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1. Introduction

Simulations of Wilson-type fermions at realistic quark 8&ss require an improved action
with good chiral properties and scaling behavior. A syst@mmprovement scheme that removes
discretization errors order by order in the lattice spadrigas been proposed by SymanZk [1]
and developed for on-shell quantities [h [2, 3f(a) improvement of the Wilson fermion action
is achieved by complementing it with the so-called clovemt8], provided the associated clover
coefficient is tuned properly.

The focus of this contribution is to determine the cloverfioent and the additive mass
renormalization for plaquette and Symanzik improved gagi®n and stout link clover fermions
in one-loop lattice perturbation theory. We correct eanésults published in[J4] and introduce a
modified mean field improvement for partially smeared linkgletailed discussion can be found
in [H]. Additionally, in this paper we present first results the one-loop renormalization factors
of the scalar, pseudoscalar, vector and axial vector cisreith the chosen action. First non-
perturbative results obtained with this action are preskit [§].

The Symanzik improved gauge action redds [1]

6 1 1
%ym = —5 {CO Z oy Re Tl’(l - UP|aquetta + C]_ Z = Re Tr(l - UReCtang|a } (11)

2
g Plaquette3 Rectangle

with ¢+ 8c; = 1 and
_S -_1
Co= 3 A= 15
Clover fermions have the action for each quark flaypr [3]

(1.2)

S =ty { o [F000,00 (1 ) WOk an) + B0, (x—af) (1-+ yi) w(x—ai)|
+ é (44 amp +am) G(xX) Y(x) — CSngL,U(X) v Fuv (X) L,U(X)} : (1.3)
where 1
any = 2—Kc -4, (1.4)

K being the critical hopping parameter, is the additive massmmalization term, anBy, (x) is
the field strength tensor in clover form with),, = (i/2) (yuWv — WvYu). We consider a version of
clover fermions in which we do not smear links in the cloventgbut the link variables), in the
next neighbor terms have been replaced by (uniterated) Ist&s [[4]

Uu(x) = €™y, (x) (1.5)
with © 1
Qu(X) = 5 Vu(IUL(0 ~Up (VL (9 = 3Tr (VUL ~Uu(V[(9) | (L.6)

V,(x) denotes the sum over all staples associated with the linkuaisda tunable weight factor.
Stout smearing is preferred becaufe](1.5) is expandablepawer series irg?, so we can use
perturbation theory. Many other forms of smearing do noehiiws nice property. Because both
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the unit matrix and thgy, terms are smeared, each link is still a projection operatdhe Dirac
spin index.

The reason for not smearing the clover term is that we waraép khe physical extent in lattice
units of the fermion matrix small which is relevant for noerurbative calculations. In that respect
we refer to these fermions as SLINC fermions, from the ph&iset Li nk Non-perturbativeClover.
The improvement coefficiertsyy as well as the additive mass renormalizatéom, are associated
with the chiral limit. So we will carry out the calculationsrfmassless quarks, which simplifies
things, though it means that we cannot present values fan#ss dependent corrections.

In perturbation theory

Cow=1+g?cal+ O(gh). (1.7)

The one-loop coefficier(télv)v has been computed for the plaquette action using twistéglesiatdic
boundary conditions[[8] and Schrédinger functional methl]. Moreover, using conventional
perturbation theory, Aoki and Kuramasii J[10] have compmgﬁ for certain improved gauge
actions. All calculations were performed for non-smeanekisland limited to on-shell quantities.

We extend previous calculations «:glv)v to include stout links. This is done by computing the
one-loop correction to the off-shell quark-quark-gluonetitpoint function. The improvement of
the action is not sufficient to remove discretization erfoosn Green functions. To achieve this,
one must also improve the quark fielfl [5]

_)
.0 = (1+ac B +aig o ) v, 18)
where the improvement factok g has been introduced bly J11] and has the perturbative exgansi
vt = 02 el + O/(gY) . (1.9)

A detailed discussion of the implications of off-shell irogement is given in[]5]. In this contribu-
tion we concentrate on the on-shell relevant parametgyandkc.

2. Off-shell improvement

Itis known [10] that the one-loop contribution of the Shégalami-Wohlert coefficient in con-
ventional perturbation theory can be determined usingtiaekgquark-gluon verte&, (pz1, p2, Csw)
sandwiched betweemn-shellquark statesp; (p,) denotes the incoming (outgoing) quark momen-
tum. In general that vertex is aamputatedhree-point Green function.

Let us look at theZ'(a) expansion of tree-levdk}lo)(pl, p2,Csw) Which is derived from action

T3)
A&O)(pl, P2,Csw) = —i9Vu—9g3al(p1+ P2)u+ Cswig3a0ua(p1— P2)a + O(@2). (2.1)

It is obvious from [[2]1) that a one-loop calculation of theaduquark-gluon vertex provides the
needed relation to computey in one -loop also.

The off-shell improvement condition states that then-amputatedmproved quark-quark-
gluon Green functios, , (p1, P2,q) has to be free of’(a) terms in one-loop accuracy. The relation
between the amputated and non-amputated Green functions is

Gy (P1, P2,0) = S(P2) Av(P1, P2, G o) S(P1) Kupi(0) (2.2)
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Kvu () denotes the full gluon propagator whichvdga)-improved already§( p) the corresponding
quark propagator. Using the improved quark fields one obthia following off-shell improvement
condition in momentum space (for details of the derivatiea B])

NP1, 2,0, Con) = Awpr(P1, P2, 0) +GPCNG (P, Vi + Yia Py)
a. Zz(pz) a . Zz(pl)
—Zip, 222 AL (P P2y ) — = A (P, P2, Q)i P, = (2.3
szzl(pz) u(P1, P2,0) = 5 Aupu(P1, P2, ) plzl(pl) (2.3)

where the improved three-point functidq,, (ps, pz, ) is free of &/(a) terms. In [28) the quantities
>;(p) are the corresponding contributions to the quark self gnerg
P

2(p) = ézwi pzl(p)+aTZz(p)- (2.4)

3. Results for improvement parameters

The calculation has been performed in general covariangegaWe use a combination of
symbolic and numeric routines.
The anticipated general structure for the amputated thoé®-function at one-loop is
MS ¢
/\H(pla pZaq) = /\[,1 (pla pZaq) +Alat| W yll
3 3
+Blatg% (PZVu+Vu }01) +C|atig%0ua Qo - (3.1)

/\l"l"_s(pl, p2,q) is the universal part of the three-point function, indeparidof the chosen gauge
action, computed in thB1S-scheme. It is given in a complete symbolic form|ih [5].

If we insert [3.]L) into the off-shell improvement relatigh3) we get the following conditions
that all terms of orde’(ag®) have to vanish

C
(C(slv)v_ 16';;) Oyala = O, (3.2)
1 1
<Cr(\|<)3| ~ 372 (Aat— Bat— 221)> (Pz Vi + Vi P1> =0, (3.3)
with 3, defined from [2)4) as
Sop) _ . GCr(,. B 2 2
sp = It 1ge (1~ (1109 + Zoso)
_ gch 2, 2 g2
= 1+ aa (-8 log(0?/1%)) + 5% (3.4
and
521 =Cr (—(1-&)log(a®u?®) + Z210) - (3.5)

The constank,1o depends on the chosen lattice action. Inserting the nunfbetee Symanzik
action we get the following results for the clover improverneoefficient

cow = Cr (0.116185+ 0.82812%0 — 24550807

+ N (0.013777+ 0.015905w — 0.321899w2) : (3.6)
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and for the off-shell quark field improvement coefficient
cliL, = N¢ (0.002395- 0.010841w) . (3.7)

Forw = 0 the Symanzik resulf (3.6) agree, within the accuracy ofaloulations, with the number

quoted in [IP].
The additive mass renormalization is given by

9°Cr 2o
16w 4 ° (3.8)
This leads to the critical hopping parametgrat which chiral symmetry is approximately restored,
. 1 QZCF 20
Ke = 3 (1— 62 2 ) (3.9)
We obtain the following perturbative expression kgr
1
Ke = 3 [1+ 0°Cr (0.037730- 0.66209Qw + 2.66854&»2)] . (3.10)

am can be tuned to zero for admissible valuesuwnf Using the smaller possible value we find
w = 0.088689 for the Symanzik gauge action which is not far awamnftoe valuew = 0.1 used
in our non-perturbative calculationd [6].

4. Mean field improvement

In the mean field approximation we typically assume that thege fields on each link are
independently fluctuating variables, and that we can simggyesent the links by an average value
Up. Typical choices forp would be to choosag to be the average plaquette value, or to chagse
to be the average link value in the Landau gauge.

A natural question is how we should extend the mean field aqpadion if we employ smear-
ing. One possibility is to express everything in terms of fu@ntities,up, a mean value for the
unsmeared link, ands, a mean value for smeared linksApplying the mean field approximation
to SLINC fermions we find

1 Us

Ker —, Cow~ —. 4.1
°® gu W v (4.1)

As a result, we find mean field improved expressionskfoandcsy by performing the following

replacements
pert

2 MF /2 _Us ) 2
Ke(97) = K (OwE,Us) = T Ke(9wr) (4.2)

and

2 MF .2 Us Ugert(gﬁF)A'
Csw(9“) — Csw(9wr,Us,Uo) = — —pert, o
u (90F)
pert

o Ug
Hereus andug are the measured smeared and unsmeared links at the givelingaandug™ and
uge”denote the corresponding expressions in lattice periorbéteory.

Csw(Gr) - (4.3)

1we would like to thank Colin Morningstar for conversationsthis point.
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We will useu2®" derived from the smeared perturbative plaquBge

ugertE Psl/4' (4.4)
To one-loop order we have
2
pert, . 9urCr
us (w)=1 162 ks(w), (4.5)
where the one-loop contributidg is [B]
ks(w) = 1 (0.732525- 11.394696w + 50.24522507) . (4.6)
The unsmeared perturbative value 8f" is ub*™ = u2*"(0). Inserting the resul{(4.6) into the mean
field expressiond (4.2) anfl (#.3) we obtain
1
kIF = = [1+ g Cr (—0.008053+0.050078%w — 0.471784w%)] , 4.7)

8US

oME E_E{Hgﬁﬂp [Cr (~0.0211635+ 0.1159610 + 0.6852477)
0

+N; (0.013777+0.015905 — 0.32189%7) | }. (4.8)

The mean field improved quantities are expressed in terntsedbdosted coupling?,r = g%/ug.

In [H] it is shown thatg?,- is a good expansion parameter in the case of the Symanzilouegr
gauge action with SLINC fermions: in one-loop it does nofatifvery much from the coupling
0% in theMSscheme. Comparing (4.7) ar{d (4.8) wifh (3.10) &nd (3.6) et that the one-loop
correction terms are indeed smaller than in the naive gmative expressions. Therefore, the mean
field approximation has improved the perturbative behavémuexpected.

5. Renormalization of currents

We consider the renormalization constants for the follgaotal bilinear quark operators

S=yly, P=ywy, V=09ny, A=0yry. (5.1)
The corresponding renormalization factor for an oper@ias the general form
_, G 2,2 4
Zo=1- 162 (Yo log(a®u?) + Zo(w)) + €(g") . (5.2)

Applying the mean field improvement as discussed in the piegesection the Z-factor is obtained
as

)
C
24" = us (1~ MEF (5 l0g(eu?) + Fo(w) — ks(®)) + (e )
e Cr 2,2 MF 4
= Us (1— 1672 (Yo log(a®p?) + %5 (w)) +ﬁ(gMF)>a (5.3)

whereks(w) is given in (4.5). We expect that stout smearing leads to ansontinuum-like
behavior. For the choica~ 1/ this means that the correction ter#, should become small in
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order to achiev&p ~ 1. In Table[5}4 we show the results for the local operatorss ¢tbvious
that due to smearing with the selected vatue= 0.1 [B] the one-loop correction is diminished
essentially.

0| Fo(w) Z0(0) | Zo(0.1) | BYF(0) | BYF (0.
—3 | 15.075— 168341w + 24225402 | 15.075 0.663 7.845 —0.280
—3 | 19.150— 267.462w + 106555w? | 19.150 3.059 11920 2.117

11.911-170763w + 754029w? | 11911 | 2.375 4.681 1.432

10.717—127.200w + 342380w? | 10.716 | 1.420 3.487 0.478

(5.4)
In order to show the effect on the renormalization factoesrteelves we need the values ey
andug. For B = 5.5 we haveus = 0.9404 andug = 0.8495 [1P]. The following table shows the
corresponding results far= 1/u and this selectefi-value

> < T wm

O| Zo(w=0) | Zo(w=0.1) | Z¥F(w=0.1)

S| 0768 0.990 0.948

P| 0706 0.953 0.882 (5.5)
V| 0817 0.964 0.901

Al 0836 0.978 0.927

In (5.5) we see that smearing shifts the renormalizatiotofactowards unity showing a better
continuume-like behaviour as promised.
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