0 1 �m0z 00 0 0 0 0 00 0 0 0 0 0
1CCCCCCA ; �y3(a33 = 1) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 m0~y 1 0 00 0 0 0 1 0�m0~y 0 0 0 0 1

1CCCCCCA ;
�y4(a33 = 0) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 0m0zb23 b23 1 0 0 00 �m0~yb23 0 1 0 �m0zb23m0~yb23 0 0 0 1 �b230 0 0 0 0 0

1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;
�y4(a33 = 1) = 0BBBBBB� 0 0 0 0 0 0m0z 1 0 0 0 0m0zb23 b23 0 0 0 00 �m0~yb23 m0~y 1 �m0z �m0zb23m0~yb23 0 0 0 0 �b23�m0~y 0 0 0 0 1

1CCCCCCA ; b23 = m0x1 + (m0x)2 :
A.1.3 Nilmanifold with stru
ture 
onstant fxyz = �mDualising along the z-dire
tion the Neumann proje
tors �0 = �z � �z read�z1 =0BBBBBB� 0 0 0 0 0 00 0 0 0 0 0�m0y m0x 1 0 0 00 �m0~z 0 1 0 m0ym0~z 0 0 0 1 �m0x0 0 0 0 0 0

1CCCCCCA ; �z2 = 0BBBBBB� 0 0 0 0 0 00 1 0 0 0 00 �m0x 0 0 0 00 0 0 1 0 00 0 0 0 0 m0x0 0 0 0 0 1
1CCCCCCA ;

�z3(a33 = 0) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 �m0~z 0 1 0 0m0~z 0 0 0 1 00 0 0 0 0 1
1CCCCCCA ; �z3(a33 = 1) = 0BBBBBB� 0 0 0 0 0 00 1 0 0 0 0�m0y 0 1 0 0 00 0 0 1 0 m0y0 0 0 0 0 00 0 0 0 0 0

1CCCCCCA ;
�z4(a33 = 0) = 0BBBBBB� 0 0 0 0 0 0m0yb23 1 �b23 0 0 00 0 0 0 0 00 0 �m0~zb23 1 �m0yb23 00 0 0 0 0 0m0~zb23 0 0 0 b23 1

1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;35



�z4(a33 = 1) = 0BBBBBB� 0 0 0 0 0 0m0yb23 0 �b23 0 0 0�m0y 0 1 0 0 00 �m0~z �m0~zb23 1 �m0yb23 m0ym0~z 0 0 0 1 0m0~zb23 0 0 0 b23 0
1CCCCCCA ; b23 = m0x1 + (m0x)2 :

A.2 T-foldT-dualising along two dire
tions the 
on�gurations are translated to the Q-
ux frame, with di�erentdual proje
tors depending on whi
h pair of 
oordinates is dualised.A.2.1 T-fold with stru
ture 
onstant Qzxy = �mDualising along the (x; y)-dire
tions the resulting Neumann proje
tors �0 = �y�x � �x�y read�xy1 = 0BBBBBB� 1 0 m0~y 0 �m0z 00 1 �m0~x m0z 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 �m0~y m0~x 1
1CCCCCCA ; �xy2 = 0BBBBBB� 1 0 0 0 0 00 0 m0~x 0 0 00 0 1 0 0 00 0 0 0 0 00 0 0 0 1 00 0 0 0 �m0~x 0

1CCCCCCA ;
�xy3 (a33 = 0) = 0BBBBBB� 1 0 0 0 �m0z 00 1 0 m0z 0 00 0 1 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1CCCCCCA ; �xy3 (a33 = 1) = 0BBBBBB� 1 0 m0~y 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 1 00 0 0 �m0~y 0 1
1CCCCCCA ;

�xy4 (a33 = 0) = 0BBBBBB� 1 �m0~yb23 0 0 0 �m0zb230 0 0 0 0 00 b23 1 m0zb23 0 00 0 0 0 0 00 0 0 m0~yb23 1 �b230 0 0 0 0 0
1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;

�xy4 (a33 = 1) = 0BBBBBB� 1 �m0~yb23 m0~y 0 �m0z �m0zb230 1 0 m0z 0 00 b23 0 m0zb23 0 00 0 0 0 0 00 0 0 m0~yb23 0 �b230 0 0 �m0~y 0 1
1CCCCCCA ; b23 = m0x1 + (m0x)2 :
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A.2.2 T-fold with stru
ture 
onstant Qxyz = �mDualising along the (y; z)-dire
tions the Neumann proje
tors �0 = �z�y � �y�z read�yz1 =0BBBBBB� 0 0 0 0 0 0m0~z 1 0 0 0 �m0x�m0~y 0 1 0 m0x 00 0 0 1 �m0~z m0~y0 0 0 0 0 00 0 0 0 0 0
1CCCCCCA ; �yz2 = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 m0x0 0 0 0 �m0x 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1

1CCCCCCA ;
�yz3 (a33 = 0) = 0BBBBBB� 0 0 0 0 0 0m0~z 1 0 0 0 00 0 0 0 0 00 0 0 1 �m0~z 00 0 0 0 0 00 0 0 0 0 1

1CCCCCCA ; �yz3 (a33 = 1) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 0�m0~y 0 1 0 0 00 0 0 1 0 m0~y0 0 0 0 1 00 0 0 0 0 0
1CCCCCCA ;

�yz4 (a33 = 0) = 0BBBBBB� 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 �m0~yb23 �m0~zb23 1 0 0m0~yb23 0 �b23 0 1 0m0~zb23 b23 0 0 0 1
1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;

�yz4 (a33 = 1) = 0BBBBBB� 0 0 0 0 0 0m0~z 1 0 0 0 0�m0~y 0 1 0 0 00 �m0~yb23 �m0~zb23 1 �m0~z m0~ym0~yb23 0 �b23 0 0 0m0~zb23 b23 0 0 0 0
1CCCCCCA ; b23 = m0x1 + (m0x)2 :

A.2.3 T-fold with stru
ture 
onstant Qyzx = �mDualising along the (x; z)-dire
tions the Neumann proje
tors �0 = �z�x � �x�z read�xz1 = 0BBBBBB� 1 �m0~z 0 0 0 m0y0 0 0 0 0 00 m0~x 1 �m0y 0 00 0 0 0 0 00 0 0 m0~z 1 �m0~x0 0 0 0 0 0
1CCCCCCA ; �xz2 = 0BBBBBB� 1 0 0 0 0 00 1 0 0 0 00 �m0~x 0 0 0 00 0 0 0 0 00 0 0 0 0 m0~x0 0 0 0 0 1

1CCCCCCA ;
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�xz3 (a33 = 0) =0BBBBBB� 1 �m0~z 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 m0~z 1 00 0 0 0 0 1
1CCCCCCA ; �xz3 (a33 = 1) = 0BBBBBB� 1 0 0 0 0 m0y0 1 0 0 0 00 0 1 �m0y 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1CCCCCCA ;
�xz4 (a33 = 0) = 0BBBBBB� 1 0 �m0~zb23 0 �m0yb23 00 1 �b23 m0yb23 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 m0~zb23 b23 1

1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;
�xz4 (a33 = 1) = 0BBBBBB� 1 �m0~z �m0~zb23 0 �m0yb23 m0y0 0 �b23 m0yb23 0 00 0 1 �m0y 0 00 0 0 0 0 00 0 0 m0~z 1 00 0 0 m0~zb23 b23 0

1CCCCCCA ; b23 = m0x1 + (m0x)2 :
A.3 R-
uxT-dualising along all three dire
tions x; y; z the 
on�gurations are translated to the R-
ux frame,with stru
ture 
onstant Rxyz = �m and dual Neumann proje
tors given by �0 = �z�y�x � �x�y�z:�xyz1 =0BBBBBB� 1 0 0 0 �m0~z m0~y0 1 0 m0~z 0 �m0~x0 0 1 �m0~y m0~x 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1CCCCCCA ; �xyz2 = 0BBBBBB� 1 0 0 0 0 00 0 0 0 0 m0~x0 0 0 0 �m0~x 00 0 0 0 0 00 0 0 0 1 00 0 0 0 0 1
1CCCCCCA ;

�xyz3 (a33 = 0) = 0BBBBBB� 1 0 0 0 �m0~z 00 1 0 m0~z 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 1
1CCCCCCA ; �xyz3 (a33 = 1) = 0BBBBBB� 1 0 0 0 0 m0~y0 0 0 0 0 00 0 1 �m0~y 0 00 0 0 0 0 00 0 0 0 1 00 0 0 0 0 0

1CCCCCCA ;
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�xyz4 (a33 = 0) =0BBBBBB� 1 �m0~yb23 �m0~zb23 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 �b23 m0~yb23 1 00 b23 0 m0~zb23 0 1
1CCCCCCA ; b23 = � m0x1 + (m0x)2 ;

�xyz4 (a33 = 1) = 0BBBBBB� 1 �m0~yb23 �m0~zb23 0 �m0~z m0~y0 1 0 m0~z 0 00 0 1 �m0~y 0 00 0 0 0 0 00 0 �b23 m0~yb23 0 00 b23 0 m0~zb23 0 0
1CCCCCCA ; b23 = m0x1 + (m0x)2 :
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