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Many weakly interacting sub-electronVolt particles (WISPs) are easily accommodated in
extensions of the standard model. Generally the strongest bounds on their existence come
from stellar evolution and cosmology, where to the best of our knowledge observations seem
to agree with the standard budget of particles. In this talk I review the most demanding
constraints for axions and axion-like-particles, hidden photons and mini-charged particles.

There is little doubt in the particle physics community about the need of complementing the
already very successful standard model (SM) to pursue a completely satisfactory final theory
of elementary particles. On the other hand, and with the exception of the dark matter, our
increasingly precise knowledge of the universe shows no trace of physics beyond the SM. If
new light particles exist they should be very weakly interacting, probably only accessible to
extremely precise experiments. Experiments such as the ones presented in this conference.

Astrophysics and cosmology are often strong probes of weakly interacting particles. The
reason is clear: the huge magnitudes of the typical sizes, time scales, densities or temperatures
in the early universe or in stars can convert a tiny “microscopic” effect in a big qualitative
change in the evolution of the whole system. This conclusion is specially emphasized when
we note that the only weakly interacting sub-eV particles (WISPs) in the standard model are
neutrinos, whose production cross sections are strongly energy-dependent and therefore their
role is increasingly inhibited as temperatures drop below the electroweak scale. Thus, in an
non-extreme range of temperatures the early universe and stellar plasmas are very opaque to
standard particles and WISPs can be the most efficient way of energy transfer. Whenever such
an anomalous energy transfer has an observable implication we can derive strong constraints
on the WISP interactions with the standard particles constituting the relevant plasma.

The oldest picture of the universe we have is a dense and hot plasma of elementary particles
that expanded against gravity. As this plasma cooled down, the three long range forces clustered
the particles into the structures which nowadays are found: the color force first confined quarks
into protons and neutrons and later merged them into light nuclei (at BBN), the Coulomb force
combined them with electrons into atoms (releasing the CMB) that gravity finally clustered
into galaxies, then into clusters, etc... After the first galaxies formed, the conditions for stars
to be born were settled. During all these steps of structure formation (in a broad sense) the
role of WISPs can be constrained. Let us start this review in chronological order. Summary
plots on the reviewed bounds are shown at the end of this contribution.

Big Bang Nucleosynthesis.- BBN left an invaluable probe of the early universe environment,
imprinted in today’s observable light nuclei abundances [I]. Below 7" ~ 0.7 MeV the weak
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reactions p + e~ +» n + v, became ineffective, fixing the neutron/proton density ratio to n/p ~
1/7. All particles present contribute to the energy density p which determines the speed of the
cosmic expansion H o (/p and the “freeze-out” ratio n/p in turn. The larger H the sooner
the p-n freezing and the higher n/p. Later, all neutrons are confined into *He nuclei whose
primordial abundance can be measured today, leading to a bound on the non-standard energy
density p, during BBN, usually expressed as an effective number of thermal neutrino species,
Nt =239 p, = —0.620% [2], where we assumed three standard neutrinos.

Therefore, while a spin-zero particle thermalized during BBN is allowed, this is not the case
for otherl] WISPs like a mini-charged particle (MCP) (Ns,ffv[cp > 1) or a massive hidden photon
¥ (N ,‘jffy, = 21/16). The interactions of MCPs and ~'s with the standard bath should not allow

thermalization before BBN. MCPs ¢ are produced with a rate D(ete™ — ¢ ) ~ a2Q%;pT/2
(with Quycp the MCP electric charge) while 4's with I'(ye™ — ~'e®) ~ X2glc with T the
standard Compton scattering rate. Here yeg is the effective v — ' mixing in the plasma, which
for sub-eV +' masses is xer =~ x(m /wp)?. The ratio of the 4’ mass to the plasma frequency
M~ /wp is extremely small before BBN so it suppresses 7' production with respect to other
WISPs. Comparing with the expansion rate H we find that MCPs with Qucop < 2 x 107°
would be allowed [3], 4] but there are no significant bounds for hidden photons [5] [].

Cosmic Microwave background.- The today’s measured CMB features an almost perfect
blackbody spectrum with ((107%) angular anisotropies. It is released at 7" ~ 0.1 eV but the
reactions responsible of the blackbody shape freeze out much earlier, at T ~ keV. Reactions
like v + ... = WISP+... will deplete photons in a frequency dependent way, which can be con-
strained by the precise FIRAS spectrum measurements [7]. This has been used to constrain light
MCPs [8] and HPs with m., < 0.2 meV [9]. On the other hand, around 7' ~ eV the primordial
plasma is so sparse that WISPs would free-stream out of the density fluctuations, diminishing
their contrast. Moreover, thermal WISPs contribute to the radiation energy density, delaying
the matter-radiation equality and reducing the contrast growth before decoupling. In these
matters they act as standard neutrinos [10] so p, (and the couplings that would produce it)
can again be constrained from the value of N inferred from analysis of CMB anisotropies and

othei large scale structure (LSS) data Nﬁfg = (4/11)4/3 N = —0.1;%:3 . This argument
has been used to constraint axions [I1}, 12] and meV 4's [9]. In this bound Ly-«a forest data
has been deliberately omitted. Ly-a has systematically favored values of Nﬁff larger than zero
[13] 14] which could be revealing the existence of a cosmic WISP relic density@. If this anomaly
is due to a population of +’'s created through resonant oscillations v — 4’ between BBN and
the CMB decoupling it can be tested in the near future by new laboratory experiments such as
ALPS at DESY [9, 16, [17, [18 [19].

Bounds from stellar evolution.- The production of WISPs in stellar interiors can substan-
tially affect stellar evolution [20]. WISPs can be only scarcely produced in the dense plasmas of
stellar interiors, but they will easily leave the star contributing directly to its overall luminosity.
On the other hand, only photons of the photosphere (or neutrinos) contribute to the standard
energy loss. Therefore, the WISP luminosity is enhanced at least by a volume/surface factor
and a further (dinside/dsurtace)™ (Tinside/Tsurface)™ (d a relevant particle density, n,m > 1) with
respect to the standard luminosity. This can be a huge enhancement which certainly justifies

IFor details of these hypothetical particles and their embedding in theories beyond the SM the reader is
refereed to the contributions of Andreas Ringwald and Joerg Jaeckel in these proceedings.

20ne needs to complement CMB anisotropies with other 1SS data to break the degeneracy of Nﬁg with
other cosmological parameters such as the dark matter density.

3Probably because of an incorrect treatment of the bias parameter [I5].
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the typical strong constraints.

Stars evolve fusing increasingly heavier nuclei in their cores. Heavier nuclei require hotter
environments, and when a nuclear species is exhausted in the core this slowly contracts and
heatens up until it reaches the new burning phase. WISP emission shortens normal burning
phases (the energy loss rate is higher than standard but the total energy is limited by the number
of nuclei) but enlarges the intermediate (Red Giant) phases (WISP cooling delays reaching the
appropriate temperature during the core contraction).

These effects have been used to constraint a variety of WISPs in different stellar environ-
ments [21], 20] for which information on evolutionary time scales is available. The strongest
limits for general axion-like-particles (ALPs) with a two photon coupling and MCPs come from
observations of Horizontal Branch (HB) stars in globular clusters (GC) [22, 23]. For the stan-
dard QCD axions, the best constraints come from White Dwarf cooling [24], [25] through the
coupling to electrons (DFSV axions) and from the duration of the SN1987A neutrino burst [21]
through the nucleon coupling (KSVZ axions).

The Sun is less sensitive than these other stars to WISP emission, even though its properties
are better known. Solar bounds have been obtained from studies of its lifetime, helioseismology
and the neutrino flux [26] 27], but although more precise they are also less demanding. Never-
theless, if WISPs are emitted from the Sun one can detect them with a dedicated laboratory
experiment at earth [28, 29, [30]. One of the so-called Helioscope axion searches [31], 32, B3], [34],
CAST, has recently beaten the HB constraints for ALPs with a two photon coupling [35], and
its results have been used to limit a possible solar +' flux [36] B7]. Following the now dis-
claimed [38] PVLAS 2005 results [39], specific models were recently built that suppress WISP
emission from stars [40, Bl [0} [41], [42]. If this idea is realized, Helioscope bounds will gain terrain
to energy loss arguments [43] (v's are the minimal example of this case [36]).

In summary, cosmology and astrophysics provide the strongest constraints on the (minimal)
WISP models described elsewhere in these proceedings, with the only exception of sub-meV
~'s. Summary plots are shown in Figs. 1 and 2.
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Figure 1: Summary of cosmological and astrophysical constraints for axions (up) (for the mass m, or
decay constant f,) [21I] and axion-like-particles (down) (two photon coupling g, vs. mass marp) [35}
[26], [33]. See the text for details. For comparision, the most notable laboratory limits are also shown.
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Figure 2: Summary of cosmological and astrophysical constraints for hidden photons (up) (kinetic
mixing with photons x vs. mass m,) [44] and minicharged particles (down) (charge @ vd. mass
mumcp) [44]. See the text for details. For comparision, some laboratory limits are also shown.
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