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DESY 08{131Heavy quark pair produ
tion in gluon fusion at next-to-next-to-leading O(�4s) order:One-loop squared 
ontributionsB. A. Kniehl� and Z. MerebashviliyII. Institut f�ur Theoretis
he Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyJ. G. K�ornerzInstitut f�ur Physik, Johannes Gutenberg-Universit�at, 55099 Mainz, GermanyM. RogalxDeuts
hes Elektronen-Syn
hrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany(Dated: November 21, 2008)We 
al
ulate the next-to-next-to-leading-order O(�4s) one-loop squared 
orre
tions to the produ
-tion of heavy-quark pairs in the gluon-gluon fusion pro
ess. Together with the previously derivedresults on the q�q produ
tion 
hannel, the results of this paper 
omplete the 
al
ulation of the one-loop squared 
ontributions of the next-to-next-to-leading-order O(�4s) radiative QCD 
orre
tionsto the hadroprodu
tion of heavy 
avors. Our results, with the full mass dependen
e retained, arepresented in a 
losed and very 
ompa
t form, in dimensional regularization.PACS numbers: 12.38.Bx, 13.85.-t, 13.85.Fb, 13.88.+eI. INTRODUCTIONIt has been already 20 years sin
e the next-to-leading-order (NLO) 
orre
tions to the hadroprodu
tion of heavy
avors were �rst presented in the seminal work [1℄. Theseresults were 
on�rmed yet in another seminal work [2℄.In the past few years there was mu
h progress in de-s
ribing the experimental results on heavy-
avor produ
-tion. For instan
e, in a re
ent work [3℄ it was shownthat a NLO analysis of the transverse-momentum distri-butions does in fa
t properly des
ribe the latest bottomquark produ
tion data [4℄ in a surprisingly large kinemat-i
al range. The improvement in the theoreti
al predi
tionis mainly due to advan
es in the analysis of parton dis-tribution fun
tions and the QCD 
oupling 
onstant. Wealso point out the progress in dealing with numeri
allylarge mass logarithms that spoil the 
onvergen
e of theperturbative expansion in the high energy (or small mass)asymptoti
 domain. In this respe
t we mention the work[5℄ where also 
harm pair produ
tion is re
on
iled withexperimental data. Data on top-quark pair produ
tionalso agrees with the NLO predi
tion within theoreti
aland experimental errors (see e.g. Ref. [6℄). However,in all of these NLO 
al
ulations there remains, amongothers, the problem that the renormalization and fa
tor-ization s
ale dependen
es render the theoreti
al predi
-tions to have mu
h larger un
ertanties than today's stan-dards require. This 
alls for a next-to-next-to-leading-order (NNLO) 
al
ulation of heavy-quark produ
tion in�Ele
troni
 address: kniehl�desy.deyEle
troni
 address: zakaria.merebashvili�desy.dezEle
troni
 address: koerner�thep.physik.uni-mainz.dexEle
troni
 address: Mikhail.Rogal�desy.de
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ollisions. In fa
t, the s
ale dependen
e of thetheoreti
al predi
tion is expe
ted to be 
onsiderably re-du
ed when NNLO partoni
 amplitudes are folded withthe available NNLO parton distributions. For example,by approximating the NNLO 
orre
tions with the �xed-order expansion of the next-to-leading-log predi
tion, one�nds a proje
ted NNLO s
ale un
ertainty of about 3% [7℄,whi
h is below the parton distribution un
ertainty, andin line with the anti
ipated experimental error.Re
ently there was mu
h a
tivity in the phenomenol-ogy of hadroni
 heavy-quark pair produ
tion in 
onne
-tion with the Tevatron and the CERN Large Hadron Col-lider (LHC), whi
h had its start-up this year. There willbe mu
h experimental e�ort dedi
ated to the dis
overyof the Higgs boson. There will also be studies of the
opious produ
tion of top quarks and other heavy parti-
les, whi
h serve as a ba
kground to Higgs boson sear
hesas well as to possible new physi
s beyond the standardmodel. Therefore, it is mandatory to redu
e the the-oreti
al un
ertainty in phenomenologi
al 
al
ulations ofheavy-quark produ
tion pro
esses as mu
h as possible.Several years ago the NNLO 
ontributions to hadronprodu
tion were 
al
ulated by several groups in masslessQCD (see e.g. Ref. [8℄ and referen
es therein). The 
om-pletion of a similar program for pro
esses that involvemassive quarks requires mu
h more dedi
ation, sin
e thein
lusion of an additional mass s
ale dramati
ally 
om-pli
ates the whole 
al
ulation.At the lower energies of Tevatron II, top-quark pairprodu
tion is dominated by q�q annihilation (85%). Theremaining 15% 
omes from gluon fusion. At the higherenergies of the LHC, gluon fusion dominates the produ
-tion pro
ess (90%) leaving 10% for q�q annihilation (per-
entage �gures from Ref. [6℄). This shows that both q�qannihilation and gluon fusion have to be a

ounted for inthe 
al
ulation of top-quark pair produ
tion. Sin
e gluon
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c )

a ) b )

d )FIG. 1: Exemplary gluon fusion diagrams for the NNLO 
al
ulation of heavy-hadron produ
tion.fusion makes up the largest part of the heavy-quark pairprodu
tion 
ross se
tion at the LHC it is important toredu
e renormalization and fa
torization s
ale un
ertain-ties in the gluon fusion pro
ess as mu
h as possible inview of the fa
t that the large un
ertainties in the glu-oni
 parton distribution fun
tions translate to large 
rossse
tion un
ertainties at the LHC.There are four 
lasses of 
ontributions that need tobe 
al
ulated for the NNLO 
orre
tions to the hadroni
produ
tion of heavy-quark pairs. In Fig. 1 we show onegeneri
 diagram ea
h for the four 
lasses of 
ontribu-tions that need to be 
al
ulated for the NNLO 
orre
-tions to the gluon-initiated hadroprodu
tion of heavy 
a-vors. The �rst 
lass involves the pure two-loop 
ontribu-tion [1(a)℄, whi
h has to be folded with the leading-order(LO) Born term. The se
ond 
lass of diagrams [1(b)℄
onsists of the so-
alled one-loop squared 
ontributions(also 
alled loop-by-loop 
ontributions) arising from theprodu
t of one-loop virtual matrix elements. This is thetopi
 of the present paper. Further, there are the one-loop gluon emission 
ontributions [1(
)℄ that are foldedwith the one-gluon emission graphs. Finally, there arethe squared two-gluon emission 
ontributions [1(d)℄ thatare purely of tree type. The 
orresponding graphs for thequark-initiated pro
esses are not displayed.Bits and pie
es of the NNLO 
al
ulation for hadropro-du
tion of heavy 
avors are now being assembled. Inthis 
ontext we would like to mention the re
ent two-loop 
al
ulation of the heavy-quark vertex form fa
tor [9℄that 
an be used as one of the many building blo
ks inthe �rst 
lass of pro
esses. There is also a very promisingnumeri
al approa
h applied to the 
al
ulation of the puretwo-loop diagrams [10℄. Re
ently, an analyti
 
al
ulationof a sub
lass of the two-loop 
ontributions to q�q ! Q �Qwas published [11℄. The authors of Ref. [12℄ have 
al-
ulated the NLO 
orre
tions to t�t+jet produ
tion with
ontributions from the third 
lass of diagrams. However,this result needs further subtra
tion terms in order toallow for an integration over the full phase spa
e. Wewould also like to mention the re
ent work on the two-loop virtual amplitudes that are valid in the domain ofhigh energy asymptoti
s, where the heavy-quark mass issmall 
ompared to the other large s
ales. In this 
al
u-lation [13℄, mass power 
orre
tions are left out, and only

large mass logarithms and �nite terms asso
iated withthem are retained. Mu
h work was also done in relationto the resummation of soft 
ontributions. In this respe
twe refer the reader to re
ent publi
ations where somedi�erent approa
hes to the resummation are advo
ated[7, 14℄.The authors of the present paper have been involved ina systemati
 e�ort to 
al
ulate all the 
ontributions fromthe se
ond 
lass of pro
esses, i.e. the one-loop squared
ontributions. The NNLO one-loop squared amplitudesfor the quark-initiated pro
ess were re
ently presented inRef. [15℄. In this paper, we report on a 
al
ulation of theNNLO one-loop squared matrix elements for the pro
essgg ! QQ. The 
al
ulation is 
arried out in dimensionalregularization [16℄ with spa
e-time dimension n = 4�2".We mention that we have presented 
losed-form, one-loop squared results for heavy-quark produ
tion in thefusion of real photons in Ref. [17℄. With the presentpaper the program of 
al
ulating the one-loop squared
ontributions to heavy-quark pair hadroprodu
tion hasnow been 
ompleted.Let us brie
y des
ribe some of the main features of the
al
ulation of the one-loop squared 
ontributions. Thehighest singularity in the one-loop amplitudes arises frominfrared (IR) and mass singularities (M) and is thus, ingeneral, proportional to (1="2). This in turn implies thatthe Laurent series expansion of the one-loop amplitudeshas to be taken up toO("2) when 
al
ulating the one-loopsquared 
ontributions. In fa
t, it is theO("2) terms in theLaurent series expansion that really 
ompli
ate things[18℄, sin
e the O("2) 
ontributions in the one-loop am-plitudes involve a multitude of multiple polylogarithmsof maximal weight and depth 4 [19℄. All s
alar masterintegrals needed in this 
al
ulation have been assembledin Refs. [18, 19℄. Referen
e [18℄ gives the results in termsof so-
alled L fun
tions, whi
h 
an be written as one-dimensional integral representations involving produ
tsof log and dilog fun
tions, while Ref. [19℄ gives the re-sults in terms of multiple polylogarithms. The divergentand �nite terms of the one-loop amplitude for gg ! QQwere given in Ref. [20℄. The remaining O(") and O("2)amplitudes have been written down in Ref. [21℄. We shallrewrite these matrix elements in a representation moresuitable for the purposes of the present appli
ation.
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p2FIG. 2: The t-, u-, and s-
hannel LO graphs 
ontributing to the gluon (
urly lines) fusion amplitude. The thi
k solid lines
orrespond to the heavy quarks.In our presentation, we shall make use of our nota-tion for the 
oeÆ
ient fun
tions of the relevant s
alarone-loop master integrals 
al
ulated up to O("2) inRefs. [18, 19℄. For the 
ase of gluon-gluon and quark-antiquark 
ollisions, one needs all the s
alar integralsderived in Refs. [18, 19℄, e.g. the one s
alar one-pointfun
tion A, the �ve s
alar two-point fun
tions B1, B2,B3, B4, and B5, the six s
alar three-point fun
tionsC1; C2; C3; C4; C5, and C6, and three s
alar four-pointfun
tions D1; D2, and D3. Taking the 
omplex s
alarfour-point fun
tion D2 as an example, we de�ne su

es-sive 
oeÆ
ient fun
tions D(j)2 for the Laurent series ex-pansion of D2. One hasD2 = iC"(m2)n 1"2D(�2)2 + 1"D(�1)2 +D(0)2 + "D(1)2+"2D(2)2 +O("3)o; (1.1)where C"(m2) is de�ned byC"(m2) � �(1 + ")(4�)2 �4��2m2 �" : (1.2)We use this notation for both the real and imaginaryparts of D2, i.e. for ReD2 and ImD2. Similar expansionshold for the s
alar one-point fun
tion A, the s
alar two-point fun
tions Bi, the s
alar three-point fun
tions Ci,and the remaining four-point fun
tions Di. The 
oeÆ-
ient fun
tions of the various Laurent series expansionswere given in Ref. [18℄ in the form of so-
alled L fun
-tions, and in Ref. [19℄ in terms of multiple polylogarithmsof maximal weight and depth 4. It is then a matter of
hoi
e whi
h of the two representations are used for thenumeri
al evaluation. The numeri
al evaluation of the Lfun
tions in terms of their one-dimensional integral rep-resentations is quite straightforward using 
onventionalintegration routines, while there exists a very eÆ
ient al-gorithm to numeri
ally evaluate multiple polylogarithms[22℄.Let us brie
y summarize the main features ofthe s
alar master integrals. The master inte-grals A;B1; B3; B4; C2; C3, and D3 are real, whereasB2; B5; C1; C4; C5; C6; D1, and D2 are 
omplex. Fromthe form (AB� + BA�) = 2(ReAReB + ImA ImB) it is
lear that the imaginary parts of the master integrals

must be taken into a

ount in the one-loop squared 
on-tribution. The master integrals B2; B5; C1; C4; C5, andC6 are (t$ u) symmetri
, where the kinemati
 variablest and u are de�ned in Se
. II.This paper is organized as follows. Se
tion. II 
on-tains an outline of our general approa
h and dis
ussesrenormalization pro
edures. Se
tion. III presents LO andNLO results for the gluon fusion subpro
ess. In Se
. IVone �nds a dis
ussion of the singularity stru
ture of theNNLO squared matrix element for the gluon fusion sub-pro
ess. In Se
. V we dis
uss the stru
ture of the �nitepart of our result. Our results are summarized in Se
. VI.In the Appendi
es, we present expressions for various 
o-eÆ
ients that are used in Se
. III to write down the NLOresult.II. NOTATION AND RENORMALIZATIONHeavy-
avor hadroprodu
tion pro
eeds through twopartoni
 subpro
esses: gluon fusion and light-quark-antiquark annihilation. The �rst subpro
ess is the most
hallenging one in QCD from a te
hni
al point of view.It has three produ
tion topologies already at the Bornlevel (see Fig. 2). The se
ond subpro
ess, where there isonly one topology at the Born level, was 
onsidered inRef. [15℄. Irrespe
tive of the partons involved, the gen-eral kinemati
s is, of 
ourse, the same in both pro
esses.In parti
ular, for gluon fusion, Fig. 2, we haveg(p1) + g(p2)! Q(p3) +Q(p4); (2.1)The momentum 
ow dire
tions 
orrespond to the phys-i
al 
on�guration, e.g. p1 and p2 are ingoing whereas p3and p4 are outgoing. With m being the heavy-quarkmass, we de�nes � (p1 + p2)2; t � T �m2 � (p1 � p3)2 �m2;u � U �m2 � (p2 � p3)2 �m2; (2.2)so that one has the energy-momentum 
onservation rela-tion s+ t+ u = 0.We also introdu
e the overall fa
torC = �g4sC"(m2)�2 ; (2.3)where gs is the renormalized strong-
oupling 
onstantand C"(m2) is de�ned in Eq. (1.2).



4As was shown e.g. in Refs. [20, 21℄ the self-energy andvertex diagrams 
ontain ultraviolet (UV), infrared and
ollinear (IR/M) poles after heavy-mass renormalization.The UV poles need to be regularized.Our renormalization pro
edure is 
arried out in amixed renormalization s
heme. When dealing with mass-less quarks, we work in the modi�ed minimal-subtra
tion(MS) s
heme, while heavy quarks are renormalized inthe on-shell s
heme de�ned by the following 
onditionsfor the renormalized external heavy-quark self-energygraphs:�r(6 p)j 6p=m = 0; ��6 p�r(6 p)j 6p=m = 0: (2.4)In the on-shell s
heme, the �rst 
ondition in Eq. (2.4)ensures that the heavy-quark mass is the pole mass.For 
ompleteness, we list the set of one-loop renormal-ization 
onstants used in this paper. One hasZ1 = 1 + g2s" 23 �(NC � nl)C"(�2)� C"(m2)	 ;Zm = 1� g2sCFC"(m2) 3� 2""(1� 2") ;Z2 = Zm; (2.5)Z1F = Z2 � g2s" NCC"(�2);Z1f = 1� g2s" NCC"(�2);Z3 = 1 + g2s" �(53NC � 23nl)C"(�2)� 23C"(m2)�= 1 + g2s" �(�0 � 2NC)C"(�2)� 23C"(m2)� ;Zg = 1� g2s" ��02 C"(�2)� 13C"(m2)� ;with �0 = (11NC � 2nl)=3 being the �rst 
oeÆ
ient ofthe QCD beta fun
tion, nl the number of light quarks,CF = 4=3, and NC = 3 the number of 
olors. The arbi-trary mass s
ale � is the s
ale at whi
h the renormaliza-tion is 
arried out. The above renormalization 
onstantsrenormalize the following quantities: Z1 for the three-gluon vertex, Zm for the heavy-quark mass, Z2 for theheavy-quark wave fun
tion, Z1F for the (QQg) vertex,Z1f for the (qqg) vertex, Z3 for the gluon wave fun
-tion and Zg for the strong-
oupling 
onstant �s. Forthe massless quarks, there is no mass and wave fun
tionrenormalization.Let us sket
h the two alternative ways of getting the�nal one-loop-renormalized amplitude from the mass-renormalized amplitude:i) Take the given mass-renormalized matrix element orthe square of that matrix element and multiply all theself-energy graphs by a fa
tor 1/2. Then renormalize the
oupling 
onstant in the LO Born amplitude.ii) Take the given mass-renormalized matrix element andapply the 
orresponding 
ounterterms obtained from the

LO matrix element by inserting the relevant Z�1 fa
torsinto the internal propagators and verti
es. All the renor-malization 
onstants we need are presented in Eq. (2.5).We will get the renormalized vertex fun
tion �(N)R , where(N) denotes the set of N external parti
les. The renor-malized matrix element is obtained fromMR = �(N)R NYi=1�Z(i)R � 12 ; (2.6)where Z(i)R are the residues of the renormalized propaga-tors at the poles for all the parti
les under 
onsideration.They are related to the residues of the unrenormalizedpropagators via Z(i)R = Z(i)U Z�1i (2.7)where the Zi are the respe
tive external wave fun
tionrenormalization 
onstants.Working at the one-loop order, we note that in the on-shell s
heme Z(i)R = 1. This is a dire
t 
onsequen
e ofthe se
ond 
ondition in Eq. (2.4), whi
h e�e
tively 
utso� the external massive lines. For the 
ase of externalmassless partons Z(i)U = 1. It is important to note thatthe gluon wave fun
tion renormalization 
onstant Z3 is amixture of two parts: the part whi
h multiplies C"(�2) isderived in the MS s
heme, while the last term due to theheavy-quark loop is derived in the on-shell s
heme. Forthis reason, this last term has to be omitted in Z3 whenusing it as an external �eld renormalization 
onstant inEq. (2.7). Sin
e in our 
ase we have two gluon and twoheavy-quark �elds, we therefore obtainMR = �(N)R Z�13 : (2.8)The �nal result should not depend on whi
h of thetwo ways has been 
hosen to do the renormalization. Wehave 
he
ked that, in both ways, one arrives at the samerenormalized matrix element.In order to �x our normalization, we write down thedi�erential 
ross se
tion for gg ! QQ in terms of thesquared amplitudes jM j2. One hasd�gg!QQ = 12s d(PS)24(1� ")2 1d2A jM j2gg!QQ ; (2.9)where the n{dimensional two{body phase spa
e is givenbyd(PS)2 = m�2"8�s (4�)"�(1� ") � tu� sm2sm2 ��" Æ(s+t+u)dtdu :(2.10)We expli
itly exhibit the 
ux fa
tor (4p1p2)�1 = (2s)�1,and the spin (n�2)�2 = (2�2")�2 and 
olor d�2A averag-ing fa
tors for the initial gluons. Here dA = N2C � 1 = 8is the dimension of the adjoint representation of the 
olorgroup SU(NC).
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a1 a2 a3

a4 b c1

c2 c3 c4

d1 d2 d3

e1 e2FIG. 3: The t-
hannel one-loop graphs 
ontributing to the gluon fusion amplitude. Loops with dotted lines represent the gluon,ghost, and light and heavy quarks.III. LEADING AND NEXT-TO-LEADINGORDER RESULTSAt LO for gg ! QQ, we shall use a representationwhi
h di�ers from the one given in Refs. [20, 21℄. Firstnote that there are only two independent 
olor stru
turesfor this subpro
ess. The s-
hannel matrix element is asum of two parts, ea
h of whi
h is proportional to oneof the two independent 
olor stru
tures. We 
ombineterms with the same 
olor stru
tures of the three (e.g.s, t, and u) produ
tion 
hannels. Finally, we remove theheavy-antiquark momentum p4 using energy-momentum
onservation and use on-shell 
onditions for the gluons(p1 � �1 = 0 and p2 � �2 = 0) and the heavy quark (�u3 6 p3 =�u3m). We then obtain the two 
olor-linked LO matrix

elementsMLO;t = iT bT aM̂=t; MLO;u = iT aT bM̂=u; (3.1)withsM̂ = 
�6 p1
�s+ 2
�p�1t� 2
�p�2 t� 2
�p�3s� 26 p1g��t:(3.2)It 
an be veri�ed that the fun
tion M̂ is t$ u symmetri
,and 
onsequently the 
olor-linked Born amplitudesMLO;tand MLO;u turn into one another under t$ u.We then square the full Born matrix element MLO;t +MLO;u and do the spin and 
olor sums to obtain the LOamplitude,jM j2LO = dA2 �CF s2tu �NC� jM̂ j2 � B; (3.3)
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f1 f2 g1

g2 h i1

i2 j1 j2FIG. 4: The s-
hannel one-loop graphs 
ontributing to the gluon fusion amplitude. Loops with the dotted lines as in g1, h, j1,and j2 represent the gluon, ghost, and light and heavy quarks. The four-gluon 
oupling 
ontribution appears in g2.where we have fa
tored out a 
olor-redu
ed Born termjM̂ j2, whi
h readsjM̂ j2 = 8n t2 + u2s2 + 4m2s � 4m4tu�" 2(1� tus2 ) + "2o � B̂: (3.4)The expression in Eq. (3.3) for the LO amplitudeagrees with the well-known result in n dimensions (seee.g. Ref. [2℄). Note that, by using the pres
riptionof Ref. [23℄, we were able to avoid the introdu
tion ofghost 
ontributions whi
h would otherwise arise from thesquare of the right-most three-gluon 
oupling amplitudein Fig. 2. In our 
ase the pres
ription of Ref. [23℄ 
on-sists in the use of on-shell 
onditions for external gluons,i.e. p1 � �1 = 0 and p2 � �2 = 0, and the ex
lusion of theheavy-antiquark momentum via p4 = p1+p2�p3. Whensquaring amplitudes, we sum over the two heli
ities ofthe gluons using the Feynman gauge, i.e. we useX�=�1 ��(�)��(�) = �g�� : (3.5)The use of the framework set up in Ref. [23℄ has the ad-vantage in the non-Abelian 
ase that one 
an omit ghost
ontributions when squaring the amplitudes. Using theabove on-shell 
onditions already at the amplitude levelmeans that one takes full advantage of the gauge invari-an
e of the problem when squaring the amplitudes. Thus,in general, the results for the di�erent 
hannels will notbe identi
al to the ones whi
h would be obtained using't Hooft-Feynman gauge throughout.

Folding the one-loop matrix elements (see Figs. 3 and4) with the LO Born term (see Fig. 2), one obtains thevirtual part of the NLO result.As 
on
erns the one-loop matrix elements, we shall usethe one-loop matrix elements of Refs. [20, 21℄ to 
om-pute the virtual NLO 
ontribution up to O("2) in termsof the 
oeÆ
ient fun
tions (1.1) of the s
alar master in-tegrals. However, in Ref. [20℄, where expressions for theNLO matrix elements up to O("0) are given, the val-ues for the s
alar 
oeÆ
ient fun
tions in terms of loga-rithms and dilogarithms are substituted dire
tly. There-fore, we had to re
al
ulate the 
orresponding expressionsfrom Ref. [20℄ for the matrix elements in order to havea uniform result in terms of s
alar 
oeÆ
ient fun
tions.This has allowed us to retrieve and use relations between
oeÆ
ients of the s
alar 
oeÆ
ient fun
tions in the resultfor di�erent orders of the Laurent series expansion in ".We will 
omment on these relations later on.We also mention that we had to regroup and rear-range various terms in the one-loop amplitudes fromRefs. [20, 21℄ a

ording to the three independent 
olorstru
tures in order to bring the pole terms into agreementwith the form suggested in Ref. [24℄. In the gluon fu-sion 
ase treated here, there are three independent 
olorstru
tures in the one-loop amplitudes, e.g. T bT a; T aT b,and Æab. As in the LO 
ase, one also has to ex
lude theheavy-antiquark momentum p4 from the one-loop ampli-tude expressions. As a result of the above two steps, thepole terms of our new matrix elements be
ame propor-tional to the LO 
olor-linked amplitudes (3.1). In all oursubsequent 
al
ulations, we shall use only these matrix



7elements.The NLO virtual 
orre
tions to heavy-
avor hadropro-du
tion have been 
al
ulated before for the gg ! Q �Q
ase. Nevertheless, one 
annot �nd expli
it separate re-sults for the virtual 
orre
tions in the literature althoughRef. [2℄ provides analyti
 results for the 
ombined \vir-tual+soft" 
ontributions. We have therefore re
al
ulatedthe virtual NLO 
ontribution to gg fusion. In fa
t, wehave 
al
ulated the virtual NLO results up to O("2). Asit turns out, use of the expressions for the NLO virtualO("1)- and O("2)-
ontributions 
onsiderably simplify thepresentation of the 
orresponding NNLO results in asmu
h as they appear as important building blo
ks in theNNLO results.Next we fold the pole, �nite, O("1) and O("2) termsof our NLO matrix element with the LO matrix ele-ment. In dimensional regularization, the tra
e evalua-tion in n = 4� 2" dimensions will lead to terms of orderO("1) and O("2) when multiplied with the pole and �-nite terms, as well as to the terms of O("3) and O("4)when multiplied with the O("1) and O("2) terms of thesquared amplitude, respe
tively. In the following we willdisregard terms of O("3) and O("4) as they do not 
on-tribute to the �nite part of the NNLO result.Before presenting our result for the NLO matrix ele-ment, we would like to 
omment on its 
olor stru
ture.We have de
omposed our matrix elements a

ording tothe following three independent 
olor stru
tures:Æab Tr(T aT b) = dA2 ; (3.6)Tr(T bT a) Tr(T bT a) = dA2 CF ;Tr(T bT a) Tr(T aT b) = dA2 (CF � NC2 ) :At NLO, the �nal spin and 
olor summed matrix ele-ment 
an be written as a sum of �ve terms:jM j2Loop�Born = g2spC Reh 1"2W (�2)(") + 1"W (�1)(")+W (0)(") + "W (1)(") + "2W (2)(")i;(3.7)where C has been de�ned in Eq. (2.3). The notationjM j2Loop�Born means that one is retaining only the O(�3s)part of jM j2.The �rst two 
oeÆ
ient fun
tions in Eq. (3.7) have arather simple stru
ture:W (�2)(") = �4NCB ; (3.8)W (�1)(") = dAB̂�s2tufÆ + (CF � NC2 )(ft + fu)+CF ut ft + CF tufu� ;where B and B̂ are the LO terms de�ned in Eqs. (3.3)and (3.4). We have also introdu
ed new fun
tions,fÆ = 12 ln sm2 + ts ln �tm2 + us ln �um2 + 2m2 � s2s� lnx;

ft = NC ln sm2 + 2NC ln �tm2 � 2CF � �0+(2CF �NC)2m2 � ss� lnx;fu = ftjt$u; (3.9)where � = p1� 4m2=s is the heavy-quark velo
ity and�0 is de�ned after Eq. (2.5).One should keep in mind that the overall Born termfa
tors B and B̂ 
ontain terms multiplied by " and"2. Therefore, if the expressions for B and B̂, given inEqs. (3.3) and (3.4), are substituted inW (�2) andW (�1),we will obtain additional O("�1) and �nite terms fromthe �rst two terms of Eq. (3.7).The third term in Eq. (3.7) readsW (0)(") � F (0)NLO ; (3.10)where we have 
onstru
ted the following generi
 fun
-tions: F (j)NLO =W(j)1 +W(j)2 ; (3.11)withW(j)1 = �dA2 h stuF (j)1 + n 1u�st CF + NC2 �(F (j)2 + F (j)3 )+ (t$ u)oi;W(j)2 = � 2B�0(1 + j)! ln1+j m2�2 : (3.12)The three fun
tions F1; F2, and F3 are de�ned as follows:F (j)1 =XI (aI + "a(")I + "2a("2)I )I(j);with I(j) = fB2; B5; C1; C2; C2u; C3; C3u; C4; C5; C6;D1; D1u; D2; D2u; D3g(j);F (j)2 =XI (bI + "b(")I )I(j); (3.13)with I(j) = f1; B2; B5; C1; C4; C5; C6g(j);F (j)3 =XI (
I + "
(")I + "2
("2)I )I(j);with I(j) = f1; B1; B2; B5; C1; C2; C3; C4; C5; C6;D1; D2g(j) :For I = 1 one has I(j) � 1, otherwise I(j) � B(j)1 ; C(j)2et
. In other words, the summation index I runs overthe s
alar integral 
oeÆ
ient fun
tions, while the 
oeÆ-
ient fun
tions aI ; a(")I ; a("2)I et
. denote the expli
it de-penden
e on s; t and m2. These 
oeÆ
ient fun
tions arepresented in Appendix A. Note that index j takes thesame value for all the 
oeÆ
ient fun
tions in Eq. (3.13)as well as in similar equations that will follow.The additional subs
ript \u" in some of the s
alar 
oef-�
ient fun
tions in the expression for F (j)1 (su
h as C(j)2u )



8is to be understood as an operational de�nition pres
rib-ing a (t $ u) inter
hange in the argument of that fun
-tion, i.e. C(0)2u = C(0)2 ��t$u et
.Note that W(j)2 is only 
ontributed to by the renor-malization pro
edure. Of 
ourse, all the remaining O(")terms (e.g. W (1)(") andW (2)("), as well as those 
omingfrom W (�1)(")=" and W (0)(")) should be disregarded inthe NLO �nal result in Eq. (3.7). It is important to notethat F (0)NLOj"=0 is not formally the full �nite part of theNLO result in dimensional regularization, but it resultsfrom folding the �nite part of our original NLO matrix el-ement with the LO one. Another part of the �nite result
omes from the �rst two terms in Eq. (3.7), as mentionedbefore Eq. (3.10). However, one should realize that the�rst two terms in Eq. (3.7) would be 
an
elled with the
orresponding parts from the real bremsstrahlung dia-grams. Given the overall fa
tor, Eq. (1.2), the term F (0)NLOevaluated for " = 0 represents the �nite part of the vir-tual one-loop NLO result.Our O("�2), O("�1), and O("0) NLO results inEq. (3.7) were analyti
ally 
ompared with the 
orre-sponding results obtained in Ref. [1℄, whi
h were kindlyprovided to us in a S
hoons
hip format by the authors[25℄. We obtained 
omplete agreement.The fourth term in Eq. (3.7) is a result of folding theO(") term of the matrix element with the Born term. Be-
ause of the n-dimensional tra
es, one also obtains termsof O("2) and O("3). As mentioned before, we will onlyretain terms of O(") and O("2). We haveW (1)(") = F (1)NLO + F (0)NLO;"; (3.14)whereF (j)NLO;" = dAhF (j)4 � n�CF + NC2 ts�(F (j)5 + CFF (j)6+NCF (j)7 ) + (t$ u)oi : (3.15)HereF (j)4 =XI (d(")I + "d("2)I )I(j);with I(j) = fB2; B5; C1; C2; C2u; C3; C3u; C4; C5; C6;D1; D1u; D2; D2u; D3g(j);F (j)5 =XI (e(")I + "e("2)I )I(j);with I(j) = f1; B2; B5; C5g(j);F (j)6 =XI (g(")I + "g("2)I )I(j); (3.16)with I(j) = f1; B1; B2; C2; C5; C6; D1g(j);F (j)7 =XI (h(")I + "h("2)I )I(j);with I(j) = f1; B1; B2; B5; C1; C2; C3; C4; C5; C6;D1; D2g(j) :

The 
oeÆ
ients dI ; eI ; gI ; hI are presented in Ap-pendix B. Note that the �rst term in Eq. (3.14) in nothingbut the NLO term of Eq. (3.10) with indi
es of the 
o-eÆ
ient fun
tions of the s
alar master integrals and thepower of the logarithm that multiplies �0 shifted upwardsby one.The last term in Eq. (3.7) is a result of folding theO("2) term of the matrix element with the Born term.Be
ause of the n-dimensional tra
es, one also obtainsterms of O("3) and O("4), whi
h are omitted as before.For the O("2) terms we obtainW (2)(") = F (2)NLO + F (1)NLO;" + F (0)NLO;"2 ; (3.17)whereF (j)NLO;"2 = dAhF (j)8 � n�CF + NC2 ts�(F (j)9 + CFF (j)10+NCF (j)11 ) + (t$ u)oi : (3.18)HereF (j)8 =XI k("2)I I(j);with I(j) = fC1; C2; C2u; C3; C3u; C4; C5; C6; D1; D1u;D2; D2u; D3g(j);F (j)9 =XI l("2)I I(j);with I(j) = f1; B2; B5; C5g(j);F (j)10 =XI m("2)I I(j); (3.19)with I(j) = f1; C2; C5; C6; D1g(j);F (j)11 =XI n("2)I I(j);with I(j) = f1; B5; C1; C2; C3; C4; C5; C6; D1; D2g(j) :The 
oeÆ
ients kI ; lI ;mI ; nI are presented in Ap-pendix C. We mention that the fun
tions F1; F4, and F8are (t$ u) symmetri
.IV. SINGULARITY STRUCTURE OF THENNLO SQUARED AMPLITUDEThe NNLO �nal spin and 
olor summed squared ma-trix element 
an be written down as a sum of �ve terms:1C jM j2Loop�Loop = Reh 1"4V (�4)(") + 1"3V (�3)(") (4.1)+ 1"2V (�2)(") + 1"V (�1)(") + V (0)(")i;where C has been de�ned in Eq. (2.3). Note that Eq. (4.1)is not a Laurent series expansion in " sin
e the 
oeÆ
ient



9fun
tions V (m)(") are fun
tions of " as expli
itly anno-tated in Eq. (4.1). It is nevertheless useful to write theNNLO one-loop squared result in the form of Eq. (4.1)in order to exhibit the expli
it " stru
tures. All �ve 
oef-�
ient fun
tions V (m)(") are bilinear forms in the 
oeÆ-
ient fun
tions that de�ne the Laurent series expansion ofthe s
alar master integrals (1.1). Some of these 
oeÆ
ientfun
tions are zero and some of them are just numbers orsimple logarithms. In the latter 
ase, we have substitutedthese numbers or logarithms for the 
oeÆ
ient fun
tionsV (m) in the �ve terms above. This has been done for allthe s
alar 
oeÆ
ient fun
tions that multiply poles, i.e.for s
alar fun
tions with negative subs
ripts I(�2) andI(�1), as well as for the whole s
alar fun
tions A(i), B(i)3 ,and B(i)4 .We found that a signi�
ant part of the NNLO results
an be expressed in terms of the " expansion of the NLO
ontribution. In parti
ular, we will need the NLO expan-sion up to "2. Therefore, in this se
tion, we will make fulluse of the results derived in Se
. III.Before pro
eeding further, we note that there are noadditional 
olor stru
tures appearing in the NNLO 
al-
ulation for gg fusion in addition to the ones alreadypresented in Eq. (3.6): they are just linear 
ombinationsof the ones in the NLO 
ase. This is in 
ontrast to theq�q subpro
ess, where the NNLO 
olor stru
tures exhibitmu
h higher 
omplexity and ri
hness [15℄ relative to theNLO ones.The two most singular terms in Eq. (4.1) are propor-tional to the Born B and 
olor-redu
ed Born B̂ termsde�ned in Eqs. (3.3) and (3.4), respe
tively. One hasV (�4)(") = 4N2CB; (4.2)V (�3)(") = �2NCW (�1)(") ;where W (�1)(") is given in Eq. (3.8) and is nothing butthe full 
oeÆ
ient of the single-pole NLO result.For the 1="2 term we obtainV (�2)(") = dAB̂hs2tu jfÆj2 + 12CF�ut jftj2 + tu jfuj2��sf�Æ �1t ft + 1ufu�+ (CF � NC2 )f�t fui�2NCF (0)NLO ; (4.3)where the fun
tions fÆ; ft, and fu above are the sameas those in Eq. (3.9), but now with the imaginary partsretained, i.e. one has the following repla
ements:ln sm2 ! ln sm2 � i�; lnx! lnx+ i�: (4.4)This re
e
ts the fa
t that, 
ontrary to the NLO 
al
ula-tion, one has to keep the imaginary parts in the NNLO
al
ulation as emphasized in the Introdu
tion. It shouldbe 
lear that the 
ompletion (4.4) has to be done every-where in the NNLO 
al
ulation whenever the logarithms(4.4) appear in bilinear forms multiplying 
omplex fun
-tions.

The last term �2NCF (0)NLO in Eq. (4.3) is obtained fromfolding the O("�2) singular term of the matrix elementwith its �nite part, while the remaining parts result fromfolding the single poles. Note that when one substitutesthe Laurent expansions for B̂ and F (0)NLO, one gets addi-tional 1=" poles and �nite terms in Eq. (4.3).The stru
ture of the fourth term in Eq. (4.1) is some-what more 
ompli
ated. One hasV (�1)(") = �02NC ln(m2�2 )V (�3)(") + S(0)1 � 2NCW (1)(");(4.5)where we have introdu
ed new fun
tionsS(j)1 = �dA4 stu�L�1F (j)1 + L�2F (j)2 + L�2F (j)3 + (t$ u)�;(4.6)with L1 = 2fÆ � us ft � tsfu ; (4.7)L2 = 2fÆ � 2CF us ft � (2CF �NC) tsfu :The �rst two terms in Eq. (4.5) arise from folding thesingle-pole terms in the original matrix element with its�nite O("0) part. The last term is due to the interferen
eof O("�2) � O(") terms in the original matrix element.This pole term is due to the Laurent series expansionof the original matrix element and 
annot be dedu
edfrom the knowledge of the NLO terms alone. The fun
-tion W (1)(") is de�ned in Eq. (3.14), while the fun
tionsF (j)1 ; F (j)2 , and F (j)3 are given by Eq. (3.13).When one substitutes the Laurent expansions for F (0)1 ,F (0)2 , F (0)3 , and W (1)("), one gets �nite and O(") termsin Eq. (4.5). However, sin
e we are only interested inthe Laurent series expansion up to the �nite term, theseO(") 
ontributions 
an be omitted as before.V. STRUCTURE OF THE FINITE PARTIn this se
tion, we present the �nite part of our result.In the 
ourse of our 
al
ulation, we have made full use ofthe results presented in Se
. III, e.g. of our detailed studyof the NLO stru
ture of the Laurent series expansion uptoO("2). As a 
onsequen
e, we 
an present a large part ofour results for the �nite part in a surprisingly 
on
ise and
losed form. We de
ompose the �nite part into severalpie
es, as V (0)(") = Re hV (0)11 + V (0)22 + V (0)00 i : (5.1)The �rst two terms originate from the interferen
e ofthe O("�1)�O(") and O("�2)�O("2) pie
es of the ini-tial matrix element, respe
tively. Ea
h of them 
an be
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onveniently presented in a very 
ompa
t form:V (0)11 = dA2 B̂�0 ln2(m2�2 )h� s2tufÆ + �st CF + NC2 �ft+� suCF + NC2 �fui+S(1)1 + S(0)2 ; (5.2)where we have introdu
ed one more fun
tion,S(j)2 = dAhL�1F (j)4 � nL�22 (F (j)5 + CFF (j)6 +NCF (j)7 )+(t$ u)oi ; (5.3)Similarly, for the se
ond term in Eq. (5.1), we writeV (0)22 = �2NCW (2)("); (5.4)with W (2)(") de�ned in Eq. (3.17). Note again that theO(") and O("2) terms in the above expressions for V (0)11and V (0)22 
an be disregarded. We mention that the s
alar
oeÆ
ient fun
tions with the supers
ript \2" above in-volve multiple polylogarithms of weight and depth 4.We emphasize that the quasifa
torized forms of all theexpressions given in this paper hold only when one retainsthe full " dependen
e in the Born and NLO terms.The last term in Eq. (5.1) 
omes from the square of theO("0) term of the matrix element, whi
h 
an be writtenas V (0)00 = ��0 ln(m2�2 )hF (0)NLO � 12W(0)2 i+ Y ; (5.5)where F (0)NLO andW(0)2 are given in Eqs. (3.11) and (3.12).We found that the last term Y in Eq. (5.5) also possessesthe quasifa
torization properties dis
overed in a re
entpaper [15℄. For instan
e, the result 
an also be writtendown as a sum of bilinear produ
ts, where ea
h of the fa
-tors are linear 
ombinations of s
alar integral 
oeÆ
ientfun
tions multiplied by some 
ombinations of kinemati
variables. However, be
ause of the great number of Lau-rent stru
tures appearing in the original matrix elementfor the gg fusion subpro
ess, the length of the �nal ex-pressions does not allow us to present the results in thispaper. Also, we were not able to �nd the optimal way toorganize the di�erent 
ontributions in Y as in Ref. [15℄,as not all the powers of 
ommon numerators and denom-inators 
an
el out. Therefore, we have opted to supplythe results on the �nite term Y in a separate ele
troni
�le.In the �nite 
ontribution of Eq. (5.1), one noti
es theinterplay of the produ
t of powers of " resulting fromthe Laurent series expansion of the s
alar integrals [
f.Eq. (1.1)℄ on the one hand and powers of " resulting fromdoing the spin algebra in dimensional regularization onthe other hand. For example, for the �nite part one hasa 
ontribution from C(�1)6 B(0)�1 as well as a 
ontribution

from C(�1)6 B(1)�1 . Terms of the type C(�1)6 B(0)�1 , wherethe supers
ripts 
orresponding to " powers do not 
om-pensate, would be absent in regularization s
hemes wheretra
es are e�e
tively taken in four dimensions, i.e. in theso-
alled four-dimensional s
hemes or in dimensional re-du
tion (DRED).We emphasize that all our fa
torized results given inthis paper [ex
ept for the expression for Y in Eq. (5.5)℄take up about 22 Kb of hard disk spa
e. This has tobe 
ompared with the length of the original, untreatedFORM output. The original 
omputer output for the
orresponding one-loop squared 
ross se
tion of the gg !QQ subpro
ess turned out to be very long and took upabout 85 MB of hard disk spa
e. Therefore, the redu
tionis of the order of 103{104 in the present 
ase.As a �nal remark we want to emphasize that we havedone two independent 
al
ulations using REDUCE [26℄and FORM [27℄ when squaring the one-loop amplitudes.The results of both 
al
ulations agree. Casting the re-sults into the 
ompa
t forms presented in this paper wasdone with the help of the REDUCE Computer AlgebraSystem. VI. CONCLUSIONSWe have presented analyti
al O(�4s) NNLO results forthe one-loop squared 
ontributions to heavy-quark pairprodu
tion in the gluon-gluon fusion rea
tion. The 
or-responding result for photon-photon fusion has alreadybeen presented in Ref. [17℄, while results for the photon-gluon fusion pro
ess 
an be obtained from Ref. [21℄ aftersome 
olor fa
tor adjustments. As 
on
erns hadropro-du
tion of heavy quarks, the results of the present paper,together with a re
ent publi
ation on q�q produ
tion [15℄,
omplete the derivation of the one-loop squared 
ontribu-tions to the hadroprodu
tion of heavy quarks at NNLOwith the heavy-quark mass dependen
e fully retained.Our results form part of the NNLO des
ription of heavy-quark pair produ
tion relevant for the NNLO analysis ofongoing experiments at the TEVATRON and the LHC.A large part of our analyti
al results are presented ina very 
ompa
t form. The singular 
ontributions propor-tional to "�4; "�3, and "�2 are entirely given in terms ofLO and NLO 
ontributions, whereas the "�1 
ontribu-tions 
ontain some true NNLO stru
ture in addition toLO and NLO stru
tures. Sin
e the LO and NLO termsare themselves expanded in Laurent series, this impliesthat our singular 
ontributions are not true (in a math-emati
al sense) Laurent series in ". We believe that ourrepresentation of the singular 
ontributions has stru
-tural advantages in as mu
h as it will be simpler to mat
hour singular stru
tures onto the singular stru
tures of theother 
lasses of 
ontributions. Also, our representationis 
onvenient if one wants to 
onvert our expressions todi�erent regularization s
hemes su
h as DRED (see e.g.Ref. [28℄). If needed, our singular 
ontributions 
an eas-ily be 
onverted into true Laurent series expansions sin
e



11our expressions are very 
ompa
t.Be
ause of our representation of the singular parts, weobtained quasifa
torized expressions for a large part ofthe �nite 
ontributions. Writing our analyti
al results infa
torized forms led to a redu
tion of the length of theoriginal output by a fa
tor of 103{104, whi
h will lead to adramati
 redu
tion of the CPU time needed in numeri
alevaluations.The present paper deals with unpolarized gluons in theinitial state and unpolarized heavy quarks in the �nalstate. Sin
e our results for the original matrix elements
ontain the full spin information of the pro
ess, an exten-sion to the polarized 
ase with polarization in the initialstate and/or in the �nal state in
luding spin 
orrelationswould be possible.Analyti
al results in ele
troni
 format for the 
oeÆ-
ients given in the Appendi
es as well as for the term Yin Eq. (5.5) are readily available [29℄.A
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tion of heavy-quarkpairs. APPENDIX AFirst, we write down a few abbreviations that we usethroughout the paper:� =p1� 4m2=s; D = m2s� tu;z2 = s+ 2t; z2u = s+ 2u; (A1)zt = 2m2 + t; zu = 2m2 + u:Note that D in Eq. (A1) is not the spa
e-time dimension.Here we present the expressions for all the 
oeÆ
ientsaI ; bI ; 
I appearing in Eq. (3.13):

aB2 = 16D=(s�2) ;aB5 = �aB2 ;aC1 = 4(8m4 � z22=s(2m2 � s+ 2m2=�2)) ;aC2 = 8t=s(4m2zt + 2st+ t2) ;aC2u = aC2(t$ u) ;aC3 = 8t=s(4m2zt + tz2) ;aC3u = aC3(t$ u) ;aC4 = 4(4m2s+ 3s2 � 8tu) ;aC5 = 4(8m4 � 3s2 + 2tu) ; (A2)aC6 = �4�2(2m2s+ s2 + 2tu) ;aD1 = 4(2m2(2D + szt�2 � t2�2) + s2t�2 + t3) ;aD1u = aD1(t$ u) ;aD2 = 4(8m2D � stu�2 + 2t2=s(t2 + u2)) ;aD2u = aD2(t$ u) ;aD3 = 8(8m2D � 8m4tu=s� stu�2 + 2t2u2=s) ;a(")B2 = 4(2s� z22=(s�2)) ;a(")B5 = �a(")B2 ;a(")C1 = 2(�2(s3(8m2 + s)� 8t2u2)=D+ 16m2=s(s2 + tu+D=�2) ;a(")C2 = �4t2(10� t=s(2tu�2 + 2s2 � 3t2)=D) ;a(")C2u = a(")C2 (t$ u) ;a(")C3 = �4t2(6� t=s(2tu�2 + 2s2 � 4st� 5t2)=D) ;a(")C3u = a(")C3 (t$ u) ;a(")C4 = �2(s3(2m2 � s)� 8tu(m2s+ t2 + u2))=D ;a(")C5 = 2(�2(s3(6m2 � s) + 4t2u2)=D (A3)+ 8s2 � 12m4z22=D) ;a(")C6 = 2(�2(s3(8m2 � s)� 4t2u2)=D+ 8m2s� 4m4z22=D) ;a(")D1 = �2t(2s2�2 � s2t�2(2m2z22=s2 + 4m2 + t)=D+ 2tzt + 2s2) ;a(")D1u = a(")D1(t$ u) ;



12a(")D2 = �2t(2s(s� u) + t2(s2 + 8tu� 8u3=s)=D) ;a(")D2u = a(")D2(t$ u) ;a(")D3 = 4tu(4s� t2u2=s2(8m2 � 7s)=D) ;a("2)B2 = 0 ;a("2)B5 = 0 ;a("2)C1 = 8s(s� 2m2z22=D) ;a("2)C2 = �8t2(3u=s+ t(m2 � u)=D) ;a("2)C2u = a("2)C2 (t$ u) ;a("2)C3 = 8t2(2 + tu(1� 3t=s)=D) ;a("2)C3u = a("2)C3 (t$ u) ;a("2)C4 = �16s2tu=D ; (A4)a("2)C5 = �4s(s+ 2m2z22=D) ;a("2)C6 = 4s(s� 2m2z22=D) ;a("2)D1 = �4st(2m2 � s+ t(�2tu+m2z22=s)=D) ;a("2)D1u = a("2)D1 (t$ u) ;a("2)D2 = 4st(s� 4t2u=D) ;a("2)D2u = a("2)D2 (t$ u) ;a("2)D3 = �8tu(s+ 3t2u2=(sD)) ;b1 = �16=3z2=s(m2(nl + 1) + (2CF �NC)3D=(s�2)�NC(m2 +D6(10m2 � s)=(s2�4))) ;bB2 = �8z2=s2(8m4 � (2CF �NC)D(2 + 1=�2)) ;bB5 = �NC8z2(D(16m2 � s)=(s�4) + tu)=s2 ;bC1 = �NC16m2Dz2(8m2 + s)=(s3�4) ;bC4 = NC4z2(D � 2tu)=s ; (A5)bC5 = �32m4z2=s ;bC6 = �(2CF �NC)16Dz2(2m2 � s)=s2 ;b(")1 = 16=3 z2(tu(nl + 1) + (2CF �NC)3D=�2�NC(36m2D=(s�4)� tu(4m2 � 7s)=(s�2)))=s2 ;

b(")B2 = 8z2(8m2tu=s+ (2CF �NC)(2tu�D=�2))=s2 ;b(")B5 = NC8z2(3m2z22=(s�4)� 2(D + 2m2tu=s)=�2)=s2 ;b(")C1 = NC16m2z2(3D=�4 + 2tu=�2)=s2 ;b(")C4 = NC12tuz2=s ; (A6)b(")C5 = 32m2tuz2=s2 ;b(")C6 = �(2CF �NC)16tuz2(2m2 � s)=s2 ;
1 = 16(CF (D�2(8m2T=t2 + 2)�D(6zt=t� 2� t=s)+ 2m2(4zt(m2=s� 1)�m2)�D(1 + 4t=s)=�2)�NC(D2m2(2D + tu)=(st2)� 2m2tu=s�D4m2(s+ 4t)=(s2�2)))=T ;
B1 = 16(CF (2m2�2(T � 2s�D(2T + t)=t2)+D(3zt=t+ t=s)� 2m2u(2 + 5t=s))=T+NC2D(D=s� t)=t2) ;
B2 = (2CF �NC)16D=(s�2) ; (A7)
B5 = NC8(�8m2D=(s2�2)� t�2 + t2z2=s2) ;
C1 = NC8(t3 + u3 � 4t2T � sD=�2 � s2�2(m2 � t))=s ;
C2 = �(2CF �NC)16(2m2z2(m2s=t� zt)+ t(s2 + t2))=s ;
C3 = NC16t(4D=s� t�2 + s) ;
C4 = NC4(�s2�2 + 3z2(m2s� t2)=s� 3su+ 2t2) ;
C5 = (2CF �NC)8(2T (2m2 + s)� u2) ;
C6 = �(2CF �NC)8(4m2D=s� 4m2t�2 + 3tzt � z22) ;
D1 = �(2CF �NC)8(m2s2�4 � 2m2t�2(s� t) + st2�2� t3 � sD) ;
D2 = NC8(8m2D � stu�2 + 2t2(t2 + u2)=s) ;
(")1 = 16(CF (D(16m2D=(st2)� 24m4=t2 + 4� t=s+ 2t=(s�2)) + 2m2(4m2 � 6t� 9t2=s)+ 4m2t2z2=(s2�2))=T+NC2(2m4s=t2 + t+Dz2=(st)�D(4m2 + 3s)=(s2�2) + tz2=(s�2))) ;
(")B1 = 16(CF (4m4D=t2 � 6TD=t� 2m2D=s� tD=s� 5m2zt + t2)�NC(2m2D2=(st2) + 2tD=s�m4 + t2))=T ;
(")B2 = �(2CF �NC)8t(2 + z2=(s�2)) ; (A8)
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(")B5 = NC8(2D=�2 + 6m2z2=�2 � 3t2 � 2t3=s)=s ;
(")C1 = �NC4(2m2z22=s� 4s2 � 4t2 � 4m2(4zt+ tz2=s)=�2 + 2tuzt(4s+ 3t2=s+ u2=s)=D+ st2(2t�2 � z2)=D) ;
(")C2 = (2CF �NC)8(�2t(6sD � 4m2tu� st2)+ 2D(2m4s=t� szt +Dt=s� t2)� 4m2t3z2=s)=D ;
(")C3 = �NC8t2(4s=t+ 14� st(4�2 � 8tT=s2 + 5)=D);
(")C4 = �NC4(2s2 + 2t3=s� 2su+m2st(9s+ 7t)=D� t4(9 + 8t=s)=D) ;
(")C5 = �(2CF �NC)4(2m2z22=s� 2t2� 4s�2(s�m2tu=D) + t2(8m2t+ s2)=D) ;
(")C6 = �(2CF �NC)4st(7�2 + 2u2�2=(st) + 2s=t+ 5+ �2(2m2z22=s� 3st� 4t2)=D) ;
(")D1 = �(2CF �NC)4st2(2s�2=t+ 2s=t+ 2t=s+ 4m4z22=(s2D)� �2(6m2s� 4m2tu=s+ st)=D);
(")D2 = �NC4t(4s2 + 2st+ t2(z22 + 12tu� 8u3=s)=D) ;
("2)1 = �16(CF (2m2(6D=t+ 4m2 + t)�4m2(3D + tz2)=(s�2) +D=�2)=T�NC2(u� 4m2zu=(s�2))) ;
("2)B1 = 16(CF zt(3D=t+ 2m2)=T �NC2m2) ;
("2)B2 = �(2CF �NC)32m2z2=(s�2) ;
("2)B5 = �NC64m2z2=(s�2) ;
("2)C1 = �NC8s(4t+ 2m2t(s+ 4t+ z22=(s�2))=D+ s=�2) ;
("2)C2 = (2CF �NC)16(2m2s+ tu+ 2m2t(m2s� t2)=D) ;
("2)C3 = NC16t(s+ 2t(m2s+ tu)=D) ;
("2)C4 = NC8s(s+ 2t(m2s+ tu)=D) ; (A9)
("2)C5 = (2CF �NC)8s(u� 2m2tz2=D) ;
("2)C6 = �(2CF �NC)8(2m2z2(m2s� t2)=D + su) ;


("2)D1 = �(2CF �NC)8t(szu + 2m2tz22=D) ;
("2)D2 = NC8st(s� 4t2u=D) :APPENDIX BIn this Appendix, we present the expressions for all the
oeÆ
ients dI ; eI ; gI ; hI appearing in Eq. (3.16):d(")B2 = 2s(4m2 + z22=(s�2))=(tu) ;d(")B5 = �d(")B2 ;d(")C1 = s(s2�2(8m2s+ s2 + 2D) + 4s2D� 16m2D2=(s�2)� 8m4z22)=(tuD) ;d(")C2 = 2t(2u(D +m2s) + st2 + �dt=s)=(uD) ;d(")C2u = d(")C2 (t$ u) ;d(")C3 = �2t(2m2s2 + st2 � �dt=s)=(uD) ;d(")C3u = d(")C3 (t$ u) ; (B1)d(")C4 = s2(�d + 3sD � s2(m2 � s))=(tuD) ;d(")C5 = �s(�
 + 2m2sz22)=(tuD) ;d(")C6 = �s�
=(tuD) ;d(")D1 = st(z2 + �2(�d � s2(m2 � t))=D)=u ;d(")D1u = d(")D1(t$ u) ;d(")D2 = st(�d + sD + s2(m2 � t))=(uD) ;d(")D2u = d(")D2(t$ u) ;d(")D3 = 2tu�d=(sD) ;with�
 = 4D2 � s�2(8m2s2 � 8m2tu� s3) ;�d = 10m2s2 � 8m2tu� 3stu ;d("2)B2 = �8m2z22=(stu�2) ;d("2)B5 = �d("2)B2 ;d("2)C1 = �s((22m2s2 � 16m2tu+ s3)s�2 + 4m2sD� 16m2D2=(s�2))=(tuD) ;d("2)C2 = 2t(6sD+ 4m2sz2 + t2z2 � �dt=s)=(uD) ;



14d("2)C2u = d("2)C2 (t$ u) ;d("2)C3 = �2t(�dt=s� s(2m2s� 2st� t2))=(uD) ;d("2)C3u = d("2)C3 (t$ u) ; (B2)d("2)C4 = �s2(�d + sD + s2(m2 + s))=(tuD) ;d("2)C5 = �s(�
 � 2m2s(4D + z22))=(tuD) ;d("2)C6 = �s�
=(tuD) ;d("2)D1 = st(2uD � �2(�d � 4stu� st2))=(uD) ;d("2)D1u = d("2)D1 (t$ u) ;d("2)D2 = �st(�d + s(2m2s� 2st� t2))=(uD) ;d("2)D2u = d("2)D2 (t$ u) ;d("2)D3 = �2tu�d=(sD) ;with�
 = 4tuD + s�2(18m2s2 � 16m2tu� s3) ;�d = 18m2s2 � 16m2tu+ stu ;e(")1 = 2s(nl + 1)�1�2 ; e(")B2 = 3(8m2 + s)�1�2 ;e(")B5 = 3snl�1�2 ; e(")C5 = 18m2s�1�2 ;e("2)1 = e(")1 =�2 ; e("2)B2 = e(")B2=�2 ; (B3)e("2)B5 = e(")B5=�2 ; e("2)C5 = e(")C5=�2 ;with�1 = 8z2=(9s2) ;�2 = �m2s=(tu) :Next, we introdu
e 
ommon fa
tors that appear in thevarious 
oeÆ
ients gI and hI . They are multiplied byone power of " and readsb2 = 2m2s� tz22=(s�2) ; (B4)s
2 = ts
5 � 4m2suD ;s
5 = 2D(D + s(8m2 + t)) + 2st�2(2m2u� t2) + st2z2 ;s
6 = D(3s�2 + z2) + �2(6m2s2 � 8m2tu+ s2t) :For the 
oeÆ
ients g(")I , we haveg(")1 = 8(2m2s�2(4sT 2=t+ tzt � 2tu) +D(10m2u� 5szt� 2t2)� 2m2t(s2 + u2)�D26t=(s�2)� 3Dt2z2=(s�2))=(t2uT ) ;

g(")B1 = �8(D(4m2u� st)� t3(2s�2 + 3zt))=(t2uT ) ;g(")B2 = �8sb2=(tu) ; g(")C2 = 8s
2=(Dtu) ; (B5)g(")C5 = 4ss
5=(Dtu); g(")C6 = 4ss
6=(Du); g(")D1 = �tg(")C6 :Finally, we introdu
e fa
tors that are 
ommon to various
oeÆ
ients gI and hI that are multiplied by two powersof ":
b2 = 2m2u+D ; (B6)

2 = 2D(4m2su� tD � st(17m2 + 3t))� 4st2�2(2m2u� t2) + st2(3szt + 4m2z2) ;

5 = 2D(20m2s� st+ t2) + 2st�2(4m2u+ st� 2t2)+ 5st2z2 ;

6 = 2D(s�2 � u) + �2(16m2(s2 � tu) + s2t) :For the 
oeÆ
ients g("2)I , we haveg("2)1 = 8(D212t=(s�2) +D216m2=t+D4(2szt � tu)�Dt(14m2 + 3t)=�2 � 2m2(12m2s2T=t+ 5t3)� 4m2t2z2=�2)=(t2uT ) ;g("2)B1 = 8(D(4zt=t2 + 1=u) + 2m2(t=u� 2))=T ;g("2)B2 = �16z2
b2=(stu�2) ; g("2)C2 = 8

2=(Dtu) ;g("2)C5 = �4s

5=(Dtu) ; g("2)C6 = �4s

6=(Du) ;g("2)D1 = �tg("2)C6 : (B7)For the remaining 
oeÆ
ients hI , we geth(")1 = 8(tz2(2m2 +D=(s�2))=�2 �m2(4sD=t� 2s2+ tz2=9))=(t2u) ;h(")B1 = �8(3m2s+ tz2)=(tu) ;h(")B2 = 4sb2=(tu) ; (B8)h(")B5 = 4(2D(8m2t+ s2)=(s2�4) + 4=3m2(s� u)� szt=�2)=(tu) ;h(")C1 = �2s(s2�4t=D + 2s�2(2m2z2 � tu)=D� 8m2s2zt=(tD)�D6=t+ 8t+ 2tz2=(s�2)�D4zt=(st�4))=u ;h(")C2 = �4s
2=(Dtu) ; h(")C3 = 2t=sh(")C4 ;h(")C4 = 2s(8m2u2=D + 4s� st(8m2 + s)=D)=u ;h(")C5 = �2ss
5=(Dtu) ; h(")C6 = �2ss
6=(Du) ;h(")D1 = �th(")C6 ; h(")D2 = �th(")C4 ;



15h("2)1 = 8(4m4s2=t� s2zt � 10=9st2 � t3=3� 2=9t4=s�Dtz2=(s�4) + t(uz2 + 8m2=sD)=�2)=(t2u) ;h("2)B1 = 16(Dz2 + t2u)=(t2u) ;h("2)B2 = 8z2
b2=(stu�2) ; (B9)h("2)B5 = �8z2(4m2D=(s2�4) + tu=(3s)� 2m2u=(s�2))=(tu) ;h("2)C1 = �2s(40m2s=t+ (8m2su�2 + 20m2su+ 16m2t2� s2t)=D + 2(2m2s2=t+ 4m2t� s2)=(s�2)+ 8m2D=(st�4) + 4m2(1=s2 + �2=D)z22=�4)=u;h("2)C2 = �4

2=(Dtu) ; h("2)C3 = 2t=sh("2)C4 ;h("2)C4 = �2s(20m2s2 + 4stu�2 + stz2)=(Du) ;h("2)C5 = 2s

5=(Dtu) ; h("2)C6 = 2s

6=(Du) ;h("2)D1 = �th("2)C6 ; h("2)D2 = �th("2)C4 :APPENDIX CIn this Appendix, we present the expressions for all the
oeÆ
ients kI ; lI ;mI ; nI appearing in Eq. (3.19) usingthe following abbreviations:�
1 = �s�2(18m2s2 � s3 + 2(2m2 + s)z22)� 8m2sD ;�
6 = �s�2z22 + 16sD+ 6stu : (C1)We havek("2)C1 = �s�
1=(tuD) ;k("2)C2 = 2t(�
6t=s+ 2m2su� s2zt + t3)=(uD) ;k("2)C2u = k("2)C2 (t$ u) ;k("2)C3 = 2t2(�
6=s+ 2s2 + u2)=(uD) ;k("2)C3u = k("2)C3 (t$ u) ; (C2)k("2)C4 = s2(�
6 + 2s(u2 � st))=(tuD) ;k("2)C5 = �s(�
1 � 2s2(2D � tu�2 � z22))=(tuD) ;k("2)C6 = s2�2�
6=(tuD) ;

k("2)D1 = st�2(�
6 � suz2)=(uD) ;k("2)D1u = k("2)D1 (t$ u) ;k("2)D2 = st(�
6 + s3 � s2t)=(uD) ;k("2)D2u = k("2)D2 (t$ u) ;k("2)D3 = 2tu(�
6=s� st+ u2)=D ;l("2)1 = 4=3s(nl + 1)�1�2 ; l("2)B2 = (16m2 + 5s)�1�2 ;l("2)B5 = 5snl�1�2 ; l("2)C5 = 18m2s�1�2 ; (C3)m("2)1 = 32(2m2(2m2u2=t2 � s2=t+ 2t� 8DT=t2)�s�2(2D=t+m2) +D4U=(s�2))=(tu) ;m("2)C2 = 2zt=(s�2)m("2)C6 ;m("2)C5 = zt=(t�2)m("2)C6 ; (C4)m("2)C6 = 4s�2(�
6=u� sz2)=D ;m("2)D1 = �tm("2)C6 ;n("2)1 = �16m2(18s2zt=t2 + 82=3s+ 2=3t� 9sz2=(s�2)+144zuD=(s2�4))=(9tu) ;n("2)B5 = 16m2z2=(9tu) ;n("2)C1 = zt=t n("2)C4 ;n("2)C2 = 2zt=(s�2)n("2)C6 ;n("2)C3 = 2t=s n("2)C4 ; (C5)n("2)C4 = 2s(�
6 + s3 � s2t)=(Du) ;n("2)C5 = zt=(t�2)n("2)C6 ;n("2)C6 = �2s�2(�
6 � suz2)=(Du) ;n("2)D1 = �tn("2)C6 ; n("2)D2 = �tn("2)C4 :
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