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kenierstraat 65, 1018 XE Amsterdam, The NetherlandsAbstra
tWe investigate the spe
trum of the prin
ipal 
hiral model (PCM) on odd-dimensionalsuperspheres as a fun
tion of the 
urvature radius R. For volume-�lling branes onS3j2, we 
ompute the exa
t boundary spe
trum as a fun
tion of R. The extensionto higher dimensional superspheres is dis
ussed, but not 
arried out in detail. Ourresults provide very 
onvin
ing eviden
e in favor of the strong-weak 
oupling dualitybetween supersphere PCMs and OSP(2S+2j2S) Gross-Neveu models that was re
ently
onje
tured by Candu and Saleur.

DESY 08-123 0809.1046ITFA-2008-30 NI09007-SIS

e-mail: Vladimir.Mitev�desy.de,T.Quella�uva.nl, Volker.S
homerus�desy.de1

http://arXiv.org/abs/0809.1046v1


CONTENTS 1Contents1 Introdu
tion 12 Spe
trum of the supersphere PCM at large volume 62.1 Parti
le on the supersphere S3j2 . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 The 
omplete boundary spe
trum . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Casimir de
omposition of the boundary spe
trum . . . . . . . . . . . . . . . . 133 The OSP(4j2) GN model and the supersphere S3j2 173.1 Free �eld 
onstru
tion of the bulk theory . . . . . . . . . . . . . . . . . . . . 173.2 Boundary 
onditions and their spe
tra . . . . . . . . . . . . . . . . . . . . . . 213.3 Casimir de
omposition in the free GN model . . . . . . . . . . . . . . . . . . 233.4 Deformation from free GN model to free PCM . . . . . . . . . . . . . . . . . 254 Generalization for higher-dimensional superspheres 274.1 Partition fun
tions for superspheres at R = 1;1 . . . . . . . . . . . . . . . . 284.2 Test of the duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Con
lusions, open questions and outlook 31A Some aspe
ts of the representation theory of OSP(4j2) 34B Some useful identities 36B.1 Identities used in the Casimir de
omposition . . . . . . . . . . . . . . . . . . 36B.2 Casimir de
omposition of ZFFB . . . . . . . . . . . . . . . . . . . . . . . . . . . 38C Re
ombination of the bosoni
 
hara
ters 39D A free �eld 
onstru
tion for dosp(Mj2N)1 411 Introdu
tionPrin
ipal 
hiral models (PCMs) on symmetri
 spa
es have been studied extensively be
ause oftheir numerous appli
ations in many di�erent bran
hes of physi
s. While PCMs on symmetri
spa
es are well-known to possess an in�nite number of 
lassi
ally 
onserved quantities (see[1, 2, 3, 4, 5, 6℄ for early work and e.g. [7, 8℄ for more re
ent developments and referen
es),quantum e�e
ts spoil integrability in many 
ases [9, 10℄. And even in those examples forwhi
h this does not happen, �nding expli
it formulas for partition fun
tions and 
orrelatorsis a diÆ
ult problem that has only been solved for a small set of models. More re
ently,PCMs on (generalized) symmetri
 superspa
es have re
eived 
onsiderable attention. This isexplained in part through the role they play for the des
ription of strings for Anti-de Sitter(AdS) ba
kgrounds in various dimensions, in
ludingAdS5�S5 andAdS4�C P3 [11, 12, 13, 14℄.PCMs on symmetri
 superspa
es possess a number of remarkable properties. In parti
ular,there exist several families of quantum 
onformal models [15, 16, 17, 18, 19℄. Yet, �ndingexpli
it solutions is still rather diÆ
ult and will 
ertainly require developing new te
hniques,see e.g. [20, 21℄. Some remarkable re
ent advan
es, most importantly the results of [22℄ and



1 INTRODUCTION 2[23, 24℄, seem to bring at least some partial solutions within rea
h. One of our aims here isto initiate and explore new solution strategies that in
orporate target spa
e supersymmetryas an essential feature.In this work we fo
us on a parti
ular family of symmetri
 target superspa
es, namely onthe odd dimensional superspheres S2S+1j2S with 2S fermioni
 
oordinates. The supersphereS2S+1j2S admits at least three di�erent des
riptions that will be somewhat useful for usbelow. We 
an think of S2S+1j2S as a supermanifold in R2S+2j2S de�ned by the equation2S+2Xi=1 x2i + 2R2 SXa=1 �2a�1�2a = R2 : (1.1)Here, xi; i = 1; : : : ; 2S + 2; and �j ; j = 1; : : : ; 2S; are the bosoni
 and fermioni
 
oordinatesof R2S+2j2S , respe
tively. The real parameter R has been introdu
ed to denote the radiusof the supersphere. Note that in our 
onventions, the bosoni
 
oordinates s
ale with thelength while the fermioni
 
oordinates are 
hosen to be dimensionless. From our des
riptionof the supersphere through equation (1.1) it is evident that S2S+1j2S 
omes equipped withan osp(2S+2j2S) a
tion. In fa
t, the Lie superalgebra osp(2S+2j2S) a
ts on the embeddingspa
e R2S+2j2S through its fundamental representation. By the very de�nition of OSP(2S +2j2S) this a
tion respe
ts the 
onstraint (1.1). Hen
e, we arrive at a se
ond des
ription ofS2S+1j2S as a symmetri
 spa
eS2S+1j2S = OSP(2S + 2j2S)=OSP(2S + 1j2S) : (1.2)Note that the stabilizer of any point on the supersphere is isomorphi
 to the subsupergroupOSP(2S +1j2S) � OSP(2S+2j2S). Finally, we 
an also solve the 
onstraint (1.1) expli
itlyby parametrizing the supersphere S2S+1j2S through 2S + 1 angular 
oordinates 'j and 2Sfermioni
 variables �j . In the 
ase of the 3-sphere S3j2, for example, the line element takesthe following form ds2 = 2R2(1� �1�2)d�1d�2 +R2(1� 2�1�2)d
3 (1.3)where d
3 = d'21 + 
os2 '1 d'22 + sin2 '1 d'23is the usual line element of the 3-dimensional unit sphere. All three des
riptions of thesupersphere S2S+1j2S will be used frequently throughout the rest of this work.Next we turn to the prin
ipal 
hiral model on the supersphere. On
e more, there aredi�erent ways to introdu
e this theory. The most basi
 one is to think of it as a linear sigmamodel for the �elds xi and �j with a non-linear 
onstraint (1.1) on the �eld 
on�gurations.Another possibility is to 
onsider it as a non-linear sigma model. In the 
ase of the 3-dimensional supersphere the latter takes the formSPCM = R22� Z d2z�2(1� �1�2) ���1 ���2 � ��2 ���1�+ (1� 2�1�2) ��'1 ��'1 + 
os2 '1 �'2 ��'2 + sin2 '1 �'3 ��'3�� (1.4)



1 INTRODUCTION 3for the �elds �j ; 'i. The 
oupling 
onstant in front of the a
tion is determined by the radiusR of S3j2. For the PCM on the purely bosoni
 3-sphere the 
oupling R runs and in order forthe 
ow to end in a non-trivial �xed-point one must add a WZ term [25℄. But the presen
eof the two fermioni
 dire
tions 
hanges the situation drasti
ally. As shown in [18℄, the �-fun
tion of the PCM on S2S+1j2S is the same as for a bosoni
 PCM on a sphere Sd whosedimension d = 2S + 1 � 2S = 1 is given by the di�eren
e between the number of bosoni
and fermioni
 
oordinates. Consequently, the �-fun
tion vanishes for the PCM on S2S+1j2S,i.e. the model (1.4) de�nes a family of 
onformal �eld theories at 
entral 
harge 
 = 1 with
ontinuously varying exponents.Of 
ourse, unlike the PCM on S1 = U(1), the theory de�ned by the a
tion (1.4) is notfree. For large radius R, the model is weakly 
oupled and its properties may by studiedperturbatively. But as we pass to a more strongly 
urved ba
kground, 
omputing quantitiesas a fun
tion of the radius R may seem like a very daunting task. This is even more sobe
ause there is very little symmetry to work with. As a 
onformal �eld theory, the PCMon the supersphere possesses the usual 
hiral Virasoro symmetries. But for a model withmultiple bosoni
 
oordinates the two sets of 
hiral Virasoro generators are not suÆ
ient tomake the theory rational. In addition, there is a single set of global osp(4j2) generators.Their Noether 
urrents, however, fail to be 
hiral, at least for generi
 points in the modulispa
e. Without the prote
tion of 
urrent algebra symmetries, the usual algebrai
 tools of
onformal �eld theory 
annot be applied to supersphere PCMs and so we have to pro
eedalong a rather di�erent route.Many years of experien
e with sigma models show that they often possess interesting dualdes
riptions. The simplest su
h duality is that between the free 
ompa
ti�ed boson and themassless Thirring model. Let us re
all that the latter involves two real fermions  1 and  2and the following a
tionSThm=0 = 12� Z d2z 2Xi=1� i �� i + � i� � i + g2� 1 � 2 �  2 � 1�2�where the 
ompa
ti�
ation radius R is related to the 
oupling g through R2 = 1+ g2. Simi-larly, one may hope to un
over a dual des
ription of the PCM on the supersphere S2S+1j2Sthat be
omes weakly 
oupled for some �nite value of the radius R, deep in the strongly 
urvedregime. Su
h a dual des
ription was indeed proposed re
ently. A

ording to an intriguing
onje
ture by Candu and Saleur [24℄, there indeed exists one spe
ial radius R = R0 at whi
hthe PCM on S2S+1j2S 
an be des
ribed as a non-intera
ting Gross-Neveu model involving2S + 2 real fermions  i along with S bosoni
 �
 systems 
a and �a,SGNg=0 = 12� Z d2z�Xi� i �� i + � i� � i�+Xa��a ��
a + ��a��
a�� : (1.5)All the �elds appearing in this theory possess 
onformal weight hi = ha = 1=2 so that the
entral 
harge is 
 = S+1�S = 1. At this point in the moduli spa
e, the theory possesses two



1 INTRODUCTION 4
ommuting sets of 
hiral osp(4j2) 
urrents J� = J�(z) and �J� = �J�(�z). Expli
it formulaswill be spelled out in se
tion 3 below. The aÆne symmetry is broken down to a globalosp(4j2) symmetry by the following osp(4j2) invariant marginal deformationS int = g22� Z d2zJ�(z)
( �J�(�z)) = g22� Z d2z hXi$i i � i +Xa(
a ��a � �a�
a)i2 : (1.6)Here, 
 is a parti
ular automorphism of the osp(2S+2j2S) 
urrent algebra whi
h leaves asubalgebra osp(2S+1j2S) invariant. It will be spelled out expli
itly below. The numbers $iare given by $1 = �1 and $i = 1 for i 6= 1. The theory SGN = SGNg=0 + S int is 
laimedto be equivalent to the supersphere PCM with the two 
oupling 
onstants R and g relatedby R2 = 1 + g2.1 The equivalen
e is a strong-weak 
oupling duality sin
e SGN be
omesweakly 
oupled for R � R0 = 1. Note that this duality is a dire
t generalization of therelation between the 
ompa
ti�ed free �eld and the massless Thirring model. There appearsone real fermion for ea
h bosoni
 
oordinate of the embedding spa
e R2S+2j2S . Ea
h pairof additional fermioni
 dire
tions gives rise to a �
 system. Note, however, that the dualitybetween supersphere PCMs and Gross-Neveu models is one between intera
ting 
onformal�eld theories. In that sense, it is mu
h less trivial then its purely bosoni
 
ounterpart.The main aim of this note is to provide very 
ompelling eviden
e for the duality betweenthe theory (1.5,1.6) and the supersphere PCMs, extending previous numeri
al and algebrai
arguments given in [23, 24℄. To this end we shall employ some re
ent results of [22℄ thatare designed to 
ompute exa
t spe
tra in models with a spe
ial 
lass of target spa
e super-symmetries, in
luding the two series psl(NjN) and osp(2S + 2j2S). The Lie superalgebraosp(2S+2j2S) possesses a vanishing quadrati
 Casimir Cad � f���f��� in the adjoint repre-sentation. Sin
e Cad may be 
onsidered as a rough measure for the `amount of non-abelianess'of a Lie superalgebra, one may suspe
t that �eld theories with osp(2S+2j2S) symmetry aresomewhat intermediate between free �eld theories and the most general intera
ting models.Indeed, as was shown in [16, 22℄, the perturbation series for 
onformal weights has featuresthat are very reminis
ent of those in abelian models (torus 
ompa
ti�
ations). In this notewe shall 
onstru
t the exa
t partition fun
tion of the theory (1.5,1.6) with a parti
ular 
hoi
eof boundary 
onditions, but for all values(!) of the 
oupling g. We shall prove that it in-terpolates 
orre
tly between g = 0 and the spe
trum of the supersphere PCM at R = 1.The main results of [22℄ are rather easy to state. Before we do so, let us brie
y review thebehavior of 
onformal weights for a 
ompa
ti�ed free bosoni
 �eld ' � ' + 2�R. Supposewe are given a �eld 	 of 
onformal weight h0(	) at some radius R0. In order to �nd the
onformal weight of the same �eld 	 at a di�erent radius R, it suÆ
es to know its U(1)
harge g(	) (momentum/winding). The 
onformal weight is then given byh(	) = h0(	) + f(R) g2(	) (1.7)1Let us note that the signs $i in the itera
tion term are dire
tly linked to the automorphism 
. Thesesigns were missing in the original formulation of the 
onje
ture by Candu and Saleur [24℄. They are irrelevantfor S = 0 but play a 
ertain role when S � 1.



1 INTRODUCTION 5where f(R) is some universal fun
tion of the radius that is the same for all �elds 	. f(R)may depend, however, on whether 	 is a bulk or boundary �eld and on the pre
ise boundary
ondition that is imposed. For bulk �elds, there exist independent left and right U(1) 
hargesand the behavior of the weights is a bit more 
ompli
ated. We shall brie
y 
omment on thisissue in the 
on
lusions. Returning to our supersphere 
onformal �eld theories, we pi
k any�eld 	 of weight h0(	) in the free �eld theory (1.5). Let us suppose that 	 is part of someosp(2S + 2j2S) multiplet �. A

ording to the arguments explained in [22℄ (see also [23℄ fornumeri
al 
he
ks), its dimension at radius R is then given byh(	) = h0(	) + f(R) C2(�) : (1.8)Here, C2(�) is the value of the quadrati
 Casimir element in the representation � of theLie superalgebra osp(2S + 2j2S). On
e again, the fun
tion f(R) is universal, i.e. it does notdepend on the �eld 	. Hen
e, the shift of the 
onformal weight is entirely determined by theway 	 transforms under the a
tion of the Lie superalgebra osp(2S + 2j2S). Equation (1.8)is the dire
t generalization of eq. (1.7) with the square of the U(1) 
harge repla
ed by thequadrati
 Casimir. The behavior (1.8) has been also been predi
ted through the study oflatti
e algebras in [24℄. It was furthermore 
he
ked using perturbative 
al
ulations at R =1and with numeri
al simulations. We shall refer to the behavior (1.8) as a quasi-abeliandeformation of 
onformal weights. It is typi
al for models with osp(2S + 2j2S) or psl(NjN)symmetry, though often restri
ted to parti
ular (boundary) �elds of the theories (see [22℄and �nal se
tion for more details). Let us mention that �elds transforming in representationswith vanishing Casimir C2(�) are prote
ted, i.e. their 
onformal weights are independent ofR. Multiplets of this type always satisfy some shortening 
onditions. Our formula (1.8),however, applies to all �elds in the theory, irrespe
tively of whether they are long or short.It allows to 
ompute their 
onformal weight for all values of the radius R.Let us study a few 
on
rete examples of the quasi-abelian deformation of 
onformalweights. In the large volume limit, the PCM possesses an in�nite number of �elds with 
on-formal weight h = 0. These simply 
orrespond to fun
tions on the supersphere. The simplestfun
tion is the 
onstant. Sin
e it transforms in the trivial representation of osp(2S+2j2S), its
onformal weight remains undeformed at h = 0. It 
orresponds to the unique va
uum stateof the free Gross-Neveu model (1.5). Next, the PCM 
ontains the fundamental multipletxi; �j . The quadrati
 Casimir of this multiplet � = �f is C2(�f ) = 1, i.e. its value is inde-pendent of S. As we move from the free sigma model at R =1 towards the free Gross-Neveumodel (1.5), the �elds xi; �j a
quire a non-vanishing anomalous dimension whi
h be
omesh = h0 + f(R0)C2(�f ) = 1=2 when we rea
h the radius R = 1 
orresponding to g = 0.Hen
e, the fundamental multiplet of the PCM turns into the multiplet  i; 
a; �a. Higherfun
tions possess larger Casimir and hen
e they are mapped to states of weight h > 1=2 atg = 0. Beyond the spa
e of ground states in the PCM, there are �elds involving any numberof world-sheet derivatives. These have positive integer weight at R = 1. As we shall seebelow, su
h states 
an transform in osp(2S+2j2S) representations � with both positive and



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 6negative values C2(�) of the quadrati
 Casimir. Consequently, some of these multiplets aremoved up while others are moved down to lower weights. Our 
laim is that weights arerearranged in pre
isely the right way to reprodu
e the spe
trum of the g = 0 Gross-Neveumodel.The plan of this work is as follows. In the next se
tion we shall study the PCM (1.4)for the 3-dimensional supersphere S3j2 and determine its exa
t spe
trum at R = 1. Forsimpli
ity, we shall also restri
t to the partition fun
tion on a strip with Neumann boundary
onditions imposed along both boundaries. After a detailed dis
ussion of the low lyingstates, we present a 
losed formula for the full partition fun
tion (2.16). The latter is thende
omposed expli
itly into the 
ontributions 
oming from states whi
h transform in the samerepresentation � under the global osp(4j2). Se
tion 3 is devoted to the theory (1.5) and itsdeformation by the term (1.6). In parti
ular, we study the bulk and boundary spe
trum ofthe free �eld theory. One of the resulting boundary partition fun
tions is then expandedexpli
itly in terms of osp(4j2) 
hara
ters. This allows us to 
ompare with the spe
trum ofthe PCM at radii R < 1, using some of the tools developed in [22℄. We shall �nd that theresults agree exa
tly with the partition fun
tion found in se
tion 2! In the fourth se
tion, we
omment on the generalization to higher dimensional superspheres. Finally, the 
on
lusions
ontain a few general thoughts on possible impli
ations for string theory in Anti-deSitterspa
es. We shall also brie
y dis
uss the 
omputation of bulk spe
tra for odd dimensionalsuperspheres.2 Spe
trum of the supersphere PCM at large volumeIn this se
tion we shall fo
us on the PCM for the supersphere S3j2 with large radius R. Atthe point R = 1 we 
an 
ompute partition fun
tions for periodi
 boundary 
onditions andon a strip. The two main ingredients are the exa
t minisuperspa
e spe
trum on S3j2 (seesubse
tion 2.1) and a good 
ontrol of the 
ombinatori
s that determine the �eld theoreti
spe
trum at R =1. The latter will be explained in subse
tion 2.2. The spe
trum is �nallyde
omposed into �nite dimensional representations of the global symmetry algebra osp(4j2)in the third subse
tion.2.1 Parti
le on the supersphere S3j2The Lapla
ian on the supersphere S3j2 was analyzed in full detail by Candu and Saleur [24℄.We shall state their results �rst and then provide a new derivation that is parti
ularly wellsuited for the dis
ussion in the following subse
tions.As a warm-up, let us brie
y re
all the spe
trum of the Lapla
ian on a 3-sphere S3. Thespa
e of fun
tions on S3 
arries an a
tion of so(4)�=sl(2)�sl(2). Therefore, eigenfun
tions ofthe Lapla
ian on S3 are organized in �nite dimensional multiplets of sl(2)�sl(2). A

ordingto the Peter-Weyl theory for SU(2) �= S3, there is one su
h multiplet 'm for ea
h integer



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 7m = 0; 1; 2; : : : . It has dimension dm = (m+1)2 and transforms in the representation (m2 ; m2 ).The eigenvalue of the Lapla
ian on the multiplet 'm is given by �m = m(m + 2). For thesupersphere S3j2 we expe
t very similar results ex
ept that the multipli
ities should roughlyex
eed those of the bosoni
 model by a fa
tor of 4.Before we extend these thoughts to the supersphere, however, let us mention a few fa
tson the Lie superalgebra osp(4j2). Its bosoni
 subalgebra is 9-dimensional and it 
onsists ofthree 
ommuting 
opies of sl(2). This implies that irredu
ible representations [j1; j2; j3℄ ofosp(4j2) are labeled by three spins ji. In these representations the quadrati
 Casimir elementtakes the value C�[j1; j2; j3℄� = �4j1(j1 � 1) + 2j2(j2 + 1) + 2j3(j3 + 1) : (2.1)A generi
 (typi
al)2 representation possesses dimensionD�[j1; j2; j3℄� = 16(2j1 + 1)(2j2 + 1)(2j3 + 1) : (2.2)The representations of osp(4j2) that appear in the spe
trum of the Lapla
ian on the super-sphere S3j2 are not generi
. On the supersphere, wave fun
tions are organized in osp(4j2)multiplets �m;m = 0; 1; 2; : : : . The �rst multiplet �0 
onsists of a single fun
tion, namely the
onstant �0 = 1. It transforms in the trivial 1-dimensional representation [0; 0; 0℄. For posi-tive values of m, the multiplet �m transforms in the irredu
ible representation [ 12 ; m�12 ; m�12 ℄of osp(4j2). Consequently, the spa
e H0 of square integrable fun
tions on the supersphereS3j2 de
omposes as follows,H0 �= [0; 0; 0℄ � 1Mm=1 �12 ; m� 12 ; m� 12 � = 1Mm=0 �m;0 : (2.3)Here we have also introdu
ed the symbol �m;0 su
h that �0;0 is the trivial representationand �m+1;0 = [ 12 ; m2 ; m2 ℄. A

ording to eq. (2.1), the Lapla
ian takes the values �m = m2.The quadrati
 dependen
e on m is similar to the bosoni
 sphere. On the other hand, thedegenera
ies are mu
h larger for the supersphere. In fa
t, upon restri
tion to the bosoni
subalgebra, the eigenspa
es of the Lapla
ian de
ompose a

ording to�12 ; k2 ; k2�����sl(2)�sl(2)�sl(2) �= �12 ; k2 ; k2���0; k + 12 ; k + 12 ���0; k � 12 ; k � 12 �for k = m � 1 � 1. When k = 0, the last term must be omitted. The formula implies thatthe dimension Dk of the representation �k;0 is given by Dk = 4k2 + 2 for k � 1. This isroughly four times as large as the dimension of the eigenspa
es on the bosoni
 sphere S3, asone would expe
t.It is quite instru
tive to prove the de
omposition (2.3). To this end, let us 
olle
t thebosoni
 
oordinate fun
tions xi =: Xi; i = 1; : : : ; 4 and the fermioni
 generators �i = X4+i2See Appendix A.



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 8into a single multiplet X . We re
all that the six fun
tions Xi are subje
t to the 
on-straint (1.1). The latter may be re
ast into the more 
ovariant form XaXbJab = R2 byintrodu
ing an appropriate matrix J = (Jab). The multiplet X transforms in the fundamen-tal representation �1;0 = �12 ; 0; 0� of osp(4j2). When we restri
t from osp(4j2) to its bosoni
subalgebra, X splits into a 4-dimensional multiplet in the ( 12 ; 12 ) representation of so(4) �=sl(2)�sl(2) and a 2-dimensional multiplet in the ( 12 ) representation of sp(2) �= sl(2). Whilethe former is spanned by the bosoni
 
oordinate fun
tions xi, the latter 
onsists of the oddelements �i. The algebra H0 of fun
tions on S3j2 is generated by the six 
oordinates Xi,i.e. every square integrable fun
tion 
an be arbitrarily well approximated by a polynomialin Xi. The spa
e of polynomials 
omes with an integer grading given by the degree of ho-mogeneity. Sin
e the homogeneous polynomials transform in the graded symmetri
 tensorprodu
t of the fundamental representation �1;0, one might be in
lined to identify the dire
tsum S�1;0 =L�
s1;0 of all graded symmetri
 tensor powers of the fundamental representationwith the spa
e H0. Su
h an identi�
ation, however, would disregard the de�ning equation(1.1) of the supersphere. The 
onstraint (1.1) generates an ideal in the symmetri
 tensoralgebra S�1;0 that has to be divided out in order to avoid over
ounting of states. The two-fold symmetri
 tensor power of the fundamental representation, for example, is given by�
s21;0 = [0; 0; 0℄� �2;0. The 
onstraint (1.1) identi�es the multiplet [0; 0; 0℄ with the 
onstantfun
tion. The latter has been 
ounted already by the very �rst term �
s01;0 = [0; 0; 0℄. Conse-quently, when 
onsidering the spa
e of homogeneous polynomials in Xi up to degree m, wehave to quotient out the subspa
e of polynomials that 
ontain the fa
tor XaXbJab, whi
his isomorphi
 to the spa
e of homogeneous polynomials of degree less or equal to m � 2.Thereby we are led to the following expression for H0,H0 = limN!1 NMm=0�
sm1;0 !. N�2Mm=0�
sm1;0 ! = 1Mm=0�m;0 = [0; 0; 0℄� 1Mk=0 �12 ; k2 ; k2� (2.4)where we have used the tensor produ
t de
omposition3 �
sm1;0 �= L[m=2℄i=0 �m�2i;0 and theidentity �k+1;0 = [ 12 ; k2 ; k2 ℄ for k � 0.Before we 
on
lude this subse
tion, let us brie
y 
onstru
t the partition fun
tion for aparti
le on the supersphere. By this we mean the quantityZ0 = Z0(z1; z2; z3) = trH0(zH11 zH22 zH33 )where H i are the three Cartan generators and the tra
e is taken evaluated in the spa
e H0 ofsquare integrable fun
tions on the supersphere S3j2. The results we sket
hed in the previousparagraphs imply thatZ0 = 1 + 1Xm=0�[ 12 ;m2 ;m2 ℄(z1; z2; z3) (2.5)where �[ 12 ;m2 ;m2 ℄(z1; z2; z3) = �( 12 ;m2 ;m2 ) + �(0;m+12 ;m+12 ) + �(0;m�12 ;m�12 ) : (2.6)3 By [x℄ we mean the 
oor fun
tion of x.
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ond line the last term should be omitted for m = 0 and the 
hara
ter �(j1;j2;j3) =Qi �ji(zi) denotes a produ
t of bosoni
 sl(2) 
hara
ters. The partition fun
tion Z0 
an bewritten in a di�erent form that mimi
s our proof of the formula (2.3). To this end, let us
onsider the module S�1;0. We think of it as being generated by four bosoni
 
oordinates inthe ( 12 ; 12 ) representation of sl(2)�sl(2) �= so(4) along with the two fermioni
 ones in the ( 12 )representation of sl(2) �= sp(2). On S�1;0 we introdu
e the number operator N that 
ountsthe number of bosoni
 and fermioni
 
oordinate fun
tions in a given monomial. Sin
e thereare no non-trivial relations in S�1;0 we 
an easily 
omputeZS(t) = trS�1;0(tNzH11 zH22 zH33 ) = (1 + z 121 t)(1 + z� 121 t)(1� z 122 z 123 t)(1� z 122 z� 123 t)(1� z� 122 z 123 t)(1� z� 122 z� 123 t) :Multiplying this quantity with (1� t2) implements the 
onstraint (1.1) on the level of gener-ating fun
tions. We 
an then remove t by sending it to t! 1. The result is a rather elegantnew formula for the partition fun
tion Z0,Z0(z1; z2; z3) = limt!1 �(1� t2)ZS(t; z1; z2; z3)� : (2.7)If the quotient is expanded in a Taylor series and expressions are reorganized into 
hara
tersof osp(4j2) we re
over our previous result (2.5).2.2 The 
omplete boundary spe
trumNow let us turn to the spe
trum of the PCM (1.4) at the spe
ial point R =1 where our �eldtheory be
omes free. At this point, the �elds are easy to list and their weights agree withtheir 
lassi
al values. For simpli
ity, we shall study the boundary spe
trum of a volume �llingbrane, i.e. with Neumann boundary 
onditions imposed on all �elds of the model. In this
ase it suÆ
es to 
onsider the derivative �u along the boundary, rather than two world-sheetderivatives � and ��. From now on, the letters xi = xi(u); �a = �a(u) and Xi = Xi(u) shalldenote boundary �elds rather than 
oordinate fun
tions.So, let us begin to analyze the spa
e H of boundary �elds. Obviously, H is spanned bymonomials � of the form� = Yi0 Xi0Yi1 �Xi1Yi2 �2Xi2 � � � : (2.8)The number of fa
tors involving no, one, two et
. derivatives � = �u of the fundamental�elds is arbitrary. Let us stress at this point already that the de�ning relation (1.1) ofthe supersphere imposes many relations between monomials of the form (2.8). The spa
eH, 
omes equipped with an integer grading, i.e. H = L1n=0Hn, where Hn is spanned bymonomials � with a total number n of derivatives. The expression Xa�Xb�4X
, for example,is an element of H5.
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iated with the integer grading of the state spa
e H there is a 
orresponding de
om-position of the partition fun
tionZ(q) = strH(qL0� 
24 zH11 zH22 zH33 ) = q� 124 1Xn=0 Zn qn : (2.9)The 
oeÆ
ients Zn = Zn(zi) are (in�nite) linear 
ombinations of osp(4j2) 
hara
ters. Aformula for Z0 was dis
ussed in the previous subse
tion. In the present 
ontext it en
odes allinformation on the osp(4j2) transformation law of �elds with 
onformal weight h = 0. Theseare in one-to-one 
orresponden
e with fun
tions on the supersphere S3j2 (re
all that we areworking at R =1).Let us now turn to states involving a single derivative �. Sin
e H1 is built from �eldsof the form �n(Xi)�Xi, where �n 2 H0, one might at �rst sight suspe
t that Z 01 = Z0��1;0
oin
ides with Z1. But this is not true sin
e it a
tually 
ounts many �elds twi
e. So far, wehave not a

ounted for the derivative of the supersphere relation (1.1). Taking the derivativeof this 
onstraint we �nd Xi;j Xi�XjJ ij = 0 :This additional 
ondition tells us to subtra
t Z0 from Z 01. Hen
e we �nd that Z1 = Z0(��1;0���0;0) and a simple 
omputer program 
an de
ompose this produ
t into 
hara
ters of osp(4j2),leading to Z1 = 1Xk=0 ��[1;k2 ; k2 ℄ + �[ 12 ; k2 ; k2 ℄� : (2.10)In order to gain some more familiarity with the state 
ounting we invite the reader to 
on-stru
t the 
ontribution Z2 of �elds with two derivatives to the total partition fun
tion. Theanswer is given byZ2 = �[0;0;0℄ + 2 1Xk=0�[ 12 ;k2 ; k2 ℄ + �[1;0;0℄+ 1Xk=1 ��[1; k+12 ; k�12 ℄ + �[1; k�12 ; k+12 ℄ + 2�[ 12 ;k2 ; k2 ℄ + 2�[1;k2 ;k2 ℄� : (2.11)Instead of explaining this formula we shall turn to the higher subtra
es Zi right away. Tobegin with, let us enumerate expressions in whi
h no �eld appears without derivative andwhere the total degree of the derivatives adds up to n. There are p(n) of these terms, wherep(n) is the number of partitions of the integer n. We shall denote the set of partitions by P (n)and think of their elements as sequen
es � = (�i; i = 1; 2; 3; : : : ) su
h that P i�i = n. Withn = 3, for example, we have to 
onsider terms involving �3Xi, �2Xi�Xj and �Xi�Xj�Xk
orresponding to the sequen
es (�1; �2; �3) = (0; 0; 1); (1; 1; 0) and (3; 0; 0), respe
tively. Inour notations we shall suppress the in�nite number of zero entries to the right of the lastnon-zero one. To ea
h partition � 2 P (n), we asso
iate the tra
e ��
�1;0 over the spa
e
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s�11;0 
 �
s�21;0 � � � , ��
�1;0 (z1; z2; z3) = 1Yi=1 ��
s�i1;0 : (2.12)The fa
tors on the right hand side involve tra
es over the �thi symmetri
 tensor produ
t ofthe fundamental representation �1;0. Su
h fa
tors arise from the produ
t of �i derivativesof order i of the fundamental �eld multiplet. Let us now set Z 0n = Z0P�2P (n) ��
�1;0 tobe Z0 multiplied with the sum of the p(n) tra
es (2.12). Clearly, Z 0n is not the same asZn. In fa
t, we still have to 
orre
t for some over
ounting, sin
e we have to subtra
t allpossible derivatives of degree up to n of the supersphere relations (1.1). Ea
h one of the p(n)partitions � 2 P (n) has to be investigated on its own in order to understand whi
h relationsapply to it. Suppose that for a given partition �, the entry �j does not vanish. This meansthat the 
orresponding �elds 
ontain a fa
tor �jXa. Hen
e, there exist relations betweensu
h �elds that arise from the jth derivative of the supersphere relation (1.1). These must beremoved. We may formalize this pres
ription by introdu
ing the spe
ial partitions �i whi
hhave a single entry �ii = 1 in the ith position and are zero otherwise. The sequen
e �i is anelement of P (i). Let us also denote by �� �i the partition from P (n� i) that is obtained bysubtra
ting the entries. If the resulting sequen
e 
ontains a negative entry, i.e. if �i = 0, thenwe set ��
(���i)1;0 = 0. With these notations, we 
an now formalize our resolution for the issueof over
ounting. Taking into a

ount the 
onstraints imposed by the ith derivative of (1.1)amounts to subtra
ting from Z 0n all fun
tions of the form Z0��
(���i)1;0 . Here, � 2 P (n) and iruns through all integers i = 1; 2; : : : su
h that �i 6= 0. After removing all these terms fromZ 0n we realize that we a
tually overdid things with our 
orre
tion. In fa
t we have deletedthose expressions for whi
h two ore more relations are simultaneously ful�lled, so that weneed to put them ba
k in. Thus, we must add all the terms Z0��
(���i��j )1;0 with i < j. Theresulting expression over
ounts those polynomials that obey three di�erent relations, et
. Asimple indu
tion leads to the following expression for ZnZn = Z0 X�2P (n)0��[ 12 ;0;0℄
� � nXi=1 �[ 12 ;0;0℄
(���i ) + nXi<j=1�[ 12 ;0;0℄
(���i��j ) � � � �1A : (2.13)All notations that are used in this expression have been introdu
ed in the pre
eding para-graph. We have pla
ed the subs
ript �1;0 = [ 12 ; 0; 0℄ ba
k on the symbol � to emphasizethe relation to the fundamental multiplet. The reader is invited to 
he
k that our generalformula for Zn reprodu
es the previous expressions (2.5,2.10,2.11) for Zn when n � 2.Having found a formula for Zn, we 
an insert it into our general pres
ription (2.9). Theresult is,Z = q� 124 Z0 1Xn=0 qn X�2P (n)0��[ 12 ;0;0℄
� � nXi=1 �[ 12 ;0;0℄
(���i) + nXi<j=1�[ 12 ;0;0℄
(���i��j ) � � � �1A :Now, sin
e �� �j is a partition in P (n� j), we are led to the idea of 
ombining in the abovealternating sum all those terms that belong to partitions of the same size. Denoting by
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tion that 
ounts the number of distin
t, i.e. whose elements are all di�erent,partitions of x with exa
tly y elements, we leave to the reader the 
ombinatorial homeworkto dedu
eZ = q� 124 Z0 1Xn=0 qn0BBBB� nXj=0 jXk=0(�1)kpd(j; k)!| {z }=:
j X�2P (n�j)�[ 12 ;0;0℄
�1CCCCA= q� 124Z0 1Xn;j=0 qn
j X�2P (n�j)�[ 12 ;0;0℄
� = q� 124Z00� 1Xj=0 
jqj1A 1Xn=0 qn X�2P (n)�[ 12 ;0;0℄
�= q� 124 Z0 �(q) 1Xn=0 qn X�2P (n)�[ 12 ;0;0℄
� : (2.14)The numbers 
j 
an easily be re
ognized as the 
oeÆ
ients in the Taylor expansion of theEuler �-fun
tion. In fa
t the generating fun
tion for distin
t partitions of a number n intopre
isely l distin
t numbers is given by1Yk=1(1 + zqk) = 1Xn=0 nXl=0 pd(n; l) zl qn : (2.15)For z = �1 the left hand side redu
es to the Euler fun
tion �(q) while the right hand sidegives the sumP1n=0 
nqn. Note that during the resummation in the se
ond line of eq. (2.14)we 
ould drop a number of terms sin
e P (n) is empty for n < 0. The result (2.14) has arather surprising interpretation. It tells us that we may at �rst dis
ard all the derivatives ofthe supersphere relations for the 
omputation of subtra
es Zi. Derivatives of eq. (1.1) maythen simply be taken into a

ount by multiplying the result with the Euler fun
tion �(q).The 
on
lusion of the previous dis
ussion may now be employed to derive a mu
h simplerformula for the partition fun
tion whi
h generalizes the expression (2.7) for Z0. Withoutpaying respe
t to the supersphere relations, it is straightforward to enumerate derivative�elds. Re
all that the four fundamental bosoni
 �elds 
arry 
harges (0;� 12 ;� 12 ) under thethree Cartan generators (H1; H2; H3). Similarly, the two fundamental fermioni
 �elds areonly 
harged under the �rst Cartan generator H1 su
h that their 
harges are (� 12 ; 0; 0).Hen
e, the partition fun
tion 
an now be represented in the formZ = q� 124Z0 �(q) 1Yn=1 (1 + z 121 qn)(1 + z� 121 qn)(1� z 122 z 123 qn)(1� z 122 z� 123 qn)(1� z� 122 z 123 qn)(1� z� 122 z� 123 qn) : (2.16)The in�nite produ
t enumerates all states in the un
onstrained state spa
e. A

ording toour previous dis
ussion, the derivatives of the supersphere 
onstraints 
an be implementedthrough a simple multipli
ation with the Euler fun
tion �(q). Our �nal formula for thepartition fun
tion of a volume �lling brane in the PCM at R =1 is indeed very simple.
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omposition of the boundary spe
trumThe goal of this se
tion is to expand the partition sum (2.9) of the volume �lling brane interms of osp(4j2) 
hara
ters. To be more 
on
rete, we would like to derive expli
it formulasfor the bran
hing fun
tions  K� (q) in the de
ompositionZ(q; z1; z2; z3) = X� �K� (z1; z2; z3)  K� (q) : (2.17)Here, the fun
tions �K� (z1; z2; z3) are 
hara
ters of the Ka
 modules4 K� of osp(4j2). Thelatter form a basis in the spa
e of all 
hara
ters so that the expansion 
oeÆ
ients are uniquelydetermined. Finding an expli
it formula for the bran
hing fun
tions  K� (q) is the main resultof this se
tion. The �nal expression will take the following form K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1)�(q)�(q)3 1Xn;m=0(�1)m+nqm2 (m+4j1+2n+1)+n2+j1� �q(j2�n2 )2 � q(j2+n2+1)2��q(j3�n2 )2 � q(j3+n2+1)2� : (2.18)Let us add two remarks here. To begin with, the de
omposition (2.17) of the superspherepartition fun
tion has also been 
onsidered in the work of Candu and Saleur [23, 24℄. In their
ontext, the bran
hing fun
tions  K are related to representation spa
es of the so-
alledBrauer algebra. The 
onne
tion has interesting impli
ations, but it does not provide expli
itformulas for  K . Our formula (2.18) has not appeared in the literature before. In addition,we would want to stress that the de
omposition of the partition fun
tion into 
hara
ters ofKa
 modules is a somewhat formal pro
edure that does not fully 
apture the representation
ontent of the spe
trum, at least not for the atypi
al se
tor of the theory. One may noti
e,for example, that some of the expansion 
oeÆ
ients Cn in  K� (q) = PCnqn are negative.Only for typi
al � will the 
n = C�n are positive. For atypi
al representations �, on theother hand, the 
hara
ters �K� of the Ka
 modules have to be de
omposed into 
hara
ters ofirredu
ible atypi
al representations �� as des
ribed in (C.11) in order to obtain bran
hingfun
tions with non-negative integral multipli
ities.The proof of eq. (2.18) pro
eeds in several steps. To begin with, we shall de
ompose thepartition fun
tion into representations of the bosoni
 subalgebra of osp(4j2). Our se
ond stepthen is to re
ombine bosoni
 
hara
ters into the 
hara
ters of full osp(4j2) multiplets. On
ethis is a
hieved, the resulting expressions still require some resummation in order to bringthem into a more appealing form.In our 
omputation, we shall split the full partition fun
tion into three di�erent parts andde
ompose them separately before putting all this together. We shall start with the fermioni

ontributions in the numerator of the partition fun
tion (2.16). Apart from the fa
tors thatarise from derivative �elds, there are also two terms in Z0 that a

ount for fermioni
 zeromodes. We may simply set the parameter t to t = 1 in those two fa
tors and 
ombine them4Again, see Appendix A.



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 14with the q-dependent terms in the numerators of eq. (2.16) to obtainZF(q; z1) := 1Yn=0 (1 + z 121 qn) (1 + z� 121 qn) = (1 + z 121 ) 1Yn=0 (1 + z 121 qn+1) (1 + z� 121 qn)= q� 18 �z� 141 + z 141 � 1�(q) �2(z 121 jq) = 1�(q) Xn2Zz n21 �q n(n+1)2 + q n(n�1)2 �= 1�(q) Xn=0; 12 ;1;:::�qn(2n+1) + qn(2n�1) � q(n+1)(2n+3) � q(n+1)(2n+1)� �n(z1) :Along the way we have used a number of simple identities5 for �-fun
tions. As a result, allthe fermioni
 
ontributions to the partition fun
tion have been de
omposed expli
itly intomultiplets of the even part of osp(4j2). Note that the two fermions transform non-triviallyonly under the �rst subalgebra sl(2) and hen
e there is no dependen
e on z2 and z3 this time.The se
ond pie
e of the partition fun
tion (2.16) that we would like to split o� 
on
ernsthe bosoni
 zero modes, i.e. the denominator of the minisuperspa
e partition fun
tion Z0.Its de
omposition into bosoni
 representations is straightforwardlimt!1 1� t2(1� z 122 z 123 t)(1� z 122 z� 123 t)(1� z� 122 z 123 t)(1� z� 122 z� 123 t) = Xn=0; 12 ;1;:::�n(z2)�n(z3) :(2.19)Note that the sum of 
hara
ters on the left hand side en
odes the well-known spe
trum of abosoni
 3-sphere S3 �= SU(2). Therefore we 
an just state this equality without any detailed
al
ulation. The 
ommuting left and right invariant ve
tor �elds are generated by the se
ondand third 
opy of sl(2) within the even part of osp(4j2). Hen
e, there is no dependen
e onthe parameter z1.It remains to analyze the q-dependent fa
tors in the denominator of the partition fun
-tion (2.16). Their 
ontribution may be expanded as follows1Yn=1�(1� z 122 z 123 qn)(1� z 122 z� 123 qn)(1� z� 122 z 123 qn)(1� z� 122 z� 123 qn)��1=  Xn2Zz n22 z n23�(q)2 1Xm=0(�1)m �qm2 (m+2n+1) � qm2 (m+2n�1)�! �  z3 �! z�13 != Xk;l2Zk+l22Zz k22 z l23�(q)4 1Xn;m=1(�1)n+mqk n+m2 +ln�m2 �q n(n+1)2 � q n(n�1)2 ��qm(m+1)2 � qm(m�1)2 �= 1�(q)4 Xk;l2Nk+l22N 1Xn;m=1 (�1)n+m (1� qn)(1� qm)(1� qn+m)(1� qn�m)q�(k(n+m)+l(n�m)+n(n�1)+m(m�1))=2 � k2 (z2)� l2 (z3) :5See equation (B.1).



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 15In the �rst line of the above 
omputation we have used the lemma (B.1). Sin
e all the 
on-tributions being 
aptured by this 
omputation are asso
iated with bosoni
 �elds, 
hara
terswith a non-trivial z1 dependen
e do not arise.In order to obtain the de
omposition of Z into 
hara
ters of osp(4j2)�0 �= sl(2)�sl(2)�sl(2),we need to put the results from the pre
eding three 
omputations together into one expression.The answer 
ontains produ
ts of 
hara
ters whi
h depend on the same variables z2 and z3.These produ
ts 
an be re-expanded with the help of the following auxiliary formula1Xp=0� p2 (z2)� p2 (z3) Xk;l2Nk+l22N ak;l� k2 (z2)� l2 (z3)= Xk;l2Nk+l22N� k2 (z2)� l2 (z3)0� 1Xp=0 minfk;pgXr=0 minfl;pgXs=0 ajk�pj+2r;jl�pj+2s1A (2.20)whi
h holds for an arbitrary set of numbers ak;l. When applied to the 
ase at hand, we �ndZ = 1�(q)3�(q) ZF(q; z1) Xj2;j32 12Nj2+j32N �j2(z2)�j3(z3) 1Xm;n=1(�1)m+nq n(n�1)2 +m(m�1)2� (1� qn+m)(q(n�m)(j2�j3) � q(n�m)(j2+j3+1)) (2.21)Thereby, we 
ompleted out �rst task, namely to de
ompose the full partition fun
tion Z intoirredu
ible representations of the bosoni
 subalgebra of osp(4j2).Our next issue is to 
ombine bosoni
 
hara
ters ba
k into the 
hara
ters of Ka
 modulesof osp(4j2). Sin
e the even part of osp(4j2) is a subalgebra of osp(4j2), it is 
lear that the
hara
ters of osp(4j2) Ka
 modules, possess a de
omposition into 
hara
ters of the bosoni
subalgebra. These de
omposition formulas may be inverted su
h that bosoni
 
hara
ters
an be written as in�nite linear 
ombinations of osp(4j2) 
hara
ters. All ne
essary detailsare provided in Appendix C. The resulting expression for the partition fun
tion Z is of theform (2.17) with K[j1;j2;j3℄(q) = 1�(q)�(q)3 1Xk=0 1Xm;n=1 1Xl=0(�1)m+n+kq2j1(j1+k+2l)q n(n�1)2 +m(m�1)2� kXr;s=0 q(n�m)(r�s)(1� qn+m)(q(n�m)(j2�j3) � q(n�m)(j2+j3+1))� hqj1+ k+2l2 (k+2l+1) + q�j1+ k+2l2 (k+2l�1) � q5j1+3+ k+2l2 (k+2l+5) � q3j1+ k+2l2 (k+2l+3)i= q2j1(j1�1)�(q)�(q)3 1Xm;n=1 1Xk=�1(�1)k 1Xl=0 qj1(2jkj+4l+1)+ jkj2 (jkj�1)+l(2l+2jkj�1)(1� qjkj+2l+2j1 )�(�1)m+nq n(n�1)2 +m(m�1)2 q(n�m)k(1� qn+m)(q(n�m)(j2�j3) � q(n�m)(j2+j3+1)) :



2 SPECTRUM OF THE SUPERSPHERE PCM AT LARGE VOLUME 16We will now make several transformations and resummations in order to 
ast this unwieldyexpression into the form (2.18) we have spelled out above. Making the substitution n+m =r + 2; n � m = s with r 2 N and s = �r;�r + 2; : : : ; r, using the tri
k (B.2) and thensubstituting r ! r + 1 gives the result K(q) = q2j1(j1�1)�(q)�(q)3 1Xk=�1 1Xr;l=0(�1)r+kqj1(2jkj+1)+ jkj(jkj�1)2 +l(2l+2jkj+4j1�1) �qjkj+2l+2j1 � 1��q (r+2)(r+1)2 �q(r+1)(j2�j3+k) + q(r+1)(�j2+j3�k) � q(r+1)(j2+j3+1+k) � q(r+1)(�j2�j3�1�k)� :In order to simplify the sum over r, we now need to split the summation over k into threeparts, a

ording to whether it is positive, zero or negative. We then re
ombine the sum-mations over positive and negative k into a single sum and employ another auxiliary for-mula (B.3) from Appendix B to �nd K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1) 1�(q)�(q)3 1Xl=0 1Xr=0 (�1)r q r2+j1��q(j2� r2 )2 � q(j2+ r2+1)2��q(j3� r2 )2 � q(j3+ r2+1)2� hql(2l+4j1�1)(1 + q2l+2j1) (2.22)+ 1Xk=1(�1)kqj1(2k+1)+ k(k�1)2 +l(2l+2k+4j1�1)(1� qr+1)(q(r+1)(k�1) + q�(r+1)k)i :On
e again we need to rearrange the sum over k. Terms 
an be 
ombined into a singlesummation if we let l run over half-integers rather than integers. Making the substitutionsl! 2m and r ! n, leads to the formula K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1)�(q)�(q)3 1Xn;m=0 1Xk=�1(�1)m+n+kqm2 (m+4j1�1)+n2+j1��q(j2�n2 )2 � q(j2+n2+1)2��q(j3�n2 )2 � q(j3+n2+1)2� qjkj(2j1+m)+ jkj(jkj�1)2 +(n+1)k :It is advantageous to split the summation over k again depending on whether k is negative ornon-negative. Then we substitute r for the sum r = m+k and s for the di�eren
e s = m�k.After some rather trivial but tedious steps we 
an thereby bring  K into the form K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1)�(q)�(q)3 1Xn;m=0(�1)m+nqm2 (m+4j1+2n+1)+n2+j1� �q(j2�n2 )2 � q(j2+n2+1)2� �q(j3�n2 )2 � q(j3+n2+1)2� 2mXs=0 q�s(n+1) :It is left to the reader to use lemma (B.2) in order to show that this is equal to the formula(2.18) we spelled out at the beginning of this se
tion. Before we 
on
lude our dis
ussionof the large volume limit, let us stress that our de
omposition (2.17) does not imply that
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tually transform in Ka
 modules of osp(4j2). The partition sum does not 
ontainany information on how irredu
ible atypi
al representations are a
tually 
ombined into in-de
omposables of osp(4j2). For us, the 
hara
ters of Ka
 modules were simply a 
onvenientbasis to use.3 The OSP(4j2) GN model and the supersphere S3j2In this se
tion we shall study the 
onje
tured dual GN model. We begin with the free bulktheory de�ned by eq. (1.5). After a brief dis
ussion of the bulk spe
trum for generi
 S wespe
ialize to S = 1 and re-express the bulk partition fun
tion through 
hara
ters of themodel's aÆne dosp(4j2) symmetry at level k = 1.6 In se
tion 3.2 we analyze one parti
ularsymmetry preserving boundary 
ondition and spell out its spe
trum. The latter is thende
omposed a

ording to the a
tion of the global osp(4j2) symmetry in the third subse
tion.On
e su
h a Casimir de
omposition has been performed, we 
an apply the results of [22℄ anddetermine the boundary spe
trum throughout the entire moduli spa
e that is generated bythe deformation. We shall show that at R = 1 we re
over pre
isely the spe
trum of thevolume �lling brane in the PCM on the supersphere S3j2.3.1 Free �eld 
onstru
tion of the bulk theoryBefore we dis
uss the spe
trum and symmetries of the free Gross-Neveu model (1.5), it isuseful to re
all how things work for the 
ase S = 0, i.e. for the fermioni
 des
ription of thefree boson. As is well known, the 
ompa
ti�ed free boson at radius R = 1 is equivalent tothe free �eld theory of two real fermions. Ea
h of the two fermioni
 �elds gives rise to a
opy of the Ising model with 
 = 1=2. The two fa
tors, however, are 
oupled by an orbifold
onstru
tion to ensure that only se
tors 
ontribute in whi
h both fermions obey the same(anti-)periodi
 boundary 
onditions. In the next few paragraphs we would like to formalizethis 
onstru
tion. It will turn out rather useful for the generalization to S > 0.Let us begin with a few words on the se
tors of the 
riti
al Ising model. We re
all that theVirasoro algebra with 
 = 1=2 possesses three se
tors whi
h we shall label by the 
onformalweights of their ground states, i.e. through [0℄; [1=2℄ and [�℄ = [1=16℄. The 
hara
ter fun
tionsof these se
tors read as follows,��(q) = 12  s�3� + (�1)2�s�4� ! ; ��(q) = 1p2s�2� (3.1)with the slightly unusual notation � = 0; 1=2. This will turn out rather 
onvenient below.The produ
t of two Ising models 
ontains a spe
ial se
tor 
 = [1=2; 1=2℄ with weight h = 1.It generates an abelian group �0 = Z2 in the fusion ring. Elements of this group are 
alledsimple 
urrents sin
e their fusion with an arbitrary representation always yields a single6The dis
repan
y between our value k = 1 and the k = �1=2 that appears in the work of Candu andSaleur is entirely due to di�erent 
onventions.
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ontribution. We 
laim that the 
orresponding simple 
urrent orbifold model is equivalentto the 
ompa
ti�ed free boson at R = 1.The 
onstru
tion of a simple 
urrent orbifold pro
eeds in several simple steps. To beginwith, we have to list all se
tors [J ℄ of the theory whi
h possess integer monodromy 
hargeQJ(
) = hJ + h
 � h
�J . These are then organized into orbits Oa under the a
tion of thesimple 
urrent group �. Ea
h su
h orbit Oa 
ontributes one term Za to the partition fun
tionof the orbifold model, with a 
oeÆ
ient j�j=jOaj that is given by the ratio between the orderj�j of the orbifold group and the length jOaj of the orbit (see e.g. [26℄). In our 
ase, there exist�ve se
tors [J ℄ = [�1; �2℄ and [J ℄ = [�; �℄ with integer monodromy 
harge. Under the a
tionof �0 they are organized into three orbits, two of length two and one that is left invariant byfusion with 
. Consequently, the asso
iated simple 
urrent orbifold invariant be
omesZorb(�0)Ising2 (q) = ZFFS=0(q) = ���(0;0) + �(1=2;1=2)��2 + ���(0;1=2) + �(1=2;0)��2 + 2���(�;�)��2 : (3.2)The 
hara
ters on the right hand side are produ
ts of 
hara
ters of the 
 = 1=2 Virasoroalgebra, i.e. �(0;1=2)(q) = �0(q)�1=2(q) et
. A

ording to the 
laims we stated above, thesimple 
urrent orbifold (3.2) agrees with the free boson 
ompa
ti�ed at radius R = 1,ZFFS=0(q) = 1j�(q)j2 Xn;w q 18 (n+2w)2 �q 18 (n�2w)2 = ZR=1(q) : (3.3)The detailed proof of this identity 
an be found e.g. in the le
tures of Ginsparg [27℄. Ouraim now is to extend eq. (3.3) to the 
ase S > 0.For S > 0, our theory (1.5) is built from 2S + 2 real fermions whose properties we havereviewed already. In addition there are also S free �
-systems with 
entral 
harge 
 = �1(see [28℄ for a detailed analysis of this rather unusual CFT in the 
ontext of our work).For osp(2S + 2j2S) symmetry it is ne
essary that all these �elds obey the same boundary
onditions, i.e. are either all periodi
 or all anti-periodi
. Before we spell out the relevantbulk partition fun
tion, we need a bit more ba
kground on the �
-systems.As in the 
ase of real fermions, we shall 
onsider se
tors whi
h di�er by the 
hoi
e ofboundary 
onditions on the �elds � and 
. Let us introdu
e a family of ground states j�i for� 2 12Z. These states are 
hara
terized by the 
onditions�r+� j�i = 0 ; 
r�� j�i = 0 for r = 1=2; 3=2; 5=2; : : : (3.4)From the ground states we generate the 
orresponding se
tors by appli
ation of raising op-erators. If we assign 
harges q� = 1=2 and q
 = �1=2 to the modes of the �elds � and 
,respe
tively, and q� = �=2 to the ground state j�i the generating fun
tion for the se
tor �reads,�(�)(q; y) = q 124� �22 y �2 1Yn=0 1(1� y 12 qn+ 12��)(1� y� 12 qn+ 12+�) = q��2=2 y �2 �(q)�4(q; y1=2q��) (3.5)
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onstru
ted se
tors 
arry an a
tion of an aÆne bsl(2) 
urrent algebra at level k = �1=2.In terms of the �elds � and 
 the three 
urrents are 
onstru
ted as follows,E1+(z) = 12�2(z) ; H1(z) = �12 (�
)(z) ; E1�(z) = �12 
2(z) : (3.6)Consequently, we 
an de
ompose the generating fun
tions (3.5) into 
hara
ters of irredu
iblerepresentations of bsl(2)�1=2. In 
ase of �(0), for example, the de
omposition is given by�(0)(q; y) = �(q)�4(q; y1=2) = �k=�1=20 (q; y) + �k=�1=21=2 (q; y) :The two 
hara
ters on the right hand side belong to irredu
ible highest weight representationswith lowest weight h = � 2 f0; 1=2g,�k=�1=2� (q; y) = �(q)2 � 1�4(q; y1=2) + (�1)2� 1�3(q; y1=2)� : (3.7)Let us note that the ground states transform in representations of spin j = �. Nevertheless,we shall 
ontinue to think of the subs
ript of � as the 
onformal weight rather than the spin.Similar de
omposition formulas exist for all the other fun
tions (3.5). All of them are relatedby the a
tion of spe
tral 
ow automorphisms. In parti
ular, we have�(1=2) = �k=�1=2�;+ +�k=�1=2�;� with ��;�(q; y) = y1=4�(q)2 � 1i�1(q; y�1=2) � 1�2(q; y�1=2)� :(3.8)The two 
hara
ters on the left hand side belong to the two irredu
ible lowest weight repre-sentations of the 
urrent algebra with spin j = 1=4 and j = 3=4. Their ground states havethe same 
onformal weight h = �1=8.We are now ready to dis
uss the relevant bulk modular invariant for the theory (1.5) withS > 0. Let us begin with the produ
t of S �
-systems and 2S+2 real fermions. This theory
ontains a group �S of simple 
urrents that 
onsists of all elements 
 of the form
 = [�1; : : : �S ; �S+1; : : : ; �3S+2℄ with �i 2 f0; 1=2g and � � 3S+2Xi=1 �i = 0 mod 1 :The �rst S entries of 
 denote se
tors of the �
-system while the remaining ones are rep-resenting se
tors in the Ising models. Together, the elements 
 generate the abelian group�S �= Z3S+12 .Let us �rst deal with the se
tor involving representations with vanishing spe
tral 
ow,� = 0. Under the a
tion of �S , the se
tors with vanishing monodromy 
harge split into twoorbits of maximal length. Hen
e we are led to the following 
ontribution to the partitionfun
tion,ZFFS;0(q; y1; : : : ; yn) = ����X
2�S�
�[0;:::;0;0;:::;0℄����2 + ����X
2�S�
�[0;:::;0;0;:::;0;1=2℄����2 : (3.9)However, the total theory has to be invariant under the spe
tral 
ow symmetry. Hen
e wehave to add twisted 
ontributions ZFFS;� . It was already mentioned above that all the bosoni
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al periodi
ity 
onditions in order to not tospoil osp(2S + 2j2S) symmetry. Consequently the spe
tral 
ow must a
t diagonally, i.e.simultaneously on all se
tors, by half-integer shifts.7 In the fermioni
 fa
tors, spe
tral 
owby � = 1=2 brings us to �-representations. Integer units of the spe
tral 
ow, however, donot give anything new. In the ghost se
tors things works di�erently be
ause the appli
ationof a diagonal spe
tral 
ow leads to an in�nite number of new representations 
onstru
tedfrom the ground states j�i for � 2 12Z. Sin
e the orbits of the half-integer spe
tral 
owrepresentations possess a stabilizer subgroup S of order jSj = 22S+1 with respe
t to thea
tion of �1 we �nally end up with the partition fun
tionZFFS (q; y1; : : : ; yS) = X�2 12ZZFFS;�(q; y1; : : : ; yS)= X�2Z"����X
2�S�(�)
�[0;:::;0;0;:::;0℄����2 + ����X
2�S�(�)
�[0;:::;0;0;:::;0;1=2℄����2#+ 22S+1 X�2Z+12 ����� SYa=1�(�)(q; ya)���(q)�2S+2�����2 :Here, the supers
ript (�) on a fun
tion f(yi) of S variables yi is de�ned through the pre-s
ription f (�)(yi) = q�S�2=2f(yiq�2�).The rest of our analysis in this se
tion is now 
arried out for the spe
ial 
ase of S = 1.Generalizations to larger values of S shall be di�ered to the next se
tion. The state spa
e ofour orbifold theory 
an be equipped with the a
tion of an aÆne dosp(4j2) Lie superalgebra.We have already spelled out expressions for the �rst set of sl(2) 
urrents in equation (3.6)above. The 
urrents asso
iated with the other two 
opies if sl(2) take the formE2�(z) = 12i �( 1 3)� ( 2 4)� i�( 1 4) + ( 2 3)�� ; (3.10)H2(z) = 12i �( 3 4) + ( 1 2)� ; H3(z) = 12i �( 3 4)� ( 1 2)� ;E3�(z) = 12i �( 1 3) + ( 2 4)� i�( 1 4)� ( 2 3)�� : (3.11)They generate two 
ommuting 
opies of the 
urrent algebra bsl(2)1. In addition, we 
anintrodu
e the eight fermioni
 
urrents through the following expressionsF+++(z) = i� ( 3 + i 4) (z) ; F+��(z) = i� ( 3 � i 4) (z) ;F++�(z) = i� ( 1 + i 2) (z) ; F+�+(z) = i� ( 1 � i 2) (z) ;and similarly for F���(z) with the �eld � in the above formulas ex
hanged with 
. Note thatall terms that 
ontribute to the seventeen 
urrents are quadrati
 in the basi
 �elds. Sin
e by7It is worth mentioning that these diagonal spe
tral 
ow transformations are also the only ones whi
h
ommute with the a
tion of the orbifold group. Note also that half-integer spe
tral 
ow on ghosts andfermions implies integer spe
tral 
ow on the 
urrents su
h as those de�ned in eq. (3.6) and below.
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onstru
tion these basi
 �elds are either all in the Neveu-S
hwarz se
tor or in the Ramondse
tor, the 
urrents obey periodi
 boundary 
onditions on the entire state spa
e. In order torewrite the partition fun
tion of our bulk theory in terms of aÆne dosp(4j2) 
hara
ters, were
all the following formulas for 
hara
ters of an bsl(2) 
urrents algebra at level k = 1,�k=10 (q; z) = �3(q2; z)�(q) ; �k=11=2 (q; z) = �2(q2; z)�(q) :The lower index j = 0; 1=2 now denotes the spin of representations of the bsl(2) 
urrent algebra.In terms of 
hara
ters of the bosoni
 
urrent algebras, the orbifold partition fun
tion readsZFFS=1(q; zi) = 1X�=�1 ����(�)(0;0;0)(q; zi) + �(�)( 12 ; 12 ; 12 )(q; zi)���2 ++ 1X�=�1 ����(�)(0; 12 ; 12 )(q; zi) + �(�)( 12 ;0;0)(q; zi)���2 (3.12)where the a
tion of the spe
tral 
ow involves the �rst variable z1 = y only and we havede�ned �(j1;j2;j3)(q; zi) = �k=� 12j1 (q; z1) �k=1j2 (q; z2) �k=1j3 (q; z3) :To 
ompare the formula (3.12) with our previous expression (3.10) one has to spe
ialize toz2 = z3 = 1. Going one step further we 
an 
ombine 
hara
ters of the bosoni
 
urrent algebraintodosp(4j2)1 
hara
ters a

ording to,�f0g(q; zi) = �(0;0;0)(q; zi) + �( 12 ; 12 ; 12 )(q; zi) ; (3.13)�f1=2g(q; zi) = �(0; 12 ; 12 )(q; zi) + �( 12 ;0;0)(q; zi) : (3.14)The results of this se
tion may then be summarized through the following simple formulaZFFS=1(q; zi) = 1X�=�1 ����(�)f0g(q; zi)���2 + 1X�=�1 ����(�)f1=2g(q; zi)���2 ; (3.15)i.e. the orbifold partition fun
tion is the 
harge 
onjugate modular invariant partition fun
tionfor the se
tors f0g and f1=2g of thedosp(4j2)1 
urrent algebra. It is remarkable that spe
tral
ow relates all the representations o

urring here and that the fusion is purely abelian [28℄. In
ontrast to other WZNW theories on supergroups [29, 30, 31, 32℄ this guarantees the existen
eof an \irredu
ible" theory without logarithmi
 
orrelation fun
tions. By fermionizing the �
systems and keeping additional zero-modes, however, one 
an as well 
onstru
t a \logarithmi
lift" of the theory [33℄ (see also [30℄).3.2 Boundary 
onditions and their spe
traIn the next step we wish to dis
uss boundary 
onditions in the orbifold theory 
onstru
tedabove. We will fo
us on a parti
ular brane. Our 
hoi
e might seem a bit ad ho
 at �rst,
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e-�lling brane of the PCM. As before, wetreat the 
ases S = 0 and S = 1 in some detail and postpone 
omments on higher values ofS to the following se
tion.In the 
ase S = 0 we need to 
onstru
t a brane in the orbifold (3.2) whi
h 
orresponds toa Neumann brane in the free boson theory at large radius. But in this 
ase the deformationis well known. When we redu
e the radius from R = 1 to R = 1 we pass the self-dualradius where Neumann and Diri
hlet branes 
annot be distinguished and get ex
hanged byT-duality. Consequently the brane we would like to des
ribe in the free boson theory atR = 1 is the Diri
hlet brane whi
h has the spe
trumZR=1D (q) = Xw2Zq w22�(q) = �3(q)�(q) : (3.16)We will now show how the same spe
trum 
an be obtained from the orbifold model.The Ising model is the simplest of the Virasoro minimal models. It has pre
isely threedi�erent 
onformal boundary 
onditions, one for ea
h of irredu
ible representations [0℄, [1=2℄and [�℄ = [1=16℄. Here and in the following we shall labels boundary 
onditions and se
tors bythe same symbol. The spe
trum of ex
itations between any two of these boundary 
onditionsis des
ribed by the respe
tive fusion rules [34℄. In order to make 
onta
t with the bosoni
des
ription, let us try to rewrite the partition fun
tion (3.16) through 
hara
ters (3.1) of thetwo Ising models. After simple manipulations we �ndZR=1D (q) = �3(q)�(q) = �(0;0) + �(1=2;1=2) + �(0;1=2) + �(1=2;0) : (3.17)The spe
trum we �nd 
an be 
onsidered as the orbit of the sum [0; 0℄�[0; 1=2℄ under the a
tionof the orbifold group �0. Sin
e [0; 0℄� [0; 1=2℄ is pre
isely the fusion produ
t [�; 0℄� [�; 0℄ we
on
lude that the desired point-like brane at R = 1 des
ends under the orbifold 
onstru
tionfrom the boundary 
ondition [�; 0℄ in the produ
t of two Ising models. The 
on
lusion isfully 
onsistent with the free fermion 
onstru
tion of the bosoni
 
urrent J �  1 2 of theR = 1 model. In fa
t, as is well known, the boundary label [0; �℄ 
orresponds to the gluing
onditions 1(z) = � � 1(�z)  2(z) = � 2(�z) (for z = �z) (3.18)in the underlying free fermion des
ription. The sign in the gluing 
ondition for the �rstfermioni
 �eld is asso
iated with the non-trivial boundary label [�℄. It implies that the
urrent J �  1 2 satis�es Diri
hlet boundary 
onditions J = � �J all along the boundary.Let us now turn our attention to the 
ase S = 1. We would like to fo
us on a brane whi
his asso
iated with the twisted gluing 
onditionsJ1(z) = �J1(�z) ; J2(z) = �J3(�z) ; J3(z) = �J2(�z) (3.19)for the bosoni
 
urrents J i = Eiata all along the boundary at z = �z. The underlying gluingautomorphism 
 permutes the se
ond and third 
opy of sl(2) in the bosoni
 subalgebra. It
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an easily be seen that 
 extends to an involution on the entire superalgebra osp(4j2). The
orresponding gluing 
onditions for fermioni
 
urrents read,F ���(z) = �F ���(�z) F ���(z) = �F ���(�z) : (3.20)A qui
k look ba
k at the free �eld realization of the 
urrents (3.10) suggests to implementthe boundary 
onditions (3.19) and (3.20) through the following gluing pres
ription for thefundamental �eld multiplet, 1(z) = � � 1(�z) ;  i(z) = � i(�z) (i 6= 1) ; �a(z) = ��a(�z) ; 
a(z) = �
a(�z) : (3.21)Indeed, equations (3.21) reprodu
e the permutation of 
urrents displayed in eqs. (3.19) and(3.20) upon insertion into eqs. (3.10).Just as in the 
ase S = 0 above, having a non-trivial gluing 
ondition for the fermion isasso
iated with the o

urren
e of the brane label � in the Ising model des
ription. Hen
e wepropose that the desired orbifold brane may be 
onstru
ted from the brane B = [0; 0;�; 0; 0; 0℄in the 
overing theory. The spe
trum for the latter is again given by fusion, and taking theorbit with respe
t to the orbifold group �1 one easily arrives atZFFB;S=1 = X
2�1��
�[0;0;0;0;0;0℄ + �
�[0;0;0;1=2;0;0℄� : (3.22)For later 
onvenien
e this result may also be rewritten in terms of irredu
ible 
hara
ters ofthe underlying bosoni
 
urrent algebra, leading toZFFB;S=1(q; zi) = �(0;0;0) + �(0; 12 ; 12 ) + �( 12 ; 12 ; 12 ) + �( 12 ;0;0) = �f0g + �f1=2g : (3.23)In the se
ond step we have 
ombined 
hara
ters of the bosoni
 subalgebra into 
hara
ters ofthe full dosp(4j2)1, using the formulas (3.13) and (3.14). The spe
trum of the orbifold branepreserves the aÆne Lie superalgebra, as desired. We also note that our partition fun
tionZFFB;S=1(q) is identi
al to the one that appeared in the work of Candu and Saleur [23, 24℄. Weshall now see that it is related through a deformation to the partition fun
tion of the volume�lling brane in the PCM model.3.3 Casimir de
omposition in the free GN modelHaving found the full spe
trum of an osp(4j2) symmetri
 brane in the free �eld theory (1.5),our next task is to expand it in terms of the 
hara
ters �K� . In other words, we need to �ndthe bran
hing fun
tions  K� (q) in the de
omposition,~Z = ZFFB;S=1(q; zi) = X� �K� (z1; z2; z3) ~ K� (q) : (3.24)This expansion is of the same form (2.17) as in the PCM at R = 1. Only the bran
hingfun
tions ~ K are di�erent. The following short analysis will show that they read~ K[j1;j2;j3℄(q) = 1�(q)�3(q) 1Xn;m=0(�1)n+mqm2 (m+4j1+2n+1)+j1+n2� (q(j2�n2 )2 � q(j2+n2+1)2)(q(j3�n2 )2 � q(j3+n2+1)2) : (3.25)



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 24Before we derive this formula, we wish to 
omment on its impli
ations. A short look ba
kto formula (2.18) reveals a remarkable similarity between the two bran
hing fun
tions of thepartition fun
tions Z of the PCM at R = 1 and ~Z of the free �elds theory (1.5). In fa
t,they are identi
al up to an overall prefa
tor, K[j1;j2;j3℄(q) = q2j1(j1�1)�j2(j2+1)�j3(j3+1) ~ K[j1;j2;j3℄(q) : (3.26)For the time being this equation may simply be 
onsidered a 
urious observation regardingthe similarities of the two Casimir de
ompositions. We shall explain in the next subse
tionhow it relates to the 
laim that the boundary spe
trum for the PCM at R = 1 may beobtained by the 
urrent-
urrent perturbation (1.6) from the free �eld theory (1.5).In order to 
al
ulate the bran
hing fun
tions ~ K from the partition fun
tion ~Z, we pro
eedas in se
tion 2.3. In a �rst step we shall expand ~Z in terms of 
hara
ters of the bosoni
subalgebra osp(4j2)�0. Then we 
ombine the bosoni
 building blo
ks into 
hara
ters of Ka
modules for osp(4j2). The resulting expression for the bran
hing fun
tion will require onlyvery little additional analysis in order to 
ast them into the form (3.25).The de
omposition of ~Z into bosoni
 
hara
ters departs from the representation (3.23)of ~Z and then employs the following expansion formulas for bsl(2) 
hara
ters into sums of
hara
ters of sl(2),�k=� 12a (�; u) = q 124�(q)2 Xk2N+a�k(z) 1Xm=0(�1)mqm2 (m+4k+1)+k �1� q2m+1� (3.27)�k=1a (�; u) = 1�(q) Xm2N+a�m(z) �qm2 � q(m+1)2� (3.28)where a 2 �0; 12	. >From the equality (3.23) and the two de
omposition formulas (3.27) and(3.28) it is 
lear that ~Z 
an be written as~Z = X(j1;j2;j3)2 12N3j2+j32N �(j1;j2;j3)(z1; z2; z3) ~ B(j1;j2;j3)(q) (3.29)where �(j1;j2;j3) are the 
hara
ters of the irredu
ible representations of osp(4j2)�0, as before,and the bran
hing fun
tions ~ B are given by~ B(j1;j2;j3)(q) = 1�(q)�3(q) 1Xm=0 (�1)m qm2 (m+4j1+1)+j1 (1� q2m+1)� (qj22 � q(j2+1)2) (qj23 � q(j3+1)2) : (3.30)Before we pro
eed let us note that the bran
hing fun
tions ~ B� possess the following importantsymmetry properties ne
essary for a proof in Appendix C,~ B(j1;j2;j3)(q) = � ~ B(�j1�1;j2;j3)(q) = � ~ B(j1;�j2�1;j3)(q) = � ~ B(j1;j2;�j3�1)(q) : (3.31)



3 THE OSP(4j2) GN MODEL AND THE SUPERSPHERE S3j2 25These imply in parti
ular that  B(j1;j2;j3)(q) vanishes identi
ally if any of the spin labels jais equal to ja = �1=2. As in our analysis of the PCM's partition fun
tion Z in se
tion2.3, we 
an express all 
hara
ters of representations of the bosoni
 subalgebra as in�nitelinear 
ombinations of the 
hara
ters of Ka
 modules. The required formulas 
an be foundin Appendix C. With their help we now arrive at the following result for ~ K� ,~ K[j1;j2;j3℄(q) = 1�(q)�3(q) 1Xn;m=0(�1)n+m qm2 (m+4j1+1)+j1+mn+n2 (1� q2m+1)� [n2 ℄Xk=0(q(j2�n2+k)2 � q(j2+n2�k+1)2) (q(j3�n2+k)2 � q(j3+n2�k+1)2)= 1�(q)�3(q) 1Xn;m=0(�1)n+m qm2 (m+4j1+2n+1)+j1+n2 (1� q2m+1)�(q(j2�n2 )2 � q(j2+n2+1)2) (q(j3�n2 )2 � q(j3+n2+1)2) 1Xk=0 q(2m+1)k :The sum over k at the end of this formula is a simple geometri
 series whi
h 
an
els thelast term in the �rst line. Thereby, we re
over the expression (3.25) we spelled out at thebeginning of this subse
tion.3.4 Deformation from free GN model to free PCMThe main result of our analysis so far was summarized 
on
isely in eq. (3.26). In order to fullyappre
iate its 
ontent, let us review a few results from [22℄. In that paper, the deformationof 
onformal weights was studied for the WZNW model on PSL(2j2). Many of the 
entralresults of [22℄, however, hold mu
h more generally for models whose symmetries are des
ribedby an aÆne Lie superalgebra with vanishing dual Coxeter number.To begin with, let us spe
ify the bulk perturbation we would like to 
onsider. As we shallargue momentarily, it is generated by the �eld,� = X���J�(z)
( �J�(�z)) (3.32)where the summation extends over all 17 bosoni
 and fermioni
 dire
tions. The automor-phism 
 we inserted here is the same as the gluing automorphism that was de�ned impli
itlythrough our gluing 
onditions (3.19) and (3.20) in se
tion 3.2. Note that the perturbingoperator � breaks the global symmetry from osp(4j2)
 osp(4j2) of the free GN model (1.5)to the twisted diagonal subalgebra. In other words, the symmetry transformations of theperturbed model are generated by elements of the form X 
 1+ 1

(X). This means thatany perturbing operator of the form � preserves half of the global bulk symmetries. Whatdepends on the 
hoi
e of the automorphism 
 is the pre
ise set of transformations that ispreserved. Similar statements 
an be made about boundary 
onditions. As we dis
ussed inse
tion 3.2, the boundary theory we put forward to 
ompare with the boundary spe
trum
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t a non-trivial gluing automorphism 
. If this gluing auto-morphism would di�er from the automorphism 
 in the de�nition of �, then the boundary
ondition and the deformation would preserve di�erent sets of symmetry generators. Hen
e,the deformed boundary theory would no longer possess a global osp(4j2) symmetry. Su
h atheory 
ould be 
onformal, but it 
annot be equivalent to the boundary PCM. Therefore, weknow that the perturbing operator � must involve the same automorphism 
 that appearedin the gluing 
ondition for 
urrents at the boundary. An expli
it formula for the operator �in terms of free �elds is derived at the end of appendix D. The resulting expression agreeswith the formula for S int we anti
ipated in the introdu
tion.Having spe
i�ed the deforming operator, we are now ready to dis
uss the properties ofthe deformation it generates. Here we shall 
losely follow the the re
ent analysis in [22℄.Everything we shall 
laim below is based on a rather simple mathemati
al result that was�rst formulated and exploited in the work of Bershadsky et. al. [16℄ for psl(NjN), but holdsequally for osp(2S+2j2S). Consider some osp(2S+2j2S) invariant �, su
h as e.g. a 
onformalweight, and suppose that � may be written as � = Cab
fab
 where fab
 are the stru
ture
onstants of osp(2S + 2j2S) and Cab
 are some numbers. Then � 
an be shown to vanish.We would like to apply this mathemati
al lemma to the 
omputation of 
onformal weights.To evaluate the 
hange of 
onformal weights away from the free GN model, we perform aperturbative analysis of 2-point fun
tions in our theory. In any su
h 
omputation of perturbed
orrelators, the initial step is to remove all the 
urrent insertions through 
urrent algebraWard identities. In the pro
ess, pairs of 
urrents get 
ontra
ted usingJ�(z) J�(w) = if���z � w J�(w) + k���(z � w)2 + : : : � k���(z � w)2 : (3.33)The �rst equality is the usual operator produ
t for osp(4j2) 
urrents. Sin
e we are onlyinterested in 
omputing the invariants h, we 
an drop all terms that involve the stru
ture
onstants f of the Lie superalgebra osp(4j2). This applies to the �rst term in the aboveoperator produ
t whi
h distinguishes the non-abelian 
urrents from the abelian algebra of
at target spa
es. Here and in the following we shall use the symbol � to mark equalitiesthat are true up to terms involving stru
ture 
onstants. In 
on
lusion, we have seen that, asfar as the 
omputation of 
onformal dimensions is 
on
erned, we may negle
t the non-abeliannature of the 
urrents J�. Obviously, this leads to drasti
 simpli�
ations of the perturbativeexpansion.In [22℄ several other statements were needed to study a deformation that preserved si-multaneously both left and right global symmetries. The perturbation (1.6) we 
onsiderhere, however, is of a mu
h simpler type. We 
an therefore dire
tly move on to evaluate the
onformal dimension of boundary �elds. Unlike in [22℄, the following arguments apply toall boundary 
onditions, as long as they preserve the aÆne dosp(4j2) symmetry. It does notrequire any further assumptions on the lo
alization of the brane. Let 	 be some multipletof boundary �elds transforming in a representation � of osp(4j2). We denote by h0(	) the
onformal weight of 	 at the WZ-point. Upon deformation with the �eld (3.32), the weight



4 GENERALIZATION FOR HIGHER-DIMENSIONAL SUPERSPHERES 27of 	 behaves ash(	) = h0(	)� 12 g21 + g2 C2(�) = h0(	) + 12 � 1R2 � 1� C2(�) (3.34)where C2 is the quadrati
 Casimir element of the Lie superalgebra osp(4j2), as before.Through the Casimir de
omposition (3.24) of the boundary partition fun
tion ~Z we haveseparated all boundary �elds a

ording to their osp(4j2) transformation law. This now allowsus to evaluate the shift of 
onformal weights for entire blo
ks rather than individual �eldmultiplets. More 
on
retely, the 
onformal weights of all �elds that are 
ounted by thebran
hing fun
tion ~ K[j1;j2;j3℄ undergo the same shift by8Æg(h) = �12 g21 + g2 C2[j1; j2; j3℄ = g21 + g2 �2j1(j1 � 1)� j2(j2 + 1)� j3(j3 + 1)�upon perturbation with �. Thereby, we 
an spell out the boundary spe
trum of the perturbedmodel for any 
hoi
e of g2 = R2 � 1,~ZR(q; zi) = q� 124 Xji �K[j1;j2;j3℄(z1; z2; z3) �� q(1� 1R2 )(2j1(j1�1)�j2(j2+1)�j3(j3+1)) ~ K[j1;j2;j3℄(q) : (3.35)For irrational values of the parameter R, the boundary spe
trum is rather ri
h, 
ontainingirrational 
onformal weights. But as we rea
h the spe
ial value R =1, all 
onformal weightsbe
ome integers. Equation (3.26) tells us even more: At this parti
ular point, the perturbedboundary partition fun
tion 
oin
ides with the partition fun
tion Z of volume �lling branesin the PCM on the supersphere S3j2 in the limit R!1. For a few sele
ted multiplets, thedeformation from R =1 to R = 1 had been 
arried out in [24℄. By performing the Casimirde
ompositions expli
itly, we were able to extend su
h studies to the entire spe
trum.4 Generalization for higher-dimensional superspheresThe aim of this se
tion is to outline how the previous analysis may be extended to higherdimensional superspheres. We shall provide expli
it formulas for the relevant boundaryspe
tra of the PCM at R =1 and for the free �eld theory (1.5). The latter are expressed interms of 
hara
ters of the aÆne dosp(2S + 2j2S) superalgebra at k = 1. Note that the leveldoes not depend on S. Sin
e we have not attempted to 
onstru
t the bran
hing fun
tions  �and ~ � for the de
omposition with respe
t to the global osp(2S + 2j2S) symmetry, we shall
ontent ourselves with a few non-trivial tests. These are dis
ussed in the se
ond subse
tion.We believe that a full analysis, as in the 
ase of S = 1, is possible but 
umbersome.8Let us re
all that all irredu
ible multiplets that 
an be tied together in an inde
omposable representationmust have identi
al Casimir eigenvalues, see appendix A.
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tions for superspheres at R = 1;1The �rst task is to spell out the spe
trum of the PCM with Neumann boundary 
onditions atR =1. It turns out that our formula (2.16) for S = 1 admits the following straightforwardgeneralization,ZPCMN ;S = q� 124Z(S)0 �(q) 1Yn=1 QSm=1(1 + ymqn)(1 + y�1m qn)QS+1k=1 (1� xkqn)(1� x�1k qn) : (4.1)Here, the subs
ript N stands for Neumann boundary 
onditions and the minisuperspa
e
ontribution is given byZ(S)0 = limt!1(1� t2)QSm=1(1 + ymt)(1 + y�1m t)QS+1k=1 (1� xkt)(1� x�1k t) : (4.2)As before, the fa
tor Z(S)0 des
ribes the spa
e of fun
tions on S2S+1j2S . As mentioned above,we have not performed the analysis of se
tion 2.3 for the more general partition fun
tionZPCMN ;S , though this would surely be possible.Next let us turn to the free GN model (1.5). Large parts of our analysis of the bulkspe
trum were already performed for generi
 S. On
e more, the theory possesses an aÆnedosp(2S+2j2S) symmetry with level k = 1 (see appendix D for an expli
it 
onstru
tion of thegenerators in terms of the basi
 �elds). The bulk theory 
an be shown to possess a symmetrypreserving boundary 
ondition whose spe
trum 
losely resembles eq. (3.23). Before we areable to spell out the details, we shall quote from [35℄ the following expressions for 
hara
tersof the aÆne Lie algebra bso(2S + 2) at level k = 1,�so(0)(q; xi) = 12�(q)S+1  S+1Yi=1 �3(q; xi) + S+1Yi=1 �4(q; xi)! ;�so(f)(q; xi) = 12�(q)S+1  S+1Yi=1 �3(q; xi)� S+1Yi=1 �4(q; xi)! : (4.3)Note that bso(2S+2)1 is part of the bosoni
 subalgebra ofdosp(2S+2j2S)1. Similarly, we alsoneed the 
orresponding 
hara
ters of the aÆne bsp(2S) at k = � 12�sp(0)(q; yi) = �(q)S2  1QSi=1 �4(q; yi) + 1QSi=1 �3(q; yi)! ;�sp(f)(q; yi) = �(q)S2  1QSi=1 �4(q; yi) � 1QSi=1 �3(q; yi)! : (4.4)The 
hara
ters we have just listed, furnish the basi
 building blo
ks for the relevant 
hara
tersof our superalgebradosp(2S + 2j2S)1 at level k = 1,�ospf0g = �so(0)�sp(0) + �so(f)�sp(f) ;�ospffg = �so(f)�sp(0) + �so(0)�sp(f) : (4.5)
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ular 
hoi
e of boundary 
onditions in the free �eld theory (1.5) the boundarypartition fun
tion takes the following formZFFB;S(q; zi) = �ospf0g + �ospffg = 1�(q)QS+1i=1 �3(q; xi)QSj=1 �4(q; yj) ; (4.6)where the �rst S variables zi = yi are asso
iated with the symple
ti
 part while the remainingS + 1 variables zS+i = xi are aÆliated with Cartan elements of the orthogonal subalgebra.Eq. (4.6) generalizes equation (3.23) to S � 1.4.2 Test of the dualityAs in the previous se
tion, we would like to show that the two partition fun
tions (4.1) and(4.6) are related to ea
h other by deformation with the intera
tion term (1.6) or, equivalently,by deforming the radius R of the PCM from R =1 all the way down to R = 1. In prin
iple,this may be a
hieved by repeating our analysis in se
tions 2.3 and 3.3 above. The �rst stepis to de
ompose the partition fun
tion (4.6) of the PCM at R = 1 in terms of 
hara
terfun
tions for the global osp(2S + 2j2S) symmetry,ZPCMN;S = X�2J �osp(2S+2j2S)� (zi) (S)� (q) ; (4.7)where J is the set of all integral dominant labels of osp(2S+2j2S) that are 
ompatible withthe 
onsisten
y 
onditions of [36℄. The existen
e of su
h a de
omposition is guaranteed, butin 
ase of S > 1 expli
it formulas for the bran
hing fun
tions  would still need to be workedout.The se
ond step is to pass from R =1 to �nite values of the radius. Sin
e all the generalresults we outlined in se
tion 3.4 hold for any value of S, the boundary partition fun
tion ofthe PCM at radius R readsZ(R) = X�2J �osp(2S+2j2S)� (xi; yj) (S)� (q) q 12 1R2 C(�) : (4.8)Here we expressed the partition fun
tion through the bran
hing fun
tions  at R =1 ratherthan through the ones at R = 1, as in se
tion 3.4. Therefore, the 
oeÆ
ient of the Casimirelement had to be properly adjusted. Note also that we normalized the quadrati
 Casimiroperator su
h that C2(f) = 1 for all values of S.For the PCMs on odd dimensional superspheres S2S+1j2S to be dual to the GN model,we would have to �nd Z(R = 1) = ZFFB;S ; (4.9)provided we have 
orre
tly identi�ed the appropriate boundary 
ondition in the free �eldtheory (1.5). Throughout the last se
tions, we have 
he
ked relation (4.9) expli
itly forS = 1. It is quite amusing to verify it also in the mu
h simpler 
ase of S = 0. When S = 0,
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omposition of the partition fun
tion at R = 1 into 
hara
ters of osp(2j0)�= so(2),takes a parti
ularly simple form,ZPCMN;S=0 = q� 124 �(q)Xn2ZznXk2Z zk�(q)2 1Xm=0(�1)m �qm+12 (m+2jkj) � qm+12 (m+2(jkj+1))�= 1�(q)Xn2Zzn = Xn2Z�n(z) (0)n (q) ; (4.10)with �n(z) = zn and  (0)n (q) = 1=�(q). Following our equation (4.8), the partition fun
tionfor radius R be
omes Z(R) = 1�(q)Xn2Zzn q 12 1R2 n2 :Therefore, at R = 1 we obtainZ(R = 1) = 1�(q)Xn2Zznq n22 = 1�(q)Xn2Zznq n22 = ZFFB;S=0(q; z) ; (4.11)in agreement with our general predi
tion (4.9).Although we have not been able to �nd a 
on
lusive proof of (4.9) for S � 2, we wishto give some additional supporting eviden
e. To this end, we need a few more details aboutrepresentations of osp(2S + 2j2S) and the 
orresponding values of the quadrati
 Casimirelement. The representations we are interested in are labeled by integral dominant highestweights � of the form� = a1Æ1 + a2(Æ1 + Æ2) + � � �+ aS(Æ1 + � � � ÆS) + aS+1�1 + � � �+ a2S�1(�1 + � � � �S�1)+a2S �1 + � � �+ �S � �S+12 + a2S+1 �1 + � � �+ �S + �S+12 ; (4.12)where Æi and �j appear in the 
onstru
tion of the weight system of osp(2S + 2j2S) andobey (�i; �j) = �(Æi; Æj) = Æij . The numeri
al 
oeÆ
ients ai 2 N must moreover obey someadditional 
onsisten
y 
onditions that 
an be found in [36℄. The value of the quadrati
Casimir in the representation of weight � 
an now be expressed in terms of the 
oeÆ
ientsai as,C� = (�;�+ 2�) = � SXi=10� SXj=i aj � 2i1A SXk=i ak + (a2S � a2S+1)24+ SXi=10�S�1Xj=i aS+j + a2S + a2S+12 + 2(S + 1� i)1A S�1Xk=i aS+k + a2S + a2S+12 ! :The fundamental representation 
orresponds to a1 = 1 and ai = 0 for i 6= 1 so that CÆ1 =�(1 � 2) = 1 for all S. The value of the quadrati
 Casimir does not only determine thedeformation of 
onformal weights, see eq. (4.9). It is also needed to 
ompute the 
onformalweight h� = C�2k (4.13)
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t to the underlying aÆne superalgebra at level k. Inour 
ase, the level k must be set to k = 1, as before.After this preparation we 
an begin to test equation (4.9). Let us �rst try to re
over theground states of the free �eld theory at R = 1. It is 
lear that the va
uum state at R = 1is obtained by deforming the unique osp(2S + 2j2S) invariant �eld with weight h = 0 atR = 1. So, we 
an turn to the ground states in the se
ond se
tor of eq. (4.6) right away.From (4.7) we infer that the boundary PCM 
ontains a single �eld multiplet that transformsin the fundamental representation with � = Æ1 and has 
onformal weight h = 0. Underthe proposed deformation, the 
onformal weight of this multiplet is lifted from h = 0 toh = 1=2, sin
e CÆ1 = 1. The latter value agrees pre
isely with the ground state energy of the
orresponding aÆne representation when k = 1 as given by (4.13).We want to go a little further and re
over states in the R = 1 model whose weight isone above the ground states. Let us pi
k, for example, a multiplet that transforms on therepresentation � = 3Æ1. In the large radius limit, this representation arises for the �rst timeamong the states of weight h = 3. In fa
t, in eq. (4.1) terms 
ontaining y31 are multipliedby q3 or higher powers of q. Sin
e C3Æ1 = 3, the proposal (4.9) tells us that the weightof this multiplet gets deformed to h = 3 � 32 = 32 . Hen
e, it should appear among the�rst des
endants of the se
tor over the fundamental representation. Indeed, the irredu
iblerepresentation with highest weight 3Æ1 is 
ontained in the tensor produ
t of the fundamentalrepresentation with the adjoint representation. Thus, ZFFB;S 
ontains this representation withh = 32 exa
tly as predi
ted by eq. (4.9).5 Con
lusions, open questions and outlookThis work 
ontains two 
entral results. To begin with, we have been able to 
ompute theexa
t boundary spe
trum of a volume �lling brane on the 3-dimensional supersphere S3j2 forall values of the 
urvature radius R. With a little bit of extra work it should be possible toextend our formulas to higher dimensional superspheres and also to other spe
tra, in
ludingthe spe
trum of the bulk �elds (see 
omments below). The se
ond result 
on
erns the dualitybetween the supersphere PCM and the osp(2S+2j2S)GN model. More spe
i�
ally, we wereable identify the spe
trum at the spe
ial point R = 1 with that of a free �eld theory, namelyof the model (1.5) with a parti
ular 
hoi
e of boundary 
onditions. This is 
onsistent with are
ent 
onje
ture in [24℄ and it provides extremely strong additional support for the duality.The supersphere S3j2 and its higher dimensional generalizations have been advo
atedin the past [20, 21℄ as good toy models for the world-sheet des
ription of string theory onAdS5 � S5. Obviously, the de�ning equations for both AdS5 and S5 are very similar to ourbasi
 
onstraint (1.1). What is more important, however, is that the world-sheet modelsfor AdS5 � S5 = �PSU(2; 2j4)=SO(1; 4) � SO(5)�0 and the supersphere theory give rise to
ontinuous families of 2D 
onformal �eld theories with many 
ommon features. In both
ases, the non-abelian global symmetries remain unbroken. On the other hand, they are
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ed into aÆne symmetries, at least not for generi
 points in the moduli spa
e.Consequently, it seems reasonable to spe
ulate brie
y about possible lessons the superspheremodels might tea
h us for the world-sheet des
riptions of string theory in AdS5 � S5.9To begin with, it is 
ertainly possible to determine the exa
t spe
trum of the free sigmamodel on the super
oset PSU(2; 2j4)=SO(1; 4) � SO(5) at R = 1, mu
h as this was donehere for the supersphere. The deformation of the spe
trum away from R =1 
annot be assimple as in the supersphere 
ase. In fa
t, we know for sure that there are some operatorswhose anomalous dimensions do not possess a quasi-abelian dependen
e of the radius R (orthe 't Hooft 
oupling). It might be interesting, however, to study whether there is somesubset of operators whose dimensions are given by eq. (1.8). Sin
e we have nothing to sayabout this right now, let us just imagine that in some way we were able to deform theentire spe
trum. Then we 
ould start to look for spe
ial values of the radius R at whi
h thespe
trum 
ontains half-integer or integer values only. We know for sure that su
h a pointexists, namely the radius R0 for with the string model be
omes dual to the free N = 4supersymmetri
 Yang-Mills theory. One might hope that su
h a point is des
ribed by a freeworld-sheet theory, just as it is the 
ase for the superspheres. In this sense, the dual ofthe free Yang-Mills theory would be the analogue of the free GN model. If one found su
hstrong-weak 
oupling duality within the world-sheet des
ription of strings in AdS, it wouldredu
e the AdS/CFT 
orresponden
e to a remaining weak-weak 
oupling duality. World-sheet des
riptions of weakly 
oupled gauge theory have appeared in the literature, see e.g.[37, 38℄ or the re
ent work [39℄ for two developments that seem relevant for what we havejust outlined.Finding an expli
it a
tion for su
h a free world-sheet model and its deformation mighthave two interesting appli
ations. To begin with, it 
ould provide a better starting pointfor the quantization of the string theory on AdS5 � S5. In fa
t, let us point out that ourOSP(2S + 2j2S)-GN model is mu
h simpler than the original supersphere PCM: While theperturbative expansion of the latter 
ontains terms of any order in the basi
 �elds, theformer has no terms beyond fourth order. Furthermore, the perturbative expansion for the
onje
tured weakly 
oupled dual of the strongly 
oupled AdS5 � S5 sigma model 
ould be
ompared order by order to the perturbative expansion in the gauge theory, see again [39℄.One might even hope to prove the AdS/CFT duality using su
h an intermediate world-sheetmodel. Of 
ourse all this remains mere spe
ulation for now. In parti
ular, it is 
lear thatour analysis of supersphere models exploited 
ompa
tness of the target's bosoni
 base. Morework is ne
essary to in
lude non-
ompa
t targets su
h as AdS5 � S5 or AdS4 � C P3 .After all these 
omments on possible impli
ations for the AdS/CFT 
orresponden
e, wewould like to 
lose with a few remarks on the bulk spe
trum of the supersphere models. Theanalysis of boundary deformations in [22℄ puts mu
h stress on the fa
t that 
omputationswhere only possible for very parti
ular boundary spe
tra. In fa
t, open strings had to belo
alized at one point in a ba
kground in order to avoid running into mixing problems. For the9Similar remarks apply obviously to AdS4 � CP3.



5 CONCLUSIONS, OPEN QUESTIONS AND OUTLOOK 33superspheres, similar issues do not arise. While [22℄ fo
used on a bulk deformation preservingglobal left and right transformations simultaneously, the 
urrent-
urrent perturbation (1.6)
onsidered here is of a very di�erent type. Sin
e the deforming operator does not involveany ta
hyoni
 vertex operators, there is no mixing problem, neither for boundary theories,nor even for the bulk. On the other hand, the perturbation breaks the global bulk symmetrydown to a single diagonal a
tion of the symmetry algebra. Therefore, it should be possibleto deform bulk spe
tra, but it might be more diÆ
ult to identify the relevant osp(2S+2j2S)a
tion as we deform from R = 1 to R = 1. We will return to these issues in a futurepubli
ation.A
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A SOME ASPECTS OF THE REPRESENTATION THEORY OF OSP(4j2) 34A Some aspe
ts of the representation theory of OSP(4j2)Our �rst appendix 
ontains a number of basi
 notations and results 
on
erning the Liesuperalgebra osp(4j2). These are used frequently in the main text. The 
omplex superalgebrag := osp(4j2) may be realized as the set of matri
esosp(4j2) = �� A BJ2Bt D � : At = �A and DtJ2 = �J2D�with J2 = � 0 �11 0 � and the standard de�nition of graded 
ommutators. We have the usualseparation of the superalgebra into a bosoni
 g�0 = sp(2)� so(4) �= sl(2)� sl(2)� sl(2) and afermioni
 g�1 subspa
e. In addition, the superalgebra has a Z-grading that is 
ompatible withits Z2 stru
ture, i.e. g = g�2 � g�1 � g0 � g1 � g2, where the relation [gi; gj ℄ = gi+j holds,with g0 �= so(4)� gl(1), g�0 = g�2 � g0 � g2 and g�1 = g�1 � g1.An integral dominant highest weight � = (j1; j2; j3) of g�0 is also one for the full superal-gebra g if it obeys the 
onsisten
y 
onditions:j1 = 0) j2 = j3 = 0 ; j1 = 12 ) j2 = j3 (A.1)where the �rst spin is related to the symple
ti
 subalgebra and the two others to the or-thogonal one. The �nite dimensional irredu
ible representations [�℄ of g are 
onstru
ted asfollows. Taking an irredu
ible highest weight representation (�) of g0 �= so(4) � gl(1) withhighest weight � = (j1; j2; j3) asso
iated to the highest weight ve
tor v�, we setM� = U(g)(E�1 )2j1+1v� ; K� = �Indgp(�)� =M�where U(g) is the universal enveloping algebra of g, E�1 is the lowering operator of thesymple
ti
 subalgebra and p = g0 � g1 � g2. In the above equation, we have 
onsidered theg0-module (�) as a p-module by letting gi; i = 1; 2 a
t trivially on it. The �nite dimensionalrepresentation K� is 
alled the Ka
 module of � and is generi
ally irredu
ible. The set ofKa
 modules is divided into typi
al and atypi
al ones. If the Ka
 module K� is typi
al, thenit is guaranteed to be irredu
ible. In this 
ase we de�ne the simple module [�℄ to be K�. If,however, one or more of the following atypi
ality 
onditions2j1 = �j2 � j3 ;2j1 = j2 + j3 + 2 ;2j1 = �(j2 � j3) + 1 (A.2)hold, then K� is atypi
al and will generi
ally 
ontain a maximal invariant subspa
e I�without being fully redu
ible, i.e. it will 
ontain inde
omposable 
onstituents. In those
ases, we set [�℄ = K�=I�. It 
an o

ur however that I� = 0 even though K� is atypi
al.The eigenvalue of the quadrati
 Casimir in the simple module [�℄ is given by the formulaC2(�) = �4j1(j1 � 1) + 2j2(j2 + 1) + 2j3(j3 + 1) : (A.3)



A SOME ASPECTS OF THE REPRESENTATION THEORY OF OSP(4j2) 35In parti
ular, C2(�) is always a square, i.e. C2(�) = k2; k 2 N, on atypi
al representations [�℄.The atypi
al weights � = (j1; j2; j3) 
an be divided into blo
ks �k, su
h that weights in �kpossess the same eigenvalue C2(�) = k2 of the quadrati
 Casimir element. The 
orrespondingatypi
al labels 
an be listed expli
itly [40℄,�0 = ��0;0 = (0; 0; 0) ; �0;l = 12(l + 1; l� 1; l� 1) ; l � 1��k = f�k;l ; l 2 Zg (A.4)where �k;l =8>><>>: 12 (�l+ 2;�l� k;�l+ k) if l � �k12 (�l+ 1; l + k � 1;�l+ k � 1) if � k + 1 � l � 012 (l + 1; l+ k � 1;�l+ k � 1) if 0 � l � k � 112 (l + 2; l+ k; l � k) if k � l : (A.5)One sees easily, that the weights �k;�l for k � 1 may be obtained from �k;l by simplyex
hanging the se
ond and the third Dynkin label. Furthermore, it is possible to distinguishthe weights �k;l a

ording to the atypi
ality 
ondition (A.2) they obey. The only weight toful�ll the �rst 
ondition is �0;0. The weights belonging to the se
ond 
ondition are �0;l forl � 1 and �k;�l for l � k. Finally, those the satisfy the last atypi
ality relation are the �k;�lfor l < k.The only atypi
al Ka
 modules K(�k;l) whi
h are irredu
ible 
orrespond to the weights�k;0 for k � 0 and to �0;1. The inde
omposable stru
ture of the remaining ones 
an bede
iphered from the following diagram,K�0;2 : [�0;2℄ �! [�0;0℄� [�0;1℄K�0;l : [�0;l℄ �! [�0;l�1℄ for l � 3K�k;l : [�k;l℄ �! [�k;l�1℄ for l � 1K�k;l : [�k;l℄ �! [�k;l+1℄ for l � �1 : (A.6)The dimension of the typi
al Ka
 modules isdim[K(j1;j2;j3)℄ = 16(2j1 � 1)(2j2 + 1)(2j3 + 1) (A.7)whereas the dimension of the atypi
al ones may be inferred from their stru
ture, togetherwith the following formulas for the dimension of the irredu
ible representations,dim[�0;0℄ = 1 ; dim[�0;1℄ = 17 ; dim[�k;0℄ = 4k2 + 2dim[�0;l℄ = (2l + 1) �(2l + 1)2 � 3� for l � 2dim[�k;l℄ = (2l + 1) �4(k2 � 1)� (2l+ 1)2 + 7� for l � k � 1dim[�k;l℄ = (2l + 3) �(2l + 3)2 � 4(k2 � 1)� 7� for l � k (A.8)where, of 
ourse, dim[�k;�l℄ = dim[�k;l℄. The de
omposition of K� for j1 � 1, whethertypi
al or not, into irredu
ible modules of the bosoni
 subalgebra has been 
omputed in [41℄.



B SOME USEFUL IDENTITIES 36It takes the form[K�℄g�0 �= (j1; j2; j3) M�;�=� 12 (j1 � 12 ; j2 + �; j3 + �)M�=�1 �(j1 � 1; j2 + �; j3)� (j1 � 1; j2; j3 + �)�� 2(j1 � 1; j2; j3)� M�;�=� 12 (j1 � 32 ; j2 + �; j3 + �)� (j1 � 2; j2; j3) : (A.9)There are a few spe
ial 
ases for whi
h the de
omposition is not generi
. If j1 � 2; j2 � 1or j3 � 1 then the above de
omposition formula must be trun
ated at the point whereone ore more of the labels be
ome negative. Moreover, there are two 
ases for whi
h themultipli
ity of the (j1 � 1; j2; j3) submodule has to be 
hanged. If j1 = 1; j2 > 0; j3 > 0 orj1 > 1; j2 = 0; j3 > 0 or j1 > 1; j2 > 0; j3 = 0, then this blo
k will appear only on
e and ifboth j2 and j3 are null, then it will not be present at all.When j1 = 12 , the Ka
 modules K� with weight � obeying the 
onsisten
y 
onditions(A.1) are equal to the irredu
ible modules � 12 ; k2 ; k2 � and they possess the following stru
ture�12 ; k2 ; k2�jg�0 �= �12 ; k2 ; k2���0; k + 12 ; k + 12 ���0; k � 12 ; k � 12 � : (A.10)Finally, the Ka
 module K[0;0;0℄ is trivial.B Some useful identitiesIn this appendix we 
olle
t a few de�nitions and identities that we have employed to obtainthe Casimir de
ompositions in se
tions 2.3 and 3.3. We also provide the �rst few terms inthe Casimir de
omposition of the partition fun
tion ZFFB for S = 1.B.1 Identities used in the Casimir de
ompositionTo begin with, let us brie
y re
all the de�nition of Ja
obi's � fun
tions. In our 
onventionsthey are given by�1(qjz) = �i Xr2Z+12 (�1)r� 12 zrq r22 = �i z 12 q 18 1Yn=1(1� qn)(1� zqn)(1� z�1qn�1)�2(qjz) = Xr2Z+12 zrq r22 = z 12 q 18 1Yn=1(1� qn)(1 + zqn)(1 + z�1qn�1)�3(qjz) = Xr2Zzrq r22 = 1Yn=1(1� qn) Yr2N+12 (1 + zqr)(1 + z�1qr)�4(qjz) = Xr2Z(�1)rzrq r22 = 1Yn=1(1� qn) Yr2N+ 12 (1� zqr)(1� z�1qr) :
(B.1)



B SOME USEFUL IDENTITIES 37The following two lemmata 
ontain auxiliary formulas that are needed to rewrite the partitionfun
tion (2.16) in terms of 
hara
ters of osp(4j2).Lemma B.1.1Yn=1 1(1� zqn)(1� z�1qn) = Xn2Zzn 1Xm=0(�1)m qm2 (m+2n+1) � qm2 (m+2n�1)�(q)2 :Proof. We assume that jqj < jzj < 1, whi
h is the relevant 
ondition for the above expansionto make sense. We want to �nd the 
oeÆ
ients fNl (q) in the relationXl2ZfNl (q)zl = 1(1� z)QNn=1(1� zqn)(1� z�1qn) :To do this, we multiply both sides by z�k�1 and integrate them over z along a 
ontour thatsurrounds zero in a 
ounter
lo
kwise dire
tion. In order to stay within the region jzj < 1 itmust 
ling to the unit 
ir
le on the inside. The left hand side of the previous equation givesus the 
oeÆ
ient fNk (q). The right hand side is zero for z = 0 and the �rst order poles thatare en
ir
led by the 
ontour are at z = qn for n = 1; : : : ; N . Their residues are given bylimz!qn z�k�1(z � qn)(1� z)QNl=1(1� zql)(1� z�1ql) = (�1)n�1q n2 (n�2k�1)QN+nl=1 (1� ql)QN�nl=1 (1� ql) :If we �nally remove our 
uto� N by sending N !1 we arrive at1(1� z)Q1n=1(1� zqn)(1� z�1qn) =Xk2Zzk 1Xn=0 (�1)n�1q n2 (n�1�2k)�(q)2 :Multiplying both sides by 1� z and using the lemma B.2 below to shu�e some minus signsaround 
ompletes the proof.Lemma B.2.2nXm=1(�1)mqm(m�1)2 �mn = 0 for n � 11Xm=1 rXs=�r(�1)mqm(m�1)2 �m(n+s)(1� qm) = 1Xm=1 rXs=�r(�1)mqm(m�1)2 �m(�n+s)(1� qm) :Proof. The �rst equation is shown to be true by splitting the sum in Pnm=1 and P2nm=n+1and showing that they are equal up to a sign. The se
ond equation then follows easily fromthe �rst.There are a number of very simple auxiliary formulas that are needed for the Casimirde
omposition in se
tion 2.3. Let us only list two of them here1Xr=0(�1)rq r(r+2)4 (1� qr+2)ar = 1Xr=0(�1)rq r(r+2)4 (ar � ar�2) (B.2)



B SOME USEFUL IDENTITIES 38�q(j2� r2 )2 � q(j2+ r2+1)2��q(j3� r2 )2 � q(j3+ r2+1)2� = qj2(j2+1)+j3(j3+1)q r22 +r+1� �q�(r+1)(j2+j3+1) + q(r+1)(j2+j3+1) � q(r+1)(j2�j3) � q�(r+1)(j2�j3)� : (B.3)B.2 Casimir de
omposition of ZFFBIn se
tion 3.3 we obtained 
losed formulas (3.24) and (3.26) for the Casimir de
ompositionof the partition fun
tion ZFFB . Sin
e our expression for the bran
hing fun
tions is a bit
ompli
ated, let us reprodu
e the �rst few terms of the partition fun
tion expli
itly,ZFFB;S=1(q) = q0�[0;0;0℄ + q 12�[ 12 ;0;0℄ + q1�[1;0;0℄ + q 32 ��[ 32 ;0;0℄ + �[ 12 ;0;0℄�+q2 ��[2;0;0℄ + �[1;0;0℄ + �[ 12 ; 12 ; 12 ℄ + �[0;0;0℄�+q 52 ��[ 52 ;0;0℄ + �[ 32 ;0;0℄ + �[1; 12 ; 12 ℄ + 2�[ 12 ;0;0℄�+q3 ��[3;0;0℄ + �[2;0;0℄ + �[ 32 ; 12 ; 12 ℄ + 4�[1;0;0℄ + �[ 12 ; 12 ; 12 ℄ + �[0;0;0℄�+q 72 ��[ 72 ;0;0℄ + �[ 52 ;0;0℄ + �[2; 12 ; 12 ℄ + 3�[ 32 ;0;0℄ + 2�[1; 12 ; 12 ℄ + 3�[ 12 ;0;0℄�+q4 ��[4;0;0℄ + �[3;0;0℄ + �[ 52 ; 12 ; 12 ℄ + 3�[2;0;0℄ + 2�[ 32 ; 12 ; 12 ℄ + �[1;1;0℄ + �[1;0;1℄+6�[1;0;0℄ + 4�[ 12 ; 12 ; 12 ℄ + 3�[0;0;0℄�+q 92 ��[ 92 ;0;0℄ + �[ 72 ;0;0℄ + �[3; 12 ; 12 ℄ + 3�[ 52 ;0;0℄ + 2�[2; 12 ; 12 ℄ + �[ 32 ;1;0℄+�[ 32 ;0;1℄ + 5�[ 32 ;0;0℄ + 4�[1; 12 ; 12 ℄ + �[ 12 ;1;1℄ + 7�[ 12 ;0;0℄�+q5 ��[5;0;0℄ + �[4;0;0℄ + �[ 72 ; 12 ; 12 ℄ + 3�[3;0;0℄ + 2�[ 52 ; 12 ; 12 ℄ + �[2;1;0℄ + �[2;0;1℄+5�[2;0;0℄ + 5�[ 32 ; 12 ; 12 ℄ + �[1;1;1℄ + �[1;1;0℄ + �[1;0;1℄ + 14�[1;0;0℄ + 5�[ 12 ; 12 ; 12 ℄ + 3�[0;0;0℄�+q 112 ��[ 112 ;0;0℄ + �[ 92 ;0;0℄ + �[4; 12 ; 12 ℄ + 3�[ 72 ;0;0℄ + 2�[3; 12 ; 12 ℄ + �[ 52 ;1;0℄+�[ 52 ;0;1℄ + 5�[ 52 ;0;0℄ + 5�[2; 12 ; 12 ℄ + 10�[ 32 ;0;0℄ + 2�[ 32 ;1;0℄ + 2�[ 32 ;0;1℄ + �[ 32 ;1;1℄+8�[1; 12 ; 12 ℄ + �[ 12 ;1;1℄ + 11�[ 12 ;0;0℄�+q6 ��[6;0;0℄ + �[5;0;0℄ + �[ 92 ; 12 ; 12 ℄ + 3�[4;0;0℄ + 2�[ 72 ; 12 ; 12 ℄ + �[3;1;0℄+�[3;0;1℄ + 5�[3;0;0℄ + 5�[ 52 ; 12 ; 12 ℄ + 11�[2;0;0℄ + 2�[2;1;0℄ + 2�[2;0;1℄ + �[2;1;1℄+11�[ 32 ; 12 ; 12 ℄ + 2�[1;1;1℄ + 4�[1;1;0℄ + 4�[1;0;1℄ + 22�[1;0;0℄ + 13�[ 12 ; 12 ; 12 ℄ + 9�[0;0;0℄�+q 132 ��[ 132 ;0;0℄ + �[ 112 ;0;0℄ + �[5; 12 ; 12 ℄ + 3�[ 92 ;0;0℄ + 2�[4; 12 ; 12 ℄ + �[ 72 ;1;0℄+�[ 72 ;0;1℄ + 5�[ 72 ;0;0℄ + 5�[3; 12 ; 12 ℄ + 11�[ 52 ;0;0℄ + 2�[ 52 ;1;0℄ + 2�[ 52 ;0;1℄ + �[ 52 ;1;1℄+11�[2;12 ; 12 ℄ + 2�[ 32 ;1;1℄ + 5�[ 32 ;1;0℄ + 5�[ 32 ;0;1℄ + 16�[ 32 ;0;0℄ + 15�[1; 12 ; 12 ℄ + �[1; 32 ; 12 ℄+�[1; 12 ; 32 ℄ + 4�[ 12 ;1;1℄ + 21�[ 12 ;0;0℄�+ : : : :One may deform this expression to values R 6= 1 by means of the formula (3.35) at the endof se
tion 3.4.



C RECOMBINATION OF THE BOSONIC CHARACTERS 39C Re
ombination of the bosoni
 
hara
tersLet Z be a partition fun
tion with osp(4j2) symmetry. If we denote the 
hara
ters of thebosoni
 subalgebra by �B(j1;j2;j3)(zi) = �j1(z1)�j2(z2)�j3(z3), we 
an write the partition fun
-tion as Z = X�2J �B� (z1; z2; z3) B� (q) = X�2J 0 �K� (z1; z2; z3) K� (q) (C.1)where J 0 � J is the set of labels in J = f(j1; j2; j3); ji = 0; 1=2; 1; 3=2; : : :g that are
ompatible with the 
onsisten
y 
onditions (A.1). Here, the �rst de
omposition is in termsof bosoni
 
hara
ters while the se
ond one is based on the 
hara
ters of Ka
 modules. Inorder to �nd the relations between these two de
ompositions, we re
all that the roots of thefour fermioni
 lowering operators in g�1 := osp(4j2)�1 are�1 = ��12 ; 12 ; 12� �2 = ��12 ; 12 ;�12� �3 = ��12 ;�12 ; 12� �4 = ��12 ;�12 ;�12� : (C.2)Let us �rst dis
uss the generi
 label � = (j1; j2; j3) where either j1 � 32 , or j1 = 1 and(j2; j3) 6= (0; 0). In su
h 
ases we 
an write the de
omposition of the Ka
 module 
hara
ter�K� as �K� = 4Xi=0 X�2�i(g�1)�B�+� (C.3)where � is any of the weights that appear in the ith exterior produ
t �i(g�1) of g�1. Wealso allow for negative spins using the formal pres
ription �j = ���j�1. To treat theremaining 
ases with j1 � 12 we employ the formulas developed in appendix A. Inserting thede
omposition of Ka
 modules into the partition fun
tion Z leads to a formula that expressesthe bosoni
 bran
hing fun
tions  B� as sums of the bran
hing fun
tions  K� . Our main aimis to invert this relation, i.e. to determine the bran
hing fun
tions  K in terms of  B . Tothis end let us state a few basi
 properties of  K that will be 
he
ked afterwards, on
e wehave an expli
it formula, K[j1;j2;j3℄ = � K[j1;�j2�1;j3℄ = � K[j1;j2;�j3�1℄ : (C.4)If we take this behavior of  K for granted the de
omposition formulas for the partitionfun
tion Z and of �K in terms of bosoni
 
hara
ters imply, B� = 4Xi=0 X�2�i(g�1) K��� (C.5)for all � 2 J 0. Inverting this expression leads to the following result K� = 1Xn=0(�1)n X�2Symn(g�1) B��� : (C.6)



C RECOMBINATION OF THE BOSONIC CHARACTERS 40To establish formula (C.6) we plug (C.5) into (C.6). Thereby we obtain K� = 1Xi=0(�1)i 4Xj=0(�1)j X�2Symi�j (g�1) X
2�j(g�1) K����
| {z }=0 if i 6=0 =  K� ; (C.7)thus showing that (C.6) inverts (C.5). In (C.7) we have set Symn(V ) = ; if n < 0 and usedthe identity: 4Xj=0(�1)j X�2Symi�j(V ) X
2�j(V ) 
(� + 
) = 0 ; (C.8)whi
h is true for every four dimensional ve
tor spa
e V and every fun
tion 
 as long asi � 1. To show (C.8), we introdu
e the symbol 	 whi
h is to be understood as a sort ofa negative of a dire
t sum as for example in A � B 	 B = A. Then (C.8) is equivalent toL4j=0	jSymi�j(V )
�j(V ) = 0 if i � 1, whi
h 
an be shown using standard Young tableauxte
hniques. Denote a tableau 
onsisting of one single row with m boxes by 1m and a tableauwith one single 
olumn of n boxes10 by n1 and 
ompute that 1m
n1 = 1mn1�1m�1(n+1)1if m � 1; n � 1; n � 4. Thus4Mj=0 	jSymi�j(V )
 �j(V ) = 4Mj=0 	j1i�j 
 j1= 1i � 3Mj=1 	j�1i�jj1 � 1i�(j+1)(j + 1)i�� 1i�4 
 41 = 0 (C.9)if i � 1. Thereby we have established that our assumption (C.4) implies the result (C.6).In order to 
omplete our proof of equation (C.6) we still need to verify our assumption(C.4). Let us observe that the bosoni
 bran
hing fun
tions  B possess the same symmetryproperty, be
ause, sin
e the bosoni
 
hara
ters �B are simply produ
ts of sl(2) 
hara
ters�j = ���j�1, the identity (C.4) holds trivially for  B instead of  K . We 
an use this fa
tto show K!m(�) = 1Xi=0(�1)i X�2Symi(g�1) B!m(�)�� = 1Xi=0(�1)i X�2Symi(g�1) B!m(��~!m(�))= � 1Xi=0(�1)i X�2Symi(g�1) B��~!m(�) = � 1Xi=0(�1)i X�2Symi(g�1) B��� : (C.10)The labels !2(�) and ~!2(�) were introdu
ed as !2(�) = (j1;�j2 � 1; j3) and ~!2(�) =(j1;�j2; j3) for all � = (j1; j2; j3). Similar 
onventions apply to !3 and ~!3.As we have noted before, the fun
tions  K� 
an have Laurent expansions with negative
oeÆ
ients. Su
h negative 
oeÆ
ients only appear in the atypi
al se
tor and they 
an betra
ed ba
k to the fa
t that we expanded the partition fun
tion Z in terms of `unphysi
al'10 Sin
e we work with a four-dimensional spa
e V , 41 = 01 must denote the trivial one-dimensional spa
e.
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hara
ters of Ka
 modules rather than through those of irredu
ible representations. Therelation between Ka
 modules and irredu
ible representation has dire
t impli
ations on the
orresponding bran
hing fun
tions. In fa
t, the bran
hing fun
tions  � that are de�nedthrough a de
omposition into 
hara
ters of irredu
ible representations are related to thebran
hing fun
tions  K by  [j1;j2;j3℄(q) =P�  K� (q). On the right hand side the summationextends over all those Ka
 modules K� that 
ontain the irredu
ible representation [j1; j2; j3℄in their de
omposition series. All relevant de
omposition series were spelled out in eq. (A.6).This gives  �0;0(q) =  K�0;0(q) +  K�0;2 (q) �0;l(q) =  K�0;l(q) +  K�0;l+1(q) 8 l � 1 �k;0(q) =  K�k;0(q) +  K�k;1(q) +  K�k;�1(q) 8 k � 1 �k;l(q) =  K�k;l(q) +  K�k;l+1(q) 8 k � 1 ; l � 1 �k;l(q) =  K�k;l(q) +  K�k;l�1(q) 8 k � 1 ; l � �1 : (C.11)
Let us stress that the bran
hing fun
tions  �(q) for irredu
ible representations of osp(4j2)are guaranteed to have non-negative integral 
oeÆ
ients.D A free �eld 
onstru
tion for dosp(Mj2N)1This appendix 
ontains a free �eld 
onstru
tion of the aÆne osp(Mj2N) algebra at levelk = 1 in terms of free fermions and several bosoni
 ghost systems. Let us de
ompose allsupermatri
es X 2 osp(M j2N) into blo
ks a

ording toX = 0� E �T T�T t F G�T t �G �F t 1A (D.1)where E is antisymmetri
 and G; �G are symmetri
. A basis for the various blo
ks in thesupermatrix X is provided byEij = eij � eji 1 � i < j � MFab = eab 1 � a ; b � NGab = �Gab = eab + eba 1 � a � b � NTia = �Tia = eia 1 � i � M ; 1 � a � N (D.2)where emn are elementary matri
es. The matri
es we have just introdu
ed des
ribe the vari-ous blo
ks in the supermatrixX . We agree to denote by Eij the supermatrix of the form (D.1)where E is given by Eij and all other blo
ks vanish. The basis elements Fab; Gab; �Gab; Tia; �Tiaare de�ned similarly.
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e M free fermions  i and 2N bosons �a; 
a with the following basi
operator produ
ts, i(z) j(w) � Æijz � w ; �a(z)
b(w) � �
a(z)�b(w) � Æabz � w : (D.3)We 
an de�ne the free �eld representation of the osp(Mj2N) 
urrent algebra throughEij(z) = ( i j)(z) ; Fab(z) = �(�a
b)(z)Gab(z) = (�a�b)(z) ; �Gab(z) = �(
a
b)(z)Tia(z) = i( i�a)(z) ; �Tia(z) = �i( i
a)(z) :The invariant bilinear form for osp(Mj2N) is (X;Y ) = 12 str(XY ). On the basis elements ittakes the following from(Eij ; Ekl) = �ÆikÆjl i < j and k < l(Fab; F
d) = �ÆadÆb
(Gab; �G
d) = �Æa
Æbd for a 6= b and 
 6= d (Gaa; �Gbb) = �2Æab(Tia; �Tjb) = ÆijÆab : (D.4)With the help of this form and assuming that M 6= 2N + 1, the holomorphi
 part of theenergy momentum tensor is given by the Sugawara 
onstru
tionT (z) = (J�J�)(z)2(k + g_) = 12(k + g_)h� MXi<j=1(E2ij)� NXa;b=1(FabFba)� NXa<b=1 � �Gab; �Gab	 ��12 NXa=1 � �Gaa; �Gaa	 �� MXi=1 NXa=1 � �Tia; �Tia� �i= �12 MXi=1( i� i) + 12 NXa=1 �(�a�
a)� (
a��a)� (D.5)Here, the dual Coxeter number is given by g_ = M � 2N � 2 and the value of the level isk = 1. The 
entral 
harge of the system is easily seen to take the value 
 = M2 �N .Let us now introdu
e the involutive automorphism 
 su
h that the �xed point set fX 2osp(M j2N)j
(X) = Xg is isomorphi
 to osp(M � 1j2N). On the basis we introdu
ed above,
 a
ts non-trivially only on Eij ; Tia; �Tia. In fa
t, it multiplies all operators with i = 1 by�1 and leaves the others invariant. If we denote the anti-holomorphi
 �elds 
orresponding
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a by � i; ��a; �
a, the deformation operator J�
( �J�) 
an then be written asJ�
( �J�) = � MXi<j=1$i( i j)( � i � j)� NXa;b=1(�a
b)( ��b�
a)+ NXa<b=1 �(�a�b)(�
a�
b) + (
a
b)( ��a ��b)�+ 12 NXa=1 �(�a�a)(�
a�
a) + (
a
a)( ��a ��a)�� MXi=1 NXa=1$i �( i�a)( � i�
a)� ( i
a)( � i ��a)�= 12 " MXi=1$i i � i + NXa=1 �
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