
*0
80
9.
∣0
46
*

 DESY 08-123
 ITFA-2008-30
 NI09007-SIS

ar
X

iv
:0

80
9.

10
46

v1
  [

he
p-

th
] 

 5
 S

ep
 2

00
8

Prinipal Chiral Model on SuperspheresVladimir Mitev1, Thomas Quella2 and Volker Shomerus11 DESY Hamburg, Theory Group,Notkestrasse 85, D{22607 Hamburg, Germany2 Institute for Theoretial Physis, University of Amsterdam,Valkenierstraat 65, 1018 XE Amsterdam, The NetherlandsAbstratWe investigate the spetrum of the prinipal hiral model (PCM) on odd-dimensionalsuperspheres as a funtion of the urvature radius R. For volume-�lling branes onS3j2, we ompute the exat boundary spetrum as a funtion of R. The extensionto higher dimensional superspheres is disussed, but not arried out in detail. Ourresults provide very onvining evidene in favor of the strong-weak oupling dualitybetween supersphere PCMs and OSP(2S+2j2S) Gross-Neveu models that was reentlyonjetured by Candu and Saleur.
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1 INTRODUCTION 2[23, 24℄, seem to bring at least some partial solutions within reah. One of our aims here isto initiate and explore new solution strategies that inorporate target spae supersymmetryas an essential feature.In this work we fous on a partiular family of symmetri target superspaes, namely onthe odd dimensional superspheres S2S+1j2S with 2S fermioni oordinates. The supersphereS2S+1j2S admits at least three di�erent desriptions that will be somewhat useful for usbelow. We an think of S2S+1j2S as a supermanifold in R2S+2j2S de�ned by the equation2S+2Xi=1 x2i + 2R2 SXa=1 �2a�1�2a = R2 : (1.1)Here, xi; i = 1; : : : ; 2S + 2; and �j ; j = 1; : : : ; 2S; are the bosoni and fermioni oordinatesof R2S+2j2S , respetively. The real parameter R has been introdued to denote the radiusof the supersphere. Note that in our onventions, the bosoni oordinates sale with thelength while the fermioni oordinates are hosen to be dimensionless. From our desriptionof the supersphere through equation (1.1) it is evident that S2S+1j2S omes equipped withan osp(2S+2j2S) ation. In fat, the Lie superalgebra osp(2S+2j2S) ats on the embeddingspae R2S+2j2S through its fundamental representation. By the very de�nition of OSP(2S +2j2S) this ation respets the onstraint (1.1). Hene, we arrive at a seond desription ofS2S+1j2S as a symmetri spaeS2S+1j2S = OSP(2S + 2j2S)=OSP(2S + 1j2S) : (1.2)Note that the stabilizer of any point on the supersphere is isomorphi to the subsupergroupOSP(2S +1j2S) � OSP(2S+2j2S). Finally, we an also solve the onstraint (1.1) expliitlyby parametrizing the supersphere S2S+1j2S through 2S + 1 angular oordinates 'j and 2Sfermioni variables �j . In the ase of the 3-sphere S3j2, for example, the line element takesthe following form ds2 = 2R2(1� �1�2)d�1d�2 +R2(1� 2�1�2)d
3 (1.3)where d
3 = d'21 + os2 '1 d'22 + sin2 '1 d'23is the usual line element of the 3-dimensional unit sphere. All three desriptions of thesupersphere S2S+1j2S will be used frequently throughout the rest of this work.Next we turn to the prinipal hiral model on the supersphere. One more, there aredi�erent ways to introdue this theory. The most basi one is to think of it as a linear sigmamodel for the �elds xi and �j with a non-linear onstraint (1.1) on the �eld on�gurations.Another possibility is to onsider it as a non-linear sigma model. In the ase of the 3-dimensional supersphere the latter takes the formSPCM = R22� Z d2z�2(1� �1�2) ���1 ���2 � ��2 ���1�+ (1� 2�1�2) ��'1 ��'1 + os2 '1 �'2 ��'2 + sin2 '1 �'3 ��'3�� (1.4)



1 INTRODUCTION 3for the �elds �j ; 'i. The oupling onstant in front of the ation is determined by the radiusR of S3j2. For the PCM on the purely bosoni 3-sphere the oupling R runs and in order forthe ow to end in a non-trivial �xed-point one must add a WZ term [25℄. But the preseneof the two fermioni diretions hanges the situation drastially. As shown in [18℄, the �-funtion of the PCM on S2S+1j2S is the same as for a bosoni PCM on a sphere Sd whosedimension d = 2S + 1 � 2S = 1 is given by the di�erene between the number of bosoniand fermioni oordinates. Consequently, the �-funtion vanishes for the PCM on S2S+1j2S,i.e. the model (1.4) de�nes a family of onformal �eld theories at entral harge  = 1 withontinuously varying exponents.Of ourse, unlike the PCM on S1 = U(1), the theory de�ned by the ation (1.4) is notfree. For large radius R, the model is weakly oupled and its properties may by studiedperturbatively. But as we pass to a more strongly urved bakground, omputing quantitiesas a funtion of the radius R may seem like a very daunting task. This is even more sobeause there is very little symmetry to work with. As a onformal �eld theory, the PCMon the supersphere possesses the usual hiral Virasoro symmetries. But for a model withmultiple bosoni oordinates the two sets of hiral Virasoro generators are not suÆient tomake the theory rational. In addition, there is a single set of global osp(4j2) generators.Their Noether urrents, however, fail to be hiral, at least for generi points in the modulispae. Without the protetion of urrent algebra symmetries, the usual algebrai tools ofonformal �eld theory annot be applied to supersphere PCMs and so we have to proeedalong a rather di�erent route.Many years of experiene with sigma models show that they often possess interesting dualdesriptions. The simplest suh duality is that between the free ompati�ed boson and themassless Thirring model. Let us reall that the latter involves two real fermions  1 and  2and the following ationSThm=0 = 12� Z d2z 2Xi=1� i �� i + � i� � i + g2� 1 � 2 �  2 � 1�2�where the ompati�ation radius R is related to the oupling g through R2 = 1+ g2. Simi-larly, one may hope to unover a dual desription of the PCM on the supersphere S2S+1j2Sthat beomes weakly oupled for some �nite value of the radius R, deep in the strongly urvedregime. Suh a dual desription was indeed proposed reently. Aording to an intriguingonjeture by Candu and Saleur [24℄, there indeed exists one speial radius R = R0 at whihthe PCM on S2S+1j2S an be desribed as a non-interating Gross-Neveu model involving2S + 2 real fermions  i along with S bosoni � systems a and �a,SGNg=0 = 12� Z d2z�Xi� i �� i + � i� � i�+Xa��a ��a + ��a��a�� : (1.5)All the �elds appearing in this theory possess onformal weight hi = ha = 1=2 so that theentral harge is  = S+1�S = 1. At this point in the moduli spae, the theory possesses two



1 INTRODUCTION 4ommuting sets of hiral osp(4j2) urrents J� = J�(z) and �J� = �J�(�z). Expliit formulaswill be spelled out in setion 3 below. The aÆne symmetry is broken down to a globalosp(4j2) symmetry by the following osp(4j2) invariant marginal deformationS int = g22� Z d2zJ�(z)
( �J�(�z)) = g22� Z d2z hXi$i i � i +Xa(a ��a � �a�a)i2 : (1.6)Here, 
 is a partiular automorphism of the osp(2S+2j2S) urrent algebra whih leaves asubalgebra osp(2S+1j2S) invariant. It will be spelled out expliitly below. The numbers $iare given by $1 = �1 and $i = 1 for i 6= 1. The theory SGN = SGNg=0 + S int is laimedto be equivalent to the supersphere PCM with the two oupling onstants R and g relatedby R2 = 1 + g2.1 The equivalene is a strong-weak oupling duality sine SGN beomesweakly oupled for R � R0 = 1. Note that this duality is a diret generalization of therelation between the ompati�ed free �eld and the massless Thirring model. There appearsone real fermion for eah bosoni oordinate of the embedding spae R2S+2j2S . Eah pairof additional fermioni diretions gives rise to a � system. Note, however, that the dualitybetween supersphere PCMs and Gross-Neveu models is one between interating onformal�eld theories. In that sense, it is muh less trivial then its purely bosoni ounterpart.The main aim of this note is to provide very ompelling evidene for the duality betweenthe theory (1.5,1.6) and the supersphere PCMs, extending previous numerial and algebraiarguments given in [23, 24℄. To this end we shall employ some reent results of [22℄ thatare designed to ompute exat spetra in models with a speial lass of target spae super-symmetries, inluding the two series psl(NjN) and osp(2S + 2j2S). The Lie superalgebraosp(2S+2j2S) possesses a vanishing quadrati Casimir Cad � f���f��� in the adjoint repre-sentation. Sine Cad may be onsidered as a rough measure for the `amount of non-abelianess'of a Lie superalgebra, one may suspet that �eld theories with osp(2S+2j2S) symmetry aresomewhat intermediate between free �eld theories and the most general interating models.Indeed, as was shown in [16, 22℄, the perturbation series for onformal weights has featuresthat are very reminisent of those in abelian models (torus ompati�ations). In this notewe shall onstrut the exat partition funtion of the theory (1.5,1.6) with a partiular hoieof boundary onditions, but for all values(!) of the oupling g. We shall prove that it in-terpolates orretly between g = 0 and the spetrum of the supersphere PCM at R = 1.The main results of [22℄ are rather easy to state. Before we do so, let us briey review thebehavior of onformal weights for a ompati�ed free bosoni �eld ' � ' + 2�R. Supposewe are given a �eld 	 of onformal weight h0(	) at some radius R0. In order to �nd theonformal weight of the same �eld 	 at a di�erent radius R, it suÆes to know its U(1)harge g(	) (momentum/winding). The onformal weight is then given byh(	) = h0(	) + f(R) g2(	) (1.7)1Let us note that the signs $i in the iteration term are diretly linked to the automorphism 
. Thesesigns were missing in the original formulation of the onjeture by Candu and Saleur [24℄. They are irrelevantfor S = 0 but play a ertain role when S � 1.



1 INTRODUCTION 5where f(R) is some universal funtion of the radius that is the same for all �elds 	. f(R)may depend, however, on whether 	 is a bulk or boundary �eld and on the preise boundaryondition that is imposed. For bulk �elds, there exist independent left and right U(1) hargesand the behavior of the weights is a bit more ompliated. We shall briey omment on thisissue in the onlusions. Returning to our supersphere onformal �eld theories, we pik any�eld 	 of weight h0(	) in the free �eld theory (1.5). Let us suppose that 	 is part of someosp(2S + 2j2S) multiplet �. Aording to the arguments explained in [22℄ (see also [23℄ fornumerial heks), its dimension at radius R is then given byh(	) = h0(	) + f(R) C2(�) : (1.8)Here, C2(�) is the value of the quadrati Casimir element in the representation � of theLie superalgebra osp(2S + 2j2S). One again, the funtion f(R) is universal, i.e. it does notdepend on the �eld 	. Hene, the shift of the onformal weight is entirely determined by theway 	 transforms under the ation of the Lie superalgebra osp(2S + 2j2S). Equation (1.8)is the diret generalization of eq. (1.7) with the square of the U(1) harge replaed by thequadrati Casimir. The behavior (1.8) has been also been predited through the study oflattie algebras in [24℄. It was furthermore heked using perturbative alulations at R =1and with numerial simulations. We shall refer to the behavior (1.8) as a quasi-abeliandeformation of onformal weights. It is typial for models with osp(2S + 2j2S) or psl(NjN)symmetry, though often restrited to partiular (boundary) �elds of the theories (see [22℄and �nal setion for more details). Let us mention that �elds transforming in representationswith vanishing Casimir C2(�) are proteted, i.e. their onformal weights are independent ofR. Multiplets of this type always satisfy some shortening onditions. Our formula (1.8),however, applies to all �elds in the theory, irrespetively of whether they are long or short.It allows to ompute their onformal weight for all values of the radius R.Let us study a few onrete examples of the quasi-abelian deformation of onformalweights. In the large volume limit, the PCM possesses an in�nite number of �elds with on-formal weight h = 0. These simply orrespond to funtions on the supersphere. The simplestfuntion is the onstant. Sine it transforms in the trivial representation of osp(2S+2j2S), itsonformal weight remains undeformed at h = 0. It orresponds to the unique vauum stateof the free Gross-Neveu model (1.5). Next, the PCM ontains the fundamental multipletxi; �j . The quadrati Casimir of this multiplet � = �f is C2(�f ) = 1, i.e. its value is inde-pendent of S. As we move from the free sigma model at R =1 towards the free Gross-Neveumodel (1.5), the �elds xi; �j aquire a non-vanishing anomalous dimension whih beomesh = h0 + f(R0)C2(�f ) = 1=2 when we reah the radius R = 1 orresponding to g = 0.Hene, the fundamental multiplet of the PCM turns into the multiplet  i; a; �a. Higherfuntions possess larger Casimir and hene they are mapped to states of weight h > 1=2 atg = 0. Beyond the spae of ground states in the PCM, there are �elds involving any numberof world-sheet derivatives. These have positive integer weight at R = 1. As we shall seebelow, suh states an transform in osp(2S+2j2S) representations � with both positive and



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 6negative values C2(�) of the quadrati Casimir. Consequently, some of these multiplets aremoved up while others are moved down to lower weights. Our laim is that weights arerearranged in preisely the right way to reprodue the spetrum of the g = 0 Gross-Neveumodel.The plan of this work is as follows. In the next setion we shall study the PCM (1.4)for the 3-dimensional supersphere S3j2 and determine its exat spetrum at R = 1. Forsimpliity, we shall also restrit to the partition funtion on a strip with Neumann boundaryonditions imposed along both boundaries. After a detailed disussion of the low lyingstates, we present a losed formula for the full partition funtion (2.16). The latter is thendeomposed expliitly into the ontributions oming from states whih transform in the samerepresentation � under the global osp(4j2). Setion 3 is devoted to the theory (1.5) and itsdeformation by the term (1.6). In partiular, we study the bulk and boundary spetrum ofthe free �eld theory. One of the resulting boundary partition funtions is then expandedexpliitly in terms of osp(4j2) haraters. This allows us to ompare with the spetrum ofthe PCM at radii R < 1, using some of the tools developed in [22℄. We shall �nd that theresults agree exatly with the partition funtion found in setion 2! In the fourth setion, weomment on the generalization to higher dimensional superspheres. Finally, the onlusionsontain a few general thoughts on possible impliations for string theory in Anti-deSitterspaes. We shall also briey disuss the omputation of bulk spetra for odd dimensionalsuperspheres.2 Spetrum of the supersphere PCM at large volumeIn this setion we shall fous on the PCM for the supersphere S3j2 with large radius R. Atthe point R = 1 we an ompute partition funtions for periodi boundary onditions andon a strip. The two main ingredients are the exat minisuperspae spetrum on S3j2 (seesubsetion 2.1) and a good ontrol of the ombinatoris that determine the �eld theoretispetrum at R =1. The latter will be explained in subsetion 2.2. The spetrum is �nallydeomposed into �nite dimensional representations of the global symmetry algebra osp(4j2)in the third subsetion.2.1 Partile on the supersphere S3j2The Laplaian on the supersphere S3j2 was analyzed in full detail by Candu and Saleur [24℄.We shall state their results �rst and then provide a new derivation that is partiularly wellsuited for the disussion in the following subsetions.As a warm-up, let us briey reall the spetrum of the Laplaian on a 3-sphere S3. Thespae of funtions on S3 arries an ation of so(4)�=sl(2)�sl(2). Therefore, eigenfuntions ofthe Laplaian on S3 are organized in �nite dimensional multiplets of sl(2)�sl(2). Aordingto the Peter-Weyl theory for SU(2) �= S3, there is one suh multiplet 'm for eah integer



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 7m = 0; 1; 2; : : : . It has dimension dm = (m+1)2 and transforms in the representation (m2 ; m2 ).The eigenvalue of the Laplaian on the multiplet 'm is given by �m = m(m + 2). For thesupersphere S3j2 we expet very similar results exept that the multipliities should roughlyexeed those of the bosoni model by a fator of 4.Before we extend these thoughts to the supersphere, however, let us mention a few fatson the Lie superalgebra osp(4j2). Its bosoni subalgebra is 9-dimensional and it onsists ofthree ommuting opies of sl(2). This implies that irreduible representations [j1; j2; j3℄ ofosp(4j2) are labeled by three spins ji. In these representations the quadrati Casimir elementtakes the value C�[j1; j2; j3℄� = �4j1(j1 � 1) + 2j2(j2 + 1) + 2j3(j3 + 1) : (2.1)A generi (typial)2 representation possesses dimensionD�[j1; j2; j3℄� = 16(2j1 + 1)(2j2 + 1)(2j3 + 1) : (2.2)The representations of osp(4j2) that appear in the spetrum of the Laplaian on the super-sphere S3j2 are not generi. On the supersphere, wave funtions are organized in osp(4j2)multiplets �m;m = 0; 1; 2; : : : . The �rst multiplet �0 onsists of a single funtion, namely theonstant �0 = 1. It transforms in the trivial 1-dimensional representation [0; 0; 0℄. For posi-tive values of m, the multiplet �m transforms in the irreduible representation [ 12 ; m�12 ; m�12 ℄of osp(4j2). Consequently, the spae H0 of square integrable funtions on the supersphereS3j2 deomposes as follows,H0 �= [0; 0; 0℄ � 1Mm=1 �12 ; m� 12 ; m� 12 � = 1Mm=0 �m;0 : (2.3)Here we have also introdued the symbol �m;0 suh that �0;0 is the trivial representationand �m+1;0 = [ 12 ; m2 ; m2 ℄. Aording to eq. (2.1), the Laplaian takes the values �m = m2.The quadrati dependene on m is similar to the bosoni sphere. On the other hand, thedegeneraies are muh larger for the supersphere. In fat, upon restrition to the bosonisubalgebra, the eigenspaes of the Laplaian deompose aording to�12 ; k2 ; k2�����sl(2)�sl(2)�sl(2) �= �12 ; k2 ; k2���0; k + 12 ; k + 12 ���0; k � 12 ; k � 12 �for k = m � 1 � 1. When k = 0, the last term must be omitted. The formula implies thatthe dimension Dk of the representation �k;0 is given by Dk = 4k2 + 2 for k � 1. This isroughly four times as large as the dimension of the eigenspaes on the bosoni sphere S3, asone would expet.It is quite instrutive to prove the deomposition (2.3). To this end, let us ollet thebosoni oordinate funtions xi =: Xi; i = 1; : : : ; 4 and the fermioni generators �i = X4+i2See Appendix A.



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 8into a single multiplet X . We reall that the six funtions Xi are subjet to the on-straint (1.1). The latter may be reast into the more ovariant form XaXbJab = R2 byintroduing an appropriate matrix J = (Jab). The multiplet X transforms in the fundamen-tal representation �1;0 = �12 ; 0; 0� of osp(4j2). When we restrit from osp(4j2) to its bosonisubalgebra, X splits into a 4-dimensional multiplet in the ( 12 ; 12 ) representation of so(4) �=sl(2)�sl(2) and a 2-dimensional multiplet in the ( 12 ) representation of sp(2) �= sl(2). Whilethe former is spanned by the bosoni oordinate funtions xi, the latter onsists of the oddelements �i. The algebra H0 of funtions on S3j2 is generated by the six oordinates Xi,i.e. every square integrable funtion an be arbitrarily well approximated by a polynomialin Xi. The spae of polynomials omes with an integer grading given by the degree of ho-mogeneity. Sine the homogeneous polynomials transform in the graded symmetri tensorprodut of the fundamental representation �1;0, one might be inlined to identify the diretsum S�1;0 =L�
s1;0 of all graded symmetri tensor powers of the fundamental representationwith the spae H0. Suh an identi�ation, however, would disregard the de�ning equation(1.1) of the supersphere. The onstraint (1.1) generates an ideal in the symmetri tensoralgebra S�1;0 that has to be divided out in order to avoid overounting of states. The two-fold symmetri tensor power of the fundamental representation, for example, is given by�
s21;0 = [0; 0; 0℄� �2;0. The onstraint (1.1) identi�es the multiplet [0; 0; 0℄ with the onstantfuntion. The latter has been ounted already by the very �rst term �
s01;0 = [0; 0; 0℄. Conse-quently, when onsidering the spae of homogeneous polynomials in Xi up to degree m, wehave to quotient out the subspae of polynomials that ontain the fator XaXbJab, whihis isomorphi to the spae of homogeneous polynomials of degree less or equal to m � 2.Thereby we are led to the following expression for H0,H0 = limN!1 NMm=0�
sm1;0 !. N�2Mm=0�
sm1;0 ! = 1Mm=0�m;0 = [0; 0; 0℄� 1Mk=0 �12 ; k2 ; k2� (2.4)where we have used the tensor produt deomposition3 �
sm1;0 �= L[m=2℄i=0 �m�2i;0 and theidentity �k+1;0 = [ 12 ; k2 ; k2 ℄ for k � 0.Before we onlude this subsetion, let us briey onstrut the partition funtion for apartile on the supersphere. By this we mean the quantityZ0 = Z0(z1; z2; z3) = trH0(zH11 zH22 zH33 )where H i are the three Cartan generators and the trae is taken evaluated in the spae H0 ofsquare integrable funtions on the supersphere S3j2. The results we skethed in the previousparagraphs imply thatZ0 = 1 + 1Xm=0�[ 12 ;m2 ;m2 ℄(z1; z2; z3) (2.5)where �[ 12 ;m2 ;m2 ℄(z1; z2; z3) = �( 12 ;m2 ;m2 ) + �(0;m+12 ;m+12 ) + �(0;m�12 ;m�12 ) : (2.6)3 By [x℄ we mean the oor funtion of x.



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 9In the seond line the last term should be omitted for m = 0 and the harater �(j1;j2;j3) =Qi �ji(zi) denotes a produt of bosoni sl(2) haraters. The partition funtion Z0 an bewritten in a di�erent form that mimis our proof of the formula (2.3). To this end, let usonsider the module S�1;0. We think of it as being generated by four bosoni oordinates inthe ( 12 ; 12 ) representation of sl(2)�sl(2) �= so(4) along with the two fermioni ones in the ( 12 )representation of sl(2) �= sp(2). On S�1;0 we introdue the number operator N that ountsthe number of bosoni and fermioni oordinate funtions in a given monomial. Sine thereare no non-trivial relations in S�1;0 we an easily omputeZS(t) = trS�1;0(tNzH11 zH22 zH33 ) = (1 + z 121 t)(1 + z� 121 t)(1� z 122 z 123 t)(1� z 122 z� 123 t)(1� z� 122 z 123 t)(1� z� 122 z� 123 t) :Multiplying this quantity with (1� t2) implements the onstraint (1.1) on the level of gener-ating funtions. We an then remove t by sending it to t! 1. The result is a rather elegantnew formula for the partition funtion Z0,Z0(z1; z2; z3) = limt!1 �(1� t2)ZS(t; z1; z2; z3)� : (2.7)If the quotient is expanded in a Taylor series and expressions are reorganized into haratersof osp(4j2) we reover our previous result (2.5).2.2 The omplete boundary spetrumNow let us turn to the spetrum of the PCM (1.4) at the speial point R =1 where our �eldtheory beomes free. At this point, the �elds are easy to list and their weights agree withtheir lassial values. For simpliity, we shall study the boundary spetrum of a volume �llingbrane, i.e. with Neumann boundary onditions imposed on all �elds of the model. In thisase it suÆes to onsider the derivative �u along the boundary, rather than two world-sheetderivatives � and ��. From now on, the letters xi = xi(u); �a = �a(u) and Xi = Xi(u) shalldenote boundary �elds rather than oordinate funtions.So, let us begin to analyze the spae H of boundary �elds. Obviously, H is spanned bymonomials � of the form� = Yi0 Xi0Yi1 �Xi1Yi2 �2Xi2 � � � : (2.8)The number of fators involving no, one, two et. derivatives � = �u of the fundamental�elds is arbitrary. Let us stress at this point already that the de�ning relation (1.1) ofthe supersphere imposes many relations between monomials of the form (2.8). The spaeH, omes equipped with an integer grading, i.e. H = L1n=0Hn, where Hn is spanned bymonomials � with a total number n of derivatives. The expression Xa�Xb�4X, for example,is an element of H5.



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 10Assoiated with the integer grading of the state spae H there is a orresponding deom-position of the partition funtionZ(q) = strH(qL0� 24 zH11 zH22 zH33 ) = q� 124 1Xn=0 Zn qn : (2.9)The oeÆients Zn = Zn(zi) are (in�nite) linear ombinations of osp(4j2) haraters. Aformula for Z0 was disussed in the previous subsetion. In the present ontext it enodes allinformation on the osp(4j2) transformation law of �elds with onformal weight h = 0. Theseare in one-to-one orrespondene with funtions on the supersphere S3j2 (reall that we areworking at R =1).Let us now turn to states involving a single derivative �. Sine H1 is built from �eldsof the form �n(Xi)�Xi, where �n 2 H0, one might at �rst sight suspet that Z 01 = Z0��1;0oinides with Z1. But this is not true sine it atually ounts many �elds twie. So far, wehave not aounted for the derivative of the supersphere relation (1.1). Taking the derivativeof this onstraint we �nd Xi;j Xi�XjJ ij = 0 :This additional ondition tells us to subtrat Z0 from Z 01. Hene we �nd that Z1 = Z0(��1;0���0;0) and a simple omputer program an deompose this produt into haraters of osp(4j2),leading to Z1 = 1Xk=0 ��[1;k2 ; k2 ℄ + �[ 12 ; k2 ; k2 ℄� : (2.10)In order to gain some more familiarity with the state ounting we invite the reader to on-strut the ontribution Z2 of �elds with two derivatives to the total partition funtion. Theanswer is given byZ2 = �[0;0;0℄ + 2 1Xk=0�[ 12 ;k2 ; k2 ℄ + �[1;0;0℄+ 1Xk=1 ��[1; k+12 ; k�12 ℄ + �[1; k�12 ; k+12 ℄ + 2�[ 12 ;k2 ; k2 ℄ + 2�[1;k2 ;k2 ℄� : (2.11)Instead of explaining this formula we shall turn to the higher subtraes Zi right away. Tobegin with, let us enumerate expressions in whih no �eld appears without derivative andwhere the total degree of the derivatives adds up to n. There are p(n) of these terms, wherep(n) is the number of partitions of the integer n. We shall denote the set of partitions by P (n)and think of their elements as sequenes � = (�i; i = 1; 2; 3; : : : ) suh that P i�i = n. Withn = 3, for example, we have to onsider terms involving �3Xi, �2Xi�Xj and �Xi�Xj�Xkorresponding to the sequenes (�1; �2; �3) = (0; 0; 1); (1; 1; 0) and (3; 0; 0), respetively. Inour notations we shall suppress the in�nite number of zero entries to the right of the lastnon-zero one. To eah partition � 2 P (n), we assoiate the trae ��
�1;0 over the spae



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 11�
s�11;0 
 �
s�21;0 � � � , ��
�1;0 (z1; z2; z3) = 1Yi=1 ��
s�i1;0 : (2.12)The fators on the right hand side involve traes over the �thi symmetri tensor produt ofthe fundamental representation �1;0. Suh fators arise from the produt of �i derivativesof order i of the fundamental �eld multiplet. Let us now set Z 0n = Z0P�2P (n) ��
�1;0 tobe Z0 multiplied with the sum of the p(n) traes (2.12). Clearly, Z 0n is not the same asZn. In fat, we still have to orret for some overounting, sine we have to subtrat allpossible derivatives of degree up to n of the supersphere relations (1.1). Eah one of the p(n)partitions � 2 P (n) has to be investigated on its own in order to understand whih relationsapply to it. Suppose that for a given partition �, the entry �j does not vanish. This meansthat the orresponding �elds ontain a fator �jXa. Hene, there exist relations betweensuh �elds that arise from the jth derivative of the supersphere relation (1.1). These must beremoved. We may formalize this presription by introduing the speial partitions �i whihhave a single entry �ii = 1 in the ith position and are zero otherwise. The sequene �i is anelement of P (i). Let us also denote by �� �i the partition from P (n� i) that is obtained bysubtrating the entries. If the resulting sequene ontains a negative entry, i.e. if �i = 0, thenwe set ��
(���i)1;0 = 0. With these notations, we an now formalize our resolution for the issueof overounting. Taking into aount the onstraints imposed by the ith derivative of (1.1)amounts to subtrating from Z 0n all funtions of the form Z0��
(���i)1;0 . Here, � 2 P (n) and iruns through all integers i = 1; 2; : : : suh that �i 6= 0. After removing all these terms fromZ 0n we realize that we atually overdid things with our orretion. In fat we have deletedthose expressions for whih two ore more relations are simultaneously ful�lled, so that weneed to put them bak in. Thus, we must add all the terms Z0��
(���i��j )1;0 with i < j. Theresulting expression overounts those polynomials that obey three di�erent relations, et. Asimple indution leads to the following expression for ZnZn = Z0 X�2P (n)0��[ 12 ;0;0℄
� � nXi=1 �[ 12 ;0;0℄
(���i ) + nXi<j=1�[ 12 ;0;0℄
(���i��j ) � � � �1A : (2.13)All notations that are used in this expression have been introdued in the preeding para-graph. We have plaed the subsript �1;0 = [ 12 ; 0; 0℄ bak on the symbol � to emphasizethe relation to the fundamental multiplet. The reader is invited to hek that our generalformula for Zn reprodues the previous expressions (2.5,2.10,2.11) for Zn when n � 2.Having found a formula for Zn, we an insert it into our general presription (2.9). Theresult is,Z = q� 124 Z0 1Xn=0 qn X�2P (n)0��[ 12 ;0;0℄
� � nXi=1 �[ 12 ;0;0℄
(���i) + nXi<j=1�[ 12 ;0;0℄
(���i��j ) � � � �1A :Now, sine �� �j is a partition in P (n� j), we are led to the idea of ombining in the abovealternating sum all those terms that belong to partitions of the same size. Denoting by



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 12pd(x; y) the funtion that ounts the number of distint, i.e. whose elements are all di�erent,partitions of x with exatly y elements, we leave to the reader the ombinatorial homeworkto dedueZ = q� 124 Z0 1Xn=0 qn0BBBB� nXj=0 jXk=0(�1)kpd(j; k)!| {z }=:j X�2P (n�j)�[ 12 ;0;0℄
�1CCCCA= q� 124Z0 1Xn;j=0 qnj X�2P (n�j)�[ 12 ;0;0℄
� = q� 124Z00� 1Xj=0 jqj1A 1Xn=0 qn X�2P (n)�[ 12 ;0;0℄
�= q� 124 Z0 �(q) 1Xn=0 qn X�2P (n)�[ 12 ;0;0℄
� : (2.14)The numbers j an easily be reognized as the oeÆients in the Taylor expansion of theEuler �-funtion. In fat the generating funtion for distint partitions of a number n intopreisely l distint numbers is given by1Yk=1(1 + zqk) = 1Xn=0 nXl=0 pd(n; l) zl qn : (2.15)For z = �1 the left hand side redues to the Euler funtion �(q) while the right hand sidegives the sumP1n=0 nqn. Note that during the resummation in the seond line of eq. (2.14)we ould drop a number of terms sine P (n) is empty for n < 0. The result (2.14) has arather surprising interpretation. It tells us that we may at �rst disard all the derivatives ofthe supersphere relations for the omputation of subtraes Zi. Derivatives of eq. (1.1) maythen simply be taken into aount by multiplying the result with the Euler funtion �(q).The onlusion of the previous disussion may now be employed to derive a muh simplerformula for the partition funtion whih generalizes the expression (2.7) for Z0. Withoutpaying respet to the supersphere relations, it is straightforward to enumerate derivative�elds. Reall that the four fundamental bosoni �elds arry harges (0;� 12 ;� 12 ) under thethree Cartan generators (H1; H2; H3). Similarly, the two fundamental fermioni �elds areonly harged under the �rst Cartan generator H1 suh that their harges are (� 12 ; 0; 0).Hene, the partition funtion an now be represented in the formZ = q� 124Z0 �(q) 1Yn=1 (1 + z 121 qn)(1 + z� 121 qn)(1� z 122 z 123 qn)(1� z 122 z� 123 qn)(1� z� 122 z 123 qn)(1� z� 122 z� 123 qn) : (2.16)The in�nite produt enumerates all states in the unonstrained state spae. Aording toour previous disussion, the derivatives of the supersphere onstraints an be implementedthrough a simple multipliation with the Euler funtion �(q). Our �nal formula for thepartition funtion of a volume �lling brane in the PCM at R =1 is indeed very simple.



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 132.3 Casimir deomposition of the boundary spetrumThe goal of this setion is to expand the partition sum (2.9) of the volume �lling brane interms of osp(4j2) haraters. To be more onrete, we would like to derive expliit formulasfor the branhing funtions  K� (q) in the deompositionZ(q; z1; z2; z3) = X� �K� (z1; z2; z3)  K� (q) : (2.17)Here, the funtions �K� (z1; z2; z3) are haraters of the Ka modules4 K� of osp(4j2). Thelatter form a basis in the spae of all haraters so that the expansion oeÆients are uniquelydetermined. Finding an expliit formula for the branhing funtions  K� (q) is the main resultof this setion. The �nal expression will take the following form K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1)�(q)�(q)3 1Xn;m=0(�1)m+nqm2 (m+4j1+2n+1)+n2+j1� �q(j2�n2 )2 � q(j2+n2+1)2��q(j3�n2 )2 � q(j3+n2+1)2� : (2.18)Let us add two remarks here. To begin with, the deomposition (2.17) of the superspherepartition funtion has also been onsidered in the work of Candu and Saleur [23, 24℄. In theirontext, the branhing funtions  K are related to representation spaes of the so-alledBrauer algebra. The onnetion has interesting impliations, but it does not provide expliitformulas for  K . Our formula (2.18) has not appeared in the literature before. In addition,we would want to stress that the deomposition of the partition funtion into haraters ofKa modules is a somewhat formal proedure that does not fully apture the representationontent of the spetrum, at least not for the atypial setor of the theory. One may notie,for example, that some of the expansion oeÆients Cn in  K� (q) = PCnqn are negative.Only for typial � will the n = C�n are positive. For atypial representations �, on theother hand, the haraters �K� of the Ka modules have to be deomposed into haraters ofirreduible atypial representations �� as desribed in (C.11) in order to obtain branhingfuntions with non-negative integral multipliities.The proof of eq. (2.18) proeeds in several steps. To begin with, we shall deompose thepartition funtion into representations of the bosoni subalgebra of osp(4j2). Our seond stepthen is to reombine bosoni haraters into the haraters of full osp(4j2) multiplets. Onethis is ahieved, the resulting expressions still require some resummation in order to bringthem into a more appealing form.In our omputation, we shall split the full partition funtion into three di�erent parts anddeompose them separately before putting all this together. We shall start with the fermioniontributions in the numerator of the partition funtion (2.16). Apart from the fators thatarise from derivative �elds, there are also two terms in Z0 that aount for fermioni zeromodes. We may simply set the parameter t to t = 1 in those two fators and ombine them4Again, see Appendix A.



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 14with the q-dependent terms in the numerators of eq. (2.16) to obtainZF(q; z1) := 1Yn=0 (1 + z 121 qn) (1 + z� 121 qn) = (1 + z 121 ) 1Yn=0 (1 + z 121 qn+1) (1 + z� 121 qn)= q� 18 �z� 141 + z 141 � 1�(q) �2(z 121 jq) = 1�(q) Xn2Zz n21 �q n(n+1)2 + q n(n�1)2 �= 1�(q) Xn=0; 12 ;1;:::�qn(2n+1) + qn(2n�1) � q(n+1)(2n+3) � q(n+1)(2n+1)� �n(z1) :Along the way we have used a number of simple identities5 for �-funtions. As a result, allthe fermioni ontributions to the partition funtion have been deomposed expliitly intomultiplets of the even part of osp(4j2). Note that the two fermions transform non-triviallyonly under the �rst subalgebra sl(2) and hene there is no dependene on z2 and z3 this time.The seond piee of the partition funtion (2.16) that we would like to split o� onernsthe bosoni zero modes, i.e. the denominator of the minisuperspae partition funtion Z0.Its deomposition into bosoni representations is straightforwardlimt!1 1� t2(1� z 122 z 123 t)(1� z 122 z� 123 t)(1� z� 122 z 123 t)(1� z� 122 z� 123 t) = Xn=0; 12 ;1;:::�n(z2)�n(z3) :(2.19)Note that the sum of haraters on the left hand side enodes the well-known spetrum of abosoni 3-sphere S3 �= SU(2). Therefore we an just state this equality without any detailedalulation. The ommuting left and right invariant vetor �elds are generated by the seondand third opy of sl(2) within the even part of osp(4j2). Hene, there is no dependene onthe parameter z1.It remains to analyze the q-dependent fators in the denominator of the partition fun-tion (2.16). Their ontribution may be expanded as follows1Yn=1�(1� z 122 z 123 qn)(1� z 122 z� 123 qn)(1� z� 122 z 123 qn)(1� z� 122 z� 123 qn)��1=  Xn2Zz n22 z n23�(q)2 1Xm=0(�1)m �qm2 (m+2n+1) � qm2 (m+2n�1)�! �  z3 �! z�13 != Xk;l2Zk+l22Zz k22 z l23�(q)4 1Xn;m=1(�1)n+mqk n+m2 +ln�m2 �q n(n+1)2 � q n(n�1)2 ��qm(m+1)2 � qm(m�1)2 �= 1�(q)4 Xk;l2Nk+l22N 1Xn;m=1 (�1)n+m (1� qn)(1� qm)(1� qn+m)(1� qn�m)q�(k(n+m)+l(n�m)+n(n�1)+m(m�1))=2 � k2 (z2)� l2 (z3) :5See equation (B.1).



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 15In the �rst line of the above omputation we have used the lemma (B.1). Sine all the on-tributions being aptured by this omputation are assoiated with bosoni �elds, haraterswith a non-trivial z1 dependene do not arise.In order to obtain the deomposition of Z into haraters of osp(4j2)�0 �= sl(2)�sl(2)�sl(2),we need to put the results from the preeding three omputations together into one expression.The answer ontains produts of haraters whih depend on the same variables z2 and z3.These produts an be re-expanded with the help of the following auxiliary formula1Xp=0� p2 (z2)� p2 (z3) Xk;l2Nk+l22N ak;l� k2 (z2)� l2 (z3)= Xk;l2Nk+l22N� k2 (z2)� l2 (z3)0� 1Xp=0 minfk;pgXr=0 minfl;pgXs=0 ajk�pj+2r;jl�pj+2s1A (2.20)whih holds for an arbitrary set of numbers ak;l. When applied to the ase at hand, we �ndZ = 1�(q)3�(q) ZF(q; z1) Xj2;j32 12Nj2+j32N �j2(z2)�j3(z3) 1Xm;n=1(�1)m+nq n(n�1)2 +m(m�1)2� (1� qn+m)(q(n�m)(j2�j3) � q(n�m)(j2+j3+1)) (2.21)Thereby, we ompleted out �rst task, namely to deompose the full partition funtion Z intoirreduible representations of the bosoni subalgebra of osp(4j2).Our next issue is to ombine bosoni haraters bak into the haraters of Ka modulesof osp(4j2). Sine the even part of osp(4j2) is a subalgebra of osp(4j2), it is lear that theharaters of osp(4j2) Ka modules, possess a deomposition into haraters of the bosonisubalgebra. These deomposition formulas may be inverted suh that bosoni haratersan be written as in�nite linear ombinations of osp(4j2) haraters. All neessary detailsare provided in Appendix C. The resulting expression for the partition funtion Z is of theform (2.17) with K[j1;j2;j3℄(q) = 1�(q)�(q)3 1Xk=0 1Xm;n=1 1Xl=0(�1)m+n+kq2j1(j1+k+2l)q n(n�1)2 +m(m�1)2� kXr;s=0 q(n�m)(r�s)(1� qn+m)(q(n�m)(j2�j3) � q(n�m)(j2+j3+1))� hqj1+ k+2l2 (k+2l+1) + q�j1+ k+2l2 (k+2l�1) � q5j1+3+ k+2l2 (k+2l+5) � q3j1+ k+2l2 (k+2l+3)i= q2j1(j1�1)�(q)�(q)3 1Xm;n=1 1Xk=�1(�1)k 1Xl=0 qj1(2jkj+4l+1)+ jkj2 (jkj�1)+l(2l+2jkj�1)(1� qjkj+2l+2j1 )�(�1)m+nq n(n�1)2 +m(m�1)2 q(n�m)k(1� qn+m)(q(n�m)(j2�j3) � q(n�m)(j2+j3+1)) :



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 16We will now make several transformations and resummations in order to ast this unwieldyexpression into the form (2.18) we have spelled out above. Making the substitution n+m =r + 2; n � m = s with r 2 N and s = �r;�r + 2; : : : ; r, using the trik (B.2) and thensubstituting r ! r + 1 gives the result K(q) = q2j1(j1�1)�(q)�(q)3 1Xk=�1 1Xr;l=0(�1)r+kqj1(2jkj+1)+ jkj(jkj�1)2 +l(2l+2jkj+4j1�1) �qjkj+2l+2j1 � 1��q (r+2)(r+1)2 �q(r+1)(j2�j3+k) + q(r+1)(�j2+j3�k) � q(r+1)(j2+j3+1+k) � q(r+1)(�j2�j3�1�k)� :In order to simplify the sum over r, we now need to split the summation over k into threeparts, aording to whether it is positive, zero or negative. We then reombine the sum-mations over positive and negative k into a single sum and employ another auxiliary for-mula (B.3) from Appendix B to �nd K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1) 1�(q)�(q)3 1Xl=0 1Xr=0 (�1)r q r2+j1��q(j2� r2 )2 � q(j2+ r2+1)2��q(j3� r2 )2 � q(j3+ r2+1)2� hql(2l+4j1�1)(1 + q2l+2j1) (2.22)+ 1Xk=1(�1)kqj1(2k+1)+ k(k�1)2 +l(2l+2k+4j1�1)(1� qr+1)(q(r+1)(k�1) + q�(r+1)k)i :One again we need to rearrange the sum over k. Terms an be ombined into a singlesummation if we let l run over half-integers rather than integers. Making the substitutionsl! 2m and r ! n, leads to the formula K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1)�(q)�(q)3 1Xn;m=0 1Xk=�1(�1)m+n+kqm2 (m+4j1�1)+n2+j1��q(j2�n2 )2 � q(j2+n2+1)2��q(j3�n2 )2 � q(j3+n2+1)2� qjkj(2j1+m)+ jkj(jkj�1)2 +(n+1)k :It is advantageous to split the summation over k again depending on whether k is negative ornon-negative. Then we substitute r for the sum r = m+k and s for the di�erene s = m�k.After some rather trivial but tedious steps we an thereby bring  K into the form K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1)�(q)�(q)3 1Xn;m=0(�1)m+nqm2 (m+4j1+2n+1)+n2+j1� �q(j2�n2 )2 � q(j2+n2+1)2� �q(j3�n2 )2 � q(j3+n2+1)2� 2mXs=0 q�s(n+1) :It is left to the reader to use lemma (B.2) in order to show that this is equal to the formula(2.18) we spelled out at the beginning of this setion. Before we onlude our disussionof the large volume limit, let us stress that our deomposition (2.17) does not imply that



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 17states atually transform in Ka modules of osp(4j2). The partition sum does not ontainany information on how irreduible atypial representations are atually ombined into in-deomposables of osp(4j2). For us, the haraters of Ka modules were simply a onvenientbasis to use.3 The OSP(4j2) GN model and the supersphere S3j2In this setion we shall study the onjetured dual GN model. We begin with the free bulktheory de�ned by eq. (1.5). After a brief disussion of the bulk spetrum for generi S wespeialize to S = 1 and re-express the bulk partition funtion through haraters of themodel's aÆne dosp(4j2) symmetry at level k = 1.6 In setion 3.2 we analyze one partiularsymmetry preserving boundary ondition and spell out its spetrum. The latter is thendeomposed aording to the ation of the global osp(4j2) symmetry in the third subsetion.One suh a Casimir deomposition has been performed, we an apply the results of [22℄ anddetermine the boundary spetrum throughout the entire moduli spae that is generated bythe deformation. We shall show that at R = 1 we reover preisely the spetrum of thevolume �lling brane in the PCM on the supersphere S3j2.3.1 Free �eld onstrution of the bulk theoryBefore we disuss the spetrum and symmetries of the free Gross-Neveu model (1.5), it isuseful to reall how things work for the ase S = 0, i.e. for the fermioni desription of thefree boson. As is well known, the ompati�ed free boson at radius R = 1 is equivalent tothe free �eld theory of two real fermions. Eah of the two fermioni �elds gives rise to aopy of the Ising model with  = 1=2. The two fators, however, are oupled by an orbifoldonstrution to ensure that only setors ontribute in whih both fermions obey the same(anti-)periodi boundary onditions. In the next few paragraphs we would like to formalizethis onstrution. It will turn out rather useful for the generalization to S > 0.Let us begin with a few words on the setors of the ritial Ising model. We reall that theVirasoro algebra with  = 1=2 possesses three setors whih we shall label by the onformalweights of their ground states, i.e. through [0℄; [1=2℄ and [�℄ = [1=16℄. The harater funtionsof these setors read as follows,��(q) = 12  s�3� + (�1)2�s�4� ! ; ��(q) = 1p2s�2� (3.1)with the slightly unusual notation � = 0; 1=2. This will turn out rather onvenient below.The produt of two Ising models ontains a speial setor  = [1=2; 1=2℄ with weight h = 1.It generates an abelian group �0 = Z2 in the fusion ring. Elements of this group are alledsimple urrents sine their fusion with an arbitrary representation always yields a single6The disrepany between our value k = 1 and the k = �1=2 that appears in the work of Candu andSaleur is entirely due to di�erent onventions.



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 18ontribution. We laim that the orresponding simple urrent orbifold model is equivalentto the ompati�ed free boson at R = 1.The onstrution of a simple urrent orbifold proeeds in several simple steps. To beginwith, we have to list all setors [J ℄ of the theory whih possess integer monodromy hargeQJ() = hJ + h � h�J . These are then organized into orbits Oa under the ation of thesimple urrent group �. Eah suh orbit Oa ontributes one term Za to the partition funtionof the orbifold model, with a oeÆient j�j=jOaj that is given by the ratio between the orderj�j of the orbifold group and the length jOaj of the orbit (see e.g. [26℄). In our ase, there exist�ve setors [J ℄ = [�1; �2℄ and [J ℄ = [�; �℄ with integer monodromy harge. Under the ationof �0 they are organized into three orbits, two of length two and one that is left invariant byfusion with . Consequently, the assoiated simple urrent orbifold invariant beomesZorb(�0)Ising2 (q) = ZFFS=0(q) = ���(0;0) + �(1=2;1=2)��2 + ���(0;1=2) + �(1=2;0)��2 + 2���(�;�)��2 : (3.2)The haraters on the right hand side are produts of haraters of the  = 1=2 Virasoroalgebra, i.e. �(0;1=2)(q) = �0(q)�1=2(q) et. Aording to the laims we stated above, thesimple urrent orbifold (3.2) agrees with the free boson ompati�ed at radius R = 1,ZFFS=0(q) = 1j�(q)j2 Xn;w q 18 (n+2w)2 �q 18 (n�2w)2 = ZR=1(q) : (3.3)The detailed proof of this identity an be found e.g. in the letures of Ginsparg [27℄. Ouraim now is to extend eq. (3.3) to the ase S > 0.For S > 0, our theory (1.5) is built from 2S + 2 real fermions whose properties we havereviewed already. In addition there are also S free �-systems with entral harge  = �1(see [28℄ for a detailed analysis of this rather unusual CFT in the ontext of our work).For osp(2S + 2j2S) symmetry it is neessary that all these �elds obey the same boundaryonditions, i.e. are either all periodi or all anti-periodi. Before we spell out the relevantbulk partition funtion, we need a bit more bakground on the �-systems.As in the ase of real fermions, we shall onsider setors whih di�er by the hoie ofboundary onditions on the �elds � and . Let us introdue a family of ground states j�i for� 2 12Z. These states are haraterized by the onditions�r+� j�i = 0 ; r�� j�i = 0 for r = 1=2; 3=2; 5=2; : : : (3.4)From the ground states we generate the orresponding setors by appliation of raising op-erators. If we assign harges q� = 1=2 and q = �1=2 to the modes of the �elds � and ,respetively, and q� = �=2 to the ground state j�i the generating funtion for the setor �reads,�(�)(q; y) = q 124� �22 y �2 1Yn=0 1(1� y 12 qn+ 12��)(1� y� 12 qn+ 12+�) = q��2=2 y �2 �(q)�4(q; y1=2q��) (3.5)



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 19All the onstruted setors arry an ation of an aÆne bsl(2) urrent algebra at level k = �1=2.In terms of the �elds � and  the three urrents are onstruted as follows,E1+(z) = 12�2(z) ; H1(z) = �12 (�)(z) ; E1�(z) = �12 2(z) : (3.6)Consequently, we an deompose the generating funtions (3.5) into haraters of irreduiblerepresentations of bsl(2)�1=2. In ase of �(0), for example, the deomposition is given by�(0)(q; y) = �(q)�4(q; y1=2) = �k=�1=20 (q; y) + �k=�1=21=2 (q; y) :The two haraters on the right hand side belong to irreduible highest weight representationswith lowest weight h = � 2 f0; 1=2g,�k=�1=2� (q; y) = �(q)2 � 1�4(q; y1=2) + (�1)2� 1�3(q; y1=2)� : (3.7)Let us note that the ground states transform in representations of spin j = �. Nevertheless,we shall ontinue to think of the subsript of � as the onformal weight rather than the spin.Similar deomposition formulas exist for all the other funtions (3.5). All of them are relatedby the ation of spetral ow automorphisms. In partiular, we have�(1=2) = �k=�1=2�;+ +�k=�1=2�;� with ��;�(q; y) = y1=4�(q)2 � 1i�1(q; y�1=2) � 1�2(q; y�1=2)� :(3.8)The two haraters on the left hand side belong to the two irreduible lowest weight repre-sentations of the urrent algebra with spin j = 1=4 and j = 3=4. Their ground states havethe same onformal weight h = �1=8.We are now ready to disuss the relevant bulk modular invariant for the theory (1.5) withS > 0. Let us begin with the produt of S �-systems and 2S+2 real fermions. This theoryontains a group �S of simple urrents that onsists of all elements  of the form = [�1; : : : �S ; �S+1; : : : ; �3S+2℄ with �i 2 f0; 1=2g and � � 3S+2Xi=1 �i = 0 mod 1 :The �rst S entries of  denote setors of the �-system while the remaining ones are rep-resenting setors in the Ising models. Together, the elements  generate the abelian group�S �= Z3S+12 .Let us �rst deal with the setor involving representations with vanishing spetral ow,� = 0. Under the ation of �S , the setors with vanishing monodromy harge split into twoorbits of maximal length. Hene we are led to the following ontribution to the partitionfuntion,ZFFS;0(q; y1; : : : ; yn) = ����X2�S��[0;:::;0;0;:::;0℄����2 + ����X2�S��[0;:::;0;0;:::;0;1=2℄����2 : (3.9)However, the total theory has to be invariant under the spetral ow symmetry. Hene wehave to add twisted ontributions ZFFS;� . It was already mentioned above that all the bosoni



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 20ghosts and all the fermions have to have idential periodiity onditions in order to not tospoil osp(2S + 2j2S) symmetry. Consequently the spetral ow must at diagonally, i.e.simultaneously on all setors, by half-integer shifts.7 In the fermioni fators, spetral owby � = 1=2 brings us to �-representations. Integer units of the spetral ow, however, donot give anything new. In the ghost setors things works di�erently beause the appliationof a diagonal spetral ow leads to an in�nite number of new representations onstrutedfrom the ground states j�i for � 2 12Z. Sine the orbits of the half-integer spetral owrepresentations possess a stabilizer subgroup S of order jSj = 22S+1 with respet to theation of �1 we �nally end up with the partition funtionZFFS (q; y1; : : : ; yS) = X�2 12ZZFFS;�(q; y1; : : : ; yS)= X�2Z"����X2�S�(�)�[0;:::;0;0;:::;0℄����2 + ����X2�S�(�)�[0;:::;0;0;:::;0;1=2℄����2#+ 22S+1 X�2Z+12 ����� SYa=1�(�)(q; ya)���(q)�2S+2�����2 :Here, the supersript (�) on a funtion f(yi) of S variables yi is de�ned through the pre-sription f (�)(yi) = q�S�2=2f(yiq�2�).The rest of our analysis in this setion is now arried out for the speial ase of S = 1.Generalizations to larger values of S shall be di�ered to the next setion. The state spae ofour orbifold theory an be equipped with the ation of an aÆne dosp(4j2) Lie superalgebra.We have already spelled out expressions for the �rst set of sl(2) urrents in equation (3.6)above. The urrents assoiated with the other two opies if sl(2) take the formE2�(z) = 12i �( 1 3)� ( 2 4)� i�( 1 4) + ( 2 3)�� ; (3.10)H2(z) = 12i �( 3 4) + ( 1 2)� ; H3(z) = 12i �( 3 4)� ( 1 2)� ;E3�(z) = 12i �( 1 3) + ( 2 4)� i�( 1 4)� ( 2 3)�� : (3.11)They generate two ommuting opies of the urrent algebra bsl(2)1. In addition, we anintrodue the eight fermioni urrents through the following expressionsF+++(z) = i� ( 3 + i 4) (z) ; F+��(z) = i� ( 3 � i 4) (z) ;F++�(z) = i� ( 1 + i 2) (z) ; F+�+(z) = i� ( 1 � i 2) (z) ;and similarly for F���(z) with the �eld � in the above formulas exhanged with . Note thatall terms that ontribute to the seventeen urrents are quadrati in the basi �elds. Sine by7It is worth mentioning that these diagonal spetral ow transformations are also the only ones whihommute with the ation of the orbifold group. Note also that half-integer spetral ow on ghosts andfermions implies integer spetral ow on the urrents suh as those de�ned in eq. (3.6) and below.



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 21onstrution these basi �elds are either all in the Neveu-Shwarz setor or in the Ramondsetor, the urrents obey periodi boundary onditions on the entire state spae. In order torewrite the partition funtion of our bulk theory in terms of aÆne dosp(4j2) haraters, wereall the following formulas for haraters of an bsl(2) urrents algebra at level k = 1,�k=10 (q; z) = �3(q2; z)�(q) ; �k=11=2 (q; z) = �2(q2; z)�(q) :The lower index j = 0; 1=2 now denotes the spin of representations of the bsl(2) urrent algebra.In terms of haraters of the bosoni urrent algebras, the orbifold partition funtion readsZFFS=1(q; zi) = 1X�=�1 ����(�)(0;0;0)(q; zi) + �(�)( 12 ; 12 ; 12 )(q; zi)���2 ++ 1X�=�1 ����(�)(0; 12 ; 12 )(q; zi) + �(�)( 12 ;0;0)(q; zi)���2 (3.12)where the ation of the spetral ow involves the �rst variable z1 = y only and we havede�ned �(j1;j2;j3)(q; zi) = �k=� 12j1 (q; z1) �k=1j2 (q; z2) �k=1j3 (q; z3) :To ompare the formula (3.12) with our previous expression (3.10) one has to speialize toz2 = z3 = 1. Going one step further we an ombine haraters of the bosoni urrent algebraintodosp(4j2)1 haraters aording to,�f0g(q; zi) = �(0;0;0)(q; zi) + �( 12 ; 12 ; 12 )(q; zi) ; (3.13)�f1=2g(q; zi) = �(0; 12 ; 12 )(q; zi) + �( 12 ;0;0)(q; zi) : (3.14)The results of this setion may then be summarized through the following simple formulaZFFS=1(q; zi) = 1X�=�1 ����(�)f0g(q; zi)���2 + 1X�=�1 ����(�)f1=2g(q; zi)���2 ; (3.15)i.e. the orbifold partition funtion is the harge onjugate modular invariant partition funtionfor the setors f0g and f1=2g of thedosp(4j2)1 urrent algebra. It is remarkable that spetralow relates all the representations ourring here and that the fusion is purely abelian [28℄. Inontrast to other WZNW theories on supergroups [29, 30, 31, 32℄ this guarantees the existeneof an \irreduible" theory without logarithmi orrelation funtions. By fermionizing the �systems and keeping additional zero-modes, however, one an as well onstrut a \logarithmilift" of the theory [33℄ (see also [30℄).3.2 Boundary onditions and their spetraIn the next step we wish to disuss boundary onditions in the orbifold theory onstrutedabove. We will fous on a partiular brane. Our hoie might seem a bit ad ho at �rst,



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 22but will later turn out to be deformed into the spae-�lling brane of the PCM. As before, wetreat the ases S = 0 and S = 1 in some detail and postpone omments on higher values ofS to the following setion.In the ase S = 0 we need to onstrut a brane in the orbifold (3.2) whih orresponds toa Neumann brane in the free boson theory at large radius. But in this ase the deformationis well known. When we redue the radius from R = 1 to R = 1 we pass the self-dualradius where Neumann and Dirihlet branes annot be distinguished and get exhanged byT-duality. Consequently the brane we would like to desribe in the free boson theory atR = 1 is the Dirihlet brane whih has the spetrumZR=1D (q) = Xw2Zq w22�(q) = �3(q)�(q) : (3.16)We will now show how the same spetrum an be obtained from the orbifold model.The Ising model is the simplest of the Virasoro minimal models. It has preisely threedi�erent onformal boundary onditions, one for eah of irreduible representations [0℄, [1=2℄and [�℄ = [1=16℄. Here and in the following we shall labels boundary onditions and setors bythe same symbol. The spetrum of exitations between any two of these boundary onditionsis desribed by the respetive fusion rules [34℄. In order to make ontat with the bosonidesription, let us try to rewrite the partition funtion (3.16) through haraters (3.1) of thetwo Ising models. After simple manipulations we �ndZR=1D (q) = �3(q)�(q) = �(0;0) + �(1=2;1=2) + �(0;1=2) + �(1=2;0) : (3.17)The spetrum we �nd an be onsidered as the orbit of the sum [0; 0℄�[0; 1=2℄ under the ationof the orbifold group �0. Sine [0; 0℄� [0; 1=2℄ is preisely the fusion produt [�; 0℄� [�; 0℄ weonlude that the desired point-like brane at R = 1 desends under the orbifold onstrutionfrom the boundary ondition [�; 0℄ in the produt of two Ising models. The onlusion isfully onsistent with the free fermion onstrution of the bosoni urrent J �  1 2 of theR = 1 model. In fat, as is well known, the boundary label [0; �℄ orresponds to the gluingonditions 1(z) = � � 1(�z)  2(z) = � 2(�z) (for z = �z) (3.18)in the underlying free fermion desription. The sign in the gluing ondition for the �rstfermioni �eld is assoiated with the non-trivial boundary label [�℄. It implies that theurrent J �  1 2 satis�es Dirihlet boundary onditions J = � �J all along the boundary.Let us now turn our attention to the ase S = 1. We would like to fous on a brane whihis assoiated with the twisted gluing onditionsJ1(z) = �J1(�z) ; J2(z) = �J3(�z) ; J3(z) = �J2(�z) (3.19)for the bosoni urrents J i = Eiata all along the boundary at z = �z. The underlying gluingautomorphism 
 permutes the seond and third opy of sl(2) in the bosoni subalgebra. It



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 23an easily be seen that 
 extends to an involution on the entire superalgebra osp(4j2). Theorresponding gluing onditions for fermioni urrents read,F ���(z) = �F ���(�z) F ���(z) = �F ���(�z) : (3.20)A quik look bak at the free �eld realization of the urrents (3.10) suggests to implementthe boundary onditions (3.19) and (3.20) through the following gluing presription for thefundamental �eld multiplet, 1(z) = � � 1(�z) ;  i(z) = � i(�z) (i 6= 1) ; �a(z) = ��a(�z) ; a(z) = �a(�z) : (3.21)Indeed, equations (3.21) reprodue the permutation of urrents displayed in eqs. (3.19) and(3.20) upon insertion into eqs. (3.10).Just as in the ase S = 0 above, having a non-trivial gluing ondition for the fermion isassoiated with the ourrene of the brane label � in the Ising model desription. Hene wepropose that the desired orbifold brane may be onstruted from the brane B = [0; 0;�; 0; 0; 0℄in the overing theory. The spetrum for the latter is again given by fusion, and taking theorbit with respet to the orbifold group �1 one easily arrives atZFFB;S=1 = X2�1���[0;0;0;0;0;0℄ + ��[0;0;0;1=2;0;0℄� : (3.22)For later onveniene this result may also be rewritten in terms of irreduible haraters ofthe underlying bosoni urrent algebra, leading toZFFB;S=1(q; zi) = �(0;0;0) + �(0; 12 ; 12 ) + �( 12 ; 12 ; 12 ) + �( 12 ;0;0) = �f0g + �f1=2g : (3.23)In the seond step we have ombined haraters of the bosoni subalgebra into haraters ofthe full dosp(4j2)1, using the formulas (3.13) and (3.14). The spetrum of the orbifold branepreserves the aÆne Lie superalgebra, as desired. We also note that our partition funtionZFFB;S=1(q) is idential to the one that appeared in the work of Candu and Saleur [23, 24℄. Weshall now see that it is related through a deformation to the partition funtion of the volume�lling brane in the PCM model.3.3 Casimir deomposition in the free GN modelHaving found the full spetrum of an osp(4j2) symmetri brane in the free �eld theory (1.5),our next task is to expand it in terms of the haraters �K� . In other words, we need to �ndthe branhing funtions  K� (q) in the deomposition,~Z = ZFFB;S=1(q; zi) = X� �K� (z1; z2; z3) ~ K� (q) : (3.24)This expansion is of the same form (2.17) as in the PCM at R = 1. Only the branhingfuntions ~ K are di�erent. The following short analysis will show that they read~ K[j1;j2;j3℄(q) = 1�(q)�3(q) 1Xn;m=0(�1)n+mqm2 (m+4j1+2n+1)+j1+n2� (q(j2�n2 )2 � q(j2+n2+1)2)(q(j3�n2 )2 � q(j3+n2+1)2) : (3.25)



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 24Before we derive this formula, we wish to omment on its impliations. A short look bakto formula (2.18) reveals a remarkable similarity between the two branhing funtions of thepartition funtions Z of the PCM at R = 1 and ~Z of the free �elds theory (1.5). In fat,they are idential up to an overall prefator, K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1) ~ K[j1;j2;j3℄(q) : (3.26)For the time being this equation may simply be onsidered a urious observation regardingthe similarities of the two Casimir deompositions. We shall explain in the next subsetionhow it relates to the laim that the boundary spetrum for the PCM at R = 1 may beobtained by the urrent-urrent perturbation (1.6) from the free �eld theory (1.5).In order to alulate the branhing funtions ~ K from the partition funtion ~Z, we proeedas in setion 2.3. In a �rst step we shall expand ~Z in terms of haraters of the bosonisubalgebra osp(4j2)�0. Then we ombine the bosoni building bloks into haraters of Kamodules for osp(4j2). The resulting expression for the branhing funtion will require onlyvery little additional analysis in order to ast them into the form (3.25).The deomposition of ~Z into bosoni haraters departs from the representation (3.23)of ~Z and then employs the following expansion formulas for bsl(2) haraters into sums ofharaters of sl(2),�k=� 12a (�; u) = q 124�(q)2 Xk2N+a�k(z) 1Xm=0(�1)mqm2 (m+4k+1)+k �1� q2m+1� (3.27)�k=1a (�; u) = 1�(q) Xm2N+a�m(z) �qm2 � q(m+1)2� (3.28)where a 2 �0; 12	. >From the equality (3.23) and the two deomposition formulas (3.27) and(3.28) it is lear that ~Z an be written as~Z = X(j1;j2;j3)2 12N3j2+j32N �(j1;j2;j3)(z1; z2; z3) ~ B(j1;j2;j3)(q) (3.29)where �(j1;j2;j3) are the haraters of the irreduible representations of osp(4j2)�0, as before,and the branhing funtions ~ B are given by~ B(j1;j2;j3)(q) = 1�(q)�3(q) 1Xm=0 (�1)m qm2 (m+4j1+1)+j1 (1� q2m+1)� (qj22 � q(j2+1)2) (qj23 � q(j3+1)2) : (3.30)Before we proeed let us note that the branhing funtions ~ B� possess the following importantsymmetry properties neessary for a proof in Appendix C,~ B(j1;j2;j3)(q) = � ~ B(�j1�1;j2;j3)(q) = � ~ B(j1;�j2�1;j3)(q) = � ~ B(j1;j2;�j3�1)(q) : (3.31)



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 25These imply in partiular that  B(j1;j2;j3)(q) vanishes identially if any of the spin labels jais equal to ja = �1=2. As in our analysis of the PCM's partition funtion Z in setion2.3, we an express all haraters of representations of the bosoni subalgebra as in�nitelinear ombinations of the haraters of Ka modules. The required formulas an be foundin Appendix C. With their help we now arrive at the following result for ~ K� ,~ K[j1;j2;j3℄(q) = 1�(q)�3(q) 1Xn;m=0(�1)n+m qm2 (m+4j1+1)+j1+mn+n2 (1� q2m+1)� [n2 ℄Xk=0(q(j2�n2+k)2 � q(j2+n2�k+1)2) (q(j3�n2+k)2 � q(j3+n2�k+1)2)= 1�(q)�3(q) 1Xn;m=0(�1)n+m qm2 (m+4j1+2n+1)+j1+n2 (1� q2m+1)�(q(j2�n2 )2 � q(j2+n2+1)2) (q(j3�n2 )2 � q(j3+n2+1)2) 1Xk=0 q(2m+1)k :The sum over k at the end of this formula is a simple geometri series whih anels thelast term in the �rst line. Thereby, we reover the expression (3.25) we spelled out at thebeginning of this subsetion.3.4 Deformation from free GN model to free PCMThe main result of our analysis so far was summarized onisely in eq. (3.26). In order to fullyappreiate its ontent, let us review a few results from [22℄. In that paper, the deformationof onformal weights was studied for the WZNW model on PSL(2j2). Many of the entralresults of [22℄, however, hold muh more generally for models whose symmetries are desribedby an aÆne Lie superalgebra with vanishing dual Coxeter number.To begin with, let us speify the bulk perturbation we would like to onsider. As we shallargue momentarily, it is generated by the �eld,� = X���J�(z)
( �J�(�z)) (3.32)where the summation extends over all 17 bosoni and fermioni diretions. The automor-phism 
 we inserted here is the same as the gluing automorphism that was de�ned impliitlythrough our gluing onditions (3.19) and (3.20) in setion 3.2. Note that the perturbingoperator � breaks the global symmetry from osp(4j2)
 osp(4j2) of the free GN model (1.5)to the twisted diagonal subalgebra. In other words, the symmetry transformations of theperturbed model are generated by elements of the form X 
 1+ 1

(X). This means thatany perturbing operator of the form � preserves half of the global bulk symmetries. Whatdepends on the hoie of the automorphism 
 is the preise set of transformations that ispreserved. Similar statements an be made about boundary onditions. As we disussed insetion 3.2, the boundary theory we put forward to ompare with the boundary spetrum



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 26of the PCM required to selet a non-trivial gluing automorphism 
. If this gluing auto-morphism would di�er from the automorphism 
 in the de�nition of �, then the boundaryondition and the deformation would preserve di�erent sets of symmetry generators. Hene,the deformed boundary theory would no longer possess a global osp(4j2) symmetry. Suh atheory ould be onformal, but it annot be equivalent to the boundary PCM. Therefore, weknow that the perturbing operator � must involve the same automorphism 
 that appearedin the gluing ondition for urrents at the boundary. An expliit formula for the operator �in terms of free �elds is derived at the end of appendix D. The resulting expression agreeswith the formula for S int we antiipated in the introdution.Having spei�ed the deforming operator, we are now ready to disuss the properties ofthe deformation it generates. Here we shall losely follow the the reent analysis in [22℄.Everything we shall laim below is based on a rather simple mathematial result that was�rst formulated and exploited in the work of Bershadsky et. al. [16℄ for psl(NjN), but holdsequally for osp(2S+2j2S). Consider some osp(2S+2j2S) invariant �, suh as e.g. a onformalweight, and suppose that � may be written as � = Cabfab where fab are the strutureonstants of osp(2S + 2j2S) and Cab are some numbers. Then � an be shown to vanish.We would like to apply this mathematial lemma to the omputation of onformal weights.To evaluate the hange of onformal weights away from the free GN model, we perform aperturbative analysis of 2-point funtions in our theory. In any suh omputation of perturbedorrelators, the initial step is to remove all the urrent insertions through urrent algebraWard identities. In the proess, pairs of urrents get ontrated usingJ�(z) J�(w) = if���z � w J�(w) + k���(z � w)2 + : : : � k���(z � w)2 : (3.33)The �rst equality is the usual operator produt for osp(4j2) urrents. Sine we are onlyinterested in omputing the invariants h, we an drop all terms that involve the strutureonstants f of the Lie superalgebra osp(4j2). This applies to the �rst term in the aboveoperator produt whih distinguishes the non-abelian urrents from the abelian algebra ofat target spaes. Here and in the following we shall use the symbol � to mark equalitiesthat are true up to terms involving struture onstants. In onlusion, we have seen that, asfar as the omputation of onformal dimensions is onerned, we may neglet the non-abeliannature of the urrents J�. Obviously, this leads to drasti simpli�ations of the perturbativeexpansion.In [22℄ several other statements were needed to study a deformation that preserved si-multaneously both left and right global symmetries. The perturbation (1.6) we onsiderhere, however, is of a muh simpler type. We an therefore diretly move on to evaluate theonformal dimension of boundary �elds. Unlike in [22℄, the following arguments apply toall boundary onditions, as long as they preserve the aÆne dosp(4j2) symmetry. It does notrequire any further assumptions on the loalization of the brane. Let 	 be some multipletof boundary �elds transforming in a representation � of osp(4j2). We denote by h0(	) theonformal weight of 	 at the WZ-point. Upon deformation with the �eld (3.32), the weight



4 GENERALIZATION FOR HIGHER-DIMENSIONAL SUPERSPHERES 27of 	 behaves ash(	) = h0(	)� 12 g21 + g2 C2(�) = h0(	) + 12 � 1R2 � 1� C2(�) (3.34)where C2 is the quadrati Casimir element of the Lie superalgebra osp(4j2), as before.Through the Casimir deomposition (3.24) of the boundary partition funtion ~Z we haveseparated all boundary �elds aording to their osp(4j2) transformation law. This now allowsus to evaluate the shift of onformal weights for entire bloks rather than individual �eldmultiplets. More onretely, the onformal weights of all �elds that are ounted by thebranhing funtion ~ K[j1;j2;j3℄ undergo the same shift by8Æg(h) = �12 g21 + g2 C2[j1; j2; j3℄ = g21 + g2 �2j1(j1 � 1)� j2(j2 + 1)� j3(j3 + 1)�upon perturbation with �. Thereby, we an spell out the boundary spetrum of the perturbedmodel for any hoie of g2 = R2 � 1,~ZR(q; zi) = q� 124 Xji �K[j1;j2;j3℄(z1; z2; z3) �� q(1� 1R2 )(2j1(j1�1)�j2(j2+1)�j3(j3+1)) ~ K[j1;j2;j3℄(q) : (3.35)For irrational values of the parameter R, the boundary spetrum is rather rih, ontainingirrational onformal weights. But as we reah the speial value R =1, all onformal weightsbeome integers. Equation (3.26) tells us even more: At this partiular point, the perturbedboundary partition funtion oinides with the partition funtion Z of volume �lling branesin the PCM on the supersphere S3j2 in the limit R!1. For a few seleted multiplets, thedeformation from R =1 to R = 1 had been arried out in [24℄. By performing the Casimirdeompositions expliitly, we were able to extend suh studies to the entire spetrum.4 Generalization for higher-dimensional superspheresThe aim of this setion is to outline how the previous analysis may be extended to higherdimensional superspheres. We shall provide expliit formulas for the relevant boundaryspetra of the PCM at R =1 and for the free �eld theory (1.5). The latter are expressed interms of haraters of the aÆne dosp(2S + 2j2S) superalgebra at k = 1. Note that the leveldoes not depend on S. Sine we have not attempted to onstrut the branhing funtions  �and ~ � for the deomposition with respet to the global osp(2S + 2j2S) symmetry, we shallontent ourselves with a few non-trivial tests. These are disussed in the seond subsetion.We believe that a full analysis, as in the ase of S = 1, is possible but umbersome.8Let us reall that all irreduible multiplets that an be tied together in an indeomposable representationmust have idential Casimir eigenvalues, see appendix A.



4 GENERALIZATION FOR HIGHER-DIMENSIONAL SUPERSPHERES 284.1 Partition funtions for superspheres at R = 1;1The �rst task is to spell out the spetrum of the PCM with Neumann boundary onditions atR =1. It turns out that our formula (2.16) for S = 1 admits the following straightforwardgeneralization,ZPCMN ;S = q� 124Z(S)0 �(q) 1Yn=1 QSm=1(1 + ymqn)(1 + y�1m qn)QS+1k=1 (1� xkqn)(1� x�1k qn) : (4.1)Here, the subsript N stands for Neumann boundary onditions and the minisuperspaeontribution is given byZ(S)0 = limt!1(1� t2)QSm=1(1 + ymt)(1 + y�1m t)QS+1k=1 (1� xkt)(1� x�1k t) : (4.2)As before, the fator Z(S)0 desribes the spae of funtions on S2S+1j2S . As mentioned above,we have not performed the analysis of setion 2.3 for the more general partition funtionZPCMN ;S , though this would surely be possible.Next let us turn to the free GN model (1.5). Large parts of our analysis of the bulkspetrum were already performed for generi S. One more, the theory possesses an aÆnedosp(2S+2j2S) symmetry with level k = 1 (see appendix D for an expliit onstrution of thegenerators in terms of the basi �elds). The bulk theory an be shown to possess a symmetrypreserving boundary ondition whose spetrum losely resembles eq. (3.23). Before we areable to spell out the details, we shall quote from [35℄ the following expressions for haratersof the aÆne Lie algebra bso(2S + 2) at level k = 1,�so(0)(q; xi) = 12�(q)S+1  S+1Yi=1 �3(q; xi) + S+1Yi=1 �4(q; xi)! ;�so(f)(q; xi) = 12�(q)S+1  S+1Yi=1 �3(q; xi)� S+1Yi=1 �4(q; xi)! : (4.3)Note that bso(2S+2)1 is part of the bosoni subalgebra ofdosp(2S+2j2S)1. Similarly, we alsoneed the orresponding haraters of the aÆne bsp(2S) at k = � 12�sp(0)(q; yi) = �(q)S2  1QSi=1 �4(q; yi) + 1QSi=1 �3(q; yi)! ;�sp(f)(q; yi) = �(q)S2  1QSi=1 �4(q; yi) � 1QSi=1 �3(q; yi)! : (4.4)The haraters we have just listed, furnish the basi building bloks for the relevant haratersof our superalgebradosp(2S + 2j2S)1 at level k = 1,�ospf0g = �so(0)�sp(0) + �so(f)�sp(f) ;�ospffg = �so(f)�sp(0) + �so(0)�sp(f) : (4.5)



4 GENERALIZATION FOR HIGHER-DIMENSIONAL SUPERSPHERES 29For a partiular hoie of boundary onditions in the free �eld theory (1.5) the boundarypartition funtion takes the following formZFFB;S(q; zi) = �ospf0g + �ospffg = 1�(q)QS+1i=1 �3(q; xi)QSj=1 �4(q; yj) ; (4.6)where the �rst S variables zi = yi are assoiated with the sympleti part while the remainingS + 1 variables zS+i = xi are aÆliated with Cartan elements of the orthogonal subalgebra.Eq. (4.6) generalizes equation (3.23) to S � 1.4.2 Test of the dualityAs in the previous setion, we would like to show that the two partition funtions (4.1) and(4.6) are related to eah other by deformation with the interation term (1.6) or, equivalently,by deforming the radius R of the PCM from R =1 all the way down to R = 1. In priniple,this may be ahieved by repeating our analysis in setions 2.3 and 3.3 above. The �rst stepis to deompose the partition funtion (4.6) of the PCM at R = 1 in terms of haraterfuntions for the global osp(2S + 2j2S) symmetry,ZPCMN;S = X�2J �osp(2S+2j2S)� (zi) (S)� (q) ; (4.7)where J is the set of all integral dominant labels of osp(2S+2j2S) that are ompatible withthe onsisteny onditions of [36℄. The existene of suh a deomposition is guaranteed, butin ase of S > 1 expliit formulas for the branhing funtions  would still need to be workedout.The seond step is to pass from R =1 to �nite values of the radius. Sine all the generalresults we outlined in setion 3.4 hold for any value of S, the boundary partition funtion ofthe PCM at radius R readsZ(R) = X�2J �osp(2S+2j2S)� (xi; yj) (S)� (q) q 12 1R2 C(�) : (4.8)Here we expressed the partition funtion through the branhing funtions  at R =1 ratherthan through the ones at R = 1, as in setion 3.4. Therefore, the oeÆient of the Casimirelement had to be properly adjusted. Note also that we normalized the quadrati Casimiroperator suh that C2(f) = 1 for all values of S.For the PCMs on odd dimensional superspheres S2S+1j2S to be dual to the GN model,we would have to �nd Z(R = 1) = ZFFB;S ; (4.9)provided we have orretly identi�ed the appropriate boundary ondition in the free �eldtheory (1.5). Throughout the last setions, we have heked relation (4.9) expliitly forS = 1. It is quite amusing to verify it also in the muh simpler ase of S = 0. When S = 0,



4 GENERALIZATION FOR HIGHER-DIMENSIONAL SUPERSPHERES 30the deomposition of the partition funtion at R = 1 into haraters of osp(2j0)�= so(2),takes a partiularly simple form,ZPCMN;S=0 = q� 124 �(q)Xn2ZznXk2Z zk�(q)2 1Xm=0(�1)m �qm+12 (m+2jkj) � qm+12 (m+2(jkj+1))�= 1�(q)Xn2Zzn = Xn2Z�n(z) (0)n (q) ; (4.10)with �n(z) = zn and  (0)n (q) = 1=�(q). Following our equation (4.8), the partition funtionfor radius R beomes Z(R) = 1�(q)Xn2Zzn q 12 1R2 n2 :Therefore, at R = 1 we obtainZ(R = 1) = 1�(q)Xn2Zznq n22 = 1�(q)Xn2Zznq n22 = ZFFB;S=0(q; z) ; (4.11)in agreement with our general predition (4.9).Although we have not been able to �nd a onlusive proof of (4.9) for S � 2, we wishto give some additional supporting evidene. To this end, we need a few more details aboutrepresentations of osp(2S + 2j2S) and the orresponding values of the quadrati Casimirelement. The representations we are interested in are labeled by integral dominant highestweights � of the form� = a1Æ1 + a2(Æ1 + Æ2) + � � �+ aS(Æ1 + � � � ÆS) + aS+1�1 + � � �+ a2S�1(�1 + � � � �S�1)+a2S �1 + � � �+ �S � �S+12 + a2S+1 �1 + � � �+ �S + �S+12 ; (4.12)where Æi and �j appear in the onstrution of the weight system of osp(2S + 2j2S) andobey (�i; �j) = �(Æi; Æj) = Æij . The numerial oeÆients ai 2 N must moreover obey someadditional onsisteny onditions that an be found in [36℄. The value of the quadratiCasimir in the representation of weight � an now be expressed in terms of the oeÆientsai as,C� = (�;�+ 2�) = � SXi=10� SXj=i aj � 2i1A SXk=i ak + (a2S � a2S+1)24+ SXi=10�S�1Xj=i aS+j + a2S + a2S+12 + 2(S + 1� i)1A S�1Xk=i aS+k + a2S + a2S+12 ! :The fundamental representation orresponds to a1 = 1 and ai = 0 for i 6= 1 so that CÆ1 =�(1 � 2) = 1 for all S. The value of the quadrati Casimir does not only determine thedeformation of onformal weights, see eq. (4.9). It is also needed to ompute the onformalweight h� = C�2k (4.13)



5 CONCLUSIONS, OPEN QUESTIONS AND OUTLOOK 31of �elds that are primary with respet to the underlying aÆne superalgebra at level k. Inour ase, the level k must be set to k = 1, as before.After this preparation we an begin to test equation (4.9). Let us �rst try to reover theground states of the free �eld theory at R = 1. It is lear that the vauum state at R = 1is obtained by deforming the unique osp(2S + 2j2S) invariant �eld with weight h = 0 atR = 1. So, we an turn to the ground states in the seond setor of eq. (4.6) right away.From (4.7) we infer that the boundary PCM ontains a single �eld multiplet that transformsin the fundamental representation with � = Æ1 and has onformal weight h = 0. Underthe proposed deformation, the onformal weight of this multiplet is lifted from h = 0 toh = 1=2, sine CÆ1 = 1. The latter value agrees preisely with the ground state energy of theorresponding aÆne representation when k = 1 as given by (4.13).We want to go a little further and reover states in the R = 1 model whose weight isone above the ground states. Let us pik, for example, a multiplet that transforms on therepresentation � = 3Æ1. In the large radius limit, this representation arises for the �rst timeamong the states of weight h = 3. In fat, in eq. (4.1) terms ontaining y31 are multipliedby q3 or higher powers of q. Sine C3Æ1 = 3, the proposal (4.9) tells us that the weightof this multiplet gets deformed to h = 3 � 32 = 32 . Hene, it should appear among the�rst desendants of the setor over the fundamental representation. Indeed, the irreduiblerepresentation with highest weight 3Æ1 is ontained in the tensor produt of the fundamentalrepresentation with the adjoint representation. Thus, ZFFB;S ontains this representation withh = 32 exatly as predited by eq. (4.9).5 Conlusions, open questions and outlookThis work ontains two entral results. To begin with, we have been able to ompute theexat boundary spetrum of a volume �lling brane on the 3-dimensional supersphere S3j2 forall values of the urvature radius R. With a little bit of extra work it should be possible toextend our formulas to higher dimensional superspheres and also to other spetra, inludingthe spetrum of the bulk �elds (see omments below). The seond result onerns the dualitybetween the supersphere PCM and the osp(2S+2j2S)GN model. More spei�ally, we wereable identify the spetrum at the speial point R = 1 with that of a free �eld theory, namelyof the model (1.5) with a partiular hoie of boundary onditions. This is onsistent with areent onjeture in [24℄ and it provides extremely strong additional support for the duality.The supersphere S3j2 and its higher dimensional generalizations have been advoatedin the past [20, 21℄ as good toy models for the world-sheet desription of string theory onAdS5 � S5. Obviously, the de�ning equations for both AdS5 and S5 are very similar to ourbasi onstraint (1.1). What is more important, however, is that the world-sheet modelsfor AdS5 � S5 = �PSU(2; 2j4)=SO(1; 4) � SO(5)�0 and the supersphere theory give rise toontinuous families of 2D onformal �eld theories with many ommon features. In bothases, the non-abelian global symmetries remain unbroken. On the other hand, they are



5 CONCLUSIONS, OPEN QUESTIONS AND OUTLOOK 32not enhaned into aÆne symmetries, at least not for generi points in the moduli spae.Consequently, it seems reasonable to speulate briey about possible lessons the superspheremodels might teah us for the world-sheet desriptions of string theory in AdS5 � S5.9To begin with, it is ertainly possible to determine the exat spetrum of the free sigmamodel on the superoset PSU(2; 2j4)=SO(1; 4) � SO(5) at R = 1, muh as this was donehere for the supersphere. The deformation of the spetrum away from R =1 annot be assimple as in the supersphere ase. In fat, we know for sure that there are some operatorswhose anomalous dimensions do not possess a quasi-abelian dependene of the radius R (orthe 't Hooft oupling). It might be interesting, however, to study whether there is somesubset of operators whose dimensions are given by eq. (1.8). Sine we have nothing to sayabout this right now, let us just imagine that in some way we were able to deform theentire spetrum. Then we ould start to look for speial values of the radius R at whih thespetrum ontains half-integer or integer values only. We know for sure that suh a pointexists, namely the radius R0 for with the string model beomes dual to the free N = 4supersymmetri Yang-Mills theory. One might hope that suh a point is desribed by a freeworld-sheet theory, just as it is the ase for the superspheres. In this sense, the dual ofthe free Yang-Mills theory would be the analogue of the free GN model. If one found suhstrong-weak oupling duality within the world-sheet desription of strings in AdS, it wouldredue the AdS/CFT orrespondene to a remaining weak-weak oupling duality. World-sheet desriptions of weakly oupled gauge theory have appeared in the literature, see e.g.[37, 38℄ or the reent work [39℄ for two developments that seem relevant for what we havejust outlined.Finding an expliit ation for suh a free world-sheet model and its deformation mighthave two interesting appliations. To begin with, it ould provide a better starting pointfor the quantization of the string theory on AdS5 � S5. In fat, let us point out that ourOSP(2S + 2j2S)-GN model is muh simpler than the original supersphere PCM: While theperturbative expansion of the latter ontains terms of any order in the basi �elds, theformer has no terms beyond fourth order. Furthermore, the perturbative expansion for theonjetured weakly oupled dual of the strongly oupled AdS5 � S5 sigma model ould beompared order by order to the perturbative expansion in the gauge theory, see again [39℄.One might even hope to prove the AdS/CFT duality using suh an intermediate world-sheetmodel. Of ourse all this remains mere speulation for now. In partiular, it is lear thatour analysis of supersphere models exploited ompatness of the target's bosoni base. Morework is neessary to inlude non-ompat targets suh as AdS5 � S5 or AdS4 � C P3 .After all these omments on possible impliations for the AdS/CFT orrespondene, wewould like to lose with a few remarks on the bulk spetrum of the supersphere models. Theanalysis of boundary deformations in [22℄ puts muh stress on the fat that omputationswhere only possible for very partiular boundary spetra. In fat, open strings had to beloalized at one point in a bakground in order to avoid running into mixing problems. For the9Similar remarks apply obviously to AdS4 � CP3.



5 CONCLUSIONS, OPEN QUESTIONS AND OUTLOOK 33superspheres, similar issues do not arise. While [22℄ foused on a bulk deformation preservingglobal left and right transformations simultaneously, the urrent-urrent perturbation (1.6)onsidered here is of a very di�erent type. Sine the deforming operator does not involveany tahyoni vertex operators, there is no mixing problem, neither for boundary theories,nor even for the bulk. On the other hand, the perturbation breaks the global bulk symmetrydown to a single diagonal ation of the symmetry algebra. Therefore, it should be possibleto deform bulk spetra, but it might be more diÆult to identify the relevant osp(2S+2j2S)ation as we deform from R = 1 to R = 1. We will return to these issues in a futurepubliation.Aknowledgments: We would like to thank Thomas Creutzig, Guiliano Nioli, PeterR�nne, J�org Teshner, Alexei Tsvelik and in partiular Constantin Candu and Hubert Saleurfor numerous stimulating disussion and many useful omments. T.Q. and V.S. are also grate-ful for the kind hospitality at the Isaa Newton Institute and the inspiring atmosphere duringits Workshop \Strong Fields, Integrability and Strings". The researh of T.Q. is funded bya Marie Curie Intra-European Fellowship, ontrat number MEIF-CT-2007-041765. We fur-thermore aknowledge partial support from the EU Researh Training Network Superstringtheory, MRTN-CT-2004-512194 and from ForesUniverse, MRTN-CT-2004-005104.



A SOME ASPECTS OF THE REPRESENTATION THEORY OF OSP(4j2) 34A Some aspets of the representation theory of OSP(4j2)Our �rst appendix ontains a number of basi notations and results onerning the Liesuperalgebra osp(4j2). These are used frequently in the main text. The omplex superalgebrag := osp(4j2) may be realized as the set of matriesosp(4j2) = �� A BJ2Bt D � : At = �A and DtJ2 = �J2D�with J2 = � 0 �11 0 � and the standard de�nition of graded ommutators. We have the usualseparation of the superalgebra into a bosoni g�0 = sp(2)� so(4) �= sl(2)� sl(2)� sl(2) and afermioni g�1 subspae. In addition, the superalgebra has a Z-grading that is ompatible withits Z2 struture, i.e. g = g�2 � g�1 � g0 � g1 � g2, where the relation [gi; gj ℄ = gi+j holds,with g0 �= so(4)� gl(1), g�0 = g�2 � g0 � g2 and g�1 = g�1 � g1.An integral dominant highest weight � = (j1; j2; j3) of g�0 is also one for the full superal-gebra g if it obeys the onsisteny onditions:j1 = 0) j2 = j3 = 0 ; j1 = 12 ) j2 = j3 (A.1)where the �rst spin is related to the sympleti subalgebra and the two others to the or-thogonal one. The �nite dimensional irreduible representations [�℄ of g are onstruted asfollows. Taking an irreduible highest weight representation (�) of g0 �= so(4) � gl(1) withhighest weight � = (j1; j2; j3) assoiated to the highest weight vetor v�, we setM� = U(g)(E�1 )2j1+1v� ; K� = �Indgp(�)� =M�where U(g) is the universal enveloping algebra of g, E�1 is the lowering operator of thesympleti subalgebra and p = g0 � g1 � g2. In the above equation, we have onsidered theg0-module (�) as a p-module by letting gi; i = 1; 2 at trivially on it. The �nite dimensionalrepresentation K� is alled the Ka module of � and is generially irreduible. The set ofKa modules is divided into typial and atypial ones. If the Ka module K� is typial, thenit is guaranteed to be irreduible. In this ase we de�ne the simple module [�℄ to be K�. If,however, one or more of the following atypiality onditions2j1 = �j2 � j3 ;2j1 = j2 + j3 + 2 ;2j1 = �(j2 � j3) + 1 (A.2)hold, then K� is atypial and will generially ontain a maximal invariant subspae I�without being fully reduible, i.e. it will ontain indeomposable onstituents. In thoseases, we set [�℄ = K�=I�. It an our however that I� = 0 even though K� is atypial.The eigenvalue of the quadrati Casimir in the simple module [�℄ is given by the formulaC2(�) = �4j1(j1 � 1) + 2j2(j2 + 1) + 2j3(j3 + 1) : (A.3)



A SOME ASPECTS OF THE REPRESENTATION THEORY OF OSP(4j2) 35In partiular, C2(�) is always a square, i.e. C2(�) = k2; k 2 N, on atypial representations [�℄.The atypial weights � = (j1; j2; j3) an be divided into bloks �k, suh that weights in �kpossess the same eigenvalue C2(�) = k2 of the quadrati Casimir element. The orrespondingatypial labels an be listed expliitly [40℄,�0 = ��0;0 = (0; 0; 0) ; �0;l = 12(l + 1; l� 1; l� 1) ; l � 1��k = f�k;l ; l 2 Zg (A.4)where �k;l =8>><>>: 12 (�l+ 2;�l� k;�l+ k) if l � �k12 (�l+ 1; l + k � 1;�l+ k � 1) if � k + 1 � l � 012 (l + 1; l+ k � 1;�l+ k � 1) if 0 � l � k � 112 (l + 2; l+ k; l � k) if k � l : (A.5)One sees easily, that the weights �k;�l for k � 1 may be obtained from �k;l by simplyexhanging the seond and the third Dynkin label. Furthermore, it is possible to distinguishthe weights �k;l aording to the atypiality ondition (A.2) they obey. The only weight toful�ll the �rst ondition is �0;0. The weights belonging to the seond ondition are �0;l forl � 1 and �k;�l for l � k. Finally, those the satisfy the last atypiality relation are the �k;�lfor l < k.The only atypial Ka modules K(�k;l) whih are irreduible orrespond to the weights�k;0 for k � 0 and to �0;1. The indeomposable struture of the remaining ones an bedeiphered from the following diagram,K�0;2 : [�0;2℄ �! [�0;0℄� [�0;1℄K�0;l : [�0;l℄ �! [�0;l�1℄ for l � 3K�k;l : [�k;l℄ �! [�k;l�1℄ for l � 1K�k;l : [�k;l℄ �! [�k;l+1℄ for l � �1 : (A.6)The dimension of the typial Ka modules isdim[K(j1;j2;j3)℄ = 16(2j1 � 1)(2j2 + 1)(2j3 + 1) (A.7)whereas the dimension of the atypial ones may be inferred from their struture, togetherwith the following formulas for the dimension of the irreduible representations,dim[�0;0℄ = 1 ; dim[�0;1℄ = 17 ; dim[�k;0℄ = 4k2 + 2dim[�0;l℄ = (2l + 1) �(2l + 1)2 � 3� for l � 2dim[�k;l℄ = (2l + 1) �4(k2 � 1)� (2l+ 1)2 + 7� for l � k � 1dim[�k;l℄ = (2l + 3) �(2l + 3)2 � 4(k2 � 1)� 7� for l � k (A.8)where, of ourse, dim[�k;�l℄ = dim[�k;l℄. The deomposition of K� for j1 � 1, whethertypial or not, into irreduible modules of the bosoni subalgebra has been omputed in [41℄.



B SOME USEFUL IDENTITIES 36It takes the form[K�℄g�0 �= (j1; j2; j3) M�;�=� 12 (j1 � 12 ; j2 + �; j3 + �)M�=�1 �(j1 � 1; j2 + �; j3)� (j1 � 1; j2; j3 + �)�� 2(j1 � 1; j2; j3)� M�;�=� 12 (j1 � 32 ; j2 + �; j3 + �)� (j1 � 2; j2; j3) : (A.9)There are a few speial ases for whih the deomposition is not generi. If j1 � 2; j2 � 1or j3 � 1 then the above deomposition formula must be trunated at the point whereone ore more of the labels beome negative. Moreover, there are two ases for whih themultipliity of the (j1 � 1; j2; j3) submodule has to be hanged. If j1 = 1; j2 > 0; j3 > 0 orj1 > 1; j2 = 0; j3 > 0 or j1 > 1; j2 > 0; j3 = 0, then this blok will appear only one and ifboth j2 and j3 are null, then it will not be present at all.When j1 = 12 , the Ka modules K� with weight � obeying the onsisteny onditions(A.1) are equal to the irreduible modules � 12 ; k2 ; k2 � and they possess the following struture�12 ; k2 ; k2�jg�0 �= �12 ; k2 ; k2���0; k + 12 ; k + 12 ���0; k � 12 ; k � 12 � : (A.10)Finally, the Ka module K[0;0;0℄ is trivial.B Some useful identitiesIn this appendix we ollet a few de�nitions and identities that we have employed to obtainthe Casimir deompositions in setions 2.3 and 3.3. We also provide the �rst few terms inthe Casimir deomposition of the partition funtion ZFFB for S = 1.B.1 Identities used in the Casimir deompositionTo begin with, let us briey reall the de�nition of Jaobi's � funtions. In our onventionsthey are given by�1(qjz) = �i Xr2Z+12 (�1)r� 12 zrq r22 = �i z 12 q 18 1Yn=1(1� qn)(1� zqn)(1� z�1qn�1)�2(qjz) = Xr2Z+12 zrq r22 = z 12 q 18 1Yn=1(1� qn)(1 + zqn)(1 + z�1qn�1)�3(qjz) = Xr2Zzrq r22 = 1Yn=1(1� qn) Yr2N+12 (1 + zqr)(1 + z�1qr)�4(qjz) = Xr2Z(�1)rzrq r22 = 1Yn=1(1� qn) Yr2N+ 12 (1� zqr)(1� z�1qr) :
(B.1)



B SOME USEFUL IDENTITIES 37The following two lemmata ontain auxiliary formulas that are needed to rewrite the partitionfuntion (2.16) in terms of haraters of osp(4j2).Lemma B.1.1Yn=1 1(1� zqn)(1� z�1qn) = Xn2Zzn 1Xm=0(�1)m qm2 (m+2n+1) � qm2 (m+2n�1)�(q)2 :Proof. We assume that jqj < jzj < 1, whih is the relevant ondition for the above expansionto make sense. We want to �nd the oeÆients fNl (q) in the relationXl2ZfNl (q)zl = 1(1� z)QNn=1(1� zqn)(1� z�1qn) :To do this, we multiply both sides by z�k�1 and integrate them over z along a ontour thatsurrounds zero in a ounterlokwise diretion. In order to stay within the region jzj < 1 itmust ling to the unit irle on the inside. The left hand side of the previous equation givesus the oeÆient fNk (q). The right hand side is zero for z = 0 and the �rst order poles thatare enirled by the ontour are at z = qn for n = 1; : : : ; N . Their residues are given bylimz!qn z�k�1(z � qn)(1� z)QNl=1(1� zql)(1� z�1ql) = (�1)n�1q n2 (n�2k�1)QN+nl=1 (1� ql)QN�nl=1 (1� ql) :If we �nally remove our uto� N by sending N !1 we arrive at1(1� z)Q1n=1(1� zqn)(1� z�1qn) =Xk2Zzk 1Xn=0 (�1)n�1q n2 (n�1�2k)�(q)2 :Multiplying both sides by 1� z and using the lemma B.2 below to shu�e some minus signsaround ompletes the proof.Lemma B.2.2nXm=1(�1)mqm(m�1)2 �mn = 0 for n � 11Xm=1 rXs=�r(�1)mqm(m�1)2 �m(n+s)(1� qm) = 1Xm=1 rXs=�r(�1)mqm(m�1)2 �m(�n+s)(1� qm) :Proof. The �rst equation is shown to be true by splitting the sum in Pnm=1 and P2nm=n+1and showing that they are equal up to a sign. The seond equation then follows easily fromthe �rst.There are a number of very simple auxiliary formulas that are needed for the Casimirdeomposition in setion 2.3. Let us only list two of them here1Xr=0(�1)rq r(r+2)4 (1� qr+2)ar = 1Xr=0(�1)rq r(r+2)4 (ar � ar�2) (B.2)



B SOME USEFUL IDENTITIES 38�q(j2� r2 )2 � q(j2+ r2+1)2��q(j3� r2 )2 � q(j3+ r2+1)2� = qj2(j2+1)+j3(j3+1)q r22 +r+1� �q�(r+1)(j2+j3+1) + q(r+1)(j2+j3+1) � q(r+1)(j2�j3) � q�(r+1)(j2�j3)� : (B.3)B.2 Casimir deomposition of ZFFBIn setion 3.3 we obtained losed formulas (3.24) and (3.26) for the Casimir deompositionof the partition funtion ZFFB . Sine our expression for the branhing funtions is a bitompliated, let us reprodue the �rst few terms of the partition funtion expliitly,ZFFB;S=1(q) = q0�[0;0;0℄ + q 12�[ 12 ;0;0℄ + q1�[1;0;0℄ + q 32 ��[ 32 ;0;0℄ + �[ 12 ;0;0℄�+q2 ��[2;0;0℄ + �[1;0;0℄ + �[ 12 ; 12 ; 12 ℄ + �[0;0;0℄�+q 52 ��[ 52 ;0;0℄ + �[ 32 ;0;0℄ + �[1; 12 ; 12 ℄ + 2�[ 12 ;0;0℄�+q3 ��[3;0;0℄ + �[2;0;0℄ + �[ 32 ; 12 ; 12 ℄ + 4�[1;0;0℄ + �[ 12 ; 12 ; 12 ℄ + �[0;0;0℄�+q 72 ��[ 72 ;0;0℄ + �[ 52 ;0;0℄ + �[2; 12 ; 12 ℄ + 3�[ 32 ;0;0℄ + 2�[1; 12 ; 12 ℄ + 3�[ 12 ;0;0℄�+q4 ��[4;0;0℄ + �[3;0;0℄ + �[ 52 ; 12 ; 12 ℄ + 3�[2;0;0℄ + 2�[ 32 ; 12 ; 12 ℄ + �[1;1;0℄ + �[1;0;1℄+6�[1;0;0℄ + 4�[ 12 ; 12 ; 12 ℄ + 3�[0;0;0℄�+q 92 ��[ 92 ;0;0℄ + �[ 72 ;0;0℄ + �[3; 12 ; 12 ℄ + 3�[ 52 ;0;0℄ + 2�[2; 12 ; 12 ℄ + �[ 32 ;1;0℄+�[ 32 ;0;1℄ + 5�[ 32 ;0;0℄ + 4�[1; 12 ; 12 ℄ + �[ 12 ;1;1℄ + 7�[ 12 ;0;0℄�+q5 ��[5;0;0℄ + �[4;0;0℄ + �[ 72 ; 12 ; 12 ℄ + 3�[3;0;0℄ + 2�[ 52 ; 12 ; 12 ℄ + �[2;1;0℄ + �[2;0;1℄+5�[2;0;0℄ + 5�[ 32 ; 12 ; 12 ℄ + �[1;1;1℄ + �[1;1;0℄ + �[1;0;1℄ + 14�[1;0;0℄ + 5�[ 12 ; 12 ; 12 ℄ + 3�[0;0;0℄�+q 112 ��[ 112 ;0;0℄ + �[ 92 ;0;0℄ + �[4; 12 ; 12 ℄ + 3�[ 72 ;0;0℄ + 2�[3; 12 ; 12 ℄ + �[ 52 ;1;0℄+�[ 52 ;0;1℄ + 5�[ 52 ;0;0℄ + 5�[2; 12 ; 12 ℄ + 10�[ 32 ;0;0℄ + 2�[ 32 ;1;0℄ + 2�[ 32 ;0;1℄ + �[ 32 ;1;1℄+8�[1; 12 ; 12 ℄ + �[ 12 ;1;1℄ + 11�[ 12 ;0;0℄�+q6 ��[6;0;0℄ + �[5;0;0℄ + �[ 92 ; 12 ; 12 ℄ + 3�[4;0;0℄ + 2�[ 72 ; 12 ; 12 ℄ + �[3;1;0℄+�[3;0;1℄ + 5�[3;0;0℄ + 5�[ 52 ; 12 ; 12 ℄ + 11�[2;0;0℄ + 2�[2;1;0℄ + 2�[2;0;1℄ + �[2;1;1℄+11�[ 32 ; 12 ; 12 ℄ + 2�[1;1;1℄ + 4�[1;1;0℄ + 4�[1;0;1℄ + 22�[1;0;0℄ + 13�[ 12 ; 12 ; 12 ℄ + 9�[0;0;0℄�+q 132 ��[ 132 ;0;0℄ + �[ 112 ;0;0℄ + �[5; 12 ; 12 ℄ + 3�[ 92 ;0;0℄ + 2�[4; 12 ; 12 ℄ + �[ 72 ;1;0℄+�[ 72 ;0;1℄ + 5�[ 72 ;0;0℄ + 5�[3; 12 ; 12 ℄ + 11�[ 52 ;0;0℄ + 2�[ 52 ;1;0℄ + 2�[ 52 ;0;1℄ + �[ 52 ;1;1℄+11�[2;12 ; 12 ℄ + 2�[ 32 ;1;1℄ + 5�[ 32 ;1;0℄ + 5�[ 32 ;0;1℄ + 16�[ 32 ;0;0℄ + 15�[1; 12 ; 12 ℄ + �[1; 32 ; 12 ℄+�[1; 12 ; 32 ℄ + 4�[ 12 ;1;1℄ + 21�[ 12 ;0;0℄�+ : : : :One may deform this expression to values R 6= 1 by means of the formula (3.35) at the endof setion 3.4.



C RECOMBINATION OF THE BOSONIC CHARACTERS 39C Reombination of the bosoni haratersLet Z be a partition funtion with osp(4j2) symmetry. If we denote the haraters of thebosoni subalgebra by �B(j1;j2;j3)(zi) = �j1(z1)�j2(z2)�j3(z3), we an write the partition fun-tion as Z = X�2J �B� (z1; z2; z3) B� (q) = X�2J 0 �K� (z1; z2; z3) K� (q) (C.1)where J 0 � J is the set of labels in J = f(j1; j2; j3); ji = 0; 1=2; 1; 3=2; : : :g that areompatible with the onsisteny onditions (A.1). Here, the �rst deomposition is in termsof bosoni haraters while the seond one is based on the haraters of Ka modules. Inorder to �nd the relations between these two deompositions, we reall that the roots of thefour fermioni lowering operators in g�1 := osp(4j2)�1 are�1 = ��12 ; 12 ; 12� �2 = ��12 ; 12 ;�12� �3 = ��12 ;�12 ; 12� �4 = ��12 ;�12 ;�12� : (C.2)Let us �rst disuss the generi label � = (j1; j2; j3) where either j1 � 32 , or j1 = 1 and(j2; j3) 6= (0; 0). In suh ases we an write the deomposition of the Ka module harater�K� as �K� = 4Xi=0 X�2�i(g�1)�B�+� (C.3)where � is any of the weights that appear in the ith exterior produt �i(g�1) of g�1. Wealso allow for negative spins using the formal presription �j = ���j�1. To treat theremaining ases with j1 � 12 we employ the formulas developed in appendix A. Inserting thedeomposition of Ka modules into the partition funtion Z leads to a formula that expressesthe bosoni branhing funtions  B� as sums of the branhing funtions  K� . Our main aimis to invert this relation, i.e. to determine the branhing funtions  K in terms of  B . Tothis end let us state a few basi properties of  K that will be heked afterwards, one wehave an expliit formula, K[j1;j2;j3℄ = � K[j1;�j2�1;j3℄ = � K[j1;j2;�j3�1℄ : (C.4)If we take this behavior of  K for granted the deomposition formulas for the partitionfuntion Z and of �K in terms of bosoni haraters imply, B� = 4Xi=0 X�2�i(g�1) K��� (C.5)for all � 2 J 0. Inverting this expression leads to the following result K� = 1Xn=0(�1)n X�2Symn(g�1) B��� : (C.6)



C RECOMBINATION OF THE BOSONIC CHARACTERS 40To establish formula (C.6) we plug (C.5) into (C.6). Thereby we obtain K� = 1Xi=0(�1)i 4Xj=0(�1)j X�2Symi�j (g�1) X2�j(g�1) K����| {z }=0 if i 6=0 =  K� ; (C.7)thus showing that (C.6) inverts (C.5). In (C.7) we have set Symn(V ) = ; if n < 0 and usedthe identity: 4Xj=0(�1)j X�2Symi�j(V ) X2�j(V ) (� + ) = 0 ; (C.8)whih is true for every four dimensional vetor spae V and every funtion  as long asi � 1. To show (C.8), we introdue the symbol 	 whih is to be understood as a sort ofa negative of a diret sum as for example in A � B 	 B = A. Then (C.8) is equivalent toL4j=0	jSymi�j(V )
�j(V ) = 0 if i � 1, whih an be shown using standard Young tableauxtehniques. Denote a tableau onsisting of one single row with m boxes by 1m and a tableauwith one single olumn of n boxes10 by n1 and ompute that 1m
n1 = 1mn1�1m�1(n+1)1if m � 1; n � 1; n � 4. Thus4Mj=0 	jSymi�j(V )
 �j(V ) = 4Mj=0 	j1i�j 
 j1= 1i � 3Mj=1 	j�1i�jj1 � 1i�(j+1)(j + 1)i�� 1i�4 
 41 = 0 (C.9)if i � 1. Thereby we have established that our assumption (C.4) implies the result (C.6).In order to omplete our proof of equation (C.6) we still need to verify our assumption(C.4). Let us observe that the bosoni branhing funtions  B possess the same symmetryproperty, beause, sine the bosoni haraters �B are simply produts of sl(2) haraters�j = ���j�1, the identity (C.4) holds trivially for  B instead of  K . We an use this fatto show K!m(�) = 1Xi=0(�1)i X�2Symi(g�1) B!m(�)�� = 1Xi=0(�1)i X�2Symi(g�1) B!m(��~!m(�))= � 1Xi=0(�1)i X�2Symi(g�1) B��~!m(�) = � 1Xi=0(�1)i X�2Symi(g�1) B��� : (C.10)The labels !2(�) and ~!2(�) were introdued as !2(�) = (j1;�j2 � 1; j3) and ~!2(�) =(j1;�j2; j3) for all � = (j1; j2; j3). Similar onventions apply to !3 and ~!3.As we have noted before, the funtions  K� an have Laurent expansions with negativeoeÆients. Suh negative oeÆients only appear in the atypial setor and they an betraed bak to the fat that we expanded the partition funtion Z in terms of `unphysial'10 Sine we work with a four-dimensional spae V , 41 = 01 must denote the trivial one-dimensional spae.



D A FREE FIELD CONSTRUCTION FOR dOSP(Mj2N)1 41haraters of Ka modules rather than through those of irreduible representations. Therelation between Ka modules and irreduible representation has diret impliations on theorresponding branhing funtions. In fat, the branhing funtions  � that are de�nedthrough a deomposition into haraters of irreduible representations are related to thebranhing funtions  K by  [j1;j2;j3℄(q) =P�  K� (q). On the right hand side the summationextends over all those Ka modules K� that ontain the irreduible representation [j1; j2; j3℄in their deomposition series. All relevant deomposition series were spelled out in eq. (A.6).This gives  �0;0(q) =  K�0;0(q) +  K�0;2 (q) �0;l(q) =  K�0;l(q) +  K�0;l+1(q) 8 l � 1 �k;0(q) =  K�k;0(q) +  K�k;1(q) +  K�k;�1(q) 8 k � 1 �k;l(q) =  K�k;l(q) +  K�k;l+1(q) 8 k � 1 ; l � 1 �k;l(q) =  K�k;l(q) +  K�k;l�1(q) 8 k � 1 ; l � �1 : (C.11)
Let us stress that the branhing funtions  �(q) for irreduible representations of osp(4j2)are guaranteed to have non-negative integral oeÆients.D A free �eld onstrution for dosp(Mj2N)1This appendix ontains a free �eld onstrution of the aÆne osp(Mj2N) algebra at levelk = 1 in terms of free fermions and several bosoni ghost systems. Let us deompose allsupermatries X 2 osp(M j2N) into bloks aording toX = 0� E �T T�T t F G�T t �G �F t 1A (D.1)where E is antisymmetri and G; �G are symmetri. A basis for the various bloks in thesupermatrix X is provided byEij = eij � eji 1 � i < j � MFab = eab 1 � a ; b � NGab = �Gab = eab + eba 1 � a � b � NTia = �Tia = eia 1 � i � M ; 1 � a � N (D.2)where emn are elementary matries. The matries we have just introdued desribe the vari-ous bloks in the supermatrixX . We agree to denote by Eij the supermatrix of the form (D.1)where E is given by Eij and all other bloks vanish. The basis elements Fab; Gab; �Gab; Tia; �Tiaare de�ned similarly.



D A FREE FIELD CONSTRUCTION FOR dOSP(Mj2N)1 42Now let us introdue M free fermions  i and 2N bosons �a; a with the following basioperator produts, i(z) j(w) � Æijz � w ; �a(z)b(w) � �a(z)�b(w) � Æabz � w : (D.3)We an de�ne the free �eld representation of the osp(Mj2N) urrent algebra throughEij(z) = ( i j)(z) ; Fab(z) = �(�ab)(z)Gab(z) = (�a�b)(z) ; �Gab(z) = �(ab)(z)Tia(z) = i( i�a)(z) ; �Tia(z) = �i( ia)(z) :The invariant bilinear form for osp(Mj2N) is (X;Y ) = 12 str(XY ). On the basis elements ittakes the following from(Eij ; Ekl) = �ÆikÆjl i < j and k < l(Fab; Fd) = �ÆadÆb(Gab; �Gd) = �ÆaÆbd for a 6= b and  6= d (Gaa; �Gbb) = �2Æab(Tia; �Tjb) = ÆijÆab : (D.4)With the help of this form and assuming that M 6= 2N + 1, the holomorphi part of theenergy momentum tensor is given by the Sugawara onstrutionT (z) = (J�J�)(z)2(k + g_) = 12(k + g_)h� MXi<j=1(E2ij)� NXa;b=1(FabFba)� NXa<b=1 � �Gab; �Gab	 ��12 NXa=1 � �Gaa; �Gaa	 �� MXi=1 NXa=1 � �Tia; �Tia� �i= �12 MXi=1( i� i) + 12 NXa=1 �(�a�a)� (a��a)� (D.5)Here, the dual Coxeter number is given by g_ = M � 2N � 2 and the value of the level isk = 1. The entral harge of the system is easily seen to take the value  = M2 �N .Let us now introdue the involutive automorphism 
 suh that the �xed point set fX 2osp(M j2N)j
(X) = Xg is isomorphi to osp(M � 1j2N). On the basis we introdued above,
 ats non-trivially only on Eij ; Tia; �Tia. In fat, it multiplies all operators with i = 1 by�1 and leaves the others invariant. If we denote the anti-holomorphi �elds orresponding
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