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Abstract

We study the approach to equilibrium for a scalar field which is coupled to a large
thermal bath. Our analysis of the initial value problem is based on Kadanoff-Baym
equations which are shown to be equivalent to a stochastic Langevin equation. The
interaction with the thermal bath generates a temperature-dependent spectral den-
sity, either through decay and inverse decay processes or via Landau damping. In
equilibrium, energy density and pressure are determined by the Bose-Einstein dis-
tribution function evaluated at a complex quasi-particle pole. The time evolution
of the statistical propagator is compared with solutions of the Boltzmann equations
for particles as well as quasi-particles. The dependence on initial conditions and the
range of validity of the Boltzmann approximation are determined.
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1 Introduction

The current standard model of cosmology explains many features of our universe as the re-
sult of out-of-equilibrium processes during its very early high-temperature phase (cf. [1,2]).
This includes the matter-antimatter asymmetry, i.e. the origin of matter, the production
of dark matter, the formation of light elements and the decoupling of photons leading to
the cosmic microwave background.

Many nonequilibrium processes in the early universe can be treated in the canonical
way by means of Boltzmann equations (cf. [1]) with sufficient accuracy. In some cases,
however, quantum effects play a crucial role. This applies in particular to baryogenesis,
the generation of the matter-antimatter asymmetry. Here the CP asymmetry, which leads
to the baryon asymmetry, is the result of a quantum interference. It is therefore important
to go beyond the classical Boltzmann equations and to treat the entire baryogenesis process
quantum mechanically.

An attractive baryogenesis scenario is leptogenesis [3, 4|, where a quantitative under-
standing of the baryon asymmetry in terms of neutrino properties has been achieved [5].
In leptogenesis the out-of-equilibrium dynamics of a heavy Majorana neutrino, which is
coupled to a large thermal bath of standard model particles, is the origin of the baryon
asymmetry. Given the simplicity of this process, a full quantum mechanical treatment
may be possible and some progress in this direction has already been made during the past
years [6-8]. One important application is the study of flavor effects [9].

The treatment of nonequilibrium processes in quantum field theory is usually based
either on Kadanoff-Baym equations and the Schwinger-Keldysh formalism [10-13] or on
stochastic Langevin equations [14-17]. Both methods have been applied to various pro-
cesses in particle physics and cosmology, including also electroweak baryogenesis [18]. In
this paper we examine the connection between both approaches, which has been also con-
sidered in [19]. As we shall see, the Kadanoff-Baym equations and the Langevin equation
are, in fact, equivalent for the case of a large thermal bath where backreaction effects can
be neglected.

Boltzmann equations are first-order differential equations for number densities, which
are local in time. They represent a valuable approximation for nonequilibrium processes
in a dilute, weakly coupled gas. However, when the interactions between the quanta
of the thermal plasma are strong, which is certainly the case in the presence of non-
Abelian gauge interactions, the validity of the Boltzmann approximation is questionable.
Correspondingly, the notion of number density becomes ambiguous, although several useful
definitions have been suggested [13,17].

In this paper we study the approach to equilibrium for a scalar field which is coupled
to a thermal bath with many degrees of freedom such that backreaction effects can be
neglected. We shall focus on the description of this nonequilibrium process in terms of
Green’s functions rather than number densities. This is analogous to studies of preheating
after inflation based on the statistical propagator [13,20]. As we shall see, the Kadanoff-
Baym equations and the Langevin equation lead to identical results.

Knowing the exact solution of the initial value problem for the Green’s function of



the scalar field, we can systematically study the conditions for the validity of ordinary
Boltzmann equations as well as Boltzmann equations for quasi-particles. At large times
the scalar field reaches equilibrium. As we shall see, this state does not correspond to a gas
of quasi-particles. There is an additional thermal ‘vacuum’ contribution which in principle
can even lead to a negative pressure of low-momentum modes. The general solution of the
Green’s function also allows us to study the dependence of the equilibration on the initial
conditions. This is an important problem in leptogenesis, because the baryon asymmetry
can only be predicted in terms of neutrino properties when there is no dependence on the
initial conditions [21].

To illustrate our results we consider a toy model of three scalars [17,22,23], one being
much heavier than the other two. Two particles are in thermal equilibrium whereas the
third one slowly approaches thermal equilibrium starting from zero initial abundance. Due
to the interaction with the thermal bath this particle has a non-trivial spectral density,
approximately described by a ‘thermal mass’ and a ‘thermal width’. These are generated
either by decays and inverse decays or by a process similar to Landau damping. Some
aspects of this model have previously been studied based on the time evolution of a number
density [17].

The paper is organized as follows. In Section 2 we define the various Green’s functions
in the Schwinger-Keldysh formalism and present a brief derivation of the Kadanoff-Baym
equations. The theoretical framework leading to the Langevin equation is discussed in
Section 3, following [17]. Section 4 deals with the solutions of the Kadanoff-Baym equa-
tions. Thermal equilibrium and the quasi-particle picture are discussed in Section 5, and
a sytematic comparison with Boltzmann equations is made in Section 6. The results are
illustrated for a thermal bath of scalars in Section 7. A brief summary and outlook is given
in Section 8. Various properties of the spectral function are discussed in the Appendix.

2 The Schwinger-Keldysh formalism

Let us consider the nonequilibrium dynamics of a scalar field. In the Schwinger-Keldysh
formalism the basic quantity is the Green’s function defined on a contour C'in the complex
x%-plane (cf. Figure 1),

Ac(zy, 12) = Oc(2, 2 A~ (21, 22) + 0o (25, 29) A< (21, 29) . (2.1)

The #-functions enforce path ordering along the contour C, and A~ and A< are the cor-
relation functions

A7 (1, m2) = (B(21) D(22)) = Tr(p®(21)P(a2)) , (2.2)
A (w1, m2) = (D(22) P(21)) = Tr(pP(2)®(21)) (2.3)
where p is the density matrix of the system at some initial time ¢;.

We consider the case that the field ® is coupled to a thermal bath described by a
self-energy II. The Green’s function As then satisfies the Schwinger-Dyson equation

(01 + m*)Ac(z1, 22) +/ d* 2T (zy, 2) Ao, 19) = —ido(z) — 23) (2.4)
c
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Figure 1: Path in the complex time plane for nonequilibrium Green’s functions.

where 0J; = (0?/02?). Like the Green’s function, also the self-energy can be decomposed
as
e (z1,29) = O0c(2Y, 27 (21, 25) + O (25, 2T (21, 25) (2.5)

In the Schwinger-Dyson equation the time coordinates of As and Il can be on the

b

upper or lower branch of the contour C', which we denote by the subscripts ‘+” and ‘—’,
respectively. Obviously, one has

A,+($1,l'2) = A>(l'1, .1'2) s A+,(l'1, .1'2) = A< (.1'1,1'2) s (26)
H_+(III1,1‘2) = H>(l‘1, IL’Q) s H+_(l‘1, IL’Q) = H<(III1, IL’Q) s (27)

whereas A, I, and A__, II__ are causal and anti-causal Green functions, respectively.
From the Schwinger-Dyson equation (2.4 one obtains for the correlation functions A< and
A~

(O + M)A~ (21, 19) = /d4x'(—H++(x1,x')A (2, 29) + TI<(zy, 2" )A (2, 29)) , (2.8)
(O + m*)A> (21, 19) = /d4x' (=117 (21, 2" )AL (2, 20) + T (2, 2") A7 (2, 29)) , (2.9)

where the relative sign in the integrands is due to the anti-causal time ordering on the
lower branch of C'.
It is convenient to also introduce retarded and advanced Green functions,

AR (2, 29) = 0(t; — t5) (A (21, 22) — A< (21, 1)) (2.10)
= 0(ty — t2){[d(21), P(22)])

= Ayy(z1,m2) — Ay (21, 72)
= A7+(351,352 77(351,352) )
AA(Z'l,.Z'g) = _0(t2 — tl A (1'1,.1'2) A (xl,xQ)) (211)

) —
)
= —0(t2 — tl)([¢( 1), ¢(x2)])
= A4i(21,22) — Ay (71, 72)
=Ay (r1,19) — A,,(xl, Ta) ,
(21, 20) = O(t, — to) (117 (21, 22) — TT= (21, 22))
=y (71, 20) — [y (71, 72)
=11 (21, 20) —II__(21,29) , (2.12)
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4 (21, 25) = —0(ty — tl)(H>(x1,x2) 1N
=1L (21, 22) — +($1, 2)
) -

= H+,(x1,x2) («T1,$2

(1, 72))

(2.13)

From Egs. (2.8) and (Z3) one obtains the Kadanoff-Baym equations for the correlation
functions A~ and A<,

(O1 + m?)A> (21, 25) = —/d%' (I1” (1, 2" ) A (2, 20) + 1 (2, 2") A (2 20)) 1, (2.14)
(01 + m*) A< (21, 25) = —/d4x' (IT< (21, 2") A (2, 20) + T (21, ") AN (2, 22)) . (2.15)

We now define the real symmetric and antisymmetric correlation functions

A¥ (1) = S({B(m), D)) (2.16)
A7 (21, 2) = i{[®(21), D(72)]) , (2.17)
and self-energies
[T+ (1, 29) = —% (I (21, 25) + 1< (11, 22)) (2.18)
0 (21, 29) = 17 (21, 29) — T (21, 79) , (2.19)

which also determine the retarded and advanced self-energies,
HR(IL’l,IQ) = g(tl — tg)H_ (.’L’l,l‘Q) s HA(Il, IL’Q) = —g(tg — tl)H_ (1‘1,1‘2) . (220)

Adding and subtracting the Kadanoff-Baym equations (2.14]) and (ZI3]), one obtains from

Eqgs. (ZI0)-(ZI3) and (ZI0)-@I9) an homogeneous equation for A~ and an inhomoge-
neous equation for A*,

t1
(Oh +m2)A (21,35) = —/d3x’/ G (21, 2)A (o, 72) | (2.21)
to
t1
(O +m*) AT (21, 25) = —/d3x'/ dt'TI (aq, ") AT (2!, 15)
t;

to
+ / i’ / G (21, ) A (2, 7) - (2.22)
t;
We shall refer to these as equations as the first and second Kadanoff-Baym equation. A~

and AT are known as spectral function and statistical propagator (cf. [13]). Together they
determine the path ordered Green’s function,

- -
Ac(xy, 1) = At (21, 10) — 581gnc(x(1) — DA (21, 12) . (2.23)
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Figure 2: Path in the complex time plane for thermal Green’s functions.

A~ carries information about the spectrum of the system and A™ is related to occupation
numbers of different modes.
Using microcausality and the canonical quantization condition for a real scalar field,

[®(21), P(22)]l11=1, = [®(21), ®(22)][t1=1, = O, (2.24)

(D (z1), P(x2)]|ty =1, = i0(x1 — X2) , (2.25)

one obtains from the definitions (216]) and (217

A_(l‘la $2)|t1=t2 = 0 y (226)
atlA_(xlvx2)|t1=t2 = _at2A_(l‘lax2)|t1=t2 = 5(X1 - XQ) ’ (2'27)
atlatQAi(l'l,.ng)hl:tz =0. (228)

In the following we shall restrict ourselves to systems with spatial translational invari-
ance. In this case all two-point functions only depend on the difference of spatial coor-
dinates, x; — X2, and it is convenient to perform a Fourier transformation. The Green’s
functions AZ (t1,12) satisfy the two Kadanoff-Baym equations

t1

(07 +wa) A (t1,12) +/ dt'Tl (1, ") Ay (t,t2) = 0, (2.29)
to
t1 to

(07 +w2) A& (t1,12) +/t dt'TIg (ty, )AL (1 1) :/t dU'TIE (8, )AL (E, 1), (2.30)

where w7 = ¢® +m®. The initial conditions (2Z.26)-([2.28) for the spectral function become

A;(tl,t2)|t1:t2 =0 y (231)
atlA(;(tlatQHtl:tz = _at2A(; (t17t2)|t1=t2 =1, (2'32)
8t18t2A; (tlat2)|t1:t2 - 0 . (233)

For Green’s functions in thermal equilibrium the density matrix in Eqs. (22), 23)
is peq = exp (—BH), where H is the Hamiltonian of the system, and 8 = T~ is the
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inverse temperature. Time coordinates of Green functions now lie on the contour shown
in Figure 2, and one has invariance under time translations so that two-point functions
only depend on the time difference ¢t; —t5. After a Fourier transformation, one obtains the
KMS relations [12]| for Green’s functions and self-energies,

Al (w) = —% coth (%“) AL (w) (2.34)
I} (w) = —% coth (%“) I, () - (2.35)

The Kadanoff-Baym equations describe the dynamics of a arbitrary nonequilibrium
system. Depending on the self-energy and the initial conditions, the solutions will generally
be complicated. An enormous simplification is achieved for a large medium such that the
backreaction of the field ® can be neglected. Furthermore, we assume that the medium is
in thermal equilibrium and, therefore, the self energy of ® is time-translation invariant,

g (t1, te) = gt — ta) . (2.36)

In this case also the spectral function is time-translation invariant, as shown in Ap-
pendix A.1. With these simplifications, the Kadanoff-Baym equations become

t1
(07 +wl)AJ(t1 —t2) = —/ dt'TIg (t — )AL (1" — 1) | (2.37)

to

to
(07, + we)Ag (tr, 1) = /t AT (1 — 1) A (1 — 1)

t1
- /t IET (1 — )AL (H 1) (2.38)

i

These equations will be solved in Section 4 for general initial conditions.

3 Stochastic Langevin equation

Nonequilibrium processes can also be studied by means of Langevin equations which
describe the evolution of the field itself rather than the evolution of Green’s functions
(cf. [14-17]). Below we sketch a brief derivation of the Langevin equation describing a
scalar field ® coupled to a large thermal bath with bosonic and fermionic fields y, follow-
ing the discussion in [17]. We assume that the coupling is of the form g®O[x] and neglect
the backreaction of ® on the thermal bath, which makes the problem solvable.

The starting point is the nonequilibrium generating functional [13,17]

iny *in

Z[J,J ] = / DO DD, pi (D @) / DP, Dyl (3.1)



where the subscript ‘in’ stands for the initial condition. The action of the fields ® and y
is given by

S Tl = [ d (Lal®,) + 90,00 + 7,0,
t;

~Lo@) = 90Ol ] =St + [ a0, 62

where L4 is the Lagrangian of a free massive field,

1 1
Lo = 5(auq))2 - 5m2<1>2 : (3.3)

and p;, stands for the matrix elements of the initial density matrix,

Pin(Pip; @'5) = (2[p[D7) . (3.4)

n’

The field ® lives on the Keldysh contour C' shown in Figure[Il ®,(z) is the field with the
time argument on the "forward"(C) and "backward"(C) part of this contour, respec-
tively, satisfying the boundary conditions

D, (t;,x) =d(x), D_(t;,x) =P} (x) . (3.5)

The fields x are assumed to be in thermal equilibrium, corresponding to the contour Cg
(Figure [2), which is possible since the backreaction of ® on the thermal bath is neglected.
In the following we shall choose as initial time ¢; = 0.
It is convenient to perform a change of variables in the functional integral (3.1)),
1
U(z) =5 (P+(2) + 2-(2)) , (3.6)
R(z) =, (z) — P (z) . (3.7)

We are interested in the two-point function of ¥, which couples to the source term J =
J. — J_. Integrating out the fields R and x one finds [17],

Z[]] = /D\IjinDTCinW(\IJin;T{in)/D\Ilpgp[g]eifd4zJ(x)\Il(m)

x 0 [q}q(t) + w2 Ug(t) + / t dHTIZ (t — ) Tg(t') — §q(t)] : (3.8)

0

here the measure P[¢] is given by

Pl =exw (5 [ [ aveaomiie - 1) ear)] (39)

and &4(t) is a stochastic noise. The Fourier transform Wy (¢) in (B.8)) satisfies the initial
conditions .
\I’q(O) = \Ilq,in R \Ijq,in(o) = Tlq,in - (310)



The function W(W¥;,; 7,) is a functional Wigner transform of the initial density matrix,

Rin Rin
W(Win; Thy) = / DRye I #mnln o, (\Ifin+ = Wi — 7) . (3.11)

For a pure vacuum state p is a product of the two delta functions 6(¥y,) and (7).
In order to obtain two-point correlators of the field ¥ one has to solve the classical
stochastic Langevin equation,

(3 +2) Valt) + [ AT ) 0a(t) = ) (3.12)

with the initial conditions (BI0). Since the backreaction of the field ® is neglected, the
only relevant correlation functions are

(&(t) =0, (3.13)
(Ea(t)&q (t )> =M (t—t)é(a+d) . (3.14)

The solution of the Langevin equation is conveniently expressed in terms of an auxiliary
function fq(¢) which is defined as solution of the homogeneous equation

(07 + w?) fq(t) + / t dt'TI (t — 1) fq(t') =0, (3.15)

with the initial conditions _
fq(O) =0, fq(O) =1. (3.16)

One easily verifies that the solution of the Langevin equation is then given by

Uq(t) = Uqnfa(t) + anfa(t) + /0 t dt! fo(t = 1)&q(t') - (3.17)

Correlation functions of the scalar field can now be obtained by calculating the expec-
tation values

(W, (1) .. Vg (1)) | (3.18)

which involve the correlation functions of the stochastic noise and also an average over the
initial conditions. For the simplest case, the two-point function, one has

(Wo(t1)Vq (f2)) = gq(t1,12)0(a + d') = gq(t2,t1)0(a +q') - (3.19)

From the Langevin equation (B.I2]) one easily derives an analogous equation for the two-
point function,

(98 + ) (Wt e (1)) + [ T (0 — ) (W) B (1) (3.20)
— (Eq(t) T (1) (3.21)



=di(q+d) /0 2 dt'TIE (ty — 1) fq(t' — ) | (3.22)

which implies
t1
(07 + w?) gq(t1, t2) + / di'TLy (ty — ') gq(t', 2) (3.23)
0

- /tz dt'TIE (1 — 1) fq(t' —t2) . (3.24)
0

A solution of this equation can be directly obtained from the solution of the Langevin
equation ([BI2). In the case where the initial field and its time derivative vanish,

<\Ijq,in> - <\ijq,in> =0 ) (325)

the relevant averages for the two-point function are

(g inPqin) =d(a+d)aq , (3.26)

<\Ijq,inqqu,in> = (5((1 + ql)/Bq y (327)

(Tq,inTq,in) = 6(a+d)7q - (3.28)

Using the solution (BI7) and the correlations (B.I4) one obtains the two-point function

gq(tla t2) = aqfq(tl)fq(tZ) + ’qu(tl)f(tZ) (329)

+ Ba (faltr) falts) + falt) fa(t2) (3.30)

t1 to
+ / dt’/ dt" fo(ty — tIIE (8" — ") fo(t" — t2) . (3.31)
0 0

In the following section we shall see that the auxiliary function fq(¢) and the two-point cor-
relation function gq(t1, t2) are precisely the spectral function and the statistical propagator
of the field ®, respectively.

4 Solving the Kadanoff-Baym equations

4.1 The equation for the spectral function

As proven in Appendix A.1, the spectral function is time translation invariant, i.e., it only
depends on the time difference y = t; —t5. Hence, the first Kadanoff-Baym equation (2:37)
takes the form

y
(05 +wg) Ag(y) + /0 dy'Tlg (y — y)Ag(y') = 0. (4.1)
This equation can be solved by performing a Laplace transformation,

By = [ dverag ), (12)

10



for which one obtains after a straightforward calculation

- dy AL (0 AL (0
Aqls) = y2q(i+S~Rq()
5% + wZ + I(s)

(4.3)

with

f13(s) = [ e may = [ e m may = 1,9 (4.4

According to (A3]), the general solution of ([ depends on two parameters, the values of
A, and 9,A, at y = 0. Using the inverse Laplace transform one finds

ds e’
A7 = (0,AZ(0) + AZ(0)0 — = . 4.5
20 = A0 +5500) [ 3Ee (45)

Here Cp is the Bromwich contour (see Figure 3): The part parallel to the imaginary axis
is chosen such that all singularities of the integrand are to its left; the second part is the
semicircle at infinity which closes the contour at Re(s) < 0. Since the integrand of (L3 has
singularities only on the imaginary axis, the second part can be deformed to run parallel
to the imaginary axis as well: Cp — fljoo:; e
The spectral function A (y) satisfies the boundary conditions (2.37]) and (2:32]), which
implies
ds ey

A_ — - = . 46
al¥) cp 2T 82 + w2 + T (s) (4.6)

This result can be further simplified by making use of the analytic properties of the self-
energy I17(s). On the real axis IT~(s) is real, while on the parts of the contour which are
parallel to the imaginary axis one has

I (iw £ €) = Rellf (w) £ ImIT(w) , (4.7)
with )
ImIT] (w) = % (T (w + ie) — T (w — i€)) . (4.8)
Hence, the expression (£6) takes the form
Sal) =i [~ SEenpe). (49)

where the spectral function pq(w) is given in terms of real and imaginary part of the
self-energy I17 (w),

(w) = —QIquR(w) + 2we B ‘A—(' | .
Pule) = R + o o )

Note that Im HqR(w) and Re Hff(w) are odd and even functions, respectively, which implies
that Aqy(y) is real. Further properties of this solution are discussed in Appendix A. Let us

11
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Figure 3: Bromwich contour

recall that the expression (4.I0) is obtained after neglecting the backreaction of the field
® on the thermal bath. This is the reason why the self-energy and the spectral function
are time translation invariant.

The self-energy I1f(w), and consequently the spectral function pg(w), are divergent
and have to be renormalized. This can be done by the usual mass and wave function
renormalization at zero temperature. In (EI0) w? is replaced by Wi(o) = m? + ¢?, where
myp is the bare mass of the field ®. The difference between bare and renormalized mass
squared is determined by requiring that at zero temperature the spectral function has a
pole at wj; = m” + q°,

wi — wi(o) — Rellf (wq)|r=0 =0 . (4.11)
Expanding the self-energy around around wg, a further divergence can be absorbed in a

wave function renormalization constant,
Rellf(w) = Rellf(wq)lr=o + (1 — Z7") (w? — w2) + Rellf(w) , (4.12)

where Rell%(w) is the finite part and

1 ORellZ(w
Z7'=1- a(®) : (4.13)
2wq ow W=wgq,I'=0
The spectral function ([II0) now takes the form
—2ZImlIIE(w) + 2we
pqlw) =2 - 1 S (4.14)
(w2 - ZReng(w)) + (ZImITA(w) + we)
Introducing the renormalized field operator ®, = /Z®, one obtains the renormalized
spectral function pj(w) = Zpq(w) in terms of the renormalized self-energy I/ (w) =
TR
ZHq ((,U), " ( )
—2ImII " (w) + 2we
ph(w) = < (4.15)

<w2 — w2 — Rel’[ff’r(w))2 + (ImH(}f’r(w) + w6>2 .

12



The divergencies of spectral function and statistical propagator can be removed in the same
way by mass and wave function renormalization at zero temperature. In the following we
shall drop the superscript ‘r’ to keep the notation simple.

The spectral function describes a quasi-particle resonance at finite temperature with
energy €lq,

0 — wi — Rellf(Qq) =0, Q|r—0 =w, (4.16)
and decay width
1
[y~ —Q—qlmnf(gq) : (4.17)

For simplicity, we have neglected the effect of Imef on the quasi-particle energy. The
correction 6Qq = O(T2) is evaluated in Section 6.

In a free theory ImITf(w) = 0, and (EI5) is a representation of the d-function. The
spectral function (A3)) then oscillates without damping, i.e., there are no dissipative effects.
Dissipation arises either from ® decays and inverse decays or, similar to Landau damp-
ing, from scattering processes with particles in the plasma. Which of these mechanisms
dominates the dissipative effects and therefore the equilibration process depends on the
position of the quasi-particle pole relative to the masses of particles in the thermal bath.
A specific example will be discussed in Section 7. For small width the spectral function
is well approximated by the Breit-Wigner function. The relevant formulae are collected in
Appendix A.5.

4.2 Solution for the statistical propagator

We are now ready to solve the second Kadanoff-Baym equation (238 for the statistical
propagator, which for initial time ¢; = 0 is given by

t1
(at21 + W?;)A;r(thh) +/ dt'Tl, (t — t')Ai(t’,tz) = ((t1,12) , (4.18)
0

with t
C(hot) = / GETIE (1 — ) A, (F — 1) . (4.19)
0

One easily verifies that the solution can be expressed as

tq
AL (b, ts) = Al (th, ) +/0 dt' Ay (t — )¢t 1) (4.20)

~

where A (t1,1,) satisfies the homogeneous equation
(07 + wl)AL(ty,t2) +/0 dt'TI (t — )AL (t, 1) = 0. (4.21)

The homogeneous equation is identical to ([@1Il), with ¢, playing the role of a parameter.
We can therefore read off the general solution from (4.3]),

Al(ti, ) = Ag(ta) Ay (1) + By(t) Ay (1) - (4.22)

13



Using the symmetry Aj; (t1, 1) = A:;(tQ, t1), one obtains

Aq(ta)Aq (t1) + Ba(ta) Aq (t1) = Aq(t1)Aq (t2) + Ba(t1)Aq (t2) - (4.23)

Together with the boundary conditions [Z31)-(233), A5 (0) = A;(O) =0 and AQ(O) =1,
this implies

Aq(t) = Aq(0)AG (1) + Ba(0)Ag (1) . By(t) = Aq(0)A4 (1) + Ba(0)Ag (1) . (4.24)
Inserting A, (t) and By(t) in ([£23) and using the symmetry of Af{(tl, t5), one finds Bqy(0) =

Aq4(0). The initial state of the system is therefore characterized by three constants, which
can be chosen as

A;:11—,i11 = Ajl_ (tla tQ) |t1=t2=0 = Aq(o) ) (425)
Aj;r,in = atl A:;(tl’ t2)|t1:t2:0 = 8?52A1J1r (th t2)|t1:t210 = BQ(O) = AQ(O) ) (4'26)
A;11—,in = 0y at2A:1r(t1’ to) |t =ts=0 = Bq(o) . (4.27)

From Eqs. (£20), (£22), (£24) and the initial conditions (T.H)-(7.7) we now obtain the

full solution for the statistical propagator,

Ab(tita) = ALLAZ()AL(t) + ALLAT (1)A ()

q,in q,in
+ Agn (A t)Ag () + A5 (1) A (1)
+ AL em(f1yt2) (4.28)
where y .
Ag mem(t1,t2) = /0 dt' /0 dt" Ay (t — YT — )AL (" —to) . (4.29)

This contribution to the statistical propagator, which is independent of the initial condi-
tions, is often referred to as memory integral. It can be expressed in the form

Cdw
Ag mem(t1, t2) = —/ ﬁeﬂw(trm%(ﬁ(thW)Hq(t2aw)nq+(w) , (4.30)
where [17]
t
He(t,w) = / dre AL (r) | (4.31)
0

The expression ([A30) will be the basis of our numerical analysis in Section 7.

5 Thermal equilibrium and quasi-particles

Let us now verify that the solution ([L28) for the statistical propagator approaches thermal
equilibrium at late times. This means that the quantity

2t
+ — wy A+ y,_Y
A () /2tdye ap (2= (5.1)
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which becomes a Fourier transform for t — oo, satisfies the KMS condition asymptotically,

q

Al (00, w) = —% coth (%“) AZ(w) . (5.2)

For late times only the memory integral is relevant, since AZ(t) and Ag (t) fall off
exponentially for ¢ > 1/T". One then obtains

A (00,w) = Ag rem (00, w) = —[Hg(00,w)["TTg (w) . (5:3)

The quantity Hq(co,w) is the Laplace transform of the spectral function,

He(o0,w) = / dre @O (1)
0

= A (iw +€)
B 1
s + wg + ﬁq(s) s=iw+e
1
= — 5.4
w? — w2 — Rell#(w) — ilmIT#(w) ’ (5.4)
which yields
Ha(o0, ) = :
e T (w?— w? — RellE(w))? + (ImIT#(w))?
_ pq(w)
T O TmIE(w) (5:5)

Inserting this expression into (5.3)), using the KMS condition for the self-energy and (A.30),
_ Y R
I, (w) = 2ilmlI; (w) ,
one obtains (cf. (£9), I0)),

. B Bw Imﬂg(w)
A (00,w) = —coth <7> (0% — w2 — RelTF(w))? + (ImITE(w))?
= —% coth (%) Ay (w) - (5.6)

Hence, our solution for the statistical propagator indeed fulfills the KMS condition (2:34))
in the limit ¢ — oo, which proves that the system reaches thermal equilibrium. For a
specific example the approach to equilibrium will be studied numerically in Section 7.

It is instructive to evaluate the statistical propagator in thermal equilibrium at equal
times, i.e., y = t; —ty =0,

Ajl_‘y:O = %/ d—wcoth <%d> pq(w) - (5.7)

0o 2T
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For a free field one has

pq(w) = 27sign(w)d(w® — w?) , (5.8)
which yields the well know result
Aglo = (5 +malen)) (5:9)
q
with the temperature dependent Bose-Einstein distribution function
1
np(wq) = o (5.10)

Generically, the interaction with the thermal bath changes the energy wq of a free
particle to a temperature dependent complex energy Qq which appears as a pole of the
spectral function pq(w) and the integrand of (L7). The spectral function then has two
poles in the upper plane, Qq and —Qfl, which are determined by the condition

Oq — (w2 + 117 (Qq))1/2 ~0. (5.11)

Assuming that the integral can be closed in the upper half-plane, one obtains for the
statistical propagator in equilibriumﬂ

All,—o = Re (Ql (% + nB(Qq)>> : (5.12)

q

Compared to (5.8), the Bose-Einstein distribution function has been replaced by the com-
plex distribution function ng(€2q).
At high temperatures, where fwq < 1, the Bose-Einstein distribution has a well-known
infrared divergence,
1
np(wg) ~ — > 1. (5.13)
q Bwq
For quasi-particles, where wq is replaced by Qq = Qg +il'y/2, this divergence is cut off by

the finite width,
1 2

~ - < .
S T T T o4
which remains finite even if the real part €}, vanishes.

Comparison of equations (.0) and (5I2]) suggests that in thermal equilibrium the ®
particles may form a gas of quasi-particles. This question can be clarified by evaluating
energy density and pressure of the ® particles. Since the expectation value of ® vanishes,
one obtains from the energy momentum tenso

T,, = 0,89,® — 1, L (5.15)

'Here we restrict ourselves to the case where there are no additional poles.
>We use the convention diag (n,,) = (1, -1, -1, —1).
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for the contribution of a mode with momentum q to energy density and pressure,

1

eq = (Tho)|q = 5<ci>2 + (V®)? + m?®?)), , (5.16)
ba = (Tidla = (5(VB) + 5(8 = (V&) — m?a?))] (5.17)
This yields for the energy density
cal00) = 3 (0001 +2) A 01,0)], .,
= % (2 +wi) Qiq (% + nB(Qq)> : (5.18)

and for the pressure

1 1
pq(oo) = <§q2 + 5 (atlat? - wé)) Ag(tl’t2)‘t1:t2:oo

= (g0 5 @) g (5 +mio) (5.19)

where, for simplicity, we have neglected the quasi-particle width.
In summary, the energy momentum tensor in thermal equilibrium can be expressed as
sum of a quasi-particle gas contribution and a temperature dependent ‘vacuum’ term,

(Tyw)lq = upuy (quP +quP) - nﬂth?P + n#V“XAC : (5.20)

Here u” = (1,0) is the 4-velocity of the thermal bath, and

1
el = <§ + nB(Qq)> , (5.21)
1q% (/1
P
Pq 30, (5 +nB(Qq)> ) (5.22)
vac _ Y

Energy density and pressure of the quasi-particle gas agree with the corresponding expres-
sions for a free gas, with the energy wq of a free particle replaced by the quasi-particle
energy {1q. The ‘vacuum contribution’ HXAC vanishes for €}y = wq. For large thermal
effects, i.e. (1 > wq or )q < wq, the equation of state differs significantly from the one

of a free gas. Note that for Q?l < wg, the pressure can even become negative!

6 Comparison with Boltzmann equations

The time evolution of nonequilibrium systems is usually studied by means of Boltzmann
equations for particle number densities. However, this notion does not have a well defined
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physical meaning in a nonequilibrium process. For a dilute, weakly coupled gas the number
density of ‘free particles’ may be a good approximation, and in some cases the the effect of a
medium can be taken into account by considering quasi-particles. In general, however, one
has to study the time evolution of Green’s functions, in particular if quantum interferences
are important.

In order to determine the range of validity of the Boltzmann approximation, we shall
consider in this section the time evolution of an observable, the energy density. The exact
expression can be obtained from the statistical propagator, and approximations are given
by solutions of Boltzmann equations. In this way, the description of the nonequilibrium
process by means of Green’s functions on the one hand, and Boltzmann equations on the
other hand, can be directly compared, based on the same observable.

Consider the Boltzmann equation for a dilute gas of ® particles. The competition
between a gain and a loss term determines the change of the particle number density [22],

Omg(t) = (1+nq(t)7g = na(t)7g (6.1)

where production and decay rates satisfy the KMS relation and are obtained from the
self-energy of the field P,

Vg =€ 75 = np(wa)q - (6.2)
R
Ya = —% . (6.3)
Using these relations, the Boltzmann equation (G.I]) can be written in the form
Oing(t) = —7Ya(nq(t) — ne(wq)) , (6.4)
with the obvious solution
nq(t) = n(wq) + (nq(0) — np(wg)) e ™" . (6.5)

For comparison with the Kadanoff-Baym equations we now consider instead of the
number density the energy density of a mode with momentum q, normalized to the energy
of a single quantum,

) _eqt) 1
éq(t) = qu =5+ ng(t) . (6.6)
The deviation from the equilibrium density,
alt) = & 4 3eg(t) (6.7)
with .
€a(00) = &4 = 5 +mp(wq) | (6.8)
satisfies the differential equation
(O + 7q)0€q(t) =0 . (6.9)
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The modification of the spectral function in a thermal bath (cf. (LI0)) suggests to
replace the equilibrium value and the evolution equation for the energy density by the
expressions

1
éq(t) = €3P + 0éq() €8P =3 +np(Qq) , (6.10)
and
(0r +Tq)0éq(t) =0, (6.11)
where the quasi-particle width is given by (cf. Appendix A.5)
ImITE(Qyq) ) 1 0 r
Ty = —Zq# , Z'=1- Q—Qq%Rqu (w)\Qq : (6.12)

As long as the interaction of the field ® with the thermal bath can be treated perturbatively,
the difference between solutions of the two Boltzmann equations for particles and quasi-
particles, respectively, should be small. When the quasi-particle width becomes large,
however, the use of first-order differential equations, which are local in time, becomes
clearly questionable.

As discussed in Section 5, the exact time dependence of the energy density can be
directly obtained from the statistical propagator,

1

éq(t) = E (atl O, + wz) A:lr(tl’ tQ)‘tlzhzt ’

which satisfies the Kadanoff-Baym equation (Z13),
t1 to
GA +w§)Aq+(t1,t2)+/0 dt'TIg (t — ") AL (T, t2) :/0 d'TI (t — ") Ag (' — t2) . (6.13)

For large times, ¢t > 1/I'y, the dependence on the initial values at t; = 0 can be neglected,
and one obtains

(a§1+w§)Aq+(t1,t2)+/ dt' (Tt — )AL to) + I (0 — )AL (H' —t2)) = 0. (6.14)
Changing time variables,

_ti+t

t ;
2

y=ti—ty, AL(ty)=A(t,ta), (6.15)

and expanding,

t—t
2

t+t
A ( 2 — t2> = A7 (L1 —ty) + RAL (1 —ta) + ..., (6.16)

2

one finds for the Fourier transforms with respect to the time differences,
1 2 . 2 2 +
Zat — w0y — W +wy ) Aq (tw)
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- TR + (4
R _ ) Ay, i Ol (w) OAL (t; w)
= I (w) AL (tw) — il (W) AL (5 w) — 3 aqw qat : (6.17)
Using the relations (A17) - (A31), one obtains from the real and the imaginary part

of this complex equation two equations for the real quantity A¥(#,w),

1
(Zaf —w?+ wi) Al (t,w) = —Rellf ()AL (¢, w) + ITE (w)ImAS (2, w)

1 OImIT (w) OA (t,w) N

- 6.18
T3 ot | (6.18)
0
w&A;(t,w) = ImIT} (W) AL (t,w) + T (w)ReAS (¢, w)
1 ORell(w) OAT (t, w
+ = a() 984 )+..., (6.19)
2 ow ot
where the dots indicate neglected higher-order terms.
Consider now an expansion around the equilibrium solution,
AL (tw) = Al (w) +0A%(tw) . (6.20)
From equation (6.I9) one reads off
R A _
Im IT (w) A (w) + T (w) Re A (w) =0, (6.21)

which is satisfied because of [A.30), (A.22) and the KMS conditions ([2:34) and (Z.35).
The first equation (6.I8)) yields for the equilibrium solution,

(w? — w2 = Rellf(w)) Ad (w) = =TT (w) Im A (w) . (6.22)

In the zero-width limit, this equation is fulfilled for

w=0q = \Jwl + ReTIA(S)g) (6.23)
The finite width leads to a correction,
w=Qq + 08y . (6.24)
Expanding (6.22) in 64, one obtains to leading order
2040QAF (Qq) +TTT (Qq) Im AL (Qq) =0, (6.25)
which implies
Fq(Qq) Im A4 (2q)

Q= — | P
¥l 2 ReAA(Qy) (6.26)

We can use the free spectral function,

Ay (w) = 2msign(w)d(w® — Q7)) (6.27)

q
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to evaluate Im AZ(€q) to leading order in Iy,

1 p(w') 1
A = —— ! —_ —
Im A% (Qq) = 27TP/w,_quw 0 (6.28)

Using (626), (A.21)), (£10) and (A.41]) we finally obtain
117

q

Hence, for I'y < g, the leading term in the derivative expansion indeed implies w = Q.
If finite width effects are not negligible, however, off-shell effects become important and
the derivative expansion becomes unreliable.

Inserting w = €2 in the first-order differential equation (6.I9), one obtains for the
departure from equilibrium of the statistical propagator,

((1 _ LiReng(w)\QJ % _ Qiqung(szq)> SAL (5 Qg) =0 . (6.30)

Hence, 9,0A% (t;Qq) = O(ImIIY), and to this order Eq. [EI8) is also satisfied.
We can now evaluate the energy density

1

éq(t) = ﬂ (ﬁtl 8t2 + Wfl) Ajl_(tla tQ) ‘t1:t2:t
q
1 > | 2 2
T <Zat e +wq> Balfie) o

which approaches the equilibrium value

X X 02 + w2 (1
Eq(OO) = 62111 = ﬁ (5 + nB(Qq)> . (632)
q-"q

As already discussed in the previous section, the true equilibrium value of the energy
density does not correspond to a gas of quasi-particles,

el £ eV (6.33)

From Egs. (€30), (A4I) and (A.42) one obtains for the deviation from the equilibrium

value,

(0 +Tq)€éq(t) =0, (6.34)

which is identical to the Boltzmann equation (EI1]) for quasi-particles.

In summary, we have obtained the following conditions under which the approach to
equilibrium can be described by Boltzmann equations. For a dilute, weakly coupled gas
the ordinary Boltzmann equation for a number density is sufficient, which approaches the
Bose-Einstein distribution for a gas of free particles. When interactions with a thermal
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Figure 4: Spectral function pq(w) for q = 0; case (a) with masses m; = my = 0.2m and
temperatures 7} = 0.1m, T5 = 0.2m, T3 = 0.5m.

bath significantly change the spectral function, a Boltzmann equation for quasi-particles
describes the approach to equilibrium as long as the quasi-particle width can be neglected.
However, the equilibrium value of the energy density is different from the one for a gas of
quasi-particles. Finally, when the width cannot be neglected and off-shell effects become
significant, a linear evolution equation of ‘Boltzmann type’, which is local in time, is
no longer adequate. Instead, the dynamics is non-local in time, and one has to solve
Kadanoff-Baym equations.

7 A thermal bath of scalars

So far we have performed a very general analysis, and the only approximation has been to
neglect the backreaction of the field ® on the thermal bath. Furthermore, we have restricted
our discussion to the case that ® is linearly coupled to the bath via an interaction term
gPO(x) (cf. B2)). In general, x represents an arbitrary number of bosonic or fermionic
fields with arbitrary couplings including gauge interactions. In order to illustrate the results
of the previous sections, we now consider a toy model (cf. [17,22]), where the quanta of
two massive scalar fields represent the thermal bath. The full Lagrangian is given by

2
L= %3“@8”@ - %m2<1>2 + Z <%8“XZ~8”X¢ - %mfxf) + gPx1x2 + Lyint - (7.1)
i=1
Note that the coupling g has the dimension of mass. In the following we shall neglect
self-interaction of the y fields and use free thermal propagators for simplicity.
We consider two cases: (a) m > my,my and (b) my > m,m;. In the first case,
dissipation is dominated by ® decays and inverse decays, ® <+ x;Y2, whereas in the second
one Yo decays and inverse decays, xo <> Py, are most important.

22



400

2001 T
i Ty

w/m

0.85 0.90 0.95 1

Figure 5: Spectral function pq(w) for q = 0; case (b) with masses m; = m, my = 5m and
temperatures T} = m, To, = 2m, T3 = d5m.
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Figure 6: Spectral function A (y) for q = 0; case (b) with masses m; = m, my = 5m and
T = 10m.
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Figure 7: Real part of the self-energy IIf(w) for q = 0; case (a) with masses m; = m, =
0.2m and temperatures Ty = 0.5m (solid) and T = m (dashed).

In both cases the imaginary part of the self-energy is known analytically [17,23]. The
relevant formulae are collected in Appendix [A.3]l For m > m;, my, the decay width of ®
at zero temperature is given by

r— (i)Zm . (7.2)

" 167 \m

To illustrate thermal effects we shall use a rather large coupling which corresponds to
I'/m=0.1.

The spectral function pg(w) (cf. (£I5)) is shown in Figures @ and [l for the two mass
patterns (a) and (b), respectively. In case (a), IIf has an imaginary part at zero tem-
perature. The width is large, and already at small temperatures the quasi-particle profile
becomes broad. On the contrary, in case (b) the zero-temperature width is zero and the
finite-temperature width is small. Hence, the quasi-particle profile becomes broad only at
much larger temperatures. The spectral function Ag (y) is the Fourier transform of ipq(w).
As Figure [l illustrates, it approximately represents a damped oscillation with frequency
(1 and damping rate I'y.

It is interesting that thermal corrections can increase or decrease the particle mass
m. Whether the quasi-particle peak moves to the right or to the left depends on the
position of the zero-temperature pole relative to the branch cuts, and it also depends on
the temperature. This can be seen by considering the real part of the self-energy, which is
displayed for two different temperatures in Fig. [l for case (a). For the smaller temperature
one has Re IT{_y(m) > 0, whereas Re TIf_y(m) < 0 holds for the larger temperature, which
corresponds to a shift of the particle mass to the right and to the left, respectively.
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Figure 8: Statistical propagator Al (t1,1;) for q = 0; case (b) with masses m; = m,

me = 5m and T = 10m.

The statistical propagator Af(#1,2) depends on the initial conditions. The most gen-
eral gaussian initial density matrix has five free parameters (cf. [13]). We consider the
simplest case of a free field density matrix and vanishing mean values ® and ®, which

implies for each momentum mode,

q)q,in =0 )

(I)q,in =0,

1 /1
Agin = Ag (11, 12) |ty =tr=0 = o (— + nq> ,

2

q

Aj{,in — at1Ag(t17t2)|t1=t2=0 — atzA;;(tla t2)|t1=t2=0 - 0 )

1

Ag,in =0y, 8'52A31r (t1, t2) ] =ta—0 = Wq (5

(7.5)
(7.6)

(7.7)

The initial state of the system is now characterized by only one parameter ng which

corresponds to an initial number density for a free field.

The general solution ([£28) for the statistical propagator A{ (t1,%2) is shown in Figure[8.
For fixed t = (¢, +12)/2 one sees damped oscillations in y = ¢; —t,. The amplitude increases
with increasing time ¢, as illustrated by Figure @ For fixed y = t; — ¢t one observes the
approach to equilibrium with increasing t = (¢; +1¢,)/2. For large times the departure from
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Figure 9: Statistical propagator Af(t,%,) as function of y = ¢, — ¢, for q = 0; case (b)
with m; = m, my = 5m, T = 10m and three values of t = (t; + t3)/2: mt = 15 (dashed
line), mt = 20 (dotted-dashed), mt = 60 (solid).

Ak (t,t)
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Figure 10: Statistical propagator Ad(#1,%2) as function of t = (t; +t5)/2 for y = 0, q = 0;
case (b) with masses m; = m, my = 5m and T = 10m.
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Figure 11: Statistical propagator Al (#1,%2) with q = 0 as function of ¢ = (#; + #5)/2 for
y = 0 and different initial conditions; case (b) with masses q = 0, m; = m, ms = 5m and
T = 10m.

equilibrium is described by a first-order differential equation, and it decreases exponentially.
At small times the evolution is governed by a second-order differential equation, which leads
to the oscillations visible in Figure [0l The independence of the equilibrium solution from
the initial conditions is illustrated by Figure [Il The memory of the initial conditions is
lost at times ¢ > 1/T.

Finally, it is important to recall that the equilibrium value of the energy differs from
the one obtained in the Boltzmann approximation. This is illustrated in Figure [I2] where
the different contributions to the energy are compared as functions of temperature. For
the chosen parameters the particle and quasi-particle energies are indistinguishable. The
‘vacuum contribution’ is positive, which means that the total energy is larger than the
particle/quasi-particle one. The reason is that for the chosen parameters thermal correc-
tions decrease the particle mass. For other parameter choices the ‘vacuum contribution’
can have opposite sign.

8 Conclusions and outlook

We have studied the approach to equilibrium for a real scalar field coupled to a large
thermal bath. We have computed the exact two-point functions, the spectral function and
the statistical propagator, for arbitrary initial conditions. This is possible for a thermal
bath with many degrees of freedom such that the backreaction of the scalar field can be
neglected.
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Figure 12: Energy density éq = €q/wq as function of temperature for q = 0; case (b) with
masses m; = m, my = 5m: total energy density (solid), particle and quasi-particle energy
densities (dotted), and 'vacuum’ energy density (dashed).

The self-energy representing the thermal bath is time-translation invariant. We have
shown that this is also the case for the spectral function, whereas the statistical propagator
depends on two time coordinates, ¢; and 9, and also the time ¢; where the initial conditions
are specified.

We have obtained the two-point functions by solving the Kadanoff-Baym equations,
which turned out to be equivalent to solving a stochastic Langevin equation. As expected,
the relaxation time is determined by the imaginary part of the self-energy, i.e., a ‘quasi-
particle width” I'. For ¢ > 1/I', the statistical propagator becomes independent of the
initial conditions. It is then given by a memory integral which depends on the real and
imaginary part of the self-energy.

As long as thermal corrections are small, the approach to equilibrium is well described
by the ordinary Boltzmann equation, which is a local, first-order differential equation in
time for the particle number density. However, in the case of large thermal corrections
the notion of number density becomes ambiguous, and it is important to consider the
second-order Kadanoff-Baym equations for the two-point functions rather than a Boltz-
mann equation. Still, as long as the quasi-particle decay width is small compared to the
quasi-particle energy, a Boltzmann equation for quasi-particles describes the approach to
equilibrium to good approximation. For large decay width the dynamics becomes nonlocal
in time and the Boltzmann approximation breaks down.

It is interesting to study the contribution of the thermalized scalar field to energy
density and pressure. For a free field these observables are determined by the Bose-Einstein
distribution function. Interaction with the thermal bath can significantly modify energy
density and pressure, and therefore the equation of state. The Bose-Einstein distribution
as function of the complex quasi-particle pole is now the relevant quantity. Energy density
and pressure differ from the expressions for a free gas of quasi-particles by a temperature-
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dependent ‘vacuum term’ which can become important at high temperatures.

We have illustrated these results for a toy model where the thermal bath consists of
two massive scalar fields. We have considered two cases where equilibration takes place
either via decays and inverse decays or via ‘Landau damping’. In general, one has to
study the Kadanoff-Baym equation for the statistical propagator which depends on two
time coordinates as well as initial conditions. However, for large times, ¢ > 1/T", the time
evolution is well described by the Boltzmann equation for quasi-particles.

Our analysis has been motivated by the need of a full quantum mechanical description
of leptogenesis. To achieve this, one has to consider correlation functions rather than
number densities, although for parts of the calculation the use of Boltzmann equations
will be sufficient. The heavy Majorana neutrino is very weakly coupled to the thermal
bath. Hence, thermal corrections to its mass and width are small, and its approach to
equilibrium is well described by Boltzmann equations. However, to study the dependence
of the final baryon asymmetry on initial conditions it may be necessary to consider
the statistical propagator, since leptogenesis takes place at tp ~ 1/T". Furthermore, for
lepton and Higgs fields, which have strong gauge interactions, finite-width effects can
be important. At present it is unclear how accurately the leptogenesis process can be
described based on a quasi-particle picture for the standard model particles which form
the thermal bath. These questions are currently under investigation [24].
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A The spectral function

A.1 Time-translation invariance

In this section we shall prove that the most general solution of the first Kadanoff-Baym
equation is time-translation invariant. The starting point is Eq. (Z29) with the boundary
conditions (Z31) - (Z33). Performing the change of variables t; =t + y/2, to =t — y/2,

Eq. (229) becomes
1 y
(Zaf + 0,0, + 0, + uﬁ) AL (ty) + /0 dy'Tly (y — )AL (t59) =0, (A1)
where t' =t — (y — ¢')/2 and w2 = ¢* + m*. Note that A_ and II; only depend on |q

because of rotational invariance. Both functions are antisymmetric in y. The boundary

conditions (231 - ([2.33)) read

AL (t0) =0, (A.2)

AL (t;0) =0, (A.3)

ayA; (ti y)|y:0 =1, (A-4)

(37 - 22) Aaltmla=0. (A5)

The condition ([A.2)) is automatically fulfilled because of the antisymmetry in y.
To prove that A~ is time-translation invariant we now perform an expansion in powers
of TI~,

Ag=> Al AW =om). (A.6)
n=0
For n = 0 one has .
(Zaf + 0,0, + 07 + w§> AD(ty)=0. (A7)
Using the antisymmetry of A in y, one obtains
0,0,AD (t;y) =0, (A.8)
which has the general solution
AD = a0 1) + 50 (y) . (A.9)

Every solution of Eqs. (A7) and (A.8) satisfies the boundary condition ([(A.3). The condi-
tion (A.3) implies

q

AV (£0) = 9 (t) = 0. (A.10)
Hence, a is constant and AL only depends on y. Eq. (B&Z) now becomes

(02 +w?) Aff) (y) =0, (A.11)
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which has the antisymmetric solution
AL (y) = cg)) sin(wqy) - (A.12)

For n # 0 one can use the recurrence relation
1 0 gy n
<18,52 + 0,0, + 0; + wé) Ag ) (ty) + /0 dy'Tlg (y — y')AS1 J(y)=0. (A.13)
Using the antisymmetry of TI; and A in y, one again finds
0¢0y A (ty)=0. (A.14)

Repeating the same steps as for Aslo) yields the result that also Ag”’l) is independent of .
We conclude that the spectral function is the antisymmetric solution of the equation

(05 +wg) Ag(y) + /0 y dy'Tly (y — y)Aq (¥') =0, (A.15)

with the boundary condition
0,8 (Ml = 1. (A.16)

A.2 Conventions for propagators and self-energies

In thermal equilibrium the retarded and advanced propagators and self-energies only
depend on the time difference y = t; —t5. In the following we list several relations between
their Fourier transforms, which are used in the different sections. In principle, these
relations are all well know, but their specific form depends on the chosen conventions. All
relations are not affected by the three-dimensional Fourier transform. We therefore drop
the argument q or x.

Propagators:
A7 (w)* = —-A7(w), (A.17)
At(w)* = A*( (A.18)
Al(w) = (w) — P / C;‘;i _“’w , (A.19)
AR(w) = ——A / C;‘;’ri _“’; , (A.20)
ReAYw) = —ReAR(w)=-A"(w), (A.21)
ImAY(w) = ImAR(w P/ Z:Zi - (A.22)
AY—w) = ARw). (A.23)
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Self-energies:

M (W) = - (w), (A.25)
M (w)" = H+( ), (A.26)
M (w) = ——H P/Qmw — (A.27)
MR (w) = +P / g:zg m— (A.28)
Rell*(w) = Rell®(w P/2mw — (A.29)
ImIM*(w) = —ImMI*(w)= 5 I (w), (A.30)
M (—w) = Ifw). (A.31)

A.3 Scalar field model

The interaction with the thermal bath changes the spectral function of a free scalar particle,
pq(w) = 27sign(w)d(w? — wy) , (A.32)

to the expression (LI5) which depends on real and imaginary part of the self-energy,

—2ImITf (w) + 2we

Pal) = P Rl (@) o+ [l (@)  we (A.33)

We have computed the imaginary part of the self-energy in the scalar field model defined
in Section [0, assuming free thermal propagators for the fields x; and ys. The result agrees
with [17]. One obtains (¢ = (wq, q)):

~ImIL{(w) = o0(q) + 0" (q) + 05" (a) - (A.34)

Here o0y is the zero-temperature contribution due to the decay process ® — xxa,
e
167q?

x (g% = 2% (m? + m2) + (m? — m2)?)* | (A.35)

sign(w)O(¢* — (my +m2)?)

oo(q) =

aéa) is the finite-temperature contribution from this process,

2
75 (0) =grqa )0 = (mi +ma)?)
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1 — e P+
X <ln (W) + (m1 < m2)> y (A36)
and ag’)(q) is the finite-temperature contribution from processes x; — de>ﬁ

2

o) =g (@)O(m = ma)? — )
1 — 6_6|w*‘
X (ln <1—675|w+> + (m1 < m2)> y (A37)
where we have used the abbreviations
W_M(2 2 2:|:|(1| 2 _y 3 A.38
+ = 22 q° +mj —m;) 2l¢?| ((q +mi —mj)? q m1) : (A.38)

The real part of the self-energy can be computed using the dispersion relation relation,

Im HR
Re T} (w —P/ dw’ ) : (A.39)

° e v (a)

/ w

m/

. T . - - (b)

w

Wih1

Figure 13: Poles and cuts of the spectral function p(w) forq = 0at 7' = 0: (a) m > my+mso,
and (b) m < my + mo.

Based on these expressions we can discuss the analytic structure of the spectral function.
For a free field pq(w) is given by (A.32) which has two poles at w = £w, in the complex w-
plane. The interaction of ® with y; and y» does not modify these poles for m < m; + mo,
where @ is stable at zero temperature. In addition there are branch cuts at the two-
particle thresholds |w| > wiy = \/q2 + (mq + my)? (see Fig. I3b). They correspond to
virtual decays and inverse decays, ® <+ xx. In the case m > my + moy these processes can
happen on-shell since m > w1, and ® becomes unstable. Now the spectral function has
four poles in the complex w-plane, whose real parts lie in the region of the branch cuts (see
Fig.[[3k). The imaginary parts of the poles correspond to the decay width of ®.

*Note that we disagree with the discussion in [22] which implies the additional factor ©(|m? —m3|—q¢?).
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Wih2 Wth1

Figure 14: Poles and cuts of the spectral function p(w) forq = 0at T # 0: (a) m > my+ma,
and (b) m < my + mo.

The analytic structure of the spectral function at finite temperature is displayed in
Fig. The position of wyy; is shifted due to thermal corrections from Re Hf. Fur-
thermore, a new branch cut appears in the region where o, # 0, i.e. for |w| < winy =
V@2 + (my —my)2. This is due to processes x <> ¢x and corresponds to Landau damping
of quasi-particles in the plasma. If the real part of the poles falls into the regions of one of
the branch cuts, i.e. |w| < wino Or |W| > win1, they acquire an imaginary part which corre-
sponds to the quasi-particle decay width (see Fig.[[d)). Qualitatively, this analytic structure
is typical for interacting quantum field theories at finite temperature. In general, the spec-
tral function can have additional singular contributions for m < |w| < winy corresponding
to bound states. At finite temperature they are also dressed to quasi-particles.

A.4 Breit-Wigner approximation

In the regime of couplings and temperatures where | ImIIF (Qq)| < QZ2, so that the quasi-
particle picture holds, one can approximate the spectral function py(w) by a Breit-Wigner
function. From the expression ({.I5]) one easily obtains

Zy sign(w)l'q

Pqlw) =~ , A.40
a(w) 2Q (Jw| — Qq)* + 112 (A.40)
where I'y is the quasi-particle width
ImITE(Q
Ty = —Zq% : (A.41)
q

with

:Q> . (A.42)
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Contrary to the exact spectral function ([{LI5), the Breit-Wigner approximation ([A.40])
has no branch cuts. The integrals over w are dominated by the regions around the quasi-

particle poles where the two functions are very similar. For the Fourier transform, the
spectral function in real time, one obtains

Sin(qu) eff‘qt/Z (A 43)
79(1 . .

35



References

[1] E. W. Kolb and M. S. Turner, The Farly Universe, Addison-Wesley, New York, 1990.

. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, Cam-
2| V. Mukh Physical Foundati f C! [ Cambridge University P C
bridge, 2005.

[3] M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986) 45.

[4] M. A. Luty, Phys. Rev. D 45 (1992) 455;
L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384 (1996) 169 |hep-ph/9605319];
W. Buchmuller and M. Plumacher, Phys. Lett. B 389 (1996) 73 |hep-ph/9608308|.

[5] For reviews and references, see
W. Buchmuller, R. D. Peccei and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55 (2005)
311 [hep-ph/0502169];
S. Davidson, E. Nardi and Y. Nir, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962].

[6] W. Buchmuller and S. Fredenhagen, Phys. Lett. B 483 (2000) 217 |hep-ph/0004145].

[7] M. Lindner and M. M. Muller, Phys. Rev. D 73 (2006) 125002 |[hep-ph/0512147];
Phys. Rev. D 77, 025027 (2008) [arXiv:0710.2917].

[8] A. De Simone and A. Riotto, JCAP 0708 (2007) 002 |hep-ph/0703175|.

[9] R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Nucl. Phys. B 575 (2000) 61
[hep-ph/9911315];
T. Endoh, T. Morozumi and Z. h. Xiong, Prog. Theor. Phys. 111 (2004) 123
[hep-ph /0308276);
A. Abada, S. Davidson, F. X. Josse-Michaux, M. Losada and A. Riotto, JCAP 0604
(2006) 004 [hep-ph /0601083);
E. Nardi, Y. Nir, E. Roulet and J. Racker, JHEP 0601 (2006) 164 [hep-ph/0601084];
S. Blanchet, P. Di Bari and G. G. Raffelt, JCAP 0703 (2007) 012 |hep-ph/0611337].

[10] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York,
1962.

[11] J. Schwinger, J. Math. Phys. 2 (1961) 407;
P. M. Bakschi and K. T. Mahanthappa, J. Math. Phys. 4 (1963) 1;
P. M. Bakschi and K. T. Mahanthappa, J. Math. Phys. 4 (1963) 12;
L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018].

[12] M. Le Bellac, Thermal Field Theory, Cambridge University Press, Cambridge, 1996.

[13] J. Berges, Introduction to Nonequilibrium Quantum Field Theory, AIP Conf. Proc.
739 (2005) 3 [hep-ph/0409233].

36


http://arXiv.org/abs/hep-ph/9605319
http://arXiv.org/abs/hep-ph/9608308
http://arXiv.org/abs/hep-ph/0502169
http://arXiv.org/abs/0802.2962
http://arXiv.org/abs/hep-ph/0004145
http://arXiv.org/abs/hep-ph/0512147
http://arXiv.org/abs/0710.2917
http://arXiv.org/abs/hep-ph/0703175
http://arXiv.org/abs/hep-ph/9911315
http://arXiv.org/abs/hep-ph/0308276
http://arXiv.org/abs/hep-ph/0601083
http://arXiv.org/abs/hep-ph/0601084
http://arXiv.org/abs/hep-ph/0611337
http://arXiv.org/abs/hep-ph/0409233

[14] K. c¢. Chou, Z. b. Su, B. 1. Hao and L. Yu, Phys. Rept. 118 (1985) 1.

[15] J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys.
85 (1993) 1.

[16] J. Yokoyama, Phys. Rev. D 70 (2004) 103511 |arXiv:hep-ph/0406072].

[17] D. Boyanovsky, K. Davey and C. M. Ho, Phys. Rev. D 71 (2005) 023523
[arXiv:hep-ph/0411042].

[18] K. Kainulainen, T. Prokopec, M. G. Schmidt and S. Weinstock, JHEP 0106 (2001)
031 [hep-ph/0105295]; Phys. Rev. D 66 (2002) 043502 [hep-ph/0202177).

[19] C. Greiner and S. Leupold, Annals Phys. 270 (1998) 328 |hep-ph/9802312].

[20] J. Berges, A. Rothkopf and J. Schmidt, Phys. Rev. Lett. 101 (2008) 041603
arXiv:0803.0131).

[21] W. Buchmuller, P. Di Bari and M. Plumacher, Nucl. Phys. B 643 (2002) 367
[Erratum-ibid. B 793 (2008) 362 [hep-ph/0205349]; Nucl. Phys. B 665 (2003) 445
[hep-ph/0302092]; Annals Phys. 315 (2005) 305 |hep-ph/0401240).

[22] H. A. Weldon, Phys. Rev. D 28 (1983) 2007.
[23] M. Drewes, Thesis, DESY 2006 (unpublished)

[24] A. Anisimov, W. Buchmiiller, M. Drewes and S. Mendizabal, in preparation.

37


http://arXiv.org/abs/hep-ph/0406072
http://arXiv.org/abs/hep-ph/0411042
http://arXiv.org/abs/hep-ph/0105295
http://arXiv.org/abs/hep-ph/0202177
http://arXiv.org/abs/hep-ph/9802312
http://arXiv.org/abs/0803.0131
http://arXiv.org/abs/hep-ph/0205349
http://arXiv.org/abs/hep-ph/0302092
http://arXiv.org/abs/hep-ph/0401240

	Introduction
	The Schwinger-Keldysh formalism
	Stochastic Langevin equation
	Solving the Kadanoff-Baym equations
	The equation for the spectral function
	Solution for the statistical propagator

	Thermal equilibrium and quasi-particles
	Comparison with Boltzmann equations
	A thermal bath of scalars
	Conclusions and outlook
	The spectral function
	Time-translation invariance
	Conventions for propagators and self-energies
	Scalar field model
	Breit-Wigner approximation


