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Nonequilibrium Dynamis ofSalar Fields in a Thermal BathA. Anisimov, W. Buhmüller, M. Drewes, S. MendizabalDeutshes Elektronen-Synhrotron DESY, Hamburg, Germany

AbstratWe study the approah to equilibrium for a salar �eld whih is oupled to a largethermal bath. Our analysis of the initial value problem is based on Kadano�-Baymequations whih are shown to be equivalent to a stohasti Langevin equation. Theinteration with the thermal bath generates a temperature-dependent spetral den-sity, either through deay and inverse deay proesses or via Landau damping. Inequilibrium, energy density and pressure are determined by the Bose-Einstein dis-tribution funtion evaluated at a omplex quasi-partile pole. The time evolutionof the statistial propagator is ompared with solutions of the Boltzmann equationsfor partiles as well as quasi-partiles. The dependene on initial onditions and therange of validity of the Boltzmann approximation are determined.
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1 IntrodutionThe urrent standard model of osmology explains many features of our universe as the re-sult of out-of-equilibrium proesses during its very early high-temperature phase (f. [1,2℄).This inludes the matter-antimatter asymmetry, i.e. the origin of matter, the produtionof dark matter, the formation of light elements and the deoupling of photons leading tothe osmi mirowave bakground.Many nonequilibrium proesses in the early universe an be treated in the anonialway by means of Boltzmann equations (f. [1℄) with su�ient auray. In some ases,however, quantum e�ets play a ruial role. This applies in partiular to baryogenesis,the generation of the matter-antimatter asymmetry. Here the CP asymmetry, whih leadsto the baryon asymmetry, is the result of a quantum interferene. It is therefore importantto go beyond the lassial Boltzmann equations and to treat the entire baryogenesis proessquantum mehanially.An attrative baryogenesis senario is leptogenesis [3, 4℄, where a quantitative under-standing of the baryon asymmetry in terms of neutrino properties has been ahieved [5℄.In leptogenesis the out-of-equilibrium dynamis of a heavy Majorana neutrino, whih isoupled to a large thermal bath of standard model partiles, is the origin of the baryonasymmetry. Given the simpliity of this proess, a full quantum mehanial treatmentmay be possible and some progress in this diretion has already been made during the pastyears [6�8℄. One important appliation is the study of �avor e�ets [9℄.The treatment of nonequilibrium proesses in quantum �eld theory is usually basedeither on Kadano�-Baym equations and the Shwinger-Keldysh formalism [10�13℄ or onstohasti Langevin equations [14�17℄. Both methods have been applied to various pro-esses in partile physis and osmology, inluding also eletroweak baryogenesis [18℄. Inthis paper we examine the onnetion between both approahes, whih has been also on-sidered in [19℄. As we shall see, the Kadano�-Baym equations and the Langevin equationare, in fat, equivalent for the ase of a large thermal bath where bakreation e�ets anbe negleted.Boltzmann equations are �rst-order di�erential equations for number densities, whihare loal in time. They represent a valuable approximation for nonequilibrium proessesin a dilute, weakly oupled gas. However, when the interations between the quantaof the thermal plasma are strong, whih is ertainly the ase in the presene of non-Abelian gauge interations, the validity of the Boltzmann approximation is questionable.Correspondingly, the notion of number density beomes ambiguous, although several usefulde�nitions have been suggested [13, 17℄.In this paper we study the approah to equilibrium for a salar �eld whih is oupledto a thermal bath with many degrees of freedom suh that bakreation e�ets an benegleted. We shall fous on the desription of this nonequilibrium proess in terms ofGreen's funtions rather than number densities. This is analogous to studies of preheatingafter in�ation based on the statistial propagator [13, 20℄. As we shall see, the Kadano�-Baym equations and the Langevin equation lead to idential results.Knowing the exat solution of the initial value problem for the Green's funtion of2



the salar �eld, we an systematially study the onditions for the validity of ordinaryBoltzmann equations as well as Boltzmann equations for quasi-partiles. At large timesthe salar �eld reahes equilibrium. As we shall see, this state does not orrespond to a gasof quasi-partiles. There is an additional thermal `vauum' ontribution whih in priniplean even lead to a negative pressure of low-momentum modes. The general solution of theGreen's funtion also allows us to study the dependene of the equilibration on the initialonditions. This is an important problem in leptogenesis, beause the baryon asymmetryan only be predited in terms of neutrino properties when there is no dependene on theinitial onditions [21℄.To illustrate our results we onsider a toy model of three salars [17, 22, 23℄, one beingmuh heavier than the other two. Two partiles are in thermal equilibrium whereas thethird one slowly approahes thermal equilibrium starting from zero initial abundane. Dueto the interation with the thermal bath this partile has a non-trivial spetral density,approximately desribed by a `thermal mass' and a `thermal width'. These are generatedeither by deays and inverse deays or by a proess similar to Landau damping. Someaspets of this model have previously been studied based on the time evolution of a numberdensity [17℄.The paper is organized as follows. In Setion 2 we de�ne the various Green's funtionsin the Shwinger-Keldysh formalism and present a brief derivation of the Kadano�-Baymequations. The theoretial framework leading to the Langevin equation is disussed inSetion 3, following [17℄. Setion 4 deals with the solutions of the Kadano�-Baym equa-tions. Thermal equilibrium and the quasi-partile piture are disussed in Setion 5, anda sytemati omparison with Boltzmann equations is made in Setion 6. The results areillustrated for a thermal bath of salars in Setion 7. A brief summary and outlook is givenin Setion 8. Various properties of the spetral funtion are disussed in the Appendix.2 The Shwinger-Keldysh formalismLet us onsider the nonequilibrium dynamis of a salar �eld. In the Shwinger-Keldyshformalism the basi quantity is the Green's funtion de�ned on a ontour C in the omplexx0-plane (f. Figure 1),�C(x1; x2) = �C(x01; x02)�>(x1; x2) + �C(x02; x01)�<(x1; x2) : (2.1)The �-funtions enfore path ordering along the ontour C, and �> and �< are the or-relation funtions �>(x1; x2) = h�(x1)�(x2)i = Tr(��(x1)�(x2)) ; (2.2)�<(x1; x2) = h�(x2)�(x1)i = Tr(��(x2)�(x1)) ; (2.3)where � is the density matrix of the system at some initial time ti.We onsider the ase that the �eld � is oupled to a thermal bath desribed by aself-energy �. The Green's funtion �C then satis�es the Shwinger-Dyson equation(�1 +m2)�C(x1; x2) + ZC d4x0�C(x1; x0)�C(x0; x2) = �iÆC(x1 � x2) ; (2.4)3
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Figure 1: Path in the omplex time plane for nonequilibrium Green's funtions.where �1 = (�2=�x21). Like the Green's funtion, also the self-energy an be deomposedas �C(x1; x2) = �C(x01; x02)�>(x1; x2) + �C(x02; x01)�<(x1; x2) : (2.5)In the Shwinger-Dyson equation the time oordinates of �C and �C an be on theupper or lower branh of the ontour C, whih we denote by the subsripts `+' and `�',respetively. Obviously, one has��+(x1; x2) = �>(x1; x2) ; �+�(x1; x2) = �<(x1; x2) ; (2.6)��+(x1; x2) = �>(x1; x2) ; �+�(x1; x2) = �<(x1; x2) ; (2.7)whereas �++, �++ and ���, ��� are ausal and anti-ausal Green funtions, respetively.From the Shwinger-Dyson equation (2.4) one obtains for the orrelation funtions �< and�>,(�1 +m2)�<(x1; x2) = Z d4x0 (��++(x1; x0)�<(x0; x2) + �<(x1; x0)���(x0; x2)) ; (2.8)(�1 +m2)�>(x1; x2) = Z d4x0 (��>(x1; x0)�++(x0; x2) + ���(x1; x0)�>(x0; x2)) ; (2.9)where the relative sign in the integrands is due to the anti-ausal time ordering on thelower branh of C.It is onvenient to also introdue retarded and advaned Green funtions,�R(x1; x2) = �(t1 � t2)(�>(x1; x2)��<(x1; x2)) (2.10)= �(t1 � t2)h[�(x1); �(x2)℄i= �++(x1; x2)��+�(x1; x2)= ��+(x1; x2)����(x1; x2) ;�A(x1; x2) = ��(t2 � t1)(�>(x1; x2)��<(x1; x2)) (2.11)= ��(t2 � t1)h[�(x1); �(x2)℄i= �++(x1; x2)���+(x1; x2)= �+�(x1; x2)����(x1; x2) ;�R(x1; x2) = �(t1 � t2)(�>(x1; x2)� �<(x1; x2))= �++(x1; x2)� �+�(x1; x2)= ��+(x1; x2)� ���(x1; x2) ; (2.12)4



�A(x1; x2) = ��(t2 � t1)(�>(x1; x2)� �<(x1; x2))= �++(x1; x2)� ��+(x1; x2)= �+�(x1; x2)� ���(x1; x2) : (2.13)From Eqs. (2.8) and (2.9) one obtains the Kadano�-Baym equations for the orrelationfuntions �> and �<,(�1 +m2)�>(x1; x2) = � Z d4x0 ��>(x1; x0)�A(x0; x2) + �R(x1; x0)�>(x0; x2)� ; (2.14)(�1 +m2)�<(x1; x2) = � Z d4x0 ��<(x1; x0)�A(x0; x2) + �R(x1; x0)�<(x0; x2)� : (2.15)We now de�ne the real symmetri and antisymmetri orrelation funtions�+(x1; x2) = 12hf�(x1);�(x2)gi ; (2.16)��(x1; x2) = ih[�(x1);�(x2)℄i ; (2.17)and self-energies �+(x1; x2) = � i2 (�>(x1; x2) + �<(x1; x2)) ; (2.18)��(x1; x2) = �>(x1; x2)� �<(x1; x2) ; (2.19)whih also determine the retarded and advaned self-energies,�R(x1; x2) = �(t1 � t2)��(x1; x2) ; �A(x1; x2) = ��(t2 � t1)��(x1; x2) : (2.20)Adding and subtrating the Kadano�-Baym equations (2.14) and (2.15), one obtains fromEqs. (2.10)-(2.13) and (2.16)-(2.19) an homogeneous equation for �� and an inhomoge-neous equation for �+,(�1 +m2)��(x1; x2) = � Z d3x0 Z t1t2 dt0��(x1; x0)��(x0; x2) ; (2.21)(�1 +m2)�+(x1; x2) = � Z d3x0 Z t1ti dt0��(x1; x0)�+(x0; x2)+ Z d3x0 Z t2ti dt0�+(x1; x0)��(x0; x2) : (2.22)We shall refer to these as equations as the �rst and seond Kadano�-Baym equation. ��and �+ are known as spetral funtion and statistial propagator (f. [13℄). Together theydetermine the path ordered Green's funtion,�C(x1; x2) = �+(x1; x2)� i2signC(x01 � x02)��(x1; x2) : (2.23)5
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Figure 2: Path in the omplex time plane for thermal Green's funtions.�� arries information about the spetrum of the system and �+ is related to oupationnumbers of di�erent modes.Using miroausality and the anonial quantization ondition for a real salar �eld,[�(x1);�(x2)℄jt1=t2 = [ _�(x1); _�(x2)℄jt1=t2 = 0 ; (2.24)[�(x1); _�(x2)℄jt1=t2 = iÆ(x1 � x2) ; (2.25)one obtains from the de�nitions (2.16) and (2.17)��(x1; x2)jt1=t2 = 0 ; (2.26)�t1��(x1; x2)jt1=t2 = ��t2��(x1; x2)jt1=t2 = Æ(x1 � x2) ; (2.27)�t1�t2��(x1; x2)jt1=t2 = 0 : (2.28)In the following we shall restrit ourselves to systems with spatial translational invari-ane. In this ase all two-point funtions only depend on the di�erene of spatial oor-dinates, x1 � x2, and it is onvenient to perform a Fourier transformation. The Green'sfuntions ��q (t1; t2) satisfy the two Kadano�-Baym equations(�2t1 + !2q)��q (t1; t2) + Z t1t2 dt0��q (t1; t0)��q (t0; t2) = 0 ; (2.29)(�2t1 + !2q)�+q (t1; t2) + Z t1ti dt0��q (t1; t0)�+q (t0; t2) = Z t2ti dt0�+q (t1; t0)��q (t0; t2) ; (2.30)where !2q = q2 +m2. The initial onditions (2.26)-(2.28) for the spetral funtion beome��q (t1; t2)jt1=t2 = 0 ; (2.31)�t1��q (t1; t2)jt1=t2 = ��t2��q (t1; t2)jt1=t2 = 1 ; (2.32)�t1�t2��q (t1; t2)jt1=t2 = 0 : (2.33)For Green's funtions in thermal equilibrium the density matrix in Eqs. (2.2), (2.3)is �eq = exp (��H), where H is the Hamiltonian of the system, and � = T�1 is the6



inverse temperature. Time oordinates of Green funtions now lie on the ontour shownin Figure 2, and one has invariane under time translations so that two-point funtionsonly depend on the time di�erene t1� t2. After a Fourier transformation, one obtains theKMS relations [12℄ for Green's funtions and self-energies,�+q (!) = � i2 oth��!2 ���q (!) ; (2.34)�+q (!) = � i2 oth��!2 ���q (!) : (2.35)The Kadano�-Baym equations desribe the dynamis of a arbitrary nonequilibriumsystem. Depending on the self-energy and the initial onditions, the solutions will generallybe ompliated. An enormous simpli�ation is ahieved for a large medium suh that thebakreation of the �eld � an be negleted. Furthermore, we assume that the medium isin thermal equilibrium and, therefore, the self energy of � is time-translation invariant,�q(t1; t2) = �q(t1 � t2) : (2.36)In this ase also the spetral funtion is time-translation invariant, as shown in Ap-pendix A.1. With these simpli�ations, the Kadano�-Baym equations beome(�2t1 + !2q)��q (t1 � t2) = � Z t1t2 dt0��q (t1 � t0)��q (t0 � t2) ; (2.37)(�2t1 + !2q)�+q (t1; t2) = Z t2ti dt0�+q (t1 � t0)��q (t0 � t2)� Z t1ti dt0��q (t1 � t0)�+q (t0; t2) : (2.38)These equations will be solved in Setion 4 for general initial onditions.3 Stohasti Langevin equationNonequilibrium proesses an also be studied by means of Langevin equations whihdesribe the evolution of the �eld itself rather than the evolution of Green's funtions(f. [14�17℄). Below we sketh a brief derivation of the Langevin equation desribing asalar �eld � oupled to a large thermal bath with bosoni and fermioni �elds �, follow-ing the disussion in [17℄. We assume that the oupling is of the form g�O[�℄ and negletthe bakreation of � on the thermal bath, whih makes the problem solvable.The starting point is the nonequilibrium generating funtional [13, 17℄Z[J+; J�℄ = Z D�+inD��in�in(�+in; ��in) Z D��D��eiS[��;�;J�℄ ; (3.1)7



where the subsript `in' stands for the initial ondition. The ation of the �elds � and �is given byS[��; �; J�℄ = Z 1ti d4x (L�(�+) + g�+O[�+℄ + J+�+�L�(��)� g��O[��℄� J���) + ZC� d4xL�(�) ; (3.2)where L� is the Lagrangian of a free massive �eld,L� = 12(���)2 � 12m2�2 ; (3.3)and �in stands for the matrix elements of the initial density matrix,�in(�+in; �0�in) = h�j�j�0i : (3.4)The �eld � lives on the Keldysh ontour C shown in Figure 1. ��(x) is the �eld with thetime argument on the "forward"(C+) and "bakward"(C�) part of this ontour, respe-tively, satisfying the boundary onditions�+(ti;x) = �+in(x) ; ��(ti;x) = ��in(x) : (3.5)The �elds � are assumed to be in thermal equilibrium, orresponding to the ontour C�(Figure 2), whih is possible sine the bakreation of � on the thermal bath is negleted.In the following we shall hoose as initial time ti = 0.It is onvenient to perform a hange of variables in the funtional integral (3.1),	(x) = 12 (�+(x) + ��(x)) ; (3.6)R(x) = �+(x)� ��(x) : (3.7)We are interested in the two-point funtion of 	, whih ouples to the soure term J =J+ � J�. Integrating out the �elds R and � one �nds [17℄,Z[J ℄ = Z D	inD�inW(	in;�in) Z D	D�P[�℄ei R d4xJ(x)	(x)� Æ ��	q(t) + !2q	q(t) + Z t0 dt0��q (t� t0)	q(t0)� �q(t)� ; (3.8)here the measure P[�℄ is given byP[�℄ = exp�12 Z 10 dt Z 10 dt0�q(t)�+q (t� t0)�1��q(t0)� ; (3.9)and �q(t) is a stohasti noise. The Fourier transform 	q(t) in (3.8) satis�es the initialonditions 	q(0) = 	q;in ; _	q;in(0) = �q;in : (3.10)8



The funtion W(	in;�in) is a funtional Wigner transform of the initial density matrix,W(	in;�in) = Z DRine� R d3x�in(x)Rin(x)�in�	in + Rin2 ;	in � Rin2 � : (3.11)For a pure vauum state � is a produt of the two delta funtions Æ(	in) and Æ(�in).In order to obtain two-point orrelators of the �eld 	 one has to solve the lassialstohasti Langevin equation,��2t + !2q�	q(t) + Z t0 dt0��q (t� t0)	q(t0) = �q(t) ; (3.12)with the initial onditions (3.10). Sine the bakreation of the �eld � is negleted, theonly relevant orrelation funtions areh�q(t)i = 0 ; (3.13)h�q(t)�q0(t0)i = ��+q (t� t0)Æ(q + q0) : (3.14)The solution of the Langevin equation is onveniently expressed in terms of an auxiliaryfuntion fq(t) whih is de�ned as solution of the homogeneous equation��2t + !2q� fq(t) + Z t0 dt0��q (t� t0)fq(t0) = 0 ; (3.15)with the initial onditions fq(0) = 0 ; _fq(0) = 1 : (3.16)One easily veri�es that the solution of the Langevin equation is then given by	q(t) = 	q;in _fq(t) + �q;infq(t) + Z t0 dt0fq(t� t0)�q(t0) : (3.17)Correlation funtions of the salar �eld an now be obtained by alulating the expe-tation values h	q1(t1) : : :	qn(tn)i ; (3.18)whih involve the orrelation funtions of the stohasti noise and also an average over theinitial onditions. For the simplest ase, the two-point funtion, one hash	q(t1)	q0(t2)i � gq(t1; t2)Æ(q+ q0) = gq(t2; t1)Æ(q + q0) : (3.19)From the Langevin equation (3.12) one easily derives an analogous equation for the two-point funtion,��2t + !2q� h	q(t1)	q0(t2)i+ Z t10 dt0��q (t1 � t0)h	q(t0)	q0(t2)i (3.20)= h�q(t1)	q0(t2)i (3.21)9



= Æ(q+ q0) Z t20 dt0�+q (t1 � t0)fq(t0 � t2) ; (3.22)whih implies ��2t + !2q� gq(t1; t2) + Z t10 dt0��q (t1 � t0)gq(t0; t2) (3.23)= Z t20 dt0�+q (t1 � t0)fq(t0 � t2) : (3.24)A solution of this equation an be diretly obtained from the solution of the Langevinequation (3.12). In the ase where the initial �eld and its time derivative vanish,h	q;ini = h _	q;ini = 0 ; (3.25)the relevant averages for the two-point funtion areh	q;in	q;ini = Æ(q+ q0)�q ; (3.26)h _	q;in _	q0;ini = Æ(q+ q0)�q ; (3.27)h _	q;in _	q;ini = Æ(q+ q0)q : (3.28)Using the solution (3.17) and the orrelations (3.14) one obtains the two-point funtiongq(t1; t2) = �q _fq(t1) _fq(t2) + qf(t1)f(t2) (3.29)+ �q �fq(t1) _fq(t2) + _fq(t1)fq(t2)� (3.30)+ Z t10 dt0 Z t20 dt00fq(t1 � t0)�+q (t0 � t00)fq(t00 � t2) : (3.31)In the following setion we shall see that the auxiliary funtion fq(t) and the two-point or-relation funtion gq(t1; t2) are preisely the spetral funtion and the statistial propagatorof the �eld �, respetively.4 Solving the Kadano�-Baym equations4.1 The equation for the spetral funtionAs proven in Appendix A.1, the spetral funtion is time translation invariant, i.e., it onlydepends on the time di�erene y = t1� t2. Hene, the �rst Kadano�-Baym equation (2.37)takes the form ��2y + !2q���q (y) + Z y0 dy0��q (y � y0)��q (y0) = 0 : (4.1)This equation an be solved by performing a Laplae transformation,~��q (s) = Z 10 dye�sy��q (y) ; (4.2)10



for whih one obtains after a straightforward alulation~��q (s) = �y��q (0) + s��q (0)s2 + !2q + ~�Rq (s) ; (4.3)with ~�Rq (s) = Z 10 e�sy�Rq (y)dy = Z 10 e�sy��q (y)dy = ~��q (s) : (4.4)Aording to (4.3), the general solution of (4.1) depends on two parameters, the values of��q and �y��q at y = 0. Using the inverse Laplae transform one �nds��q (y) = ��y��q (0) + ��q (0)�y� ZCB ds2�i esys2 + !2q + ~��q (s) : (4.5)Here CB is the Bromwih ontour (see Figure 3): The part parallel to the imaginary axisis hosen suh that all singularities of the integrand are to its left; the seond part is thesemiirle at in�nity whih loses the ontour at Re(s) < 0. Sine the integrand of (4.5) hassingularities only on the imaginary axis, the seond part an be deformed to run parallelto the imaginary axis as well: CB ! R i1+��i1+�+ R �i1��i1�� .The spetral funtion ��q (y) satis�es the boundary onditions (2.31) and (2.32), whihimplies ��q (y) = ZCB ds2�i esys2 + !2q + ~��q (s) : (4.6)This result an be further simpli�ed by making use of the analyti properties of the self-energy ~��(s). On the real axis ~��(s) is real, while on the parts of the ontour whih areparallel to the imaginary axis one has~��(i! � �) = Re�Rq (!)� iIm�Rq (!) ; (4.7)with Im�Rq (!) = 12i ��Rq (! + i�)� �Rq (! � i�)� : (4.8)Hene, the expression (4.6) takes the form��q (y) = i Z 1�1 d!2� e�i!y�q(!) ; (4.9)where the spetral funtion �q(!) is given in terms of real and imaginary part of theself-energy �Rq (!),�q(!) = �2Im�Rq (!) + 2!�[!2 � !2q � Re�Rq (!)℄2 + [Im�Rq (!) + !�℄2 = i ~��q (i!) : (4.10)Note that Im�Rq (!) and Re�Rq (!) are odd and even funtions, respetively, whih impliesthat �q(y) is real. Further properties of this solution are disussed in Appendix A. Let us11
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Figure 3: Bromwih ontourreall that the expression (4.10) is obtained after negleting the bakreation of the �eld� on the thermal bath. This is the reason why the self-energy and the spetral funtionare time translation invariant.The self-energy �Rq (!), and onsequently the spetral funtion �q(!), are divergentand have to be renormalized. This an be done by the usual mass and wave funtionrenormalization at zero temperature. In (4.10) !2q is replaed by !2q(0) = m20 + q2, wherem0 is the bare mass of the �eld �. The di�erene between bare and renormalized masssquared is determined by requiring that at zero temperature the spetral funtion has apole at !2q = m2 + q2, !2q � !2q(0) � Re�Rq (!q)jT=0 = 0 : (4.11)Expanding the self-energy around around !q, a further divergene an be absorbed in awave funtion renormalization onstant,Re�Rq (!) = Re�Rq (!q)jT=0 + �1� Z�1� �!2 � !2q�+Re�̂Rq (!) ; (4.12)where Re�̂Rq (!) is the �nite part andZ�1 = 1� 12!q �Re�Rq (!)�! ���!=!q;T=0 : (4.13)The spetral funtion (4.10) now takes the form�q(!) = Z �2ZIm�Rq (!) + 2!��!2 � !2q � ZRe�̂Rq (!)�2 + �ZIm�Rq (!) + !��2 : (4.14)Introduing the renormalized �eld operator �r = pZ�, one obtains the renormalizedspetral funtion �rq(!) = Z�q(!) in terms of the renormalized self-energy �R;rq (!) =Z�̂Rq (!), �rq(!) = �2Im�R;rq (!) + 2!��!2 � !2q � Re�R;rq (!)�2 + �Im�R;rq (!) + !��2 : (4.15)12



The divergenies of spetral funtion and statistial propagator an be removed in the sameway by mass and wave funtion renormalization at zero temperature. In the following weshall drop the supersript `r' to keep the notation simple.The spetral funtion desribes a quasi-partile resonane at �nite temperature withenergy 
q, 
2q � !2q � Re�Rq (
q) = 0; 
2qjT=0 = !2q ; (4.16)and deay width �q ' � 1
q Im�Rq (
q) : (4.17)For simpliity, we have negleted the e�et of Im�Rq on the quasi-partile energy. Theorretion Æ
q = O(�2q) is evaluated in Setion 6.In a free theory Im�Rq (!) = 0, and (4.15) is a representation of the Æ-funtion. Thespetral funtion (4.9) then osillates without damping, i.e., there are no dissipative e�ets.Dissipation arises either from � deays and inverse deays or, similar to Landau damp-ing, from sattering proesses with partiles in the plasma. Whih of these mehanismsdominates the dissipative e�ets and therefore the equilibration proess depends on theposition of the quasi-partile pole relative to the masses of partiles in the thermal bath.A spei� example will be disussed in Setion 7. For small width the spetral funtionis well approximated by the Breit-Wigner funtion. The relevant formulae are olleted inAppendix A.5.4.2 Solution for the statistial propagatorWe are now ready to solve the seond Kadano�-Baym equation (2.38) for the statistialpropagator, whih for initial time ti = 0 is given by(�2t1 + !2q)�+q (t1; t2) + Z t10 dt0��q (t1 � t0)�+q (t0; t2) = �(t1; t2) ; (4.18)with �(t1; t2) = Z t20 dt0�+q (t1 � t0)��q (t0 � t2) : (4.19)One easily veri�es that the solution an be expressed as�+q (t1; t2) = �̂+q (t1; t2) + Z t10 dt0��q (t1 � t0)�(t0; t2) ; (4.20)where �̂+q (t1; t2) satis�es the homogeneous equation(�2t1 + !2q)�̂+q (t1; t2) + Z t10 dt0��q (t1 � t0)�̂+q (t0; t2) = 0 : (4.21)The homogeneous equation is idential to (4.1), with t2 playing the role of a parameter.We an therefore read o� the general solution from (4.5),�̂+q (t1; t2) = Aq(t2) _��q (t1) +Bq(t2)��q (t1) : (4.22)13



Using the symmetry �̂+q (t1; t2) = �̂+q (t2; t1), one obtainsAq(t2) _��q (t1) +Bq(t2)��q (t1) = Aq(t1) _��q (t2) +Bq(t1)��q (t2) : (4.23)Together with the boundary onditions (2.31)-(2.33), ��q (0) = ���q (0) = 0 and _��q (0) = 1,this impliesAq(t) = Aq(0) _��q (t) +Bq(0)��q (t) ; Bq(t) = _Aq(0) _��q (t) + _Bq(0)��q (t) : (4.24)Inserting Aq(t) and Bq(t) in (4.23) and using the symmetry of �̂+q (t1; t2), one �nds Bq(0) =_Aq(0). The initial state of the system is therefore haraterized by three onstants, whihan be hosen as�+q;in = �+q (t1; t2)jt1=t2=0 = Aq(0) ; (4.25)_�+q;in = �t1�+q (t1; t2)jt1=t2=0 = �t2�+q (t1; t2)jt1=t2=0 = Bq(0) = _Aq(0) ; (4.26)��+q;in = �t1�t2�+q (t1; t2)jt1=t2=0 = _Bq(0) : (4.27)From Eqs. (4.20), (4.22), (4.24) and the initial onditions (7.5)-(7.7) we now obtain thefull solution for the statistial propagator,�+q (t1; t2) = �+q;in _��q (t1) _��q (t2) + ��+q;in��q (t1)��q (t2)+ _�+q;in � _��q (t1)��q (t2) + ��q (t1) _��q (t2)�+ �+q;mem(t1; t2) ; (4.28)where �+q;mem(t1; t2) = Z t10 dt0 Z t20 dt00��q (t1 � t0)�+q (t0 � t00)��q (t00 � t2) : (4.29)This ontribution to the statistial propagator, whih is independent of the initial ondi-tions, is often referred to as memory integral. It an be expressed in the form�+q;mem(t1; t2) = � Z 1�1 d!2� e�i!(t1�t2)H�q(t1; !)Hq(t2; !)�+q (!) ; (4.30)where [17℄ Hq(t; !) = Z t0 d�e�i!���q (�) : (4.31)The expression (4.30) will be the basis of our numerial analysis in Setion 7.5 Thermal equilibrium and quasi-partilesLet us now verify that the solution (4.28) for the statistial propagator approahes thermalequilibrium at late times. This means that the quantity�+q (t; !) = Z 2t�2t dyei!y�+q �t+ y2 ; t� y2� ; (5.1)14



whih beomes a Fourier transform for t!1, satis�es the KMS ondition asymptotially,�+q (1; !) = � i2 oth��!2 ���q (!) : (5.2)For late times only the memory integral is relevant, sine ��q (t) and _��q (t) fall o�exponentially for t� 1=�. One then obtains�+q (1; !) = �+q;mem(1; !) = �jHq(1; !)j2�+q (!) : (5.3)The quantity Hq(1; !) is the Laplae transform of the spetral funtion,Hq(1; !) = Z 10 d�e�i(!�i�)���q (�)= ~��q (i! + �)= 1s2 + !2q + ~�q(s) ���s=i!+�= � 1!2 � !2q � Re�Rq (!)� iIm�Rq (!) ; (5.4)whih yields jHq(1; !)j2 = 1(!2 � !2q � Re�Rq (!))2 + (Im�Rq (!))2= � �q(!)2 Im�Rq (!) : (5.5)Inserting this expression into (5.3), using the KMS ondition for the self-energy and (A.30),��q (!) = 2iIm�Rq (!) ;one obtains (f. (4.9),(4.10)),�+q (1; !) = � oth��!2 � Im�Rq (!)(!2 � !2q � Re�Rq (!))2 + (Im�Rq (!))2= � i2 oth��!2 ���q (!) : (5.6)Hene, our solution for the statistial propagator indeed ful�lls the KMS ondition (2.34)in the limit t ! 1, whih proves that the system reahes thermal equilibrium. For aspei� example the approah to equilibrium will be studied numerially in Setion 7.It is instrutive to evaluate the statistial propagator in thermal equilibrium at equaltimes, i.e., y = t1 � t2 = 0,�+q ��y=0 = 12 Z 1�1 d!2� oth��!2 � �q(!) : (5.7)15



For a free �eld one has �q(!) = 2�sign(!)Æ(!2 � !2q) ; (5.8)whih yields the well know result�+q jy=0 = 1!q �12 + nB(!q)� ; (5.9)with the temperature dependent Bose-Einstein distribution funtionnB(!q) = 1e�!q � 1 : (5.10)Generially, the interation with the thermal bath hanges the energy !q of a freepartile to a temperature dependent omplex energy 
̂q whih appears as a pole of thespetral funtion �q(!) and the integrand of (5.7). The spetral funtion then has twopoles in the upper plane, 
̂q and �
̂�q, whih are determined by the ondition
̂q � �!2q +�Rq �
̂q��1=2 = 0 : (5.11)Assuming that the integral an be losed in the upper half-plane, one obtains for thestatistial propagator in equilibrium,1�+q jy=0 = Re 1̂
q �12 + nB(
̂q)�! : (5.12)Compared to (5.8), the Bose-Einstein distribution funtion has been replaed by the om-plex distribution funtion nB(
̂q).At high temperatures, where �!q � 1, the Bose-Einstein distribution has a well-knowninfrared divergene, nB(!q) ' 1�!q � 1 : (5.13)For quasi-partiles, where !q is replaed by 
̂q = 
q + i�q=2, this divergene is ut o� bythe �nite width, jnB(
̂q)j ' 1j�(
q + i2�q)j � 2��q ; (5.14)whih remains �nite even if the real part 
q vanishes.Comparison of equations (5.9) and (5.12) suggests that in thermal equilibrium the �partiles may form a gas of quasi-partiles. This question an be lari�ed by evaluatingenergy density and pressure of the � partiles. Sine the expetation value of � vanishes,one obtains from the energy momentum tensor2T�� = ������� ���L (5.15)1Here we restrit ourselves to the ase where there are no additional poles.2We use the onvention diag (���) = (1;�1;�1;�1):16



for the ontribution of a mode with momentum q to energy density and pressure,�q = hT00ijq = 12h _�2 + (~r�)2 +m2�2ijq ; (5.16)pq = hTiiijq = h13(r�)2 + 12( _�2 � (r�)2 �m2�2)ijq : (5.17)This yields for the energy density�q(1) = 12 ��t1�t2 + !2q��+q (t1; t2)��t1=t2=1= 12 �
2q + !2q� 1
q �12 + nB(
q)� ; (5.18)and for the pressurepq(1) = �13q2 + 12 ��t1�t2 � !2q���+q (t1; t2)��t1=t2=1= �13q2 + 12 �
2q � !2q�� 1
q �12 + nB(
q)� ; (5.19)where, for simpliity, we have negleted the quasi-partile width.In summary, the energy momentum tensor in thermal equilibrium an be expressed assum of a quasi-partile gas ontribution and a temperature dependent `vauum' term,hT��ijq = u�u� ��QPq + pQPq �� ���pQPq + ����VACq : (5.20)Here u� = (1;~0) is the 4-veloity of the thermal bath, and�QPq = 
q�12 + nB(
q)� ; (5.21)pQPq = 13 q2
q �12 + nB(
q)� ; (5.22)�VACq = !2q � 
2q2
q �12 + nB(
q)� : (5.23)Energy density and pressure of the quasi-partile gas agree with the orresponding expres-sions for a free gas, with the energy !q of a free partile replaed by the quasi-partileenergy 
q. The `vauum ontribution' �VACq vanishes for 
q = !q. For large thermale�ets, i.e. 
q � !q or 
q � !q, the equation of state di�ers signi�antly from the oneof a free gas. Note that for 
2q < !2q, the pressure an even beome negative!6 Comparison with Boltzmann equationsThe time evolution of nonequilibrium systems is usually studied by means of Boltzmannequations for partile number densities. However, this notion does not have a well de�ned17



physial meaning in a nonequilibrium proess. For a dilute, weakly oupled gas the numberdensity of `free partiles' may be a good approximation, and in some ases the the e�et of amedium an be taken into aount by onsidering quasi-partiles. In general, however, onehas to study the time evolution of Green's funtions, in partiular if quantum interferenesare important.In order to determine the range of validity of the Boltzmann approximation, we shallonsider in this setion the time evolution of an observable, the energy density. The exatexpression an be obtained from the statistial propagator, and approximations are givenby solutions of Boltzmann equations. In this way, the desription of the nonequilibriumproess by means of Green's funtions on the one hand, and Boltzmann equations on theother hand, an be diretly ompared, based on the same observable.Consider the Boltzmann equation for a dilute gas of � partiles. The ompetitionbetween a gain and a loss term determines the hange of the partile number density [22℄,�tnq(t) = (1 + nq(t))<q � nq(t)>q ; (6.1)where prodution and deay rates satisfy the KMS relation and are obtained from theself-energy of the �eld �, >q = e��!q<q � nB(!q)q ; (6.2)q = �Im�Rq (!q)!q : (6.3)Using these relations, the Boltzmann equation (6.1) an be written in the form�tnq(t) = �q(nq(t)� nB(!q)) ; (6.4)with the obvious solutionnq(t) = nB(!q) + (nq(0)� nB(!q)) e�qt : (6.5)For omparison with the Kadano�-Baym equations we now onsider instead of thenumber density the energy density of a mode with momentum q, normalized to the energyof a single quantum, �̂q(t) � �q(t)!q = 12 + nq(t) : (6.6)The deviation from the equilibrium density,�̂q(t) = �̂freeq + Æ�̂q(t) ; (6.7)with �̂q(1) � �̂freeq = 12 + nB(!q) ; (6.8)satis�es the di�erential equation (�t + q)Æ�̂q(t) = 0 : (6.9)18



The modi�ation of the spetral funtion in a thermal bath (f. (4.10)) suggests toreplae the equilibrium value and the evolution equation for the energy density by theexpressions �̂q(t) = �̂QPq + Æ�̂q(t) ; �̂QPq = 12 + nB(
q) ; (6.10)and (�t + �q)Æ�̂q(t) = 0 ; (6.11)where the quasi-partile width is given by (f. Appendix A.5)�q = �Zq Im�Rq (
q)
q ; Z�1q = 1� 12
q ��!Re�Rq (!)��
q : (6.12)As long as the interation of the �eld � with the thermal bath an be treated perturbatively,the di�erene between solutions of the two Boltzmann equations for partiles and quasi-partiles, respetively, should be small. When the quasi-partile width beomes large,however, the use of �rst-order di�erential equations, whih are loal in time, beomeslearly questionable.As disussed in Setion 5, the exat time dependene of the energy density an bediretly obtained from the statistial propagator,�̂q(t) = 12!q ��t1�t2 + !2q��+q (t1; t2)��t1=t2=t ;whih satis�es the Kadano�-Baym equation (2.15),(�2t1 + !2q)�+q (t1; t2) + Z t10 dt0��q (t1 � t0)�+q (t0; t2) = Z t20 dt0�+q (t1 � t0)��q (t0� t2) : (6.13)For large times, t� 1=�q, the dependene on the initial values at ti = 0 an be negleted,and one obtains(�2t1+!2q)�+q (t1; t2)+Z 1�1 dt0 ��Rq (t1 � t0)�+q (t0; t2) + i�+q (t1 � t0)�Aq (t0 � t2)� = 0 : (6.14)Changing time variables,t = t1 + t22 ; y = t1 � t2 ; �+q (t; y) � �+q (t1; t2) ; (6.15)and expanding,�+q �t0 + t22 ; t0 � t2� = �+q (t; t0 � t2) + t0 � t12 �t�+q (t; t0 � t2) + : : : ; (6.16)one �nds for the Fourier transforms with respet to the time di�erenes,�14�2t � i!�t � !2 + !2q��+q (t;!) 19



= ��Rq (!)�+q (t;!)� i�+q (!)�Aq (t;!)� i2 ��Rq (!)�! ��+q (t;!)�t : (6.17)Using the relations (A.17) - (A.31), one obtains from the real and the imaginary partof this omplex equation two equations for the real quantity �+q (t; !),�14�2t � !2 + !2q��+q (t; !) = �Re�Rq (!)�+q (t; !) + �+q (!)Im�Aq (t; !)+ 12 �Im�Rq (!)�! ��+q (t; !)�t + : : : ; (6.18)! ��t�+q (t; !) = Im�Rq (!)�+q (t; !) + �+q (!)Re�Aq (t; !)+ 12 �Re�Rq (!)�! ��+q (t; !)�t + : : : ; (6.19)where the dots indiate negleted higher-order terms.Consider now an expansion around the equilibrium solution,�+q (t; !) = �+q (!) + Æ�+q (t; !) : (6.20)From equation (6.19) one reads o�Im�Rq (!)�+q (!) + �+q (!) Re�Aq (!) = 0 ; (6.21)whih is satis�ed beause of (A.30), (A.22) and the KMS onditions (2.34) and (2.35).The �rst equation (6.18) yields for the equilibrium solution,�!2 � !2q � Re�Rq (!)��+q (!) = ��+q (!) Im�Aq (!) : (6.22)In the zero-width limit, this equation is ful�lled for! = 
q =q!2q +Re�Rq (
q) : (6.23)The �nite width leads to a orretion,! = 
q + Æ
q : (6.24)Expanding (6.22) in Æ
q, one obtains to leading order2
qÆ
q�+q (
q) + �+(
q) Im�Aq (
q) = 0 ; (6.25)whih implies Æ
q = ��q(
q)2 Im�Aq (
q)Re�Aq (
q) : (6.26)We an use the free spetral funtion,��q (!) = 2�sign(!)Æ(!2 � 
2q) ; (6.27)20



to evaluate Im�Aq (
q) to leading order in �q,Im�A(
q) = � 12�P Z �(!0)!0 � 
q d!0 = 14
2q : (6.28)Using (6.26), (A.21), (4.10) and (A.41) we �nally obtainÆ
q = 18 �2q
q : (6.29)Hene, for �q � 
q, the leading term in the derivative expansion indeed implies ! = 
q.If �nite width e�ets are not negligible, however, o�-shell e�ets beome important andthe derivative expansion beomes unreliable.Inserting ! = 
q in the �rst-order di�erential equation (6.19), one obtains for thedeparture from equilibrium of the statistial propagator,��1� 12
q ��!Re�Rq (!)��
q� ��t � 1
q Im�Rq (
q)� Æ�+q (t; 
q) = 0 : (6.30)Hene, �tÆ�+q (t; 
q) = O(Im�Rq ), and to this order Eq. (6.18) is also satis�ed.We an now evaluate the energy density�̂q(t) = 12!q ��t1�t2 + !2q��+q (t1; t2)��t1=t2=t= 12!q Z 1�1 d!�14�2t + !2 + !2q��+q (t;!) ; (6.31)whih approahes the equilibrium value�̂q(1) � �̂fullq = 
2q + !2q2!q
q �12 + nB(
q)� : (6.32)As already disussed in the previous setion, the true equilibrium value of the energydensity does not orrespond to a gas of quasi-partiles,�̂fullq 6= �̂QPq : (6.33)From Eqs. (6.30), (A.41) and (A.42) one obtains for the deviation from the equilibriumvalue, (�t + �q) �̂q(t) = 0 ; (6.34)whih is idential to the Boltzmann equation (6.11) for quasi-partiles.In summary, we have obtained the following onditions under whih the approah toequilibrium an be desribed by Boltzmann equations. For a dilute, weakly oupled gasthe ordinary Boltzmann equation for a number density is su�ient, whih approahes theBose-Einstein distribution for a gas of free partiles. When interations with a thermal21
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Figure 8: Statistial propagator �+q (t1; t2) for q = 0; ase (b) with masses m1 = m,m2 = 5m and T = 10m.The statistial propagator �+q (t1; t2) depends on the initial onditions. The most gen-eral gaussian initial density matrix has �ve free parameters (f. [13℄). We onsider thesimplest ase of a free �eld density matrix and vanishing mean values � and _�, whihimplies for eah momentum mode,�q;in = 0 ; (7.3)_�q;in = 0 ; (7.4)�+q;in = �+q (t1; t2)jt1=t2=0 = 1!q �12 + nq� ; (7.5)_�+q;in = �t1�+q (t1; t2)jt1=t2=0 = �t2�+q (t1; t2)jt1=t2=0 = 0 ; (7.6)��+q;in = �t1�t2�+q (t1; t2)jt1=t2=0 = !q�12 + nq� : (7.7)The initial state of the system is now haraterized by only one parameter nq whihorresponds to an initial number density for a free �eld.The general solution (4.28) for the statistial propagator�+q (t1; t2) is shown in Figure 8.For �xed t = (t1+t2)=2 one sees damped osillations in y = t1�t2. The amplitude inreaseswith inreasing time t, as illustrated by Figure 9. For �xed y = t1 � t2 one observes theapproah to equilibrium with inreasing t = (t1+ t2)=2. For large times the departure from25
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dependent `vauum term' whih an beome important at high temperatures.We have illustrated these results for a toy model where the thermal bath onsists oftwo massive salar �elds. We have onsidered two ases where equilibration takes plaeeither via deays and inverse deays or via `Landau damping'. In general, one has tostudy the Kadano�-Baym equation for the statistial propagator whih depends on twotime oordinates as well as initial onditions. However, for large times, t� 1=�, the timeevolution is well desribed by the Boltzmann equation for quasi-partiles.Our analysis has been motivated by the need of a full quantum mehanial desriptionof leptogenesis. To ahieve this, one has to onsider orrelation funtions rather thannumber densities, although for parts of the alulation the use of Boltzmann equationswill be su�ient. The heavy Majorana neutrino is very weakly oupled to the thermalbath. Hene, thermal orretions to its mass and width are small, and its approah toequilibrium is well desribed by Boltzmann equations. However, to study the dependeneof the �nal baryon asymmetry on initial onditions it may be neessary to onsiderthe statistial propagator, sine leptogenesis takes plae at tB � 1=�. Furthermore, forlepton and Higgs �elds, whih have strong gauge interations, �nite-width e�ets anbe important. At present it is unlear how aurately the leptogenesis proess an bedesribed based on a quasi-partile piture for the standard model partiles whih formthe thermal bath. These questions are urrently under investigation [24℄.AknowledgementsWe would like to thank J. Berges, D. Bödeker, J. Shmidt and C. Wetterih for helpfuldisussions.
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A The spetral funtionA.1 Time-translation invarianeIn this setion we shall prove that the most general solution of the �rst Kadano�-Baymequation is time-translation invariant. The starting point is Eq. (2.29) with the boundaryonditions (2.31) - (2.33). Performing the hange of variables t1 = t + y=2, t2 = t � y=2,Eq. (2.29) beomes�14�2t + �t�y + �2y + !2q���q (t; y) + Z y0 dy0��q (y � y0)��q (t0; y0) = 0 ; (A.1)where t0 = t � (y � y0)=2 and !2q = q2 + m2. Note that ��q and ��q only depend on jqjbeause of rotational invariane. Both funtions are antisymmetri in y. The boundaryonditions (2.31) - (2.33) read ��q (t; 0) = 0 ; (A.2)�t��q (t; 0) = 0 ; (A.3)�y��q (t; y)jy=0 = 1 ; (A.4)�14�2t � �2y���q (t; y)jy=0 = 0 : (A.5)The ondition (A.2) is automatially ful�lled beause of the antisymmetry in y.To prove that �� is time-translation invariant we now perform an expansion in powersof ��, ��q = 1Xn=0 �(n)q ; �(n)q = O(�(n)q ) : (A.6)For n = 0 one has �14�2t + �t�y + �2y + !2q��(0)q (t; y) = 0 : (A.7)Using the antisymmetry of ��q in y, one obtains�t�y�(0)q (t; y) = 0 ; (A.8)whih has the general solution �(0)q = a(0)q (t) + b(0)q (y) : (A.9)Every solution of Eqs. (A.7) and (A.8) satis�es the boundary ondition (A.5). The ondi-tion (A.3) implies �t�(0)q (t; 0) = �ta(0)q (t) = 0 : (A.10)Hene, a(0)q is onstant and �(0)q only depends on y. Eq. (A.7) now beomes��2y + !2q��(0)q (y) = 0 ; (A.11)30



whih has the antisymmetri solution�(0)q (y) = (0)q sin(!qy) : (A.12)For n 6= 0 one an use the reurrene relation�14�2t + �t�y + �2y + !2q��(n+1)q (t; y) + Z y0 dy0��q (y � y0)�(n)q (y0) = 0 : (A.13)Using the antisymmetry of ��q and ��q in y, one again �nds�t�y�(n+1)q (t; y) = 0 : (A.14)Repeating the same steps as for �(0)q yields the result that also �(n+1)q is independent of t.We onlude that the spetral funtion is the antisymmetri solution of the equation��2y + !2q���q (y) + Z y0 dy0��q (y � y0)��q (y0) = 0 ; (A.15)with the boundary ondition �y��q (y)jy=0 = 1 : (A.16)A.2 Conventions for propagators and self-energiesIn thermal equilibrium the retarded and advaned propagators and self-energies onlydepend on the time di�erene y = t1� t2. In the following we list several relations betweentheir Fourier transforms, whih are used in the di�erent setions. In priniple, theserelations are all well know, but their spei� form depends on the hosen onventions. Allrelations are not a�eted by the three-dimensional Fourier transform. We therefore dropthe argument q or x.Propagators:��(!)� = ���(!) ; (A.17)�+(!)� = �+(!) ; (A.18)�A(!) = i2��(!)� P Z 1�1 d!02� ��(!0)!0 � ! ; (A.19)�R(!) = � i2��(!)� P Z 1�1 d!02� ��(!0)!0 � ! ; (A.20)Re�A(!) = �Re�R(!) = i2��(!) ; (A.21)Im�A(!) = Im�R(!) = �P Z 1�1 d!02�i��(!0)!0 � ! ; (A.22)�A(�!) = �R(!) : (A.23)31



(A.24)Self-energies:��(!)� = ���(!) ; (A.25)�+(!)� = �+(!) ; (A.26)�A(!) = �12��(!) + P Z d!02�i��(!0)!0 � ! ; (A.27)�R(!) = 12��(!) + P Z d!02�i��(!0)!0 � ! ; (A.28)Re�A(!) = Re�R(!) = P Z d!02�i��(!0)!0 � ! ; (A.29)Im�A(!) = � Im�R(!) = i2��(!) ; (A.30)�A(�!) = �R(!) : (A.31)A.3 Salar �eld modelThe interation with the thermal bath hanges the spetral funtion of a free salar partile,�q(!) = 2�sign(!)Æ(!2 � !2q) ; (A.32)to the expression (4.15) whih depends on real and imaginary part of the self-energy,�q(!) = �2Im�Rq (!) + 2!�[!2 � !2q � Re�Rq (!)℄2 + [Im�Rq (!) + !�℄2 : (A.33)We have omputed the imaginary part of the self-energy in the salar �eld model de�nedin Setion 7, assuming free thermal propagators for the �elds �1 and �2. The result agreeswith [17℄. One obtains (q = (!q;q)):� Im�Rq (!) = �0(q) + �(a)� (q) + �(b)� (q) : (A.34)Here �0 is the zero-temperature ontribution due to the deay proess �! �1�2,�0(q) = g216�q2 sign(!)�(q2 � (m1 +m2)2)� �(q2)2 � 2q2(m21 +m22) + (m21 �m22)2� 12 ; (A.35)�(a)� is the �nite-temperature ontribution from this proess,�(a)� (q) = g216�jqj� sign(!)�(q2 � (m1 +m2)2)32



� �ln�1� e��!+1� e��!�� + (m1 $ m2)� ; (A.36)and �(b)� (q) is the �nite-temperature ontribution from proesses �i ! �j�,3�(b)� (q) = g216�jqj� sign(!)�((m1 �m2)2 � q2)� �ln�1� e��j!�j1� e��j!+j� + (m1 $ m2)� ; (A.37)where we have used the abbreviations!� = j!j2q2 (q2 +m21 �m22)� jqj2jq2j �(q2 +m21 �m22)2 � 4q2m21� 12 : (A.38)The real part of the self-energy an be omputed using the dispersion relation relation,Re�Rq (!) = 1�P Z 1�1 d!0 Im�Rq (!0)!0 � ! : (A.39)
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q)j � 
2q, so that the quasi-partile piture holds, one an approximate the spetral funtion �q(!) by a Breit-Wignerfuntion. From the expression (4.15) one easily obtains�q(!) ' Zq2
q sign(!)�q(j!j � 
q)2 + 14�2q ; (A.40)where �q is the quasi-partile width�q = �Zq Im�Rq (
q)
q ; (A.41)with Zq =  1� 12
q �Re�Rq (!)�! ���!=
q!�1 : (A.42)34



Contrary to the exat spetral funtion (4.15), the Breit-Wigner approximation (A.40)has no branh uts. The integrals over ! are dominated by the regions around the quasi-partile poles where the two funtions are very similar. For the Fourier transform, thespetral funtion in real time, one obtains��q (y) ' Zq sin(
qy)
q e��qt=2 : (A.43)
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