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DESY 08{131Heavy quark pair prodution in gluon fusion at next-to-next-to-leading O(�4s) order:One-loop squared ontributionsB. A. Kniehl� and Z. MerebashviliyII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyJ. G. K�ornerzInstitut f�ur Physik, Johannes Gutenberg-Universit�at, 55099 Mainz, GermanyM. RogalxDeutshes Elektronen-Synhrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany(Dated: November 21, 2008)We alulate the next-to-next-to-leading-order O(�4s) one-loop squared orretions to the produ-tion of heavy-quark pairs in the gluon-gluon fusion proess. Together with the previously derivedresults on the q�q prodution hannel, the results of this paper omplete the alulation of the one-loop squared ontributions of the next-to-next-to-leading-order O(�4s) radiative QCD orretionsto the hadroprodution of heavy avors. Our results, with the full mass dependene retained, arepresented in a losed and very ompat form, in dimensional regularization.PACS numbers: 12.38.Bx, 13.85.-t, 13.85.Fb, 13.88.+eI. INTRODUCTIONIt has been already 20 years sine the next-to-leading-order (NLO) orretions to the hadroprodution of heavyavors were �rst presented in the seminal work [1℄. Theseresults were on�rmed yet in another seminal work [2℄.In the past few years there was muh progress in de-sribing the experimental results on heavy-avor produ-tion. For instane, in a reent work [3℄ it was shownthat a NLO analysis of the transverse-momentum distri-butions does in fat properly desribe the latest bottomquark prodution data [4℄ in a surprisingly large kinemat-ial range. The improvement in the theoretial preditionis mainly due to advanes in the analysis of parton dis-tribution funtions and the QCD oupling onstant. Wealso point out the progress in dealing with numeriallylarge mass logarithms that spoil the onvergene of theperturbative expansion in the high energy (or small mass)asymptoti domain. In this respet we mention the work[5℄ where also harm pair prodution is reoniled withexperimental data. Data on top-quark pair produtionalso agrees with the NLO predition within theoretialand experimental errors (see e.g. Ref. [6℄). However,in all of these NLO alulations there remains, amongothers, the problem that the renormalization and fator-ization sale dependenes render the theoretial predi-tions to have muh larger unertanties than today's stan-dards require. This alls for a next-to-next-to-leading-order (NNLO) alulation of heavy-quark prodution in�Eletroni address: kniehl�desy.deyEletroni address: zakaria.merebashvili�desy.dezEletroni address: koerner�thep.physik.uni-mainz.dexEletroni address: Mikhail.Rogal�desy.de

hadroni ollisions. In fat, the sale dependene of thetheoretial predition is expeted to be onsiderably re-dued when NNLO partoni amplitudes are folded withthe available NNLO parton distributions. For example,by approximating the NNLO orretions with the �xed-order expansion of the next-to-leading-log predition, one�nds a projeted NNLO sale unertainty of about 3% [7℄,whih is below the parton distribution unertainty, andin line with the antiipated experimental error.Reently there was muh ativity in the phenomenol-ogy of hadroni heavy-quark pair prodution in onne-tion with the Tevatron and the CERN Large Hadron Col-lider (LHC), whih had its start-up this year. There willbe muh experimental e�ort dediated to the disoveryof the Higgs boson. There will also be studies of theopious prodution of top quarks and other heavy parti-les, whih serve as a bakground to Higgs boson searhesas well as to possible new physis beyond the standardmodel. Therefore, it is mandatory to redue the the-oretial unertainty in phenomenologial alulations ofheavy-quark prodution proesses as muh as possible.Several years ago the NNLO ontributions to hadronprodution were alulated by several groups in masslessQCD (see e.g. Ref. [8℄ and referenes therein). The om-pletion of a similar program for proesses that involvemassive quarks requires muh more dediation, sine theinlusion of an additional mass sale dramatially om-pliates the whole alulation.At the lower energies of Tevatron II, top-quark pairprodution is dominated by q�q annihilation (85%). Theremaining 15% omes from gluon fusion. At the higherenergies of the LHC, gluon fusion dominates the produ-tion proess (90%) leaving 10% for q�q annihilation (per-entage �gures from Ref. [6℄). This shows that both q�qannihilation and gluon fusion have to be aounted for inthe alulation of top-quark pair prodution. Sine gluon
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d )FIG. 1: Exemplary gluon fusion diagrams for the NNLO alulation of heavy-hadron prodution.fusion makes up the largest part of the heavy-quark pairprodution ross setion at the LHC it is important toredue renormalization and fatorization sale unertain-ties in the gluon fusion proess as muh as possible inview of the fat that the large unertainties in the glu-oni parton distribution funtions translate to large rosssetion unertainties at the LHC.There are four lasses of ontributions that need tobe alulated for the NNLO orretions to the hadroniprodution of heavy-quark pairs. In Fig. 1 we show onegeneri diagram eah for the four lasses of ontribu-tions that need to be alulated for the NNLO orre-tions to the gluon-initiated hadroprodution of heavy a-vors. The �rst lass involves the pure two-loop ontribu-tion [1(a)℄, whih has to be folded with the leading-order(LO) Born term. The seond lass of diagrams [1(b)℄onsists of the so-alled one-loop squared ontributions(also alled loop-by-loop ontributions) arising from theprodut of one-loop virtual matrix elements. This is thetopi of the present paper. Further, there are the one-loop gluon emission ontributions [1()℄ that are foldedwith the one-gluon emission graphs. Finally, there arethe squared two-gluon emission ontributions [1(d)℄ thatare purely of tree type. The orresponding graphs for thequark-initiated proesses are not displayed.Bits and piees of the NNLO alulation for hadropro-dution of heavy avors are now being assembled. Inthis ontext we would like to mention the reent two-loop alulation of the heavy-quark vertex form fator [9℄that an be used as one of the many building bloks inthe �rst lass of proesses. There is also a very promisingnumerial approah applied to the alulation of the puretwo-loop diagrams [10℄. Reently, an analyti alulationof a sublass of the two-loop ontributions to q�q ! Q �Qwas published [11℄. The authors of Ref. [12℄ have al-ulated the NLO orretions to t�t+jet prodution withontributions from the third lass of diagrams. However,this result needs further subtration terms in order toallow for an integration over the full phase spae. Wewould also like to mention the reent work on the two-loop virtual amplitudes that are valid in the domain ofhigh energy asymptotis, where the heavy-quark mass issmall ompared to the other large sales. In this alu-lation [13℄, mass power orretions are left out, and only

large mass logarithms and �nite terms assoiated withthem are retained. Muh work was also done in relationto the resummation of soft ontributions. In this respetwe refer the reader to reent publiations where somedi�erent approahes to the resummation are advoated[7, 14℄.The authors of the present paper have been involved ina systemati e�ort to alulate all the ontributions fromthe seond lass of proesses, i.e. the one-loop squaredontributions. The NNLO one-loop squared amplitudesfor the quark-initiated proess were reently presented inRef. [15℄. In this paper, we report on a alulation of theNNLO one-loop squared matrix elements for the proessgg ! QQ. The alulation is arried out in dimensionalregularization [16℄ with spae-time dimension n = 4�2".We mention that we have presented losed-form, one-loop squared results for heavy-quark prodution in thefusion of real photons in Ref. [17℄. With the presentpaper the program of alulating the one-loop squaredontributions to heavy-quark pair hadroprodution hasnow been ompleted.Let us briey desribe some of the main features of thealulation of the one-loop squared ontributions. Thehighest singularity in the one-loop amplitudes arises frominfrared (IR) and mass singularities (M) and is thus, ingeneral, proportional to (1="2). This in turn implies thatthe Laurent series expansion of the one-loop amplitudeshas to be taken up toO("2) when alulating the one-loopsquared ontributions. In fat, it is theO("2) terms in theLaurent series expansion that really ompliate things[18℄, sine the O("2) ontributions in the one-loop am-plitudes involve a multitude of multiple polylogarithmsof maximal weight and depth 4 [19℄. All salar masterintegrals needed in this alulation have been assembledin Refs. [18, 19℄. Referene [18℄ gives the results in termsof so-alled L funtions, whih an be written as one-dimensional integral representations involving produtsof log and dilog funtions, while Ref. [19℄ gives the re-sults in terms of multiple polylogarithms. The divergentand �nite terms of the one-loop amplitude for gg ! QQwere given in Ref. [20℄. The remaining O(") and O("2)amplitudes have been written down in Ref. [21℄. We shallrewrite these matrix elements in a representation moresuitable for the purposes of the present appliation.
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p2FIG. 2: The t-, u-, and s-hannel LO graphs ontributing to the gluon (urly lines) fusion amplitude. The thik solid linesorrespond to the heavy quarks.In our presentation, we shall make use of our nota-tion for the oeÆient funtions of the relevant salarone-loop master integrals alulated up to O("2) inRefs. [18, 19℄. For the ase of gluon-gluon and quark-antiquark ollisions, one needs all the salar integralsderived in Refs. [18, 19℄, e.g. the one salar one-pointfuntion A, the �ve salar two-point funtions B1, B2,B3, B4, and B5, the six salar three-point funtionsC1; C2; C3; C4; C5, and C6, and three salar four-pointfuntions D1; D2, and D3. Taking the omplex salarfour-point funtion D2 as an example, we de�ne sues-sive oeÆient funtions D(j)2 for the Laurent series ex-pansion of D2. One hasD2 = iC"(m2)n 1"2D(�2)2 + 1"D(�1)2 +D(0)2 + "D(1)2+"2D(2)2 +O("3)o; (1.1)where C"(m2) is de�ned byC"(m2) � �(1 + ")(4�)2 �4��2m2 �" : (1.2)We use this notation for both the real and imaginaryparts of D2, i.e. for ReD2 and ImD2. Similar expansionshold for the salar one-point funtion A, the salar two-point funtions Bi, the salar three-point funtions Ci,and the remaining four-point funtions Di. The oeÆ-ient funtions of the various Laurent series expansionswere given in Ref. [18℄ in the form of so-alled L fun-tions, and in Ref. [19℄ in terms of multiple polylogarithmsof maximal weight and depth 4. It is then a matter ofhoie whih of the two representations are used for thenumerial evaluation. The numerial evaluation of the Lfuntions in terms of their one-dimensional integral rep-resentations is quite straightforward using onventionalintegration routines, while there exists a very eÆient al-gorithm to numerially evaluate multiple polylogarithms[22℄.Let us briey summarize the main features ofthe salar master integrals. The master inte-grals A;B1; B3; B4; C2; C3, and D3 are real, whereasB2; B5; C1; C4; C5; C6; D1, and D2 are omplex. Fromthe form (AB� + BA�) = 2(ReAReB + ImA ImB) it islear that the imaginary parts of the master integrals

must be taken into aount in the one-loop squared on-tribution. The master integrals B2; B5; C1; C4; C5, andC6 are (t$ u) symmetri, where the kinemati variablest and u are de�ned in Se. II.This paper is organized as follows. Setion. II on-tains an outline of our general approah and disussesrenormalization proedures. Setion. III presents LO andNLO results for the gluon fusion subproess. In Se. IVone �nds a disussion of the singularity struture of theNNLO squared matrix element for the gluon fusion sub-proess. In Se. V we disuss the struture of the �nitepart of our result. Our results are summarized in Se. VI.In the Appendies, we present expressions for various o-eÆients that are used in Se. III to write down the NLOresult.II. NOTATION AND RENORMALIZATIONHeavy-avor hadroprodution proeeds through twopartoni subproesses: gluon fusion and light-quark-antiquark annihilation. The �rst subproess is the mosthallenging one in QCD from a tehnial point of view.It has three prodution topologies already at the Bornlevel (see Fig. 2). The seond subproess, where there isonly one topology at the Born level, was onsidered inRef. [15℄. Irrespetive of the partons involved, the gen-eral kinematis is, of ourse, the same in both proesses.In partiular, for gluon fusion, Fig. 2, we haveg(p1) + g(p2)! Q(p3) +Q(p4); (2.1)The momentum ow diretions orrespond to the phys-ial on�guration, e.g. p1 and p2 are ingoing whereas p3and p4 are outgoing. With m being the heavy-quarkmass, we de�nes � (p1 + p2)2; t � T �m2 � (p1 � p3)2 �m2;u � U �m2 � (p2 � p3)2 �m2; (2.2)so that one has the energy-momentum onservation rela-tion s+ t+ u = 0.We also introdue the overall fatorC = �g4sC"(m2)�2 ; (2.3)where gs is the renormalized strong-oupling onstantand C"(m2) is de�ned in Eq. (1.2).



4As was shown e.g. in Refs. [20, 21℄ the self-energy andvertex diagrams ontain ultraviolet (UV), infrared andollinear (IR/M) poles after heavy-mass renormalization.The UV poles need to be regularized.Our renormalization proedure is arried out in amixed renormalization sheme. When dealing with mass-less quarks, we work in the modi�ed minimal-subtration(MS) sheme, while heavy quarks are renormalized inthe on-shell sheme de�ned by the following onditionsfor the renormalized external heavy-quark self-energygraphs:�r(6 p)j 6p=m = 0; ��6 p�r(6 p)j 6p=m = 0: (2.4)In the on-shell sheme, the �rst ondition in Eq. (2.4)ensures that the heavy-quark mass is the pole mass.For ompleteness, we list the set of one-loop renormal-ization onstants used in this paper. One hasZ1 = 1 + g2s" 23 �(NC � nl)C"(�2)� C"(m2)	 ;Zm = 1� g2sCFC"(m2) 3� 2""(1� 2") ;Z2 = Zm; (2.5)Z1F = Z2 � g2s" NCC"(�2);Z1f = 1� g2s" NCC"(�2);Z3 = 1 + g2s" �(53NC � 23nl)C"(�2)� 23C"(m2)�= 1 + g2s" �(�0 � 2NC)C"(�2)� 23C"(m2)� ;Zg = 1� g2s" ��02 C"(�2)� 13C"(m2)� ;with �0 = (11NC � 2nl)=3 being the �rst oeÆient ofthe QCD beta funtion, nl the number of light quarks,CF = 4=3, and NC = 3 the number of olors. The arbi-trary mass sale � is the sale at whih the renormaliza-tion is arried out. The above renormalization onstantsrenormalize the following quantities: Z1 for the three-gluon vertex, Zm for the heavy-quark mass, Z2 for theheavy-quark wave funtion, Z1F for the (QQg) vertex,Z1f for the (qqg) vertex, Z3 for the gluon wave fun-tion and Zg for the strong-oupling onstant �s. Forthe massless quarks, there is no mass and wave funtionrenormalization.Let us sketh the two alternative ways of getting the�nal one-loop-renormalized amplitude from the mass-renormalized amplitude:i) Take the given mass-renormalized matrix element orthe square of that matrix element and multiply all theself-energy graphs by a fator 1/2. Then renormalize theoupling onstant in the LO Born amplitude.ii) Take the given mass-renormalized matrix element andapply the orresponding ounterterms obtained from the

LO matrix element by inserting the relevant Z�1 fatorsinto the internal propagators and verties. All the renor-malization onstants we need are presented in Eq. (2.5).We will get the renormalized vertex funtion �(N)R , where(N) denotes the set of N external partiles. The renor-malized matrix element is obtained fromMR = �(N)R NYi=1�Z(i)R � 12 ; (2.6)where Z(i)R are the residues of the renormalized propaga-tors at the poles for all the partiles under onsideration.They are related to the residues of the unrenormalizedpropagators via Z(i)R = Z(i)U Z�1i (2.7)where the Zi are the respetive external wave funtionrenormalization onstants.Working at the one-loop order, we note that in the on-shell sheme Z(i)R = 1. This is a diret onsequene ofthe seond ondition in Eq. (2.4), whih e�etively utso� the external massive lines. For the ase of externalmassless partons Z(i)U = 1. It is important to note thatthe gluon wave funtion renormalization onstant Z3 is amixture of two parts: the part whih multiplies C"(�2) isderived in the MS sheme, while the last term due to theheavy-quark loop is derived in the on-shell sheme. Forthis reason, this last term has to be omitted in Z3 whenusing it as an external �eld renormalization onstant inEq. (2.7). Sine in our ase we have two gluon and twoheavy-quark �elds, we therefore obtainMR = �(N)R Z�13 : (2.8)The �nal result should not depend on whih of thetwo ways has been hosen to do the renormalization. Wehave heked that, in both ways, one arrives at the samerenormalized matrix element.In order to �x our normalization, we write down thedi�erential ross setion for gg ! QQ in terms of thesquared amplitudes jM j2. One hasd�gg!QQ = 12s d(PS)24(1� ")2 1d2A jM j2gg!QQ ; (2.9)where the n{dimensional two{body phase spae is givenbyd(PS)2 = m�2"8�s (4�)"�(1� ") � tu� sm2sm2 ��" Æ(s+t+u)dtdu :(2.10)We expliitly exhibit the ux fator (4p1p2)�1 = (2s)�1,and the spin (n�2)�2 = (2�2")�2 and olor d�2A averag-ing fators for the initial gluons. Here dA = N2C � 1 = 8is the dimension of the adjoint representation of the olorgroup SU(NC).
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a1 a2 a3
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c2 c3 c4

d1 d2 d3

e1 e2FIG. 3: The t-hannel one-loop graphs ontributing to the gluon fusion amplitude. Loops with dotted lines represent the gluon,ghost, and light and heavy quarks.III. LEADING AND NEXT-TO-LEADINGORDER RESULTSAt LO for gg ! QQ, we shall use a representationwhih di�ers from the one given in Refs. [20, 21℄. Firstnote that there are only two independent olor struturesfor this subproess. The s-hannel matrix element is asum of two parts, eah of whih is proportional to oneof the two independent olor strutures. We ombineterms with the same olor strutures of the three (e.g.s, t, and u) prodution hannels. Finally, we remove theheavy-antiquark momentum p4 using energy-momentumonservation and use on-shell onditions for the gluons(p1 � �1 = 0 and p2 � �2 = 0) and the heavy quark (�u3 6 p3 =�u3m). We then obtain the two olor-linked LO matrix

elementsMLO;t = iT bT aM̂=t; MLO;u = iT aT bM̂=u; (3.1)withsM̂ = �6 p1�s+ 2�p�1t� 2�p�2 t� 2�p�3s� 26 p1g��t:(3.2)It an be veri�ed that the funtion M̂ is t$ u symmetri,and onsequently the olor-linked Born amplitudesMLO;tand MLO;u turn into one another under t$ u.We then square the full Born matrix element MLO;t +MLO;u and do the spin and olor sums to obtain the LOamplitude,jM j2LO = dA2 �CF s2tu �NC� jM̂ j2 � B; (3.3)
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f1 f2 g1

g2 h i1

i2 j1 j2FIG. 4: The s-hannel one-loop graphs ontributing to the gluon fusion amplitude. Loops with the dotted lines as in g1, h, j1,and j2 represent the gluon, ghost, and light and heavy quarks. The four-gluon oupling ontribution appears in g2.where we have fatored out a olor-redued Born termjM̂ j2, whih readsjM̂ j2 = 8n t2 + u2s2 + 4m2s � 4m4tu�" 2(1� tus2 ) + "2o � B̂: (3.4)The expression in Eq. (3.3) for the LO amplitudeagrees with the well-known result in n dimensions (seee.g. Ref. [2℄). Note that, by using the presriptionof Ref. [23℄, we were able to avoid the introdution ofghost ontributions whih would otherwise arise from thesquare of the right-most three-gluon oupling amplitudein Fig. 2. In our ase the presription of Ref. [23℄ on-sists in the use of on-shell onditions for external gluons,i.e. p1 � �1 = 0 and p2 � �2 = 0, and the exlusion of theheavy-antiquark momentum via p4 = p1+p2�p3. Whensquaring amplitudes, we sum over the two heliities ofthe gluons using the Feynman gauge, i.e. we useX�=�1 ��(�)��(�) = �g�� : (3.5)The use of the framework set up in Ref. [23℄ has the ad-vantage in the non-Abelian ase that one an omit ghostontributions when squaring the amplitudes. Using theabove on-shell onditions already at the amplitude levelmeans that one takes full advantage of the gauge invari-ane of the problem when squaring the amplitudes. Thus,in general, the results for the di�erent hannels will notbe idential to the ones whih would be obtained using't Hooft-Feynman gauge throughout.

Folding the one-loop matrix elements (see Figs. 3 and4) with the LO Born term (see Fig. 2), one obtains thevirtual part of the NLO result.As onerns the one-loop matrix elements, we shall usethe one-loop matrix elements of Refs. [20, 21℄ to om-pute the virtual NLO ontribution up to O("2) in termsof the oeÆient funtions (1.1) of the salar master in-tegrals. However, in Ref. [20℄, where expressions for theNLO matrix elements up to O("0) are given, the val-ues for the salar oeÆient funtions in terms of loga-rithms and dilogarithms are substituted diretly. There-fore, we had to realulate the orresponding expressionsfrom Ref. [20℄ for the matrix elements in order to havea uniform result in terms of salar oeÆient funtions.This has allowed us to retrieve and use relations betweenoeÆients of the salar oeÆient funtions in the resultfor di�erent orders of the Laurent series expansion in ".We will omment on these relations later on.We also mention that we had to regroup and rear-range various terms in the one-loop amplitudes fromRefs. [20, 21℄ aording to the three independent olorstrutures in order to bring the pole terms into agreementwith the form suggested in Ref. [24℄. In the gluon fu-sion ase treated here, there are three independent olorstrutures in the one-loop amplitudes, e.g. T bT a; T aT b,and Æab. As in the LO ase, one also has to exlude theheavy-antiquark momentum p4 from the one-loop ampli-tude expressions. As a result of the above two steps, thepole terms of our new matrix elements beame propor-tional to the LO olor-linked amplitudes (3.1). In all oursubsequent alulations, we shall use only these matrix



7elements.The NLO virtual orretions to heavy-avor hadropro-dution have been alulated before for the gg ! Q �Qase. Nevertheless, one annot �nd expliit separate re-sults for the virtual orretions in the literature althoughRef. [2℄ provides analyti results for the ombined \vir-tual+soft" ontributions. We have therefore realulatedthe virtual NLO ontribution to gg fusion. In fat, wehave alulated the virtual NLO results up to O("2). Asit turns out, use of the expressions for the NLO virtualO("1)- and O("2)-ontributions onsiderably simplify thepresentation of the orresponding NNLO results in asmuh as they appear as important building bloks in theNNLO results.Next we fold the pole, �nite, O("1) and O("2) termsof our NLO matrix element with the LO matrix ele-ment. In dimensional regularization, the trae evalua-tion in n = 4� 2" dimensions will lead to terms of orderO("1) and O("2) when multiplied with the pole and �-nite terms, as well as to the terms of O("3) and O("4)when multiplied with the O("1) and O("2) terms of thesquared amplitude, respetively. In the following we willdisregard terms of O("3) and O("4) as they do not on-tribute to the �nite part of the NNLO result.Before presenting our result for the NLO matrix ele-ment, we would like to omment on its olor struture.We have deomposed our matrix elements aording tothe following three independent olor strutures:Æab Tr(T aT b) = dA2 ; (3.6)Tr(T bT a) Tr(T bT a) = dA2 CF ;Tr(T bT a) Tr(T aT b) = dA2 (CF � NC2 ) :At NLO, the �nal spin and olor summed matrix ele-ment an be written as a sum of �ve terms:jM j2Loop�Born = g2spC Reh 1"2W (�2)(") + 1"W (�1)(")+W (0)(") + "W (1)(") + "2W (2)(")i;(3.7)where C has been de�ned in Eq. (2.3). The notationjM j2Loop�Born means that one is retaining only the O(�3s)part of jM j2.The �rst two oeÆient funtions in Eq. (3.7) have arather simple struture:W (�2)(") = �4NCB ; (3.8)W (�1)(") = dAB̂�s2tufÆ + (CF � NC2 )(ft + fu)+CF ut ft + CF tufu� ;where B and B̂ are the LO terms de�ned in Eqs. (3.3)and (3.4). We have also introdued new funtions,fÆ = 12 ln sm2 + ts ln �tm2 + us ln �um2 + 2m2 � s2s� lnx;

ft = NC ln sm2 + 2NC ln �tm2 � 2CF � �0+(2CF �NC)2m2 � ss� lnx;fu = ftjt$u; (3.9)where � = p1� 4m2=s is the heavy-quark veloity and�0 is de�ned after Eq. (2.5).One should keep in mind that the overall Born termfators B and B̂ ontain terms multiplied by " and"2. Therefore, if the expressions for B and B̂, given inEqs. (3.3) and (3.4), are substituted inW (�2) andW (�1),we will obtain additional O("�1) and �nite terms fromthe �rst two terms of Eq. (3.7).The third term in Eq. (3.7) readsW (0)(") � F (0)NLO ; (3.10)where we have onstruted the following generi fun-tions: F (j)NLO =W(j)1 +W(j)2 ; (3.11)withW(j)1 = �dA2 h stuF (j)1 + n 1u�st CF + NC2 �(F (j)2 + F (j)3 )+ (t$ u)oi;W(j)2 = � 2B�0(1 + j)! ln1+j m2�2 : (3.12)The three funtions F1; F2, and F3 are de�ned as follows:F (j)1 =XI (aI + "a(")I + "2a("2)I )I(j);with I(j) = fB2; B5; C1; C2; C2u; C3; C3u; C4; C5; C6;D1; D1u; D2; D2u; D3g(j);F (j)2 =XI (bI + "b(")I )I(j); (3.13)with I(j) = f1; B2; B5; C1; C4; C5; C6g(j);F (j)3 =XI (I + "(")I + "2("2)I )I(j);with I(j) = f1; B1; B2; B5; C1; C2; C3; C4; C5; C6;D1; D2g(j) :For I = 1 one has I(j) � 1, otherwise I(j) � B(j)1 ; C(j)2et. In other words, the summation index I runs overthe salar integral oeÆient funtions, while the oeÆ-ient funtions aI ; a(")I ; a("2)I et. denote the expliit de-pendene on s; t and m2. These oeÆient funtions arepresented in Appendix A. Note that index j takes thesame value for all the oeÆient funtions in Eq. (3.13)as well as in similar equations that will follow.The additional subsript \u" in some of the salar oef-�ient funtions in the expression for F (j)1 (suh as C(j)2u )



8is to be understood as an operational de�nition presrib-ing a (t $ u) interhange in the argument of that fun-tion, i.e. C(0)2u = C(0)2 ��t$u et.Note that W(j)2 is only ontributed to by the renor-malization proedure. Of ourse, all the remaining O(")terms (e.g. W (1)(") andW (2)("), as well as those omingfrom W (�1)(")=" and W (0)(")) should be disregarded inthe NLO �nal result in Eq. (3.7). It is important to notethat F (0)NLOj"=0 is not formally the full �nite part of theNLO result in dimensional regularization, but it resultsfrom folding the �nite part of our original NLO matrix el-ement with the LO one. Another part of the �nite resultomes from the �rst two terms in Eq. (3.7), as mentionedbefore Eq. (3.10). However, one should realize that the�rst two terms in Eq. (3.7) would be anelled with theorresponding parts from the real bremsstrahlung dia-grams. Given the overall fator, Eq. (1.2), the term F (0)NLOevaluated for " = 0 represents the �nite part of the vir-tual one-loop NLO result.Our O("�2), O("�1), and O("0) NLO results inEq. (3.7) were analytially ompared with the orre-sponding results obtained in Ref. [1℄, whih were kindlyprovided to us in a Shoonship format by the authors[25℄. We obtained omplete agreement.The fourth term in Eq. (3.7) is a result of folding theO(") term of the matrix element with the Born term. Be-ause of the n-dimensional traes, one also obtains termsof O("2) and O("3). As mentioned before, we will onlyretain terms of O(") and O("2). We haveW (1)(") = F (1)NLO + F (0)NLO;"; (3.14)whereF (j)NLO;" = dAhF (j)4 � n�CF + NC2 ts�(F (j)5 + CFF (j)6+NCF (j)7 ) + (t$ u)oi : (3.15)HereF (j)4 =XI (d(")I + "d("2)I )I(j);with I(j) = fB2; B5; C1; C2; C2u; C3; C3u; C4; C5; C6;D1; D1u; D2; D2u; D3g(j);F (j)5 =XI (e(")I + "e("2)I )I(j);with I(j) = f1; B2; B5; C5g(j);F (j)6 =XI (g(")I + "g("2)I )I(j); (3.16)with I(j) = f1; B1; B2; C2; C5; C6; D1g(j);F (j)7 =XI (h(")I + "h("2)I )I(j);with I(j) = f1; B1; B2; B5; C1; C2; C3; C4; C5; C6;D1; D2g(j) :

The oeÆients dI ; eI ; gI ; hI are presented in Ap-pendix B. Note that the �rst term in Eq. (3.14) in nothingbut the NLO term of Eq. (3.10) with indies of the o-eÆient funtions of the salar master integrals and thepower of the logarithm that multiplies �0 shifted upwardsby one.The last term in Eq. (3.7) is a result of folding theO("2) term of the matrix element with the Born term.Beause of the n-dimensional traes, one also obtainsterms of O("3) and O("4), whih are omitted as before.For the O("2) terms we obtainW (2)(") = F (2)NLO + F (1)NLO;" + F (0)NLO;"2 ; (3.17)whereF (j)NLO;"2 = dAhF (j)8 � n�CF + NC2 ts�(F (j)9 + CFF (j)10+NCF (j)11 ) + (t$ u)oi : (3.18)HereF (j)8 =XI k("2)I I(j);with I(j) = fC1; C2; C2u; C3; C3u; C4; C5; C6; D1; D1u;D2; D2u; D3g(j);F (j)9 =XI l("2)I I(j);with I(j) = f1; B2; B5; C5g(j);F (j)10 =XI m("2)I I(j); (3.19)with I(j) = f1; C2; C5; C6; D1g(j);F (j)11 =XI n("2)I I(j);with I(j) = f1; B5; C1; C2; C3; C4; C5; C6; D1; D2g(j) :The oeÆients kI ; lI ;mI ; nI are presented in Ap-pendix C. We mention that the funtions F1; F4, and F8are (t$ u) symmetri.IV. SINGULARITY STRUCTURE OF THENNLO SQUARED AMPLITUDEThe NNLO �nal spin and olor summed squared ma-trix element an be written down as a sum of �ve terms:1C jM j2Loop�Loop = Reh 1"4V (�4)(") + 1"3V (�3)(") (4.1)+ 1"2V (�2)(") + 1"V (�1)(") + V (0)(")i;where C has been de�ned in Eq. (2.3). Note that Eq. (4.1)is not a Laurent series expansion in " sine the oeÆient



9funtions V (m)(") are funtions of " as expliitly anno-tated in Eq. (4.1). It is nevertheless useful to write theNNLO one-loop squared result in the form of Eq. (4.1)in order to exhibit the expliit " strutures. All �ve oef-�ient funtions V (m)(") are bilinear forms in the oeÆ-ient funtions that de�ne the Laurent series expansion ofthe salar master integrals (1.1). Some of these oeÆientfuntions are zero and some of them are just numbers orsimple logarithms. In the latter ase, we have substitutedthese numbers or logarithms for the oeÆient funtionsV (m) in the �ve terms above. This has been done for allthe salar oeÆient funtions that multiply poles, i.e.for salar funtions with negative subsripts I(�2) andI(�1), as well as for the whole salar funtions A(i), B(i)3 ,and B(i)4 .We found that a signi�ant part of the NNLO resultsan be expressed in terms of the " expansion of the NLOontribution. In partiular, we will need the NLO expan-sion up to "2. Therefore, in this setion, we will make fulluse of the results derived in Se. III.Before proeeding further, we note that there are noadditional olor strutures appearing in the NNLO al-ulation for gg fusion in addition to the ones alreadypresented in Eq. (3.6): they are just linear ombinationsof the ones in the NLO ase. This is in ontrast to theq�q subproess, where the NNLO olor strutures exhibitmuh higher omplexity and rihness [15℄ relative to theNLO ones.The two most singular terms in Eq. (4.1) are propor-tional to the Born B and olor-redued Born B̂ termsde�ned in Eqs. (3.3) and (3.4), respetively. One hasV (�4)(") = 4N2CB; (4.2)V (�3)(") = �2NCW (�1)(") ;where W (�1)(") is given in Eq. (3.8) and is nothing butthe full oeÆient of the single-pole NLO result.For the 1="2 term we obtainV (�2)(") = dAB̂hs2tu jfÆj2 + 12CF�ut jftj2 + tu jfuj2��sf�Æ �1t ft + 1ufu�+ (CF � NC2 )f�t fui�2NCF (0)NLO ; (4.3)where the funtions fÆ; ft, and fu above are the sameas those in Eq. (3.9), but now with the imaginary partsretained, i.e. one has the following replaements:ln sm2 ! ln sm2 � i�; lnx! lnx+ i�: (4.4)This reets the fat that, ontrary to the NLO alula-tion, one has to keep the imaginary parts in the NNLOalulation as emphasized in the Introdution. It shouldbe lear that the ompletion (4.4) has to be done every-where in the NNLO alulation whenever the logarithms(4.4) appear in bilinear forms multiplying omplex fun-tions.

The last term �2NCF (0)NLO in Eq. (4.3) is obtained fromfolding the O("�2) singular term of the matrix elementwith its �nite part, while the remaining parts result fromfolding the single poles. Note that when one substitutesthe Laurent expansions for B̂ and F (0)NLO, one gets addi-tional 1=" poles and �nite terms in Eq. (4.3).The struture of the fourth term in Eq. (4.1) is some-what more ompliated. One hasV (�1)(") = �02NC ln(m2�2 )V (�3)(") + S(0)1 � 2NCW (1)(");(4.5)where we have introdued new funtionsS(j)1 = �dA4 stu�L�1F (j)1 + L�2F (j)2 + L�2F (j)3 + (t$ u)�;(4.6)with L1 = 2fÆ � us ft � tsfu ; (4.7)L2 = 2fÆ � 2CF us ft � (2CF �NC) tsfu :The �rst two terms in Eq. (4.5) arise from folding thesingle-pole terms in the original matrix element with its�nite O("0) part. The last term is due to the interfereneof O("�2) � O(") terms in the original matrix element.This pole term is due to the Laurent series expansionof the original matrix element and annot be deduedfrom the knowledge of the NLO terms alone. The fun-tion W (1)(") is de�ned in Eq. (3.14), while the funtionsF (j)1 ; F (j)2 , and F (j)3 are given by Eq. (3.13).When one substitutes the Laurent expansions for F (0)1 ,F (0)2 , F (0)3 , and W (1)("), one gets �nite and O(") termsin Eq. (4.5). However, sine we are only interested inthe Laurent series expansion up to the �nite term, theseO(") ontributions an be omitted as before.V. STRUCTURE OF THE FINITE PARTIn this setion, we present the �nite part of our result.In the ourse of our alulation, we have made full use ofthe results presented in Se. III, e.g. of our detailed studyof the NLO struture of the Laurent series expansion uptoO("2). As a onsequene, we an present a large part ofour results for the �nite part in a surprisingly onise andlosed form. We deompose the �nite part into severalpiees, as V (0)(") = Re hV (0)11 + V (0)22 + V (0)00 i : (5.1)The �rst two terms originate from the interferene ofthe O("�1)�O(") and O("�2)�O("2) piees of the ini-tial matrix element, respetively. Eah of them an be



10onveniently presented in a very ompat form:V (0)11 = dA2 B̂�0 ln2(m2�2 )h� s2tufÆ + �st CF + NC2 �ft+� suCF + NC2 �fui+S(1)1 + S(0)2 ; (5.2)where we have introdued one more funtion,S(j)2 = dAhL�1F (j)4 � nL�22 (F (j)5 + CFF (j)6 +NCF (j)7 )+(t$ u)oi ; (5.3)Similarly, for the seond term in Eq. (5.1), we writeV (0)22 = �2NCW (2)("); (5.4)with W (2)(") de�ned in Eq. (3.17). Note again that theO(") and O("2) terms in the above expressions for V (0)11and V (0)22 an be disregarded. We mention that the salaroeÆient funtions with the supersript \2" above in-volve multiple polylogarithms of weight and depth 4.We emphasize that the quasifatorized forms of all theexpressions given in this paper hold only when one retainsthe full " dependene in the Born and NLO terms.The last term in Eq. (5.1) omes from the square of theO("0) term of the matrix element, whih an be writtenas V (0)00 = ��0 ln(m2�2 )hF (0)NLO � 12W(0)2 i+ Y ; (5.5)where F (0)NLO andW(0)2 are given in Eqs. (3.11) and (3.12).We found that the last term Y in Eq. (5.5) also possessesthe quasifatorization properties disovered in a reentpaper [15℄. For instane, the result an also be writtendown as a sum of bilinear produts, where eah of the fa-tors are linear ombinations of salar integral oeÆientfuntions multiplied by some ombinations of kinemativariables. However, beause of the great number of Lau-rent strutures appearing in the original matrix elementfor the gg fusion subproess, the length of the �nal ex-pressions does not allow us to present the results in thispaper. Also, we were not able to �nd the optimal way toorganize the di�erent ontributions in Y as in Ref. [15℄,as not all the powers of ommon numerators and denom-inators anel out. Therefore, we have opted to supplythe results on the �nite term Y in a separate eletroni�le.In the �nite ontribution of Eq. (5.1), one noties theinterplay of the produt of powers of " resulting fromthe Laurent series expansion of the salar integrals [f.Eq. (1.1)℄ on the one hand and powers of " resulting fromdoing the spin algebra in dimensional regularization onthe other hand. For example, for the �nite part one hasa ontribution from C(�1)6 B(0)�1 as well as a ontribution

from C(�1)6 B(1)�1 . Terms of the type C(�1)6 B(0)�1 , wherethe supersripts orresponding to " powers do not om-pensate, would be absent in regularization shemes wheretraes are e�etively taken in four dimensions, i.e. in theso-alled four-dimensional shemes or in dimensional re-dution (DRED).We emphasize that all our fatorized results given inthis paper [exept for the expression for Y in Eq. (5.5)℄take up about 22 Kb of hard disk spae. This has tobe ompared with the length of the original, untreatedFORM output. The original omputer output for theorresponding one-loop squared ross setion of the gg !QQ subproess turned out to be very long and took upabout 85 MB of hard disk spae. Therefore, the redutionis of the order of 103{104 in the present ase.As a �nal remark we want to emphasize that we havedone two independent alulations using REDUCE [26℄and FORM [27℄ when squaring the one-loop amplitudes.The results of both alulations agree. Casting the re-sults into the ompat forms presented in this paper wasdone with the help of the REDUCE Computer AlgebraSystem. VI. CONCLUSIONSWe have presented analytial O(�4s) NNLO results forthe one-loop squared ontributions to heavy-quark pairprodution in the gluon-gluon fusion reation. The or-responding result for photon-photon fusion has alreadybeen presented in Ref. [17℄, while results for the photon-gluon fusion proess an be obtained from Ref. [21℄ aftersome olor fator adjustments. As onerns hadropro-dution of heavy quarks, the results of the present paper,together with a reent publiation on q�q prodution [15℄,omplete the derivation of the one-loop squared ontribu-tions to the hadroprodution of heavy quarks at NNLOwith the heavy-quark mass dependene fully retained.Our results form part of the NNLO desription of heavy-quark pair prodution relevant for the NNLO analysis ofongoing experiments at the TEVATRON and the LHC.A large part of our analytial results are presented ina very ompat form. The singular ontributions propor-tional to "�4; "�3, and "�2 are entirely given in terms ofLO and NLO ontributions, whereas the "�1 ontribu-tions ontain some true NNLO struture in addition toLO and NLO strutures. Sine the LO and NLO termsare themselves expanded in Laurent series, this impliesthat our singular ontributions are not true (in a math-ematial sense) Laurent series in ". We believe that ourrepresentation of the singular ontributions has stru-tural advantages in as muh as it will be simpler to mathour singular strutures onto the singular strutures of theother lasses of ontributions. Also, our representationis onvenient if one wants to onvert our expressions todi�erent regularization shemes suh as DRED (see e.g.Ref. [28℄). If needed, our singular ontributions an eas-ily be onverted into true Laurent series expansions sine



11our expressions are very ompat.Beause of our representation of the singular parts, weobtained quasifatorized expressions for a large part ofthe �nite ontributions. Writing our analytial results infatorized forms led to a redution of the length of theoriginal output by a fator of 103{104, whih will lead to adramati redution of the CPU time needed in numerialevaluations.The present paper deals with unpolarized gluons in theinitial state and unpolarized heavy quarks in the �nalstate. Sine our results for the original matrix elementsontain the full spin information of the proess, an exten-sion to the polarized ase with polarization in the initialstate and/or in the �nal state inluding spin orrelationswould be possible.Analytial results in eletroni format for the oeÆ-ients given in the Appendies as well as for the term Yin Eq. (5.5) are readily available [29℄.AknowledgmentsWe would like to thank J. Gegelia, A. Kotikov,G. Kramer, and O. Veretin for useful disussions. Weare very grateful to R.K. Ellis and P. Nason for swiftresponse and for providing the eletroni �les of theiranalytial one-loop virtual NLO results. We also a-knowledge helpful ommuniations with W. Beenakker,I. Bojak, I. Shienbein, J. Smith, and H. Spiesberger.Z.M. would like to thank the Partile Theory group ofthe Institut f�ur Physik, Universit�at Mainz for hospitality,where this work has started. The work of Z.M. was sup-ported in part by the German Researh Foundation DFGthrough Grants No. KN 365/7-1 and No. KO 1069/11-1,and by the Georgia National Siene Foundation throughGrant No. GNSF/ST07/4-196. M.R. was supported bythe Helmholtz Gemeinshaft HGF under Contrat No.VH-NG-105.Note added.{ While �nalizing our manusript for pub-liation, we beame aware of the preprint [30℄ by Anas-tasiou and Mert Aybat, who also disuss the NNLOone-loop squared gluon fusion prodution of heavy-quarkpairs. APPENDIX AFirst, we write down a few abbreviations that we usethroughout the paper:� =p1� 4m2=s; D = m2s� tu;z2 = s+ 2t; z2u = s+ 2u; (A1)zt = 2m2 + t; zu = 2m2 + u:Note that D in Eq. (A1) is not the spae-time dimension.Here we present the expressions for all the oeÆientsaI ; bI ; I appearing in Eq. (3.13):

aB2 = 16D=(s�2) ;aB5 = �aB2 ;aC1 = 4(8m4 � z22=s(2m2 � s+ 2m2=�2)) ;aC2 = 8t=s(4m2zt + 2st+ t2) ;aC2u = aC2(t$ u) ;aC3 = 8t=s(4m2zt + tz2) ;aC3u = aC3(t$ u) ;aC4 = 4(4m2s+ 3s2 � 8tu) ;aC5 = 4(8m4 � 3s2 + 2tu) ; (A2)aC6 = �4�2(2m2s+ s2 + 2tu) ;aD1 = 4(2m2(2D + szt�2 � t2�2) + s2t�2 + t3) ;aD1u = aD1(t$ u) ;aD2 = 4(8m2D � stu�2 + 2t2=s(t2 + u2)) ;aD2u = aD2(t$ u) ;aD3 = 8(8m2D � 8m4tu=s� stu�2 + 2t2u2=s) ;a(")B2 = 4(2s� z22=(s�2)) ;a(")B5 = �a(")B2 ;a(")C1 = 2(�2(s3(8m2 + s)� 8t2u2)=D+ 16m2=s(s2 + tu+D=�2) ;a(")C2 = �4t2(10� t=s(2tu�2 + 2s2 � 3t2)=D) ;a(")C2u = a(")C2 (t$ u) ;a(")C3 = �4t2(6� t=s(2tu�2 + 2s2 � 4st� 5t2)=D) ;a(")C3u = a(")C3 (t$ u) ;a(")C4 = �2(s3(2m2 � s)� 8tu(m2s+ t2 + u2))=D ;a(")C5 = 2(�2(s3(6m2 � s) + 4t2u2)=D (A3)+ 8s2 � 12m4z22=D) ;a(")C6 = 2(�2(s3(8m2 � s)� 4t2u2)=D+ 8m2s� 4m4z22=D) ;a(")D1 = �2t(2s2�2 � s2t�2(2m2z22=s2 + 4m2 + t)=D+ 2tzt + 2s2) ;a(")D1u = a(")D1(t$ u) ;



12a(")D2 = �2t(2s(s� u) + t2(s2 + 8tu� 8u3=s)=D) ;a(")D2u = a(")D2(t$ u) ;a(")D3 = 4tu(4s� t2u2=s2(8m2 � 7s)=D) ;a("2)B2 = 0 ;a("2)B5 = 0 ;a("2)C1 = 8s(s� 2m2z22=D) ;a("2)C2 = �8t2(3u=s+ t(m2 � u)=D) ;a("2)C2u = a("2)C2 (t$ u) ;a("2)C3 = 8t2(2 + tu(1� 3t=s)=D) ;a("2)C3u = a("2)C3 (t$ u) ;a("2)C4 = �16s2tu=D ; (A4)a("2)C5 = �4s(s+ 2m2z22=D) ;a("2)C6 = 4s(s� 2m2z22=D) ;a("2)D1 = �4st(2m2 � s+ t(�2tu+m2z22=s)=D) ;a("2)D1u = a("2)D1 (t$ u) ;a("2)D2 = 4st(s� 4t2u=D) ;a("2)D2u = a("2)D2 (t$ u) ;a("2)D3 = �8tu(s+ 3t2u2=(sD)) ;b1 = �16=3z2=s(m2(nl + 1) + (2CF �NC)3D=(s�2)�NC(m2 +D6(10m2 � s)=(s2�4))) ;bB2 = �8z2=s2(8m4 � (2CF �NC)D(2 + 1=�2)) ;bB5 = �NC8z2(D(16m2 � s)=(s�4) + tu)=s2 ;bC1 = �NC16m2Dz2(8m2 + s)=(s3�4) ;bC4 = NC4z2(D � 2tu)=s ; (A5)bC5 = �32m4z2=s ;bC6 = �(2CF �NC)16Dz2(2m2 � s)=s2 ;b(")1 = 16=3 z2(tu(nl + 1) + (2CF �NC)3D=�2�NC(36m2D=(s�4)� tu(4m2 � 7s)=(s�2)))=s2 ;

b(")B2 = 8z2(8m2tu=s+ (2CF �NC)(2tu�D=�2))=s2 ;b(")B5 = NC8z2(3m2z22=(s�4)� 2(D + 2m2tu=s)=�2)=s2 ;b(")C1 = NC16m2z2(3D=�4 + 2tu=�2)=s2 ;b(")C4 = NC12tuz2=s ; (A6)b(")C5 = 32m2tuz2=s2 ;b(")C6 = �(2CF �NC)16tuz2(2m2 � s)=s2 ;1 = 16(CF (D�2(8m2T=t2 + 2)�D(6zt=t� 2� t=s)+ 2m2(4zt(m2=s� 1)�m2)�D(1 + 4t=s)=�2)�NC(D2m2(2D + tu)=(st2)� 2m2tu=s�D4m2(s+ 4t)=(s2�2)))=T ;B1 = 16(CF (2m2�2(T � 2s�D(2T + t)=t2)+D(3zt=t+ t=s)� 2m2u(2 + 5t=s))=T+NC2D(D=s� t)=t2) ;B2 = (2CF �NC)16D=(s�2) ; (A7)B5 = NC8(�8m2D=(s2�2)� t�2 + t2z2=s2) ;C1 = NC8(t3 + u3 � 4t2T � sD=�2 � s2�2(m2 � t))=s ;C2 = �(2CF �NC)16(2m2z2(m2s=t� zt)+ t(s2 + t2))=s ;C3 = NC16t(4D=s� t�2 + s) ;C4 = NC4(�s2�2 + 3z2(m2s� t2)=s� 3su+ 2t2) ;C5 = (2CF �NC)8(2T (2m2 + s)� u2) ;C6 = �(2CF �NC)8(4m2D=s� 4m2t�2 + 3tzt � z22) ;D1 = �(2CF �NC)8(m2s2�4 � 2m2t�2(s� t) + st2�2� t3 � sD) ;D2 = NC8(8m2D � stu�2 + 2t2(t2 + u2)=s) ;(")1 = 16(CF (D(16m2D=(st2)� 24m4=t2 + 4� t=s+ 2t=(s�2)) + 2m2(4m2 � 6t� 9t2=s)+ 4m2t2z2=(s2�2))=T+NC2(2m4s=t2 + t+Dz2=(st)�D(4m2 + 3s)=(s2�2) + tz2=(s�2))) ;(")B1 = 16(CF (4m4D=t2 � 6TD=t� 2m2D=s� tD=s� 5m2zt + t2)�NC(2m2D2=(st2) + 2tD=s�m4 + t2))=T ;(")B2 = �(2CF �NC)8t(2 + z2=(s�2)) ; (A8)



13(")B5 = NC8(2D=�2 + 6m2z2=�2 � 3t2 � 2t3=s)=s ;(")C1 = �NC4(2m2z22=s� 4s2 � 4t2 � 4m2(4zt+ tz2=s)=�2 + 2tuzt(4s+ 3t2=s+ u2=s)=D+ st2(2t�2 � z2)=D) ;(")C2 = (2CF �NC)8(�2t(6sD � 4m2tu� st2)+ 2D(2m4s=t� szt +Dt=s� t2)� 4m2t3z2=s)=D ;(")C3 = �NC8t2(4s=t+ 14� st(4�2 � 8tT=s2 + 5)=D);(")C4 = �NC4(2s2 + 2t3=s� 2su+m2st(9s+ 7t)=D� t4(9 + 8t=s)=D) ;(")C5 = �(2CF �NC)4(2m2z22=s� 2t2� 4s�2(s�m2tu=D) + t2(8m2t+ s2)=D) ;(")C6 = �(2CF �NC)4st(7�2 + 2u2�2=(st) + 2s=t+ 5+ �2(2m2z22=s� 3st� 4t2)=D) ;(")D1 = �(2CF �NC)4st2(2s�2=t+ 2s=t+ 2t=s+ 4m4z22=(s2D)� �2(6m2s� 4m2tu=s+ st)=D);(")D2 = �NC4t(4s2 + 2st+ t2(z22 + 12tu� 8u3=s)=D) ;("2)1 = �16(CF (2m2(6D=t+ 4m2 + t)�4m2(3D + tz2)=(s�2) +D=�2)=T�NC2(u� 4m2zu=(s�2))) ;("2)B1 = 16(CF zt(3D=t+ 2m2)=T �NC2m2) ;("2)B2 = �(2CF �NC)32m2z2=(s�2) ;("2)B5 = �NC64m2z2=(s�2) ;("2)C1 = �NC8s(4t+ 2m2t(s+ 4t+ z22=(s�2))=D+ s=�2) ;("2)C2 = (2CF �NC)16(2m2s+ tu+ 2m2t(m2s� t2)=D) ;("2)C3 = NC16t(s+ 2t(m2s+ tu)=D) ;("2)C4 = NC8s(s+ 2t(m2s+ tu)=D) ; (A9)("2)C5 = (2CF �NC)8s(u� 2m2tz2=D) ;("2)C6 = �(2CF �NC)8(2m2z2(m2s� t2)=D + su) ;

("2)D1 = �(2CF �NC)8t(szu + 2m2tz22=D) ;("2)D2 = NC8st(s� 4t2u=D) :APPENDIX BIn this Appendix, we present the expressions for all theoeÆients dI ; eI ; gI ; hI appearing in Eq. (3.16):d(")B2 = 2s(4m2 + z22=(s�2))=(tu) ;d(")B5 = �d(")B2 ;d(")C1 = s(s2�2(8m2s+ s2 + 2D) + 4s2D� 16m2D2=(s�2)� 8m4z22)=(tuD) ;d(")C2 = 2t(2u(D +m2s) + st2 + �dt=s)=(uD) ;d(")C2u = d(")C2 (t$ u) ;d(")C3 = �2t(2m2s2 + st2 � �dt=s)=(uD) ;d(")C3u = d(")C3 (t$ u) ; (B1)d(")C4 = s2(�d + 3sD � s2(m2 � s))=(tuD) ;d(")C5 = �s(� + 2m2sz22)=(tuD) ;d(")C6 = �s�=(tuD) ;d(")D1 = st(z2 + �2(�d � s2(m2 � t))=D)=u ;d(")D1u = d(")D1(t$ u) ;d(")D2 = st(�d + sD + s2(m2 � t))=(uD) ;d(")D2u = d(")D2(t$ u) ;d(")D3 = 2tu�d=(sD) ;with� = 4D2 � s�2(8m2s2 � 8m2tu� s3) ;�d = 10m2s2 � 8m2tu� 3stu ;d("2)B2 = �8m2z22=(stu�2) ;d("2)B5 = �d("2)B2 ;d("2)C1 = �s((22m2s2 � 16m2tu+ s3)s�2 + 4m2sD� 16m2D2=(s�2))=(tuD) ;d("2)C2 = 2t(6sD+ 4m2sz2 + t2z2 � �dt=s)=(uD) ;



14d("2)C2u = d("2)C2 (t$ u) ;d("2)C3 = �2t(�dt=s� s(2m2s� 2st� t2))=(uD) ;d("2)C3u = d("2)C3 (t$ u) ; (B2)d("2)C4 = �s2(�d + sD + s2(m2 + s))=(tuD) ;d("2)C5 = �s(� � 2m2s(4D + z22))=(tuD) ;d("2)C6 = �s�=(tuD) ;d("2)D1 = st(2uD � �2(�d � 4stu� st2))=(uD) ;d("2)D1u = d("2)D1 (t$ u) ;d("2)D2 = �st(�d + s(2m2s� 2st� t2))=(uD) ;d("2)D2u = d("2)D2 (t$ u) ;d("2)D3 = �2tu�d=(sD) ;with� = 4tuD + s�2(18m2s2 � 16m2tu� s3) ;�d = 18m2s2 � 16m2tu+ stu ;e(")1 = 2s(nl + 1)�1�2 ; e(")B2 = 3(8m2 + s)�1�2 ;e(")B5 = 3snl�1�2 ; e(")C5 = 18m2s�1�2 ;e("2)1 = e(")1 =�2 ; e("2)B2 = e(")B2=�2 ; (B3)e("2)B5 = e(")B5=�2 ; e("2)C5 = e(")C5=�2 ;with�1 = 8z2=(9s2) ;�2 = �m2s=(tu) :Next, we introdue ommon fators that appear in thevarious oeÆients gI and hI . They are multiplied byone power of " and readsb2 = 2m2s� tz22=(s�2) ; (B4)s2 = ts5 � 4m2suD ;s5 = 2D(D + s(8m2 + t)) + 2st�2(2m2u� t2) + st2z2 ;s6 = D(3s�2 + z2) + �2(6m2s2 � 8m2tu+ s2t) :For the oeÆients g(")I , we haveg(")1 = 8(2m2s�2(4sT 2=t+ tzt � 2tu) +D(10m2u� 5szt� 2t2)� 2m2t(s2 + u2)�D26t=(s�2)� 3Dt2z2=(s�2))=(t2uT ) ;

g(")B1 = �8(D(4m2u� st)� t3(2s�2 + 3zt))=(t2uT ) ;g(")B2 = �8sb2=(tu) ; g(")C2 = 8s2=(Dtu) ; (B5)g(")C5 = 4ss5=(Dtu); g(")C6 = 4ss6=(Du); g(")D1 = �tg(")C6 :Finally, we introdue fators that are ommon to variousoeÆients gI and hI that are multiplied by two powersof ":b2 = 2m2u+D ; (B6)2 = 2D(4m2su� tD � st(17m2 + 3t))� 4st2�2(2m2u� t2) + st2(3szt + 4m2z2) ;5 = 2D(20m2s� st+ t2) + 2st�2(4m2u+ st� 2t2)+ 5st2z2 ;6 = 2D(s�2 � u) + �2(16m2(s2 � tu) + s2t) :For the oeÆients g("2)I , we haveg("2)1 = 8(D212t=(s�2) +D216m2=t+D4(2szt � tu)�Dt(14m2 + 3t)=�2 � 2m2(12m2s2T=t+ 5t3)� 4m2t2z2=�2)=(t2uT ) ;g("2)B1 = 8(D(4zt=t2 + 1=u) + 2m2(t=u� 2))=T ;g("2)B2 = �16z2b2=(stu�2) ; g("2)C2 = 82=(Dtu) ;g("2)C5 = �4s5=(Dtu) ; g("2)C6 = �4s6=(Du) ;g("2)D1 = �tg("2)C6 : (B7)For the remaining oeÆients hI , we geth(")1 = 8(tz2(2m2 +D=(s�2))=�2 �m2(4sD=t� 2s2+ tz2=9))=(t2u) ;h(")B1 = �8(3m2s+ tz2)=(tu) ;h(")B2 = 4sb2=(tu) ; (B8)h(")B5 = 4(2D(8m2t+ s2)=(s2�4) + 4=3m2(s� u)� szt=�2)=(tu) ;h(")C1 = �2s(s2�4t=D + 2s�2(2m2z2 � tu)=D� 8m2s2zt=(tD)�D6=t+ 8t+ 2tz2=(s�2)�D4zt=(st�4))=u ;h(")C2 = �4s2=(Dtu) ; h(")C3 = 2t=sh(")C4 ;h(")C4 = 2s(8m2u2=D + 4s� st(8m2 + s)=D)=u ;h(")C5 = �2ss5=(Dtu) ; h(")C6 = �2ss6=(Du) ;h(")D1 = �th(")C6 ; h(")D2 = �th(")C4 ;



15h("2)1 = 8(4m4s2=t� s2zt � 10=9st2 � t3=3� 2=9t4=s�Dtz2=(s�4) + t(uz2 + 8m2=sD)=�2)=(t2u) ;h("2)B1 = 16(Dz2 + t2u)=(t2u) ;h("2)B2 = 8z2b2=(stu�2) ; (B9)h("2)B5 = �8z2(4m2D=(s2�4) + tu=(3s)� 2m2u=(s�2))=(tu) ;h("2)C1 = �2s(40m2s=t+ (8m2su�2 + 20m2su+ 16m2t2� s2t)=D + 2(2m2s2=t+ 4m2t� s2)=(s�2)+ 8m2D=(st�4) + 4m2(1=s2 + �2=D)z22=�4)=u;h("2)C2 = �42=(Dtu) ; h("2)C3 = 2t=sh("2)C4 ;h("2)C4 = �2s(20m2s2 + 4stu�2 + stz2)=(Du) ;h("2)C5 = 2s5=(Dtu) ; h("2)C6 = 2s6=(Du) ;h("2)D1 = �th("2)C6 ; h("2)D2 = �th("2)C4 :APPENDIX CIn this Appendix, we present the expressions for all theoeÆients kI ; lI ;mI ; nI appearing in Eq. (3.19) usingthe following abbreviations:�1 = �s�2(18m2s2 � s3 + 2(2m2 + s)z22)� 8m2sD ;�6 = �s�2z22 + 16sD+ 6stu : (C1)We havek("2)C1 = �s�1=(tuD) ;k("2)C2 = 2t(�6t=s+ 2m2su� s2zt + t3)=(uD) ;k("2)C2u = k("2)C2 (t$ u) ;k("2)C3 = 2t2(�6=s+ 2s2 + u2)=(uD) ;k("2)C3u = k("2)C3 (t$ u) ; (C2)k("2)C4 = s2(�6 + 2s(u2 � st))=(tuD) ;k("2)C5 = �s(�1 � 2s2(2D � tu�2 � z22))=(tuD) ;k("2)C6 = s2�2�6=(tuD) ;

k("2)D1 = st�2(�6 � suz2)=(uD) ;k("2)D1u = k("2)D1 (t$ u) ;k("2)D2 = st(�6 + s3 � s2t)=(uD) ;k("2)D2u = k("2)D2 (t$ u) ;k("2)D3 = 2tu(�6=s� st+ u2)=D ;l("2)1 = 4=3s(nl + 1)�1�2 ; l("2)B2 = (16m2 + 5s)�1�2 ;l("2)B5 = 5snl�1�2 ; l("2)C5 = 18m2s�1�2 ; (C3)m("2)1 = 32(2m2(2m2u2=t2 � s2=t+ 2t� 8DT=t2)�s�2(2D=t+m2) +D4U=(s�2))=(tu) ;m("2)C2 = 2zt=(s�2)m("2)C6 ;m("2)C5 = zt=(t�2)m("2)C6 ; (C4)m("2)C6 = 4s�2(�6=u� sz2)=D ;m("2)D1 = �tm("2)C6 ;n("2)1 = �16m2(18s2zt=t2 + 82=3s+ 2=3t� 9sz2=(s�2)+144zuD=(s2�4))=(9tu) ;n("2)B5 = 16m2z2=(9tu) ;n("2)C1 = zt=t n("2)C4 ;n("2)C2 = 2zt=(s�2)n("2)C6 ;n("2)C3 = 2t=s n("2)C4 ; (C5)n("2)C4 = 2s(�6 + s3 � s2t)=(Du) ;n("2)C5 = zt=(t�2)n("2)C6 ;n("2)C6 = �2s�2(�6 � suz2)=(Du) ;n("2)D1 = �tn("2)C6 ; n("2)D2 = �tn("2)C4 :
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