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For theStoutLi nk Non-perturbativeClover (SLiNC) action we determine in one-loop lattice per-

turbation theory the critical hopping parameterκc and the clover parametercSW which is needed

for O(a) improvement. Performing this calculation off-shell we arealso able to compute the non

gauge invariant quark field improvement coefficientcNGI . Additionally, we present first results

for the renormalization factors of the scalar, pseudoscalar, vector and axial vector currents. We

discuss mean field improvement for the SLiNC action.
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1. Introduction

Simulations of Wilson-type fermions at realistic quark masses require an improved action
with good chiral properties and scaling behavior. A systematic improvement scheme that removes
discretization errors order by order in the lattice spacinga has been proposed by Symanzik [1]
and developed for on-shell quantities in [2, 3].O(a) improvement of the Wilson fermion action
is achieved by complementing it with the so-called clover term [3], provided the associated clover
coefficient is tuned properly.

The focus of this contribution is to determine the clover coefficient and the additive mass
renormalization for plaquette and Symanzik improved gaugeaction and stout link clover fermions
in one-loop lattice perturbation theory. We correct earlier results published in [4] and introduce a
modified mean field improvement for partially smeared links.A detailed discussion can be found
in [5]. Additionally, in this paper we present first results for the one-loop renormalization factors
of the scalar, pseudoscalar, vector and axial vector currents with the chosen action. First non-
perturbative results obtained with this action are presented in [6].

The Symanzik improved gauge action reads [1]

SSym
G = 6

g2

(
c0 ∑

Plaquette

1
3

ReTr(1�UPlaquette)+ c1 ∑
Rectangle

1
3

ReTr(1�URectangle)) (1.1)

with c0+8c1 = 1 and

c0 = 5
3

; c1 =� 1
12

: (1.2)

Clover fermions have the action for each quark flavor [3]

SF = a4 ∑
x

n� 1
2a

h
ψ̄(x)eUµ (x)(1� γµ )ψ(x+aµ̂)+ ψ̄(x)eU†

µ(x�aµ̂)(1+ γµ)ψ(x�aµ̂)i+ 1
a
(4+am0+am) ψ̄(x)ψ(x)�cSWg

a
4

ψ̄(x)σµνFµν(x)ψ(x)o ; (1.3)

where

am0 = 1
2κc

�4; (1.4)

κc being the critical hopping parameter, is the additive mass renormalization term, andFµν(x) is
the field strength tensor in clover form withσµν = (i=2)(γµ γν � γνγµ). We consider a version of
clover fermions in which we do not smear links in the clover term, but the link variablesUµ in the
next neighbor terms have been replaced by (uniterated) stout links [7]eUµ(x) = eiQµ (x)Uµ(x) (1.5)

with

Qµ(x) = ω
2i

h
Vµ(x)U†

µ(x)�Uµ(x)V†
µ (x)� 1

3
Tr
�
Vµ(x)U†

µ(x)�Uµ(x)V†
µ (x)�i : (1.6)

Vµ (x) denotes the sum over all staples associated with the link andω is a tunable weight factor.
Stout smearing is preferred because (1.5) is expandable as apower series ing2, so we can use
perturbation theory. Many other forms of smearing do not have this nice property. Because both
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the unit matrix and theγµ terms are smeared, each link is still a projection operator in the Dirac
spin index.

The reason for not smearing the clover term is that we want to keep the physical extent in lattice
units of the fermion matrix small which is relevant for non-perturbative calculations. In that respect
we refer to these fermions as SLiNC fermions, from the phraseStoutLi nkNon-perturbativeClover.
The improvement coefficientcSW as well as the additive mass renormalizationam0 are associated
with the chiral limit. So we will carry out the calculations for massless quarks, which simplifies
things, though it means that we cannot present values for themass dependent corrections.

In perturbation theory
cSW= 1+g2 c(1)

SW+O(g4) : (1.7)

The one-loop coefficientc(1)
SW has been computed for the plaquette action using twisted antiperiodic

boundary conditions [8] and Schrödinger functional methods [9]. Moreover, using conventional
perturbation theory, Aoki and Kuramashi [10] have computedc(1)

SW for certain improved gauge
actions. All calculations were performed for non-smeared links and limited to on-shell quantities.

We extend previous calculations ofc(1)
SW to include stout links. This is done by computing the

one-loop correction to the off-shell quark-quark-gluon three-point function. The improvement of
the action is not sufficient to remove discretization errorsfrom Green functions. To achieve this,
one must also improve the quark fields [5]

ψ?(x) =�
1+acD

!=D +aig cNGI =A(x)� ψ(x) ; (1.8)

where the improvement factorcNGI has been introduced by [11] and has the perturbative expansion

cNGI = g2 c(1)
NGI+O(g4) : (1.9)

A detailed discussion of the implications of off-shell improvement is given in [5]. In this contribu-
tion we concentrate on the on-shell relevant parameterscSW andκc.

2. Off-shell improvement

It is known [10] that the one-loop contribution of the Sheikoleslami-Wohlert coefficient in con-
ventional perturbation theory can be determined using the quark-quark-gluon vertexΛµ(p1; p2;cSW)
sandwiched betweenon-shellquark states.p1 (p2) denotes the incoming (outgoing) quark momen-
tum. In general that vertex is anamputatedthree-point Green function.

Let us look at theO(a) expansion of tree-levelΛ(0)
µ (p1; p2;cSW) which is derived from action

(1.3)

Λ(0)
µ (p1; p2;cSW) = �igγµ �g 1

2 a1(p1+ p2)µ + cSWig 1
2 aσµα(p1� p2)α + O(a2) : (2.1)

It is obvious from (2.1) that a one-loop calculation of the quark-quark-gluon vertex provides the
needed relation to computecSW in one -loop also.

The off-shell improvement condition states that thenon-amputatedimproved quark-quark-
gluon Green functionG?µ(p1; p2;q) has to be free ofO(a) terms in one-loop accuracy. The relation
between the amputated and non-amputated Green functions is

Gµ(p1; p2;q) = S(p2)Λν(p1; p2;q;c(1)
SW)S(p1)Kν µ(q) : (2.2)
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Kν µ(q) denotes the full gluon propagator which isO(a)-improved already,S(p) the corresponding
quark propagator. Using the improved quark fields one obtains the following off-shell improvement
condition in momentum space (for details of the derivation see [5])

Λµ(p1; p2;q;c(1)
SW) = Λ?µ(p1; p2;q)+ag3c(1)

NGI(=p2
γµ + γµ =p1

)� a
2

i =p2

Σ2(p2)
Σ1(p2) Λ?µ(p1; p2;q)� a

2
Λ?µ(p1; p2;q) i =p1

Σ2(p1)
Σ1(p1) ; (2.3)

where the improved three-point functionΛ?µ(p1; p2;q) is free ofO(a) terms. In (2.3) the quantities
Σi(p) are the corresponding contributions to the quark self energy

Σ(p) = 1
a

Σ0+ i =pΣ1(p)+ a p2

2
Σ2(p) : (2.4)

3. Results for improvement parameters

The calculation has been performed in general covariant gauge. We use a combination of
symbolic and numeric routines.

The anticipated general structure for the amputated three-point function at one-loop is

Λµ(p1; p2;q) = ΛMS
µ (p1; p2;q)+Alat i

g3

16π2 γµ+Blat
a
2

g3

16π2

�=p2
γµ + γµ =p1

�+Clat i
a
2

g3

16π2 σµα qα : (3.1)

ΛMS
µ (p1; p2;q) is the universal part of the three-point function, independent of the chosen gauge

action, computed in theMS-scheme. It is given in a complete symbolic form in [5].
If we insert (3.1) into the off-shell improvement relation (2.3) we get the following conditions

that all terms of orderO(ag3) have to vanish �
c(1)

SW� Clat

16π2

�
σµα qα = 0; (3.2)�

c(1)
NGI� 1

32π2 (Alat�Blat�Σ21)��=p2
γµ + γµ =p1

� = 0; (3.3)

with Σ21 defined from (2.4) as

Σ2(p)
Σ1(p) = 1+ g2CF

16π2

�(1�ξ )(1� log(a2p2))+Σ21;0�� 1+ g2CF

16π2

�(1�ξ )(1� log(p2=µ2))�+ g2

16π2 Σ21 (3.4)

and
Σ21=CF

��(1�ξ ) log(a2µ2)+Σ21;0� : (3.5)

The constantΣ21;0 depends on the chosen lattice action. Inserting the numbersfor the Symanzik
action we get the following results for the clover improvement coefficient

c(1)
SW = CF

�
0:116185+0:828129ω �2:455080ω2

�+ Nc

�
0:013777+0:015905ω �0:321899ω2

� ; (3.6)
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and for the off-shell quark field improvement coefficient

c(1)
NGI = Nc (0:002395�0:010841ω) : (3.7)

Forω = 0 the Symanzik result (3.6) agree, within the accuracy of ourcalculations, with the number
quoted in [10].

The additive mass renormalization is given by

am0 = g2CF

16π2

Σ0

4
: (3.8)

This leads to the critical hopping parameterκc, at which chiral symmetry is approximately restored,

κc = 1
8

�
1� g2CF

16π2

Σ0

4

� : (3.9)

We obtain the following perturbative expression forκc

κc = 1
8

�
1+g2CF

�
0:037730�0:662090ω +2:668543ω2�� : (3.10)

am0 can be tuned to zero for admissible values ofω . Using the smaller possible value we find
ω = 0:088689 for the Symanzik gauge action which is not far away from the valueω = 0:1 used
in our non-perturbative calculations [6].

4. Mean field improvement

In the mean field approximation we typically assume that the gauge fields on each link are
independently fluctuating variables, and that we can simplyrepresent the links by an average value
u0. Typical choices foru0 would be to chooseu4

0 to be the average plaquette value, or to chooseu0

to be the average link value in the Landau gauge.
A natural question is how we should extend the mean field approximation if we employ smear-

ing. One possibility is to express everything in terms of twoquantities,u0, a mean value for the
unsmeared link, anduS, a mean value for smeared links1. Applying the mean field approximation
to SLiNC fermions we find

κc� 1
8uS

; cSW� uS

u4
0

: (4.1)

As a result, we find mean field improved expressions forκc andcSW by performing the following
replacements

κc(g2)! κMF
c (g2

MF ;uS) = upert
S (g2

MF )
uS

κc(g2
MF ) (4.2)

and

cSW(g2)! cMF
SW(g2

MF ;uS;u0) = uS

u4
0

upert
0 (g2

MF )4

upert
S (g2

MF ) cSW(g2
MF ) : (4.3)

HereuS andu0 are the measured smeared and unsmeared links at the given coupling andupert
S and

upert
0 denote the corresponding expressions in lattice perturbation theory.

1We would like to thank Colin Morningstar for conversations on this point.
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We will useupert
S derived from the smeared perturbative plaquettePS

upert
S � P1=4

S : (4.4)

To one-loop order we have

upert
S (ω) = 1� g2

MF CF

16π2 kS(ω) ; (4.5)

where the one-loop contributionkS is [5]

kS(ω) = π2�0:732525�11:394696ω +50:245225ω2� : (4.6)

The unsmeared perturbative value forupert
0 is upert

0 = upert
S (0). Inserting the result (4.6) into the mean

field expressions (4.2) and (4.3) we obtain

κMF
c = 1

8uS

�
1+g2

MF CF
��0:008053+0:0500781ω �0:471784ω2�� ; (4.7)

cMF
SW = uS

u4
0

n
1+g2

MF

h
CF

��0:0211635+0:115961ω +0:685247ω2�+Nc
�
0:013777+0:015905ω �0:321899ω2� io : (4.8)

The mean field improved quantities are expressed in terms of the boosted couplingg2
MF = g2=u4

0.
In [5] it is shown thatg2

MF is a good expansion parameter in the case of the Symanzik improved
gauge action with SLiNC fermions: in one-loop it does not differ very much from the coupling
g2

MS
in theMS-scheme. Comparing (4.7) and (4.8) with (3.10) and (3.6) we find that the one-loop

correction terms are indeed smaller than in the naive perturbative expressions. Therefore, the mean
field approximation has improved the perturbative behaviour as expected.

5. Renormalization of currents

We consider the renormalization constants for the following local bilinear quark operators

S= ψ̄1ψ ; P= ψ̄γ5ψ ; V = ψ̄γµψ ; A= ψ̄γµγ5ψ : (5.1)

The corresponding renormalization factor for an operatorO has the general form

ZO = 1� g2CF

16π2

�
γO log(a2µ2)+BO(ω)�+O(g4) : (5.2)

Applying the mean field improvement as discussed in the preceding section the Z-factor is obtained
as

ZMF
O = uS

�
1� g2

MF CF

16π2

�
γO log(a2µ2)+BO(ω)�kS(ω)�+O(g4

MF )�� uS

�
1� g2

MF CF

16π2

�
γO log(a2µ2)+BMF

O (ω)�+O(g4
MF )� ; (5.3)

wherekS(ω) is given in (4.6). We expect that stout smearing leads to a more continuum-like
behavior. For the choicea� 1=µ this means that the correction termBO should become small in
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order to achieveZO � 1. In Table 5.4 we show the results for the local operators. Itis obvious
that due to smearing with the selected valueω = 0:1 [6] the one-loop correction is diminished
essentially.

O γO BO(ω) BO(0) BO(0:1) BMF
O (0) BMF

O (0:1)
S �3 15:075�168:341ω +242:254ω2 15:075 0:663 7:845 �0:280

P �3 19:150�267:462ω +1065:55ω2 19:150 3:059 11:920 2:117

V 0 11:911�170:763ω +754:029ω2 11:911 2:375 4:681 1:432

A 0 10:717�127:200ω +342:380ω2 10:716 1:420 3:487 0:478

(5.4)
In order to show the effect on the renormalization factors themselves we need the values foruS

andu0. For β = 5:5 we haveuS= 0:9404 andu0 = 0:8495 [12]. The following table shows the
corresponding results fora= 1=µ and this selectedβ -value

O ZO(ω = 0) ZO(ω = 0:1) ZMF
O (ω = 0:1)

S 0:768 0:990 0:948

P 0:706 0:953 0:882

V 0:817 0:964 0:901

A 0:836 0:978 0:927

(5.5)

In (5.5) we see that smearing shifts the renormalization factors towards unity showing a better
continuum-like behaviour as promised.
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